Science.gov

Sample records for hole binaries signatures

  1. Observational signatures of binary supermassive black holes

    SciTech Connect

    Roedig, Constanze; Krolik, Julian H.; Miller, M. Coleman

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  2. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  3. Optical Variability Signatures from Massive Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam

    2017-01-01

    The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.

  4. Calculating Gravitational Wave Signature from Binary Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2003-01-01

    Calculations of the final merger stage of binary black hole evolution can only be carried out using full scale numerical relativity simulations. We review the status of these calculations, highlighting recent progress and current challenges.

  5. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  6. High-energy signatures of binary systems of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Romero, G. E.; Vila, G. S.; Pérez, D.

    2016-04-01

    Context. Binary systems of supermassive black holes are expected to be strong sources of long gravitational waves prior to merging. These systems are good candidates to be observed with forthcoming space-borne detectors. Only a few of these systems, however, have been firmly identified to date. Aims: We aim at providing a criterion for the identification of some supermassive black hole binaries based on the characteristics of the high-energy emission of a putative relativistic jet launched from the most massive of the two black holes. Methods: We study supermassive black hole binaries where the less massive black hole has carved an annular gap in the circumbinary disk, but nevertheless there is a steady mass flow across its orbit. Such a perturbed disk is hotter and more luminous than a standard thin disk in some regions. Assuming that the jet contains relativistic electrons, we calculate its broadband spectral energy distribution focusing on the inverse Compton up-scattering of the disk photons. We also compute the opacity to the gamma rays produced in the jet by photon annihilation with the disk radiation and take into account the effects of the anisotropy of the target photon field as seen from the jet. Results: We find that the excess of low-energy photons radiated by the perturbed disk causes an increment in the external Compton emission from the jet in the X-ray band, and a deep absorption feature at energies of tens of TeVs for some sets of parameters. According to our results, observations with Cherenkov telescopes might help in the identification of supermassive black hole binaries, especially those black hole binaries that host primaries from tens to hundreds of million of solar masses.

  7. Emission Signatures from Sub-parsec Binary Supermassive Black Holes. I. Diagnostic Power of Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai; Bogdanović, Tamara

    2016-09-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  8. The signature of a black hole transit

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.

    1989-01-01

    This paper considers the possibility of identifying a black hole on the basis of the detection of some unique effect occurring during the transit of a black hole across the stellar disk of a companion star in a binary system. The results of Monte-Carlo calculations show that the amplitude of the photometric and polarimetric light curves in a typical X-ray binary is too small to be observed with present instrumentation, but that a black hole transit might be detectable in a binary having a large separation of the components. No binary system suggested as containing a stellar-mass-sized black hole is a like candidate to exhibit an observable transit signature, with the possible exception of X Persei/4U0352+30 described by White et al. (1976).

  9. The signature of a black hole transit

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.

    1989-01-01

    This paper considers the possibility of identifying a black hole on the basis of the detection of some unique effect occurring during the transit of a black hole across the stellar disk of a companion star in a binary system. The results of Monte-Carlo calculations show that the amplitude of the photometric and polarimetric light curves in a typical X-ray binary is too small to be observed with present instrumentation, but that a black hole transit might be detectable in a binary having a large separation of the components. No binary system suggested as containing a stellar-mass-sized black hole is a like candidate to exhibit an observable transit signature, with the possible exception of X Persei/4U0352+30 described by White et al. (1976).

  10. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  11. Supermassive Black Hole Binaries: The Search Continues

    NASA Astrophysics Data System (ADS)

    Bogdanović, Tamara

    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

  12. MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES

    SciTech Connect

    Van Meter, James R.; Centrella, Joan; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.; Wise, John H.; Miller, M. Coleman; Reynolds, Christopher S.

    2010-03-10

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne Laser Interferometer Space Antenna. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step toward solving this problem by mapping the flow of pressureless matter in the dynamic, three-dimensional general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm these differences, it may allow assessment of the properties of the binaries as well as yielding an identifiable electromagnetic counterpart to the attendant gravitational wave signal.

  13. Hybrid Black-Hole Binary Initial Data

    NASA Technical Reports Server (NTRS)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  14. Binary black hole spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, Chris; Sengupta, Anand S.

    2007-03-01

    We study parameter estimation with post-Newtonian (PN) gravitational waveforms for the quasi-circular, adiabatic inspiral of spinning binary compact objects. In particular, the performance of amplitude-corrected waveforms is compared with that of the more commonly used restricted waveforms, in Advanced LIGO and EGO. With restricted waveforms, the properties of the source can only be extracted from the phasing. In the case of amplitude-corrected waveforms, the spectrum encodes a wealth of additional information, which leads to dramatic improvements in parameter estimation. At distances of ~100 Mpc, the full PN waveforms allow for high-accuracy parameter extraction for total mass up to several hundred solar masses, while with the restricted ones the errors are steep functions of mass, and accurate parameter estimation is only possible for relatively light stellar mass binaries. At the low-mass end, the inclusion of amplitude corrections reduces the error on the time of coalescence by an order of magnitude in Advanced LIGO and a factor of 5 in EGO compared to the restricted waveforms; at higher masses these differences are much larger. The individual component masses, which are very poorly determined with restricted waveforms, become measurable with high accuracy if amplitude-corrected waveforms are used, with errors as low as a few per cent in Advanced LIGO and a few tenths of a per cent in EGO. The usual spin orbit parameter β is also poorly determined with restricted waveforms (except for low-mass systems in EGO), but the full waveforms give errors that are small compared to the largest possible value consistent with the Kerr bound. This suggests a way of finding out if one or both of the component objects violate this bound. On the other hand, we find that the spin spin parameter σ remains poorly determined even when the full waveform is used. Generally, all errors have but a weak dependence on the magnitudes and orientations of the spins. We also briefly

  15. Close supermassive binary black holes.

    PubMed

    Gaskell, C Martin

    2010-01-07

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  16. Black Hole Binaries in Quiescence

    NASA Astrophysics Data System (ADS)

    Bailyn, Charles D.

    I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-ray binaries, which has taken on a new importance in the era of gravitational wave astronomy.

  17. Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers

    NASA Astrophysics Data System (ADS)

    Mandel, Ilya; Haster, Carl-Johan; Dominik, Michal; Belczynski, Krzysztof

    2015-06-01

    We analyse the distinguishability of populations of coalescing binary neutron stars, neutron-star black hole binaries, and binary black holes, whose gravitational-wave signatures are expected to be observed by the advanced network of ground-based interferometers LIGO and Virgo. We consider population-synthesis predictions for plausible merging binary distributions in mass space, along with measurement accuracy estimates from the main gravitational-wave parameter-estimation pipeline. We find that for our model compact-object binary mass distribution, we can always distinguish binary neutron stars and black hole-neutron-star binaries, but not necessarily black hole-neutron-star binaries and binary black holes; however, with a few tens of detections, we can accurately identify the three subpopulations and measure their respective rates.

  18. Electromagnetic Signatures of Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy

    2009-01-01

    During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) flux emitted from the system is greater than the combined electromagnetic luminosity of the entire observable universe. However, the extremely weak coupling between GWs and matter makes these waves very difficult to detect directly. Fortunately, the inspiraling BH system will interact strongly--on a purely Newtonian level--with any surrounding matter in the host galaxy, and this matter can in turn produce unique electromagnetic signals detectable at Earth. The nature of these signals varies widely, from the impressions left on stellar density distributions to the production of runaway quasars that escape from the galactic center at speeds of thousands of km/s. I will describe a number of these different signatures, and discuss their expected event rates and potentials for positive identification, long before direct GW detectors like LISA come online.

  19. Binary Black Holes from Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl

    2017-01-01

    The recent detections of gravitational waves from merging binary black holes have the potential to revolutionize our understanding of compact object astrophysics. But to fully utilize this new window into the universe, we must compare these observations to detailed models of binary black hole formation throughout cosmic time. In this talk, I will review our current understanding of cluster dynamics, describing how binary black holes can be formed through gravitational interactions in dense stellar environments, such as globular clusters and galactic nuclei. I will review the properties and merger rates of binary black holes from the dynamical formation channel. Finally, I will describe how the spins of a binary black hole are determined by its formation history, and how we can use this to discriminate between dynamically-formed binaries and those formed from isolated evolution in galactic fields.

  20. Black hole binaries and microquasars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan

    2013-12-01

    This is a general review on the observations and physics of black hole X-ray binaries and microquasars, with the emphasize on recent developments in the high energy regime. The focus is put on understanding the accretion flows and measuring the parameters of black holes in them. It includes mainly two parts: i) Brief review of several recent review article on this subject; ii) Further development on several topics, including black hole spin measurements, hot accretion flows, corona formation, state transitions and thermal stability of standard think disk. This is thus not a regular bottom-up approach, which I feel not necessary at this stage. Major effort is made in making and incorporating from many sources useful plots and illustrations, in order to make this article more comprehensible to non-expert readers. In the end I attempt to make a unification scheme on the accretion-outflow (wind/jet) connections of all types of accreting BHs of all accretion rates and all BH mass scales, and finally provide a brief outlook.

  1. Signatures of black holes at the LHC

    NASA Astrophysics Data System (ADS)

    Cavaglià, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-06-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  2. Minidisks in Binary Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey; MacFadyen, Andrew

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov-Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  3. Electromagnetic luminosity of the coalescence of charged black hole binaries

    NASA Astrophysics Data System (ADS)

    Liebling, Steven L.; Palenzuela, Carlos

    2016-09-01

    The observation of a possible electromagnetic counterpart by the Fermi GBM group to the aLIGO detection of the merger of a black hole binary has spawned a number of ideas about its source. Furthermore, observations of fast radio bursts (FRBs) have similarly resulted in a range of new models that might endow black hole binaries with electromagnetic signatures. In this context, even the unlikely idea that astrophysical black holes may have significant charge is worth exploring, and here we present results from the simulation of weakly charged black holes as they orbit and merge. Our simulations suggest that a black hole binary with mass comparable to that observed in GW150914 could produce the level of electromagnetic luminosity observed by Fermi GBM (1 049 ergs /s ) with a nondimensional charge of q ≡Q /M =10-4 assuming good radiative efficiency. However even a charge such as this is difficult to imagine avoiding neutralization long enough for the binary to produce its electromagnetic counterpart, and so this value would likely serve simply as an upper bound. On the other hand, one can equivalently consider the black holes as having acquired a magnetic monopole charge that would be easy to maintain and would generate an identical electromagnetic signature as the electric charges. The observation of such a binary would have significant cosmological implications, not the least of which would be an explanation for the quantization of charge itself. We also study such a magnetically charged binary in the force-free regime and find it much more radiative, reducing even further the requirements to produce the counterpart.

  4. LISA detection of binary black holes in the Milky Way galaxy

    NASA Astrophysics Data System (ADS)

    Christian, Pierre; Loeb, Abraham

    2017-07-01

    Using the black hole merger rate inferred from LIGO, we calculate the abundance of tightly bound binary black holes in the Milky Way galaxy. Binaries with a small semimajor axis (≲10 R⊙) originate at larger separations through conventional formation mechanisms and evolve as a result of gravitational wave emission. We find that LISA could detect them in the Milky Way. We also identify possible X-ray signatures of such binaries.

  5. Precessional Instability in Binary Black Holes with Aligned Spins.

    PubMed

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-02

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

  6. ECCENTRIC EVOLUTION OF SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Iwasawa, Masaki; An, Sangyong; Matsubayashi, Tatsushi; Funato, Yoko; Makino, Junichiro

    2011-04-10

    In recent numerical simulations, it has been found that the eccentricity of supermassive black hole (SMBH)-intermediate black hole (IMBH) binaries grows toward unity through interactions with the stellar background. This increase of eccentricity reduces the merging timescale of the binary through the gravitational radiation to a value well below the Hubble time. It also gives a theoretical explanation of the existence of eccentric binaries such as that in OJ287. In self-consistent N-body simulations, this increase of eccentricity is always observed. On the other hand, the result of the scattering experiment between SMBH binaries and field stars indicated that the eccentricity dose not change significantly. This discrepancy leaves the high eccentricity of the SMBH binaries in N-body simulations unexplained. Here, we present a stellar-dynamical mechanism that drives the increase of the eccentricity of an SMBH binary with a large mass ratio. There are two key processes involved. The first one is the Kozai mechanism under a non-axisymmetric potential, which effectively randomizes the angular momenta of surrounding stars. The other is the selective ejection of stars with prograde orbits. Through these two mechanisms, field stars extract the orbital angular momentum of the SMBH binary. Our proposed mechanism causes the increase in the eccentricity of most of SMBH binaries, resulting in the rapid merger through gravitational wave radiation. Our result has given a definite solution to the 'last-parsec problem'.

  7. High-spin binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Marronetti, Pedro; Tichy, Wolfgang; Brügmann, Bernd; Sperhake, Ulrich; González, José

    2008-04-01

    We study identical mass black hole binaries with spins perpendicular to the binary's orbital plane. These binaries have individual spins ranging from s/m^2=-0.90 to 0.90, (s1= s2 in all cases) which is near the limit possible with standard Bowen-York puncture initial data. The extreme cases correspond to the largest initial spin simulations to date. Our results expand the parameter space covered by Rezzolla et al. and, when combining both data sets, we obtain estimations for the minimum and maximum values for the intrinsic angular momenta of the remnant of binary black hole mergers of J/M^2=0.341(4) and 0.951(4) respectively.

  8. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  9. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  10. Orbital eccentricities in primordial black hole binaries

    NASA Astrophysics Data System (ADS)

    Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise

    2016-10-01

    It was recently suggested that the merger of ˜30 M⊙ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on time scales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO and the Einstein Telescope to such effects. We show that if PBHs make up the dark matter, then roughly one event should have a detectable eccentricity given LIGO's expected sensitivity and observing time of six years. The Einstein Telescope should see O (10 ) such events after ten years.

  11. Modeling Flows Around Merging Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  12. Modeling Flows Around Merging Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  13. Dual jets from binary black holes.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  14. High-spin binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Marronetti, Pedro; Tichy, Wolfgang; Brügmann, Bernd; González, Jose; Sperhake, Ulrich

    2008-03-01

    We study identical mass black hole binaries with spins perpendicular to the binary’s orbital plane. These binaries have individual spins ranging from s/m2=-0.90 to 0.90, (s1=s2 in all cases) which is near the limit possible with standard Bowen-York puncture initial data. The extreme cases correspond to the largest initial spin simulations to date. Our results expand the parameter space covered by Rezzolla et al., and when combining both data sets, we obtain estimations for the minimum and maximum values for the intrinsic angular momenta of the remnant of binary black hole mergers of J/M2=0.341±0.004 and 0.951±0.004, respectively. Note, however, that these values are reached through extrapolation to the singular cases |s1|=|s2|=1 and thus remain as estimates until full-fledged numerical simulations provide confirmation.

  15. Jets in black-hole binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    I will review selected aspects of observations and theory of jets in black-hole binaries. The radio and gamma-ray emission of jets differs significantly between the low and high-mass X-ray binaries, which appears to be due jet-wind interaction (in particular, formation of recollimation shocks) in the latter. Also, both radio and X-ray emission of the jets can be significantly absorbed in the stellar wind of the donors in high-mass binaries. I will also review the theory of radiative processes in jets, their contributions to broad-band spectra, estimates of the jet power, the role of black-hole spin in powering jets, and the possibility that the base of the jet is the main source of X-ray emission (the lamppost model).

  16. The Final Merger of Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrealla, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of General Relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear observable record of the process. After decades of slow progress / these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation, and discuss some of the impacts this new knowledge is having in various areas of astrophysics

  17. The Final Merger of Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrealla, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of General Relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear observable record of the process. After decades of slow progress / these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation, and discuss some of the impacts this new knowledge is having in various areas of astrophysics

  18. Forming Binary Black Holes in Galactic Mergers

    NASA Astrophysics Data System (ADS)

    Quinn, Thomas R.; Roskar, R.; Mayer, L.; Kazantzidis, S.

    2010-01-01

    As galaxies merge in the standard hierarchical scenario of galaxy formation, their central Black Holes also can merge and grow. The violent dynamics of the galaxy merger will deliver a significant amount of gas and stars to the central regions of the galaxy further growing the central Black Hole and fueling an Active Galactic Nucleus. We perform state-of-art numerical simulations of this merging process using N-body simulations and gas dynamics. These simulations resolved the dynamics in the central kiloparsec of the merging galaxies, and enable us to follow the sinking of the Black Holes to the center via dynamical friction up to the formation of binary Black Holes. Critical to this process is the state of the surrounding gas which we follow with an equation of state that includes star formation and supernova feedback. This work is supported by a grant from NASA.

  19. Toroidal horizons in binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-09-01

    We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  20. Modified evolution of stellar binaries from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Yi-Han; Yuan, Ye-Fei

    2017-04-01

    The evolution of main-sequence binaries resided in the galactic centre is influenced a lot by the central supermassive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic centre, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai (LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ˜70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ˜10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (≥40°) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.

  1. Modelling Gravitational Radiation from Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger and coalescence of binary black holes is a key source of strong gravitational waves for the LISA mission. Observing these systems will allow us to probe the formation of cosmic structure to high redshifts and test general relativity directly in the strong-field, dynamical regime. Recently, major breakthroughs have been made in modeling black hole mergers using numerical relativity. This talk will survey these exciting developments, focusing on the gravitational waveforms and the recoil kicks produced from non-equal mass mergers.

  2. Binary Black Holes: Mergers, Dynamics, and Waveforms

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2007-04-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  3. Birth of Massive Black Hole Binaries

    SciTech Connect

    Colpi, M.; Dotti, M.; Mayer, L.; Kazantzidis, S.; /KIPAC, Menlo Park

    2007-11-19

    If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size ({approx}< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of {approx}< 1 Myr. The double nuclear point-like sources that may appear have typical separation of {approx}< 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.

  4. Binary pairs of supermassive black holes - Formation in merging galaxies

    SciTech Connect

    Valtaoja, L.; Valtonen, M.J.; Byrd, G.G.; Alabama Univ., Tuscaloosa )

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.

  5. Constructing binary black hole template banks using numerical relativity waveforms

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush

    2013-04-01

    We present methods for constructing and validating template banks for gravitational waves from high mass binary black holes in advanced gravitational-wave detectors using waveforms from numerical relativity. We construct these template banks using numerical waveforms from the Simulating eXtreme Spacetimes (SXS) collaboration. We show how a template bank can be constructed using numerical waveforms for non-spinning black hole binaries and discuss how this can be extended into the aligned spin black hole binary space.

  6. STIS RECORDS A BLACK HOLE'S SIGNATURE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The colorful 'zigzag' on the right is not the work of a flamboyant artist, but the signature of a supermassive black hole in the center of galaxy M84, discovered by Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS). The image on the left, taken with Hubble's Wide Field Planetary and Camera 2 shows the core of the galaxy where the suspected black hole dwells. Astronomers mapped the motions of gas in the grip of the black hole's powerful gravitational pull by aligning the STIS's spectroscopic slit across the nucleus in a single exposure. The STIS data on the right shows the rotational motion of stars and gas along the slit. The change in wavelength records whether an object is moving toward or away from the observer. The larger the excursion from the centerline -- as seen as a green and yellow picture element (pixels) along the center strip, the greater the rotational velocity. If no black hole were present, the line would be nearly vertical across the scan. Instead, STIS's detector found the S-shape at the center of this scan, indicating a rapidly swirling disk of trapped material encircling the black hole. Along the S-shape from top to bottom, velocities skyrocket as seen in the rapid, dramatic swing to the left (blueshifted or approaching gas), then the region in the center simultaneously records the enormous speeds of the gas both approaching and receding for orbits in the immediate vicinity of the black hole, and then an equivalent swing from the right, back to the center line. STIS measures a velocity of 880,000 miles per hour (400 kilometers per second) within 26 light-years of the galaxy's center, where the black hole dwells. This motion allowed astronomers to calculate that the black hole contains at least 300 million solar masses. (Just as the mass of our Sun can be calculated from the orbital radii and speeds of the planets.) This observation demonstrates a direct connection between a supermassive black hole and activity (such as radio

  7. STIS RECORDS A BLACK HOLE'S SIGNATURE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The colorful 'zigzag' on the right is not the work of a flamboyant artist, but the signature of a supermassive black hole in the center of galaxy M84, discovered by Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS). The image on the left, taken with Hubble's Wide Field Planetary and Camera 2 shows the core of the galaxy where the suspected black hole dwells. Astronomers mapped the motions of gas in the grip of the black hole's powerful gravitational pull by aligning the STIS's spectroscopic slit across the nucleus in a single exposure. The STIS data on the right shows the rotational motion of stars and gas along the slit. The change in wavelength records whether an object is moving toward or away from the observer. The larger the excursion from the centerline -- as seen as a green and yellow picture element (pixels) along the center strip, the greater the rotational velocity. If no black hole were present, the line would be nearly vertical across the scan. Instead, STIS's detector found the S-shape at the center of this scan, indicating a rapidly swirling disk of trapped material encircling the black hole. Along the S-shape from top to bottom, velocities skyrocket as seen in the rapid, dramatic swing to the left (blueshifted or approaching gas), then the region in the center simultaneously records the enormous speeds of the gas both approaching and receding for orbits in the immediate vicinity of the black hole, and then an equivalent swing from the right, back to the center line. STIS measures a velocity of 880,000 miles per hour (400 kilometers per second) within 26 light-years of the galaxy's center, where the black hole dwells. This motion allowed astronomers to calculate that the black hole contains at least 300 million solar masses. (Just as the mass of our Sun can be calculated from the orbital radii and speeds of the planets.) This observation demonstrates a direct connection between a supermassive black hole and activity (such as radio

  8. Lyapunov timescales and black hole binaries

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Levin, Janna

    2003-05-01

    Black hole binaries support unstable orbits at very close separations. In the simplest case of geodesics around a Schwarzschild black hole the orbits, though unstable, are regular. Under perturbation the unstable orbits can become the locus of chaos. All unstable orbits, whether regular or chaotic, can be quantified by their Lyapunov exponents. The exponents are observationally relevant since the phase of gravitational waves can decohere in a Lyapunov time. If the timescale for dissipation due to gravitational waves is shorter than the Lyapunov time, chaos will be damped and essentially unobservable. We find that the two timescales can be comparable. We emphasize that the Lyapunov exponents must only be used cautiously for several reasons: they are relative and depend on the coordinate system used, they vary from orbit to orbit, and finally they can be deceptively diluted by transient behaviour for orbits which pass in and out of unstable regions.

  9. Dynamical Formation of Black Hole Binaries in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Rasio, Frederic A.; Chatterjee, Sourav; Kremer, Kyle; Rodriguez, Carl

    2017-08-01

    Theoretical predictions for black holes in field populations of binary stars are extremely sensitive to the assumptions of stellar evolution, leading, for example, to predicted merger rates for binary black holes that span several orders of magnitude. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. We will present an overview of recent theoretical work on the dynamical formation of black hole binaries based on realistic N-body simulations of globular clusters. By calibrating theoretical models against observed properties of globular clusters, we find that the mergers of dynamically formed binaries could eventually be detected by Advanced LIGO at a rate of at least ~ 100 per year, potentially dominating the overall detection rate of gravitational wave sources. Dynamical processes in globular clusters can also form very naturally the black hole X-ray binaries that have been tentatively identified recently in many Milky Way and extragalactic globular clusters.

  10. Detecting gravity waves from binary black holes

    NASA Technical Reports Server (NTRS)

    Wahlquist, Hugo D.

    1989-01-01

    One of the most attractive possible sources of strong gravitational waves would be a binary system comprising massive black holes (BH). The gravitational radiation from a binary is an elliptically polarized, periodic wave which could be observed continuously - or at intervals whenever a detector was available. This continuity of the signal is certainly appealing compared to waiting for individual pulses from infrequent random events. It also has the advantage over pulses that continued observation can increase the signal-to-noise ratio almost indefinitely. Furthermore, this system is dynamically simple; the theory of the generation of the radiation is unambiguous; all characteristics of the signal can be precisely related to the dynamical parameters of the source. The current situation is that while there is no observational evidence as yet for the existence of massive binary BH, their formation is theoretically plausible, and within certain coupled constraints of mass and location, their existence cannot be observationally excluded. Detecting gravitational waves from these objects might be the first observational proof of their existence.

  11. Tidal disruption events by a massive black hole binary

    NASA Astrophysics Data System (ADS)

    Ricarte, Angelo; Natarajan, Priyamvada; Dai, Lixin; Coppi, Paolo

    2016-05-01

    Massive black hole binaries (MBHBs) are a natural byproduct of galaxy mergers. Previous studies have shown that flares from stellar tidal disruption events (TDEs) are modified by the presence of a secondary perturber, causing interruptions in the light curve. We study the dynamics of TDE debris in the presence of a milliparsec-separated MBHB by integrating ballistic particle orbits in the time-varying potential of the binary. We find that gaps in the light curve appear when material misses the accretion radius on its first return to pericentre. Subsequent recurrences can be decomposed into `continuous' and `delayed' components, which exhibit different behaviour. We find that this potential can substantially alter the locations of stream self-intersections. When debris is confined to the plane, we find that close encounters with the secondary massive black hole (MBH) leave noticeable signatures on the fallback rate and can result in significant accretion on to the secondary MBH. Tight, equal-mass MBHBs accrete equally, periodically trading the infalling stream.

  12. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  13. Measuring Massive Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2009-01-01

    The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.

  14. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  15. Mergers of Black Hole -- Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Rantsiou, Emmanouela

    Motivated by the scenario that black hole-neutron star (BH-NS) mergers are viable progenitors of observed short Gamma-ray Bursts, we have used a 3D relativistic SPH (smoothed particle hydrodynamics) code to study mergers of such binary systems (with relatively low mass ratios). We have investigated a wide range of parameters for those binaries: mass ratio, Equation of State (EOS) for the NS, compactness of the NS. Most importantly, the BH's spin was varied in our simulations (from non-spinning to maximally spinning BHs), and so was the orbital inclination of the NS. We have found that the outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter a and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above ˜60° lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger. Furthermore, we have investigated and we are presenting the gravitational waveforms and gravitational wave energy spectra from some representative cases. Despite using simply the quadrupole formula with post-Newtonian extensions (up to 3.5 terms) for radiation reaction, we were able to clearly see the impact of the BH's spin and NS's orbital inclination on the spectra and waveforms produced in our simulations.

  16. Black hole superradiance signatures of ultralight vectors

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha; Lasenby, Robert; Teo, Mae

    2017-08-01

    The process of superradiance can extract angular momentum and energy from astrophysical black holes (BHs) to populate gravitationally bound states with an exponentially large number of light bosons. We analytically calculate superradiant growth rates for vectors around rotating BHs in the regime where the vector Compton wavelength is much larger than the BH size. Spin-1 bound states have superradiance times as short as a second around stellar BHs, growing up to a thousand times faster than their spin-0 counterparts. The fast rates allow us to use measurements of rapidly spinning BHs in x-ray binaries to exclude a wide range of masses for weakly coupled spin-1 particles, 5 ×10-14-2 ×10-11 eV ; lighter masses in the range 6 ×10-20-2 ×10-17 eV start to be constrained by supermassive BH spin measurements at a lower level of confidence. We also explore routes to detection of new vector particles possible with the advent of gravitational wave (GW) astronomy. The LIGO-Virgo Collaboration could discover hints of a new light vector particle in statistical analyses of masses and spins of merging BHs. Vector annihilations source continuous monochromatic gravitational radiation which could be observed by current GW observatories. At design sensitivity, Advanced LIGO may measure up to thousands of annihilation signals from within the Milky Way, while hundreds of BHs born in binary mergers across the observable Universe may superradiate vector bound states and become new beacons of monochromatic gravitational waves.

  17. Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Narayan, R.

    1996-12-01

    X-ray binaries (XRBs) are systems in which a neutron star or a black hole accretes matter from a companion secondary star. Several XRBs have mass functions greater than 3M_sun, the maximum mass of a neutron star. These are identified as black hole candidates purely on the basis of mass, but in a few cases there is additional evidence to suggest that the accreting stars actually do have event horizons (see below). Black hole XRBs display at least five spectral states: quiescent state, low state, intermediate state, high state, and very high state. The states are believed to correspond to increasing mass accretion rates. The phenomenology of XRBs can be explained by models which combine the following two basic modes of accretion. (1) Thin accretion disk: In this well-known accretion model, the gas radiates efficiently, is relatively cool, and is geometrically thin in the vertical direction. The spectrum is nearly blackbody. (2) Advection-dominated accretion flow (ADAF): Here the accreting gas is optically thin, radiates inefficiently, and is quasi-spherical. Because of the negligible loss of energy through radiation, the gas is extremely hot, with the ions approaching the virial temperature, T_i ~ 10(12) K /r, where r is the radius in Schwarzschild units. The electrons, however, level off at a temperature T_e ~ 10(9-10(10)) K. The spectrum consists of Comptonized synchrotron and bremsstrahlung emission. The quiescent state of black hole XRBs has been explained with a model in which the accreting gas is in the form of a thin disk at large radii, r>rtr ~ 10(3-10^4) , and an ADAF at smaller radii, r

  18. ALIGNMENT OF SUPERMASSIVE BLACK HOLE BINARY ORBITS AND SPINS

    SciTech Connect

    Miller, M. Coleman; Krolik, Julian H.

    2013-09-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from {approx}1 pc to {approx}10{sup -3}-10{sup -2} pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time {approx}few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor {approx}(m{sub 1}/m{sub 2}){sup 1/2} > 1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignment can significantly reduce the recoil speed resulting from subsequent black hole merger.

  19. Alignment of Supermassive Black Hole Binary Orbits and Spins

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Krolik, Julian H.

    2013-09-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to ~10-3-10-2 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time ~few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m 1/m 2)1/2 > 1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignment can significantly reduce the recoil speed resulting from subsequent black hole merger.

  20. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  1. Tests and applications of the SXS binary black hole catalog

    NASA Astrophysics Data System (ADS)

    Scheel, Mark; Simulations of Extreme Spacetimes (SXS) Collaboration Collaboration

    2016-03-01

    Numerical relativity is the only reliable method of computing the full gravitational waveform--including inspiral, merger, and ringdown--for strongly-gravitating systems like coalescing black holes, which are of foremost importance to gravitational-wave interferometers such as LIGO. We have used the Spectral Einstein Code [black-holes.org/SpEC.html] to construct a public catalog of hundreds of binary black hole simulations, for use by gravitational-wave science, and for calibration of fast analytic models of binary black-hole waveforms. We discuss the current status of the catalog, tests of the resulting waveforms, and selected applications.

  2. Binary black holes in nuclei of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Roland, J.; Britzen, S.; Caproni, A.; Fromm, C.; Glück, C.; Zensus, A.

