Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less
Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals
Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; ...
2015-02-27
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less
NASA Technical Reports Server (NTRS)
Tabib-Azar, Massood
1997-01-01
We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.
Near Field Imaging of Gallium Nitride Nanowires for Characterization of Minority Carrier Diffusion
2009-12-01
diffusion length in nanowires is critical to potential applications in solar cells , spectroscopic sensing, and/or lasers and light emitting diodes (LED...technique has been successfully demonstrated with thin film solar cell materials [4, 5]. In these experiments, the diffusion length was measured using a...minority carrier diffusion length . This technique has been used in the near-field collection mode to image the diffusion of holes in n-type GaN
NASA Technical Reports Server (NTRS)
Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.
2004-01-01
Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.
Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon
NASA Technical Reports Server (NTRS)
Del Alamo, Jesus A.; Swanson, Richard M.
1987-01-01
The relevant hole transport and recombination parameters in heavily doped n-type silicon under steady state are the hole diffusion length and the product of the hole diffusion coefficient times the hole equilibrium concentration. These parameters have measured in phosphorus-doped silicon grown by epitaxy throughout nearly two orders of magnitude of doping level. Both parameters are found to be strong functions of donor concentration. The equilibrium hole concentration can be deduced from the measurement. A rigid shrinkage of the forbidden gap appears as the dominant heavy doping mechanism in phosphorus-doped silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malin, T. V., E-mail: mal-tv@mail.ru; Gilinsky, A. M.; Mansurov, V. G.
2015-10-15
The room-temperature diffusion length of minority carriers in n-Al{sub 0.1}Ga{sub 0.9}N layers grown by ammonia molecular beam epitaxy on sapphire (0001) substrates used in structures for ultraviolet photodetectors is studied. Measurements were performed using the spectral dependence of the photocurrent recorded in a built-in p–n junction for thin samples and using the induced electron-current procedure for films up to 2 µm thick. The results show that the hole diffusion length in n-AlGaN films is 120–150 nm, which is larger than in GaN films grown under similar growth conditions by a factor of 3–4. This result can be associated with themore » larger lateral sizes characteristic of hexagonal columns in AlGaN layers grown by molecular beam epitaxy. No increase in the hole diffusion length is observed for thicker films.« less
NASA Astrophysics Data System (ADS)
Yakimov, E. B.; Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Pearton, S. J.
2018-05-01
The spatial distribution of electron-hole pair generation in β-Ga2O3 as a function of scanning electron microscope (SEM) beam energy has been calculated by a Monte Carlo method. This spatial distribution is then used to obtain the diffusion length of charge carriers in high-quality epitaxial Ga2O3 films from the dependence of the electron beam induced current (EBIC) collection efficiency on the accelerating voltage of a SEM. The experimental results show, contrary to earlier theory, that holes are mobile in β-Ga2O3 and to a large extent determine the diffusion length of charge carriers. Diffusion lengths in the range 350-400 nm are determined for the as-grown Ga2O3, while processes like exposing the samples to proton irradiation essentially halve this value, showing the role of point defects in controlling minority carrier transport. The pitfalls related to using other popular EBIC-based methods assuming a point-like excitation function are demonstrated. Since the point defect type and the concentration in currently available Ga2O3 are dependent on the growth method and the doping concentration, accurate methods of diffusion length determination are critical to obtain quantitative comparisons of material quality.
1994-01-01
Dosimetry : Analysis of dosimetry in two dewar/liquid nitrogen systems. TIME Estimate: One hour for setup, irradiation and TLD reading/analysis. IV...point indicates both electron and hole trapping at the boundary ........................ 12 3.3 Relationship between current and dose for irradiated...peak value. Carriers are collected across the vertical junction within a diffusion length. Since the electron diffusion length is much larger than for
Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.
Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho
2017-11-01
We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.
NASA Astrophysics Data System (ADS)
Ginsberg, Naomi
2015-03-01
The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.
Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giard, E., E-mail: edouard.giard@onera.fr; Ribet-Mohamed, I.; Jaeck, J.
2014-07-28
We present in this paper a comparison between different type-II InAs/GaSb superlattice (T2SL) photodiodes and focal plane array (FPA) in the mid-wavelength infrared domain to understand which phenomenon drives the performances of the T2SL structure in terms of quantum efficiency (QE). Our measurements on test photodiodes suggest low minority carrier diffusion length in the “InAs-rich” design, which penalizes carriers' collection in this structure for low bias voltage and front side illumination. This analysis is completed by a comparison of the experimental data with a fully analytic model, which allows to infer a hole diffusion length shorter than 100 nm. In addition,more » measurements on a FPA with backside illumination are finally presented. Results show an average QE in the 3–4.7 μm window equal to 42% for U{sub bias} = −0.1 V, 77 K operating temperature and no anti-reflection coating. These measurements, completed by modulation transfer function and noise measurements, reveal that the InAs-rich design, despite a low hole diffusion length, is promising for high performance infrared imaging applications.« less
NASA Astrophysics Data System (ADS)
Toušek, J.; Toušková, J.; Remeš, Z.; Chomutová, R.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.
2015-12-01
Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD - DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.
NASA Astrophysics Data System (ADS)
Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan
2016-05-01
The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.
Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.
The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorptionmore » measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.« less
Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.
Dowgiallo, Anne-Marie; Mistry, Kevin S; Johnson, Justin C; Reid, Obadiah G; Blackburn, Jeffrey L
2016-05-19
The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT "reporter layer". In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.
Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less
Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.; ...
2017-12-21
Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less
Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals
NASA Astrophysics Data System (ADS)
Marchand, A.; El Hdiy, A.; Troyon, M.; Amiard, G.; Ronda, A.; Berbezier, I.
2012-04-01
Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope—tip in contact mode at a fixed position away from the beam spot of about 0.5 µm. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.
Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions.
Gutsche, Christoph; Niepelt, Raphael; Gnauck, Martin; Lysov, Andrey; Prost, Werner; Ronning, Carsten; Tegude, Franz-Josef
2012-03-14
Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths. © 2012 American Chemical Society
Near-field cathodoluminescence studies on n-doped gallium nitride films
NASA Astrophysics Data System (ADS)
Nogales, E.; Joachimsthaler, I.; Heiderhoff, R.; Piqueras, J.; Balk, L. J.
2002-07-01
Near-field cathodoluminescence (NFCL) has been used to characterize hydride vapor phase epitaxy grown n-GaN films. This technique can obtain high resolution luminescence images and perform local measurements of the diffusion length for minority carriers in different parts of the sample. NFCL contrast observed in round growth hillocks at the sample surface, with a diameter of less than 10 mum, is compared with that observed by conventional cathodoluminescence in scanning electron microscope (CLSEM) techniques. In particular NFCL images reveal features not detected by CLSEM which is explained by the fact that under near field conditions the signal arises from a depth of only several tens of nanometers and is then directly related to the surface hillocks. Diffusion lengths of about 0.4 and 4 mum have been found for the holes in different regions of the samples at room temperature. The order of magnitude of these minority carriers diffusion lengths is in good agreement with previous measurements performed at different GaN samples with other techniques. The NFCL contrast and the differences in the measured diffusion lengths are discussed and explained by variations in local trap concentrations.
Li, Z; Zhang, X; Lu, G
2014-05-07
Exciton diffusion in small molecules 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione [DPP(TBFu)2] is studied using first-principles simulations. We have examined dependence of exciton diffusion on structure disorder, temperature and exciton energy. We find that exciton diffusion length and diffusivity increase with structural order, temperature and the initial exciton energy. Compared to conjugated polymer poly(3-hexylthiophene) (P3HT), DPP(TBFu)2 small molecules exhibit a much higher exciton diffusivity, but a shorter lifetime. The exciton diffusion length in DPP(TBFu)2 is 50% longer than that in P3HT, yielding a higher exciton harvesting efficiency; the physical origin behind these differences is discussed. The time evolutions of exciton energy, electron-hole distance, and exciton localization are explored, and the widely speculated exciton diffusion mechanism is confirmed theoretically. The connection between exciton diffusion and carrier mobilities is also studied. Finally we point out the possibility to estimate exciton diffusivity by measuring carrier mobilities under AC electric fields.
NASA Astrophysics Data System (ADS)
Chen, Hai-Yang; Jiang, Lan; Li, Da-Rang
2011-05-01
PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current (EBIC) techniques and betavoltaic batteries, in which the recombination in depletion regions is ignored. We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+PN+ junction, based on comparisons between measured short currents and ideal values. The results show that only 20% electron-hole pairs in the depletion can be collected, causing the short current. This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region. Hence, it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.
A nonlinear equation for ionic diffusion in a strong binary electrolyte
Ghosal, Sandip; Chen, Zhen
2010-01-01
The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176
Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes
Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.; ...
2017-05-29
Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less
Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.
Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less
NASA Astrophysics Data System (ADS)
Seager, David J.; Liburdy, James A.
1997-11-01
To further understand the effect of both compound angle holes and hole shaping on film cooling, detailed heat transfer measurements were obtained using hue based thermochromic liquid crystal method. The data were analyzed to measure both the full surface adiabatic effectiveness and heat transfer coefficient. The compound angles that were evaluated consist of holes that were aligned 0 degrees, 45 degrees, 60 degrees and 90 degrees to the main cross flow direction. Hole shaping variations from the traditional cylindrical shaped hole include forward diffused and laterally diffused hole geometries. Geometric parameters that were selected were the length to diameter ratio of 3.0, and the inclination angle 35 degrees. A density ratio of 1.55 was obtained for all teste. For each set of conditions the blowing ratio was varied to be 0.88, 1.25, and 1.88. Adiabatic effectiveness was obtained using a steady state test, while an active heating surface was used to determine the heat transfer coefficient using a transient method. The experimental method provides a unique method of analyzing a three-temperature heat transfer problem by providing detailed surface transport properties. Based on these results for the different hole geometries at each blowing ratio conclusions are drawn relative to the effects of compound angle holes on the overall film cooling performance.
Centimetre-scale electron diffusion in photoactive organic heterostructures
NASA Astrophysics Data System (ADS)
Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.
2018-02-01
The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.
Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length
NASA Astrophysics Data System (ADS)
Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph
2018-02-01
The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.
NASA Astrophysics Data System (ADS)
Collins, K. C.; Armstrong, A. M.; Allerman, A. A.; Vizkelethy, G.; Van Deusen, S. B.; Léonard, F.; Talin, A. A.
2017-12-01
Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4-6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%-55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ˜500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.
Interaction-induced backscattering in short quantum wires
Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...
2014-10-06
We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less
Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua
2015-07-08
Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.
Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kurtz, Steven R.; Klem, J. F.; Allerman, A. A.; Sieg, R. M.; Seager, C. H.; Jones, E. D.
2002-02-01
To gain insight into the nitrogen-related defects of InGaAsN, nitrogen vibrational mode spectra, Hall mobilities, and minority carrier diffusion lengths are examined for InGaAsN (1.1 eV band gap) grown by molecular beam epitaxy (MBE). Annealing promotes the formation of In-N bonding, and lateral carrier transport is limited by large scale (≫mean free path) material inhomogeneities. Comparing solar cell quantum efficiencies with our earlier results for devices grown by metalorganic chemical vapor deposition (MOCVD), we find significant electron diffusion in the MBE material (reversed from the hole diffusion in MOCVD material), and minority carrier diffusion in InGaAsN cannot be explained by a "universal," nitrogen-related defect.
Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs
NASA Technical Reports Server (NTRS)
Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.
1979-01-01
The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.
Length distributions of nanowires: Effects of surface diffusion versus nucleation delay
NASA Astrophysics Data System (ADS)
Dubrovskii, Vladimir G.
2017-04-01
It is often thought that the ensembles of semiconductor nanowires are uniform in length due to the initial organization of the growth seeds such as lithographically defined droplets or holes in the substrate. However, several recent works have already demonstrated that most nanowire length distributions are broader than Poissonian. Herein, we consider theoretically the length distributions of non-interacting nanowires that grow by the material collection from the entire length of their sidewalls and with a delay of nucleation of the very first nanowire monolayer. The obtained analytic length distribution is controlled by two parameters that describe the strength of surface diffusion and the nanowire nucleation rate. We show how the distribution changes from the symmetrical Polya shape without the nucleation delay to a much broader and asymmetrical one for longer delays. In the continuum limit (for tall enough nanowires), the length distribution is given by a power law times an incomplete gamma-function. We discuss interesting scaling properties of this solution and give a recipe for analyzing and tailoring the experimental length histograms of nanowires which should work for a wide range of material systems and growth conditions.
PTV analysis of the entrained air into the diesel spray at high-pressure injection
NASA Astrophysics Data System (ADS)
Toda, Naoki; Yamashita, Hayato; Mashida, Makoto
2014-08-01
In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.
Enhancing energy transport in conjugated polymers
NASA Astrophysics Data System (ADS)
Holmes, Russell J.
2018-05-01
The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes (1). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion (2). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. (3) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).
NASA Astrophysics Data System (ADS)
Paradzah, Alexander T.; Diale, Mmantsae; Maabong, Kelebogile; Krüger, Tjaart P. J.
2018-04-01
Hematite is a widely investigated material for applications in solar water oxidation due primarily to its small bandgap. However, full realization of the material continues to be hampered by fast electron-hole recombination rates among other weaknesses such as low hole mobility, short hole diffusion length and low conductivity. To address the problem of fast electron-hole recombination, researchers have resorted to growth of nano-structured hematite, doping and use of under-layers. Under-layer materials enhance the photo-current by minimising electron-hole recombination through suppressing of back electron flow from the substrate, such as fluorine-doped tin oxide (FTO), to hematite. We have carried out ultrafast transient absorption spectroscopy on hematite in which Nb2O5 and SnO2 materials were used as interfacial layers to enhance hole lifetimes. The transient absorption data was fit with four different lifetimes ranging from a few hundred femtoseconds to a few nanoseconds. We show that the electron-hole recombination is slower in samples where interfacial layers are used than in pristine hematite. We also develop a model through target analysis to illustrate the effect of under-layers on electron-hole recombination rates in hematite thin films.
An EBIC equation for solar cells. [Electron Beam Induced Current
NASA Technical Reports Server (NTRS)
Luke, K. L.; Von Roos, O.
1983-01-01
When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.
Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells
NASA Technical Reports Server (NTRS)
Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.
1982-01-01
The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.
Hot particles attract in a cold bath
NASA Astrophysics Data System (ADS)
Tanaka, Hidenori; Lee, Alpha A.; Brenner, Michael P.
2017-04-01
Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles and demonstrate a mechanism for long-range attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction. Strikingly, the interaction range is more than an order of magnitude larger than the particle radius, well beyond the range of the conventional depletion force. Although the mechanism occurs outside the parameter regime of typical biological swimmers, the mechanism could be realized in the laboratory.
Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system
NASA Astrophysics Data System (ADS)
Pieczarka, M.; Syperek, M.; Biegańska, D.; Gilfert, C.; Pavelescu, E. M.; Reithmaier, J. P.; Misiewicz, J.; Sek, G.
2017-05-01
The lateral carrier diffusion process is investigated in coupled InGaAs/GaAs quantum dot-quantum well (QD-QW) structures by means of spatially resolved photoluminescence spectroscopy at low temperature. Under non-resonant photo-excitation above the GaAs bandgap, the lateral carrier transport reflected in the distorted electron-hole pair emission profiles is found to be mainly governed by high energy carriers created within the 3D density of states of GaAs. In contrast, for the case of resonant excitation tuned to the QW-like ground state of the QD-QW system, the emission profiles remain unaffected by the excess kinetic energy of carriers and local phonon heating within the pump spot. The lateral diffusion lengths are determined and present certain dependency on the coupling strength between QW and QDs. While for a strongly coupled structure the diffusion length is found to be around 0.8 μm and monotonically increases up to 1.4 μm with the excitation power density, in weakly coupled structures, it is determined to ca. 1.6 μm and remained virtually independent of the pumping power density.
NASA Astrophysics Data System (ADS)
Zhu, Weibo; Zhuang, Zhenyuan; Yang, Yanmin; Zhang, Ruidan; Lin, Zhiya; Lin, Yingbin; Huang, Zhigao
2016-06-01
Hole-rich Li4Ti5O12 composites are synthesized by spray drying using carbon nanotubes as additives in precursor solution, subsequently followed calcinated at high temperature in air. The structure, morphology, and texture of the as-prepared composites are characterized with XRD, Raman, BET and SEM techniques. The electrochemical properties of the as-prepared composites are investigated systematically by charge/discharge testing, cyclic voltammograms and AC impedance spectroscopy, respectively. In comparison with the pristine Li4Ti5O12, the hole-rich Li4Ti5O12 induced by carbon nanotubes exhibits superior electrochemical performance, especially at high rates. The obtained excellent electrochemical performances of should be attributed to the hole-rich structure of the materials, which offers more connection-area with the electrolyte, shorter diffusion-path length as well faster migration rate for both Li ions and electrons during the charge/discharge process.
Hole effective masses and subband splitting in type-II superlattice infrared detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, David Z., E-mail: David.Z.Ting@jpl.nasa.gov; Soibel, Alexander; Gunapala, Sarath D.
We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass thanmore » its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.« less
NASA Astrophysics Data System (ADS)
Gildenburg, V. B.; Pavlichenko, I. A.
2016-08-01
The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as the geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability, this period occurs to be approximately equal to the laser half-wavelength in the silica, close to the one experimentally observed.
Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface
NASA Astrophysics Data System (ADS)
Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua
2018-01-01
Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch (P/d) and slot length-to-diameter (l/d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/d = 2 and x/d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.
Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface
NASA Astrophysics Data System (ADS)
Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua
2018-06-01
Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch ( P/ d) and slot length-to-diameter ( l/ d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/ d = 2 and x/ d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.
Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K. -Y.
2015-10-20
The promising photophysical properties of the emerging organometallic halide perovskites, such as intense broadband absorption, high charge carrier mobility, and long charge diffusion length, have enabled the rapid development in solar cells reaching over 20% power conversion effi ciency (PCE) recently. Especially, the low material cost and facile solution processability of perovskites are very attractive as next-generation photovoltaic materials for sustainable energy.
Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Sin, Sang-Jin; Tian, Yu; Wu, Shao-Feng; Wu, Shang-Yu
2018-01-01
We show that there exists a class of charged BTZ-like black hole solutions in Lifshitz spacetime with a hyperscaling violating factor. The charged BTZ black hole is characterized by a charge-dependent logarithmic term in the metric function. As concrete examples, we give five such charged BTZ-like black hole solutions and the standard charged BTZ metric can be regarded as a special instance of them. In order to check the recent proposed universal relations between diffusivity and the butterfly velocity, we first compute the diffusion constants of the standard charged BTZ black holes and then extend our calculation to arbitrary dimension d, exponents z and θ. Remarkably, the case d = θ and z = 2 is a very special in that the charge diffusion D c is a constant and the energy diffusion D e might be ill-defined, but v B 2 τ diverges. We also compute the diffusion constants for the case that the DC conductivity is finite but in the absence of momentum relaxation.
On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study.
Lovelock, Kevin R J; Ejigu, Andinet; Loh, Sook Fun; Men, Shuang; Licence, Peter; Walsh, Darren A
2011-06-07
The electrochemical behaviour of ferrocenemethanol (FcMeOH) has been studied in a range of room-temperature ionic liquids (RTILs) using cyclic voltammetry, chronoamperomery and scanning electrochemical microscopy (SECM). The diffusion coefficient of FcMeOH, measured using chronoamperometry, decreased with increasing RTIL viscosity. Analysis of the mass transport properties of the RTILs revealed that the Stokes-Einstein equation did not apply to our data. The "correlation length" was estimated from diffusion coefficient data and corresponded well to the average size of holes (voids) in the liquid, suggesting that a model in which the diffusing species jumps between holes in the liquid is appropriate in these liquids. Cyclic voltammetry at ultramicroelectrodes demonstrated that the ability to record steady-state voltammograms during ferrocenemethanol oxidation depended on the voltammetric scan rate, the electrode dimensions and the RTIL viscosity. Similarly, the ability to record steady-state SECM feedback approach curves depended on the RTIL viscosity, the SECM tip radius and the tip approach speed. Using 1.3 μm Pt SECM tips, steady-state SECM feedback approach curves were obtained in RTILs, provided that the tip approach speed was low enough to maintain steady-state diffusion at the SECM tip. In the case where tip-induced convection contributed significantly to the SECM tip current, this effect could be accounted for theoretically using mass transport equations that include diffusive and convective terms. Finally, the rate of heterogeneous electron transfer across the electrode/RTIL interface during ferrocenemethanol oxidation was estimated using SECM, and k(0) was at least 0.1 cm s(-1) in one of the least viscous RTILs studied.
NASA Astrophysics Data System (ADS)
Liaugaudas, Gediminas; Dargis, Donatas; Kwasnicki, Pawel; Arvinte, Roxana; Zielinski, Marcin; Jarašiūnas, Kęstutis
2015-01-01
A series of p-type 4H-SiC epilayers with aluminium concentration ranging from 2 × 1016 to 8 × 1019 cm-3 were investigated by time-resolved optical techniques in order to determine the effect of aluminium doping on high-injection carrier lifetime at room temperature and the diffusion coefficient at different injections (from ≈3 × 1018 to ≈5 × 1019 cm-3) and temperatures (from 78 to 730 K). We find that the defect limited carrier lifetime τSRH decreases from 20 ns in the low-doped samples down to ≈0.6 ns in the heavily doped epilayers. Accordingly, the ambipolar diffusion coefficient decreases from Da = 3.5 cm2 s-1 down to ≈0.6 cm2 s-1, corresponding to the hole mobility of µh = 70 cm2 Vs-1 and 12 cm2 Vs-1, respectively. In the highly doped epilayers, the injection-induced decrease of the diffusion coefficient, due to the transition from the minority carrier diffusion to the ambipolar diffusion, provided the electron diffusion coefficient of De ≈ 3 cm2 s-1. The Al-doping resulted in the gradual decrease of the ambipolar diffusion length, from LD = 2.7 µm down to LD = 0.25 µm in the epilayers with the lowest and highest aluminium concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gildenburg, V. B., E-mail: gil@appl.sci-nnov.ru; Pavlichenko, I. A.; Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950
2016-08-15
The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as the geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability, this period occurs to be approximatelymore » equal to the laser half-wavelength in the silica, close to the one experimentally observed.« less
Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.
Ultrathin planar hematite film for solar photoelectrochemical water splitting
Liu, Dong; Bierman, David M.; Lenert, Andrej; ...
2015-10-08
Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent ofmore » hematite photoanodes.« less
Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow
Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; ...
2016-07-08
Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of a molecular dynamics simulation study of water intercalated between GO layers that have a C/O ratio of 4. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in spacing from about 0.7 nm to 0.8 nm and an increase in mass ofmore » about 14% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. As a result, slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.« less
Response of GaAs charge storage devices to transient ionizing radiation
NASA Astrophysics Data System (ADS)
Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.
Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.
NASA Astrophysics Data System (ADS)
Lin, Ray-Ming; Lu, Yuan-Chieh; Chou, Yi-Lun; Chen, Guo-Hsing; Lin, Yung-Hsiang; Wu, Meng-Chyi
2008-06-01
We have studied the characteristics of blue InGaN /GaN multiquantum-well light-emitting diodes (LEDs) after reducing the length of the lateral current path through the transparent layer through formation of a peripheral high-resistance current-blocking region in the Mg-doped GaN layer. To study the mechanism of selective activation in the Mg-doped GaN layer, we deposited titanium (Ti), gold (Au), Ti /Au, silver, and copper individually onto the Mg-doped GaN layer and investigated their effects on the hole concentration in the p-GaN layer. The Mg-doped GaN layer capped with Ti effectively depressed the hole concentration in the p-GaN layer by over one order of magnitude relative to that of the as-grown layer. This may suggest that high resistive regions are formed by diffusion of Ti and depth of high resistive region from the p-GaN surface depends on the capped Ti film thickness. Selective activation of the Mg-doped GaN layer could be used to modulate the length of the lateral current path. Furthermore, the external quantum efficiency of the LEDs was improved significantly after reducing the lateral current spreading length. In our best result, the external quantum efficiency was 52.3% higher (at 100mA) than that of the as-grown blue LEDs.
Charge collection and pore filling in solid-state dye-sensitized solar cells.
Snaith, Henry J; Humphry-Baker, Robin; Chen, Peter; Cesar, Ilkay; Zakeeruddin, Shaik M; Grätzel, Michael
2008-10-22
The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO(2) with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 µm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 µm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the process of TiO(2) mesopore infiltration with spiro-MeOTAD by examining the cross-sectional images of and performing photo-induced absorption spectroscopy on devices with a range of thickness, infiltrated with spiro-MeOTAD with a range of concentrations. We present our interpretation of the mechanism for material infiltration, and by improving the casting conditions demonstrate efficient charge collection through devices of over 7 µm in thickness. This investigation represents an improvement in our understanding of the limiting factors to the dye-sensitized solar cell. However, much work, focused on composite formation and improved kinetic competition, is required to realize the true potential of this concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chi-Kang; Wu, Chen-Kuo; Hsu, Chung-Cheng
2016-05-15
In this paper, influence of a V-pit embedded inside the multiple quantum wells (MQWs) LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pitmore » sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.« less
SELF-HEALING NANOMATERIALS: MULTIMILLION-ATOM REACTIVE MOLECULAR DYNAMICS SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakamata, Tomoya; Shimamura, Kohei; Shimojo, Fuyuki
Organometal halide perovskites are attracting great attention as promising material for solar cells because of their high power conversion efficiency. The high performance has been attributed to the existence of free charge carriers and their large diffusion lengths, but the nature of carrier transport at the atomistic level remains elusive. Here, nonadiabatic quantum molecular dynamics simulations elucidate the mechanisms underlying the excellent free-carrier transport in CH 3NH 3PbI 3. Pb and I sublattices act as disjunct pathways for rapid and balanced transport of photoexcited electrons and holes, respectively, while minimizing efficiency-degrading charge recombination. On the other hand, CH 3NH 3more » sublattice quickly screens out electrostatic electron-hole attraction to generate free carriers within 1 ps. Together this nano-architecture lets photoexcited electrons and holes dissociate instantaneously and travel far away to be harvested before dissipated as heat. As a result, this work provides much needed structure-property relationships and time-resolved information that potentially lead to rational design of efficient solar cells.« less
The nature of free-carrier transport in organometal halide perovskites
Hakamata, Tomoya; Shimamura, Kohei; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2016-01-01
Organometal halide perovskites are attracting great attention as promising material for solar cells because of their high power conversion efficiency. The high performance has been attributed to the existence of free charge carriers and their large diffusion lengths, but the nature of carrier transport at the atomistic level remains elusive. Here, nonadiabatic quantum molecular dynamics simulations elucidate the mechanisms underlying the excellent free-carrier transport in CH3NH3PbI3. Pb and I sublattices act as disjunct pathways for rapid and balanced transport of photoexcited electrons and holes, respectively, while minimizing efficiency-degrading charge recombination. On the other hand, CH3NH3 sublattice quickly screens out electrostatic electron-hole attraction to generate free carriers within 1 ps. Together this nano-architecture lets photoexcited electrons and holes dissociate instantaneously and travel far away to be harvested before dissipated as heat. This work provides much needed structure-property relationships and time-resolved information that potentially lead to rational design of efficient solar cells. PMID:26781627
NASA Astrophysics Data System (ADS)
Liu, Yilin; Liu, Jie; Luo, Wenjun; Wen, Xin; Liu, Xiaokang; Zou, Zhigang; Huang, Wei
2017-06-01
Hematite (α-Fe2O3) is a promising photoanode material for solar water splitting due to its suitable band gap, earth-abundance, excellent stability and non-toxicity. However, a short hole diffusion length limits its performance. A nanorod array structure can shorten hole transfer distance to photoelectrode/electrolyte interface and decrease recombination of photo-generated carriers. However, average diameters of all previously reported nanorods are over 50 nm, thus being too thick for holes to transfer to the interface. It is still a big challenge to prepare a Fe2O3 nanorod array photoelectrode with finer diameter. In this study, we prepare an ultrafine α-Fe2O3 nanorod array film with average diameter about 25 nm by calcining γ-FeOOH for the first time. The ultrafine nanorod array photoanode indicates much higher carrier separation efficiency and performance than a conventional nanorod array film.
Dynamic cross-correlations between entangled biofilaments as they diffuse
Tsang, Boyce; Dell, Zachary E.; Jiang, Lingxiang; Schweizer, Kenneth S.; Granick, Steve
2017-01-01
Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 104 times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales. PMID:28283664
Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John
2013-11-19
Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.
MODIS Solar Diffuser Attenuation Screen Modeling Results
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Xuong, Xiaoxiong; Guenther, Bruce; Barnes, William
2004-01-01
On-orbit calibration of the reflected solar bands on the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) is accomplished by have the instrument view a high reflectance diffuse surface illuminated by the sun. For some of the spectral bands this proves to be much too bright a signal that results in the saturation of detectors designed for measuring low reflectance (ocean) surfaces signals. A mechanical attenuation device in the form of a pin hole screen is used to reduce the signals to calibrate these bands. The sensor response to solar illumination of the SD with and without the attenuation screen in place will be presented. The MODIS detector response to the solar diffuser is smooth when the attenuation screen is absent, but has structures up to a few percent when the attenuation screen is present. This structure corresponds to non-uniform illumination from the solar diffuser. Each pin hole produces a pin-hole image of the sun on the solar diffuser, and there are very many pin hole images of the sun on the solar diffuser for each MODIS detector. Even though there are very many pin-hole images of the sun on the solar diffuser, it is no longer perfectly uniformly illuminated. This non-uniformly illuminated solar diffuser produces intensity variation on the focal planes. The results of a very detailed simulation will be discussed which show how the illumination of the focal plane changes as a result of the attenuation, and the impacts on the calibration will be discussed.
Resolving ultrafast exciton migration in organic solids at the nanoscale
NASA Astrophysics Data System (ADS)
Ginsberg, Naomi
The migration of Frenkel excitons, tightly-bound electron-hole pairs, in photosynthesis and in organic semiconducting films is critical to the efficiency of natural and artificial light harvesting. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton migration lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore. By combining the ultrafast super-resolved measurements with exciton hopping simulations we furthermore specify the nature (in addition to the extent) of exciton migration as a function of the intrinsic and ensemble chromophore energy scales that determine a spatio-energetic landscape for migration. In collaboration with: Samuel Penwell, Lucas Ginsberg, University of California, Berkeley and Rodrigo Noriega University of Utah.
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus
2016-08-01
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.
Laser processing of solar cells with anti-reflective coating
Harley, Gabriel; Smith, David D.; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John
2016-02-16
Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2012-01-01
A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harley, Gabriel; Smith, David D.; Dennis, Tim
Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
Energy-efficient skylight structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dame, J.V.
1988-03-29
This patent describes an energy-efficient skylight structure for attaching to a ceiling having a hole therein. The structure includes a roof membrane of light translucent material. The improvement comprises: a framework being larger in size than the hole in the ceiling, the framework adapted to receive a light-diffusing panel; means for attaching the framework over the hole in the ceiling to support beams for the ceiling; gasket means between the framework and the ceiling for sealing the framework to the ceiling around the hole; a light-diffusing panel held by the framework; sealing means between the light-diffusing panel and the frameworkmore » for sealing the perimeter of the light diffusing panel to the framework; and a light-channeling means attached at one end to the ceiling around the opening on the side opposite the framework and at the other end around the light translucent material of the roof membrane.« less
Experimental research of flow parameters on the last stage of the steam turbine 1090 MW
NASA Astrophysics Data System (ADS)
Sedlák, Kamil; Hoznedl, Michal; Bednář, Lukáš; Mrózek, Lukáš; Kalista, Robert
2016-06-01
This article deals with a brief description of measurement and evaluation of flow parameters at the output from the last stage of the low pressure steam turbine casing for the saturated steam with the nominal power 1090 MW. Measurement was carried out using a seven-hole pneumatic probe traversing along the length of the blade in several peripheral positions under nominal and selected partial modes. The result is knowledge of distribution of the static, dynamic and total pressure along the length of the blade and velocity distribution including their components. This information is the input data for determination of efficiency of the last stage, the loss coefficient of the diffuser and other significant parameters describing efficiency of selected parts of the steam turbine.
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik
2017-01-01
The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280
Measurement of Small Molecular Dopant F4TCNQ and C 60F 36 Diffusion in Organic Bilayer Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Rochester, Chris W.; Jacobs, Ian E.
2015-12-03
The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this paper, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C 60F 36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of themore » diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C 60F 36, a much bulkier molecule, is shown to have a substantially higher morphological stability. Finally, this study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures.« less
Interdye Hole Transport Accelerates Recombination in Dye Sensitized Mesoporous Films.
Moia, Davide; Szumska, Anna; Vaissier, Valérie; Planells, Miquel; Robertson, Neil; O'Regan, Brian C; Nelson, Jenny; Barnes, Piers R F
2016-10-12
Charge recombination between oxidized dyes attached to mesoporous TiO 2 and electrons in the TiO 2 was studied in inert electrolytes using transient absorption spectroscopy. Simultaneously, hole transport within the dye monolayers was monitored by transient absorption anisotropy. The rate of recombination decreased when hole transport was inhibited selectively, either by decreasing the dye surface coverage or by changing the electrolyte environment. From Monte Carlo simulations of electron and hole diffusion in a particle, modeled as a cubic structure, we identify the conditions under which hole lifetime depends on the hole diffusion coefficient for the case of normal (disorder free) diffusion. From simulations of transient absorption and transient absorption anisotropy, we find that the rate and the dispersive character of hole transport in the dye monolayer observed spectroscopically can be explained by incomplete coverage and disorder in the monolayer. We show that dispersive transport in the dye monolayer combined with inhomogeneity in the TiO 2 surface reactivity can contribute to the observed stretched electron-hole recombination dynamics and electron density dependence of hole lifetimes. Our experimental and computational analysis of lateral processes at interfaces can be applied to investigate and optimize charge transport and recombination in solar energy conversion devices using electrodes functionalized with molecular light absorbers and catalysts.
Surface and allied studies in silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1984-01-01
Measuring small-signal admittance versus frequency and forward bias voltage together with a new transient measurement apparently provides the most reliable and flexible method available for determining back surface recombination velocity and low-injection lifetime of the quasineutral base region of silicon solar cells. The new transient measurement reported here is called short-circuit-current decay (SCCD). In this method, forward voltage equal to about the open-circuit or the maximum power voltage establishes excess holes and electrons in the junction transition region and in the quasineutral regions. The sudden application of a short circuit causes an exiting of the excess holes and electrons in the transition region within about ten picoseconds. From observing the slope and intercept of the subsequent current decay, the base lifetime and surface recombination velocity can be determined. The admittance measurement previously mentioned then enters to increase accuracy particularly for devices for which the diffusion length exceeds the base thickness.
An Experimental Investigation Into the Colonization of Concealed Cadavers by Necrophagous Blowflies
Charabidze, D.; Hedouin, V.; Gosset, D.
2015-01-01
We used seven baited boxes with different combinations of access holes and odor diffusion surfaces to study the arrival of necrophagous flies. During laboratory experiments, 30 gravid Lucilia sericata females were kept in a chamber with one of the boxes. The box with the largest odor diffusion surface (99 cm2) combined with the lowest accessibility (one 1 cm2 entrance hole) was entered least (5 ± 3.7 flies per run). In contrast, the most frequently entered box (one 9 cm2 entrance hole with no additional odor diffusion surface) caught a mean of 24.6 ± 3.4 flies per run. These results indicate that 1) L. sericata entered nearly inaccessible places and 2) both odor diffusion and accessibility impacted the number of flies caught. During field experiments, the seven boxes were placed together outdoors. The box with the most entrances (ten 9-cm2 holes) caught the most flies (55.6–99.4% of the total). Only a few flies entered the other boxes. Access to the less accessible boxes (poor odor diffusion and small entrances) was also delayed. The major conclusions of the field experiments are that 1) boxes with low accessibility took longer to be accessed; 2) larger odor diffusion surfaces were more attractive to flies; and 3) flies accessed boxes more readily through larger holes than through an equivalent surface area made up of smaller holes. With these conclusions in mind, attempts to quantify the preappearance interval or to interpret the number of flies observed in indoor forensic entomology cases should be approached with caution. PMID:26496788
Chien, Cheng-Yen; Wu, Wen-Hsin; You, Yao-Hong; Lin, Jun-Huei; Lee, Chia-Yu; Hsu, Wen-Ching; Kuan, Chieh-Hsiung; Lin, Ray-Ming
2017-12-01
We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 μm and 300 nm/6 μm, respectively, exhibited positive threshold voltages (V th ) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.
Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.
Kang, Byungkyun; Biswas, Koushik
2017-10-18
There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hihath, Sahar; Department of Physics, University of California, Davis, 1 Shields Ave., Davis, California 95616; Santala, Melissa K.
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO{sub 3} substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisitionmore » during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.« less
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.
Investigation of Spiral and Sweeping Holes
NASA Technical Reports Server (NTRS)
Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram
2015-01-01
Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.
Theoretical prediction of the impact of Auger recombination on charge collection from an ion track
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
1991-01-01
A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.
A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations
NASA Astrophysics Data System (ADS)
Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.
2012-05-01
We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.
Laboratory observation of electron phase-space holes during magnetic reconnection.
Fox, W; Porkolab, M; Egedal, J; Katz, N; Le, A
2008-12-19
We report the observation of large-amplitude, nonlinear electrostatic structures, identified as electron phase-space holes, during magnetic reconnection experiments on the Versatile Toroidal Facility at MIT. The holes are positive electric potential spikes, observed on high-bandwidth ( approximately 2 GHz) Langmuir probes. Investigations with multiple probes establish that the holes travel at or above the electron thermal speed and have a three-dimensional, approximately spherical shape, with a scale size approximately 2 mm. This corresponds to a few electron gyroradii, or many tens of Debye lengths, which is large compared to holes considered in simulations and observed by satellites, whose length scale is typically only a few Debye lengths. Finally, a statistical study over many discharges confirms that the holes appear in conjunction with the large inductive electric fields and the creation of energetic electrons associated with the magnetic energy release.
Observations of the birth of a small coronal hole
NASA Technical Reports Server (NTRS)
Solodyna, C. V.; Krieger, A. S.; Nolte, J. T.
1977-01-01
Using soft X-ray data from the S-054 X-ray spectrographic telescope aboard Skylab, we observed temporal changes in the emission structure of the X-ray corona associated with the birth of a small coronal hole. Designated as CH6, this coronal hole was born near the equator in a time interval less than 9-1/2 hr. By constructing a light curve for a point near the center of CH6, we observed a sudden 40% decrease in X-ray emission associated with the birth of this coronal hole. On a time scale of hours, the growth of CH6 in area proceeded faster than the average rate predicted by the diffusion of solar fields. The short term decay of CH6 followed the diffusive rate to within experimental uncertainty. On a time scale of one rotation, the subsequent development of CH6 was not consistent with steady growth at the average rate predicted by diffusion.
A new length scale for quantum gravity: A resolution of the black hole information loss paradox
NASA Astrophysics Data System (ADS)
Singh, Tejinder P.
We show why and how Compton wavelength and Schwarzschild radius should be combined into one single new length scale, which we call the Compton-Schwarzschild length. Doing so offers a resolution of the black hole information loss paradox, and suggests Planck mass remnant black holes as candidates for dark matter. It also compels us to introduce torsion, and identify the Dirac field with a complex torsion field. Dirac equation and Einstein equations, are shown to be mutually dual limiting cases of an underlying gravitation theory which involves the Compton-Schwarzschild length scale, and includes a complex torsion field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr
2015-06-21
We have investigated the dependence of Negative-Bias-illumination-Stress (NBIS) upon channel length, in amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The negative shift of the transfer characteristic associated with NBIS decreases for increasing channel length and is practically suppressed in devices with L = 100-μm. The effect is consistent with creation of donor defects, mainly in the channel regions adjacent to source and drain contacts. Excellent agreement with experiment has been obtained by an analytical treatment, approximating the distribution of donors in the active layer by a double exponential with characteristic length L{sub D} ∼ L{sub n} ∼ 10-μm, the latter being the electron diffusion length. The model alsomore » shows that a device with a non-uniform doping distribution along the active layer is in all equivalent, at low drain voltages, to a device with the same doping averaged over the active layer length. These results highlight a new aspect of the NBIS mechanism, that is, the dependence of the effect upon the relative magnitude of photogenerated holes and electrons, which is controlled by the device potential/band profile. They may also provide the basis for device design solutions to minimize NBIS.« less
Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique
NASA Astrophysics Data System (ADS)
Nargelas, S.; Jarašiunas, K.; Bertulis, K.; Pačebutas, V.
2011-02-01
We applied a time-resolved transient grating technique for investigation of nonequilibrium carrier dynamics in GaAs1-xBix alloys with x =0.025-0.063. The observed decrease in carrier bipolar diffusivity with lowering temperature and its saturation below 80 K revealed a strong localization of nonequilibrium holes. Thermal activation energy ΔEa=46 meV of diffusivity and low hole mobility value μh=10-20 cm2/V s at room temperature confirmed the hybridization model of the localized Bi states with the valence band of GaAs. Nonlinear increase in carrier recombination rate with the Bi content, 1/τR∝Bi(x )3.2 indicated an increasing structural disorder in the alloy.
Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M
2017-05-01
The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10 -15 m 2 /s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.
Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.
2018-01-01
Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.
Time-dependent, optically thick accretion onto a black hole
NASA Technical Reports Server (NTRS)
Gilden, D. L.; Wheeler, J. C.
1980-01-01
A fully relativistic hydrodynamics code which incorporates diffusive radiation transport is used to study time-dependent, spherically symmetric, optically thick accretion onto a black hole. It is found that matter free-falls into the hole regardless of whether the diffusion time scale is longer or shorter than the dynamical time. Nonadiabatic heating due to magnetic field reconnection is included. The internal energy thus generated affects the flow in a purely relativistic way, again ensuring free-fall collapse of the inflowing matter. Any matter enveloping a black hole will thus be swallowed on a dynamical time scale with relatively small net release of energy. The inclusion of angular momentum will not necessarily affect this conclusion.
Black hole complementarity with the generalized uncertainty principle in Gravity's Rainbow
NASA Astrophysics Data System (ADS)
Gim, Yongwan; Um, Hwajin; Kim, Wontae
2018-02-01
When gravitation is combined with quantum theory, the Heisenberg uncertainty principle could be extended to the generalized uncertainty principle accompanying a minimal length. To see how the generalized uncertainty principle works in the context of black hole complementarity, we calculate the required energy to duplicate information for the Schwarzschild black hole. It shows that the duplication of information is not allowed and black hole complementarity is still valid even assuming the generalized uncertainty principle. On the other hand, the generalized uncertainty principle with the minimal length could lead to a modification of the conventional dispersion relation in light of Gravity's Rainbow, where the minimal length is also invariant as well as the speed of light. Revisiting the gedanken experiment, we show that the no-cloning theorem for black hole complementarity can be made valid in the regime of Gravity's Rainbow on a certain combination of parameters.
NASA Technical Reports Server (NTRS)
Chung, Gui-Yung; Mccoy, Benjamin J.
1991-01-01
A homogeneous model is developed for the chemical vapor infiltration by one-dimensional diffusion into a system of layered plies consisting of woven tows containing bundles of filaments. The model predictions of the amount of deposition and the porosity of the sample as a function of time are compared with the predictions of a recent nonhomogeneous model with aligned holes formed by the weave. The nonhomogeneous model allows for diffusion through the aligned holes, into the spaces between plies, and into the gaps around filaments; i.e., three diffusion equations apply. Relative to the nonhomogeneous results, the homogeneous model underestimates the amount of deposition, since the absence of holes and spaces allows earlier occlusion of gaps around filaments and restricts the vapor infiltration.
Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser
NASA Astrophysics Data System (ADS)
Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.
2012-09-01
Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).
Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction
NASA Astrophysics Data System (ADS)
Zhao, Dan; Pan, Jingtao
2018-04-01
To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman-Navier-Stokes) for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU) and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction before and after using the fluid wall-type hole-sealing technology based on solid-liquid coupling to increase the hole-sealing length to 12 m were compared. The comparison results revealed that the pure extraction amount of gas from a single borehole in the No. 2 coal reservoir of Wangjialing Coalmine was improved by 4˜6 times. In addition, the concentration of extracted gas increased from less than 1% under the traditional hole-sealing mode to 20%˜25%, with an increase of more than 20 times. The extraction effect of the No. 2 coal reservoir of the coal mine was significantly enhanced by employing the fluid-wall-type hole-sealing technology based on solid-liquid coupling.