    2013-09-01

    If we assume that nuclei of extragalactic radio sources contain binary black hole systems, the two black holes can eject VLBI components, in which case two families of different VLBI trajectories will be observed. Another important consequence of a binary black hole system is that the VLBI core is associated with one black hole, and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole that is not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the center of gravity of the binary black hole system. We modeled the ejection of the component taking into account the two pertubations and present a method to fit the coordinates of a VLBI component and to deduce the characteristics of the binary black hole system. Specifically, this is the ratio Tp/Tb where Tp is the precession period of the accretion disk and Tb is the orbital period of the binary black hole system, the mass ratio M1/M2, and the radius of the binary black hole system Rbin. From the variations of the coordinates as a function of time of the ejected VLBI component, we estimated the inclination angle io and the bulk Lorentz factor γ of the modeled component. We applied the method to component S1 of 1823+568 and to component C5 of 3C 279, which presents a large offset of the space origin from the VLBI core. We found that 1823+568 contains a binary black hole system whose size is Rbin ≈ 60 μas (μas is a microarcsecond) and 3C 279 contains a binary black hole system whose size is Rbin ≈ 420 μas. We calculated the separation of the two black holes and the coordinates of the second black hole from the VLBI core. This information will be important to link the radio reference-frame system obtained from VLBI observations and the optical reference-frame system obtained from Gaia.

  3. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  4. Evolution of binary supermassive black holes via chain regularization.

    PubMed

    Szell, Andras; Merritt, David; Mikkola, Seppo

    2005-06-01

    A chain regularization method is combined with special purpose computer hardware to study the evolution of massive black hole binaries at the centers of galaxies. Preliminary results with up to N = 0.26 x 10(6) particles are presented. The decay rate of the binary is shown to decrease with increasing N, as expected on the basis of theoretical arguments. The eccentricity of the binary remains small.

  5. Observations of Black Hole Binaries with NICER

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald A.; Cackett, Edward; Fabian, Andrew C.; Miller, Jon M.; Ranga Reddy Pasham, Deeraj; Steiner, James F.

    2017-08-01

    The Neutron Star Interior Composition Explorer (NICER; to be launched 2017 June) will observe persistent Black Hole (BH) Binaries and BH-type transients during its 18-month Prime Mission. Substantial advances are expected from investigations of BH physical properties and accretion physics in strong gravity, continuing the science legacy of RXTE. One of the primary differences between NICER/XTI and RXTE/PCA Instruments is the energy response (0.2-12 keV vs 3-45 keV). NICER provides a direct spectral view of the inner accretion disk, where the maximum effective temperatures vary in the range 0.2-2 keV. In addition, NICER provides superior spectral resolution (140 eV at Fe K-alpha), superior time resolution (100 ns absolute accuracy), lower background (by a factor of 100), and full flexibility for data analyses (with complete information for every photon event). Finally the source count rate from NICER's 56 cameras will exceed the rate from RXTE (3 PCUs), except for sources obscured by very high levels of ISM column density (log Nh > 22).Anticipated BH science themes include sensitive measures of the effective radius and temperature of the inner disk during BH hard states and transitions, full use the disk spectrum (as seed photons) for Comptonization models for the corona, and powerful opportunities to interpret timing properties including QPOs. Such capabilities will support a new initiative on the "disk:corona" connection, which is a fundamental component of the "disk:jet" connection and our understanding of the different accretion states. Early results from NICER will be reported, to the extent possible.

  6. Angular-Similarity-Preserving Binary Signatures for Linear Subspaces.

    PubMed

    Ji, Jianqiu; Li, Jianmin; Tian, Qi; Yan, Shuicheng; Zhang, Bo

    2015-11-01

    We propose a similarity-preserving binary signature method for linear subspaces. In computer vision and pattern recognition, linear subspace is a very important representation for many kinds of data, such as face images, action and gesture videos, and so on. When there is a large amount of subspace data and the ambient dimension is high, the cost of computing the pairwise similarity between the subspaces would be high and it requires a large storage space for storing the subspaces. In this paper, we first define the angular similarity and angular distance between the subspaces. Then, based on this similarity definition, we develop a similarity-preserving binary signature method for linear subspaces, which transforms a linear subspace into a compact binary signature, and the Hamming distance between two signatures provides an unbiased estimate of the angular similarity between the two subspaces. We also provide a lower bound of the signature length sufficient to guarantee uniform distance-preservation between every pair of subspaces in a set. Experiments on face recognition, gesture recognition, and action recognition verify the effectiveness of the proposed method.

  7. Formation of discs around super-massive black hole binaries

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Cuadra, Jorge; Sesana, Alberto

    2016-02-01

    We model numerically the evolution of 104 M ⊙ turbulent molecular clouds in near-radial infall onto 106 M ⊙, equal-mass supermassive black hole binaries, using a modified version of the SPH code gadget-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  8. Improved initial data for binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Throwe, William

    2014-03-01

    Asymptotically matched approximate analytic metrics can provide realistic initial data for binary black hole simulations. We have simulated these data using the Spectral Einstein Code (SpEC) and observe that they show decreased junk radiation and physical parameter drift as compared to commonly used initial data. We have generalized previous asymptotically matched data sets to allow for arbitrary initial hole velocities, and have demonstrated that this method can be used to adjust the eccentricity of the simulated binaries, including describing binary systems with quasicircular orbits.

  9. Hot accretion flows onto binary and single black holes

    NASA Astrophysics Data System (ADS)

    Gold, Roman; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart; Etienne, Zachariah; Pfeiffer, Harald; McKinney, Jonathan

    2015-04-01

    Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. Binary Black Holes are one of the most promising gravitational wave sources for adLIGO and Pulsar Timing Arrays and - if accreting - can provide a strong electromagnetic counterpart. I will present results from global GRMHD simulations of both single and binary BHs embedded in a hot, magnetized disk, highlighting differences in their observational appearance including their gravitational and electromagnetic radiation.

  10. Mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-03-01

    Black hole-neutron star binaries are ones of the most promising sources of gravitational waves for upcoming second-generation detectors. To confirm gravitational-wave detection and obtain as much information as possible, it is desirable to observe electromagnetic counterparts simultaneously. It has been pointed out by many authors that various electromagnetic signals are reasonably expected if substantial material is ejected during the binary merger. One plausible mechanism of mass ejection from black hole-neutron star binaries is tidal disruption of neutron stars by the tidal force exerted by black holes. A quantitative study of this dynamical mass ejection requires numerical-relativity simulations. We perform simulations of black hole-neutron star binaries focusing on the dynamical mass ejection for a range of binary parameters including equations of state of neutron star matter. We present important results such as masses and velocities of ejecta obtained by our simulations, and also discuss possible characteristics of electromagnetic counterparts to black hole-neutron star binaries. In particular, we focus on anisotropy and bulk velocity (i.e., the velocity component other than the expansion velocity) of the ejecta, and electromagnetic features resulting from them.

  11. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries

    SciTech Connect

    Ajith, P.; Hewitson, M.; Babak, S.; Chen, Y.; Krishnan, B.; Whelan, J. T.; Dorband, N.; Pollney, D.; Rezzolla, L.; Sintes, A. M.; Bruegmann, B.; Hannam, M.; Husa, S.; Sperhake, U.; Diener, P.; Gonzalez, J.; Santamaria, L.; Thornburg, J.

    2008-05-15

    Gravitational waveforms from the inspiral and ring-down stages of the binary black-hole coalescences can be modeled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the nonperturbative merger phase of the binary black-hole coalescence problem. This enables us to coherently search for all three stages of the coalescence of nonspinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of nonspinning binary black holes that follow quasicircular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only effectual in detecting the signals from black-hole coalescences, but also faithful in estimating the parameters of the binary. We compare the sensitivity of a search (in the context of different ground-based interferometers) using all three stages of the black-hole coalescence with other template-based searches which look for individual stages separately. We find that the proposed search is significantly more sensitive than other template-based searches for a substantial mass range, potentially bringing about remarkable improvement in the event rate of ground-based interferometers. As part of this work, we also prescribe a general procedure to construct interpolated template banks using nonspinning black-hole waveforms produced by numerical relativity.

  12. Retrograde binaries of massive black holes in circumbinary accretion discs

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica

    2016-06-01

    Context. We explore the hardening of a massive black hole binary embedded in a circumbinary gas disc under a specific circumstance: when the binary and the gas are coplanar and the gas is counter-rotating. The binary has unequal mass and the interaction of the gas with the lighter secondary black hole is the main cause of the braking torque on the binary that shrinks with time. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Aims: In this paper, using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole, which in turn affect the binary hardening and eccentricity evolution. Methods: We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Results: When considering gas accretion within the gravitational influence radius of the secondary black hole (which is smaller than the Roche Lobe radius) to better describe gas inflows, the shrinking of the binary is slower. In addition, in this case, a smaller amount of accreted mass is required to reduce the binary separation by the same amount. Different accretion prescriptions result in different discs' surface densities, which alter the black hole's dynamics back. Full 3D Smoothed-particle hydrodynamics realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Conclusions: Initially circular black hole binaries increase their eccentricity only slightly, which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black hole's dynamics under

  13. Bringing Black Holes Together: How Supermassive Black Hole Binaries Form and Plunge Through the Final Parsec

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly

    2016-04-01

    Astronomers now know that supermassive black holes reside in nearly every galaxy.Though these black holes are an observational certainty, nearly every aspect of their evolution -- from their birth, to their fuel source, to their basic dynamics -- is a matter of lively debate. In principle, gas-rich major galaxy mergers can generate the central stockpile of fuel needed for a low mass central black hole seed to grow quickly into a supermassive one. During a galaxy merger, the black holes in each galaxy meet and form a supermassive binary black hole; as the binary orbit shrinks through its final parsec, it becomes the loudest gravitational wave source in the Universe and a powerful agent to sculpt the galactic center. This talk will touch on some current and ongoing work on refining our theories of how supermassive black hole binaries form, evolve within, and alter their galaxy host.

  14. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  15. Techniques for Binary Black Hole Simulations

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2006-01-01

    Recent advances in techniques for numerical simulation of black hole systems have enabled dramatic progress in astrophysical applications. Our approach to these simulations, which includes new gauge conditions for moving punctures, AMR, and specific tools for analyzing black hole simulations, has been applied to a variety of black hole configurations, typically resulting in simulations lasting several orbits. I will discuss these techniques, what we've learned in applications, and outline some areas for further development.

  16. Techniques for Binary Black Hole Simulations

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2006-01-01

    Recent advances in techniques for numerical simulation of black hole systems have enabled dramatic progress in astrophysical applications. Our approach to these simulations, which includes new gauge conditions for moving punctures, AMR, and specific tools for analyzing black hole simulations, has been applied to a variety of black hole configurations, typically resulting in simulations lasting several orbits. I will discuss these techniques, what we've learned in applications, and outline some areas for further development.

  17. Binary Black Hole Mergers from Planet-like Migrations.

    PubMed

    Gould; Rix

    2000-03-20

    If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing toward a binary lifetime far shorter than the Hubble time. We show that, almost regardless of the detailed mechanism, all stellar dynamical processes are too slow in reducing the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-Jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars.

  18. Searching for GW signals from eccentric supermassive black-hole binaries with pulsar-timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen; Gair, Jonathan; Huerta, Eliu; McWilliams, Sean

    2015-04-01

    The mergers of massive galaxies leads to the formation of supermassive black-hole binaries in the common merger remnants. Various mechanisms have been proposed to harden these binaries into the adiabatic GW inspiral regime, from interactions with circumbinary disks to stellar scattering. It may be the case that these mechanisms leave the binary with a residual eccentricity, such that the deviation to the time-of-arrival of pulsar signals induced by the emitted GW passing between the Earth and a pulsar will contain a signature of this eccentricity. Current pulsar-timing search pipelines only probe circular binary systems, but much effort is now being devoted to considering the influence of the binary environment on GW signals. We will detail our efforts in constructing a generalised GW search pipeline to constrain the eccentricity of single systems with arrays of precisely-timed pulsars, which may shed light on the influence of various supermassive black-hole binary hardening mechanisms and illuminate the importance of environmental couplings.

  19. Dynamical Formation and Merger of Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  20. Binary black hole coalescence in semianalytic puncture evolution

    SciTech Connect

    Gopakumar, Achamveedu; Schaefer, Gerhard

    2008-05-15

    Binary black hole coalescence is treated semianalytically by a novel approach. Our prescription employs the conservative Skeleton Hamiltonian that describes orbiting Brill-Lindquist wormholes (termed punctures in numerical relativity) within a waveless truncation to the Einstein field equations [G. Faye, P. Jaranowski, and G. Schaefer, Phys. Rev. D 69, 124029 (2004)]. We incorporate, in a transparent Hamiltonian way and in Burke-Thorne gauge structure, the effects of gravitational radiation reaction into the above Skeleton dynamics with the help of 3.5PN accurate angular momentum flux for compact binaries in quasicircular orbits to obtain a semianalytic puncture evolution to model merging black hole binaries. With the help of the TaylorT4 approximant at 3.5PN order, we perform a first-order comparison between gravitational-wave phase evolutions in numerical relativity and our approach for equal-mass binary black holes. This comparison reveals that a modified Skeletonian reactive dynamics that employs flexible parameters will be required to prevent the dephasing between our scheme and numerical relativity, similar to what is pursued in the effective one-body approach. A rough estimate for the gravitational waveform associated with the binary black hole coalescence in our approach is also provided.

  1. Binary black holes and their echoes in the Universe

    NASA Astrophysics Data System (ADS)

    Laguna, Pablo

    2007-04-01

    A new window in astronomy will open once gravitational-wave interferometers detect ``first light.'' These detectors will give us a revolutionary view of the Universe, complementary to the electromagnetic perspective. The detection and characterization of gravitational waves is a formidable undertaking, requiring innovative engineering, powerful data analysis tools as well as careful theoretical and numerical modeling. Binary black holes are expected to be one of the primary sources of gravitational radiation. I will discuss aspects of numerical simulations of binary black holes in connection with spins, gravitational recoil and eccentricities that have been recently obtained and have direct relevance to gravitational wave data analysis and astrophysics.

  2. precession: Dynamics of spinning black-hole binaries with python

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Kesden, Michael

    2016-06-01

    We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.

  3. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  4. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    PubMed

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  5. Searching for Signals of Merging Primordial Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Cholis, Ilias; Ali-Haimoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Kovetz, Ely; Mandic, Vuk; Munoz, Julian; Raccanelli, Alvise

    2017-01-01

    It was recently advocated that the interactions of 30 solar masses primordial black holes composing the dark matter could explain the first ever observed coalescence event of BHs by the LIGO interferometers. We will discuss potential probes for such a scenario. One probe is the measurement of the eccentricities of the inspiralling binary black holes. We will show that PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger, which can be detected by LIGO or future Einstein Telescope by the observation of high frequency gravitational wave modes. In contrast, in massive-stellar-binaries, globular-clusters, or other astrophysical environment of binary black holes, the orbits have very effectively circularized by the time the binary enters the observable LIGO window.Finally we will discuss the possibility of detecting a signal of PBH binaries in the stochastic gravitational wave background with future gravitational wave detectors.

  6. CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

    SciTech Connect

    Noble, Scott C.; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela; Zlochower, Yosef; Krolik, Julian H.; Yunes, Nicolas

    2012-08-10

    We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

  7. Charged black holes and black hole binaries in Multi-messenger Astronomy

    NASA Astrophysics Data System (ADS)

    Liebling, Steven

    2017-01-01

    The possibility of observing electromagnetic signals from gravitational wave events holds great promise for gravitational wave astronomy. I discuss studies of black holes and black hole binaries in both Einstein-Maxwell and Einstein-Maxwell-Dilaton theories, and their implications for LIGO detections and electromagnetic followups, such as Fermi's report of a coincident followup of GW150914.

  8. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  9. Numerical Relativity Simulations of Black Holes Binaries, Neutron Star Binaries, and Neutron Star Oscillations

    NASA Astrophysics Data System (ADS)

    Rosofsky, Shawn; Gold, Roman; Chirenti, Cecilia; Miller, Cole

    2017-01-01

    We present the results of numerical relativity simulations, using the Einstein Toolkit, of black hole binaries, neutron star binaries, and neutron star oscillations. The black hole binary simulations represent the source of LIGO's first gravitational wave detection, GW150914. We compare the gravitational wave output of this simulation with the LIGO data LIGO on GW150914. The neutron star binaries we simulated have different mass ratios and equations of state. These simulations were compared with each other to illustrate the effect of different mass ratios and equations of state on binary evolution and gravitational wave emission. To perform the neutron star oscillation simulations, we applied pressure and density perturbations to the star using specific eigenmodes. These evolutions of the stars were then compared to the expected oscillation frequencies of those excited eigemodes and contrasted with simulations of unperturbed neutron stars.

  10. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  11. Black hole binaries dynamically formed in globular clusters

    NASA Astrophysics Data System (ADS)

    Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof

    2017-08-01

    We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.

  12. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.

  13. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  14. Diskoseismology - Signatures of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Nowak, Michael; Wagoner, Robert V.

    1992-01-01

    General relativity requires the existence of a spectrum of oscillations which are trapped near the inner edge of accretion disks around black holes. We have developed a general formalism for analyzing the normal modes of such acoustic perturbations of arbitrary thin disk models, approximating the dominant relativistic effects via a modified Newtonian potential (these modes do not exist in Newtonian gravity). The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall in to two main classes, which are analogous to the p-modes and g-modes in the sun. In this work, we compute the eigenfunctions and eigenfrequencies of isothermal disks. The (relatively small) rates of growth or damping of these oscillations due to gravitational radiation and parameterized models of viscosity are also computed.

  15. First detections of gravitational waves from binary black holes

    NASA Astrophysics Data System (ADS)

    Bejger, Michał

    2017-07-01

    Recent direct detections of gravitational waves from coalescing binary black holes systems herald a new era in the observational astronomy, as well as in experimental verifications of the theories of gravity. I will present the principles of detection of gravitational waves, current state-of-art laser interferometric detectors (Advanced LIGO and Advanced Virgo), and the most promising astrophysical sources of gravitational waves.

  16. Recent Advances in Binary Black Hole Merger Simulations

    NASA Technical Reports Server (NTRS)

    Barker, John

    2006-01-01

    Recent advances in numerical simulation techniques have lead to dramatic progress in understanding binary black hole merger radiation. I present recent results from simulations performed at Goddard, focusing on the gravitational radiation waveforms, and the application of these results to gravitational wave observations.

  17. Dynamical mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2015-08-01

    We investigate properties of material ejected dynamically in the merger of black hole-neutron star binaries by numerical-relativity simulations. We systematically study the dependence of ejecta properties on the mass ratio of the binary, spin of the black hole, and equation of state of the neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is much more anisotropic than that from binary neutron star mergers. In particular, the dynamical ejecta is concentrated around the orbital plane with a half opening angle of 10°-20° and often sweeps out only a half of the plane. The ejecta mass can be as large as ˜0.1 M⊙, and the velocity is subrelativistic with ˜0.2 - 0.3 c for typical cases. The ratio of the ejecta mass to the bound mass (disk and fallback components) is larger, and the ejecta velocity is larger, for larger values of the binary mass ratio, i.e., for larger values of the black-hole mass. The remnant black hole-disk system receives a kick velocity of O (100 ) km s-1 due to the ejecta linear momentum, and this easily dominates the kick velocity due to gravitational radiation. Structures of postmerger material, velocity distribution of the dynamical ejecta, fallback rates, and gravitational waves are also investigated. We also discuss the effect of ejecta anisotropy on electromagnetic counterparts, specifically a macronova/kilonova and synchrotron radio emission, developing analytic models.

  18. A massive binary black hole in 1928 + 738?

    NASA Astrophysics Data System (ADS)

    Roos, Nico; Kaastra, Jelle S.; Hummel, Christian A.

    1993-05-01

    We apply the binary black hole model to explain the wiggles in the milliarcsec radio jet of the superluminal quasar 1928 + 738 (4C 73.18) observed with VLBI at 1.3 cm wavelength by Hummel et al. (1992). The period and amplitude of the wiggles can be explained as due to the orbital motion of a binary black hole with mass of order l0 exp 8 solar masses, mass ratio larger than 0.1, and orbital radius about 10 exp 16 cm. The jet's inclination to the line of sight should be small confirming the standard interpretation of superluminal motion and one-sidedness as due to relativistic motion in a direction close to the line of sight. The small orbital radius suggests that the binary has been losing a significant amount of orbital energy during the last 10 exp 7 yr, possibly by interaction with the matter which is flowing through the active galactic nucleus. The arcsec-scale radio structure provides additional support for a link between activity and binary evolution. If our interpretation of the mass wiggle in this quasar is correct, then many other quasars may contain massive binary black holes as well.

  19. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES

    SciTech Connect

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such as supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.

  20. Superkicks in hyperbolic encounters of binary black holes.

    PubMed

    Healy, James; Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A

    2009-01-30

    Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasicircular inspirals, for which kicks as large as approximately 3300 km s;(-1) have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasicircular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible in highly relativistic scatterings to achieve kick velocities as large as 10 000 km s;(-1).

  1. A candidate sub-parsec supermassive binary black hole system.

    PubMed

    Boroson, Todd A; Lauer, Tod R

    2009-03-05

    The role of mergers in producing galaxies, together with the finding that most large galaxies harbour black holes in their nuclei, implies that binary supermassive black hole systems should be common. Here we report that the quasar SDSS J153636.22+044127.0 is a plausible example of such a system. This quasar shows two broad-line emission systems, separated in velocity by 3,500 km s(-1). A third system of unresolved absorption lines has an intermediate velocity. These characteristics are unique among known quasars. We interpret this object as a binary system of two black holes, having masses of 10(7.3) and 10(8.9) solar masses separated by approximately 0.1 parsec with an orbital period of approximately 100 years.

  2. Numerical simulations of binary black holes with nearly extremal spins

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2010-02-01

    There is a significant possibility that astrophysically realistic black holes may have nearly extremal spins (i.e., spins close to 1 in dimensionless units). The prospect of observing the gravitational waves from a binary-black-hole merger with nearly extremal spins motivates the goal of simulating these systems numerically. These simulations must begin with initial data that satisfy the Einstein constraint equations; however, the commonly used methods of generating constraint-satisfying initial data cannot yield data with nearly extremal spins. In this talk, I will describe evolutions of conformally curved binary-black-hole initial data with nearly extremal spins using the Caltech-Cornell-CITA Spectral Einstein Code (SpEC). )

  3. Tidal disruption events from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Armitage, Philip J.; Nixon, Chris; Begelman, Mitchell C.

    2017-03-01

    We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries (106 M⊙), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces a significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall morphology of the debris is greatly altered by the presence of the second black hole, and the accretion rate histories display a wide range of behaviours, including order of magnitude dips and excesses relative to control simulations that include only one black hole. Complex evolution typically persists for many orbital periods of the binary. We find evidence for power in the accretion curves on time-scales related to the binary orbital period, though there is no exact periodicity. We discuss our results in the context of future wide-field surveys, and comment on the prospects of identifying and characterizing the subset of events occurring in nuclei with binary SMBHs.

  4. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  5. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  6. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  7. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  8. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  9. Binary black holes in nuclei of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Roland, J.; Britzen, S.

    If we assume that nuclei of extragalactic radio sources contain a Binary Black Hole system, the 2 black holes can eject VLBI components and in that case 2 families of different VLBI trajectories will be observed. An important consequence of the presence of a Binary Black Hole system is the following: the VLBI core is associated with one black hole and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the gravity center of the BBH system. We modeled the ejection of the component taking into account the 2 perturbations and we obtained a method to fit the coordinates of a VLBI component and to deduce the characteristics of the BBH system, i.e. the ratio Tp/Tb where Tp is the precession period of the accretion disk and Tb the orbital period of the BBH system, the mass ratio M1/M2, the radius of the BBH system Rbin. We applied the method to component S1 of 1823+568 and to component C5 of 3C 279 which presents a large offset of the space origin from the VLBI core. We found that 1823+568 contains a BBH system which size is Rbin ≈ 60 mu as and 3C 279 contains a BBH system which size is Rbin ≈ 378 mu as. We were able to deduce the separation of the 2 black holes and the coordinates of the second black hole from the VLBI core, this information will be important to make the link between the radio reference frame system deduced from VLBI observations and the optical reference frame system deduced from GAIA.

  10. Geometry of deformed black holes. I. Majumdar-Papapetrou binary

    NASA Astrophysics Data System (ADS)

    Semerák, O.; Basovník, M.

    2016-08-01

    Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.

  11. Isolating Non-Linear Signatures of Two Colliding Black Holes

    NASA Astrophysics Data System (ADS)

    Garrido, Rita

    2012-03-01

    The early and late stages of the binary-black-hole collision can be approximated by perturbations to a background, solutions to linearization of the Einstein's equations. However, once the two black holes are within several radii of each other, and ultimately collide, the solution is intrinsically non-linear. The main objective is to intuitively understand the non-linear portion of the solution to the Einstein equation by performing simulations of such mergers. I will identify the non-linear regime through a process of elimination. The early stages of the coalescence are well known by post-Newtonian theory. The end state is approximated very well by perturbation theory, the waveforms decay as a damped sinusoidal with a frequency and decay time uniquely determined by the mass and spin of the final black hole in theory. I will isolate the non-linear portion of the waveform by fitting the early stages to the post-Newtonian solution and the late stages to the perturbative solution. What remains is the non-linear region. Once isolated, we will search through the physics parameter space of the binary black holes for bulk features. These features can then be used to fine-tune the search algorithms hunting for these collisions with LIGO.

  12. Properties of the Binary Black Hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Carbon Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vañó-Viñuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügamin, B.; Campanelli, M.; Clark, M.; Hamberger, D.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 3 6-4+5M⊙ and 2 9-4+4M⊙ ; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 41 0-180+160 Mpc , corresponding to a redshift 0.0 9-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2 , primarily in the southern hemisphere. The binary merges into a black hole of mass 6 2-4+4M⊙ and spin 0.6 7-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  13. Properties of the Binary Black Hole Merger GW150914.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vañó-Viñuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Brügmann, B; Campanelli, M; Clark, M; Hamberger, D; Kidder, L E; Kinsey, M; Laguna, P; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y

    2016-06-17

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  14. Properties of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.

    2016-01-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/-0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/-4) solar mass and spin 0.67(+0.05/-0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  15. Quasiequilibrium black hole-neutron star binaries in general relativity

    SciTech Connect

    Taniguchi, Keisuke; Faber, Joshua A.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2007-04-15

    We construct quasiequilibrium sequences of black hole-neutron star binaries in general relativity. We solve Einstein's constraint equations in the conformal thin-sandwich formalism, subject to black hole boundary conditions imposed on the surface of an excised sphere, together with the relativistic equations of hydrostatic equilibrium. In contrast to our previous calculations we adopt a flat spatial background geometry and do not assume extreme mass ratios. We adopt a {gamma}=2 polytropic equation of state and focus on irrotational neutron star configurations as well as approximately nonspinning black holes. We present numerical results for ratios of the black hole's irreducible mass to the neutron star's ADM mass in isolation of M{sub irr}{sup BH}/M{sub ADM,0}{sup NS}=1, 2, 3, 5, and 10. We consider neutron stars of baryon rest mass M{sub B}{sup NS}/M{sub B}{sup max}=83% and 56%, where M{sub B}{sup max} is the maximum allowed rest mass of a spherical star in isolation for our equation of state. For these sequences, we locate the onset of tidal disruption and, in cases with sufficiently large mass ratios and neutron star compactions, the innermost stable circular orbit. We compare with previous results for black hole-neutron star binaries and find excellent agreement with third-order post-Newtonian results, especially for large binary separations. We also use our results to estimate the energy spectrum of the outgoing gravitational radiation emitted during the inspiral phase for these binaries.

  16. Understanding the "antikick" in the merger of binary black holes.

    PubMed

    Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis

    2010-06-04

    The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.

  17. Pragmatic approach to gravitational radiation reaction in binary black holes

    PubMed

    Lousto

    2000-06-05

    We study the relativistic orbit of binary black holes in systems with small mass ratio. The trajectory of the smaller object (another black hole or a neutron star), represented as a particle, is determined by the geodesic equation on the perturbed massive black hole spacetime. Here we study perturbations around a Schwarzschild black hole using Moncrief's gauge invariant formalism. We decompose the perturbations into l multipoles to show that all l-metric coefficients are C0 at the location of the particle. Summing over l, to reconstruct the full metric, gives a formally divergent result. We succeed in bringing this sum to a Riemann's zeta-function regularization scheme and numerically compute the first-order geodesics.

  18. Distinguishing between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2016-10-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.

  19. Proto Supermassive Binary Black Hole Detected in X-rays

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An international team of astrophysicists, led by D. Hudson from the University of Bonn and including the U.S. Naval Research Laboratory and the University of Virginia, presents their X-ray detection of a proto supermassive binary black hole. Their results will be published in an upcoming issue of Astronomy & Astrophysics. The image of this proto binary black hole was obtained with NASA's Chandra X-ray Observatory. The two black holes have already been seen in radio images. The new X-ray images provide unique evidence that these two black holes are in the process of forming a binary system; that is, they are gravitationally bound and orbit each other. Chandra X-ray Image of 3C 75 Chandra X-ray Image of 3C 75 The two black holes are located in the nearby galaxy cluster Abell 400. With high-resolution Chandra data, the team was able to spatially resolve the two supermassive black holes (separated by 15") at the centre of the cluster. Each black hole is located at the centre of its respective host galaxy and the host galaxies appear to be merging. It is not, however, just the two host galaxies that are colliding - the whole cluster in which they live is merging into another neighbouring galaxy cluster. Using these new data, the team show that the two black holes are moving through the intracluster medium at the supersonic speed of about 1200 km/s. The wind from such a motion would cause the radio plasma emitted from these two black holes to bend backwards. Although this bending had been observed previously, the cause of it was still being debated. Since the bending of the jets due to this motion is in the same direction, it suggests that the two black holes are travelling along the same path within the cluster and are therefore gravitationally bound. Black Hole Merger Animation Black Hole Merger Animation These two black holes became gravitationally bound when their host galaxies collided. In several million years, the two black holes will probably coalesce causing a

  20. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Astrophysics Data System (ADS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.

    2007-12-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).

  1. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  2. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  3. Black-hole binary evolutions with the LEAN code

    NASA Astrophysics Data System (ADS)

    Sperhake, Ulrich

    2007-05-01

    Numerical simulations of black-hole binaries, obtained with the Lean code, are presented. The code is demonstrated to produce state-of-the-art evolutions of inspiralling and merging black holes with convergent waveforms. We further compare results from head-on collisions of Brill-Lindquist and Kerr-Schild data to study the dependency of the waveforms on the choice of initial data type. In this comparison we find good qualitative agreement between the results of both data types, but observe a systematic discrepancy of about 10% in the wave amplitudes. Several attempts to explain the observed discrepancy are discussed.