Coarse-grained Brownian dynamics simulations of protein translocation through nanopores
NASA Astrophysics Data System (ADS)
Lee, Po-Hsien; Helms, Volkhard; Geyer, Tihamér
2012-10-01
A crucial process in biological cells is the translocation of newly synthesized proteins across cell membranes via integral membrane protein pores termed translocons. Recent improved techniques now allow producing artificial membranes with pores of similar dimensions of a few nm as the translocon system. For the translocon system, the protein has to be unfolded, whereas the artificial pores are wide enough so that small proteins can pass through even when folded. To study how proteins permeate through such membrane pores, we used coarse-grained Brownian dynamics simulations where the proteins were modeled as single beads or bead-spring polymers for both folded and unfolded states. The pores were modeled as cylindrical holes through the membrane with various radii and lengths. Diffusion was driven by a concentration gradient created across the porous membrane. Our results for both folded and unfolded configurations show the expected reciprocal relation between the flow rate and the pore length in agreement with an analytical solution derived by Brunn et al. [Q. J. Mech. Appl. Math. 37, 311 (1984)], 10.1093/qjmam/37.2.311. Furthermore, we find that the geometric constriction by the narrow pore leads to an accumulation of proteins at the pore entrance, which in turn compensates for the reduced diffusivity of the proteins inside the pore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhtarova, Anna; Valdueza-Felip, Sirona; Redaelli, Luca
2016-04-18
We investigate the photovoltaic performance of pseudomorphic In{sub 0.1}Ga{sub 0.9}N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.
Determination of Flaw Size from Thermographic Data
NASA Technical Reports Server (NTRS)
Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.
2014-01-01
Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.
Correlation of doping, structure, and carrier dynamics in a single GaN nanorod
NASA Astrophysics Data System (ADS)
Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Gwo, Shangjr; Gradečak, Silvija
2013-06-01
We report the nanoscale optical investigation of a single GaN p-n junction nanorod by cathodoluminescence (CL) in a scanning transmission electron microscope. CL emission characteristic of dopant-related transitions was correlated to doping and structural defect in the nanorod, and used to determine p-n junction position and minority carrier diffusion lengths of 650 nm and 165 nm for electrons and holes, respectively. Temperature-dependent CL study reveals an activation energy of 19 meV for non-radiative recombination in Mg-doped GaN nanorods. These results directly correlate doping, structure, carrier dynamics, and optical properties of GaN nanostructure, and provide insights for device design and fabrication.
Oh, Sang Young; Lee, Minho; Seo, Joon Beom; Kim, Namkug; Lee, Sang Min; Lee, Jae Seung; Oh, Yeon Mok
2017-01-01
A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method ( r -values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson's correlation test. The mean extents of low-attenuation area (LAA), E1 (<1.5 mm), E2 (<7 mm), E3 (<15 mm), and E4 (≥15 mm) were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT parameters ( r =-0.53, -0.43, -0.48, and -0.25), with forced expiratory volume in 1 second (FEV 1 ; -0.81, -0.62, -0.75, and -0.40), and with diffusing capacity of the lungs for carbon monoxide (cDLco), respectively. The fraction of emphysema that shifted to the smaller subgroup showed a significant correlation with FEV 1 , cDLco, forced expiratory flow at 25%-75% of forced vital capacity, and residual volume (RV)/total lung capacity ( r =0.56, 0.73, 0.40, and -0.58). A detailed assessment of the size variation and collapse of emphysema holes may be useful for understanding the dynamic collapse of emphysema and its functional relation.
Zhang, Peng; Shang, Qingli; Ma, Jingxue; Hao, Yuhua; Ye, Cunxi
2017-03-20
To determine the correlation between the preoperative basal diameter of macular hole, the postoperative area of high autofluorescence (AF) in macula, and visual acuity in full-thickness macular hole. Forty-nine patients with full-thickness macular hole who underwent vitrectomy and C3F8 filling were reviewed. The preoperative diameter of macular hole, the 6 months postoperative area of high AF in macula if it existed, the length of inner segment/outer segment (IS/OS) defect, and visual acuity were obtained. The correlation between them was determined. At postoperative 6 months, the rate of high AF in macula was 63.3%. There were statistical differences between with and without high AF groups in postoperative best-corrected visual acuity (BCVA) (t = -2.751, p = 0.008), preoperative basal diameter of macular hole (t = -4.946, p = 0.00001), and postoperative length of IS/OS defect (t = -8.351, p<0.00001). Simple linear regression analysis showed high positive correlations between preoperative basal diameter of macular hole and area of high AF (p<0.00001, r = 0.893), postoperative length of IS/OS defect and area of high fundus AF (FAF) (p<0.00001, r = 0.779), and negative correlations between area of high AF and postoperative BCVA (p = 0.037, r = 0.375). There was low correlation between diameter of macular hole and postoperative BCVA (p = 0.112). The preoperative basal diameter of macular hole and postoperative length of IS/OS defect decides the postoperative area of high AF in macula to some degree, and the postoperative area of high AF in macula can be an evaluating indicator for poor macular function recovery.
Theoretical analysis of nBn infrared photodetectors
NASA Astrophysics Data System (ADS)
Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Gunapala, Sarath D.
2017-09-01
The depletion and surface leakage dark current suppression properties of unipolar barrier device architectures such as the nBn have been highly beneficial for III-V semiconductor-based infrared detectors. Using a one-dimensional drift-diffusion model, we theoretically examine the effects of contact doping, minority carrier lifetime, and absorber doping on the dark current characteristics of nBn detectors to explore some basic aspects of their operation. We found that in a properly designed nBn detector with highly doped excluding contacts the minority carriers are extracted to nonequilibrium levels under reverse bias in the same manner as the high operating temperature (HOT) detector structure. Longer absorber Shockley-Read-Hall (SRH) lifetimes result in lower diffusion and depletion dark currents. Higher absorber doping can also lead to lower diffusion and depletion dark currents, but the benefit should be weighted against the possibility of reduced diffusion length due to shortened SRH lifetime. We also briefly examined nBn structures with unintended minority carrier blocking barriers due to excessive n-doping in the unipolar electron barrier, or due to a positive valence band offset between the barrier and the absorber. Both types of hole blocking structures lead to higher turn-on bias, although barrier n-doping could help suppress depletion dark current.
MODIS Solar Diffuser: Modelled and Actual Performance
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.
Aspects of noncommutative (1+1)-dimensional black holes
NASA Astrophysics Data System (ADS)
Mureika, Jonas R.; Nicolini, Piero
2011-08-01
We present a comprehensive analysis of the spacetime structure and thermodynamics of (1+1)-dimensional black holes in a noncommutative framework. It is shown that a wider variety of solutions are possible than the commutative case considered previously in the literature. As expected, the introduction of a minimal length θ cures singularity pathologies that plague the standard two-dimensional general relativistic case, where the latter solution is recovered at large length scales. Depending on the choice of input parameters (black hole mass M, cosmological constant Λ, etc.), black hole solutions with zero, up to six, horizons are possible. The associated thermodynamics allows for the either complete evaporation, or the production of black hole remnants.
Phenomenology of bouncing black holes in quantum gravity: a closer look
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrau, Aurélien; Bolliet, Boris; Weimer, Celine
2016-02-01
It was recently shown that black holes could be bouncing stars as a consequence of quantum gravity. We investigate the astrophysical signals implied by this hypothesis, focusing on primordial black holes. We consider different possible bounce times and study the integrated diffuse emission.
NASA Astrophysics Data System (ADS)
de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.
2018-04-01
The effects of hole injection in amorphous indium-gallium-zinc-oxide (a-IGZO) are analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6 eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative Bias Illumination Stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In the presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.
NASA Astrophysics Data System (ADS)
Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.
2018-01-01
A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.
A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow
NASA Astrophysics Data System (ADS)
Yang, Dong; Morgans, Aimee S.
2016-12-01
The acoustic response of a circular hole with mean flow passing through it is highly relevant to Helmholtz resonators, fuel injectors, perforated plates, screens, liners and many other engineering applications. A widely used analytical model [M.S. Howe. "Onthe theory of unsteady high Reynolds number flow through a circular aperture", Proc. of the Royal Soc. A. 366, 1725 (1979), 205-223] which assumes an infinitesimally short hole was recently shown to be insufficient for predicting the impedance of holes with a finite length. In the present work, an analytical model based on Green's function method is developed to take the hole length into consideration for "short" holes. The importance of capturing the modified vortex noise accurately is shown. The vortices shed at the hole inlet edge are convected to the hole outlet and further downstream to form a vortex sheet. This couples with the acoustic waves and this coupling has the potential to generate as well as absorb acoustic energy in the low frequency region. The impedance predicted by this model shows the importance of capturing the path of the shed vortex. When the vortex path is captured accurately, the impedance predictions agree well with previous experimental and CFD results, for example predicting the potential for generation of acoustic energy at higher frequencies. For "long" holes, a simplified model which combines Howe's model with plane acoustic waves within the hole is developed. It is shown that the most important effect in this case is the acoustic non-compactness of the hole.
NASA Astrophysics Data System (ADS)
Teimouri, R.; Mohammadpour, R.
2018-06-01
CH3 NH3 PbI3 (MAPbI3) thin film solar cells, which are reported at laboratory efficiency scale of nearly 22%, are the subject of much attention by energy researchers due to their low cost buildup, acceptable efficiency, high absorption coefficient and diffusion length. The main purpose of this research is to simulate the structure of thin film perovskite solar cells through numerical simulation of SCAPS based on the empirical data for different hole transport layers. After simulating the initial structure of FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD solar cell, the hole transport layer Spiro-OMeTAD thickness was optimized on a small scale using modeling. The researchers also sought to reduce the amount of this material and the cost of construction. Ultimately, an optimum thickness of 140 nm was obtained for this cell with efficiency of 22.88%. The effect of employing alternative inorganic hole transport layer was investigated as a substitute for Spiro-OMeTAD; Copper antimony sulphide (CuSbS2) was selected due to abundant and available material and high open circuit voltage of about 988 mV. Thickness variations were also performed on a MAPbI3/CuSbS2 solar cell. Finally, It has obtained that perovskite solar cell with 120 nm-thick of CuSbS2 has 23.14% conversion efficiency with acceptable VOC and JSC values.
Method and apparatus of assessing down-hole drilling conditions
Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT
2007-04-24
A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.
Holographic screening length in a hot plasma of two sphere
NASA Astrophysics Data System (ADS)
Atmaja, A. Nata; Kassim, H. Abu; Yusof, N.
2015-11-01
We study the screening length L_{max} of a moving quark-antiquark pair in a hot plasma, which lives in a two sphere, S^2, using the AdS/CFT correspondence in which the corresponding background metric is the four-dimensional Schwarzschild-AdS black hole. The geodesic of both ends of the string at the boundary, interpreted as the quark-antiquark pair, is given by a stationary motion in the equatorial plane by which the separation length L of both ends of the string is parallel to the angular velocity ω . The screening length and total energy H of the quark-antiquark pair are computed numerically and show that the plots are bounded from below by some functions related to the momentum transfer P_c of the drag force configuration. We compare the result by computing the screening length in the reference frame of the moving quark-antiquark pair, in which the background metrics are "Boost-AdS" and Kerr-AdS black holes. Comparing both black holes, we argue that the mass parameters M_{Sch} of the Schwarzschild-AdS black hole and M_{Kerr} of the Kerr-AdS black hole are related at high temperature by M_{Kerr}=M_{Sch}(1-a^2l^2)^{3/2}, where a is the angular momentum parameter and l is the AdS curvature.
CHRIS: Hazard Assessment Handbook
1977-12-12
3.10 Vectorial Addition of Sea and Wind Currents 50 B1 Flame Length for Gases Venting Through Holes 177 B2 Equivalent...determined are: • Flame length (flame height), • Safe distance for people (away from the flame) • Safe distance for people in fire-protective clothing (away...pencil so it can be erased) Determine the flame length from Figure B1, using the venting hole diameter and the curve corresponding to the specific
PIV measurements in the near wakes of hollow cylinders with holes
NASA Astrophysics Data System (ADS)
Firat, Erhan; Ozkan, Gokturk M.; Akilli, Huseyin
2017-05-01
The wake flows behind fixed, hollow, rigid circular cylinders with two rows of holes connecting the front and rear stagnation lines were investigated using particle image velocimetry (PIV) for various combinations of three hole diameters, d = 0.1 D, 0.15 D, and 0.20 D, six hole-to-hole distances, l = 2 d, 3 d, 4 d, 5 d, 6 d, and 7 d, and ten angles of incidence ( α), from 0° to 45° in steps of 5°, at a Reynolds number of Re = 6,900. Time-averaged velocity distributions, instantaneous and time-averaged vorticity patterns, time-averaged streamline topology, and hot spots of turbulent kinetic energy occurred through the interaction of shear layers from the models were presented to show how the wake flow was modified by the presence of the self-issuing jets with various momentums emanating from the downstream holes. In general, as hole diameter which is directly related to jet momentum increased, the values of time-averaged wake characteristics (length of time-averaged recirculation region, vortex formation length, length of shear layers, and gap between the shear layers) increased. Irrespective to d and l tested, the values of the vortex formation length of the models are greater than that of the cylinder without hole (reference model). That is, vortex formation process was shifted downstream by aid of jets. It was found that time-averaged wake characteristics were very sensitive to α. As α increased, the variation of these characteristics can be modeled by exponential decay functions. The effect of l on the three-dimensional vortex shedding patterns in the near wake of the models was also discussed.
Saheli, P. T.; Rowe, R. K.; Petersen, E. J.; O’Carroll, D. M.
2017-01-01
The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10−15 m2/s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs. PMID:28740357
Peng, Chao; Wang, Jinglin; Wang, Haifeng; Hu, P
2017-12-13
Revealing the innate character and transport of the photogenerated hole is essential to boost the high photovoltaic performance in the lead-based organohalide perovskite. However, knowledge at the atomic level is currently very limited. In this work, we systematically investigate the properties of the photogenerated hole in the orthorhombic CH 3 NH 3 PbI 3 using hybrid functional PBE0 calculations with spin-orbit coupling included. An unexpected trapping state of the hole, localized as I 2 - (I dimer), is uncovered, which was never reported in photovoltaic materials. It is shown that this localized configuration is energetically more favorable than that of the delocalized hole state by 191 meV and that it can highly promote the diffusion of the hole with an energy barrier as low as 131 meV. Furthermore, the origin of I dimer formation upon trapping of the hole is rationalized in terms of electronic and geometric effects, and a good linear correlation is found between the hole trapping capacity and the accompanying structural deformation in CH 3 NH 3 PbX 3 (X = Cl, Br, and I). It is demonstrated that good CH 3 NH 3 PbX 3 materials for the hole diffusion should have small structural deformation energy and weak hole trapping capacity, which may facilitate the rational screening of superior photovoltaic perovskites.
Katalinic, Andrej; Trinajstic Zrinski, Magda; Roksandic Vrancic, Zlatka; Spalj, Stjepan
2017-02-01
The study focused on the influence of screwdriver design in combination with and without predrilling a pilot hole of inner implant diameter on insertion torque of orthodontic mini-implants, controlling for cortical thickness and vertical insertion force as cofactors. One hundred twenty mini-implants (Forestadent) of 1.7 mm in diameter and 6 and 8 mm in length were manually inserted into 120 swine rib bone samples. Maximal insertion torque as a measure of primary stability and vertical force were measured. The study included procedures with and without pilot hole and different screwdriver handles and shaft length and 2 implant lengths. Design of manual screwdriver does not modify insertion torque to a significant extent. In multiple linear regression model, significant predictors of insertion torque are thicker cortical bone (explaining 16.6% of variability), higher vertical force at maximal torque (13.5%), 6-mm implant length (2.5%), and the presence of pilot hole (2.3%). Handle type and shaft length of manual screwdriver do not significantly influence insertion torque, whereas predrilling a pilot hole has low impact on torque values of manually inserted self-drilling orthodontic mini-implants.
NASA Technical Reports Server (NTRS)
Zoutendyk, John A. (Inventor); Malone, Carl J. (Inventor)
1987-01-01
Electric-field funneling length is measured while irradiating a semiconductor charge-collecting junction with electron-hole-pair generating charged particles at a first junction bias voltage. The bias voltage is then reduced to a second level in order to reduce the depth of the depletion region such that the total charge can no longer be collected by drift and measured in the energy band previously displayed in the multichannel analyzer. This is representative of the maximum electric field funnelling length which may be calculated by measuring the difference at the second bias voltage level of the depletion width and the ion penetration range. The bias voltage is further lowered to a third level at which the particles are collected over a spread of energy levels while at least some of the particles are still collected at the selected energy level. From this the different depths of penetration of the particles are determined while additional effects due to diffusion are minimized.
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A. (Inventor)
1985-01-01
Electric-field funneling length is measured while irradiating a semiconductor charge-collecting junction with electron-hole-pair generating charged particles at a first junction bias voltage. The bias voltage is then reduced to a second level in order to reduce the depth of the depletion region such that the total charge can no longer be collected by drift and measured in the energy band previously displayed in the multichannel analyzer. This is representative of the maximum electric field funneling length which may be calculated by measuring the difference at the second bias voltage level of the depletion width and the ion penetration range. The bias voltage is further lowered to a third level at which the particles are collected over a spread of energy levels while at least some of the particles are still collected at the selected energy level. From this the different depths of penetration of the particles are determined while additional effects due to diffusion are minimized.
Transport Imaging of Multi-Junction and CIGS Solar Cell Materials
2011-12-01
solar cells start with the material charge transport parameters, namely the charge mobility, lifetime and diffusion length . It is the goal of...every solar cell manufacturer to maintain high carrier lifetime so as to realize long diffusion lengths . Long diffusion lengths ensure that the charges...Thus, being able to accurately determine the diffusion length of any solar cell material proves advantageous by providing insights
NASA Astrophysics Data System (ADS)
Yeboah, Douglas; Singh, Jai
2017-11-01
Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.
NASA Astrophysics Data System (ADS)
Maggioni, G.; Carturan, S.; Raniero, W.; Riccetto, S.; Sgarbossa, F.; Boldrini, V.; Milazzo, R.; Napoli, D. R.; Scarpa, D.; Andrighetto, A.; Napolitani, E.; De Salvador, D.
2018-03-01
A new method for the formation of hole-barrier contacts in high purity germanium (HPGe) is described, which consists in the sputter deposition of a Sb film on HPGe, followed by Sb diffusion produced through laser annealing of the Ge surface in the melting regime. This process gives rise to a very thin ( ≤ 100 nm) n-doped layer, as determined by SIMS measurement, while preserving the defect-free morphology of HPGe surface. A small prototype of gamma ray detector with a Sb laser-diffused contact was produced and characterized, showing low leakage currents and good spectroscopy data with different gamma ray sources.
NASA Astrophysics Data System (ADS)
Azarhoosh, Pooya; McKechnie, Scott; Frost, Jarvist M.; Walsh, Aron; van Schilfgaarde, Mark
2016-09-01
The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.
NASA Astrophysics Data System (ADS)
Roy, Kuntal
2017-11-01
There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.
Dense Pattern Optical Multipass Cell
NASA Technical Reports Server (NTRS)
Silver, Joel A. (Inventor)
2009-01-01
A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.
Dense pattern optical multipass cell
Silver, Joel A [Santa Fe, NM
2009-01-13
A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.
Colloidal diffusion over a quasicrystalline-patterned substrate
NASA Astrophysics Data System (ADS)
Su, Yun; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger
We report a systematic study of colloidal diffusion over a quasicrystalline-patterned substrate. The sample substrate is made of a flat thin layer of photoresist and contains identical cylindrical holes of diameter dh, which are arranged on a quasicrystal lattice. A monolayer of silica spheres of diameter comparable to dh diffuse over the rugged quasicrystalline-patterned substrate and experience a gravitational potential U (x , y) . With optical microscopy and the particle tracking method, we measure U (x , y) and particle's diffusion trajectories, which are found to undergo two distinct states: a trapped state when the particles are inside the holes and a free diffusion state when they are over the flat portion of the substrate. The dynamic properties of the diffusing particle, such as its mean dwell time, mean square displacement, and long-time diffusion coefficient DL are obtained from the particle trajectories. The measured DL is found to be in good agreement with the prediction of two theoretical models proposed for diffusion over a quasicrystal lattice. The experiment demonstrates the applications of this newly constructed colloidal potential landscape. This work was supported by the Research Grants Council of Hong Kong SAR.
NASA Astrophysics Data System (ADS)
Repko, Timothy William
A novel film cooling hole geometry for use in gas turbine engines has been investigated numerically by solving the Reynolds Averaged Navier-Stokes equations in a commercial CFD code (STAR-CCM+) with varying turbulence intensity and length scale using the k-o SST turbulence model. Both steady and unsteady results were considered in order to investigate the effects of freestream turbulence intensity and length scale on this novel anti-vortex hole (AVH) concept. The AVH geometry utilizes two side holes, one on each side of the main hole, to attempt to mitigate the vorticity from the jet from the main hole. The AVH concept has been shown by past research to provide a substantial improvement over conventional film cooling hole designs. Past research has been limited to low turbulence intensity and small length scales that are not representative of the turbulent flow exiting the combustor. Three turbulence intensities (Tu = 5, 10 and 20%) and three length scales normalized by the main cooling hole diameter (Λ x/dm = 1, 3, 6) were considered in this study for a total of nine turbulence conditions. The highest intensity, largest length scale turbulence case (Tu = 20, Λx/dm = 6) is considered most representative of engine conditions and was shown to have the best cooling performance. Results show that the turbulence in the hot gases exiting the combustor can aid in the film cooling for the AVH geometry at high blowing ratios (BR = 2.0), where the blowing ratio is essentially the ratio of the jet-to-mainstream mass flux ratios. Length scale was shown to have an insignificant effect on the cooling performance at low turbulence intensity and a moderate effect at higher turbulence intensities. The adiabatic film cooling effectiveness was shown to increase as the turbulence intensity was elevated. The convective heat transfer coefficient was also shown to increase at the turbulence intensity was elevated. An increase in the heat transfer coefficient is a deleterious effect and must be weighed against the improvements in the adiabatic cooling effectiveness. The net heat flux reduction (NHFR) is the parameter used to quantify the net benefit of film cooling. As a general trend, the NHFR was shown to increase with the turbulence intensity in all cases.
Entropy of Vaidya Black Hole on Apparent Horizon with Minimal Length Revisited
NASA Astrophysics Data System (ADS)
Tang, Hao; Wu, Bin; Sun, Cheng-yi; Song, Yu; Yue, Rui-hong
2018-03-01
By considering the generalized uncertainty principle, the degrees of freedom near the apparent horizon of Vaidya black hole are calculated with the thin film model. The result shows that a cut-off can be introduced naturally rather than taking by hand. Furthermore, if the minimal length is chosen to be a specific value, the statistical entropy will satisfy the conventional area law at the horizon, which might reveal some deep things of the minimal length.
Entropy of Vaidya Black Hole on Apparent Horizon with Minimal Length Revisited
NASA Astrophysics Data System (ADS)
Tang, Hao; Wu, Bin; Sun, Cheng-yi; Song, Yu; Yue, Rui-hong
2018-07-01
By considering the generalized uncertainty principle, the degrees of freedom near the apparent horizon of Vaidya black hole are calculated with the thin film model. The result shows that a cut-off can be introduced naturally rather than taking by hand. Furthermore, if the minimal length is chosen to be a specific value, the statistical entropy will satisfy the conventional area law at the horizon, which might reveal some deep things of the minimal length.
Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin
2016-07-20
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.
Electron holes in phase space: What they are and why they matter
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.
2017-05-01
This is a tutorial and selective review explaining the fundamental concepts and some currently open questions concerning the plasma phenomenon of the electron hole. The widespread occurrence of electron holes in numerical simulations, space-craft observations, and laboratory experiments is illustrated. The elementary underlying theory is developed of a one-dimensional electron hole as a localized potential maximum, self-consistently sustained by a deficit of trapped electron phase-space density. The spatial extent of a hole is typically a few Debye lengths; what determines the minimum and maximum possible lengths is explained, addressing the key aspects of the as yet unsettled dispute between the integral and differential approaches to hole structure. In multiple dimensions, holes tend to form less readily; they generally require a magnetic field and distribution-function anisotropy. The mechanisms by which they break up are explained, noting that this transverse instability is not fully understood. Examples are given of plasma circumstances where holes play an important role, and of recent progress on understanding their holistic kinematics and self-acceleration.
Mecanismes d'ablation du silicium par laser ultrarapide amplifie par des nanostructures plasmoniques
NASA Astrophysics Data System (ADS)
Robitaille, Alexandre
Ultrafast laser interaction with gold nanostructures deposited onto a silicon surface produces considerable field amplification that can result in the ablation of features with dimensions smaller than the diffraction limit. This field amplification in the near field of the nanostructures has been thoroughly investigated in the literature. However, while this is the main phenomenon that permits this nanoablation, energy deposition and diffusion processes cannot be neglected to interpret experimental results. In this work, we study plasmon-enhanced femtosecond laser ablation of silicon using gold nanorods and gold nanospheres to produce sub-diffraction limit holes. Atomic force microscopy and scanning electron microscopy of such features are done and hole depth as a function of fluence is measured. Especially for gold nanorods, hole shape is inconsistent with calculated field distribution. Field distribution alone would let us believe that each nanorod would produce two holes at its both ends. We show that using a model based on a differential equations system describing carriers excitation and diffusion, both shape and depth of the nanoholes can be predicted. Importance of the diffusion process is shown to arise from the extreme localization of the deposited energy around the nanostructure, compared to what is usually the case for conventional ablation of a surface. The characteristic shape of holes is revealed as a striking signature of the energy distribution through the electron-phonon carrier density dependant interaction.
Transverse magnetic focussing of heavy holes in a (100) GaAs quantum well
NASA Astrophysics Data System (ADS)
Rendell, M.; Klochan, O.; Srinivasan, A.; Farrer, I.; Ritchie, D. A.; Hamilton, A. R.
2015-10-01
We perform magnetic focussing of high mobility holes confined in a shallow GaAs/Al0.33Ga0.67As quantum well grown on a (100) GaAs substrate. We observe ballistic focussing of holes over a path length of up to 4.9 μm with a large number of focussing peaks. We show that additional structure on the focussing peaks can be caused by a combination of the finite width of the injector quantum point contact and Shubnikov-de Haas oscillations. These results pave the way to studies of spin-dependent magnetic focussing and spin relaxation lengths in two-dimentional hole systems without complications of crystal anisotropies and anisotropic g-tensors.
Spontaneous closure of traumatic macular hole.
Sanjay, Srinivasan; Yeo, Tun Kuan; Au Eong, Kah-Guan
2012-07-01
Macular hole formation is a well-known complication following ocular trauma. Less commonly recognised is the spontaneous closure of such holes. A 27-year-old man presented with a history of blunt trauma to his left eye. Eye evaluation showed conjunctival laceration, diffuse retinal oedema and multiple retinal haemorrhages in that eye. A month later, he developed a full thickness macular hole. Two months later, there was spontaneous complete closure of the full-thickness macular hole in the left eye as confirmed on optical coherence tomography. Spontaneous closure of hole is not uncommon. Observation for a period of up to 12 months is a reasonable management option. Macular hole surgery for traumatic macular holes may be delayed in such cases.
NASA Technical Reports Server (NTRS)
Johnson, R. L.; Young, Donald L. (Technical Monitor)
1967-01-01
This report contains the results of a fifteen month analytical and experimental study of the leakage rate of the pressurant gases (N2, He) and the propellant vapors (N2O4,N2H4) through bladder structures consisting of two layers of Teflon separated by a metallic foil diffusion barrier containing microscopic or larger holes. Results were obtained for the steady state leakage rate through circular holes and long rectangular openings in the barrier for arbitrary thicknesses of the two Teflon layers. The effect of hole shape and relative hole position on the leakage rate were studied. The transient problem was analyzed and it was shown that steady state calculations are adequate for estimating the leakage rate. A computer program entitled "Diffusion Analyzer Program" was developed to calculate the leakage rate, both transient and steady state. Finally, the analytical results were compared to experimentally determined values of the leakage rate through a model laminated bladder structure. The results of the analysis are in good agreement with experiment. The experimental effort (Part II of the Bladder Permeation Program) measured the solubility, diffusion coefficient and permeability of helium, nitrogen and nitrogen tetroxide vapor through Teflon TFE and FEP membranes. Data were obtained in the temperature range of 25 to 100 C at pressures ranging from near vacuum to about 20 atmospheres. Results of the experimental effort were compared with the limited data previously reported. As a verification to the applicability of results to actual bladder systems, counter diffusion tests were performed with a laminated sample containing aluminum foil with a selected group of holes.
Oh, Sang Young; Lee, Minho; Seo, Joon Beom; Kim, Namkug; Lee, Sang Min; Lee, Jae Seung; Oh, Yeon Mok
2017-01-01
A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson’s correlation test. The mean extents of low-attenuation area (LAA), E1 (<1.5 mm), E2 (<7 mm), E3 (<15 mm), and E4 (≥15 mm) were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT parameters (r=−0.53, −0.43, −0.48, and −0.25), with forced expiratory volume in 1 second (FEV1; −0.81, −0.62, −0.75, and −0.40), and with diffusing capacity of the lungs for carbon monoxide (cDLco), respectively. The fraction of emphysema that shifted to the smaller subgroup showed a significant correlation with FEV1, cDLco, forced expiratory flow at 25%–75% of forced vital capacity, and residual volume (RV)/total lung capacity (r=0.56, 0.73, 0.40, and −0.58). A detailed assessment of the size variation and collapse of emphysema holes may be useful for understanding the dynamic collapse of emphysema and its functional relation. PMID:28761337
Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics
NASA Astrophysics Data System (ADS)
Scully, Shawn Ryan
Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of the primary losses that puts stringent requirements on the charge carrier mobilities in these cells is the recombination losses due to space charge build up at the heterojunction. Because electrons are confined to the acceptor and holes to the donor, net charge density always exists even when mobilities are matched, in contrast to bulk heterojunctions wherein matched mobilities lead to zero net charge. This net charge creates an electric field which opposes the built-in field and limits the current that can be carried away from this heterojunction. Using simulations we show that for relevant current densities charge carrier mobilities must be higher than 10-4 cm2/V.s to avoid significant losses due to space charge formation. In the last part of this work, we will focus on the second class of architectures in which exciton harvesting is efficient. We will present a systematic analysis of one of the leading polymer:fullerene bulk heterojunction cells to show that losses in this architecture are due to charge recombination. Using optical measurements and simulations, exciton harvesting measurements, and device characteristics we will show that the dominant loss is likely due to field-dependent geminate recombination of the electron and hole pair created immediately following exciton dissociation. No losses in this system are seen due to bimolecular recombination or space charge which provides information on charge-carrier mobility targets necessary for the future design of high efficiency organic photovoltaics.
Kim, You-Sub; Joo, Sung-Pil; Song, Dong-Jun; Kim, Sung-Hyun; Kim, Tae-Sun
2018-05-01
A subdural empyema (SDE) following burr hole drainage of a chronic subdural hematoma (CSDH) can be difficult to distinguish from a recurrence of the CSDH, especially when imaging data is limited to a computed tomography (CT) scan. All patients underwent burr hole drainage of the CSDH at first, and the appearance of the SDE occurred within one month. A contrast-enhanced magnetic resonance imaging (MRI) scan, with diffusion-weighted imaging (DWI), revealed both the SDE and diffuse meningitis in all patients. In Case 1, because the patient was very young, burr hole drainage of the SDE, rather than craniotomy, was performed. However, subsequent craniotomy was required due to recurrence of the SDE. In Cases 2 and 3, an initial craniotomy was performed without burr hole drainage. Symptoms improved for all patients, and each was discharged without any neurologic deficits or subsequent recurrence. Neurosurgeons should consider the possibility of infection if recurrence of CSDH occurs within 1 month following drainage of a subdural hematoma. A contrast-enhanced MRI with DWI should be performed to differentiate SDE from CSDH. In addition, surgical evacuation of the empyema via wide craniotomy is preferred to burr hole drainage.
Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks
NASA Astrophysics Data System (ADS)
Sukkabot, Worasak
2018-05-01
The use of ultrathin crystalline silicon (c-Si) wafers in solar cells necessitates a highly effective light absorber to compensate for poor light absorption. One route to overcoming this problem is to use a periodic array of Si nanodisks on ultrathin c-Si. In the present manuscript, we numerically investigate the effects of the geometrical parameters of the Si nanodisks, including disk diameter (D) and length (L), on the structural and optical properties, using atomistic tight-binding theory. These computations confirm that the electronic structure and optical properties are sensitive to the structural parameters. As the disk diameter and length increase, the single-electron energies decrease, and the single-hole energies increase. These calculations also reveal that, because of the quantum confinement effect, the optical band gaps gradually decrease independently of the increasing disk diameter and length. The optical spectra can be tuned across the visible region by varying the disk diameter and length, which is a useful feature for optimizing light absorption in solar cell applications. As the disk diameter and length increased, the optical intensities also increased; however, the atomistic electron-hole interactions and ground electron-hole wave function overlap progressively decreased. The ground electron-hole wave function overlap, Stokes shift, and fine structure splitting decreased as the disk diameter and length were increased. Thus, Si nanodisks with a large diameter and length might be a suitable candidate source of entangled photons. The Si nanodisks in this study also show promise for applications to solar cells based on ultrathin c-Si wafers.
Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well
NASA Astrophysics Data System (ADS)
Das, T.; Panda, S.; Panda, B. K.
2018-05-01
Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.
Statistical Entropy of the G-H-S Black Hole to All Orders in Planck Length
NASA Astrophysics Data System (ADS)
Sun, Hangbin; He, Feng; Huang, Hai
2012-02-01
Considering corrections to all orders in Planck length on the quantum state density from generalized uncertainty principle, we calculate the statistical entropy of the scalar field near the horizon of Garfinkle-Horowitz-Strominger (G-H-S) black hole without any artificial cutoff. It is shown that the entropy is proportional to the horizon area.
NASA Technical Reports Server (NTRS)
Ho, C. T.; Mathias, J. D.
1981-01-01
The influence of short wavelength light on the characteristic bulk minority carrier diffusion length of the ribbon silicon photovoltaic cell has been investigated. We have measured the intensity and wavelength dependence of the diffusion length in an EFG ribbon cell, and compared it with a standard Czochralski grown silicon cell. While the various short wavelength illuminations have shown no influence on the diffusion length in the CZ cell, the diffusion lengths in the ribbon cell exhibit a strong dependence on the volume generation rate as well as on the wavelength of the superimposed lights. We have concluded that the trap-filling phenomenon at various depths in the bulk neutral region of the cell is consistent with the experimental observation.
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
NASA Astrophysics Data System (ADS)
Colegrove, E.; Yang, J.-H.; Harvey, S. P.; Young, M. R.; Burst, J. M.; Duenow, J. N.; Albin, D. S.; Wei, S.-H.; Metzger, W. K.
2018-02-01
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate that As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex situ Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 1016 cm-3 hole density in polycrystalline CdTe films by As and P diffusion.
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colegrove, E.; Yang, J-H; Harvey, S. P.
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
Colegrove, E.; Yang, J-H; Harvey, S. P.; ...
2018-01-29
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Spontaneous closure of traumatic macular hole
Sanjay, Srinivasan; Yeo, Tun Kuan; Au Eong, Kah-Guan
2012-01-01
Macular hole formation is a well-known complication following ocular trauma. Less commonly recognised is the spontaneous closure of such holes. A 27-year-old man presented with a history of blunt trauma to his left eye. Eye evaluation showed conjunctival laceration, diffuse retinal oedema and multiple retinal haemorrhages in that eye. A month later, he developed a full thickness macular hole. Two months later, there was spontaneous complete closure of the full-thickness macular hole in the left eye as confirmed on optical coherence tomography. Spontaneous closure of hole is not uncommon. Observation for a period of up to 12 months is a reasonable management option. Macular hole surgery for traumatic macular holes may be delayed in such cases. PMID:23961017
MEAN FREE PATH OF HOT ELECTRONS AND HOLES IN METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, R.N.; Wooten, F.; Spicer, W.E.
1963-01-01
The mean free paths and attenuation lengths of hot electrons and holes in metals are calculated by Morte Cario methods. The results are compared with experimental results for electrons in Au,-Ag, Cu, and Pd and holes in Au. (T.F.H.)
Refinement of Er3+-doped hole-assisted optical fiber amplifier.
D'Orazio, A; De Sario, M; Mescia, L; Petruzzelli, V; Prudenzano, F
2005-12-12
This paper deals with design and refinement criteria of erbium doped hole-assisted optical fiber amplifiers for applications in the third band of fiber optical communication. The amplifier performance is simulated via a model which takes into account the ion population rate equations and the optical power propagation. The electromagnetic field profile of the propagating modes is carried out by a finite element method solver. The effects of the number of cladding air holes on the amplifier performance are investigated. To this aim, four different erbium doped hole-assisted lightguide fiber amplifiers having a different number of cladding air holes are designed and compared. The simulated optimal gain, optimal length, and optimal noise fig. are discussed. The numerical results highlight that, by increasing the number of air holes, the gain can be improved, thus obtaining a shorter amplifier length. For the erbium concentration NEr=1.8x1024 ions/m3, the optimal gain G(Lopt) increases up to ~2dB by increasing the number of the air holes from M=4 to M=10.
Lubchenko, Vassiliy; Silbey, Robert J
2013-10-24
We propose a novel type of spectral diffusion experiment that enables one to decouple spatial characteristics of the environmental fluctuations, such as their concentration, from the interaction with the chromophore. Traditional hole broadening experiments do not allow for such decoupling in the common case when the chromophore-environment interaction is scale invariant. Here we propose to simultaneously follow the spectral trails of a small number of nearby chromophores--two or more--which thereby sense a highly overlapping set of the fluctuations. To this end, we estimate the combined probability distribution for the frequencies of a set of chromophores contained within the same sample. The present setup introduces a new length scale, i.e., the interchromophore distance, which breaks the aforementioned scale invariance and enables one to determine independently the concentration of the environmental fluctuations and their coupling to the chromophores, by monitoring the time after which spectral diffusion of distinct chromophores becomes uncorrelated. We illustrate these results with structural excitations in low temperature glasses.
Chen, Y.; Yi, H. T.; Wu, X.; Haroldson, R.; Gartstein, Y. N.; Rodionov, Y. I.; Tikhonov, K. S.; Zakhidov, A.; Zhu, X. -Y.; Podzorov, V.
2016-01-01
Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10−11 to 10−10 cm3 s−1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cm2 V−1 s−1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. We suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles. PMID:27477058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Levi M. J.; Bhattacharya, Mithun; Wu, Qi
Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystallinemore » disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.« less
Chen, Y.; Yi, H. T.; Wu, X.; ...
2016-08-01
Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10 –11 to 10 –10 cm 3 s –1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cmmore » 2 V –1 s –1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. As a result, we suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.« less
New Gas Polarographic Hydrogen Sensor
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Barile, Ron
2004-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
NASA Technical Reports Server (NTRS)
Dominquez, Jesus; Barile, Ron
2006-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H ions or protons; H ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic O2 sensors are commercially available; a gas polarographic O2 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Development of the Gliding Hole of the Dynamics Compression Plate
NASA Astrophysics Data System (ADS)
Salim, U. A.; Suyitno; Magetsari, R.; Mahardika, M.
2017-02-01
The gliding hole of the dynamics compression plate is designed to facilitate relative movement of pedicle screw during surgery application. The gliding hole shape is then geometrically complex. The gliding hole manufactured using machining processes used to employ ball-nose cutting tool. Then, production cost is expensive due to long production time. This study proposed to increase productivity of DCP products by introducing forming process (cold forming). The forming process used to involve any press tool devices. In the closed die forming press tool is designed with little allowance, then work-pieces is trapped in the mould after forming. Therefore, it is very important to determine hole geometry and dimensions of raw material in order to success on forming process. This study optimized the hole sizes with both geometry analytics and experiments. The success of the forming process was performed by increasing the holes size on the raw materials. The holes size need to be prepared is diameter of 5.5 mm with a length of 11.4 mm for the plate thickness 3 mm and diameter of 6 mm with a length of 12.5 mm for the plate thickness 4 mm.
Hong, Seungpyo; Bielinska, Anna U; Mecke, Almut; Keszler, Balazs; Beals, James L; Shi, Xiangyang; Balogh, Lajos; Orr, Bradford G; Baker, James R; Banaszak Holl, Mark M
2004-01-01
We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10-100 nM) were observed to form holes of 15-40 nm in diameter in aqueous, supported lipid bilayers. G5 amine-terminated dendrimers did not initiate hole formation but expanded holes at existing defects. Acetamide-terminated G5 PAMAM dendrimers did not cause hole formation in this concentration range. The interactions between PAMAM dendrimers and cell membranes were studied in vitro using KB and Rat 2 cell lines. Neither G5 amine- nor acetamide-terminated PAMAM dendrimers were cytotoxic up to a 500 nM concentration. However, the dose dependent release of the cytoplasmic proteins lactate dehydrogenase (LDH) and luciferase (Luc) indicated that the presence of the amine-terminated G5 PAMAM dendrimer decreased the integrity of the cell membrane. In contrast, the presence of acetamide-terminated G5 PAMAM dendrimer had little effect on membrane integrity up to a 500 nM concentration. The induction of permeability caused by the amine-terminated dendrimers was not permanent, and leaking of cytosolic enzymes returned to normal levels upon removal of the dendrimers. The mechanism of how PAMAM dendrimers altered cells was investigated using fluorescence microscopy, LDH and Luc assays, and flow cytometry. This study revealed that (1) a hole formation mechanism is consistent with the observations of dendrimer internalization, (2) cytosolic proteins can diffuse out of the cell via these holes, and (3) dye molecules can be detected diffusing into the cell or out of the cell through the same membrane holes. Diffusion of dendrimers through holes is sufficient to explain the uptake of G5 amine-terminated PAMAM dendrimers into cells and is consistent with the lack of uptake of G5 acetamide-terminated PAMAM dendrimers.
Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darbandi, A.; Watkins, S. P., E-mail: simonw@sfu.ca
Minority carrier diffusion lengths in both p-type and n-type GaAs nanowires were studied using electron beam induced current by means of a nanoprobe technique without lithographic processing. The diffusion lengths were determined for Au/GaAs rectifying junctions as well as axial p-n junctions. By incorporating a thin lattice-matched InGaP passivating shell, a 2-fold enhancement in the minority carrier diffusion lengths and one order of magnitude reduction in the surface recombination velocity were achieved.
Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide
2015-01-01
Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565
Ji, Ran
2011-01-01
Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445
NASA Technical Reports Server (NTRS)
Burd, Steven W.; Simon, Terrence W.; Thurman, Douglas (Technical Monitor)
2000-01-01
Experimental measurements are presented in this report to document the sensitivity of film cooling performance to the hole length and coolant delivery plenum geometry. Measurements with hot-wire anemometry detail velocity, local turbulence, and spectral distributions over the exit plane of film cooling holes and downstream of injection in the coolant-freestream interaction zone. Measurements of discharge coefficients and adiabatic effectiveness are also provided. Coolant is supplied to the film cooling holes by means of a large, open plenum and through plenums which force the coolant to approach the holes either co-current or counter-current to the freestream. A single row of film cooling holes with 35 degree-inclined streamwise at two coolant-to-freestream velocity ratios, 0.5 and 1.0, is investigated. The coolant-to-freestream density ratio is maintained in the range 0.96 to 1.0. Measurements were taken under high-freestream (FSTI = 12%) and low-freestream turbulence intensity (FSTI = 0.5%) conditions. The results document the effects of the hole L/D, coolant supply plenum geometry, velocity ratio, and FSTI. In general, hole L/D and the supply plenum geometry play influential roles in the film cooling performance. Hole L/D effects, however, are more pronounced. Film cooling performance is also dependent upon the velocity ratio and FSTI.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Mohamed, Essam
1997-01-01
This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.
A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.
Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan
2016-04-21
Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.
NASA Astrophysics Data System (ADS)
Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long
2017-07-01
Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm-2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open-circuit voltage of 0.52 V, a short-circuit photocurrent density of 13.56 mA cm-2 and a fill factor of 0.58.
NASA Astrophysics Data System (ADS)
Hocker, Matthias; Maier, Pascal; Jerg, Lisa; Tischer, Ingo; Neusser, Gregor; Kranz, Christine; Pristovsek, Markus; Humphreys, Colin J.; Leute, Robert A. R.; Heinz, Dominik; Rettig, Oliver; Scholz, Ferdinand; Thonke, Klaus
2016-08-01
We demonstrate the application of low-temperature cathodoluminescence (CL) with high lateral, depth, and spectral resolution to determine both the lateral (i.e., perpendicular to the incident primary electron beam) and axial (i.e., parallel to the electron beam) diffusion length of excitons in semiconductor materials. The lateral diffusion length in GaN is investigated by the decrease of the GaN-related luminescence signal when approaching an interface to Ga(In)N based quantum well stripes. The axial diffusion length in GaN is evaluated from a comparison of the results of depth-resolved CL spectroscopy (DRCLS) measurements with predictions from Monte Carlo simulations on the size and shape of the excitation volume. The lateral diffusion length was found to be (95 ± 40) nm for nominally undoped GaN, and the axial exciton diffusion length was determined to be (150 ± 25) nm. The application of the DRCLS method is also presented on a semipolar (11 2 ¯ 2 ) sample, resulting in a value of (70 ± 10) nm in p-type GaN.