  4. Puncture Initial Data and Evolution of Black Hole Binaries with High Speed and High Spin

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian

    This dissertation explores numerical models of the orbit, inspiral, and merger phases of black hole binaries. We focus on the astrophysically realistic case of black holes with nearly extremal spins, and on high energy black hole collisions. To study the evolution of such systems, we form puncture initial data by solving the four general relativity constraint equations using pseudospectral methods on a compactified collocation point domain. The solutions to these coupled, nonlinear, elliptic differential equations represent the desired configuration at an initial moment. They are then propagated forward through time using a set of hyperbolic evolution equations with the moving punctures approach in the BSSNOK and CCZ4 formalisms. To generate realistic initial data with reduced spurious gravitational wave content, the background ansatz is taken to be a conformal superposition of Schwarzschild or Kerr spatial metrics. We track the punctures during evolution, measure their horizon properties, extract the gravitational waveforms, and examine the merger remnant. These new initial data are compared with the well known Bowen-York solutions, producing up to an order of magnitude reduction in the initial unphysical gravitational radiation signature. We perform a collision from rest of two black holes with spins near to the extremal value, in a region of parameter space inaccessible to Bowen-York initial data. We simulate nonspinning black holes in quasi-circular orbits, and perform high energy head-on collisions of nonspinning black holes to estimate the magnitude of the radiated gravitational energy in the limit of infinite momentum. We also evolve spinning black holes in quasi-circular orbits with unequal masses and different spin orientations. These models provide insight into the dynamics and signals generated by compact binary systems. This is crucial to our understanding of many astrophysical phenomena, especially to the interpretation of gravitational waves, which

  5. Superluminal Jets and Other Properties of Black Holes Binaries

    NASA Technical Reports Server (NTRS)

    Harmon, Alan

    1997-01-01

    Discoveries in the past few years of radio jets in Galactic black hole candidates have provided a link between active galactic nuclei (AGNS) and the compact stars in binary systems. The availability of binary systems relatively close by is an opportunity to learn about the jet production mechanism on a timescale a million times shorter than that of an AGN. Evidence is clearly seen of correlated high energy X-ray and gamma ray emission to radio emission from jets, linking the accretion and jet production mechanisms. objects such as GRS 1915+105, GRO J1655-40 and Cyg X-3 show striking properties which distinguish them from other black hole candidates. Our theoretical understanding of these systems is still in the formative stages. I review some of the most recent multiwavelength data and point out questions raised by these observations.

  6. Superluminal Jets and Other Properties of Black Holes Binaries

    NASA Technical Reports Server (NTRS)

    Harmon, Alan

    1997-01-01

    Discoveries in the past few years of radio jets in Galactic black hole candidates have provided a link between active galactic nuclei (AGNS) and the compact stars in binary systems. The availability of binary systems relatively close by is an opportunity to learn about the jet production mechanism on a timescale a million times shorter than that of an AGN. Evidence is clearly seen of correlated high energy X-ray and gamma ray emission to radio emission from jets, linking the accretion and jet production mechanisms. objects such as GRS 1915+105, GRO J1655-40 and Cyg X-3 show striking properties which distinguish them from other black hole candidates. Our theoretical understanding of these systems is still in the formative stages. I review some of the most recent multiwavelength data and point out questions raised by these observations.

  7. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  8. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  9. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    Massive black hole (MBH) binaries are found at the centers of most galaxies. MBH mergers trace galaxy mergers and are strong sources of gravitational waves. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities. causing them to crash well before the black hole:, in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This presentation shows how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. Focus is on the recent advances that that reveal these waveforms, and the potential for discoveries that arises when these sources are observed by LIGO and LISA.

  10. Observing Mergers of Nonspinning Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams S.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly Bernard J.; Thorpe, J. Ira; vanMeter, James R.

    2008-01-01

    Recent advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black hole coalescence. We present the application of nonspinning numerical relativity waveforms to the search for and precision measurement of black hole binary coalescences using LISA. In particular, we focus on the advances made in moving beyond the equal mass, nonspinning case into other regions of parameter space, focusing on the case of nonspinning holes with ever-increasing mass ratios. We analyze the available unequal mass merger waveforms from numerical relativity, and compare them to two models, both of which use an effective one body treatment of the inspiral, but which use fundamentally different approaches to the treatment of the merger-ringdown. We confirm the expected mass ratio scaling of the merger, and investigate the changes in waveform behavior and their observational impact with changing mass ratio. Finally, we investigate the potential contribution from the merger portion of the waveform to measurement uncertainties of the binary's parameters for the unequal mass case.

  11. Resonant recoil in extreme mass ratio binary black hole mergers

    SciTech Connect

    Hirata, Christopher M.

    2011-05-15

    The inspiral and merger of a binary black hole system generally leads to an asymmetric distribution of emitted radiation, and hence a recoil of the remnant black hole directed opposite to the net linear momentum radiated. The recoil velocity is generally largest for comparable mass black holes and particular spin configurations, and approaches zero in the extreme mass ratio limit. It is generally believed that for extreme mass ratios {eta}<<1, the scaling of the recoil velocity is |V|{proportional_to}{eta}{sup 2}, where the proportionality coefficient depends on the spin of the larger hole and the geometry of the system (e.g. orbital inclination). The small recoil velocity is due to cancellations; while the fraction of the total binary mass radiated away in gravitational waves is O({eta}), most of this energy is emitted during the inspiral phase where the momentum radiated integrates to zero over an orbit. Here, we show that for low but nonzero inclination prograde orbits and very rapidly spinning large holes (spin parameter a{sub *}>0.9678) the inspiralling binary can pass through resonances where the orbit-averaged radiation-reaction force is nonzero. These resonance crossings lead to a new contribution to the kick, |V|{proportional_to}{eta}{sup 3/2}. For these configurations and sufficiently extreme mass ratios, this resonant recoil is dominant. While it seems doubtful that the resonant recoil will be astrophysically significant, its existence suggests caution when extrapolating the results of numerical kick results to extreme mass ratios and near-maximal spins.

  12. Massive black hole binary mergers in dynamical galactic environments

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars

    2017-01-01

    Gravitational waves (GWs) have now been detected from stellar-mass black hole binaries, and the first observations of GWs from massive black hole (MBH) binaries are expected within the next decade. Pulsar timing arrays (PTA), which can measure the years long periods of GWs from MBH binaries (MBHBs), have excluded many standard predictions for the amplitude of a stochastic GW background (GWB). We use coevolved populations of MBHs and galaxies from hydrodynamic, cosmological simulations (`Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disc. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_{yr^{-1}} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_{yr^{-1}} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1}} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6 - significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHBs driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual active galactic nuclei to constrain binary evolution.

  13. Characterizing spinning black hole binaries in eccentric orbits with LISA

    SciTech Connect

    Key, Joey Shapiro; Cornish, Neil J.

    2011-04-15

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spin precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.

  14. Can binary mergers produce maximally spinning black holes?

    SciTech Connect

    Kesden, Michael

    2008-10-15

    Gravitational waves carry away both energy and angular momentum as binary black holes inspiral and merge. The relative efficiency with which they are radiated determines whether the final black hole of mass M{sub f} and spin S{sub f} saturates the Kerr limit ({chi}{sub f}{identical_to}S{sub f}/M{sub f}{sup 2}{<=}1). Extrapolating from the test-particle limit, we propose expressions for S{sub f} and M{sub f} for mergers with initial spins aligned or anti-aligned with the orbital angular momentum. We predict the the final spin at plunge for equal-mass nonspinning binaries to better than 1%, and that equal-mass maximally spinning aligned mergers lead to nearly maximally spinning final black holes ({chi}{sub f}{approx_equal}0.9988). We also find black holes can always be spun up by aligned mergers provided the mass ratio is small enough.

  15. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  16. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  17. Binary Black Hole Initial Data Without Elliptic Equations

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey; Racz, Istvan

    2016-03-01

    We describe a radically new method for solving the constraints of Einstein's equations which does not involve elliptic equations. Instead, the constraints are formulated as a symmetric hyperbolic system which can be integrated radially inward from an outer boundary. In this method, the initial metric data for a binary black hole can be freely prescribed, e.g. in a 4-dimensional superimposed Kerr-Schild form for the individual boosted black holes. Two pieces of extrinsic curvature data, which represent the two gravitational degrees of freedom, can also be freely prescribed by superimposing the individual black hole data. The remaining extrinsic curvature data are then determined by the hyperbolic constraint system. Because no puncture or excision boundary conditions are necessary, this approach offers a simple alternative that could provide more physically realistic binary black hole initial data than present methods. Here we present a computational framework for implementing this new method. JW was supported by NSF Grant PHY-1505965 to the University of Pittsburgh. IR was supported in part by the Die Aktion Osterreich-Ungarn, Wissenschafts- und Erziehungskooperation Grant 90ou1.

  18. Puncture Initial Data for Highly Spinning Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos; Zlochower, Yosef

    2015-04-01

    Accretion arguments suggest that some astrophysical black-holes will possess nearly extremal spins. It is expected that gravitational wave signals from orbiting and merging black-hole binaries will be detected by Advanced LIGO in the next few years. Accurate waveform models are needed to interpret detector data. We solve the Hamiltonian and momentum constraints of General Relativity representing two black-holes with nearly extremal spins and ultra-relativistic boosts in the puncture formalism using spectral methods in the Cactus/Einstein Toolkit framework. We use a non-conformally-flat ansatz with an attenuated superposition of two conformally rescaled Lorentz-boosted-Kerr 3-metrics and their corresponding conformal extrinsic curvatures. The initial data are evolved in time using moving punctures in the BSSN and Z4 formalisms. We compare with the standard Bowen-York conformally-flat ansatz, finding an order of magnitude smaller burst of spurious radiation.

  19. Galaxy rotation and supermassive black hole binary evolution

    NASA Astrophysics Data System (ADS)

    Mirza, M. A.; Tahir, A.; Khan, F. M.; Holley-Bockelmann, H.; Baig, A. M.; Berczik, P.; Chishtie, F.

    2017-09-01

    Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, Laser Interferometer Space Antenna, an ESA/NASA mission currently set to launch by 2034.

  20. Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2005-01-01

    A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.

  1. Searching for Binary Supermassive Black Holes via Variable Broad Emission Line Shifts: Low Binary Fraction

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Greene, Jenny E.; Ju, Wenhua; Rafikov, Roman R.; Ruan, John J.; Schneider, Donald P.

    2017-01-01

    Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg ii emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al., using Sloan Digital Sky Survey spectra with an additional epoch of data that lengthens the typical baseline to ∼10 yr. We find variations in the line of sight velocity shifts over 10 yr that are comparable to the shifts observed over 1–2 yr, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with eight-year median time baselines, from which we would expect to see velocity shifts >1000 {km} {{{s}}}-1 from sub-parsec binaries. We find only one object with an outlying velocity of 448 {km} {{{s}}}-1, indicating—based on our modeling—that ≲1% (the value varies with different assumptions) of SMBHs that are active as quasars reside in binaries with ∼0.1 pc separations. Binaries either sweep rapidly through these small separations or stall at larger radii.

  2. Jet signatures of black holes: From Sgr A* to active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Britzen, S.; Eckart, A.; Lämmerzahl, C.; Roland, J.; Brockamp, M.; Hackmann, E.; Kunz, J.; Macias, A.; Malchow, R.; Sabha, N.; Shahzamanian, B.

    2015-06-01

    Detailed and long-term VLBI (Very Long Baseline Interferometry) studies of the variable jets of supermassive black holes helps us to understand the emission processes of these fascinating phenomena. When observed and traced precisely, jet component kinematics reveals details about the potential motion of the jet base. Following this motion over decades with VLBI monitoring reveals - in some cases - the signatures of precession. While several processes can cause precession, the most likely cause seems to be a supermassive binary black hole in the central region of the AGN. We present examples of the analysis of high-resolution VLBI observations which provides us with insight into the physics of these objects and reveals evidence for the presence of double black hole cores. EHT (Event Horizon Telescope) observations will probably soon tell us more about the jet origin and launching mechanism at the very centers of nearby active galactic nuclei. An important question to be addressed by the EHT and related observations will be whether Sgr A\\star, the supermassive black hole in the Galactic Center, has a jet as well.

  3. Unmodeled search for black hole binary systems in the NINJA project

    NASA Astrophysics Data System (ADS)

    Cadonati, Laura; Chatterji, Shourov; Fischetti, Sebastian; Guidi, Gianluca; Mohapatra, Satyanarayan R. P.; Sturani, Riccardo; Viceré, Andrea

    2009-10-01

    The gravitational-wave signature from binary black hole coalescences is an important target for ground-based interferometric detectors such as LIGO and Virgo. The Numerical INJection Analysis (NINJA) project brought together the numerical relativity and gravitational wave data analysis communities, with the goal to optimize the detectability of these events. In its first instantiation, the NINJA project produced a simulated data set with numerical waveforms from binary black hole coalescences of various morphologies (spin, mass ratio, initial conditions), superimposed to Gaussian colored noise at the design sensitivity for initial LIGO and Virgo. We analyzed the NINJA simulated data set with the Q-pipeline algorithm, designed for the all-sky detection of gravitational-wave bursts with minimal assumptions on the shape of the waveform. The algorithm filters the data with a bank of sine-Gaussians, sinusoids with Gaussian envelope, to identify significant excess power in the time-frequency domain. We compared the performance of this burst search algorithm with lalapps_ring, which match-filters data with a bank of ring-down templates to specifically target the final stage of a coalescence of black holes. A comparison of the output of the two algorithms on NINJA data in a single detector analysis yielded qualitatively consistent results; however, due to the low simulation statistics in the first NINJA project, it is premature to draw quantitative conclusions at this stage, and further studies with higher statistics and real detector noise will be needed.

  4. Binary black hole shadows, chaotic scattering and the Cantor set

    NASA Astrophysics Data System (ADS)

    Shipley, Jake O.; Dolan, Sam R.

    2016-09-01

    We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar-Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may be constructed through an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist around two black holes of equal mass M separated by {a}1\\lt a\\lt \\sqrt{2}{a}1, where {a}1=4M/\\sqrt{27}. To show how this possibility arises, we define a certain potential function and classify its stationary points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property. Finally, we consider the possibility of following null geodesics through event horizons, and chaos in the maximally extended spacetime.

  5. Evolution of an accretion disc in binary black hole systems

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', i.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ∼105 M⊙.

  6. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. This situation has changed dramatically in the past year, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA and LIGO.

  7. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA

  8. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simutation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  9. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    This viewgraph presentation reviews the massive black hole (MBH) binaries that are found at the center of most galaxies, "astronomical messenger", gravitational waves (GW), and the use of numerical relativity understand the features of these phenomena. The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity.. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  10. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  11. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields. We need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  12. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  13. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities. causing them to crash well before the black hole:, in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  14. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. This situation has changed dramatically in the past year, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA and LIGO.

  15. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simutation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  16. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA

  17. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  18. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  19. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities. causing them to crash well before the black hole:, in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  20. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields. We need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  1. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    PubMed

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  2. Neutron-star–black-hole binaries produced by binary-driven hypernovae

    DOE PAGES

    Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...

    2015-12-04

    Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso ≳1052 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compactmore » binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less

  3. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  4. Neutron-star–black-hole binaries produced by binary-driven hypernovae

    SciTech Connect

    Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; Ruffini, Remo

    2015-12-04

    Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso ≳1052 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  5. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  6. The Relativitic Evolution of Black Hole-Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Faber, J. A.; Baumgarte, T. W.; Shapiro, S. L.; Taniguchi, K.

    2004-12-01

    We report results from our new relativistic evolution calculations of black hole-neutron star (BH-NS) binaries. The evolution equations of general relativity are treated in the conformally flat (CF) approximation. Assuming that the BH mass is significantly larger than that of the NS allows us to simplify the field equations for the NS, which we solve self-consistently in a fixed BH background spacetime. This approach guarantees that self-gravity is fully included. The NS fluid, assumed here to follow a gamma-law equation of state (EOS), is evolved using a Lagrangian SPH method. The field equations are solved by spectral methods in spheroidal coordinates. The code has been tested by comparing our results to previously computed quasi-equilibrium sequences, showing good agreement. Our results are a crucial first step in evaluating the stability of mass transfer in extremely close BH-NS binaries. They will allow us to describe quantitatively the dynamical tidal disruption of the NS, and to determine the dependence on the initial binary parameters, including the mass ratio and assumed NS EOS. We will also discuss the implications for detecting gravitational waves from the merger of these systems, about which, in contrast to NS-NS binaries, little is currently known for systems with components of comparable mass. JAF is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401533.

  7. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Camp, J. B.

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  8. ON THE MASS RADIATED BY COALESCING BLACK HOLE BINARIES

    SciTech Connect

    Barausse, E.; Morozova, V.; Rezzolla, L.

    2012-10-10

    We derive an analytic phenomenological expression that predicts the final mass of the black hole (BH) remnant resulting from the merger of a generic binary system of BHs on quasi-circular orbits. Besides recovering the correct test-particle limit for extreme mass-ratio binaries, our formula reproduces well the results of all the numerical-relativity simulations published so far, both when applied at separations of a few gravitational radii and when applied at separations of tens of thousands of gravitational radii. These validations make our formula a useful tool in a variety of contexts ranging from gravitational-wave (GW) physics to cosmology. As representative examples, we first illustrate how it can be used to decrease the phase error of the effective-one-body waveforms during the ringdown phase. Second, we show that, when combined with the recently computed self-force correction to the binding energy of nonspinning BH binaries, it provides an estimate of the energy emitted during the merger and ringdown. Finally, we use it to calculate the energy radiated in GWs by massive BH binaries as a function of redshift, using different models for the seeds of the BH population.

  9. Gravitational waves from binary supermassive black holes in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Merritt, David

    2017-01-01

    Pulsar timing arrays (PTAs) will eventually detect the gravitational wave (GW) background produced by a cosmological population of binary supermassive black hole (SBHs). In this talk, I review the ways in which the formation and evolution of the binary population determine the amplitude and form of the GW spectrum. A major source of systematic uncertainty is the mass function of SBHs; in the past, SBH masses have often been overestimated, and the number of SBHs with trustworthy mass estimates is still very small. The presence of gas and stars around the binaries accelerates the evolution at large separations, reducing the amplitude of the GW spectrum at low frequencies. I will highlight two recent developments in our theoretical understanding of binary evolution. (1) Slight departures from axi-symmetry in a galaxy imply a sustained supply of stars to the very center, thus overcoming the “final-parsec problem”. (2) In the generic case of a rotating nucleus, the plane of the binary’s orbit evolves predictably toward alignment with the symmetry plane of the nucleus; the binary’s eccentricity also evolves in tandem with the orientation, sometimes reaching values close to one. These processes should leave distinct imprints on the stochastic GW spectrum, and have important implications for the likelihood of GW detection in the near future.

  10. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  11. Tidal interaction in binary-black-hole inspiral.

    PubMed

    Price, R H; Whelan, J T

    2001-12-03

    Tidal torque may lead to important effects in the strong field interaction at the end point of the inspiral of two rapidly rotating black holes. We point out here that in such a case the exchange of spin and orbital angular momentum may significantly affect the energy and waveform of late stage gravitational waves, and may play an important role in the shedding of excess angular momentum. We argue that numerical relativity, the only tool for determining the importance of tidal torque, should be more specifically focused on binary configurations with aligned, large, angular momenta.

  12. Parameter estimates in binary black hole collisions using neural networks

    NASA Astrophysics Data System (ADS)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    2016-10-01

    We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

  13. Observing Massive Black Hole Binary Coalescences with LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2005-01-01

    Massive black hole binary coalescences are among the most important astrophysical sources of gravitational waves to be observed by LISA. The ability to observe and characterize such sources with masses approximately equal to 105 M/odot and larger at high redshifts is strongly dependent on the sensitivity of LISA in the low frequency (0.1 mHz and below) regime. We examine LISA's ability to observe these systems at redshifts up to z approximately equal to 10 for various proposed values of the low frequency sensitivity, under current assumptions about the merger rates. The discussion will focus on the astrophysical information that can be gained by these observations.

  14. Coalescing binary black holes: Applications enabled by many simulations

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Harald

    2013-04-01

    Recently, the Caltech-Cornell-CITA collaboration has succeeded in computing about 100 binary black hole (BBH) coalescence waveforms. These waveforms include a very long inspiral phase (some exceeding 60 cycles) and are of exquisite accuracy. The configurations simulated include extreme regions of the BBH parameter space like nearly extremal spins, high mass-ratios, and strongly precessing systems. This talk reports on applications of these waveforms to study strong field gravity and aid gravitational wave astronomy, in particular post-Newtonian comparisons and construction of template banks for BBH waveforms.

  15. Problems related to gravitational waves from binary black holes

    NASA Astrophysics Data System (ADS)

    Tsokaros, Antonios A.

    With three gravitational wave observatories LIGO, GEO, and TAMA in operation the dawn of gravitational wave astronomy is nearly a reality. In the coming decade these earth-based observatories together with the expected space-based, LISA will play a major role in advancing our knowledge of our cosmic habitat. The first targets for gravitational wave detectors like LIGO are the waves emitted by pairs of compact objects (neutron stars and black holes) that orbit each other. Developing an accurate numerical model for these binary coalescence is crucial to maximize the number of events that the gravitational-wave detectors will see and to extract from observed events the physics of the coalescing objects. The first step in studying the dynamics of this sort is to obtain astrophysically realistic initial data sets that represent such binaries. Although for the binary neutron stars that is already achieved, things have proven to be more difficult for the binary black hole case. In this study we analyze Einstein's equations in the presence of a helical killing vector and try to obtain initial data sets by solving five, instead of four, semi-elliptic equations. For the background metric we assumed a linear superposition of two Kerr metrics written in the Kerr-Schild form. A new computational technique with overlapping spherical domains for the solution of such semi-elliptic equations for two black holes of different masses was developed. In addition, motivated by the necessity of predicting realistic waveforms, we investigate the self-force experienced by a static non-minimally-coupled scalar charge outside a Schwarzschild black hole. We find that the finite part of this self-force is zero. To arrive at this result, we employ a Gedankenexperiment where the force is determined from the work required to slowly raise or lower the particle an infinitesimal distance. Our no-self-force result is in disagreement with a previous result of Zel'nikov and Frolov, who have suggested

  16. Binary black holes, gravitational waves, and numerical relativity

    NASA Astrophysics Data System (ADS)

    Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.

    2007-07-01

    The final merger of comparable mass binary black holes produces an intense burst of gravitational radiation and is one of the strongest sources for both ground-based and space-based gravitational wave detectors. Since the merger occurs in the strong-field dynamical regime of general relativity, numerical relativity simulations of the full Einstein equations in 3-D are required to calculate the resulting gravitational dynamics and waveforms. While this problem has been pursued for more than 30 years, the numerical codes have long been plagued by various instabilities and, overall, progress was incremental. Recently, however, dramatic breakthrough have occurred, resulting in robust simulations of merging black holes. In this paper, we examine these developments and the exciting new results that are emerging.

  17. Statistical studies of spinning black-hole binaries

    SciTech Connect

    Lousto, Carlos O.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-04-15

    We study the statistical distributions of the spins of generic black-hole binaries during the inspiral and merger, as well as the distributions of the remnant mass, spin, and recoil velocity. For the inspiral regime, we start with a random uniform distribution of spin directions S-vector{sub 1} and S-vector{sub 2} over the sphere and magnitudes |S-vector{sub 1}/m{sub 1}{sup 2}|=|S-vector{sub 2}/m{sub 2}{sup 2}|=0.97 for different mass ratios, where S-vector{sub i} and m{sub i} are the spin-angular momentum and mass of the ith black hole. Starting from a fiducial initial separation of R{sub i}=50M, we perform 3.5-post-Newtonian-order evolutions down to a separation of R{sub f}=5M, where M=m{sub 1}+m{sub 2}, the total mass of the system. At this final fiducial separation, we compute the angular distribution of the spins with respect to the final orbital angular momentum, L-vector. We perform 16{sup 4}=65 536 simulations for six mass ratios between q=1 and q=1/16 and compute the distribution of the angles L-vector{center_dot}{Delta}-vector and L-vector{center_dot}S-vector, directly related to recoil velocities and total angular momentum. We find a small but statistically significant bias of the distribution towards counteralignment of both scalar products. A post-Newtonian analysis shows that radiation-reaction-driven dissipative effects on the orbital angular momentum lead to this bias. To study the merger of black-hole binaries, we turn to full numerical techniques. In order to make use of the numerous simulations now available in the literature, we introduce empirical formulas to describe the final remnant black-hole mass, spin, and recoil velocity for merging black-hole binaries with arbitrary mass ratios and spins. Our formulas are based on the post-Newtonian scaling, to model the plunge phase, with amplitude parameters chosen by a least-squares fit of recently available fully nonlinear numerical simulations, supplemented by inspiral losses from infinity to the

  18. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    NASA Astrophysics Data System (ADS)

    Rasskazov, Alexander; Merritt, David

    2017-03-01

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f, defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  19. Nova Scorpii and Coalescing Low-Mass Black Hole Binaries as LIGO Sources

    NASA Astrophysics Data System (ADS)

    Sipior, Michael S.; Sigurdsson, Steinn

    2002-06-01

    Double neutron star (NS-NS) binaries, analogous to the well-known Hulse-Taylor pulsar PSR 1913+16 (documented by Hulse & Taylor in 1974), are guaranteed-to-exist sources of high-frequency gravitational radiation detectable by LIGO. There is considerable uncertainty in the estimated rate of coalescence of such systems (see the work of Phinney in 1991, Narayan and coworkers in 1991, and Kalogera and coworkers in 2001), with conservative estimates of ~1 per 106 yr per galaxy, and optimistic theoretical estimates 1 or more mag larger. Formation rates of low-mass black hole (BH)-neutron star binaries may be higher than those of NS-NS binaries and may dominate the detectable LIGO signal rate. Rate estimates for such binaries are plagued by severe model uncertainties. Recent estimates by Portegies Zwart & Yungelson in 1998 and De Donder & Vanbeveren in 1998 suggest that BH-BH binaries do not coalesce at significant rates despite being formed at high rates. We estimate the enhanced coalescence rate for BH-BH binaries due to weak asymmetric kicks during the formation of low-mass black holes like Nova Sco (see the work of Brandt, Podsiadlowski, & Sigurdsson in 1995) and find they may contribute significantly to the LIGO signal rate, possibly dominating the phase I detectable signals if the range of black hole masses for which there is significant kick is broad enough. For a standard Salpeter initial mass function, assuming mild natal kicks, we project that the R6 merger rate (the rate of mergers per 106 yr in a Milky Way-like galaxy) of BH-BH systems is ~0.5, smaller than that of NS-NS systems. However, the higher chirp mass of these systems produces a signal nearly 4 times greater, on average, with a commensurate increase in search volume, hence, our claim that BH-BH mergers (and, to a lesser extent, BH-NS coalescence) should comprise a significant fraction of the signal seen by LIGO. The BH-BH coalescence channel considered here also predicts that a substantial fraction of

  20. Binary black hole spacetimes with a helical Killing vector

    SciTech Connect

    Klein, Christian

    2004-12-15

    Binary black hole spacetimes with a helical Killing vector, which are discussed as an approximation for the early stage of a binary system, are studied in a projection formalism. In this setting the four-dimensional Einstein equations are equivalent to a three-dimensional gravitational theory with a SL(2,R)/SO(1,1) sigma model as the material source. The sigma model is determined by a complex Ernst equation. 2+1 decompositions of the three-metric are used to establish the field equations on the orbit space of the Killing vector. The two Killing horizons of spherical topology which characterize the black holes, the cylinder of light where the Killing vector changes from timelike to spacelike, and infinity are singular points of the equations. The horizon and the light cylinder are shown to be regular singularities, i.e., the metric functions can be expanded in a formal power series in the vicinity. The behavior of the metric at spatial infinity is studied in terms of formal series solutions to the linearized Einstein equations. It is shown that the spacetime is not asymptotically flat in the strong sense to have a smooth null infinity under the assumption that the metric tends asymptotically to the Minkowski metric. In this case the metric functions have an oscillatory behavior in the radial coordinate in a nonaxisymmetric setting, the asymptotic multipoles are not defined. The asymptotic behavior of the Weyl tensor near infinity shows that there is no smooth null infinity.

  1. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    PubMed

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  2. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  3. Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Baker, J. G.; Liu, F. K.

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.

  4. Effects of supermassive binary black holes on gravitational lenses

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mao, Shude; Gao, Liang; Loeb, Abraham; di Stefano, R.

    2012-01-01

    Recent observations indicate that many, if not all, galaxies host massive central black holes (BHs). In this paper, we explore the influence of supermassive binary black holes (SMBBHs) on their actions as gravitational lenses. When lenses are modelled as singular isothermal ellipsoids, binary BHs change the critical curves and caustics differently as a function of distance. Each BH can in principle create at least one additional image, which, if observed, provides evidence of BHs. By studying how SMBBHs affect the cumulative distribution of magnification for images created by BHs, we find that the cross-section for at least one such additional image to have a magnification larger than 10-5 is comparable to the cross-section for producing multiple images in singular isothermal lenses. Such additional images may be detectable with high-resolution and large dynamic range maps of multiply imaged systems from future facilities, such as the Square Kilometre Array. The probability of detecting at least one image (two images) with magnification above 10-3 is ˜0.2fBH (˜0.05fBH) in a multiply imaged lens system, where fBH is the fraction of galaxies housing binary BHs. We also study the effects of SMBBHs on the core images when galaxies have shallower central density profiles (modelled as non-singular isothermal ellipsoids). We find that the cross-section of the usually faint core images is further suppressed by SMBBHs. Thus, their presence should also be taken into account when one constrains the core radius from the lack of central images in gravitational lenses.

  5. INTERRUPTION OF TIDAL-DISRUPTION FLARES BY SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Liu, F. K.; Li, S.; Chen Xian E-mail: lis@bac.pku.edu.c

    2009-11-20

    Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing LAMBDA cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time propor tot {sup -5/3}, would stop at a time T{sub tr} approx = etaT{sub b}. Here, eta approx 0.25 and T{sub b} is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time T{sub r} approx = xi{sub b}, where xi approx 1. Both eta and xi sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

  6. The SEDs of Gapped Accretion Disks surrounding Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Gultekin, Kayhan; Miller, J. M.

    2014-01-01

    We calculate the observability of a black hole (BH) accretion disk with a gap or a hole created by a secondary BH embedded in the disk. We find that for an interesting range of parameters of BH masses 10^6-10^9 M⊙), orbital separation 1 AU to ~0.1 pc), and gap width (10-190 disk scale heights), the missing thermal emission from a gap manifests itself in an observable decrement in the spectral energy distribution (SED). The change in slope in the broken power law is strongly dependent on the width of the gap in the accretion disk, which in turn is uniquely determined by the mass ratio of the BHs (under our assumptions), such that it scales roughly as q^(5/12). Thus, one can use spectral observations of the continuum of bright AGNs to infer not only the presence of a closely separated BH binary, but also the mass ratio. When the BH merger opens an entire hole (or cavity) in the inner disk, the broadband SED of the AGNs or quasar may serve as a diagnostic. We note future directions for this research.

  7. Observing binary black hole ringdowns by advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Kokkotas, Kostas D.; Laguna, Pablo

    2017-05-01

    The direct discovery of gravitational waves from compact binary systems leads for the first time to explore the possibility of black hole spectroscopy. Newly formed black holes produced by coalescing events are copious emitters of gravitational radiation, in the form of damped sinusoids, the quasinormal modes. The latter provides a precious source of information on the nature of gravity in the strong field regime, as they represent a powerful tool to investigate the validity of the no-hair theorem. In this work we perform a systematic study on the accuracy with which current and future interferometers will measure the fundamental parameters of ringdown events, such as frequencies and damping times. We analyze how these errors affect the estimate of the mass and the angular momentum of the final black hole, constraining the parameter space which will lead to the most precise measurements. We explore both single and multimode events, showing how the uncertainties evolve when multiple detectors are available. We also prove that, for the second generation of interferometers, a network of instruments is a crucial and necessary ingredient to perform strong-gravity tests of the no-hair theorem. Finally, we analyze the constraints that a third generation of detectors may be able to set on the mode's parameters, comparing the projected bounds against those obtained for current facilities.

  8. Binary Black Holes, Numerical Relativity, and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA

  9. Observing Merging Massive Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, J.; McWillimas, S.; Baker, J.; Arnaud, K.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational radiation from the inspiral and merger of massive black hole binaries at high redshifts with large signal-to-noise ratios (SNRs). These high-SNR observations will make it possible to extract physical parameters such as hole masses and spins, luminosity distance, and sky position from the observed waveforms. LISA'S effectiveness as a tool for astrophysics will be influenced by the precision with which these parameters can be measured. In addition, the practicality of coordinated observations with other instruments will be affected by the temporal evolution of parameter errors such as sky position. We present estimates of parameter errors for the special case of non-spinning black holes. Our focus is on the contribution of the late inspiral and merger portions of the waveform, a regime which typically dominates the SNR but has not been extensively studied due to the historic lack of a precise description of the waveform. Advances in numerical relativity have recently made such studies possible. Initial results suggest that the portion of the waveform beyond the Schwarzchild inner-most stable circular orbit can reduce parameter uncertainties by up to a factor of two.

  10. Cosmic Messengers: Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.

  11. Binary Black Holes, Numerical Relativity, and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA

  12. Cosmic Messengers: Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.

  13. Formation of high mass X-ray black hole binaries

    NASA Astrophysics Data System (ADS)

    Brown, G. E.; Heger, A.; Langer, N.; Lee, C.-H.; Wellstein, S.; Bethe, H. A.

    2001-10-01

    The discrepancy in the past years of many more black-hole soft X-ray transients (SXTs), of which a dozen have now been identified, had challenged accepted wisdom in black hole evolution. Reconstruction in the literature of high-mass X-ray binaries has required stars of up to ˜40 M ⊙ to evolve into low-mass compact objects, setting this mass as the limit often used for black hole formation in population syntheses. On the other hand, the sheer number of inferred SXTs requires that many, if not most, stars of ZAMS masses 20-35 M ⊙ end up as black holes ( Portegies Zwart et al., 1997; Ergma and van den Heuvel, 1998). In this paper we show that this can be understood by challenging the accepted wisdom that the result of helium core burning in a massive star is independent of whether the core is covered by a hydrogen envelope, or 'naked' while it burns. The latter case occurs in binaries when the envelope of the more massive star is transferred to the companion by Roche Lobe overflow while in either main sequence or red giant stage. For solar metallicity, whereas the helium cores which burn while naked essentially never go into high-mass black holes, those that burn while clothed do so, beginning at ZAMS mass ˜20 M ⊙, the precise mass depending on the 12C( α, γ) 16O rate as we outline. In this way the SXTs can be evolved, provided that the H envelope of the massive star is removed only following the He core burning. Whereas this scenario was already outlined in 1998 by Brown et al. [NewA 4 (1999) 313], their work was based on evolutionary calculations of Woosley et al. [ApJ 448 (1995) 315] which employed wind loss rates which were too high. In this article we collect results for lower, more correct wind loss rates, finding that these change the results only little. We go into the details of carbon burning in order to reconstruct why the low Fe core masses from naked He stars are relatively insensitive to wind loss rate. The main reason is that without the

  14. Computing Binary Black Hole Initial Data in Damped Harmonic Gauge

    NASA Astrophysics Data System (ADS)

    Varma, Vijay; Scheel, Mark; SXS Collaboration

    2017-01-01

    Binary black hole evolution in the Spectral Einstein Code (SpEC) is currently done in the damped harmonic (DH) gauge, which has proven very useful for merger simulations. However, the initial data for the simulation is constructed in a different gauge. Once the evolution starts we need to perform a smooth gauge transformation to the DH gauge, introducing additional gauge dynamics into the evolution. In this work, we construct the initial data in the DH gauge itself, which allows us to avoid the above gauge transformation. This can have added benefits such as possibly reducing junk radiation, making it easier to achieve a desired orbital eccentricity, reducing the runtime of simulations, and being able to start evolution closer to the merger.

  15. Computing Binary Black Hole Initial Data in Damped Harmonic Gauge

    NASA Astrophysics Data System (ADS)

    Varma, Vijay; Scheel, Mark; Simulating Extreme Spacetimes Collaboration

    2016-03-01

    Binary black hole evolution in the Spectral Einstein Code (SpEC) is currently done in the damped harmonic (DH) gauge, which has proven very useful for merger simulations. However, the initial data for the simulation is constructed in a different gauge. Once the evolution starts we need to perform a smooth gauge transformation to the DH gauge, introducing additional gauge dynamics into the evolution. In this work, we construct the initial data in the DH gauge itself, which allows us to avoid the above gauge transformation. This can have added benefits such as possibly reducing junk radiation, making it easier to achieve a desired orbital eccentricity, reducing the runtime of simulations, and being able to start evolution closer to the merger.

  16. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    NASA Astrophysics Data System (ADS)

    Dolgov, A.; Postnov, K.

    2017-09-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  17. Formation of Optical Lines in Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Wu, Kinwah; Soria, Roberto; Johnston, Helen; Hunstead, Richard

    2002-12-01

    Black-hole binaries often show three distinctive X-ray spectral states, commonly classified as the high-soft state, the low-hard state and the quiescent state. (see e.g. Tanaka and Lewin1). There is strong observational evidence that the morphology of the optical emission lines changes with the X-ray spectral properties2. It is found that in the high-soft state the H I Balmer emission lines generally have asymmetric double-peaked profiles. The lines have a stronger red peak, and are in superposition with a broader absorption trough3. In the low-hard state, the H Balmer lines are more often single-peaked4. When the systems are in quiescence the lines are also double-peaked, but the profiles tend to be very symmetric5 ...

  18. Constraining Supermassive Black Hole Binary Dynamics Using Pulsar Timing Data

    NASA Astrophysics Data System (ADS)

    Ellis, Justin

    2015-08-01

    Pulsar timing arrays (PTAs) offer a unique opportunity to detect low frequency gravitational waves (GWs) in the near future. In this frequency band, the expected source of GWs are Supermassive Black Hole Binaries (SMBHBs) and they will most likely form in an ensemble creating a stochastic GW background with the possibility of a few nearby/massive sources that will be individually resolvable. In this talk we present upper limits on the strength of the isotropic stochastic background of gravitational waves using the new 9-year North American NanoHertz Observatory for Gravitational Waves (NANOGrav) data release. Using several published models for merger rate of SMBHBs we place meaningful constraints on the transition frequency at which environmental factors such as stellar hardening and circumbinary interactions become comparable to the energy loss due to GW emission.

  19. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, B. J.; Baker, J. G.; Boggs, W. D.; Centrella, J. M.; vanMeter, J. R.; McWilliams, S. T.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  20. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, Barnard

    2008-01-01

    "We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source. applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the $\\ell = m$ modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model."

  1. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    PubMed Central

    Hayasaki, Kimitake; Loeb, Abraham

    2016-01-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade. PMID:27767188

  2. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  3. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.

    PubMed

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-21

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  4. Imaging Compact Supermassive Binary Black Holes with Very Long Baseline Interferometry

    DTIC Science & Technology

    2007-01-01

    International Astronomical Union doi:10.1017/S174392130700511X Imaging compact supermassive binary black holes with Very Long Baseline Interferometry G. B. Taylor...University, Stanford, CA 94305 USA email: gbtaylor@unm.edu Abstract.We report on the discovery of a supermassive binary black - hole (SBBH) system in... Black hole physics – gravitational waves – galaxies: active – radio continuum: galaxies 1. Introduction Given that most galaxies harbor supermassive

  5. Binary black hole evolutions of approximate puncture initial data

    SciTech Connect

    Bode, Tanja; Laguna, Pablo; Shoemaker, Deirdre M.; Hinder, Ian; Herrmann, Frank; Vaishnav, Birjoo

    2009-07-15

    Approximate solutions to the Einstein field equations are valuable tools to investigate gravitational phenomena. An important aspect of any approximation is to investigate and quantify its regime of validity. We present a study that evaluates the effects that approximate puncture initial data, based on skeleton solutions to the Einstein constraints as proposed by [G. Faye, P. Jaranowski, and G. Schaefer, Phys. Rev. D 69, 124029 (2004).], have on numerical evolutions. Using data analysis tools, we assess the effectiveness of these constraint-violating initial data for both initial and advanced LIGO and show that the matches of waveforms from skeleton data with the corresponding waveforms from constraint-satisfying initial data are > or approx. 0.97 when the total mass of the binary is > or approx. 40M{sub {center_dot}}. In addition, we demonstrate that the differences between the skeleton and the constraint-satisfying initial data evolutions, and thus waveforms, are due to negative Hamiltonian constraint violations present in the skeleton initial data located in the vicinity of the punctures. During the evolution, the skeleton data develops both Hamiltonian and momentum constraint violations that decay with time, with the binary system relaxing to a constraint-satisfying solution with black holes of smaller mass and thus different dynamics.

  6. Observing Mergers of Non-Spinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.

    2010-01-01

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.

  7. STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES

    SciTech Connect

    Zhu Xingjiang; Zhu Zonghong; Howell, E.; Blair, D.; Regimbau, T.

    2011-10-01

    We estimate the stochastic gravitational wave (GW) background signal from the field population of coalescing binary stellar mass black holes (BHs) throughout the universe. This study is motivated by recent observations of BH-Wolf-Rayet (WR) star systems and by new estimates in the metallicity abundances of star-forming galaxies that imply BH-BH systems are more common than previously assumed. Using recent analytical results of the inspiral-merger-ringdown waveforms for coalescing binary BH systems, we estimate the resulting stochastic GW background signal. Assuming average quantities for the single source energy emissions, we explore the parameter space of chirp mass and local rate density required for detection by advanced and third-generation interferometric GW detectors. For an average chirp mass of 8.7 M{sub sun}, we find that detection through 3 years of cross-correlation by two advanced detectors will require a rate density, r{sub 0} {>=} 0.5 Mpc{sup -3} Myr{sup -1}. Combining data from multiple pairs of detectors can reduce this limit by up to 40%. Investigating the full parameter space we find that detection could be achieved at rates r{sub 0} {approx} 0.1 Mpc{sup -3} Myr{sup -1} for populations of coalescing binary BH systems with average chirp masses of {approx}15 M{sub sun} which are predicted by recent studies of BH-WR star systems. While this scenario is at the high end of theoretical estimates, cross-correlation of data by two Einstein Telescopes could detect this signal under the condition r{sub 0} {>=} 10{sup -3}Mpc{sup -3} Myr{sup -1}. Such a signal could potentially mask a primordial GW background signal of dimensionless energy density, {Omega}{sub GW} {approx} 10{sup -10}, around the (1-500) Hz frequency range.

  8. Stochastic Gravitational Wave Background from Coalescing Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-Jiang; Howell, E.; Regimbau, T.; Blair, D.; Zhu, Zong-Hong

    2011-10-01

    We estimate the stochastic gravitational wave (GW) background signal from the field population of coalescing binary stellar mass black holes (BHs) throughout the universe. This study is motivated by recent observations of BH-Wolf-Rayet (WR) star systems and by new estimates in the metallicity abundances of star-forming galaxies that imply BH-BH systems are more common than previously assumed. Using recent analytical results of the inspiral-merger-ringdown waveforms for coalescing binary BH systems, we estimate the resulting stochastic GW background signal. Assuming average quantities for the single source energy emissions, we explore the parameter space of chirp mass and local rate density required for detection by advanced and third-generation interferometric GW detectors. For an average chirp mass of 8.7 M sun, we find that detection through 3 years of cross-correlation by two advanced detectors will require a rate density, r 0 >= 0.5 Mpc-3 Myr-1. Combining data from multiple pairs of detectors can reduce this limit by up to 40%. Investigating the full parameter space we find that detection could be achieved at rates r 0 ~ 0.1 Mpc-3 Myr-1 for populations of coalescing binary BH systems with average chirp masses of ~15 M sun which are predicted by recent studies of BH-WR star systems. While this scenario is at the high end of theoretical estimates, cross-correlation of data by two Einstein Telescopes could detect this signal under the condition r 0 >= 10-3Mpc-3 Myr-1. Such a signal could potentially mask a primordial GW background signal of dimensionless energy density, ΩGW ~ 10-10, around the (1-500) Hz frequency range.

  9. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  10. Jet Signatures in the Spectra of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2016-03-01

    Jets are observed as radio emission in active galactic nuclei and during the low/hard state in X-ray binaries (XRBs), but their contribution at higher frequencies has been uncertain. We study the dynamics of jets in XRBs using the general-relativistic magnetohydrodynamic code HARM. We calculate the high-energy spectra and variability properties using a general-relativistic radiative transport code based on grmonty. We find the following signatures of jet emission: (i) a significant γ-ray peak above ˜1022 Hz, (ii) a break in the optical/UV spectrum, with a change from ν {L}ν ˜ {ν }0 to ν {L}ν ˜ ν , followed by another break at higher frequencies where the spectrum roughly returns to ν {L}ν ˜ {ν }0, and (iii) a pronounced synchrotron peak near or below ˜1014 Hz indicates that a significant fraction of any observed X-ray emission originates in the jet. We investigate the variability during a large-scale magnetic field inversion in which the Blandford-Znajek (BZ) jet is quenched and a new transient hot reconnecting plasmoid is launched by the reconnecting field. The ratio of the γ-rays to X-rays changes from {L}γ /{L}{{X}}\\gt 1 in the BZ jet to {L}γ /{L}{{X}}\\lt 1 during the launching of the transient plasmoid.

  11. Binary Black Hole Late Inspiral: Simulations for Gravitational Wave Observations

    NASA Technical Reports Server (NTRS)

    Baker, John G.; vanMeter, James R.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael

    2006-01-01

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the spacebased interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for approximately 1200M through approximately 7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass approximately 14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to PN calculations for the earlier parts of the inspiral provides a combined waveform with less than half a cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR 2 10 for some IMBBHs out to z approximately equals 1, and that LISA can see MBBHs in the range 3 x 10(exp 4) approximately < M/Mo approximately < 10(exp 7) at SNR > 100 out to the earliest epochs of structure formation at z > 15.

  12. Recurring flares from supermassive black hole binaries: implications for tidal disruption candidates and OJ 287

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.

    2013-09-01

    I discuss the possibility that accreting supermassive black hole (SMBH) binaries with sub-parsec separations produce periodically recurring luminous outbursts that interrupt periods of relative quiescence. This hypothesis is motivated by two characteristics found generically in simulations of binaries embedded in prograde accretion discs: (i) the formation of a central, low-density cavity around the binary and (ii) the leakage of gas into this cavity, occurring once per orbit via discrete streams on nearly radial trajectories. The first feature would reduce the emergent optical/UV flux of the system relative to active galactic nuclei powered by a single SMBH, while the second can trigger quasi-periodic fluctuations in luminosity. I argue that the quasi-periodic accretion signature may be much more dramatic than previously thought, because the infalling gas streams can strongly shock-heat via self-collision and tidal compression, thereby enhancing viscous accretion. Any optically thick gas that is circularized about either SMBH can accrete before the next pair of streams is deposited, fuelling transient, luminous flares that recur every orbit. Due to the diminished flux in between accretion episodes, such cavity-accretion flares could plausibly be mistaken for the tidal disruptions of stars in quiescent nuclei. The flares could be distinguished from tidal disruption events if their quasi-periodic recurrence is observed, or if they are produced by very massive (≳109 M⊙) SMBHs that cannot disrupt solar-type stars. They may be discovered serendipitously in surveys such as LSST or eROSITA. I present a heuristic toy model as a proof of concept for the production of cavity-accretion flares, and generate mock light curves and spectra. I also apply the model to the active galaxy OJ 287, whose production of quasi-periodic pairs of optical flares has long fuelled speculation that it hosts an SMBH binary.

  13. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    PubMed

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  14. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-01

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  15. Curious case of gravitational lensing by binary black holes: A tale of two photon spheres, new relativistic images, and caustics

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Mishra, Priti; Narasimha, D.

    2017-01-01

    Binary black holes have been in the limelight of late due to the detection of gravitational waves from coalescing compact binaries in the events GW150914 and GW151226. In this paper we study gravitational lensing by the binary black holes modeled as an equal mass Majumdar-Papapetrou dihole metric and show that this system displays features that are quite unprecedented and absent in any other lensing configuration investigated so far in the literature. We restrict our attention to the light rays which move on the plane midway between the two identical black holes, which allows us to employ various techniques developed for the equatorial lensing in the spherically symmetric spacetimes. If distance between the two black holes is below a certain threshold value, then the system admits two photon spheres. As in the case of a single black hole, infinitely many relativistic images are formed due to the light rays which turn back from the region outside the outer (unstable) photon sphere, all of which lie beyond a critical angular radius with respect to the lens. However, in the presence of the inner (stable) photon sphere, the effective potential after admitting minimum turns upwards and blows up for the smaller values of radii and the light rays that enter the outer photon sphere can turn back, leading to the formation of a new set of infinitely many relativistic images, all of which lie below the critical radius from the lens mentioned above. As the distance between the two black holes is increased, two photon spheres approach one another, merge and eventually disappear. In the absence of the photon sphere, apart from the formation of a finite number of discrete relativistic images, the system remarkably admits a radial caustic, which has never been observed in the context of relativistic lensing before. Thus the system of the binary black hole admits novel features both in the presence and absence of photon spheres. We discuss possible observational signatures and

  16. The Equations of Motion of Compact Binaries in the Neighborhood of Supermassive Black Hole

    SciTech Connect

    Gorbatsievich, Alexander; Bobrik, Alexey

    2010-03-24

    By the use of Einstein-Infeld-Hoffmann method, the equations of motion of a binary star system in the field of a supermassive black hole are derived. In spite of the fact that the motion of a binary system as a whole can be relativistic or even ultra-relativistic with respect to the supermassive black hole, it is shown, that under the assumption of non-relativistic relative motion of the stars in binary system, the motion of the binary system as a whole satisfies the Mathisson-Papapetrou equations with additional terms depending on quadrupole moments. Exemplary case of ultrarelativistic motion of a binary neutron star in the vicinity of non-rotating black hole is considered. It it shown that the motion of binary's center of mass may considerably differ from geodesic motion.

  17. Evolution of Supermassive Black Hole Binaries in Merging Galaxies and Evidence for Potential Sub-parsec Binaries

    NASA Astrophysics Data System (ADS)

    Barrows, Robert Scott; Galaxy Evolution Survey, Arkansas; Lacy, C. H. S.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2010-01-01

    As a result of galactic mergers, a significant number of supermassive black holes are expected to be in binary systems and at various stages in their orbital evolution. During galactic mergers, matter in the form of gas and stars is available for the black holes to accrete, providing fuel for black hole growth and a potential mechanism for the onset of a quasar phase. To better understand how supermassive black holes and their active phases evolve over time, the Arkansas Galaxy Evolution Survey (AGES) team is studying binary black hole systems at a range of separations, r. We have examined the scarce number of binary systems (10,000 > r > 1,000 pc) to infer information about their individual masses, the amount of gas and dust in the nuclear regions, the accretion rates of the individual nuclei, and the estimated timescale for dynamical friction to reduce the black holes’ separation to parsec scales. We have compared these results to those from theoretical calculations. Furthermore, we have visually examined the spectra of SDSS quasars for "unusual” double-peaked emitters looking for evidence of binary orbital motion at separations of < 1 pc. If found, such close binaries will have measurable orbital periods and will provide important information about the environments of quasars in the final stages of a merger. In addition, they will be excellent sources for gravitational wave emission for future space-based detectors such as LISA.

  18. A New Channel for the Formation of Binary Black Holes - Chemically Homogeneous Evolution in Tidally Distorted Binaries

    NASA Astrophysics Data System (ADS)

    Mandel, Ilya; De Mink, Selma

    2016-07-01

    We explore a new channel to create binary black holes of stellar origin. This scenario applies to massive, tidally distorted binaries where mixing slowly enriches the entire star with helium produced by nuclear bruning. The stars evolve nearly chemically homogeneously and remain compact, eventually forming to two black holes. We find that this channel preferentially creates binary black holes, with comparable masses (m2/m1>0.65) and total masses between 50 and 110 solar masses. These typically merge 4-11 Gyr after formation implying local binary black hole merger rate of about 10 Gpc-3 yr-1 at redshift z = 0, peaking at twice this rate at z = 0.5 (Mandel & de Mink 2016). The channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The parameters for GW150914 and the rate inferred during the first 16 days O1 run are consistent with the predictions from this channel. While GW150914 may have originated from this channel, we can not distinguish at present between this and the two classical formation channels. However, the near future perspective of probing the black hole demographics is extremely promising.

  19. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers

  20. Prospect of polarization measurements from black hole binaries in their thermal state with a scattering polarimeter

    NASA Astrophysics Data System (ADS)

    Maitra, Chandreyee; Paul, Biswajit

    2011-07-01

    X-ray polarization measurement is a unique tool which may provide crucial information regarding the emission mechanism and the geometry of various astrophysical sources, such as neutron stars, accreting black holes, pulsar wind nebulae, active galactic nuclei, supernova remnants etc., and can help us to probe matter under extreme magnetic fields and extreme gravitational fields. Although the three other domains of X-ray astronomy, i.e. timing, spectral and imaging are well developed, there has been very little progress in X-ray polarimetry with only one definitive polarization measurement and a few upper limits available so far. Radiation from accreting black holes in their thermal-dominated (high soft) state is expected to be polarized due to scattering in the plane-parallel atmosphere of the disc. Furthermore, special and general relativistic effects in the innermost parts of the disc predict energy-dependent rotation in the plane of polarization and some distinct signatures which can be used as a probe for measuring the parameters of the black hole, like its spin, emissivity profile and the angle of inclination of the system. We present the results from an analysis of expected minimum detectable polarization from some of the galactic black hole binaries, GRO J1655-40, GX 339-4, H1743-322, Cygnus X-1 and XTE J1817-330, in their thermal-dominated state with a proposed Thomson X-ray polarimeter. A proposal for a scattering polarimeter has been submitted to the Indian Space Research Organization for a dedicated small satellite mission and a laboratory unit has been built. Along with the measurement of the degree of polarization, the polarization angle measurement is also important, hence the error in the polarization angle measurement for a range of detection significance is also obtained.

  1. CONSTRAINING THE DARK ENERGY EQUATION OF STATE USING LISA OBSERVATIONS OF SPINNING MASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    2011-05-10

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.

  2. Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    2011-05-01

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a ΛCDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2σ error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.

  3. Diagnostic Power of Broad Emission Line Profiles in Searches for Binary Supermassive Black Holes: Comparison of Models with Observations

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai; Bogdanovic, Tamara; Eracleous, Michael; Runnoe, Jessie C.; Sigurdsson, Steinn

    2017-01-01

    Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a semi-analytic model to describe the spectral emission line signatures of these systems. We are particularly interested in modeling the profiles of the broad emission lines, which have been used as a tool to search for SBHBs. The goal of this work is to test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this context, we model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk that forms a common envelope about a gravitationally bound binary. Our first generation model shows that emission line profiles tend to have different statistical properties depending on the semi-major axis, mass ratio, eccentricity of the binary, and the alignment of the triple-disk system, and can in principle be used to constrain the statistical distribution of these parameters. We present the results of a second generation model, which improves upon the treatment of radiative transfer by taking into account the effect of line-driven winds on the properties of the model emission line profiles. This improvement allows a preliminary comparison of the model profiles with the observed SBHB candidates and AGN population in general.

  4. Blockwise Binary Pattern: a Robust and AN Efficient Approach for Offline Signature Verification

    NASA Astrophysics Data System (ADS)

    Shekar, B. H.; Pilar, B.; Sunil, K. D. S.

    2017-05-01

    This paper presents a variant of local binary pattern called Blockwise Binary Pattern (BBP) for the offline signature verification. The proposed approach has three major phases : Preprocessing, Feature extraction and Classification. In the feature extraction phase, the signature is divided into 3 x 3 neighborhood blocks. A BBP value for central pixel of each block is computed by considering its 8 neighboring pixels and the 3 x 3 block is replaced by this central pixel. To compute BBP value for each block, a binary sequence is formed by considering 8 neighbors of the central pixel, by following the pixels in a anti-clockwise direction. Then the minimum decimal equivalent of this binary sequence is computed and this value is assigned to the central pixel. The central pixel is merged with the neighboring 8 pixels representing the 3 X 3 neighborhood block. This method is found to be invariant to rotation, scaling and shift of the signature. The features are stored in the form of normalized histogram. The SVM classifier is used for the signature verification. Experiments have been performed on standard signature datasets namely CEDAR and GPDS which are publicly available English signature datasets and on MUKOS, a regional language (Kannada) dataset and compared with the well-known approaches to exhibit the performance of the proposed approach.

  5. Vacuum electromagnetic counterparts of binary black-hole mergers

    SciTech Connect

    Moesta, Philipp; Rezzolla, Luciano; Pollney, Denis; Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin'ichirou

    2010-03-15

    As one step towards a systematic modeling of the electromagnetic (EM) emission from an inspiralling black hole binary we consider a simple scenario in which the binary moves in a uniform magnetic field anchored to a distant circumbinary disc. We study this system by solving the Einstein-Maxwell equations in which the EM fields are chosen with strengths consistent with the values expected astrophysically and treated as test fields. Our initial data consists of a series of binaries with spins aligned or antialigned with the orbital angular momentum and we study the dependence of gravitational and EM signals with different spin configurations. Overall we find that the EM radiation in the lowest l=2, m=2 multipole accurately reflects the gravitational one, with identical phase evolutions and amplitudes that differ only by a scaling factor. This is no longer true when considering higher l modes, for which the amplitude evolution of the scaled EM emission is slightly larger, while the phase evolutions continue to agree. We also compute the efficiency of the energy emission in EM waves and find that it scales quadratically with the total spin and is given by E{sub EM}{sup rad}/M{approx_equal}10{sup -15}(M/10{sup 8}M{sub {center_dot}}){sup 2}(B/10{sup 4}G){sup 2}, hence 13 orders of magnitude smaller than the gravitational energy for realistic magnetic fields. Although large in absolute terms, the corresponding luminosity is much smaller than the accretion luminosity if the system is accreting at near the Eddington rate. Most importantly, this EM emission is at frequencies of {approx}10{sup -4}(10{sup 8}M{sub {center_dot}}/M) Hz, which are well outside those accessible to astronomical radio observations. As a result, it is unlikely that the EM emission discussed here can be detected directly and simultaneously with the gravitational-wave one. However, indirect processes, driven by changes in the EM fields behavior could yield observable events. In particular we argue that

  6. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bartos, Imre; Kocsis, Bence; Haiman, Zoltán; Márka, Szabolcs

    2017-02-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) found direct evidence for double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes. A significant fraction (∼ 30 % ) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few percent radiative efficiency, comparable to thin disks. We discuss implications for gravitational-wave observations and black hole population studies. We estimate that Advanced LIGO may detect ∼20 such gas-induced binary mergers per year.

  7. Discovery of photon index saturation in the black hole binaries

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Shaposhnikov, Nickolai; Seifina, Elena

    2010-03-01

    We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the eight Galactic Black Hole (BH) binaries during the transition between hard and soft states. We analyze all transition episodes from X-ray sources observed with Rossi X-ray Timing Explorer (RXTE). We show that broad-band energy spectra of Galactic sources during all these spectral states can be adequately presented by Bulk Motion Comptonization (BMC) model. We also present observable correlations between the index and the normalization of the disk ``seed'' component. The use of ``seed'' disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the hard spectral components at values of 2.1-3. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to BH. We apply our scaling technique to determine BH masses and distances for Cygnus X-1, GX 339-4, 4U 1543-47, XTE J1550-564, XTE J1650-500, H 1743-322 and XTE J1859-226. Good agreement of our results for sources with known values of BH masses and distance provides an independent verification for our scaling technique.

  8. Flaring Black Hole Accretion Disk in the Binary System V404 Cygni

    NASA Image and Video Library

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this syste...

  9. Redshift Factor and the First Law of Binary Black Hole Mechanics in Numerical Simulations.

    PubMed

    Zimmerman, Aaron; Lewis, Adam G M; Pfeiffer, Harald P

    2016-11-04

    The redshift factor z is an invariant quantity of fundamental interest in post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasicircular binary inspirals. Our results confirm the conjectured relationship between z and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor enables tests of analytic predictions for z in spacetimes where the binary is only approximately circular, giving a new connection between analytic approximations and numerical simulations.

  10. Redshift Factor and the First Law of Binary Black Hole Mechanics in Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Lewis, Adam G. M.; Pfeiffer, Harald P.

    2016-11-01

    The redshift factor z is an invariant quantity of fundamental interest in post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasicircular binary inspirals. Our results confirm the conjectured relationship between z and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor enables tests of analytic predictions for z in spacetimes where the binary is only approximately circular, giving a new connection between analytic approximations and numerical simulations.