NASA Astrophysics Data System (ADS)
Berdnikov, Y.; Zhiglinsky, A. A.; Rylkova, M. V.; Dubrovskii, V. G.
2017-11-01
We present a model for kinetic broadening effects on the length distributions of Au-catalyzed III-V nanowires obtained in the growth regime with adatom diffusion from the substrate and the nanowire sidewalls to the top. We observe three different regimes for the length distribution evolution with time. For short growth times, the length distribution is sub-Poissonian, converting to broader than Poissonian with increasing the mean length above a certain threshold value. After the diffusion flux from the nanowire sidewalls has stabilized, the length distribution variance increases linearly with the mean length, as in the Poissonian process.
Charged scalar perturbations on charged black holes in de Rham-Gabadadze-Tolley massive gravity
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Ponglertsakul, Supakchai; Tannukij, Lunchakorn
2017-12-01
We explore the quasistationary profile of a massive charged scalar field in a class of charged black holes in de Rham-Gabadadze-Tolley (dRGT) massive gravity. We discuss how the linear term in the metric, which is a unique character of the dRGT massive gravity, affects the structure of the spacetime. Numerical calculations of the quasinormal modes are performed for a charged scalar field in the dRGT black hole background. For an asymptotically de Sitter (dS) black hole, an improved asymptotic iteration method is used to obtain the associated quasinormal frequencies. The unstable modes are found for the ℓ=0 case, and their corresponding real parts satisfy the superradiant condition. For ℓ=2 , the results show that all the de Sitter black holes considered here are stable against a small perturbation. For an asymptotically dRGT anti-de Sitter (AdS) black hole, unstable modes are found with the frequency satisfying the superradiant condition. Effects of massive-gravity parameters are discussed. Analytic calculation reveals the unique diffusive nature of quasinormal modes in the massive-gravity model with the linear term. Numerical results confirm the existence of the characteristic diffusive modes in both the dS and AdS cases.
Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells
NASA Technical Reports Server (NTRS)
Jain, R. K.; Weinberg, I.; Flood, D. J.
1993-01-01
Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.
NASA Astrophysics Data System (ADS)
Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong
2018-02-01
Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
NASA Technical Reports Server (NTRS)
Mcgowan, J. J.; Smith, C. W.
1976-01-01
The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.
Electron holes observed in the Moon Plasma Wake
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.; Malaspina, D.; Zhou, C.
2017-10-01
Electrostatic instabilities are predicted in the magnetized wake of plasma flowing past a non-magnetic absorbing object such as a probe or the moon. Analysis of the data from the Artemis satellites, now orbiting the moon at distances ten moon radii and less, shows very clear evidence of fast-moving isolated solitary potential structures causing bipolar electric field excursions as they pass the satellite's probes. These structures have all the hallmarks of electron holes: BGK solitons typically a few Debye-lengths in size, self-sustaining by a deficit of phase-space density on trapped orbits. Electron holes are now observed to be widespread in space plasmas. They have been observed in PIC simulations of the moon wake to be the non-linear consequence of the predicted electron instabilities. Simulations document hole prevalence, speed, length, and depth; and theory can explain many of these features from kinetic analysis. The solar wind wake is certainly the cause of the overwhelming majority of the holes observed by Artemis, because we observe almost all holes to be in or very near to the wake. We compare theory and simulation of the hole generation, lifetime, and transport mechanisms with observations. Work partially supported by NASA Grant NNX16AG82G.
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2012 CFR
2012-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2013 CFR
2013-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2011 CFR
2011-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2014 CFR
2014-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
Diffusion lengths of silicon solar cells from luminescence images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuerfel, P.; Trupke, T.; Puzzer, T.
A method for spatially resolved measurement of the minority carrier diffusion length in silicon wafers and in silicon solar cells is introduced. The method, which is based on measuring the ratio of two luminescence images taken with two different spectral filters, is applicable, in principle, to both photoluminescence and electroluminescence measurements and is demonstrated experimentally by electroluminescence measurements on a multicrystalline silicon solar cell. Good agreement is observed with the diffusion length distribution obtained from a spectrally resolved light beam induced current map. In contrast to the determination of diffusion lengths from one single luminescence image, the method proposed heremore » gives absolute values of the diffusion length and, in comparison, it is much less sensitive to lateral voltage variations across the cell area as caused by local variations of the series resistance. It is also shown that measuring the ratio of two luminescence images allows distinguishing shunts or surface defects from bulk defects.« less
Diffusion for holographic lattices
NASA Astrophysics Data System (ADS)
Donos, Aristomenis; Gauntlett, Jerome P.; Ziogas, Vaios
2018-03-01
We consider black hole spacetimes that are holographically dual to strongly coupled field theories in which spatial translations are broken explicitly. We discuss how the quasinormal modes associated with diffusion of heat and charge can be systematically constructed in a long wavelength perturbative expansion. We show that the dispersion relation for these modes is given in terms of the thermoelectric DC conductivity and static susceptibilities of the dual field theory and thus we derive a generalised Einstein relation from Einstein's equations. A corollary of our results is that thermodynamic instabilities imply specific types of dynamical instabilities of the associated black hole solutions.
High energy spectrum of spherically accreting black holes
NASA Technical Reports Server (NTRS)
Meszaros, P.; Ostriker, J. P.
1983-01-01
Spherically accreting black holes may sustain strong collisionless shocks, downstream of which the fluid approximation is not valid. The proton-electron Coulomb exchange provides for the downstream matter diffusion into the hole. Energy conversion efficiencies upward of 10-30 percent are obtained, with most of the luminosity in hard X-rays and gamma-rays. The whole spectrum and its application for radio-quiet QSO's and galactic X- and gamma-ray sources are discussed.
The dual-mode (partition/hole-filling) model of soil organic matter (SOM) as
a heterogeneous polymerlike sorbent of hydrophobic compounds predicts that a
competing solute will accelerate diffusion of the primary solute by blocking the
holes, allowing the principal ...
Variables Affecting Probability of Detection in Bolt Hole Eddy Current Inspection
NASA Astrophysics Data System (ADS)
Lemire, H.; Krause, T. W.; Bunn, M.; Butcher, D. J.
2009-03-01
Physical variables affecting probability of detection (POD) in a bolt-hole eddy current inspection were examined. The POD study involved simulated bolt holes in 7075-T6 aluminum coupons representative of wing areas on CC-130 and CP-140 aircraft. The data were obtained from 24 inspectors who inspected 468 coupons, containing a subset of coupons with 45 electric discharge machined notches and 72 laboratory grown fatigue cracks located at the inner surface corner of the bi-layer structures. A comparison of physical features of cracks and notches in light of skin depth effects and probe geometry was used to identify length rather than depth as the significant variable producing signal variation. Probability of detection based on length produced similar results for the two discontinuity types, except at lengths less than 0.4 mm, where POD for cracks was found to be higher than that of notches.
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.
1993-01-01
Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.
Study on the photo-induced oxygen reordering in YBa2Cu3O6+x
NASA Astrophysics Data System (ADS)
Milić, M. M.; Lazarov, N. Dj.; Cucić, D. A.
2012-05-01
Effect of the long term illumination of the YBa2Cu3O6+x with visible light or ultraviolet irradiation on its superconducting properties was studied in the frame of a simple theoretical model, which assumes that photodoping triggers rearrangement of oxygen monomers in the chain layers thus causing the enhancement of the average chain length, lav. Since, according to the model of charge transfer mechanism, long CuO chains are better electronic hole donors than the short ones, increase of the average chain length induces additional holes transfer from chain layers to the superconducting CuO2 planes which in turn leads to the increase of the superconducting transition temperature Tc. By the use of the expression for the chain length probability distribution and numerically calculated values for the average chain length in the non-excited system, we were able to estimate the doping p (number of holes per one Cu atom in the superconducting CuO2 planes) and Tc enhancement due to photo-induced oxygen reordering. The theoretical results are compared with available experimental data.
Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers
NASA Astrophysics Data System (ADS)
Olsen, B. D.; Wang, M.
2012-02-01
Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Recent development of a jet-diffuser ejector
NASA Technical Reports Server (NTRS)
Alperin, M.; Wu, J. J.
1980-01-01
The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width.
Kostenbauder, Adnah G.
1988-01-01
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.
Kostenbauder, A.G.
1988-06-28
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.
Bifurcation from stable holes to replicating holes in vibrated dense suspensions.
Ebata, H; Sano, M
2013-11-01
In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Stress intensity factors for part-elliptical cracks emanating from dimpled rivet holes
NASA Astrophysics Data System (ADS)
Wang, Ailun; She, Chongmin; Lin, Gang; Zhou, You; Guo, Wanlin
2014-11-01
Detailed investigations on the stress intensity factors (SIFs) for corner cracks emanated from interference fitted dimpled rivet holes are conducted using three-dimensional finite element method. The influences of the crack length a, elliptical shape factor t, far-end stress S and interference magnitude δ on the stress intensity factors are systematically studied. The SIFs for corner cracks emanated from open holes are also investigated for comparisons. An empirical formula of the normalized SIF is proposed by use of the least square method for convenience of the engineering application, which is a function of the crack length a, elliptical shape factor t, far-end stress S, interference magnitude δ and the normalized elliptical centrifugal angle φn. Based on the empirical formula, a crack growth simulation for a rivet filled hole is conducted, which shows a good agreement with the test data.
Hoop conjecture for colliding black holes
NASA Astrophysics Data System (ADS)
Ida, Daisuke; Nakao, Ken-Ichi; Siino, Masaru; Hayward, Sean A.
1998-12-01
We study the collision of black holes in the Kastor-Traschen space-time, at present the only such analytic solution. We investigate the dynamics of the event horizon in the case of the collision of two equal black holes, using the ray-tracing method. We confirm that the event horizon has trouser topology and show that its set of past end points (where the horizon is nonsmooth) is a spacelike curve resembling a seam of trousers. We show that this seam has a finite length and argue that twice this length be taken to define the minimal circumference C of the event horizon. Comparing with the asymptotic mass M, we find the inequality C<4πM supposed by the hoop conjecture, with both sides being of similar order, C~4πM. This supports the hoop conjecture as a guide to general gravitational collapse, even in the extreme case of head-on black-hole collisions.
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport
NASA Astrophysics Data System (ADS)
Moulton, M. R.; Elgar, S.; Raubenheimer, B.
2012-12-01
Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.
Razavilar, Negin; Choi, Phillip
2014-07-08
Isobaric-isothermal molecular dynamics simulation was used to study the diffusion of a hydrophobic drug Cucurbitacin B (CuB) in pseudomicelle environments consisting of poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) swollen by various amounts of water. Two PEO-b-PCL configurations, linear and branched, with the same total molecular weight were used. For the branched configuration, the block copolymer contained one linear block of PEO with the same molecular weight as that of the PEO block used in the linear configuration but with one end connecting to three PCL blocks with the same chain length, hereafter denoted PEO-b-3PCL. Regardless of the configuration, the simulation results showed that the diffusivity of CuB was insensitive to the water concentration up to ∼8 wt % while that of water decreased with an increasing water concentration. The diffusivity of CuB (10(-8) cm(2)/s) was 3 orders of magnitude lower than that of water (10(-5) cm(2)/s). This is attributed to the fact that CuB relied on the wiggling motion of the block copolymers to diffuse while water molecules diffused via a hopping mechanism. The rates at which CuB and water diffused into PEO-b-PCL were twice those in PEO-b-3PCL because the chain mobility and the degree of swelling are higher and there are fewer intermolecular hydrogen bonds in the case of PEO-b-PCL. The velocity autocorrelation functions of CuB show that the free volume holes formed by PEO-b-3PCL are more rigid than those formed by PEO-b-PCL, making CuB exhibit higher-frequency collision motion in PEO-b-3PCL than in PEO-b-PCL, and the difference in frequency is insensitive to water concentration.
NASA Astrophysics Data System (ADS)
Cutillo, P. A.; Ge, S.
2004-12-01
Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the Devils Hole area.
Adiabatic description of long range frequency sweeping
NASA Astrophysics Data System (ADS)
Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.
2012-09-01
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.
Drilling side holes from a borehole
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr.
1980-01-01
Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.
NASA Astrophysics Data System (ADS)
Bolan, Brett Andrew
The effect that changes in network topology, while maintaining a constant network polarity (i.e. thermodynamic driving force was kept constant), had upon the moisture absorption properties of an aerospace grade tetrafunctional epoxy (TGMDA) cured with multifunctional amines were investigated. Utilizing Positron Annihilation Lifetime Spectroscopy (PALS) to characterize the nanoscale structure of these epoxies, it was found that as the "static" hole volume (a measurement of packing defects at 0K) increased so did the equilibrium uptake. PALS studies of one of these resins cured to varying extents, found that this static amount increased with degree of cure indicating that the network becomes more open as a direct consequence of crosslinking. Polar groups, which are the attractive force for diffusion, are in the vicinity of these crosslinks, therefore it is believed that the increase in static hole volume results in exposing more polar groups for absorption. The diffusion coefficient, which is representative of the kinetic aspect of diffusion, was also investigated. It was discovered that the amount of nanohole volume in the polymer; whether the total, the static, or dynamic (i.e. thermally activated) does not correlate to the diffusion coefficient in anyway. Furthermore, at an isotherm the diffusion coefficients for all these materials were relatively constant. From this it is hypothesized that it is the similar sub-Tsb{g} motions of these resins which is the rate limiting step in diffusion. This was bolstered by the fact that the activation energy for diffusion and for the sub-Tsb{g} motions for these epoxies are of the same order of magnitude. The nanostructure of fiber reinforced epoxy composites (i.e. a boron/epoxy and a graphite/epoxy) were probed with the bulk PALS technique as well. It was observed that for the graphite/epoxy composite and its flash (i.e. no fibers present) cured under identical conditions, that the nanoholes in the composite were larger than those present in the flash at temperatures below the epoxy's Tsb{g}. Curiously the boron/epoxy composite and its flash showed an opposite trend. Several potential explanations were examined. The only viable explanation for the observed nanostructural differences between the flash and the resin in these composites utilizes a micromechanics approach involving the CTE mismatch between the fibers and the matrix material. In this approach it is proposed that the fibers in the composite act as a constraint, preventing the nanohole from freely contracting (upon cooling through Tsb{g}) in the axial direction, while Poisson's ratio forces the holes to contract more in the transverse direction than the unrestrained hole in the flash. Therefore the resultant nanoholes in the composite maybe elongated in the fiber direction and shortened in the transverse direction when below the curing temperature. When the PALS technique probed these elongated holes it averaged their dimensions (but weighted the shortest dimension more heavily), thereby yielding the observed results. Despite slightly smaller static holes in the boron/epoxy composite than its flash, no difference in equilibrium uptake was noticed. The diffusion coefficient for the epoxy resin in this composite was found to be an order of magnitude higher than its flash. Nanostructure is not believed to be the cause of this but rather the glass fiber scrim cloth utilized in the processing of the prepreg.
Statistical Entropy of Vaidya-de Sitter Black Hole to All Orders in Planck Length
NASA Astrophysics Data System (ADS)
Sun, HangBin; He, Feng; Huang, Hai
2012-06-01
Considering corrections to all orders in Planck length on the quantum state density from generalized uncertainty principle, we calculate the statistical entropy of scalar field near event horizon and cosmological horizon of Vaidya-de Sitter black hole without any artificial cutoff. It is shown that the entropy is linear sum of event horizon area and cosmological horizon area and there are similar proportional parameters related to changing rate of the horizon position. This is different from the static and stationary cases.
Intensity ratio to improve black hole assessment in multiple sclerosis.
Adusumilli, Gautam; Trinkaus, Kathryn; Sun, Peng; Lancia, Samantha; Viox, Jeffrey D; Wen, Jie; Naismith, Robert T; Cross, Anne H
2018-01-01
Improved imaging methods are critical to assess neurodegeneration and remyelination in multiple sclerosis. Chronic hypointensities observed on T1-weighted brain MRI, "persistent black holes," reflect severe focal tissue damage. Present measures consist of determining persistent black holes numbers and volumes, but do not quantitate severity of individual lesions. Develop a method to differentiate black and gray holes and estimate the severity of individual multiple sclerosis lesions using standard magnetic resonance imaging. 38 multiple sclerosis patients contributed images. Intensities of lesions on T1-weighted scans were assessed relative to cerebrospinal fluid intensity using commercial software. Magnetization transfer imaging, diffusion tensor imaging and clinical testing were performed to assess associations with T1w intensity-based measures. Intensity-based assessments of T1w hypointensities were reproducible and achieved > 90% concordance with expert rater determinations of "black" and "gray" holes. Intensity ratio values correlated with magnetization transfer ratios (R = 0.473) and diffusion tensor imaging metrics (R values ranging from 0.283 to -0.531) that have been associated with demyelination and axon loss. Intensity ratio values incorporated into T1w hypointensity volumes correlated with clinical measures of cognition. This method of determining the degree of hypointensity within multiple sclerosis lesions can add information to conventional imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
2009-12-01
MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B
Near Field Imaging of Charge Transport in Gallium Nitride and Zinc Oxide Nanostructures
2010-12-01
distribution of recombination luminescence . While researching the diffusion lengths of these structures, the author also observed that many of these... diffusion length of these structures can be extracted. E. NEAR FIELD IMAGING WITH NEAR FIELD SCANNING OPTICAL MICROSCOPY Near field scanning optical...composite AFM/NSOM images and the slope analysis to extract Ld, the minority carrier diffusion length , as described in Chapter 3. In all cases, excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnyakov, A. V.; Stuchinsky, V. A., E-mail: stuchin@isp.nsc.ru; Brunev, D. V.
2014-03-03
In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred frommore » our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiff, E. A.; Gu, Q.; Jiang, L.
1998-12-28
This report describes work performed by Syracuse University under this subcontract. Researchers developed a technique based on electroabsorption measurements for obtaining quantitative estimates of the built-in potential Vbi in a-Si:H-based heterostructure solar cells incorporating microcrystalline or a-SiC:H p layers. Using this new electroabsorption technique, researchers confirmed previous estimates of Vbi {yields} 1.0 V in a-Si:H solar cells with ''conventional'' intrinsic layers and either microcrystalline or a-SiC:H p layers. Researchers also explored the recent claim that light-soaking of a-Si:H substantially changes the polarized electroabsorption associated with interband optical transitions (and hence, not defect transitions). Researchers confirmed measurements of improved (5') holemore » drift mobilities in some specially prepared a-Si:H samples. Disturbingly, solar cells made with such materials did not show improved efficiencies. Researchers significantly clarified the relationship of ambipolar diffusion-length measurements to hole drift mobilities in a-Si:H, and have shown that the photocapacitance measurements can be interpreted in terms of hole drift mobilities in amorphous silicon. They also completed a survey of thin BP:H and BPC:H films prepared by plasma deposition using phosphine, diborane, trimethylboron, and hydrogen as precursor gases.« less
Solution deposited and modified iron oxide for enhanced solar water splitting
NASA Astrophysics Data System (ADS)
Abel, Anthony J.
Growing worldwide energy demand coupled with an increasing awareness of anthropogenic climate change has driven research into carbon-neutral and solar-derived energy sources. One attractive strategy is the storage of solar energy in the bonds of H2 formed by photoelectrochemical (PEC) water splitting. Hematite, an iron oxide, has been widely investigated as a candidate material for PEC water splitting due to its stability, non-toxicity, earth abundance and consequent low cost, and a theoretical 15% solar-to-hydrogen conversion efficiency. However, poor electrical properties and slow rates of the water oxidation reaction have limited its potential as an economical water splitting catalyst. Additionally, the most efficient hematite-based devices are fabricated via expensive, vacuum-phase techniques, limiting scalability to broad integration into the energy supply. In this thesis, I develop a new, solution-based deposition method for high quality, planar hematite thin films using successive ionic layer adsorption and reaction (SILAR). The constant geometry and tight control over layer thickness possible with SILAR makes these films ideal model systems to understand the two key steps of PEC water oxidation: charge separation and interfacial hole transfer. In Chapter 3, I report on facile annealing treatments to dope hematite with Ti and Sn, and I show that these impurity atoms at the hematite/electrolyte interface increase hole transfer efficiency from nearly 0 to above 60%. However, charge separation remains below 15% with these dopants incorporated via solid state diffusion, mainly due to low hole mobility. To overcome this associated small transport length, extremely thin hematite coatings were deposited on Sb:SnO2 monolayer inverse opal scaffolds. With this modified substrate, photocurrent increased proportionately to the surface area of the scaffold. While Chapter 3 discusses incorporation of dopants via solid state diffusion, Chapter 4 examines methods to incorporate Ti via modified SILAR solutions. With this method, hematite films with well-controlled, uniform doping profiles were successfully fabricated. An optimal Ti concentration of 4.2% in the film enabled a charge separation efficiency of >20%, and I show that holes generated within 3 nm of the depletion region are separated with unity efficiency. With the addition of an ultrathin FeOOH overlayer, hole transfer efficiency is increased to 100% as a result of an increased concentration of reactive holes at the hematite/electrolyte interface. These combined effects lead to photocurrents >0.85 mAcm-2 at 1.23 VRHE, which is competitive with champion planar films regardless of fabrication method. Importantly, the methods of fabrication and analysis described in this thesis are applicable to a wide range of materials for a variety of applications. The SILAR method can be applied to many compounds, provided their constituent atoms are soluble in liquid solvents. Additionally, the facile optical and electrochemical measurements used to analyze hematite in Chapters 3 and 4 can be readily adapted to other semiconductor materials with the aim of understanding their charge transport properties.
NASA Astrophysics Data System (ADS)
Zulqarnain Haider, Syed; Anwar, Hafeez; Wang, Mingqing
2018-03-01
Hole transport material (HTM) plays an important role in the efficiency and stability of perovskite solar cells (PSCs). Spiro-MeOTAD, the commonly used HTM, is costly and can be easily degraded by heat and moisture, thus offering hindrance to commercialize PSCs. There is dire need to find an alternate inorganic and stable HTM to exploit PSCs with their maximum capability. In this paper, a comprehensive device simulation is used to study various possible parameters that can influence the performance of perovskite solar cell with CuI as HTM. These include the effect of doping density, defect density and thickness of absorber layer, along with the influence of diffusion length of carriers as well as electron affinity of electron transport layer (ETM) and HTM on the performance of PSCs. In addition, hole mobility and doping density of HTM is also investigated. CuI is a p-type inorganic material with low cost and relatively high stability. It is found that concentration of dopant in absorber layer and HTM, the electron affinity of HTM and ETM affect the performance of solar cell minutely, while cell performance improves greatly with the reduction of defect density. Upon optimization of parameters, power conversion efficiency for this device is found to be 21.32%. The result shows that lead-based PSC with CuI as HTM is an efficient system. Enhancing the stability and reduction of defect density are critical factors for future research. These factors can be improved by better fabrication process and proper encapsulation of solar cell.