  11. Expanding the catalog of binary black-hole simulations: aligned-spin configurations

    NASA Astrophysics Data System (ADS)

    Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2015-04-01

    A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.

  12. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema

    None

    2016-07-12

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  13. A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES

    SciTech Connect

    Eracleous, Michael; Boroson, Todd A.; Halpern, Jules P.; Liu Jia

    2012-08-01

    We have carried out a systematic search for subparsec supermassive black hole (BH) binaries among z {approx}< 0.7 Sloan Digital Sky Survey quasars. These are predicted by models of supermassive BH and host galaxy coevolution, therefore their census and population properties constitute an important test of these models. In our working hypothesis, one of the two BHs accretes at a much higher rate than the other and carries with it the only broad emission line region of the system, making the system analogous to a single-lined spectroscopic binary star. Accordingly, we used spectroscopic principal component analysis to search for broad H{beta} emission lines that are displaced from the quasar rest frame by |{Delta} v| {approx}> 1000 km s{sup -1}. This method also yields candidates for rapidly recoiling BHs. Of the 88 candidates, several were previously reported in the literature. We found a correlation between the peak offset and skewness of the broad H{beta} profiles, suggesting a common physical explanation for these profiles. We carried out follow-up spectroscopic observations of 68 objects to search for changes in the peak velocities of the H{beta} lines. We measured statistically significant changes in 14 objects, with implied accelerations between -120 and +120 km s{sup -1} yr{sup -1}. Interpreting the offset broad emission lines as signatures of supermassive binaries is subject to many caveats. Many more follow-up observations over a long temporal baseline are needed to characterize the variability pattern of the broad lines and test that it is consistent with orbital motion. The possibility that some of the objects in this sample are rapidly recoiling BHs remains open.

  14. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  15. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin; Ma, Chung-Pei

    2016-06-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent information about the dynamical masses Mbh of supermassive black holes in specific galaxies at known distances and use this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of Mbh in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves (as a function of angular position in the sky) can already constrain the mass ratios of hypothetical black hole binaries in many galaxies in our samples. The constraints are stronger for galaxies with larger Mbh and at smaller distances. For the black holes with Mbh ≳ 5 × 109 M⊙ at the centres of NGC 1600, NGC 4889, NGC 4486 (M87), and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of a few per cent or less.

  16. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  17. On the gravitational wave background from black hole binaries after the first LIGO detections

    NASA Astrophysics Data System (ADS)

    Cholis, Ilias

    2017-06-01

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density ΩGW (in units of the cosmic critical density) of the gravitational-wave background, we can search for the rare ~ 100 Msolar massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass gsim 3Msolar form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total ΩGW spectrum may have features that with the future Einstein Telescope can be detected.

  18. The PyCBC search for binary black hole coalescences in Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Willis, Joshua; LIGO Scientific Collaboration

    2017-01-01

    Advanced LIGO's first observing run saw the first detections of binary black hole coalescences. We describe the PyCBC matched filter analysis, and the results of that search for binary systems with total mass up to 100 solar masses. This is a matched filter search for general-relativistic signals from binary black hole systems. Two signals, GW150914 and GW151226, were identified with very high significance, and a third possible signal, LVT151012, was found, though at much lower significance. Supported by NSF award PHY-1506254.

  19. Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins

    NASA Astrophysics Data System (ADS)

    Reisswig, Christian; Husa, Sascha; Rezzolla, Luciano; Dorband, Ernst Nils; Pollney, Denis; Seiler, Jennifer

    2009-12-01

    Binary black-hole systems with spins aligned or anti-aligned to the orbital angular momentum, and which therefore do not exhibit precession effects, provide the natural ground to start detailed studies of the influence of strong-field spin effects on gravitational-wave observations of coalescing binaries. Furthermore, such systems may be the preferred end state of the inspiral of generic supermassive binary black-hole systems. In view of this, we have computed the inspiral and merger of a large set of binary systems of equal-mass black holes with spins parallel to the orbital angular momentum but otherwise arbitrary. Our attention is particularly focused on the gravitational-wave emission so as to quantify how much spin effects contribute to the signal-to-noise ratio, to the horizon distances, and to the relative event rates for the representative ranges in masses and detectors. As expected, the signal-to-noise ratio increases with the projection of the total black-hole spin in the direction of the orbital momentum. We find that equal-spin binaries with maximum spin aligned with the orbital angular momentum are more than “3 times as loud” as the corresponding binaries with anti-aligned spins, thus corresponding to event rates up to 30 times larger. We also consider the waveform mismatch between the different spinning configurations and find that, within our numerical accuracy, binaries with opposite spins S1=-S2 cannot be distinguished, whereas binaries with spin S1=S2 have clearly distinct gravitational-wave emissions. Finally, we derive a simple expression for the energy radiated in gravitational waves and find that the binaries always have efficiencies Erad/M≳3.6%, which can become as large as Erad/M≃10% for maximally spinning binaries with spins aligned with the orbital angular momentum. These binaries are therefore among the most efficient sources of energy in the Universe.

  20. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-10-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100 M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9 - 240 Gpc-3 yr-1 . These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.

  1. Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Zevin, Michael; Pankow, Chris; Kalogera, Vasilliki; Rasio, Frederic A.

    2016-11-01

    The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin-orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 could be formed with significant spin-orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin-orbit anti-alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.

  2. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, F.; Camp, J. B.; hide

    2016-01-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M solar mass and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 alpha over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87 probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9-240 Gpc-3 yr-1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

  3. Binary Black Holes in Merging Ellipticals: Evolution of the Binary and Consequences on the Structure of the Host Galaxy

    NASA Astrophysics Data System (ADS)

    Bonoli, Silvia; Dubinski, John

    2005-08-01

    We use N-body simulations to study the merging of two elliptical galaxies with central supermassive black holes. The study of merging of bulges with a central point mass is of relevant astrophysical interest, since the formation of binary black holes seems to play a major role in the evolution of the properties and the structure of merged galaxies. Previous simulations (e.g. Makino 1997; Milosavlievic & Merritt 2001) have shown that the central stellar density profile, the stellar orbits, and the global structure of merging relics are strongly influenced by the presence of a black hole binary system. Our simulations have the advantage of higher resolution and more realistic galaxy models. We use two self-consistent models. The first is from Widrow & Dubinski (2005), consisting of an Hernquist profile for the stellar component (Hernquist 1990), a Navarro, Frenk, and White dark halo (Navarro, Frenk, & White 1996), and a central massive particle. We constructed a second model, consisting of a Jaffe density profile for the stellar component (Jaffe 1983), an Hernquist profile for the halo, and a central massive particle. We are studying the evolution of the binary black holes, their effects on the host galaxy, and we are examining the origin of the empirical relation between the mass of the central black hole and the galaxy central velocity dispersion (Magorrian et al. 1998; Gebhardt et al. 2000; Ferrarese & Merritt 2000). We are also investigating if this relation and the Fundamental Plane (Djorgovski & Davis 1987; Dressler et al. 1987) are preserved during mergers.

  4. Search for gravitational waves from binary black hole inspiral, merger, and ringdown

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2011-06-01

    We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.

  5. Searching for numerically simulated signals from black-hole binaries with a phenomenological template family

    NASA Astrophysics Data System (ADS)

    Santamaría, Lucía; Krishnan, Badri; Whelan, John T.

    2009-06-01

    Recent progress in numerical relativity now allows computation of the binary black-hole merger, whereas post-Newtonian and perturbative techniques can be used to model the inspiral and ringdown phases. So far, most gravitational-wave searches have made use of various post-Newtonian-inspired templates to search for signals arising from the coalescence of compact binary objects. Ajith et al have produced hybrid waveforms for non-spinning binary black-hole systems which include the three stages of the coalescence process, and constructed from them phenomenological templates which capture the features of these waveforms in a parametrized form. As a first step towards extending the present inspiral searches to higher-mass binary black-hole systems, we have used these phenomenological waveforms in a search for numerically simulated signals injected into synthetic LIGO data as part of the NINJA project.

  6. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate.

    PubMed

    D'Orazio, Daniel J; Haiman, Zoltán; Schiminovich, David

    2015-09-17

    Because most large galaxies contain a central black hole, and galaxies often merge, black-hole binaries are expected to be common in galactic nuclei. Although they cannot be imaged, periodicities in the light curves of quasars have been interpreted as evidence for binaries, most recently in PG 1302-102, which has a short rest-frame optical period of four years (ref. 6). If the orbital period of the black-hole binary matches this value, then for the range of estimated black-hole masses, the components would be separated by 0.007-0.017 parsecs, implying relativistic orbital speeds. There has been much debate over whether black-hole orbits could be smaller than one parsec (ref. 7). Here we report that the amplitude and the sinusoid-like shape of the variability of the light curve of PG 1302-102 can be fitted by relativistic Doppler boosting of emission from a compact, steadily accreting, unequal-mass binary. We predict that brightness variations in the ultraviolet light curve track those in the optical, but with a two to three times larger amplitude. This prediction is relatively insensitive to the details of the emission process, and is consistent with archival ultraviolet data. Follow-up ultraviolet and optical observations in the next few years can further test this prediction and confirm the existence of a binary black hole in the relativistic regime.

  7. eLISA eccentricity measurements as tracers of binary black hole formation

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine; Sesana, Alberto

    2016-09-01

    Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO and Virgo band within 10 yr, allowing for multiband gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities e0˜10-3-10-1 at the frequencies f0=10-2 Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate that eLISA should always be able to detect a nonzero e0 whenever e0≳10-2; if e0˜10-3, eLISA should detect nonzero eccentricity for a fraction ˜90 % (˜25 %) of binaries when the observation time is Tobs=5 (2) yr, respectively. Therefore eLISA observations of black hole binaries have the potential to distinguish between field and cluster formation scenarios.

  8. Topics in general relativity: Binary black holes and hyperbolic formulations of Einstein's equations

    NASA Astrophysics Data System (ADS)

    Alvi, Kashif

    2002-09-01

    This thesis consists of three projects in general relativity on topics related to binary black holes and the gravitational waves they emit. The first project involves calculating a four-metric that is an approximate solution to Einstein's equations representing two widely separated nonrotating black holes in a circular orbit. This metric is constructed by matching a post-Newtonian metric to two tidally distorted Schwarzschild metrics using the framework of matched asymptotic expansions. The four-metric presented here provides physically realistic initial data that are tied to the binary's inspiral phase and can be evolved numerically to determine the gravitational wave output during the late stages of inspiral as well as the merger. The second project is on the tidal interaction of binary black holes during the inspiral phase. The holes' tidal distortion results in the flow of energy and angular momentum into or out of the holes in a process analogous to Newtonian tidal friction in a planet-moon system. The changes in the black holes' masses, spins, and horizon areas during inspiral are calculated for a circular binary with holes of possibly comparable masses. The absorption or emission of energy and angular momentum by the holes is shown to have a negligible influence on the binary's orbital evolution when the holes have comparable masses. The tidal-interaction analysis presented in this thesis is applicable to a black hole in a binary with any companion body (e.g., a neutron star) that is well separated from the hole. The final project is on first-order hyperbolic formulations of Einstein's equations, which are promising as a basis for numerical simulation of binary black holes. This thesis presents two first-order symmetrizable hyperbolic systems that include the lapse and shift as dynamical fields and have only physical characteristic speeds. The first system may be useful in numerical work; the second system allows one to show that any solution to Einstein

  9. Energetics and phasing of nonprecessing spinning coalescing black hole binaries

    NASA Astrophysics Data System (ADS)

    Nagar, Alessandro; Damour, Thibault; Reisswig, Christian; Pollney, Denis

    2016-02-01

    We present an improved numerical relativity (NR) calibration of the new effective-one-body (EOB) model for coalescing nonprecessing spinning black hole binaries recently introduced by Damour and Nagar [Phys. Rev. D 90, 044018 (2014), 10.1103/PhysRevD.90.044018]. We do so by comparing the EOB predictions to both the phasing and the energetics provided by two independent sets of NR data covering mass ratios 1 ≤q ≤9.989 and dimensionless spin range -0.95 ≤χ ≤+0.994 . One set of data is a subset of the Simulating eXtreme Spacetimes (SXS) catalog of public waveforms; the other set consists of new simulations obtained with the Llama code plus Cauchy characteristic evolution. We present the first systematic computation of the gauge-invariant relation between the binding energy and the total angular momentum, Eb(j ), for a large sample of, spin-aligned, SXS and Llama data. The dynamics of the EOB model presented here involves only two free functional parameters, one [a6c(ν )] entering the nonspinning sector, as a 5PN effective correction to the interaction potential, and one [c3(a˜1,a˜2,ν )] in the spinning sector, as an effective next-to-next-to-next-to-leading order correction to the spin-orbit coupling. These parameters are determined [together with a third functional parameter Δ tNQC(χ ) entering the waveform] by comparing the EOB phasing with the SXS phasing, the consistency of the energetics being checked afterwards. The quality of the analytical model for gravitational wave data analysis purposes is assessed by computing the EOB/NR faithfulness. Over the NR data sample and when varying the total mass between 20 and 200 M⊙ the EOB/NR unfaithfulness (integrated over the NR frequency range) is found to vary between 99.493% and 99.984% with a median value of 99.944%.

  10. High-ionization accretion signatures in compact binary candidates from SOAR Telescope observations

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Rodrigues, C. V.; Cieslinski, D.; Jablonski, F.; Silva, K. M. G.; Almeida, L. A.

    2014-10-01

    The increasing number of synoptic surveys made by small robotic telescopes, like the photometric Catalina Real-Time Transient Survey (CRTS - Drake et al., 2009, ApJ, 696, 870), represents a unique opportunity for the discovery of new variable objects and also to improve the samples of many classes of variables. Our goal in this work was the discovery of new polars, a subclass of magnetic Cataclysmic Variables (mCVs) with no accretion disk, and Close Binary Supersoft X-ray Sources (CBSS), strong candidates to Type Ia Supernova progenitors. Both are rare objects and probe interesting accretion scenarios. Finding spectral features associated to high-ionization mass accretion constrains the CBSS or magnetic CV nature for the candidates, expanding the hitherto small samples of these classes (specially CBSS) and allowing for detailed observational follow-up. We used the Goodman Spectrograph on SOAR 4.1 m Telescope to search for signatures of high-ionization mass accretion, as He II 468,6 nm emission line and inverted Balmer decrement, on 39 variable objects selected mostly from CRTS. In this sample we found 14 strong candidates to mCVs, 1 Nova in the final stages of eruption, 14 candidates to Dwarf Novae, 5 extragalactic sources (AGN), 1 object previously identified as a Black Hole Nova, 3 objects with pure absorption spectral features and 1 unidentified object with low S/N ratio. The mCVs candidates found in this work will be studied using time-resolved spectroscopic, polarimetric, and photometric observations in a follow-up project.

  11. Spin Precessing Black Hole Binaries in Dynamical Chern-Simons Gravity

    NASA Astrophysics Data System (ADS)

    Loutrel, Nicholas; Yunes, Nicolas; Tanaka, Takahiro

    2017-01-01

    Spinning black holes in binary systems under go spin precession, as well as precession of the orbital plane, as a result of the coupling between the black hole spins and the orbital angular momentum. This effect introduces an observable modulation in the amplitude of the gravitational waves emitted by the binary. In dynamical Chern-Simons gravity, spinning black holes are modified from General Relativity through the presence of a scalar dipole moment, which is proportional to the spin of the black hole. Such additional degrees of freedom modify the spin precession equations, and thus the observable modulation of the gravitational waves. In this talk, I will discuss how to approach the spin precession of black holes in dynamical Chern-Simons gravity from an effective field theory perspective and discuss how the modulation of gravitational waves differs from General Relativity. Supported by NSF EAPSI Fellowship Award No. 1614203 and NSF CAREER Grant PHY-1250636.

  12. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    SciTech Connect

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-07-10

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  13. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE

    SciTech Connect

    Ju, Wenhua; Greene, Jenny E.; Rafikov, Roman R.; Bickerton, Steven J.; Badenes, Carles

    2013-11-01

    Supermassive black hole (SMBH) binaries are expected in a ΛCDM cosmology given that most (if not all) massive galaxies contain a massive black hole (BH) at their center. So far, however, direct evidence for such binaries has been elusive. We use cross-correlation to search for temporal velocity shifts in the Mg II broad emission lines of 0.36 < z < 2 quasars with multiple observations in the Sloan Digital Sky Survey. For ∼10{sup 9} M{sub ☉} BHs in SMBH binaries, we are sensitive to velocity drifts for binary separations of ∼0.1 pc with orbital periods of ∼100 yr. We find seven candidate sub-parsec-scale binaries with velocity shifts >3.4σ ∼ 280 km s{sup –1}, where σ is our systematic error. Comparing the detectability of SMBH binaries with the number of candidates (N ≤ 7), we can rule out that most 10{sup 9} M{sub ☉} BHs exist in ∼0.03-0.2 pc scale binaries, in a scenario where binaries stall at sub-parsec scales for a Hubble time. We further constrain that ≤16% (one-third) of quasars host SMBH binaries after considering gas-assisted sub-parsec evolution of SMBH binaries, although this result is very sensitive to the assumed size of the broad line region. We estimate the detectability of SMBH binaries with ongoing or next-generation surveys (e.g., Baryon Oscillation Spectroscopic Survey, Subaru Prime Focus Spectrograph), taking into account the evolution of the sub-parsec binary in circumbinary gas disks. These future observations will provide longer time baselines for searches similar to ours and may in turn constrain the evolutionary scenarios of SMBH binaries.

  14. Detection of radial velocity shifts due to black hole binaries near merger

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.

    2015-09-01

    The barycenter of a massive black hole binary will lie outside the event horizon of the primary black hole for modest values of mass ratio and binary separation. Analogous to radial velocity shifts in stellar emission lines caused by the tug of planets, the radial velocity of the primary black hole around the barycenter can leave a tell-tale oscillation in the broad component of FeKα emission from accreting gas. Near-future X-ray telescopes such as Astro-H and Athena will have the energy resolution (δE/E ≲ 10-3) to search nearby active galactic nuclei (AGN) for the presence of binaries with mass ratios q ≳ 0.01, separated by several hundred gravitational radii. The general-relativistic and Lense-Thirring precession of the periapse of the secondary orbit imprints a detectable modulation on the oscillations. The lowest mass binaries in AGN will oscillate many times within typical X-ray exposures, leading to a broadening of the line wings and an overestimate of black hole spin in these sources. Detection of periodic oscillations in the AGN line centroid energy will reveal a massive black hole binary close to merger and will provide an early warning of gravitational radiation emission.

  15. Do floating orbits in extreme mass ratio binary black holes exist?

    NASA Astrophysics Data System (ADS)

    Kapadia, Shasvath J.; Kennefick, Daniel; Glampedakis, Kostas

    2013-02-01

    This paper examines the possibility of floating or nondecaying orbits for extreme mass ratio binary black holes. In the adiabatic approximation, valid in the extreme mass ratio case, if the orbital flux lost due to gravitational radiation reaction is compensated for by the orbital flux gained from the spins of the black holes via superradiant scattering (or, equivalently, tidal acceleration), the orbital decay would be stalled, causing the binary to “float.” We show that this flux balance is not, in practice, possible for extreme mass ratio binary black holes with circular equatorial orbits; furthermore, adding eccentricity and inclination to the orbits will not significantly change this null result, thus ruling out the possibility of floating orbits for extreme mass ratio binary black holes. We also argue that binaries consisting of material bodies dense and massive enough to generate gravitational waves detectable by any kind of gravitational wave detector are also unlikely to float. Using a multipolar analysis, we show that a non-Kerr spacetime which could produce a floating orbit (given the same amount of tidal acceleration as in the case of a Kerr black hole) would need to be a rapidly rotating prolate spheroid, which would be an exotic object indeed.

  16. The formation and gravitational-wave detection of massive stellar black hole binaries

    SciTech Connect

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  17. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  18. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2010-03-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z > 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts. This research is supported in part by NASA grant 06-BEFS06-19 to Goddard Space Flight Center.

  19. Filling the disk hollow following binary black hole merger: The transient accretion afterglow

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart L.

    2010-01-01

    Tidal torques from a binary black hole empty out the central regions in any circumbinary gaseous accretion disk. The balance between tidal torques and viscosity maintain the inner edge of the disk at a radius r˜1.5a-2a, where a is the binary semimajor axis. Eventually, the inspiraling binary decouples from the disk and merges, leaving behind a central hollow ("donut hole") in the disk orbiting the remnant black hole. We present a simple, time-dependent, Newtonian calculation that follows the secular (viscous) evolution of the disk as it fills up the hollow down to the black hole innermost stable circular orbit and then relaxes to stationary equilibrium. We use our model to calculate the electromagnetic radiation ("afterglow") spectrum emitted during this transient accretion epoch. Observing the temporal increase in the total electromagnetic flux and the hardening of the spectrum as the donut hole fills may help confirm a binary black hole merger detected by a gravitational wave interferometer. We show how the very existence of the initial hollow can lead to super-Eddington accretion during this secular phase if the rate is not very far below Eddington prior to decoupling. Our model, though highly idealized, may be useful in establishing some of the key parameters, thermal emission features and scalings that characterize this transient. It can serve as a guide in the design and calibration of future radiation-magnetohydrodynamic simulations in general relativity.

  20. A VERY CLOSE BINARY BLACK HOLE IN A GIANT ELLIPTICAL GALAXY 3C 66B AND ITS BLACK HOLE MERGER

    SciTech Connect

    Iguchi, Satoru; Okuda, Takeshi; Sudou, Hiroshi E-mail: okuda@a.phys.nagoya-u.ac.j

    2010-12-01

    Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of 93 {+-} 1 days from the 3 mm monitor observations of a giant elliptical galaxy 3C 66B for which an orbital motion with a period of 1.05 {+-} 0.03 yr had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has a binary orbit with an orbital period of 1.05 {+-} 0.03 yr, an orbital radius of (3.9 {+-} 1.0) x 10{sup -3} pc, an orbital separation of (6.1{sup +1.0} {sub -0.9}) x 10{sup -3} pc, a larger black hole mass of (1.2{sup +0.5} {sub -0.2}) x 10{sup 9} M {sub sun}, and a smaller black hole mass of (7.0{sup +4.7} {sub -6.4}) x 10{sup 8} M {sub sun}. The BBH decay time of (5.1{sup +60.5} {sub -2.5}) x 10{sup 2} yr provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.

  1. The Astrophysical Signatures of Black Holes: The Horizon, The ISCO, The Ergosphere and The Light Circle

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.

    Three advanced instruments planned for a near future ( LOFT, GRAVITY, THE EVENT HORIZON TELESCOPE) provide unprecedented angular and time resolutions, which allow to probe regions in the immediate vicinity of black holes. We may soon be able to search for the signatures of the super-strong gravity that is characteristic to black holes: the event horizon, the ergosphere, the innermost stable circular orbit (ISCO), and the photon circle. This review discusses a few fundamental problems concerning these theoretical concepts.

  2. Supermassive recoil velocities for binary black-hole mergers with antialigned spins.

    PubMed

    González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha

    2007-06-08

    Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies.

  3. Testing general relativity with black-hole binary observations: results and prospects

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele

    2017-01-01

    The first two LIGO-Virgo detections of gravitational waves from binary black-hole inspirals offered the first opportunity to test gravitation in its strong-field, relativistic-motion, and radiative sector. The initial tests reported in PRL 116 (2016) probed consistency with the predictions of general relativity, to moderate precision. The space-based observatory LISA will observe black-hole binary signals with much larger SNRs, allowing for even more precise tests. Last, the detection of a binary black-hole stochastic background with pulsar-timing arrays will offer more constraints on the speed and polarizations of gravitational waves. I review these results and examine synergies across the gravitational-wave spectrum. I discuss the main challenges and opportunities from the viewpoint of data analysis, and outline prospects for making contact with current alternative theories of gravitation, in particular those motivated by models of dark energy.

  4. Anisotropic mass ejection from black hole-neutron star binaries: Diversity of electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2013-08-01

    The merger of black hole-neutron star binaries can eject substantial material with the mass ˜0.01-0.1M⊙ when the neutron star is disrupted prior to the merger. The ejecta shows significant anisotropy, and travels in a particular direction with the bulk velocity ˜0.2c. This is drastically different from the binary neutron star merger, for which ejecta is nearly isotropic. Anisotropic ejecta brings electromagnetic-counterpart diversity which is unique to black hole-neutron star binaries, such as viewing-angle dependence, polarization, and proper motion. The kick velocity of the black hole, gravitational-wave memory emission, and cosmic-ray acceleration are also discussed.

  5. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  6. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  7. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  8. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  9. Progress on realistic modeling of black hole-neutron star binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2011-04-01

    Black hole-neutron star (BHNS) binary mergers are important gravitational wave sources and (possibly) gamma ray burst progenitors. The current state of the art of BHNS simulations, while an impressive acheivement, is inadequate in a number of ways--most importantly in its treatment of neutron star matter and neutrino emission. We present a status report on the efforts of the Caltech-Cornell-CITA-WSU collaboration to accurately model BHNS binaries with realistic microphysics.

  10. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  11. The Black Hole X-ray Binary Population of M51 as seen by Chandra

    NASA Astrophysics Data System (ADS)

    Kilgard, Roy E.; Dorn-Wallenstein, Trevor; Kuntz, K. D.; Desjardins, Tyler D.

    2014-06-01

    We present an analysis of the black hole X-ray binary population of the interacting galaxy system M51 from new and archival observations by the Chandra X-ray Observatory with total exposure time of nearly 1 Ms. This dataset allows us to probe spectral and temporal variability of the X-ray source population on timescales ranging from tens of seconds to years. We examine both the ultraluminous X-ray source (ULX) population, which likely consists of black hole binaries based solely on luminosity, and the less luminous binaries that show evidence for harboring black holes. We further examine the environments of these sources within the host galaxy using new and archival Hubble Space Telescope observations to determine the probable mass donor stars in the system. We also present initial results from an effort to study the interaction of the luminous X-ray binaries with the interstellar medium of M51. This sample includes all of the historical ULXs as well as a new transient ULX which is a probable black hole low mass X-ray binary.

  12. Formation of close binary black holes merging due to gravitational-wave radiation

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Cherepashchuk, A. M.

    2017-10-01

    The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30-100 M ⊙. The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a "kick"—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.

  13. Patterns of disc-jet-wind coupling in black hole binaries

    NASA Astrophysics Data System (ADS)

    Fender, R.

    2015-07-01

    In this talk I will present the current state of the art in our understanding of the connection between accretion state and feedback in black hole X-ray binaries. In particular I will discuss how the X-ray accretion states, defined by their spectral and temporal properties, relate to phases of the production of relativistic (radio) jets and accretion disc winds. I will furthermore discuss how these patterns of behaviour contribute to the overall kinetic and radiative feedback during an outburst, and how comparable they may be to similar behaviour in neutron star X-ray binaries and supermassive black holes in active galactic nuclei.

  14. Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Vaughan, Brian A.

    1998-01-01

    This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.

  15. Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Vaughan, Brian A.

    1998-01-01

    This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.

  16. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  17. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

    PubMed

    Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S

    2017-04-14

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.

  18. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Harry, Ian

    2014-03-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral.

  19. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; Evans, M.; Christensen, N.; Katsavounidis, E.; Sathyaprakash, B.; Vitale, S.

    2017-04-01

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of ΩGW≃10-13 after 5 years of observation.

  20. Featured Image: Mini-Disks in a Black-Hole Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    This image shows a snapshot from a simulation of a relativistic binary black hole system. A recent study led by Dennis Bowen (Rochester Institute of Technology) presents the first exploration of gas dynamics in relativistic binary black hole systems in which each black hole is surrounded by its own small accretion disk. Bowen and collaborators use their 2D hydrodynamical simulations to explore how gas is passed back and forth between the two mini-disks as the black holes orbit each other. They also examine what kind of distinctive observable signals might be caused by this sloshing and by tidally driven spiral waves in the disks. To read more about their outcomes, check out the article below!CitationDennis B. Bowen et al 2017 ApJ 838 42. doi:10.3847/1538-4357/aa63f3

  1. PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Kesden, Michael

    2016-11-01

    PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

  2. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    NASA Astrophysics Data System (ADS)

    González Hernández, J. I.; Suárez-Andrés, L.; Rebolo, R.; Casares, J.

    2017-02-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2-m VLT telescope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of dot{P}=-20.7± 12.7 ms yr-1 (-24.5 ± 15.1 μs per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  3. A SYSTEMATIC SEARCH FOR MASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE

    SciTech Connect

    Tsalmantza, P.; Decarli, R.; Hogg, David W.; Dotti, M. E-mail: decarli@mpia.de

    2011-09-01

    We present the results of a systematic search for massive black hole binaries in the Sloan Digital Sky Survey (SDSS) spectroscopic database. We focus on bound binaries, under the assumption that one of the black holes is active. In this framework, the broad lines associated with the accreting black hole are expected to show systematic velocity shifts with respect to the narrow lines, which trace the rest frame of the galaxy. For a sample of 54,586 quasars and 3929 galaxies at redshifts 0.1 < z < 1.5, we brute-force model each spectrum as a mixture of two quasars at two different redshifts. The spectral model is a data-driven dimensionality reduction of the SDSS quasar spectra based on a matrix factorization. We identified 32 objects with peculiar spectra. Nine of them can be interpreted as black hole binaries. This doubles the number of known black hole binary candidates. We also report on the discovery of a new class of extreme double-peaked emitters with exceptionally broad and faint Balmer lines. For all the interesting sources, we present detailed analysis of the spectra and discuss possible interpretations.

  4. Remnant of binary black-hole mergers: New simulations and peak luminosity studies

    NASA Astrophysics Data System (ADS)

    Healy, James; Lousto, Carlos O.

    2017-01-01

    We present the results of 61 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /3 ≤q ≤1 and individual spins covering the parameter space -0.85 ≤α1 ,2≤0.85 . We additionally perform ten new simulations of nonspinning black hole binaries with mass ratios covering the range 1 /6 ≤q <1 . We follow the evolution for typically the last ten orbits before merger down to the formation of the final remnant black hole. This allows for assessment of the accuracy of our previous empirical formulas for relating the binary parameters to the remnant final black hole mass, spin and recoil. We use the new simulation to improve the fit to the above remnant formulas and add a formula for the peak luminosity of gravitational waves, produced around the merger of the two horizons into one. We find excellent agreement (typical errors ˜0.1 %- 0.2 % ) for the mass and spin, and within ˜5 % for the recoil and peak luminosity. These formulas have direct application to parameter estimation techniques applied to LIGO observations of gravitational waves from binary black hole mergers.