Measurement of radon diffusion in polyethylene based on alpha detection
NASA Astrophysics Data System (ADS)
Rau, Wolfgang
2012-02-01
Radon diffusion in different materials has been measured in the past. Usually the diffusion measurements are based on a direct determination of the amount of radon that diffuses through a thin layer of material. Here we present a method based on the measurement of the radon daughter products which are deposited inside the material. Looking at the decay of 210Po allows us to directly measure the exponential diffusion profile characterized by the diffusion length. In addition we can determine the solubility of radon in PE. We also describe a second method to determine the diffusion constant based on the short-lived radon daughter products 218Po and 214Po, using the identical experimental setup. Measurements for regular polyethylene (PE) and High Molecular Weight Polyethylene (HMWPE) yielded diffusion lengths of (1.3±0.3) mm and (0.8±0.2) mm and solubilities of 0.5±0.1 and 0.7±0.2, respectively, for the first method; the diffusion lengths extracted from the second method are noticeably larger which may be caused by different experimental conditions during diffusion.
Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua
2016-12-01
Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.
Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave
2016-10-13
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.
NASA Technical Reports Server (NTRS)
Natesh, R.; Stringfellow, G. B.; Virkar, A. V.; Dunn, J.; Guyer, T.
1983-01-01
Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13C. Important correlation was obtained between defect densities, cell efficiency, and diffusion length. Grain boundary substructure displayed a strong influence on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements gave statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for quantimet quantitative image analyzer (QTM) analysis was perfected and is used routinely. The relationships between hole mobility and grain boundary density was determined. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.
Strategy to overcome recombination limited photocurrent generation in CsPbX3 nanocrystal arrays
NASA Astrophysics Data System (ADS)
Mir, Wasim J.; Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Chu, Audrey; Coutard, Nathan; Cruguel, Hervé; Barisien, Thierry; Ithurria, Sandrine; Nag, Angshuman; Dubertret, Benoit; Ouerghi, Abdelkarim; Silly, Mathieu G.; Lhuillier, Emmanuel
2018-03-01
We discuss the transport properties of CsPbBrxI3-x perovskite nanocrystal arrays as a model ensemble system of caesium lead halide-based perovskite nanocrystal arrays. While this material is very promising for the design of light emitting diodes, laser, and solar cells, very little work has been devoted to the basic understanding of their (photo)conductive properties in an ensemble system. By combining DC and time-resolved photocurrent measurements, we demonstrate fast photodetection with time response below 2 ns. The photocurrent generation in perovskite nanocrystal-based arrays is limited by fast bimolecular recombination of the material, which limits the lifetime of the photogenerated electron-hole pairs. We propose to use nanotrench electrodes as a strategy to ensure that the device size fits within the obtained diffusion length of the material in order to boost the transport efficiency and thus observe an enhancement of the photoresponse by a factor of 1000.
Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR
NASA Astrophysics Data System (ADS)
Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon
2009-05-01
Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.
Hu, Xin-Jia; Wang, Hua
2017-01-01
The aim of the present study was to investigate the biomechanical effects of varying the length of a limited contact-dynamic compression plate (LC-DCP) and the number and position of screws on middle tibial fractures, and to provide biomechanical evidence regarding minimally invasive plate osteosynthesis (MIPO). For biomechanical testing, 60 tibias from cadavers (age at mortality, 20–40 years) were used to create middle and diagonal fracture models without defects. Tibias were randomly grouped and analyzed by biomechanic and three-dimensional (3D) finite element analysis. The differences among LC-DCPs of different lengths (6-, 10- and 14-hole) with 6 screws, 14-hole LC-DCPs with different numbers of screws (6, 10 and 14), and 14-hole LC-DCPs with 6 screws at different positions with regard to mechanical characteristics, including compressing, torsion and bending, were examined. The 6-hole LC-DCP had greater vertical compression strain compared with the 10- and 14-hole LC-DCPs (P<0.01), and the 14-hole LC-DCP had greater lateral strain than the 6- and 10-hole LC-DCPs (P<0.01). Furthermore, significant differences in torque were observed among the LC-DPs of different lengths (P<0.01). For 14-hole LC-DCPs with different numbers of screws, no significant differences in vertical strain, lateral strain or torque were detected (P>0.05). However, plates with 14 screws had greater vertical strain compared with those fixed with 6 or 10 screws (P<0.01). For 4-hole LC-DCPs with screws at different positions, vertical compression strain values were lowest for plates with screws at positions 1, 4, 7, 8, 11 and 14 (P<0.01). The lateral strain values and vertical strain values for plates with screws at positions 1, 3, 6, 9, 12 and 14 were significantly lower compared with those at the other positions (P<0.01), and torque values were also low. Thus, the 14-hole LC-DCP was the most stable against vertical compression, torsion and bending, and the 6-hole LC-DCP was the least stable. However, the use of 14 screws with a 14-hole LC-DCP provided less stability against bending than did 6 or 10 screws. Furthermore, fixation with distributed screws, in which some screws were close to the fracture line, provided good stability against compression and torsion, while fixation with screws at the ends of the LC-DCP provided poor stability against bending, compressing and torsion. PMID:28781632
Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns
NASA Astrophysics Data System (ADS)
Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki
2018-06-01
A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.
Modeling of long range frequency sweeping for energetic particle modes
NASA Astrophysics Data System (ADS)
Nyqvist, R. M.; Breizman, B. N.
2013-04-01
Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.
Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures
NASA Astrophysics Data System (ADS)
Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.
2018-03-01
Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor parameterization.
Measuring charge carrier diffusion in coupled colloidal quantum dot solids.
Zhitomirsky, David; Voznyy, Oleksandr; Hoogland, Sjoerd; Sargent, Edward H
2013-06-25
Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells.
Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Froeling, Martijn; Strijkers, Gustav J
2016-12-01
In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence of lengthening and shortening of the muscle. Diffusion Tensor MRI (DT-MRI) measurements were made twice in five healthy volunteers, with the foot in three different positions (30° plantarflexion, neutral position and 15° dorsiflexion). The muscles of the calf were manually segmented on co-registered high resolution anatomical scans, and maps of RD and axial diffusivity (AD) were reconstructed from the DT-MRI data. Fiber tractography was performed and mean fiber length was calculated for each muscle group. Significant negative correlations were found between the changes in RD and changes in fiber length in the dorsiflexed and plantarflexed positions, compared with the neutral foot position. Changes in AD did not correlate with changes in fiber length. Assuming a simple cylindrical model with constant volume for the muscle fiber, the changes in the muscle fiber CSA were calculated from the changes in fiber length. In line with our hypothesis, we observed a significant positive correlation of the CSA with the measured changes in RD. In conclusion, we showed that changes in diffusion coefficients induced by passive muscle stretching and lengthening can be explained by changes in muscle CSA, advancing the physiological interpretation of parameters derived from skeletal muscle DT-MRI. Copyright © 2016 John Wiley & Sons, Ltd.
Review on first-principles study of defect properties of CdTe as a solar cell absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang
2016-07-15
CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is Te-2+/Cd, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generallymore » will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve 10^17 cm-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of 10^17 cm-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te-Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.« less
THE DIFFUSION LENGTH OF THERMAL NEUTRONS IN PORTLAND CONCRETE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugdale, R.A.; Healy, E.
1957-10-01
A measurement of the diffusion length of thermal neutrons in Portland concrete, originally raade by Salmon two years previously, has been repeated. An apparent decrease from 7.04 cm to 6.61 cm has oocurred. This change, which is only four times the standard deviation of the result, could be due to a small increase in water content. In assessing the amount required, a discrepancy between calculated and measured diffusion length was found. Possible explanations of the discrepancy are discussed. (auth)
Diffusion length measurements using the scanning electron microscope. [in semiconductor devices
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1975-01-01
A measurement technique employing the scanning electron microscope is described in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through the application of highly doped surface field layers. The influence of high injection level effects and low-high junction current generation on the resulting measurement was investigated. Close agreement is found between the diffusion lengths measured by this method and those obtained using a penetrating radiation technique.
2012-06-01
the diffusion length L and the mobility-lifetime product from the luminescence distribution using the 2D model for transport imaging in bulk...C. Scandrett, and N. M. Haegel, “Three-dimensional transport imaging for the spatially resolved determination of carrier diffusion length in bulk...that allows measurements of the diffusion length and extraction of the product in luminescent materials without the need for device processing
Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayu Aji, L. B.; Wallace, J. B.; Shao, L.
Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.
Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC
Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...
2016-04-14
Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.
Wang, Muzhou; Timachova, Ksenia; Olsen, Bradley D.
2014-01-01
The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing. PMID:25484454
Electron–hole asymmetry of the topological surface states in strained HgTe
Jost, Andreas; Bendias, Michel; Böttcher, Jan; Hankiewicz, Ewelina; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.; Maan, Jan C.; Zeitler, Uli; Hussey, Nigel; Wiedmann, Steffen
2017-01-01
Topological insulators are a new class of materials with an insulating bulk and topologically protected metallic surface states. Although it is widely assumed that these surface states display a Dirac-type dispersion that is symmetric above and below the Dirac point, this exact equivalence across the Fermi level has yet to be established experimentally. Here, we present a detailed transport study of the 3D topological insulator-strained HgTe that strongly challenges this prevailing viewpoint. First, we establish the existence of exclusively surface-dominated transport via the observation of an ambipolar surface quantum Hall effect and quantum oscillations in the Seebeck and Nernst effect. Second, we show that, whereas the thermopower is diffusion driven for surface electrons, both diffusion and phonon drag contributions are essential for the hole surface carriers. This distinct behavior in the thermoelectric response is explained by a strong deviation from the linear dispersion relation for the surface states, with a much flatter dispersion for holes compared with electrons. These findings show that the metallic surface states in topological insulators can exhibit both strong electron–hole asymmetry and a strong deviation from a linear dispersion but remain topologically protected. PMID:28280101
NASA Technical Reports Server (NTRS)
Whitney, J. M.
1983-01-01
The notch strength of composites is discussed. The point stress and average stress criteria relate the notched strength of a laminate to the average strength of a relatively long tensile coupon. Tests of notched specimens in which microstrain gages have been placed at or near the edges of the holes have measured strains much larger that those measured in an unnotched tensile coupon. Orthotropic stress concentration analyses of failed notched laminates have also indicated that failure occurred at strains much larger than those experienced on tensile coupons with normal gage lengths. This suggests that the high strains at the edge of a hole can be related to the very short length of fiber subjected to these strains. Lockheed has attempted to correlate a series of tests of several laminates with holes ranging from 0.19 to 0.50 in. Although the average stress criterion correlated well with test results for hole sizes equal to or greater than 0.50 in., it over-estimated the laminate strength in the range of hole sizes from 0.19 to 0.38 in. It thus appears that a theory is needed that is based on the mechanics of failure and is more generally applicable to the range of hole sizes and the varieties of laminates found in aircraft construction.
NASA Technical Reports Server (NTRS)
Mcgowan, J. J.; Smith, C. W.
1974-01-01
A technique consisting of freezing photo-elasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometries studied were: (1) crack depth to thickness ratios of approximately 0.2, (2) 0.5 and 0.75; (3) crack depth to crack length ratios of approximately 1.0 to 2.0; and (4) crack length to hole radius ratios of about 0.5 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar, with most of the growth occuring through the thickness under remote extension. Stress intensity factors were determined at the intersection of the flaw border.
Diffusion-limited mixing by incompressible flows
NASA Astrophysics Data System (ADS)
Miles, Christopher J.; Doering, Charles R.
2018-05-01
Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
2017-07-24
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
Burr Hole Washout versus Craniotomy for Chronic Subdural Hematoma: Patient Outcome and Cost Analysis
Regan, Jacqueline M.; Worley, Emmagene; Shelburne, Christopher; Pullarkat, Ranjit; Watson, Joseph C.
2015-01-01
Chronic subdural hematomas (CSDH), which are frequently encountered in neurosurgical practice, are, in the majority of cases, ideally treated with surgical drainage. Despite this common practice, there is still controversy surrounding the best surgical procedure. With lack of clear evidence of a superior technique, surgeons are free to base the decision on other factors that are not related to patient care. A retrospective chart review of 119 patients requiring surgical drainage of CSDH was conducted at a large tertiary care center over a three-year period. Of the cases reviewed, 58 patients underwent craniotomy, while 61 patients underwent burr hole washout. The study focused on re-operation rates, mortality, and morbidity, as measured by Glasgow coma scores (GCS), discharge Rankin disability scores, and discharge disposition. Secondary endpoints included length of stay and cost of procedure. Burr hole washout was superior to craniotomy with respect to patient outcome, length of stay and recurrence rates. In both study groups, patients required additional surgical procedures (6.6% of burr hole patients and 24.1% of craniotomy patients) (P = 0.0156). Of the patients treated with craniotomy, 51.7% were discharged home, whereas 65.6% of the burr hole patients were discharged home. Patients who underwent burr hole washout spent a mean of 78.8 minutes in the operating suite while the patients undergoing craniotomy spent 129.4 minutes (P < 0.001). The difference in mean cost per patient, based solely on operating time, was $2,828 (P < 0.001). This does not include the further cost due to additional procedures and hospital stay. The mean length of stay after surgical intervention was 3 days longer for the craniotomy group (P = 0.0465). Based on this retrospective study, burr hole washout is superior for both patients’ clinical and financial outcome; however, prospective long-term multicenter clinical studies are required to verify these findings. PMID:25611468
Regan, Jacqueline M; Worley, Emmagene; Shelburne, Christopher; Pullarkat, Ranjit; Watson, Joseph C
2015-01-01
Chronic subdural hematomas (CSDH), which are frequently encountered in neurosurgical practice, are, in the majority of cases, ideally treated with surgical drainage. Despite this common practice, there is still controversy surrounding the best surgical procedure. With lack of clear evidence of a superior technique, surgeons are free to base the decision on other factors that are not related to patient care. A retrospective chart review of 119 patients requiring surgical drainage of CSDH was conducted at a large tertiary care center over a three-year period. Of the cases reviewed, 58 patients underwent craniotomy, while 61 patients underwent burr hole washout. The study focused on re-operation rates, mortality, and morbidity, as measured by Glasgow coma scores (GCS), discharge Rankin disability scores, and discharge disposition. Secondary endpoints included length of stay and cost of procedure. Burr hole washout was superior to craniotomy with respect to patient outcome, length of stay and recurrence rates. In both study groups, patients required additional surgical procedures (6.6% of burr hole patients and 24.1% of craniotomy patients) (P = 0.0156). Of the patients treated with craniotomy, 51.7% were discharged home, whereas 65.6% of the burr hole patients were discharged home. Patients who underwent burr hole washout spent a mean of 78.8 minutes in the operating suite while the patients undergoing craniotomy spent 129.4 minutes (P < 0.001). The difference in mean cost per patient, based solely on operating time, was $2,828 (P < 0.001). This does not include the further cost due to additional procedures and hospital stay. The mean length of stay after surgical intervention was 3 days longer for the craniotomy group (P = 0.0465). Based on this retrospective study, burr hole washout is superior for both patients' clinical and financial outcome; however, prospective long-term multicenter clinical studies are required to verify these findings.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
Molecular dynamics simulation of three plastic additives' diffusion in polyethylene terephthalate.
Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying
2017-06-01
Accurate diffusion coefficient data of additives in a polymer are of paramount importance for estimating the migration of the additives over time. This paper shows how this diffusion coefficient can be estimated for three plastic additives [2-(2'-hydroxy-5'-methylphenyl) (UV-P), 2,6-di-tert-butyl-4-methylphenol (BHT) and di-(2-ethylhexyl) phthalate (DEHP)] in polyethylene terephthalate (PET) using the molecular dynamics (MD) simulation method. MD simulations were performed at temperatures of 293-433 K. The diffusion coefficient was calculated through the Einstein relationship connecting the data of mean-square displacement at different times. Comparison of the diffusion coefficients simulated by the MD simulation technique, predicted by the Piringer model and experiments, showed that, except for a few samples, the MD-simulated values were in agreement with the experimental values within one order of magnitude. Furthermore, the diffusion process for additives is discussed in detail, and four factors - the interaction energy between additive molecules and PET, fractional free volume, molecular shape and size, and self-diffusion of the polymer - are proposed to illustrate the microscopic diffusion mechanism. The movement trajectories of additives in PET cell models suggested that the additive molecules oscillate slowly rather than hopping for a long time. Occasionally, when a sufficiently large hole was created adjacently, the molecule could undergo spatial motion by jumping into the free-volume hole and consequently start a continuous oscillation and hop. The results indicate that MD simulation is a useful approach for predicting the microstructure and diffusion coefficient of plastic additives, and help to estimate the migration level of additives from PET packaging.
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Freund, Minoru M.; Tsay, Si-Chee; Ouzounov, Dimitar
2004-01-01
The work performed under this proposal is based on the experimentally supported observation - or inference - that a small fraction of the oxygen anions in silicate minerals in igneous and high-grade metamorphic rocks on Earth may not be in the usual 2- oxidation state, O(sup 2-), but in a higher oxidation state, as O(sup -). If this is true, the same would likely apply to the fine dust that fills the diffuse interstellar medium. An (sup -) in a matrix of O(sup 2-) represents a defect electron in the valence band, also known as positive hole or p-hole for short. When two O(sup -) combine, they undergo spin-pairing and form a positive hole pair, PHP. Chemically speaking a PHP is a peroxy bond. In an oxide matrix a peroxy bond takes the form of a peroxy anion, O2(sup 2-). In a silicate matrix it probably exists in the form of peroxy links between adjacent [SiO4] tetrahedral, O3Si00\\SiO3. From a physics perspective a PHP is an electrically inactive point defect, which contains dormant electronic charge carriers. When the peroxy bond breaks, p-hole charge carriers are released. These p-holes are diffusively mobile and spread through the O 2p-dominated valence band of the otherwise insulating mineral matrix.
Particle accelerators inside spinning black holes.
Lake, Kayll
2010-05-28
On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.
Effect of hole transport on performance of infrared type-II superlattice light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youxi; Suchalkin, Sergey; Kipshidze, Gela
2015-04-28
The effect of hole transport on the performance of infrared light emitting diodes (LED) was investigated. The active area of the LEDs comprised two type-II superlattices with different periods and widths connected in series. Electroluminescence spectra of the devices with different positions of long wave and mid wave superlattice sections were mostly contributed by the superlattice closest to the p-contact. The experimental results indicate that due to suppressed vertical hole transport, the recombination of electrically injected electrons and holes in a type II superlattice LED active region takes place within a few superlattice periods near p-barrier. Possible reason for themore » effect is reduction of hole diffusion coefficient in an active area of a superlattice LED under bias.« less
Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
Donatini, Fabrice; Pernot, Julien
2018-03-09
In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.
Surface photovoltage method extended to silicon solar cell junction
NASA Technical Reports Server (NTRS)
Wang, E. Y.; Baraona, C. R.; Brandhorst, H. W., Jr.
1974-01-01
The conventional surface photovoltage (SPV) method is extended to the measurement of the minority carrier diffusion length in diffused semiconductor junctions of the type used in a silicon solar cell. The minority carrier diffusion values obtained by the SPV method agree well with those obtained by the X-ray method. Agreement within experimental error is also obtained between the minority carrier diffusion lengths in solar cell diffusion junctions and in the same materials with n-regions removed by etching, when the SPV method was used in the measurements.
Correlating Free-Volume Hole Distribution to the Glass Transition Temperature of Epoxy Polymers.
Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A
2017-09-07
A new algorithm is developed to quantify the free-volume hole distribution and its evolution in coarse-grained molecular dynamics simulations of polymeric networks. This is achieved by analyzing the geometry of the network rather than a voxelized image of the structure to accurately and efficiently find and quantify free-volume hole distributions within large scale simulations of polymer networks. The free-volume holes are quantified by fitting the largest ellipsoids and spheres in the free-volumes between polymer chains. The free-volume hole distributions calculated from this algorithm are shown to be in excellent agreement with those measured from positron annihilation lifetime spectroscopy (PALS) experiments at different temperature and pressures. Based on the results predicted using this algorithm, an evolution model is proposed for the thermal behavior of an individual free-volume hole. This model is calibrated such that the average radius of free-volumes holes mimics the one predicted from the simulations. The model is then employed to predict the glass-transition temperature of epoxy polymers with different degrees of cross-linking and lengths of prepolymers. Comparison between the predicted glass-transition temperatures and those measured from simulations or experiments implies that this model is capable of successfully predicting the glass-transition temperature of the material using only a PDF of the initial free-volume holes radii of each microstructure. This provides an effective approach for the optimized design of polymeric systems on the basis of the glass-transition temperature, degree of cross-linking, and average length of prepolymers.
NASA Astrophysics Data System (ADS)
Shi, Min; Li, Shuguang; Chen, Hailiang
2018-06-01
A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.
Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave
2016-01-01
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950
Lifetime and diffusion length measurements on silicon material and solar cells
NASA Technical Reports Server (NTRS)
Othmer, S.; Chen, S. C.
1978-01-01
Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.
NASA Astrophysics Data System (ADS)
Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara
2018-06-01
SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.; ...
2016-11-15
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
NASA Astrophysics Data System (ADS)
Zhou, Shiwei; Chen, Ge-Rui
Recently, some approaches to quantum gravity indicate that a minimal measurable length lp ˜ 10-35 should be considered, a direct implication of the minimal measurable length is the generalized uncertainty principle (GUP). Taking the effect of GUP into account, Hawking radiation of massless scalar particles from a Schwarzschild black hole is investigated by the use of Damour-Ruffini’s method. The original Klein-Gordon equation is modified. It is obtained that the corrected Hawking temperature is related to the energy of emitting particles. Some discussions appear in the last section.
World-volume effective theory for higher-dimensional black holes.
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A
2009-05-15
We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.
Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.
Chiu, Yi-Hsuan; Lai, Ting-Hsuan; Chen, Chun-Yi; Hsieh, Ping-Yen; Ozasa, Kazunari; Niinomi, Mitsuo; Okada, Kiyoshi; Chang, Tso-Fu Mark; Matsushita, Nobuhiro; Sone, Masato; Hsu, Yung-Jung
2018-05-01
Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO 2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO 2 , with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO 2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.
Prediction of an Apparent Flame Length in a Co-Axial Jet Diffusion Flame Combustor.