  5. Discriminating Formation Channels of Binary Black Hole Systems with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Rodriguez, Carl; Pankow, Chris; Kalogera, Vicky; Rasio, Fred

    2017-01-01

    The field of gravitational-wave astronomy has been initiated by the recent observations of binary black hole mergers. These observations illuminate objects that are inaccessible with electromagnetic telescopes, and open inquiries as to how heavy binary black hole systems form and merge. Two possible formation channels proposed for such systems are isolated binary evolution in galactic fields and dynamical formation in star clusters. Currently, the coarse localization of these gravitational-wave events cannot indicate the environment in which the binary formed, and the mass distributions and merger rates from simulations of the aforementioned formation channels do not have an appreciable difference. However, the component spins of the black holes have the potential to unveil the formation history of the system. In this talk, I will discuss how to match measurements of the black hole component spin alignment with the projected spin distributions produced by population synthesis simulations. Using this framework we will link the estimated black hole spin to the formation channel of a merger, thus leading to a more detailed picture of their environments and origins.

  6. Discriminating Formation Channels of Binary Black Hole Systems with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Rodriguez, Carl L.; Pankow, Chris; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The field of gravitational-wave astronomy has been initiated by the recent observations of binary black hole mergers. These observations illuminate objects that are inaccessible with electromagnetic telescopes, and open inquiries as to how binary black hole systems form and merge. Two possible formation channels proposed for such systems are isolated binary evolution in the galactic field and dynamical formation in star clusters. Currently, the coarse localization of these gravitational-wave events cannot indicate the environment in which the binary formed, and simulations find that the mass distributions and merger rates of the aforementioned formation channels do not have an appreciable difference. However, the component spins of the black holes have the potential to unveil the formation history of the system. In this talk, I will discuss how to match measurements of the black hole component spin alignment with the spin distributions produced by population synthesis simulations of the galactic field and star clusters. Using this framework, we will link black hole spin measurements to the formation channel of a merger, thus leading to a more detailed picture of their environments and origins.

  7. Signatures of Nonlinear Waves in Coronal Plumes and Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    1999-01-01

    In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.

  8. Developments in Analytic Calculations for Binary Black Holes with Arbitrarily Aligned Spins

    NASA Astrophysics Data System (ADS)

    Ireland, Brennan; West, Eric; Nakano, Hiroyuki; Campanelli, Manuela

    2017-01-01

    We discuss a series of new developments to the analytic modeling of a dynamic binary black hole spacetime in the relativistic inspiral regime. This work extends to include misaligned spins of the two black holes. We explore various ways to improve the efficiency of these calculations that generalizes the spacetime to include arbitrary spins. We also present a new code for evolving generic orbits with precession in a PN framework. We speculate on the astrophysical and relativistic applications this work will have.

  9. Constraining the formation of black holes in short-period black hole low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Repetto, Serena; Nelemans, Gijs

    2015-11-01

    The formation of stellar-mass black holes (BHs) is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova (SN) event (if any) and the magnitude of the natal kick (NK) the BH receives at birth (if any). Repetto et al., studying the position of Galactic X-ray binaries containing BHs, found evidence for BHs receiving high NKs at birth. In this paper, we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period BH X-ray binaries that we use are compact binaries consisting of a low-mass star orbiting a BH in a period less than 1 d. We trace their binary evolution backwards in time, from the current observed state of mass transfer, to the moment the BH was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no NK, just mass ejection, while for two systems (and possibly more) a high kick is required. So unless the latter have an alternative formation, such as within a globular cluster, we conclude that at least some BHs get high kicks. This challenges the standard picture that BH kicks would be scaled down from neutron star kicks. Furthermore, we find that five systems could have formed with a non-zero NK but zero mass ejected (i.e. no SN) at formation, as predicted by neutrino-driven NKs.

  10. Measuring Parameters of Massive Black Hole Binaries with Partially-Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2010-01-01

    It is important to understand how well the gravitational-wave observatory LISA can measure parameters of massive black hole binaries. It has been shown that including spin precession in the waveform breaks degeneracies and produces smaller expected parameter errors than a simpler, precession-free analysis. However, recent work has shown that gas in binaries can partially align the spins with the orbital angular momentum, thus reducing the precession effect. We show how this degrades the earlier results, producing more pessimistic errors in gaseous mergers. However, we then add higher harmonics to the signal model; these also break degeneracies, but they are not affected by the presence of gas. The harmonics often restore the errors in partially-aligned binaries to the same as, or better than/ those that are obtained for fully precessing binaries with no harmonics. Finally, we investigate what LISA measurements of spin alignment can tell us about the nature of gas around a binary,

  11. Dynamical Friction and the Evolution of Supermassive Black Hole Binaries: The Final Hundred-parsec Problem

    NASA Astrophysics Data System (ADS)

    Dosopoulou, Fani; Antonini, Fabio

    2017-05-01

    The supermassive black holes originally in the nuclei of two merging galaxies will form a binary in the remnant core. The early evolution of the massive binary is driven by dynamical friction before the binary becomes “hard” and eventually reaches coalescence through gravitational-wave emission. We consider the dynamical friction evolution of massive binaries consisting of a secondary hole orbiting inside a stellar cusp dominated by a more massive central black hole. In our treatment, we include the frictional force from stars moving faster than the inspiralling object, which is neglected in the standard Chandrasekhar treatment. We show that the binary eccentricity increases if the stellar cusp density profile rises less steeply than ρ \\propto {r}-2. In cusps shallower than ρ \\propto {r}-1, the frictional timescale can become very long due to the deficit of stars moving slower than the massive body. Although including fast stars increases the decay rate, low mass-ratio binaries (q≲ {10}-3) in sufficiently massive galaxies have decay timescales longer than one Hubble time. During such minor mergers, the secondary hole stalls on an eccentric orbit at a distance of order one-tenth the influence radius of the primary hole (i.e., ≈ 10{--}100 {pc} for massive ellipticals). We calculate the expected number of stalled satellites as a function of the host galaxy mass and show that the brightest cluster galaxies should have ≳ 1 of such satellites orbiting within their cores. Our results could provide an explanation for a number of observations, which include multiple nuclei in core ellipticals, off-center AGNs, and eccentric nuclear disks.

  12. Lyα Signatures from Direct Collapse Black Holes

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Gronke, Max; Sobral, David

    2016-06-01

    “Direct collapse black holes” (DCBHs) provide possible seeds for supermassive black holes that exist at z˜ 7. We study Lyα radiative transfer through simplified representations of the DCBH scenario. We find that gravitational heating of the collapsing cloud gives rise to a Lyα cooling luminosity of up to ˜ {10}38{({M}{{gas}}/{10}6{M}⊙ )}2 erg s-1. Photoionization by a central source boosts the Lyα luminosity to {L}α ˜ {10}43({M}{{BH}}/{10}6 {M}⊙ ) erg s-1, where {M}{{BH}} denotes the mass of the black hole powering this source. We predict that the width and velocity offsets of the Lyα spectral line range from a few tens to few thousands km s-1, depending sensitively on the evolutionary state of the cloud. We apply our predictions to observations of CR7, a luminous Lyα emitter at z˜ 7, which may be associated with a DCBH. If CR7 is powered by a black hole, then its Lyα flux requires that {M}{{BH}}\\gt {10}7 {M}⊙ , which exceeds the mass of DCBHs when they first form. The observed width of the Lyα spectrum favors the presence of only a low column density of hydrogen, {log}[{N}{HI}/{{{cm}}}-2]˜ 19{--}20. The shape of the Lyα spectrum indicates that this gas is outflowing. These requirements imply that if CR7 harbors a DCBH, then the physical conditions that enabled its formation have been mostly erased, which is in agreement with theoretical expectations. These constraints weaken if the observed Lyα emission represents the central peak of a more extended halo.

  13. Exact gravitational wave signatures from colliding extreme black holes

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Hadar, Shahar; Manton, Nicholas S.

    2017-09-01

    The low-energy dynamics of any system admitting a continuum of static configurations is approximated by slow motion in moduli (configuration) space. Here, following Ferrell and Eardley, this moduli space approximation is utilized to study collisions of two maximally charged Reissner-Nordström black holes of arbitrary masses, and to compute analytically the gravitational radiation generated by their scattering or coalescence. The motion remains slow even though the fields are strong, and the leading radiation is quadrupolar. A simple expression for the gravitational waveform is derived and compared at early and late times to expectations.

  14. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    PubMed

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  15. Stationary Black-Hole Binaries: A Non-existence Proof

    NASA Astrophysics Data System (ADS)

    Neugebauer, Gernot; Hennig, Jörg

    We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. Based on the solution of a boundary problem for disconnected (Killing) horizons and the resulting violation of characteristic black hole properties, we present a non-existence proof for the equilibrium configuration in question. From a mathematical point of view, this result is a further example for the efficiency of the inverse ("scattering") method in non-linear theories.

  16. GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE

    SciTech Connect

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin

    2013-12-20

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ≲ 0.1 yr{sup –1}.

  17. Gravitational Wave Signatures in Black Hole Forming Core Collapse

    NASA Astrophysics Data System (ADS)

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin

    2013-12-01

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates <~ 0.1 yr-1.

  18. X-ray variability in Galactic high-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    The stars of the night sky can to the naked eye appear to be steady and unchanging, apart from the twinkling created by air moving in the atmosphere. However, when viewed in X-rays, the sky is far from constant, with detectable changes occurring on very short timescales. Black hole X-ray binaries are strong sources of X-rays. These systems contain a star and a black hole in orbit around each other. As matter from the companion star is accreted by the black hole, large amounts of gravitational energy are released, giving rise to strong X-ray emission. The accretion flow close to a black hole is characterized by strong gravity, high-energy radiation and variability on timescales down to milliseconds. These systems allow us to probe physics under conditions we cannot recreate in a laboratory, and provide some of the strongest observational indications of the existence of black holes. Temporal analysis is a powerful diagnostic of the geometry and physical processes of this environment. The bulk of this thesis concerns studies of the rapid variability of perhaps the most well-known of all black hole binaries: Cygnus X-1. By tapping into the large amount of archival data available, a systematic study of the variability, in the form of the power spectrum, is conducted. The results show that timing studies can indeed give valuable information on the emission mechanisms and accretion geometry. Tying characteristic frequencies to effects predicted by general relativity directly gives information about the parameters of the compact object. Using these results, the past evolution of the binary system is studied. In addition, results from temporal analysis of the possible black hole binary Cygnus X-3 are presented. The study of X-ray variability covers timescales from years to seconds, and shows that while temporal analysis provides clues to this complex system, it does not provide immediate insight into the accretion geometry, or the nature of the compact object

  19. X-ray States of Black-Hole Binaries and Implications for the Mechanism of Steady Jets

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.

    RXTE and other high-energy observatories continue to probe the properties of stellar-size black holes and the physics of accretion using bright X-ray transients in the Galaxy. Progress has been made in recognizing that the three states of active accretion are related to different physical elements that may contribute radiation: the accretion disk, a jet, and a compact and radio-quiet corona. Each X-ray state offers potential applications for general relativity in the regime of strong gravity. The temporal evolution of X-ray states is displayed for a few representative black-hole systems. Radio investigations have shown conclusively that the hard X-ray state is associated with the presence of a steady radio jet. The three X-ray states can be synthesized with the “unified model for black hole binary jets” by Fender, Belloni, & Gallo (2004) to gain further insights into the disk:jet connection. The “jet line” appears to coincide with the hard limit of the SPL state. Furthermore there are broad power peaks in PDS that appear to be confined to intermediate and hard states where a jet is present. This suggests that broad power peaks exhibit temporal signatures of non-thermal processes that are related to the jet mechanism, rather than properties inherent to a standard accretion disk.

  20. Grazing Collision of Binary Black Holes II: From Merger Towards Ringdown

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2000-04-01

    One of the great challenges in gravitational physics is to simulate the collision of two black holes in order to study the resulting gravitational radiation. The Agave collaboration has successfully collided two spinning black holes in a grazing merger. The eventual goal of this work is to simulate the orbit, merger and ringdown stages of an astrophysical binary black hole system. The success of the grazing collision has proven to be strongly dependent on predicting the dynamics of the apparent horizons during the evolution. This is due to the fact that the region inside the apparent horizon containing the singularity is removed from the computational domain. Once the black holes have merged, one is left with a single black hole horizon. The spacetime is of a highly distorted black hole. We present results from simulations of the merged to ringdown stage in the life of a binary black hole collision. We show not only how crucial a role the dynamics of the apparent horizon plays in extending the lifetime of the simulation towards ringdown, but also the vital role the appropriate prescription of gauge conditions plays.

  1. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  2. Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During the five-year period, our study of "Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries" has been focused on the following aspects: observations, data analysis, Monte-Carlo simulations, numerical calculations, and theoretical modeling. Most of the results of our study have been published in refereed journals and conference presentations.

  3. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  4. Orbital period decay of compact black hole X-ray binaries: the influence of circumbinary disks?

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cong; Li, Xiang-Dong

    2015-11-01

    Context. Recently, compact black hole X-ray binaries XTE J 1118+480 and A0620-00 have been reported to be experiencing a fast orbital period decay, which is two orders of magnitude higher than expected with gravitational wave radiation. Magnetic braking of an Ap/Bp star has been suggested to account for the period change when the surface magnetic field of the companion star Bs ≳ 104 G. However, our calculation indicates that anomalous magnetic braking cannot significantly contribute to the large orbital period decay rates observed in these two sources even if Bs ≳ 104 G. Aims: Observations have provided evidence that circumbinary disks around two compact black hole X-ray binaries may exist. Our analysis shows that, for some reasonable parameters, tidal torque between the circumbinary disk and the binary can efficiently extract the orbital angular momentum from the binary, and result in a large orbital period change rate. Methods: Based on the circumbinary disk model, we simulate the evolution of XTE J 1118+480 via a stellar evolution code. Results: Our computations are approximatively in agreement with the observed data (the masses of two components, donor star radius, orbital period, and orbital period derivative). Conclusions: The mass transfer rate and circumbinary disk mass are obviously far greater than the inferred values from observations. Therefore, it seems that the circumbinary disk is unlikely to be the main cause of the rapid orbital decay observed in some compact black hole X-ray binaries.

  5. Detectability of gravitational waves from binary black holes: Impact of precession and higher modes

    NASA Astrophysics Data System (ADS)

    Calderón Bustillo, Juan; Laguna, Pablo; Shoemaker, Deirdre

    2017-05-01

    Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher-order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses M >200 M⊙ , we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio q ≥4 and M >100 M⊙, measured in the detector frame. For the highest precessing cases, this is true even when the source is face-on to the detector. Quantitatively, we show that the aforementioned omission can lead to fractional losses of sensitive volume of ˜15 %, reaching >25 % for the worst cases studied. Loss estimates are obtained by evaluating the effectualness of the SEOBNRv2-ROM double spin model, currently used in binary black hole searches, towards gravitational wave signals from precessing binaries computed by means of numerical relativity. We conclude that, for sources with q ≥4 , a reliable search for binary black holes heavier than M >100 M⊙ needs to consider the effects of higher-order modes and precession. The latter seems especially necessary when Advanced LIGO reaches its design sensitivity.

  6. On the simplest binary system of rotating black holes

    SciTech Connect

    Manko, V. S.; Rodchenko, E. D.; Sadovnikov, B. I.; Ruiz, E.

    2009-05-01

    Exact axisymmetric stationary solution of the Einstein equations describing a system of two counter-rotating identical Kerr black holes is worked out in a physical parametrization within the framework of the Ernst formalism and analytically extended double-Kerr solution. The derivation of the limiting case of extreme constituents is also discussed.

  7. Simulating a High-Spin Black Hole-Neutron Star Binary

    NASA Astrophysics Data System (ADS)

    Derby, John; Lovelace, Geoffrey; Duez, Matt; Foucart, Francois; Simulating Extreme Spacetimes (SXS) Collaboration

    2017-01-01

    During their first observing run (fall 2015) Advanced LIGO detected gravitational waves from merging black holes. In its future observations LIGO could detect black hole neutron star binaries (BHNS). It is important to have numerical simulations to predict these waves, to help find as many of these waves as possible and to estimate the sources properties, because at times near merger analytic approximations fail. Also, numerical models of the disk formed when the black hole tears apart the neutron star can help us learn about these systems' potential electromagnetic counterparts. One area of the parameter space for BHNS systems that is particularly challenging is simulations with high black hole spin. I will present results from a new BHNS simulation that has a black hole spin of 90% of the theoretical maximum. We are part of SXS but not all.

  8. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    SciTech Connect

    Mayer, L.; Kazantzidis, S.; Madau, P.; Colpi, M.; Quinn, T.; Wadsley, J.; /McMaster U.

    2008-03-24

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.

  9. Inspiral-merger-ringdown (2, 0) mode waveforms for aligned-spin black-hole binaries

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Han, Wen-Biao

    2016-08-01

    Based on spin weighted spherical harmonic decomposition, the (2,+/- 2) modes dominate the gravitational waveforms generated by binary black holes. Several recent works found that other modes including (l,0) ones are also important to gravitational wave data analysis. For aligned-spin binaries, these (l,0) modes are related to the memory effect of gravitational wave. Based on the post-Newtonian analysis, quasi-normal modes analysis and the results of numerical relativity simulations, we present a full inspiral-merger-ringdown gravitational waveform model for the (2,0) mode generated by binary black holes. Our model includes the quasinormal ringing part and includes the effect of a black hole’s spin. It is complementary to the previous results.

  10. Comparing direct and perturbative wave extraction from binary black hole merger simulation.

    NASA Astrophysics Data System (ADS)

    Imbiriba, B.; Baker, J.

    2005-12-01

    The existence of gravitational wave detectors like GEO, LIGO, or the proposed LISA will enable us to directly observe phenomena like binary black hole mergers. To correctly interpret the observations one need to use accurate waveform templates, which for these binary systems requires full non-linear evolution of Einsteins equations for its generation. In recent years, developments on numerical simulation of such systems enabled the direct extraction, through long lived full 3D numerical simulations, of waveforms of the gravitational radiation coming from black hole mergers. Complementary to this approach is the mixed "Einstein-Teukolsky" technique, which starts with the full numerical evolution of the binary system and then changes to a linear evolution of perturbations over a Kerr background. I'll review the key advantages and drawbacks of both approaches, their technical challenges, point the issues of introducing mesh refinement on the simulations, and compare the results on wave extraction obtained by these two methods.

  11. On similarity of binary black hole gravitational-wave skymaps: to observe or to wait?

    NASA Astrophysics Data System (ADS)

    Vitale, Salvatore; Essick, Reed; Katsavounidis, Erik; Klimenko, Sergey; Vedovato, Gabriele

    2017-03-01

    Localization estimates for GW150914, the first binary black hole detected by the LIGO instruments, were shared with partner facilities for electromagnetic follow-up. While the source was a compact binary coalescence (CBC), it was first identified by algorithms that search for unmodelled signals, which produced the skymaps that directed electromagnetic observations. Later on, CBC-specific algorithms produced refined versions, which showed significant differences. In this Letter, we show that those differences were not accidental and that CBC and unmodelled skymaps for binary black holes will frequently be different; we thus provide a way to determine whether to observe electromagnetically as promptly as possible (following a gravitational-wave detection), or to wait until CBC skymaps become available, should they not be available in low latency. We also show that, unsurprisingly, CBC algorithms can yield much smaller searched areas.

  12. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    PubMed

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.

  13. Shining Light on Quantum Gravity with Pulsar–Black hole Binaries

    NASA Astrophysics Data System (ADS)

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    2017-03-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar–black hole (PSR–BH) binaries provide ideal astrophysical systems for detecting the effects of quantum gravity. With the success of aLIGO and the advent of instruments like SKA and eLISA, the prospects for the discovery of such PSR–BH binaries are very promising. We argue that PSR–BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a black hole event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root mean square deviation of the arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a series of pulses traversing the near-horizon region, this model predicts an rms in pulse arrival times of ∼ 30 μ {{s}} for a 3{M}ȯ black hole, ∼ 0.3 {ms} for a 30{M}ȯ black hole, and ∼ 40 {{s}} for Sgr A*. The current precision of pulse time-of-arrival measurements is sufficient to discern these rms fluctuations. This work is intended to motivate observational searches for PSR–BH systems as a means of testing models of quantum gravity.

  14. Binary black hole mergers: astrophysics and implications for space-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Lang, Ryan

    2012-03-01

    Massive black holes (MBHs) can be found at the centers of nearly all galaxies. When galaxies merge, the black holes form a binary, which eventually coalesces due to the emission of gravitational waves. The final merger is a complicated process which can only be understood by numerically integrating Einstein's equations of general relativity. For many years, this was an impossible task; however, breakthroughs in 2005 and 2006 led to the first evolutions of binary black hole spacetimes through the merger process. Far from being esoteric results interesting only to hardcore relativists, these simulations have turned out to be very important for astrophysics. For example, if the gravitational waves are emitted asymmetrically, conservation of momentum implies that the resulting black hole will experience a recoil or ``kick.'' Numerical studies have shown that in some configurations, the kick can reach values as large as ˜5000 km/s. The simulations also allow the final spins of the black holes to be calculated. In the future, astrophysical information about coalescing MBH binaries will be obtained by directly measuring the gravitational waves with space-based detectors. In this case, the inclusion of accurate merger and ringdown waveforms into the signal model allows for significant improvement in measuring system parameters like mass, spin, and luminosity distance.

  15. Quasiequilibrium sequences of black-hole-neutron-star binaries in general relativity

    SciTech Connect

    Taniguchi, Keisuke; Faber, Joshua A.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2006-08-15

    We construct quasiequilibrium sequences of black-hole-neutron-star binaries for arbitrary mass ratios by solving the constraint equations of general relativity in the conformal thin-sandwich decomposition. We model the neutron star as a stationary polytrope satisfying the relativistic equations of hydrodynamics and account for the black hole by imposing equilibrium boundary conditions on the surface of an excised sphere (the apparent horizon). In this paper we focus on irrotational configurations, meaning that both the neutron star and the black hole are approximately nonspinning in an inertial frame. We present results for a binary with polytropic index n=1, mass ratio M{sub irr}{sup BH}/M{sub B}{sup NS}=5, and neutron star compaction M{sub ADM,0}{sup NS}/R{sub 0}=0.0879, where M{sub irr}{sup BH} is the irreducible mass of the black hole, M{sub B}{sup NS} the neutron star baryon rest mass, and M{sub ADM,0}{sup NS} and R{sub 0} the neutron star Arnowitt-Deser-Misner mass and areal radius in isolation, respectively. Our models represent valid solutions to Einstein's constraint equations and may therefore be employed as initial data for dynamical simulations of black-hole-neutron-star binaries.

  16. NuSTAR observations of black hole binary candidates in the Galactic Center and its environs

    NASA Astrophysics Data System (ADS)

    Hailey, Charles James; Mori, Kaya

    2017-08-01

    The recent discovery of a diffuse, hard X-ray emission in the central 10 pc (Perez et al. 2015) interpreted as magnetic cataclysmic variables (Hailey et al. 2017) leaves open the question of whether a sub-dominant population of sources could exist much closer to the supermassive black hole (SMBH), which NuSTAR could not resolve. Here we report the recent NuSTAR observations of two new transient hard X-ray sources within ~ 1 pc of the Galactic Center, which were discovered by Swift. These sources have no known counterparts at other energies. The spectral properties of these sources rule out NS-HMXBs. Continuous monitoring of the Galactic Center by Swift, combined with the known short (<~ 5 year) recurrence time of neutron star LMXBs, strongly suggest that these new transients are black hole binary candidates (BHC). We will present 3-79 keV NuSTAR spectra of these sources that further support a black hole binary interpretation. These new BHCs, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potential substantive black hole population in the vicinity of the SMBH, and we present an estimate of their numbers, given knowledge of the black hole binary giant outburst recurrence times. We also report recent results from the NuSTAR Galactic Legacy Survey of a larger region, ~ 0.7 square degrees, focusing on the search for more BHCs.

  17. Delayed outflows from black hole accretion tori following neutron star binary coalescence

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Metzger, Brian D.

    2013-10-01

    Expulsion of neutron-rich matter following the merger of neutron star binaries is crucial to the radioactively powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion discs formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modelled as a lightbulb that accounts for the disc geometry and moderate optical depth effects. Over several viscous times (˜1 s), a fraction of ˜10 per cent of the initial disc mass is ejected as a moderately neutron-rich wind (Ye ˜ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the properties of the outflow vary in time and direction, their mean values in the heavy-element production region are relatively robust to variations in the initial conditions of the disc and the magnitude of its viscosity. The outflow is sufficiently neutron-rich that most of the ejecta forms heavy r-process elements with mass number A ≳ 130, thus representing a new astrophysical source of r-process nucleosynthesis, distinct from that produced in the dynamical ejecta. Due to its moderately high entropy, disc outflows contain a small residual fraction ˜1 per cent of helium, which could produce a unique spectroscopic signature.

  18. Reducing spurious gravitational radiation in binary-black-hole simulations by using conformally curved initial data

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2009-06-01

    At early times in numerical evolutions of binary black holes, current simulations contain an initial burst of spurious gravitational radiation (also called 'junk radiation') which is not astrophysically realistic. The spurious radiation is a consequence of how the binary-black-hole initial data are constructed: the initial data are typically assumed to be conformally flat. In this paper, I adopt a curved conformal metric that is a superposition of two boosted, non-spinning black holes that are approximately 15 orbits from merger. I compare junk radiation of the superposed-boosted-Schwarzschild (SBS) initial data with the junk of corresponding conformally flat, maximally sliced (CFMS) initial data. The SBS junk is smaller in amplitude than the CFMS junk, with the junk's leading-order spectral modes typically being reduced by a factor of order 2 or more.

  19. Circularization and final spin in eccentric binary-black-hole inspirals

    SciTech Connect

    Hinder, Ian; Vaishnav, Birjoo; Herrmann, Frank; Shoemaker, Deirdre M.; Laguna, Pablo

    2008-04-15

    We present results from numerical relativity simulations of equal-mass, nonspinning binary-black-hole inspirals and mergers with initial eccentricities e{<=}0.8 and coordinate separations D{>=}12M of up to 9 orbits (18 gravitational wave cycles). We extract the mass M{sub f} and spin a{sub f} of the final black hole and find, for eccentricities e < or approx. 0.4, that a{sub f}/M{sub f}{approx_equal}0.69 and M{sub f}/M{sub adm}{approx_equal}0.96 are independent of the initial eccentricity, suggesting that the binary has circularized by the merger time. For e > or approx. 0.5, the black holes plunge rather than orbit, and we obtain a maximum spin parameter a{sub f}/M{sub f}{approx_equal}0.72 around e=0.5.

  20. Supermassive Black Hole Binary Evolution in Axisymmetric Galaxies: The Final Parsec Problem is Not a Problem

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter; Just, Andreas

    2013-08-01

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone—this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.

  1. SUPERMASSIVE BLACK HOLE BINARY EVOLUTION IN AXISYMMETRIC GALAXIES: THE FINAL PARSEC PROBLEM IS NOT A PROBLEM

    SciTech Connect

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter; Just, Andreas E-mail: just@ari.uni-heidelberg.de E-mail: k.holley@vanderbilt.edu

    2013-08-20

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone-this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.

  2. Detecting black-hole binary clustering via the second-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-07-01

    The first discovery of the gravitational-wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak-lensing measurements, finding that, with a 3 year observation, the >3 σ detection of a nonzero signal is possible if the BH merger rate today is n˙ 0≳100 Gpc-3 yr-1 and the clustering bias of BH binaries is bBH ,0≳1.5 .

  3. Searches for gravitational waves from binary black hole coalescences with ground-based laser interferometers across a wide parameter space

    NASA Astrophysics Data System (ADS)

    Ray Pitambar Mohapatra, Satyanarayan

    This is an exciting time for Gravitational Wave (GW) theory and observations. From a theoretical standpoint, the grand-challenge problem of the full evolution of a Binary Black Hole (BBH) system has been solved numerically, and a variety of source simulations are made available steadfastly. On the observational side, the first generation of state-of-the-art GW detectors, LIGO and Virgo, have achieved their design goal, collected data and provided astrophysically meaningful limits. The second generation of detectors are expected to start running by 2015. Inspired by this zeitgeist, this thesis focuses on the detection of potential GW signatures from the coalescence of BBH in ground-based laser interferometers. The LIGO Scientific Collaboration has implemented different algorithms to search for transient GW signatures, targeting different portions of the BBH coalescence waveform. This thesis has used the existing algorithms to study the detection potential of GW from colliding BBH in LIGO in a wide range of source parameters, such as mass and spin of the black holes, using a sample of data from the last two months of the S5 LIGO science run (14 Aug 2007 to 30 Sept 2007). This thesis also uses numerical relativity waveforms made available via the Numerical INJection Analysis project (NINJA). Methods such as the Chirplet based analysis and the use of multivariate classifiers to optimize burst search algorithms have been introduced in this thesis. These performance studies over a wide parameter space were designed to optimize the discovery potential of ground-based GW detectors and defining strategies for the search of BBH signatures in advanced LIGO data, as a step towards the realization of GW astronomy.

  4. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  5. High-Resolution Observations of a Binary Black Hole Candidate

    NASA Astrophysics Data System (ADS)

    Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Bietenholz, Michael; Emonts, Bjorn; Cluver, Michelle; Oozeer, Nadeem; de Witt, Aletha; Stern, Daniel; Assef, Roberto

    2013-10-01

    We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet understanding the process of supermassive black hole growth is vital for understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift, will allow us to investigate the SMBH merger scenario hypothesis.

  6. A close-pair binary in a distant triple supermassive black hole system.

    PubMed

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  7. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE-NEUTRON-STAR BINARIES

    SciTech Connect

    McWilliams, Sean T.; Levin, Janna

    2011-12-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  8. Science Advancements for Black Hole Binaries from Observations with NICER

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald A.; Steiner, James F.; Miller, Jon M.; Homan, Jeroen; Eikenberry, Stephen S.; Kara, Erin; Pasham, Dheeraj; Uttley, Phil; Nicer Science Team

    2017-01-01

    The Neutron Star Interior Composiiton Explorer (NICER; 2017 launch) will advance investigations of black-hole physical properties and accretion physics in strong gravity, which are research themes that flourished during the RXTE era (1996-2012). One of the primary differences between NICER/XTI and RXTE/PCA Instruments is the energy response (0.2-12 keV vs 3-45 keV), with NICER affording a much more direct view of the inner accretion disk, where the maximum temperatures vary in the range 0.2-2 keV. In addition, NICER provides superior spectral resolution (140 eV at Fe K-alpha), superior time resolution (100 ns accuracy), lower background (by factor of 100), and full flexibility for data analyses (with complete information for each photon event). Finally the count rate from NICER's 56 cameras usually exceeds the count rates from RXTE (3 PCUs), except for sources obscured by very high levels of ISM column density (log Nh > 22).Simulations are shown to support the following expectations for advancement: (1) comprehensive measures of the effective radius and temperature of the inner disk during black hole hard states and transitions; (2) visibility of the disk spectrum to constrain (as seed photons) Comptonization models to infer the properties of the corona(3) derivation of black hole spin via simultaneous use of the disk continuum and Fe line profile; (4) investigations of both high- and low-freqency QPOs in an energy range that samples both disk and corona; (5) partnerships with NuSTAR and ASTROSAT to use reflection spectra/timing to study the disk/corona geometry and interplay in different X-ray states.