1983-04-01
This report is comprised of two parts. In Part I a predictive model for an apparent flame length in a co-axial jet diffusion flame combustor is...Overall mass transfer coefficient, evaluated from an empirically developed correlation, is employed to predict total flame length . Comparison of the...experimental and predicted data on total flame length shows a reasonable agreement within sixteen percent over the investigated air and fuel flow rate
Investigation of Perforated Convergent-divergent Diffusers with Initial Boundary Layer
NASA Technical Reports Server (NTRS)
Weinstein, Maynard I
1950-01-01
An experimental investigation was made at Mach number 1.90 of the performance of a series of perforated convergent-divergent supersonic diffusers operating with initial boundary layer, which was induced and controlled by lengths of cylindrical inlets affixed to the diffusers. Supercritical mass-flow and peak total-pressure recoveries were decreased slightly by use of the longest inlets (4 inlet diameters in length). Combinations of cylindrical inlets, perforated diffusers, and subsonic diffuser were evaluated as simulated wind tunnels having second throats. Comparisons with noncontracted configurations of similar scale indicated conservatively computed power reductions of 25 percent.
Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops
NASA Technical Reports Server (NTRS)
Caldwell, R. R.; Gates, Evalyn
1993-01-01
The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.
Rescuing complementarity with little drama
NASA Astrophysics Data System (ADS)
Bao, Ning; Bouland, Adam; Chatwin-Davies, Aidan; Pollack, Jason; Yuen, Henry
2016-12-01
The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it "little-drama") which is the "complementarity dual" of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Therefore, an infalling observer cannot observe monogamy violation before encountering the singularity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Ning; Bouland, Adam; Chatwin-Davies, Aidan
The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it “little-drama”) which is the “complementarity dual” of scrambling of information onmore » the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Furthermore, an infalling observer cannot observe monogamy violation before encountering the singularity.« less
Rescuing complementarity with little drama
Bao, Ning; Bouland, Adam; Chatwin-Davies, Aidan; ...
2016-12-07
The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it “little-drama”) which is the “complementarity dual” of scrambling of information onmore » the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Furthermore, an infalling observer cannot observe monogamy violation before encountering the singularity.« less
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.
2018-01-01
Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.
Length of intact plasma membrane determines the diffusion properties of cellular water.
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-11
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.
Length of intact plasma membrane determines the diffusion properties of cellular water
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-01
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342
Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas
2016-09-23
InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.
30 CFR 816.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...
30 CFR 817.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...
30 CFR 817.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...
30 CFR 816.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...
Damage and recovery characteristics of lithium-containing solar cells.
NASA Technical Reports Server (NTRS)
Faith, T. J.
1971-01-01
Damage and recovery characteristics were measured on lithium-containing solar cells irradiated by 1-MeV electrons. Empirical expressions for cell recovery time, diffusion-length damage coefficient immediately after irradiation, and diffusion-length damage coefficient after recovery were derived using results of short-circuit current, diffusion-length, and reverse-bias capacitance measurements. The damage coefficients were expressed in terms of a single lithium density parameter, the lithium gradient. A fluence dependence was also established, this dependence being the same for both the immediate-post-irradiation and post-recovery cases. Cell recovery rates were found to increase linearly with lithium gradient.
Thermal diffusivity study of aged Li-ion batteries using flash method
NASA Astrophysics Data System (ADS)
Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim
Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.
Ionic channels: natural nanotubes described by the drift diffusion equations
NASA Astrophysics Data System (ADS)
Eisenberg, Bob
2000-05-01
Ionic channels are a large class of proteins with holes down their middle that control a wide range of cellular functions important in health and disease. Ionic channels can be analysed using a combination of the Poisson and drift diffusion equations familiar from computational electronics because their behavior is dominated by the electrical properties of their simple structure.
NASA Astrophysics Data System (ADS)
Chernyshov, D.; Cheng, K.; Dogiel, V.; Kong, A.; Ko, C.; Tatischeff, V.; Terrier, R.
2017-10-01
We investigate an old X-Ray flare produced by a central black hole which is most likely responsible for the transient X-Ray emission from massive molecular clouds in the Galactic center. This flare should ionize diffuse molecular gas and also excite fluorescence lines e.g. neutral iron line at 6.4 keV. It turns out that the observed diffuse 6.4 keV line can be explained by the same X-Ray flare which illuminates dense molecular clouds. The diffuse emission can also be considered as a tool to limit potential duration and intensity of the primary X-Ray flare. We show that charged particles cannot provide necessary iron ionization rate to reproduce the observed emission. On the other hand ionization of neutral hydrogen cannot be provided by a primary flare and should be done by other mechanisms like for example charged particles. We also claim that recently found afterglow from Swift J1644+57 can be produced by similar event and can be a nice example of a Compton echo observed in a distant galaxy.
Ultrafast Spectral Diffusion of the First Subband Exciton in Single-Wall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Schilling, Daniel; Hertel, Tobias
2013-03-01
The width of optical transitions in semiconductors is determined by homogeneous and inhomogeneous contributions. Here, we report on the determination of homogeneous linewidths for the first exciton subband transition and the dynamics of spectral diffusion in single-wall carbon nanotubes (SWNTs) using one- and two-dimensional time resolved spectral hole burning spectroscopy. Our investigation of highly purified semiconducting (6,5)-SWNTs suggests that room temperature homogeneous linewidths are on the order of 4 meV and are rapidly broadened by an ultrafast sub-ps spectral diffusion process. These findings are supported by our off-resonant excitation experiments where we observe sub-ps population transfer reflecting the thermal distribution of energy levels around the first subband exciton transition. The results of temperature-dependent spectral hole burning experiments between 17 K and 293 K suggest that homogeneous linewidths are due to exciton interaction with low energy optical phonons, most likely of the radial breathing mode type. In contrast, we find that inhomogeneous broadening is determined by an electronic degree of freedom such as ultrafast intra-tube exciton diffusion which is characteristic and unique for excitons in these one-dimensional semiconductors.
Quantum diffusion during inflation and primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattison, Chris; Assadullahi, Hooshyar; Wands, David
We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. Inmore » the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ∼ 1 e -fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.« less
Quantum diffusion during inflation and primordial black holes
NASA Astrophysics Data System (ADS)
Pattison, Chris; Vennin, Vincent; Assadullahi, Hooshyar; Wands, David
2017-10-01
We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. In the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ~ 1 e-fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.
Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, K. J.
2012-02-01
Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.
Leakage flow simulation in a specific pump model
NASA Astrophysics Data System (ADS)
Dupont, P.; Bayeul-Lainé, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.
2014-03-01
This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.
Long Hole Film Cooling Dataset for CFD Development - Flow and Film Effectiveness
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Poinsatte, Phillip; Thurman, Douglas; Ameri, Ali
2014-01-01
An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30 deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (approx. 0.02 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James
2013-01-01
An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.
Balser, David; Rodgers, Shaun D.; Johnson, Blair; Shi, Chen; Tabak, Esteban; Samadani, Uzma
2015-01-01
Objective Chronic subdural hematoma has an increasing incidence and results in high morbidity and mortality. We review here the ten-year experience of a single institution and the literature regarding the treatment and major associations of chronic subdural hematoma (cSDH). Methods We retrospectively reviewed all cSDHs surgically treated from 2000 to 2010 at our institution to evaluate duration from admission to treatment, type of treatment, length of stay in critical care, length of stay in the hospital and recurrence. The literature was reviewed with regards to incidence, associations and treatment of cSDH. Results From 2000–2008, 44 patients were treated with burr holes. From 2008 to 2010, 29 patients were treated with twist drill evacuation (SEPS). 4 patients from each group were readmitted for reoperation (9% vs. 14%; p=.53). The average time to intervention for SEPS (11.2±15.3 hrs) was faster than for burr holes (40.3±69.1 hrs) (p=.02). The total hospital LOS was shorter for SEPS (9.3±6.8 days) versus burr holes (13.4±10.2 days) (p=.04); both were significantly longer than for a brain tumor patient undergoing craniotomy (7.0±0.5 days, n=94, P<.01). Conclusion Despite decreasing lengths of stay over time as treatment for cSDH evolved from burr holes to SEPS, the length of stay for a cSDH is still greater than that of a patient undergoing craniotomy for brain tumor. We noted 11% recurrence in our series of patients, which included individuals who recurred as late as 3 years after initial diagnosis. PMID:23485050
NASA Technical Reports Server (NTRS)
Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.
2002-01-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L
2002-06-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
Liquid lens driven by elastomer actuator
NASA Astrophysics Data System (ADS)
Jin, Boya; Lee, Ji-Hyeon; Zhou, Zuowei; Lee, Gi-Bbeum; Ren, Hongwen; Nah, Changwoon
2015-09-01
By filling a liquid droplet in the hole of a dielectric elastomer (DE) film directly, we prepared two small liquid lenses. The aperture of one lens is macro size and the other is micro size. The liquid droplet in each hole of the DE film exhibits a lens character due to its biconvex shape. In relaxed state, the focal length of each liquid droplet is the longest. When a sufficiently high DC voltage is applied, the diameter of each DE hole is decreased by the generated Maxwell stress, causing the curvature of its droplet to increase. As a result, the focal length of each lens is reduced. Here the DE film functions as an actuator. In contrast to previous approaches, our miniature liquid lenses possess the advantages of simple fabrication, fast response time (~ 540 ms), and high optical performance (~ 114 lp/mm). Moreover, the micro-sized liquid lens presents good mechanical stability.
Paraffin tissue microarrays constructed with a cutting board and cutting board arrayer.
Vogel, Ulrich Felix
2010-05-01
Paraffin tissue microarrays (PTMAs) are blocks of paraffin containing up to 1300 paraffin tissue core biopsies (PTCBs). Normally, these PTCBs are punched from routine paraffin tissue blocks, which contain tissues of differing thicknesses. Therefore, the PTCBs are of different lengths. In consequence, the sections of the deeper portions of the PTMA do not contain all of the desired PTCBs. To overcome this drawback, cutting boards were constructed from panels of plastic with a thickness of 4 mm. Holes were drilled into the plastic and filled completely with at least one PTCB per hole. After being trimmed to a uniform length of 4 mm, these PTCBs were pushed from the cutting board into corresponding holes in a recipient block by means of a plate with steel pins. Up to 1000 sections per PTMA were cut without any significant loss of PTCBs, thereby increasing the efficacy of the PTMA technique.
What Is Moving in Hybrid Halide Perovskite Solar Cells?
2016-01-01
Conspectus Organic–inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron–hole recombination rates, and current–voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery and fuel cell applications. We expound on the implications of these effects for the photovoltaic action. The temporal behavior displayed by hybrid perovskites introduces a sensitivity in materials characterization to the time and length scale of the measurement, as well as the history of each sample. It also poses significant challenges for accurate materials modeling and device simulations. There are large differences between the average and local crystal structures, and the nature of charge transport is too complex to be described by common one-dimensional drift-diffusion models. Herein, we critically discuss the atomistic origin of the dynamic processes and the associated chemical disorder intrinsic to crystalline hybrid perovskite semiconductors. PMID:26859250
Solution to certain problems in the failure of composite structures
NASA Astrophysics Data System (ADS)
Goodsell, Johnathan
The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is extended to the determination of the intrinsic flaw length and the prediction of performance variability in the 10-degree off-axis specimen. The intrinsic flaw is defined as a fracture mechanics-type, through-thickness planar crack extending in the fiber direction from the failure initiation site of length, a. The distribution of intrinsic flaw lengths is postulated from multiple tests of 10-degree off-axis specimens by calculating the length of flaw that would cause fracture at each measured failure site and failure load given the fracture toughness of the material. The intrinsic flaw lengths on the homogeneous and micromechanical scales for unnotched (no hole) and specimens containing a centrally-located, through-thickness circular hole are compared. 8 hole-diameters ranging from 1.00--12.7 mm are considered. On the micromechanical scale, the intrinsic flaw ranges between approximately 10 and 100 microns in length, on the order of the relevant microstructural dimensions. The intrinsic flaw lengths on the homogeneous scale are determined to be an order of magnitude greater than that on the micromechanical scale. The effect of variation in the fiber volume fraction on the intrinsic flaw length is also considered. In the strength predictions for the specimens, the intrinsic flaw crack geometry and probability density function of intrinsic flaw lengths calculated from the unnotched specimens allow fracture mechanics predictions of strength variability. The strength prediction is dependent on the flaw density, the number of flaws per unit length along the free-edge. The flaw density is established by matching the predicted strength with the experimental strength. The distribution of intrinsic flaw lengths is used with the strength variability of the unnotched and of open-hole specimens to determine the flaw density at each hole-size. The flaw density is shown to be related to the fabrication machining speed suggesting machining damage as a mechanism for the hole-size dependence of the flaw density. (Abstract shortened by UMI.)
Free volumes and gas transport in polymers: amine-modified epoxy resins as a case study.
Patil, Pushkar N; Roilo, David; Brusa, Roberto S; Miotello, Antonio; Aghion, Stefano; Ferragut, Rafael; Checchetto, Riccardo
2016-02-07
The CO2 transport process was studied in a series of amine-modified epoxy resins having different cross-linking densities but the same chemical environment for the penetrant molecules. Positron Annihilation Lifetime Spectroscopy (PALS) was used to monitor the free volume structure of the samples and experimentally evaluate their fractional free volume fh(T) and its temperature evolution. The analysis of the free volume hole size distribution showed that all the holes have a size large enough to accommodate the penetrant molecules at temperatures T above the glass transition temperature Tg. The measured gas diffusion constants at T > Tg have been reproduced in the framework of the free volume theory of diffusion using a novel procedure based on the use of fh(T) as an input experimental parameter.
NASA Astrophysics Data System (ADS)
Liu, Xuan; Jiang, Shan; Chen, Hsinchun; Larson, Catherine A.; Roco, Mihail C.
2014-09-01
Given the global increase in public funding for nanotechnology research and development, it is even more important to support projects with promising return on investment. A main return is the benefit to other researchers and to the entire field through knowledge diffusion, invention, and innovation. The social network of researchers is one of the channels through which this happens. This study considers the scientific publication network in the field of nanotechnology, and evaluates how knowledge diffusion through coauthorship and citations is affected in large institutions by the location and connectivity of individual researchers in the network. The relative position and connectivity of a researcher is measured by various social network metrics, including degree centrality, Bonacich Power centrality, structural holes, and betweenness centrality. Leveraging the Cox regression model, we analyzed the temporal relationships between knowledge diffusion and social network measures of researchers in five leading universities in the United States using papers published from 2000 to 2010. The results showed that the most significant effects on knowledge diffusion in the field of nanotechnology were from the structural holes of the network and the degree centrality of individual researchers. The data suggest that a researcher has potential to perform better in knowledge creation and diffusion on boundary-spanning positions between different communities and when he or she has a high level of connectivity in the knowledge network. These observations may lead to improved strategies in planning, conducting, and evaluating multidisciplinary nanotechnology research. The paper also identifies the researchers who made most significant contributions to nanotechnology knowledge diffusion in the networks of five leading U.S. universities.
Local Coulomb explosion of boron nitride nanotubes under electron beam irradiation.
Wei, Xianlong; Tang, Dai-Ming; Chen, Qing; Bando, Yoshio; Golberg, Dmitri
2013-04-23
In many previous reports, the engineering of nanostructures using electron beam irradiation (EBI) in a high vacuum has primarily been based on the knock-on atom displacement. Herein, we report a new phenomenon under EBI that can also be effectively used to engineer a nanostructure: local Coulomb explosion (LCE) of cantilevered multiwalled boron nitride nanotubes (BNNTs) resulted from their profound positive charging. The nanotubes are gradually shortened, while the tubular shells at free ends are torn into graphene-like pieces and then removed during LCE. The phenomenon is dependent not only on the characteristics of an incident electron beam, as in the case of a common knock-on process, but also on the cantilevered tube length. Only after the electron beam density and tube length exceed the threshold values can LCE take place, and the threshold value for one of the parameters decreases with increasing the value of the other one. A model based on the diffusion of electron-irradiation-induced holes along a BNNT is proposed to describe the positive charge accumulation and can well explain the observed LCE. LCE opens up an efficient and versatile way to engineer BNNTs and other dielectric nanostructures with a shorter time and a lower beam density than those required for the knock-on effect-based engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pravica, Michael; Sneed, Daniel; White, Melanie
2014-09-07
We have created a segregated mixture of molecular fluorine and oxygen at high pressure in a diamond anvil cell (DAC) via useful hard x-ray photochemistry. Here, a keyhole-like sample chamber was created in a stainless steel gasket to hold two segregated powders of potassium tetrafluoroborate (KBF 4) and potassium perchlorate (KClO 4) respectively in each hole at a pressure of ~3.0 GPa. Both holes were individually irradiated with synchrotron hard x-rays to release molecular fluorine and molecular oxygen, respectively. Upon irradiation of the hole containing KBF 4 molecular fluorine appeared (as evidenced via Raman spectroscopy) near the region of irradiation.more » The second hole containing KClO 4 was then irradiated and reddish-orange O 2 was observed to form. Oxygen was observed to diffuse throughout both holes whereas molecular fluorine did not. There is some evidence that oxygen difluoride (OF 2) was formed in the hole originally containing the KBF 4.« less
Can black hole superradiance be induced by galactic plasmas?
NASA Astrophysics Data System (ADS)
Conlon, Joseph P.; Herdeiro, Carlos A. R.
2018-05-01
Highly spinning Kerr black holes with masses M = 1- 100M⊙ are subject to an efficient superradiant instability in the presence of bosons with masses μ ∼10-10-10-12eV. We observe that this matches the effective plasma-induced photon mass in diffuse galactic or intracluster environments (ωpl ∼10-10-10-12eV). This suggests that bare Kerr black holes within galactic or intracluster environments, possibly even including the ones produced in recently observed gravitational wave events, are unstable to formation of a photon cloud that may contain a significant fraction of the mass of the original black hole. At maximal efficiency, the instability timescale for a massive vector is milliseconds, potentially leading to a transient rate of energy extraction from a black hole in principle as large as ∼1055ergs-1. We discuss possible astrophysical effects this could give rise to, including a speculative connection to Fast Radio Bursts.
Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance
NASA Technical Reports Server (NTRS)
Han, J. C.; Teng, S.
2000-01-01
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.
Exciton Transport Simulations in Phenyl Cored Thiophene Dendrimers
NASA Astrophysics Data System (ADS)
Kim, Kwiseon; Erkan Kose, Muhammet; Graf, Peter; Kopidakis, Nikos; Rumbles, Garry; Shaheen, Sean E.
2009-03-01
Phenyl cored 3-arm and 4-arm thiophene dendrimers are promising materials for use in photovoltaic devices. It is important to understand the energy transfer mechanisms in these molecules to guide the synthesis of novel dendrimers with improved efficiency. A method is developed to estimate the exciton diffusion lengths for the dendrimers and similar chromophores in amorphous films. The approach exploits Fermi's Golden Rule to estimate the energy transfer rates for an ensemble of bimolecular complexes in random orientations. Using Poisson's equation to evaluate Coulomb integrals led to efficient calculation of excitonic couplings between the transition densities. Monte-Carlo simulations revealed the dynamics of energy transport in the dendrimers. Experimental exciton diffusion lengths of the dendrimers range 10 ˜ 20 nm, increasing with the size of the dendrimer. Simulated diffusion lengths correlate well with experiments. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors that determine the exciton diffusion length in amorphous films.
Method and apparatus for determining minority carrier diffusion length in semiconductors
Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.
1983-07-12
Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.
NASA Astrophysics Data System (ADS)
Schödel, R.; Gallego-Cano, E.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.
2018-01-01
Context. This is the second of three papers that search for the predicted stellar cusp around the Milky Way's central black hole, Sagittarius A*, with new data and methods. Aims: We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*. Methods: We used adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we removed the light from all detected stars above a given magnitude limit. Subsequently we analysed the remaining, diffuse light density. Systematic uncertainties were constrained by the use of data from different observing epochs and obtained with different filters. We show that it is necessary to correct for the diffuse emission from the mini-spiral, which would otherwise lead to a systematically biased light density profile. We used a Paschen α map obtained with the Hubble Space Telescope for this purpose. Results: The azimuthally averaged diffuse surface light density profile within a projected distance of R ≲ 0.5 pc from Sagittarius A* can be described consistently by a single power law with an exponent of Γ = 0.26 ± 0.02stat ± 0.05sys, similar to what has been found for the surface number density of faint stars in Paper I. Conclusions: The analysed diffuse light arises from sub-giant and main-sequence stars with Ks ≈ 19-22 with masses of 0.8-1.5 M⊙. These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Way's central black hole. We find that a Nuker law provides an adequate description of the nuclear cluster's intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is γ = 1.13 ± 0.03model ± 0.05sys. The stellar density decreases more steeply beyond a break radius of about 3 pc, which corresponds roughly to the radius of influence of the massive black hole. At a distance of 0.01 pc from the black hole, we estimate a stellar mass density of 2.6 ± 0.3 × 107 M⊙ pc-3 and a total enclosed stellar mass of 180 ± 30 M⊙. These estimates assume a constant mass-to-light ratio and do not take stellar remnants into account. The fact that a flat projected surface density is observed for old giants at projected distances R ≲ 0.3 pc implies that some mechanism may have altered their appearance or distribution.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.
1983-01-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.
1983-09-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Rudno-Rudziński, W.; Biegańska, D.; Misiewicz, J.; Lelarge, F.; Rousseau, B.; Sek, G.
2018-01-01
We investigate the diffusion of photo-generated carriers (excitons) in hybrid two dimensional-zero dimensional tunnel injection structures, based on strongly elongated InAs quantum dots (called quantum dashes, QDashes) of various heights, designed for emission at around 1.5 μm, separated by a 3.5 nm wide barrier from an 8 nm wide In0.64Ga0.36As0.78P0.22 quantum well (QW). By measuring the spectrally filtered real space images of the photoluminescence patterns with high resolution, we probe the spatial extent of the emission from QDashes. Deconvolution with the exciting light spot shape allows us to extract the carrier/exciton diffusion lengths. For the non-resonant excitation case, the diffusion length depends strongly on excitation power, pointing at carrier interactions and phonons as its main driving mechanisms. For the case of excitation resonant with absorption in the adjacent QW, the diffusion length does not depend on excitation power for low excitation levels since the generated carriers do not have sufficient excess kinetic energy. It is also found that the diffusion length depends on the quantum-mechanical coupling strength between QW and QDashes, controlled by changing the dash size. It influences the energy difference between the QDash ground state of the system and the quantum well levels, which affects the tunneling rates. When that QW-QDash level separation decreases, the probability of capturing excitons generated in the QW by QDashes increases, which is reflected by the decreased diffusion length from approx. 5 down to 3 μm.