  9. A massive binary black-hole system in OJ 287 and a test of general relativity.

    PubMed

    Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S

    2008-04-17

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later.

  10. On the equal-mass limit of precessing black-hole binaries

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Sperhake, Ulrich; Vošmera, Jakub

    2017-03-01

    We analyze the inspiral dynamics of equal-mass precessing black-hole binaries using multi-timescale techniques. The orbit-averaged post-Newtonian evolutionary equations admit two constants of motion in the equal-mass limit, namely the magnitude of the total spin S and the effective spin ξ. This feature makes the entire dynamics qualitatively different compared to the generic unequal-mass case, where only ξ is constant while the variable S parametrizes the precession dynamics. For fixed individual masses and spin magnitudes, an equal-mass black-hole inspiral is uniquely characterized by the two parameters ≤ft(S,ξ \\right) : these two numbers completely determine the entire evolution under the effect of radiation reaction. In particular, for equal-mass binaries we find that (i) the black-hole binary spin morphology is constant throughout the inspiral, and that (ii) the precessional motion of the two black-hole spins about the total spin takes place on a longer timescale than the precession of the total spin and the orbital plane about the total angular momentum.

  11. Gravitational Waves from Coalescing Super Massive Black Hole Binaries in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood

    2012-07-01

    Galaxy centers are residing places for Super Massive Black Holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves for the Laser Interferometer Space Antenna (LISA). But as is the case for virtually all potential LISA sources, the event rate is poorly known, with estimates ranging from a few to to a few thousand events per year. In spherical galaxy models, SMBH binaries stall at a separation of approximately one parsec, leading to the ``final parsec problem"(FPP). By performing a large set of direct N-body simulations of galaxy mergers having SMBHs at the center, we show that merger-induced triaxiality of the remnant is capable of supporting a constant supply of stars on so-called centrophilic orbits that interact with the binary and thus avoid the FPP. The coalescence times for SMBH binary with mass of a million solar masses are less than 1 Gyr and for those at the upper end of SMBH masses a billion solar masses are 1-2 Gyr for less eccentric binaries whereas less than 1 Gyr for highly eccentric binaries. SMBH binaries are thus expected to be promising sources of gravitational waves at low and high redshifts.

  12. Evolution of massive black hole binaries in rotating stellar nuclei: Implications for gravitational wave detection

    NASA Astrophysics Data System (ADS)

    Rasskazov, Alexander; Merritt, David

    2017-04-01

    We compute the isotropic gravitational wave (GW) background produced by binary supermassive black holes (SBHs) in galactic nuclei. In our model, massive binaries evolve at early times via gravitational-slingshot interaction with nearby stars, and at later times by the emission of GWs. Our expressions for the rate of binary hardening in the "stellar" regime are taken from the recent work of Vasiliev et al., who show that in the nonaxisymmetric galaxies expected to form via mergers, stars are supplied to the center at high enough rates to ensure binary coalescence on Gyr timescales. We also include, for the first time, the extra degrees of freedom associated with evolution of the binary's orbital plane; in rotating nuclei, interaction with stars causes the orientation and the eccentricity of a massive binary to change in tandem, leading in some cases to very high eccentricities (e >0.9 ) before the binary enters the GW-dominated regime. We argue that previous studies have over-estimated the mean ratio of SBH mass to galaxy bulge mass by factors of 2-3. In the frequency regime currently accessible to pulsar timing arrays (PTAs), our assumptions imply a factor 2-3 reduction in the characteristic strain compared with the values computed in most recent studies, removing the tension that currently exists between model predictions and the nondetection of GWs.

  13. High-Resolution Observations of a Binary Black Hole Candidate

    NASA Astrophysics Data System (ADS)

    Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto

    2012-10-01

    We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.

  14. Determining the progenitors of merging black-hole binaries

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely D.; Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.

    2016-07-01

    We investigate a possible method for determining the progenitors of black-hole (BH) mergers observed via their gravitational wave (GW) signal. We argue that measurements of the cross-correlation of the GW events with overlapping galaxy catalogs may provide an additional tool in determining if BH mergers trace the stellar mass of the Universe, as would be expected from mergers of the end points of stellar evolution. If, on the other hand, the BHs are of primordial origin, as has been recently suggested, their merging would be preferentially hosted by lower biased objects and thus have a lower cross-correlation with luminous galaxies. Here, we forecast the expected precision of the cross-correlation measurement for current and future GW detectors such as LIGO and the Einstein Telescope. We then predict how well these instruments can distinguish the model that identifies high-mass BH-BH mergers as the merger of primordial black holes that constitute the dark matter in the Universe from more traditional astrophysical sources.

  15. Searching for Gravitational Radiation from Binary Black Hole MACHOs in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.

    2007-05-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) is one of a new generation of detectors of gravitational radiation. The existence of gravitational radiation was first predicted by Einstein in 1916, however gravitational waves have not yet been directly observed. One source of gravitation radiation is binary inspiral. Two compact bodies orbiting each other, such as a pair of black holes, lose energy to gravitational radiation. As the system loses energy the bodies spiral towards each other. This causes their orbital speed and the amount of gravitational radiation to increase, producing a characteristic ``chirp'' waveform in the LIGO sensitive band. In this thesis, matched filtering of LIGO science data is used to search for low mass binary systems in the halo of dark matter surrounding the Milky Way. Observations of gravitational microlensing events of stars in the Large Magellanic Cloud suggest that some fraction of the dark matter in the halo may be in the form of Massive Astrophysical Compact Halo Objects (MACHOs). It has been proposed that low mass black holes formed in the early universe may be a component of the MACHO population; some fraction of these black hole MACHOs will be in binary systems and detectable by LIGO. The inspiral from a MACHO binary composed of two 0.5 solar mass black holes enters the LIGO sensitive band around 40 Hz. The chirp signal increases in amplitude and frequency, sweeping through the sensitive band to 4400 Hz in 140 seconds. By using evidence from microlensing events and theoretical predictions of the population an upper limit is placed on the rate of black hole MACHO inspirals in the galactic halo.

  16. Merging of unequal mass binary black holes in non-axisymmetric galactic nuclei

    NASA Astrophysics Data System (ADS)

    Berczik, Peter; Wang, Long; Nitadori, Keigo; Spurzem, Rainer

    2016-02-01

    In this work we study the stellar-dynamical hardening of unequal mass massive black hole (MBH) binaries in the central regions of galactic nuclei. We present a comprehensive set of direct N-body simulations of the problem, varying both the total mass and the mass ratio of the MBH binary. Our initial model starts as an axisymmetric, rotating galactic nucleus, to describe the situation right after the galaxies have merged, but the black holes are still unbound to each other. We confirm that results presented in earlier works (Berczik et al. 2006; Khan et al. 2013; Wang et al. 2014) about the solution of the ``last parsec problem'' (sufficiently fast black hole coalescence for black hole growth in cosmological context) are robust for both for the case of unequal black hole masses and large particle numbers. The MBH binary hardening rate depends on the reduced mass ratio through a single parameter function, which quantitatively quite well agrees with standard 3 body scattering theory (see e.g., Hills 1983). Based on our results we conclude that MBH binaries at high redshifts are expected to merge with a factor of ~ 2 more efficiently, which is important to determine the possible overall gravitational wave signals. However, we have not yet fully covered all the possible parameter space, in particular with respect to the preceding of the galaxy mergers, which may lead to a wider variety of initial models, such as initially more oblate and / or even significantly triaxial galactic nuclei. Our N-body simulations were carried out on a new special supercomputers using the hardware acceleration with graphic processing units (GPUs).

  17. Measuring the spin of black holes in binary systems using gravitational waves.

    PubMed

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  18. Reducing junk radiation and eccentricity in binary-black-hole initial data

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Pfeiffer, Harald; Brown, Duncan; Lindblom, Lee; Scheel, Mark; Kidder, Lawrence

    2007-04-01

    Numerical simulations of binary-black-hole (BBH) collisions require initial data that satisfy the Einstein constraint equations. Several well-known methods generate constraint-satisfying BBH data, but the commonly-used simplifying assumptions lead to undesirable effects. BBH data typically assume a conformally flat spatial metric; this leads to an initial pulse of unphysical ``junk'' gravitational radiation. Also, the initial radial velocity of the holes is often neglected; this can lead to significant eccentricity in the holes' trajectories. This talk will discuss efforts to reduce these effects by constructing and evolving generalizations of the BBH initial data of Cook and Pfeiffer (2004). By giving the holes a small radial velocity, the eccentricity can be greatly reduced (although the emitted waves are largely unaffected). The junk radiation for flat and non-flat conformal metrics will also be compared.

  19. Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2011-01-01

    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.

  20. Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Pankow, Chris; Rodriguez, Carl L.; Sampson, Laura; Chase, Eve; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-09-01

    Gravitational waves (GWs) from binary black hole (BBH) mergers provide a new probe of massive-star evolution and the formation channels of binary compact objects. By coupling the growing sample of BBH systems with population synthesis models, we can begin to constrain the parameters of such models and glean unprecedented knowledge about the inherent physical processes that underpin binary stellar evolution. In this study, we apply a hierarchical Bayesian model to mass measurements from a synthetic GW sample to constrain the physical prescriptions in population models and the relative fraction of systems generated from various channels. We employ population models of two canonical formation scenarios in our analysis—isolated binary evolution involving a common-envelope phase and dynamical formation within globular clusters—with model variations for different black hole natal kick prescriptions. We show that solely with chirp mass measurements, it is possible to constrain natal kick prescriptions and the relative fraction of systems originating from each formation channel with { O }(100) of confident detections. This framework can be extended to include additional formation scenarios, model parameters, and measured properties of the compact binary.

  1. A Fast Method to Predict Distributions of Binary Black Hole Masses Based on Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Yun, Yuqi; Zevin, Michael; Sampson, Laura; Kalogera, Vassiliki

    2017-01-01

    With more observations from LIGO in the upcoming years, we will be able to construct an observed mass distribution of black holes to compare with binary evolution simulations. This will allow us to investigate the physics of binary evolution such as the effects of common envelope efficiency and wind strength, or the properties of the population such as the initial mass function.However, binary evolution codes become computationally expensive when running large populations of binaries over a multi-dimensional grid of input parameters, and may simulate accurately only for a limited combination of input parameter values. Therefore we developed a fast machine-learning method that utilizes Gaussian Mixture Model (GMM) and Gaussian Process (GP) regression, which together can predict distributions over the entire parameter space based on a limited number of simulated models. Furthermore, Gaussian Process regression naturally provides interpolation errors in addition to interpolation means, which could provide a means of targeting the most uncertain regions of parameter space for running further simulations.We also present a case study on applying this new method to predicting chirp mass distributions for binary black hole systems (BBHs) in Milky-way like galaxies of different metallicities.

  2. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  3. The Effect of Supermassive Black Hole Binary Environments on Time to Detection for the Stochastic Background

    NASA Astrophysics Data System (ADS)

    Vigeland, Sarah; Siemens, Xavier

    2017-01-01

    Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection. National Science Foundation PIRE program.

  4. The Effect of Supermassive Black Hole Binary Environments on Time to Detection for the Stochastic Background

    NASA Astrophysics Data System (ADS)

    Vigeland, Sarah; Siemens, Xavier

    2017-01-01

    Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection.

  5. Hunting stellar-mass black holes in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Corral-Santana, J. M.

    2017-07-01

    In the last 50 years of X-ray astronomy we have detected nearly 60 Galactic stellar-mass black hole (BH) candidates in transient X-ray binaries, i.e. systems with low-mass companions and sporadic outburst episodes. In addition, we have detected 2 more systems with high-mass companion stars. Only 17 out of the ˜60 transients have been dynamically confirmed although we have established strong constrains in two more systems. In this contribution, we will introduce the X-ray binaries, summarise their status and present the latest advances in the field.

  6. Evolutions of nearly maximally spinning black hole binaries using the moving puncture approach

    NASA Astrophysics Data System (ADS)

    Zlochower, Yosef; Healy, James; Lousto, Carlos O.; Ruchlin, Ian

    2017-08-01

    We demonstrate that numerical relativity codes based on the "moving punctures" formalism are capable of evolving nearly maximally spinning black hole binaries. We compare a new evolution of an equal-mass, aligned-spin binary with dimensionless spin χ =0.99 using puncture-based data with recent simulations of the SXS Collaboration. We find that the overlap of our new waveform with the published results of the SXS Collaboration is larger than 0.999. To generate our new waveform, we use the recently introduced HiSpID puncture data, the CCZ4 evolution system, and a modified lapse condition that helps keep the horizon radii reasonably large.

  7. X-ray spectroscopic and timing studies of galactic black hole binaries

    NASA Astrophysics Data System (ADS)

    Miller, Jon Matthew

    In rare cases, optical observations of Galactic binary star systems which are bright in the X-ray portion of the electromagnetic spectrum dynamically constrain the mass of one component to be well above theoretical limits for a neutron star. These systems—and systems with similar X-ray properties—are classified as black hole binaries. In this thesis, I report on observations of black hole binaries made with satellite observatories in the X-ray band. The region closest to the black hole is revealed in X-rays due to the viscous heating of matter that is accreted from the companion star. X-ray observations of these systems may therefore reveal General Relativistic effects. A fundamental and testable prediction of General Relativity is that matter may orbit more closely around black holes with significant angular momentum. I have investigated the possibility of black hole “spin” and the geometry of accretion flows in these systems using X-ray continuum spectroscopy, fast variability studies, and the shape of iron fluorescent emission lines in this band. I present evidence for black hole spin in XTE J1550-564, XTE J1650- 500, and XTE J1748-248. Spin is not required by high- resolution spectral analysis of the archetypical Galactic black hole—Cygnus X-1—but a thermal accretion disk plus hot corona geometry is confirmed. Studies of XTE J1118+480 and GRS 1758-258 at low X-ray luminosity reveal that models for radiatively-inefficient accretion do not satisfactorily describe the geometry in these systems. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)/

  8. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.

    2012-01-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.

  9. Orbiting binary black hole evolutions with a multipatch high order finite-difference approach

    SciTech Connect

    Pazos, Enrique; Tiglio, Manuel; Duez, Matthew D.; Kidder, Lawrence E.; Teukolsky, Saul A.

    2009-07-15

    We present numerical simulations of orbiting black holes for around 12 cycles, using a high order multipatch approach. Unlike some other approaches, the computational speed scales almost perfectly for thousands of processors. Multipatch methods are an alternative to adaptive mesh refinement, with benefits of simplicity and better scaling for improving the resolution in the wave zone. The results presented here pave the way for multipatch evolutions of black hole-neutron star and neutron star-neutron star binaries, where high resolution grids are needed to resolve details of the matter flow.

  10. The mass of the black hole in the X-ray binary LMC X-1

    NASA Astrophysics Data System (ADS)

    Abubekerov, M. K.; Antokhina, E. A.; Gostev, N. Yu.; Cherepashchuk, A. M.; Shimansky, V. V.

    2016-12-01

    A dynamical estimate of the mass of the black hole in the LMC X-1 binary system is obtained in the framework of a Roche model for the optical star, based on fitting of the He I 4471 Å and He II 4200 Å absorption lines assuming LTE. The mass of the black hole derived from the radial-velocity curve for the He II 4200 Å line is m x = 10.55 M ⊙, close to the value found earlier based on a model with two point bodies [1].

  11. Numerical Relativity and Black Hole Binaries: The historical path to present simulations

    NASA Astrophysics Data System (ADS)

    Laguna, Pablo

    2012-03-01

    The numerical relativity landscape at the turn of the century reached a unique transformative moment. A time with the ripe conditions to solve one of the grand challenges in computational physics: the two-body problem in general relativity. The computational modeling of two black holes as they coalesce is a formidable undertaking, requiring the most powerful hardware, innovative algorithms and creativity. This talk provides a historical perspective of the developments that led to the current success we enjoy of binary black hole simulations as genuine tools of discovery in the new astronomy of gravitational waves.

  12. ON THE APPARENT LACK OF Be X-RAY BINARIES WITH BLACK HOLES

    SciTech Connect

    Belczynski, Krzysztof; Ziolkowski, Janusz E-mail: jz@camk.edu.p

    2009-12-20

    In our Galaxy there are 64 Be X-ray binaries known to date. Out of these, 42 host a neutron star (NS), and for the remainder the nature of the companion is unknown. None, so far, are known to host a black hole (BH). There seems to be no apparent mechanism that would prevent formation or detection of Be stars with BHs. This disparity is referred to as a missing Be-BH X-ray binary problem. We point out that current evolutionary scenarios that lead to the formation of Be X-ray binaries predict that the ratio of binaries with NSs to the ones with BHs is rather high, F{sub NStoBH} approx 10-50, with the more likely formation models providing the values at the high end. The ratio is a natural outcome of (1) the stellar initial mass function that produces more NSs than BHs and (2) common envelope evolution (i.e., a major mechanism involved in the formation of interacting binaries) that naturally selects progenitors of Be X-ray binaries with NSs (binaries with comparable mass components have more likely survival probabilities) over ones with BHs (which are much more likely to be common envelope mergers). A comparison of this ratio (i.e., F{sub NStoBH} approx 30) with the number of confirmed Be-NS X-ray binaries (42) indicates that the expected number of Be-BH X-ray binaries is of the order of only approx0-2. This is entirely consistent with the observed Galactic sample.

  13. STRUCTURE AND EVOLUTION OF CIRCUMBINARY DISKS AROUND SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Rafikov, Roman R.

    2013-09-10

    We explore properties of circumbinary disks around supermassive black hole (SMBH) binaries in centers of galaxies by reformulating standard viscous disk evolution in terms of the viscous angular momentum flux F{sub J}. If the binary stops gas inflow and opens a cavity in the disk, then the inner disk evolves toward a constant-F{sub J} (rather than a constant M-dot ) state. We compute disk properties in different physical regimes relevant for SMBH binaries, focusing on the gas-assisted evolution of systems starting at separations 10{sup -4} - 10{sup -2} pc, and find the following. (1) Mass pileup at the inner disk edge caused by the tidal barrier accelerates binary inspiral. (2) Binaries can be forced to merge even by a disk with a mass below that of the secondary. (3) Torque on the binary is set non-locally, at radii far larger than the binary semi-major axis; its magnitude does not reflect disk properties in the vicinity of the binary. (4) Binary inspiral exhibits hysteresis-it depends on the past evolution of the disk. (5) The Eddington limit can be important for circumbinary disks even if they accrete at sub-Eddington rates, but only at late stages of the inspiral. (6) Gas overflow across the orbit of the secondary can be important for low secondary mass, high- M-dot systems, but mainly during the inspiral phase dominated by the gravitational wave emission. (7) Circumbinary disks emit more power and have harder spectra than constant M-dot disks; their spectra are very sensitive to the amount of overflow across the secondary orbit.

  14. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  15. Catalog of 174 binary black hole simulations for gravitational wave astronomy.

    PubMed

    Mroué, Abdul H; Scheel, Mark A; Szilágyi, Béla; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W; Zenginoğlu, Anıl; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A

    2013-12-13

    This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.

  16. Targeting highly eccentric black hole binaries with a gravitational wave burst search

    NASA Astrophysics Data System (ADS)

    Baker, Paul; Cornish, Neil; McWilliams, Sean; LIGO Scientific Collaboration

    2017-01-01

    Recent studies have suggested that a non-negligible fraction of coalescing binary black hole systems may enter the aLIGO band with large eccentricity. These systems are challenging to detect with template-based gravitational wave searches due to systematic modeling errors. Current gravitational wave burst searches may miss these signals, because their power can be spread across several time-separated bursts and a wider bandwidth than quasi-circular signals. We describe a new search method being developed for highly eccentric binary black hole systems. This search uses a fast wavelet denoising method that can increase signal-to-noise ratio by collecting several associated bursts. In the future we hope to implement this method to generate low latency triggers that can be further analyzed by the BayesWave burst parameter estimation pipeline.

  17. Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Zensus, J. A.

    2016-02-01

    The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the ``final parsec''. Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have been identified by multi-wavelength observations by now, and they will be detected in the thousands in future ground-based or space-based transient surveys. The study of TDEs provides us with a variety of new astrophysical tools and applications, related to fundamental physics or astrophysics. Here, we provide a review of the current status of observations of SMBH pairs and binaries, and TDEs, and discuss astrophysical implications.

  18. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  19. Simple model of complete precessing black-hole-binary gravitational waveforms.

    PubMed

    Hannam, Mark; Schmidt, Patricia; Bohé, Alejandro; Haegel, Leïla; Husa, Sascha; Ohme, Frank; Pratten, Geraint; Pürrer, Michael

    2014-10-10

    The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger, and ringdown, is one of the most pressing theoretical problems in the buildup to the era of GW astronomy. We present the first such model in the frequency domain, PhenomP, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary's mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying nonprecessing-binary model. The nonprecessing-binary waveforms are then twisted up with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, χ(p). All other parameters (total mass, sky location, orientation and polarization, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model's fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations--although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.

  20. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  1. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    SciTech Connect

    Hayasaki, K.; Sohn, B.W.; Jung, T.; Zhao, G.; Okazaki, A.T.; Naito, T. E-mail: bwsohn@kasi.re.kr E-mail: thjung@kasi.re.kr E-mail: tsuguya@ygu.ac.jp

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.

  2. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  3. Neutrino Transport in Black Hole-Neutron Star Binaries: Dynamical Mass Ejection and Neutrino-Driven Wind

    NASA Astrophysics Data System (ADS)

    Kyutoku, K.; Kiuchi, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K.

    2016-10-01

    We present our recent results of numerical-relativity simulations of black hole-neutron star binary mergers incorporating approximate neutrino transport. We in particular discuss dynamical mass ejection and neutrino-driven wind.

  4. Energy dependent variability and outburst evolution in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Kong, A. K. H.

    2016-12-01

    Almost all low mass black hole X-ray binaries are transient sources. Most of these sources show a certain pattern during outburst: the evolution from low hard state through intermediate state(s) into high soft state and the returning to the hard state at lower luminosity. However, there are outbursts that remain in the hard state (so called "failed" outbursts). Using the technique of covariance spectra we can investigate the variability of individual spectral components on different time scales. Comprehensive studies of covariance spectra for a sample of black hole X-ray binaries observed in the rising low hard state of "normal" outbursts revealed an increase of the covariance ratios towards lower energies that has been interpreted as the sign of additional disc variability on long time scales. There are now two sources (h1743 and gs) that do not show an increase towards lower energies in their covariance ratio. Both sources have been observed during "failed" outbursts and showed photon indices much harder than what is usually observed in black hole X-ray binaries.

  5. Evidence for a black hole in the X-ray binary Nova Muscae 1991

    NASA Technical Reports Server (NTRS)

    Remillard, Ronald A.; Mcclintock, Jeffrey E.; Bailyn, Charles D.

    1992-01-01

    Optical photometry and spectroscopy of the X-ray Nova Muscae 1991 in quiescence reveal an orbital period of 10.398 +/- 0.014 hr and an absorption-line velocity curve consistent with a sinusoidal modulation at a half-amplitude of 409 +/- 18 km/s. The spectral type of the secondary star is in the range K0 V to K4 V. The value of the mass function, 3.1 +/- 0.4 solar mass, is a conservative lower limit on the mass of the compact primary and suggests that the primary is a black hole. Further considerations of the binary inclination angle and the mass of the secondary strengthen the black hole model. The folded light curves in the I band and the B + V band resemble ellipsoidal variations, with an additional brightening near one of the maxima in the B + V band. The orbital period is 1.4 percent shorter than the photometric period observed during outburst, as expected if the outburst modulations are analogs of 'superhumps' in dwarf novae. In quiescence, the optical properties of the X-ray binary Nova Muscae 1991 bear a striking resemblance to the black hole binary A0620-00, which extends the basis of similarity that was demonstrated during outburst at X-ray and optical wavelengths.

  6. The Modern Black Hole X-Ray Binary Database: A Comprehensive All-Sky Observational Study

    NASA Astrophysics Data System (ADS)

    Tetarenko, Bailey; Sivakoff, Gregory R.; Heinke, Craig O.; Gladstone, Jeanette C

    2014-08-01

    Stellar mass black holes accreting in binary systems provide valuable insight into how binary systems evolve and how mass is transferred via accretion. With the advent of more sensitive all-sky X-ray instruments like the Swift Burst Alert Transient Monitor (BAT) and the Monitor of All-Sky X-ray Image (MAXI) telescope, the transient X-ray Universe is being probed in greater depth than ever before. Taking advantage of these resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary activity over the last 18 years as revealed by all-sky X-ray instruments and scanning surveys. As a result, we have detected over 90 outbursts occurring in 43 transient BHXRBs, and estimate that current instruments can detect ~ 6-12 transient BHXRB outbursts every year, more than a factor of three larger than is commonly assumed. Most significantly, we find that the outbursts undergone by BHXRBs that do not complete the canonical pattern make up ~ 50% of all outbursts occurring in Galactic BHXRBs. Such a high fraction of "failed" outbursts challenges the standard paradigm for accretion behaviour in transient BHXRBs. We present the detailed findings of our database and discuss how both the larger number of these so-called "failed" outbursts and the BHXRB outbursts in general have significant implications for the mass-transfer history of the Galactic BHXRB population.

  7. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Silk, Joseph

    2017-07-01

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1-103 ppm for a solar mass star located at a distance between 1 au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.

  8. A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1

    SciTech Connect

    Binder, B.; Williams, B. F.; Anderson, S. F.; Eracleous, M.; Garcia, M. R.; Gaetz, T. J.

    2011-12-01

    We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with a contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.

  9. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-07-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙ , with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.

  10. Black hole from merging binary neutron stars: How fast can it spin?

    NASA Astrophysics Data System (ADS)

    Kastaun, Wolfgang; Galeazzi, Filippo; Alic, Daniela; Rezzolla, Luciano; Font, José A.

    2013-07-01

    The merger of two neutron stars will in general lead to the formation of a torus surrounding a black hole whose rotational energy can be tapped to potentially power a short gamma-ray burst. We have studied the merger of equal-mass binaries with spins aligned with the orbital angular momentum to determine the maximum spin the black hole can reach. Our initial data consists of irrotational binaries to which we add various amounts of rotation to increase the total angular momentum. Although the initial data violates the constraint equations, the use of the constraint-damping conformal and covariant Z4 formulation yields evolutions with violations smaller than those with irrotational initial data and standard formulations. Interestingly, we find that a limit of J/M2≃0.89 exists for the dimensionless spin and that any additional angular momentum given to the binary ends up in the torus rather than in the black hole, thus providing another nontrivial example supporting the cosmic censorship hypothesis.

  11. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  12. Probing the nonlinear structure of general relativity with black hole binaries

    NASA Astrophysics Data System (ADS)

    Arun, K. G.; Iyer, B. R.; Qusailah, M. S. S.; Sathyaprakash, B. S.

    2006-07-01

    Observations of the inspiral of massive binary black holes (BBH) in the Laser Interferometer Space Antenna (LISA) and stellar mass binary black holes in the European Gravitational Wave Observatory (EGO) offer an unique opportunity to test the nonlinear structure of general relativity. For a binary composed of two nonspinning black holes, the nonlinear general relativistic effects depend only on the masses of the constituents. In a recent paper, we explored the possibility of a test to determine all the post-Newtonian coefficients in the gravitational wave phasing. However, mutual covariances dilute the effectiveness of such a test. In this paper, we propose a more powerful test in which the various post-Newtonian coefficients in the gravitational wave phasing are systematically measured by treating three of them as independent parameters and demanding their mutual consistency. LISA (EGO) will observe BBH inspirals with a signal-to-noise ratio of more than 1000 (100) and thereby test the self-consistency of each of the nine post-Newtonian coefficients that have so-far been computed, by measuring the lower order coefficients to a relative accuracy of ˜10-5 (respectively, ˜10-4) and the higher order coefficients to a relative accuracy in the range 10-4-0.1 (respectively, 10-3-1).

  13. Measuring the dimensionality of compact extra dimensions with inspiral gravitational waves from black-hole binaries

    NASA Astrophysics Data System (ADS)

    Qiang, Li-E.; Zhao, Shu Hong; Xu, Peng

    2016-12-01

    Gravitational waves from coalescing black-hole binaries (BHBs) were recently observed by the advanced LIGO detectors. Based on the perturbation analysis, for general Kaluza-Klein theories with compact extra dimensions, we find a 1st-order post-Newtonian correction to the inspiral gravitational waveforms of black-hole binaries, that comes from the variations of the volume of the extra dimensions in near source zones. Such correction depends on a new parameter χ=\\frac{n}{2+n} with n the dimensionality of the extra space and it is irrelevant to the particular choice of the topology of the extra space. For the ideal case of a black-hole binary system following nearly circular orbital motion with almost equal or intermediate mass ratio, such higher-dimensional corrections to the chirping amplitude are worked out. Giving the power of tracing inspiral waves from coalescing massive BHBs with high signal-to-noise ratios, the planned space-borne antennas such as the eLISA and DECIGO may give us a measurement of the parameter χ in the near future and may serve us as new probes in the searching for the evidence of the hidden compact dimensions.

  14. Hangup Kicks: Still Larger Recoils by Partial Spin/Orbit Alignment of Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos; Zlochower, Yosef

    2012-03-01

    We revisit the scenario of the gravitational radiation recoil acquired by the final remnant of a black-hole-binary merger by studying a set of configurations that have components of the spin both aligned with the orbital angular momentum and in the orbital plane. We perform a series of 42 new full numerical simulations for equal-mass and equal-spin-magnitude binaries. We extend previous recoil fitting formulas to include nonlinear terms in the spins and successfully include both the new and known results. The new predicted maximum velocity approaches 5000km/s for spins partially aligned with the orbital angular momentum, which leads to an important increase of the probabilities of large recoils in generic astrophysical mergers. We find non-negligible probabilities for recoils of several thousand km/s from accretion-aligned binaries.

  15. Hangup Kicks: Still Larger Recoils by Partial Spin-Orbit Alignment of Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Zlochower, Yosef

    2011-12-01

    We revisit the scenario of the gravitational radiation recoil acquired by the final remnant of a black-hole-binary merger by studying a set of configurations that have components of the spin both aligned with the orbital angular momentum and in the orbital plane. We perform a series of 42 new full numerical simulations for equal-mass and equal-spin-magnitude binaries. We extend previous recoil fitting formulas to include nonlinear terms in the spins and successfully include both the new and known results. The new predicted maximum velocity approaches 5000km/s for spins partially aligned with the orbital angular momentum, which leads to an important increase of the probabilities of large recoils in generic astrophysical mergers. We find non-negligible probabilities for recoils of several thousand km/s from accretion-aligned binaries.

  16. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.

  17. Spin–Orbit Misalignment of Merging Black Hole Binaries with Tertiary Companions

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Lai, Dong

    2017-09-01

    We study the effect of an external companion on the orbital and spin evolution of merging black hole (BH) binaries. A sufficiently nearby and inclined companion can excite Lidov–Kozai (LK) eccentricity oscillations in the binary, thereby shortening its merger time. During such LK-enhanced orbital decay, the spin axis of the BH generally exhibits chaotic evolution, leading to a wide range (0°–180°) of the final spin–orbit misalignment angle from an initially aligned configuration. For systems that do not experience eccentricity excitation, only modest (≲ 20^\\circ ) spin–orbit misalignment can be produced, and we derive an analytic expression for the final misalignment using the principle of adiabatic invariance. The spin–orbit misalignment directly impacts the gravitational waveform and can be used to constrain the formation scenarios of BH binaries and dynamical influences of external companions.

  18. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Campanelli, Manuela; Krolik, Julian H.; Mewes, Vassilios; Noble, Scott C.

    2017-03-01

    We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 times the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.

  19. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes, and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Grzędzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena; Wu, Qingwen

    2017-07-01

    Aims: Black holes (BHs) surrounded by accretion disks are present in the Universe at different scales of masses, from microquasars up to the active galactic nuclei (AGNs). Since the work of Shakura & Sunyaev (1973, A&A, 24, 337) and their α-disk model, various prescriptions for the heat-production rate are used to describe the accretion process. The current picture remains ad hoc due the complexity of the magnetic field action. In addition, accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed light on both the role of radiation pressure and magnetic fields in the accretion process. Methods: We compute the structure and time evolution of an accretion disk, using the code GLADIS (which models the global accretion disk instability). We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetisation of the disk. We study the results for a large grid of models, to cover the whole parameter space, and we derive conclusions separately for different scales of black hole masses, which are characteristic for various types of cosmic sources. We show the dependencies between the flare or outburst duration, its amplitude, and period, on the accretion rate and viscosity scaling. Results: We present the results for the three grids of models, designed for different black hole systems (X-ray binaries, intermediate mass black holes, and galaxy centres). We show that if the heating rate in the accretion disk grows more rapidly with the total pressure and temperature, the instability results in longer and sharper flares. In general, we confirm that the disks around the supermassive black holes are more radiation-pressure dominated and present relatively brighter bursts. Our method can also be used as an independent tool for the black hole mass determination

  20. Mergers of Unequal-mass Galaxies: Supermassive Black Hole Binary Evolution and Structure of Merger Remnants

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Preto, Miguel; Berczik, Peter; Berentzen, Ingo; Just, Andreas; Spurzem, Rainer

    2012-04-01

    Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the "final parsec problem" (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on the so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q ~ 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is ~1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass ~106 M ⊙ are less than 1 Gyr and for those at the upper end of SMBH masses 109 M ⊙ are 1-2 Gyr for less eccentric binaries whereas they are less than 1 Gyr

  1. MERGERS OF UNEQUAL-MASS GALAXIES: SUPERMASSIVE BLACK HOLE BINARY EVOLUTION AND STRUCTURE OF MERGER REMNANTS

    SciTech Connect

    Khan, Fazeel Mahmood; Preto, Miguel; Berentzen, Ingo; Just, Andreas; Berczik, Peter; Spurzem, Rainer

    2012-04-20

    Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on the so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less eccentric

  2. Measuring neutron star tidal deformability with Advanced LIGO: A Bayesian analysis of neutron star-black hole binary observations

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald P.

    2017-02-01

    The pioneering discovery of gravitational waves (GWs) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observation, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability ΛNS∝(R /M )NS5 using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if nontidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of nontidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than ≃30 . For similarly loud signals, we also find that we can begin to put interesting constraints on ΛNS (factor of 1-2) with individual observations. Next, we study how a population of realistic NSBH detections will improve our measurement of neutron star tidal deformability. For an astrophysically likely population of disruptive NSBH coalescences, we find that 20-35 events are sufficient to constrain ΛNS within ±25 %- 50 % , depending on the neutron star equation of state. For these calculations we assume that LIGO will detect black holes with masses within the astrophysical mass gap. In case the mass gap remains preserved in NSBHs detected by LIGO, we estimate that approximately 25% additional detections will furnish comparable ΛNS measurement accuracy. In both cases, we find that it is the loudest 5-10 events that provide most of the tidal information, and not the combination of tens of low-SNR events, thereby facilitating targeted numerical-GR follow-ups of NSBHs. We find these results

  3. Binary Black Holes in Dense Star Clusters: Exploring the Theoretical Uncertainties

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2017-01-01

    Recent N-body simulations predict that large numbers of stellar black holes (BHs) could at present remain bound to globular clusters (GCs), and merging BH–BH binaries are produced dynamically in significant numbers. We systematically vary “standard” assumptions made by numerical simulations related to, e.g., BH formation, stellar winds, binary properties of high-mass stars, and IMF within existing uncertainties, and study the effects on the evolution of the structural properties of GCs, and the BHs in GCs. We find that variations in initial assumptions can set otherwise identical initial clusters on completely different evolutionary paths, significantly affecting their present observable properties, or even affecting the cluster’s very survival to the present. However, these changes usually do not affect the numbers or properties of local BH–BH mergers. The only exception is that variations in the assumed winds and IMF can change the masses and numbers of local BH–BH mergers, respectively. All other variations (e.g., in initial binary properties and binary fraction) leave the masses and numbers of locally merging BH–BH binaries largely unchanged. This is in contrast to binary population synthesis models for the field, where results are very sensitive to many uncertain parameters in the initial binary properties and binary stellar-evolution physics. Weak winds are required for producing GW150914-like mergers from GCs at low redshifts. LVT151012 can be produced in GCs modeled both with strong and weak winds. GW151226 is lower-mass than typical mergers from GCs modeled with weak winds, but is similar to mergers from GCs modeled with strong winds.

  4. Accurate Waveforms for Non-spinning Binary Black Holes using the Effective-one-body Approach

    NASA Technical Reports Server (NTRS)

    Buonanno, Alessandra; Pan, Yi; Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2007-01-01

    Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms of non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by successfully, we mean with phase differences < or approx. 8% of a gravitational-wave cycle accumulated until the end of the ringdown phase. We obtain this result by simply adding a 4 post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m1/m2 = 1,2/3,1/2 and = 1/4, m1 and m2 being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the light-ring. The accurate EOB waveforms may be employed for coherent searches of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.

  5. Assessing the Detectability of Gravitational Waves from Coalescing Binary Black Holes with Precessing Spin

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration

    2015-01-01

    The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.

  6. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  7. Towards an Extended Binary Black Hole Search using Advanced LIGO: from Stellar to Intermediate-Mass

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debnandini; LIGO Scientific Collaboration; Virgo Collaboration Collaboration

    2017-01-01

    Intermediate mass black hole (IMBH) binaries, make up the mass space between stellar-mass and super massive black holes, with their total mass in the range of about 100 to 100,000 solar masses. Detection of IMBH mergers would help us explore their formation channels. The IMBH search is currently sensitive to coalescences of black hole binaries covering a total mass range between 50-600 solar masses. Recent publications in astrophysics point to the physical importance of the IMBH search (they may shed light on certain supernova mechanisms). In light of the conclusion of the 1st Advanced LIGO search conducted between September 2015 and January 2016 (O1 run), I will provide an update on the IMBH search (software GstLAL based, using matched-filter) on this data and will discuss the feasibility of including the IMBH search with the stellar-mass black hole search space (total mass range 2-100 solar masses), thus achieving a combined search for future runs. NSF PHY-1607585.

  8. Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers

    NASA Astrophysics Data System (ADS)

    Pannarale, Francesco; Berti, Emanuele; Kyutoku, Koutarou; Lackey, Benjamin D.; Shibata, Masaru

    2015-10-01

    Tidal disruption has a dramatic impact on the outcome of neutron star-black hole mergers. The phenomenology of these systems can be divided in three classes: nondisruptive, mildly disruptive, and disruptive. The cutoff frequency of the gravitational radiation produced during the merger (which is potentially measurable by interferometric detectors) is very different in each regime, and when the merger is disruptive it carries information on the neutron star equation of state. Here we use semianalytical tools to derive a formula for the critical binary mass ratio Q =MBH/MNS below which mergers are disruptive as a function of the stellar compactness C =MNS/RNS and the dimensionless black hole spin χ . We then employ a new gravitational waveform amplitude model, calibrated to 134 general relativistic numerical simulations of binaries with black hole spin (anti-)aligned with the orbital angular momentum, to obtain a fit to the gravitational-wave cutoff frequency in the disruptive regime as a function of C , Q , and χ . Our findings are important to build gravitational-wave template banks, to determine whether neutron star-black hole mergers can emit electromagnetic radiation (thus helping multimessenger searches), and to improve event rate calculations for these systems.

  9. The Binary Black Hole Merger Rate from Ultraluminous X-ray Source Progenitors

    NASA Astrophysics Data System (ADS)

    Finke, Justin; Razzaque, Soebur

    2017-01-01

    Ultraluminous X-ray sources (ULXs) exceed the Eddington luminosity for an approximately 10 solar mass black hole. The recent detection of a black hole merger event GW 150914 by the gravitational wave detector ALIGO indicates that black holes with mass greater than 10 do indeed exist. Motivated by this, we explore a scenario where ULXs consist of black holes formed by the collapse of high-mass, low-metallicity stars, and that these ULXs become binary black holes (BBHs) that eventually merge. We use empirical relations between the number of ULXs and the star formation rate and host galaxy metallicity to estimate the ULX formation rate and the BBH merger rate at all redshifts. This assumes the ULX rate is directly proportional to the star formation rate for a given metallicity, and that the black hole accretion rate is distributed as a log-normal distribution. We include an enhancement in the ULX formation rate at earlier epochs due to lower mean metallicities. Our model is able to reproduce both the rate and mass distribution of BBH mergers in the nearby universe inferred from the detection of GW 150914, LVT 151012, and GW 151226 by LIGO if the median accretion rate of ULXs is a factor 1 to 30 greater than the Eddington rate. Our predictions of the BBH merger rate, mass distribution.

  10. Science with the space-based interferometer eLISA: Supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Klein, Antoine; Barausse, Enrico; Sesana, Alberto; Petiteau, Antoine; Berti, Emanuele; Babak, Stanislav; Gair, Jonathan; Aoudia, Sofiane; Hinder, Ian; Ohme, Frank; Wardell, Barry

    2016-01-01

    We compare the science capabilities of different eLISA mission designs, including four-link (two-arm) and six-link (three-arm) configurations with different arm lengths, low-frequency noise sensitivities and mission durations. For each of these configurations we consider a few representative massive black hole formation scenarios. These scenarios are chosen to explore two physical mechanisms that greatly affect eLISA rates, namely (i) black hole seeding, and (ii) the delays between the merger of two galaxies and the merger of the black holes hosted by those galaxies. We assess the eLISA parameter estimation accuracy using a Fisher matrix analysis with spin-precessing, inspiral-only waveforms. We quantify the information present in the merger and ringdown by rescaling the inspiral-only Fisher matrix estimates using the signal-to-noise ratio from nonprecessing inspiral-merger-ringdown phenomenological waveforms, and from a reduced set of precessing numerical relativity/post-Newtonian hybrid waveforms. We find that all of the eLISA configurations considered in our study should detect some massive black hole binaries. However, configurations with six links and better low-frequency noise will provide much more information on the origin of black holes at high redshifts and on their accretion history, and they may allow the identification of electromagnetic counterparts to massive black hole mergers.

  11. The effect of gauge conditions on waveforms from binary black hole coalescence

    NASA Astrophysics Data System (ADS)

    Bentivegna, Eloisa; Laguna, Pablo; Shoemaker, Deirdre

    2006-11-01

    Over the past year and a half, a number of groups have produced stable runs of a binary black hole system evolving through merger and ringdown. In [2][3], in particular, the tremendous speedup to the field was driven by special sets of gauge evolution equations, capable of handling several issues that have traditionally plagued black hole simulations: avoiding the singularity, guaranteeing a constraint satisfying solution at least in the exterior region, and advecting the holes through the numerical grid. Since several successful recipes have already been proposed, the goal of this study is to review them and analyze the consistency of the published results. A preliminary comparison of the waveform outcome of each different gauge prescription is presented.

  12. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei

    2017-07-01

    Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should

  13. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    SciTech Connect

    Bagchi, Manjari; Torres, Diego F. E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  14. Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki

    2016-10-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.

  15. Conformally curved binary black hole initial data including tidal deformations and outgoing radiation

    SciTech Connect

    Johnson-McDaniel, Nathan K.; Yunes, Nicolas; Tichy, Wolfgang; Owen, Benjamin J.

    2009-12-15

    By asymptotically matching a post-Newtonian (PN) metric to two perturbed Schwarzschild metrics, we generate approximate initial data (in the form of an approximate 4-metric) for a nonspinning black hole binary in a circular orbit. We carry out this matching through O(v{sup 4}) in the binary's orbital velocity v, and thus the resulting data, like the O(v{sup 4}) PN metric, are conformally curved. The matching procedure also fixes the quadrupole and octupole tidal deformations of the holes, including the 1PN corrections to the quadrupole fields. Far from the holes, we use the appropriate PN metric that accounts for retardation, which we construct using the highest-order PN expressions available to compute the binary's past history. The data set's uncontrolled remainders are thus O(v{sup 5}) throughout the time slice; we also generate an extension to the data set that has uncontrolled remainders of O(v{sup 6}) in the purely PN portion of the time slice (i.e., not too close to the holes). This extension also includes various other readily available higher-order terms. The addition of these terms decreases the constraint violations in certain regions, even though it does not increase the data's formal accuracy. The resulting data are smooth, since we join all the metrics together by smoothly interpolating between them. We perform this interpolation using transition functions constructed to avoid introducing excessive additional constraint violations. Because of their inclusion of tidal deformations and outgoing radiation, these data should substantially reduce both the high- and low-frequency components of the initial spurious ('junk') radiation observed in current simulations that use conformally flat initial data. Such reductions in the nonphysical components of the initial data will be necessary for simulations to achieve the accuracy required to supply Advanced LIGO and LISA with the templates necessary for parameter estimation.

  16. Formation pathway of Population III coalescing binary black holes through stable mass transfer

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Hirai, Ryosuke; Kinugawa, Tomoya; Hotokezaka, Kenta

    2017-07-01

    We study the formation of stellar mass binary black holes (BBHs) originating from Population III (PopIII) stars, performing stellar evolution simulations for PopIII binaries with mesa. We find that a significant fraction of PopIII binaries form massive BBHs through stable mass transfer between two stars in a binary, without experiencing common envelope phases. We investigate necessary conditions required for PopIII binaries to form coalescing BBHs with a semi-analytical model calibrated by the stellar evolution simulations. The BBH formation efficiency is estimated for two different initial conditions for PopIII binaries with large and small separations, respectively. Consequently, in both models, ˜10 per cent of the total PopIII binaries form BBHs only through stable mass transfer and ˜10 per cent of these BBHs merge due to gravitational wave emission within the Hubble time. Furthermore, the chirp mass of merging BBHs has a flat distribution over 15 ≲ Mchirp/M⊙ ≲ 35. This formation pathway of PopIII BBHs is presumably robust because stable mass transfer is less uncertain than common envelope evolution, which is the main formation channel for Population II BBHs. We also test the hypothesis that the BBH mergers detected by LIGO originate from PopIII stars using the total number of PopIII stars formed in the early universe as inferred from the optical depth measured by Planck. We conclude that the PopIII BBH formation scenario can explain the mass-weighted merger rate of the LIGO's O1 events with the maximal PopIII formation efficiency inferred from the Planck measurement, even without BBHs formed by unstable mass transfer or common envelope phases.

  17. Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Toonen, Silvia; Hamers, Adrian S.

    2017-06-01

    We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov-Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triples with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3-1.3) Gpc-3 yr-1, or up to ≈2.5 Gpc-3 yr-1 if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.

  18. On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs

    NASA Astrophysics Data System (ADS)

    Tang, Yike; MacFadyen, Andrew; Haiman, Zoltán

    2017-08-01

    Gaseous circumbinary accretion discs provide a promising mechanism to facilitate the mergers of supermassive black holes (SMBHs) in galactic nuclei. We measure the torques exerted on accreting SMBH binaries, using 2D, isothermal, moving-mesh, viscous hydrodynamical simulations of circumbinary accretion discs. Our computational domain includes the entire inner region of the circumbinary disc, with the individual black holes (BHs) treated as point masses on the grid. A sink prescription is used to account for accretion on to each BH through well-resolved minidiscs. We explore a range of mass-removal rates for the sinks. We find that the torque exerted on the binary is primarily gravitational, and dominated by the gas orbiting close behind and ahead of the individual BHs. The torques are sensitive to the sink prescription: slower sinks result in more gas accumulating near the BHs and more negative torques, driving more rapid binary merger. For faster sinks, the torques are less negative, and eventually turn positive (for unphysically fast sinks). When the minidiscs are modelled as standard α discs, our results are insensitive to the chosen sink radius. When scaled to \\dot{M}/\\dot{M}_Edd=0.3, the implied residence time-scale is ≈3 × 106 yr, independent of the SMBH masses and orbital separation. For binaries with total mass ≲ 107 M⊙, this is shorter than the inspiral time due to gravitational wave (GW) emission alone, implying that gas discs will have a significant impact on the SMBH binary population and can affect the GW signal for pulsar timing arrays.

  19. The origin of Black-Hole Spin in Galactic Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos; McClintock, Jeffrey

    2015-08-01

    Galactic field low-mass X-ray binaries (LMXBs), like the ones for which black hole (BH) spin measurements are available, are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters from a*~0 to a*1. In this talk I propose that the BH spin in LMXBs is acquired through accretion onto the BH during its long stable accretion phase. In order to test this hypothesis, I calculated extensive grids of binary evolutionary sequences in which a BH accretes matter from a close companion. For each evolutionary sequence, I examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of observed Galactic LMXBs with BH spin measurements. Mass-transfer sequences that simultaneously satisfy all observational constraints represent possible progenitors of the considered LMXBs and thus give estimates of the amount of matter that the BH has accreted since the onset of Roche-Lobe overflow. I find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted by the accreted matter. Furthermore, based on this hypothesis, I derive limits on the maximum spin that a BH can have depending on the orbital period of the binary it resides in, and give predictions on the maximum possible BH spin of Galactic LMXBs where a BH spin measurement is not yet available. Finally I will discuss the implication that our findings have on the birth black hole mass distribution.

  20. Orbital motion in the radio galaxy 3C 66B: evidence for a supermassive black hole binary.

    PubMed

    Sudou, Hiroshi; Iguchi, Satoru; Murata, Yasuhiro; Taniguchi, Yoshiaki

    2003-05-23

    Supermassive black hole binaries may exist in the centers of active galactic nuclei such as quasars and radio galaxies, and mergers between galaxies may result in the formation of supermassive binaries during the course of galactic evolution. Using the very-long-baseline interferometer, we imaged the radio galaxy 3C 66B at radio frequencies and found that the unresolved radio core of 3C 66B shows well-defined elliptical motions with a period of 1.05 +/- 0.03 years, which provides a direct detection of a supermassive black hole binary.

  1. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  2. Investigating the Wolf-Rayet + Black Hole Binary NGC 300 X-1 With Chandra and Hubble

    NASA Astrophysics Data System (ADS)

    Gross, Jacob; Binder, Breanna A.; Williams, Benjamin F.; Laycock, Silas

    2016-01-01

    We observed the Wolf-Rayet + black hole binary NGC 300 X-1 twice with the Chandra X-ray Observatory (~65 ksec each). In the first observation, we observed a secular increase in brightness of the X-ray source, consistent with an eclipse egress. The Chandra data were also used to construct a spectral model of the black hole that could help us better understand how X-rays are being produced in the binary. We observe an X-ray energy dependence on the orbital phase, consistent with the black hole moving through the dense stellar wind of the donor star. Prior to our study, NGC 300 X-1 had only been observed by ground-based telescopes and these images of the system made it difficult to separate the optical source from other nearby stars. We obtained Hubble imaging of NGC 300 X-1 for the first time, and found a bright AGB star withing the X-ray error circle, in addition to the Wolf-Rayet star. We cannot rule out the possibility that the AGB star is the companion. We have compared the X-ray light curve with the He II λ 4648 emission line radial velocity from the literature to the X-ray light curve, and found that the He II emission line likely originates from the black hole accretion disk or from a focused wind from the donor, and not the donor star itself. These observations demonstrates that the mass of the black hole -- previously estimated at ~15 M⊙ -- may not be accurate.

  3. A Bayesian Model for the Detection of X-ray Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Gopalan, Giri; Bornn, Luke; Vrtilek, Saku

    2015-01-01

    In X-ray binary systems consisting of a compact object that accretes material from an orbiting secondary star, there is no simple means to determine if the compact object is a black hole or a neutron star. To assist this process we develop a Bayesian statistical model, which makes use of the fact that X-ray binary systems appear to cluster based on their compact object type when viewed from a particular 3- dimensional coordinate system derived from spectral data. In particular we utilize a latent variable model in which the latent variables follow a Gaussian process prior, and hence we are able to induce the spatial correlation we believe exists between systems of the same type. The key parameters of this model are the probabilities that an observation comes from a black hole, a pulsar, or non-pulsing neutron star. A benefit of this approach is of a computational nature - the assumption of a prior which follows a multivariate normal distribution allows for the implementation of elliptical slice sampling for performing inference, a fast and stable alternative to standard Metropolis-Hastings or Gibbs sampling (Murray 2010). Our model is fit from 13 years worth of spectral data from 30 X-ray binary systems. Its predictive power is evidenced by the accurate prediction of system types using inferred probabilities from the aforementioned model.

  4. Surrogate models of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott; Galley, Chad; Hemberger, Daniel; Scheel, Mark; Schmidt, Patricia; Smith, Rory

    2017-01-01

    Extracting astrophysical parameters and testing general relativity from gravitational wave observations of binary black hole mergers requires high-fidelity signal predictions. The effective-one-body model and phenomenological waveform models have been shown to work well for a subset of the possible parameter space. They could be insufficiently accurate for estimating the parameters of a loud gravitational wave detection in other regions of the parameter space. Numerical relativity (NR) surrogate models attempt to rapidly and accurately interpolate the waveforms from a set of NR simulations over a subset of parameter space. Using the Spectral Einstein Code (SpEC), we have built NR surrogate models for precessing binaries with a restricted spin direction on the smaller black hole, and are actively working on extending this to the full 7d parameter space of non-eccentric binaries. The NR surrogate models typically perform an order of magnitude better than other waveform models when compared to NR waveforms which were not included in the surrogate training set, and can be used in gravitational wave parameter estimation.

  5. Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.

    2012-01-01

    Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.

  6. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; hide

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  7. Nutational resonances, transitional precession, and precession-averaged evolution in binary black-hole systems

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Kesden, Michael; Gerosa, Davide

    2017-07-01

    In the post-Newtonian (PN) regime, the time scale on which the spins of binary black holes precess is much shorter than the radiation-reaction time scale on which the black holes inspiral to smaller separations. On the precession time scale, the angle between the total and orbital angular momenta oscillates with nutation period τ , during which the orbital angular momentum precesses about the total angular momentum by an angle α . This defines two distinct frequencies that vary on the radiation-reaction time scale: the nutation frequency ω ≡2 π /τ and the precession frequency Ω ≡α /τ . We use analytic solutions for generic spin precession at 2PN order to derive Fourier series for the total and orbital angular momenta in which each term is a sinusoid with frequency Ω -n ω for integer n . As black holes inspiral, they can pass through nutational resonances (Ω =n ω ) at which the total angular momentum tilts. We derive an approximate expression for this tilt angle and show that it is usually less than 10-3 radians for nutational resonances at binary separations r >10 M . The large tilts occurring during transitional precession (near zero total angular momentum) are a consequence of such states being approximate n =0 nutational resonances. Our new Fourier series for the total and orbital angular momenta converge rapidly with n providing an intuitive and computationally efficient approach to understanding generic precession that may facilitate future calculations of gravitational waveforms in the PN regime.

  8. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    NASA Astrophysics Data System (ADS)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  9. On the formation of galactic black hole low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Jia, Kun; Li, Xiang-Dong

    2016-03-01

    Currently, there are 24 black hole (BH) X-ray binary systems that have been dynamically confirmed in the Galaxy. Most of them are low-mass X-ray binaries (LMXBs) comprised of a stellar-mass BH and a low-mass donor star. Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. In this paper, we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency and the initial mass distributions of the companion stars. We obtain the birthrate and the distributions of the donor mass, effective temperature and orbital period for the BH LMXBs in each case. By comparing the calculated results with the observations, we put useful constraints on the aforementioned parameters. In particular, we show that it is possible to form BH LMXBs with the standard CE scenario if most BHs are born through failed supernovae.

  10. Formation of Galactic Black Hole Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Li, Xiangdong

    2016-07-01

    Most of the Galactic black hole (BH) X-ray binary systems are low-mass X-ray binaries (LMXBs). Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. Here we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency, and the initial mass distributions of the companion stars. We obtain the birthrate and the distributions of the donor mass, effective temperature and orbital period for the BH LMXBs in each case. By comparing the calculated results with the observations, we put useful constraints on the aforementioned parameters. In particular, we show that it is possible to form BH LMXBs with the standard CE scenario if most BHs are born through failed supernovae.

  11. Binary Black Hole Merger in Galactic Nuclei: Post-Newtonian Simulations

    NASA Astrophysics Data System (ADS)

    Berentzen, Ingo; Preto, Miguel; Berczik, Peter; Merritt, David; Spurzem, Rainer

    2009-04-01

    This paper studies the formation and evolution of binary supermassive black holes (SMBHs) in rotating galactic nuclei, focusing on the role of stellar dynamics. We present the first N-body simulations that follow the evolution of the SMBHs from kiloparsec separations all the way to their final relativistic coalescence, and that can robustly be scaled to real galaxies. The N-body code includes post-Newtonian (P N) corrections to the binary equations of motion up to order 2.5; we show that the evolution of the massive binary is only correctly reproduced if the conservative 1 P N and 2 P N terms are included. The orbital eccentricities of the massive binaries in our simulations are often found to remain large until shortly before coalescence. This directly affects not only their orbital evolution rates, but has important consequences as well for the gravitational waveforms emitted during the relativistic inspiral. We estimate gravitational wave amplitudes when the frequencies fall inside the band of the (planned) Laser Interferometer Space Antennae (LISA). We find significant contributions—well above the LISA sensitivity curve—from the higher-order harmonics.

  12. Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    NASA Astrophysics Data System (ADS)

    Murguia-Berthier, Ariadna; MacLeod, Morgan; Ramirez-Ruiz, Enrico; Antoni, Andrea; Macias, Phillip

    2017-08-01

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.

  13. Tests of general relativity from gravitational wave observations of binary black holes

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter

    2017-01-01

    Gravitational waves emitted during the coalescence of compact binary systems carry a wealth of information about the merging objects, the remnant object as well as their interaction with space-time. The description of the dynamics of such systems is based on solutions of the theory of general relativity. For any given physical configuration of masses, spins and orbital motion, general relativity predicts the dynamical evolution of the binary system as well as the corresponding gravitational wave signal. During the coalescence of extremely compact objects such as binary black holes, the typical curvature and velocity at play are such that, from the observation of the gravitational wave signal, we can access the most extreme dynamical regimes of gravity. In such conditions, we can test our understanding of gravity by looking for potential departures between the solutions of general relativity and the actual dynamics of space-time. The LIGO observations GW150914 and GW151226 provided wonderful testing grounds for general relativity in the, up to now unaccessible, strong-field dynamical regime of gravity. During my talk, I will review and discuss several of the tests that have been devised to detect violations of the predictions of general relativity from the observation of gravitational waves from coalescing binary systems. The discussion will be based on the results of the analysis of GW150914 and GW151226. Finally, I will conclude by discussing some of the future prospects of extending the current state-of-the-art methodologies to further aspects of general relativity.

  14. The Final Spin from Binary Black Holes in Quasi-circular Orbits

    NASA Astrophysics Data System (ADS)

    Hofmann, Fabian; Barausse, Enrico; Rezzolla, Luciano

    2016-07-01

    We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.

  15. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    SciTech Connect

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C.; Marziani, P.; Shapovalova, A. I.; Borka Jovanovic, V.; Borka, D.; Sulentic, J.

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  16. Astrophysical Implications of the Binary Black-hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  17. Precessing supermassive black hole binaries and dark energy measurements with LISA

    SciTech Connect

    Stavridis, Adamantios; Arun, K. G.; Will, Clifford M.

    2009-09-15

    Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ability of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter w. Using the {lambda}CDM model of cosmology, we show that observations of precessing binaries with mass ratio 10 ratio 1 by LISA, combined with a redshift measurement, can improve the determination of w up to an order of magnitude with respect to the nonprecessing case depending on the total mass and the redshift.

  18. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .

  19. Dark jets in the soft X-ray state of black hole binaries?

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.

    2017-04-01

    X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.

  20. Comparisons of eccentric binary black hole simulations with post-Newtonian models

    SciTech Connect

    Hinder, Ian; Herrmann, Frank; Laguna, Pablo; Shoemaker, Deirdre

    2010-07-15

    We present the first comparison between numerical relativity (NR) simulations of an eccentric binary black hole system with corresponding post-Newtonian (PN) results. We evolve an equal-mass, nonspinning configuration with an initial eccentricity e{approx_equal}0.1 for 21 gravitational wave cycles before merger, and find agreement in the gravitational wave phase with an adiabatic eccentric PN model with 2 PN radiation reaction within 0.1 radians for 10 cycles. The NR and PN phase difference grows to 0.7 radians by 5 cycles before merger. We find that these results can be obtained by expanding the eccentric PN expressions in terms of the frequency-related variable x=({omega}M){sup 2/3} with M the total mass of the binary. When using instead the mean motion n=2{pi}/P, where P is the orbital period, the comparison leads to significant disagreements with NR.