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Allen, Mary T.
1992-06-01
Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.
On the nature of photospheric magnetic fields beneath large coronal holes
NASA Technical Reports Server (NTRS)
Frankenthal, S.; Krieger, A. S.
1977-01-01
Proposed mechanisms for the formation of coronal holes are considered; the crucial issue appears to be whether the holes are permeated by rigidly rotating fields. It is suggested that the interaction between such a field and the differentially rotating, diffusive solar envelope will produce a fore aft asymmetry in the distribution of fields which emerge to the photosphere. An initial study is carried out in the context of an illustrative example, and the results indicate that the asymmetry may be observed for a certain range of parameters involving the properties of the solar envelope and the characteristic size of the emerging field pattern.
Fabricating solar cells with silicon nanoparticles
Loscutoff, Paul; Molesa, Steve; Kim, Taeseok
2014-09-02
A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
Nanoenergetics and High Hydrogen Content Materials for Space Propulsion
2012-09-01
carried out in an effort to determine the mechanisms that account for the effect of catalysts. Diffusion flame lengths , crystal burn times, and...times. The diffusion flame length was found to increase proportionally with the propellant’s burning rate. The findings of this experimental study
Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.
Cui, Qiannan; Zhao, Hui
2015-04-28
Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Yi, H. T.; Wu, X.
Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10 –11 to 10 –10 cm 3 s –1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cmmore » 2 V –1 s –1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. As a result, we suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.« less
He, Xiaochuan; Zhu, Gangbei; Yang, Jianbing; Chang, Hao; Meng, Qingyu; Zhao, Hongwu; Zhou, Xin; Yue, Shuai; Wang, Zhuan; Shi, Jinan; Gu, Lin; Yan, Donghang; Weng, Yuxiang
2015-01-01
Confirmation of direct photogeneration of intrinsic delocalized free carriers in small-molecule organic semiconductors has been a long-sought but unsolved issue, which is of fundamental significance to its application in photo-electric devices. Although the excitonic description of photoexcitation in these materials has been widely accepted, this concept is challenged by recently reported phenomena. Here we report observation of direct delocalized free carrier generation upon interband photoexcitation in highly crystalline zinc phthalocyanine films prepared by the weak epitaxy growth method using ultrafast spectroscopy. Transient absorption spectra spanning the visible to mid-infrared region revealed the existence of short-lived free electrons and holes with a diffusion length estimated to cross at least 11 molecules along the π−π stacking direction that subsequently localize to form charge transfer excitons. The interband transition was evidenced by ultraviolet-visible absorption, photoluminescence and electroluminescence spectroscopy. Our results suggest that delocalized free carriers photogeneration can also be achieved in organic semiconductors when the molecules are packed properly. PMID:26611323
Top-coatless 193nm positive-tone development immersion resist for logic application
NASA Astrophysics Data System (ADS)
Liu, Lian Cong; Yeh, Tsung Ju; Lin, Yeh-Sheng; Huang, Yu Chin; Kuo, Chien Wen; Huang, Wen Liang; Lin, Chia Hung; Yu, Chun Chi; Hsu, Ray; Wan, I.-Yuan; Lin, Jeff; Im, Kwang-Hwyi; Lim, Hae Jin; Jeon, Hyun K.; Suzuki, Yasuhiro; Xu, Cheng Bai
2015-03-01
In this paper, we summarize our development efforts for a top-coatless 193nm immersion positive tone development (PTD) contact hole (C/H) resist with improved litho and defect performances for logic application specifically with an advance node. The ultimate performance goal was to improve the depth of focus (DoF) margin, mask error enhancement factor (MEEF), critical dimension uniformity (CDU), contact edge roughness (CER), and defect performance. Also, the through pitch CD difference was supposed to be comparable to the previous control resist. Effects of polymer and PAG properties have been evaluated for this purpose. The material properties focused in the evaluation study were polymer activation energy (Ea), polymer solubility differentiated by polymerization process types, and diffusion length (DL) and acidity (pKa) of photoacid generator (PAG). Additionally, the impact of post exposure bake (PEB) temperature was investigated for process condition optimization. As a result of this study, a new resist formulation to satisfy all litho and defect performance was developed and production yield was further improved.
Forward and back diffusion through argillaceous formations
NASA Astrophysics Data System (ADS)
Yang, Minjune; Annable, Michael D.; Jawitz, James W.
2017-05-01
The exchange of solutes between aquifers and lower-permeability argillaceous formations is of considerable interest for solute and contaminant fate and transport. We present a synthesis of analytical solutions for solute diffusion between aquifers and single aquitard systems, validated in well-controlled experiments, and applied to several data sets from laboratory and field-scale problems with diffusion time and length scales ranging from 10-2 to 108 years and 10-2 to 102 m. One-dimensional diffusion models were applied using the method of images to consider the general cases of a finite aquitard bounded by two aquifers at the top and bottom, or a semiinfinite aquitard bounded by an aquifer. The simpler semiinfinite equations are appropriate for all domains with dimensionless relative diffusion length, ZD < 0.7. At dimensionless length scales above this threshold, application of semiinfinite equations to aquitards of finite thickness leads to increasing errors and solutions based on the method of images are required. Measured resident solute concentration profiles in aquitards and flux-averaged solute concentrations in surrounding aquifers were accurately modeled by appropriately accounting for generalized dynamic aquifer-aquitard boundary conditions, including concentration gradient reversals. Dimensionless diffusion length scales were used to illustrate the transferability of these relatively simple models to physical systems with dimensions that spanned 10 orders of magnitude. The results of this study offer guidance on the application of a simplified analytical approach to environmentally important layered problems with one or two diffusion interfaces.
Higgs, Paul G
2016-06-08
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.
Higgs, Paul G.
2016-01-01
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Tong; Wan, Yan; Guo, Zhi
2016-06-27
By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.
Meso and Micro Scale Propulsion Concepts for Small Spacecraft
2006-07-28
flame length , QF is the volumetric flow rate of the fuel, D is the binary diffusion coefficient of the fuel in the oxidizer, and YFsoi, is the...R, can yield the same flame length . Most laminar diffusion flames are buoyancy-controlled since a small exit velocity is generally required to
Studies of compact objects with Einstein - Review and prospects
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1990-01-01
X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.
Solution-processed multilayer polymer light-emitting diode without intermixing
NASA Astrophysics Data System (ADS)
Kasparek, C.; Blom, P. W. M.
2017-01-01
The intermixing of two emissive layers in a four-layer solution-processed polymeric light-emitting diode with a hole injection, two emissive layers, and one hole-blocking layer is investigated. The relative emission of both emissive layers is measured and compared to a calculated recombination profile across the device using drift-diffusion simulations. A good agreement between the measured and calculated relative emission was found, supporting that there is no intermixing in the two emissive materials.
Spin diffusion in disordered organic semiconductors
NASA Astrophysics Data System (ADS)
Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz
2015-12-01
An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.
Cylindrical diffuser performance using a truncated plug nozzle
NASA Technical Reports Server (NTRS)
Galanga, F. L.; Mueller, T. J.
1976-01-01
Cylindrical diffuser performance for a truncated plug nozzle without external flow was tested in a blowdown wind tunnel. The nozzle was designed for an exit Mach number of 1.9 and the plug was conical in shape from the throat and converged to the axis of symmetry at an angle of 10 degrees. The diffuser section was fashioned into two 13.97 cm lengths to facilitate boring of the duct diameter and to allow for testing of two different duct lengths. A slotted hypotube was installed in the base of the diffuser to measure pressure distribution down the centerline of the diffuser. The data obtained included: the typical centerline and sidewall pressure ratio variation along the diffuser, cell pressure ratio vs overall pressure ratio for long and short diffusers and a comparison of minimum experimental cell pressure ratio vs area ratio.
The Beam Forming Numerical Simulation for High Power Neutral Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, A.; Deichuli, P.; Ivanov, A.
2005-01-15
High power neutral beam injector START-4 for plasma heating has been described. The distinctive features of the injector are comparatively large initial beam aperture (200 mm) and multi holes grids with the large numbers of the holes (more than 3000). A significant focusing is realized to a beam diameter 50 mm at a length 1.2 m. The disadvantage of the multi holes optic is low transparency, which decreases the efficiency of plasma source and makes worse vacuum conditions in the source. The possible decisions of these problems are using ion-optical systems (IOS) with enlarged diameter of holes and, also, applicationmore » IOS with the azimuthal-slit holes structure. Numerical simulation and test experiments have been carried out for investigation of the ability such IOS geometries.« less
NASA Astrophysics Data System (ADS)
Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.
2012-03-01
This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.
Li, Xiaoe; Nazeeruddin, Mohammad K; Thelakkat, Mukundan; Barnes, Piers R F; Vilar, Ramón; Durrant, James R
2011-01-28
We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ∼60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide bandgap inorganic materials for battery and sensing applications.
Stress-intensity factor equations for cracks in three-dimensional finite bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Rock Hole Habitats of a Feral Population of Aedes aegypti on the Island of Anguilla, West Indies
1983-03-01
htAHCH, 1983 MOSQUITO NEWS $9 tions of medical importance. Annu. Rev. Entomol. 13:427-450. Fish, D. and S. R. Carpenter. 1982. Leaf litter and...Aedes mgspi larvae (ruler length is 0.31 m). it1 bare rock holes or those containing leaf litter arid/or soil. Larval densities are usually higher in...shade cover. At one end there is a la! er of leaf litter, the remainder has ;I thin mud layer over its rock bottom. During this time, the hole filled
Numerical Simulation of Black Holes
NASA Astrophysics Data System (ADS)
Teukolsky, Saul
2003-04-01
Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.
A new method to predict anatomical outcome after idiopathic macular hole surgery.
Liu, Peipei; Sun, Yaoyao; Dong, Chongya; Song, Dan; Jiang, Yanrong; Liang, Jianhong; Yin, Hong; Li, Xiaoxin; Zhao, Mingwei
2016-04-01
To investigate whether a new macular hole closure index (MHCI) could predict anatomic outcome of macular hole surgery. A vitrectomy with internal limiting membrane peeling, air-fluid exchange, and gas tamponade were performed on all patients. The postoperative anatomic status of the macular hole was defined by spectral-domain OCT. MHCI was calculated as (M+N)/BASE based on the preoperative OCT status. M and N were the curve lengths of the detached photoreceptor arms, and BASE was the length of the retinal pigment epithelial layer (RPE layer) detaching from the photoreceptors. Postoperative anatomical outcomes were divided into three grades: A (bridge-like closure), B (good closure), and C (poor closure or no closure). Correlation analysis was performed between anatomical outcomes and MHCI. Receiver operating characteristic (ROC) curves were derived for MHCI, indicating good model discrimination. ROC curves were also assessed by the area under the curve, and cut-offs were calculated. Other predictive parameters reported previously, which included the MH minimum, the MH height, the macular hole index (MHI), the diameter hole index (DHI), and the tractional hole index (THI) had been compared as well. MHCI correlated significantly with postoperative anatomical outcomes (r = 0.543, p = 0.000), but other predictive parameters did not. The areas under the curves indicated that MHCI could be used as an effective predictor of anatomical outcome. Cut-off values of 0.7 and 1.0 were obtained for MHCI from ROC curve analysis. MHCI demonstrated a better predictive effect than other parameters, both in the correlation analysis and ROC analysis. MHCI could be an easily measured and accurate predictive index for postoperative anatomical outcomes.
The general relativistic thin disc evolution equation
NASA Astrophysics Data System (ADS)
Balbus, Steven A.
2017-11-01
In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anne-Christine; Jha, Rahul; Gregory, Ruth, E-mail: acd@damtp.cam.ac.uk, E-mail: r.a.w.gregory@durham.ac.uk, E-mail: r.jha@damtp.cam.ac.uk
We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ''Weyl' coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.
Statistical Entropy of Dirac Field Outside RN Black Hole and Modified Density Equation
NASA Astrophysics Data System (ADS)
Cao, Fei; He, Feng
2012-02-01
Statistical entropy of Dirac field in Reissner-Nordstrom black hole space-time is computed by state density equation corrected by the generalized uncertainty principle to all orders in Planck length and WKB approximation. The result shows that the statistical entropy is proportional to the horizon area but the present result is convergent without any artificial cutoff.
Reynolds-Averaged Navier-Stokes Solutions to Flat Plate Film Cooling Scenarios
NASA Technical Reports Server (NTRS)
Johnson, Perry L.; Shyam, Vikram; Hah, Chunill
2011-01-01
The predictions of several Reynolds-Averaged Navier-Stokes solutions for a baseline film cooling geometry are analyzed and compared with experimental data. The Fluent finite volume code was used to perform the computations with the realizable k-epsilon turbulence model. The film hole was angled at 35 to the crossflow with a Reynolds number of 17,400. Multiple length-to-diameter ratios (1.75 and 3.5) as well as momentum flux ratios (0.125 and 0.5) were simulated with various domains, boundary conditions, and grid refinements. The coolant to mainstream density ratio was maintained at 2.0 for all scenarios. Computational domain and boundary condition variations show the ability to reduce the computational cost as compared to previous studies. A number of grid refinement and coarsening variations are compared for further insights into the reduction of computational cost. Liberal refinement in the near hole region is valuable, especially for higher momentum jets that tend to lift-off and create a recirculating flow. A lack of proper refinement in the near hole region can severely diminish the accuracy of the solution, even in the far region. The effects of momentum ratio and hole length-to-diameter ratio are also discussed.
DOT National Transportation Integrated Search
1982-02-01
Previous experiments have demonstrated illusions due to variations in both length and width of runways in nighttime 'black hole' approaches. Even though approach lighting is not designed to provide vertical guidance, it is possible that cues from app...
Thermodynamics of "exotic" Bañados-Teitelboim-Zanelli black holes.
Townsend, Paul K; Zhang, Baocheng
2013-06-14
A number of three-dimensional (3D) gravity models, such as 3D conformal gravity, admit "exotic" black hole solutions: the metric is the same as the Bañados-Teitelboim-Zanelli metric of 3D Einstein gravity but with reversed roles for mass and angular momentum, and an entropy proportional to the length of the inner horizon instead of the event horizon. Here we show that the Bañados-Teitelboim-Zanelli solutions of the exotic 3D Einstein gravity (with parity-odd action but Einstein field equations) are exotic black holes, and we investigate their thermodynamics. The first and second laws of black hole thermodynamics still apply, and the entropy still has a statistical interpretation.
Gravitational tension, spacetime pressure and black hole volume
NASA Astrophysics Data System (ADS)
Armas, Jay; Obers, Niels A.; Sanchioni, Marco
2016-09-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.
Acoustic transducer apparatus with reduced thermal conduction
NASA Technical Reports Server (NTRS)
Lierke, Ernst G. (Inventor); Leung, Emily W. (Inventor); Bhat, Balakrishna T. (Inventor)
1990-01-01
A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn.
NASA Technical Reports Server (NTRS)
Flat, A.; Milnes, A. G.
1978-01-01
In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.
Electron hole tracking PIC simulation
NASA Astrophysics Data System (ADS)
Zhou, Chuteng; Hutchinson, Ian
2016-10-01
An electron hole is a coherent BGK mode solitary wave. Electron holes are observed to travel at high velocities relative to bulk plasmas. The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code with fully kinetic ions. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. The electron hole signal is detected and the simulation domain moves by a carefully designed feedback control law to follow its propagation. This approach has the advantage that the length of the simulation domain can be significantly reduced to several times the hole width, which makes high resolution simulations tractable. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and energization effects we call ``jetting''. The work was partially supported by the NSF/DOE Basic Plasma Science Partnership under Grant DE-SC0010491. Computer simulations were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.
NASA Astrophysics Data System (ADS)
Yossifon, Gilad; Park, Sinwook
2016-11-01
Previously, it has been shown that for a prescribed system, the diffusion length may be affected by any number of mechanisms including natural and forced convection, electroosmotic flow of the second kind and electro-convective instability. In all of the above mentioned cases the length of the diffusion layer is indirectly prescribed by the complicated competition between several mechanisms which are primarily dictated by the various system parameters and applied voltage. In contrast, we suggest that by embedding electrodes/heaters within a microchannel interfacing a permselective medium, the diffusion layer length may be controlled regardless of the dominating overlimiting current mechanism and system parameters. As well as demonstrating that the simple presence of electrodes can enhance mixing via induced-charge electrokinetic effects, we also offer a means of externally activating embedded electrodes and heaters to maintain external, dynamic control of the diffusion length. Such control is particularly important in applications requiring intense ion transport, such as electrodialysis. At the same time, we will also investigate means of suppressing these mechanisms which is of fundamental importance for sensing applications.
Understanding molecular structure dependence of exciton diffusion in conjugated small molecules
NASA Astrophysics Data System (ADS)
Li, Zi; Zhang, Xu; Woellner, Cristiano F.; Lu, Gang
2014-04-01
First-principles simulations are carried out to understand molecular structure dependence of exciton diffusion in a series of small conjugated molecules arranged in a disordered, crystalline, and blend structure. Exciton diffusion length (LD), lifetime, and diffusivity in four diketopyrrolopyrrole derivatives are calculated and the results compare very well with experimental values. The correlation between exciton diffusion and molecular structure is examined in detail. In the disordered molecule structure, a longer backbone length leads to a shorter exciton lifetime and a higher exciton diffusivity, but it does not change LD substantially. Removal of the end alkyl chains or the extra branch on the side alkyl chains reduces LD. In the crystalline structure, exciton diffusion exhibits a strong anisotropy whose origin can be elucidated from the intermolecular transition density interaction point of view. In the blend structure, LD increases with the crystalline ratios, which are estimated and consistent with the experimental results.
Visual Recovery after Macular Hole Surgery and Related Prognostic Factors.
Kim, Soo Han; Kim, Hong Kyu; Yang, Jong Yun; Lee, Sung Chul; Kim, Sung Soo
2018-04-01
To describe the visual recovery and prognostic factors after macular hole surgery. A retrospective chart review was conducted. Charts of patients with idiopathic macular holes who underwent surgery by a single surgeon at Severance Hospital between January 1, 2013 and July 31, 2015 were reviewed. The best-corrected visual acuity (BCVA) score was recorded preoperatively and at 1 day and 1, 3, 6, 9, and 12 months after surgery. The variables of age, sex, macular hole size, basal hole diameter, choroidal thickness, and axial length were also noted. Twenty-six eyes of 26 patients were evaluated. Twenty-five patients (96.2%) showed successful macular hole closure after the primary operation. The BCVA stabilized 6 months postoperatively. A large basal hole diameter (p = 0.006) and thin choroid (p = 0.005) were related to poor visual outcomes. Poor preoperative BCVA (p < 0.001) and a thick choroid (p = 0.020) were associated with greater improvement in BCVA after surgery. Visual acuity stabilized by 6 months after macular hole surgery. Choroidal thickness was a protective factor for final BCVA and visual improvement after the operation. © 2018 The Korean Ophthalmological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. H.; Li, G.; Guo, E. J.
Y 3Fe 5O 12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previousmore » reported ~10 μm up to ~156 μm (for the sample prepared by liquid phase epitaxy) and ~180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ~30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the Fe 3+ ion in YIG. Long-wavelength laser is more effective since it causes a transition of the Fe 3+ ions in FeO 6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. Furthermore, the present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.« less
Wang, S. H.; Li, G.; Guo, E. J.; ...
2018-05-09
Y 3Fe 5O 12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previousmore » reported ~10 μm up to ~156 μm (for the sample prepared by liquid phase epitaxy) and ~180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ~30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the Fe 3+ ion in YIG. Long-wavelength laser is more effective since it causes a transition of the Fe 3+ ions in FeO 6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. Furthermore, the present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.« less
Strongly extended diffusion length for the nonequilibrium magnons in Y3F e5O12 by photoexcitation
NASA Astrophysics Data System (ADS)
Wang, S. H.; Li, G.; Guo, E. J.; Zhao, Y.; Wang, J. Y.; Zou, L. K.; Yan, H.; Cai, J. W.; Zhang, Z. T.; Wang, M.; Tian, Y. Y.; Zheng, X. L.; Sun, J. R.; Jin, K. X.
2018-05-01
Y3F e5O12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previous reported ˜10 μm up to ˜156 μm (for the sample prepared by liquid phase epitaxy) and ˜180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ˜30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the F e3 + ion in YIG. Long-wavelength laser is more effective since it causes a transition of the F e3 + ions in Fe O6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. The present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai
Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by considering pinhole focal length, pinhole diameter, and trajectory starting angle. The project is supported by the NIH grant 5R21-CA156390.« less
Computational study of graphene-based vertical field effect transistor
NASA Astrophysics Data System (ADS)
Chen, Wenchao; Rinzler, Andrew; Guo, Jing
2013-03-01
Poisson and drift-diffusion equations are solved in a three-dimensional device structure to simulate graphene-based vertical field effect transistors (GVFETs). Operation mechanisms of the GVFET with and without punched holes in the graphene source contact are presented and compared. The graphene-channel Schottky barrier can be modulated by gate electric field due to graphene's low density of states. For the graphene contact with punched holes, the contact barrier thinning and lowering around punched hole edge allow orders of magnitude higher tunneling current compared to the region away from the punched hole edge, which is responsible for significant performance improvement as already verified by experiments. Small hole size is preferred due to less electrostatic screening from channel inversion layer, which gives large electric field around the punched hole edge, thus, leading to a thinner and lower barrier. Bilayer and trilayer graphenes as the source contact degrade the performance improvement because stronger electrostatic screening leads to smaller contact barrier lowering and thinning. High punched hole area percentage improves current performance by allowing more gate electric field to modulate the graphene-channel barrier. Low effective mass channel material gives better on-off current ratio.
High-power diffusing-tip fibers for interstitial photocoagulation
NASA Astrophysics Data System (ADS)
Sinofsky, Edward L.; Farr, Norman; Baxter, Lincoln; Weiler, William
1997-05-01
A line of optical fiber based diffusing tips has been designed, developed, and tested that are capable of distributing tens of watts of cw laser power over lengths ranging from two millimeters to over 10 cm. The result is a flexible non-stick diffuser capable of coagulating large volumes of tissue in reasonably short exposures of 3 - 5 minutes. Sub-millimeter diameter devices have a distinct effect on reducing the force needed to insert the applicator interstitially into tissue. Utilizing our design approach, we have produced diffusers based on 200 micrometer core fiber that has delivered over 35 watts of Nd:YAG energy over diffusion lengths as short as 4 mm. These applicators are being tested for applications in oncology, cardiology, electrophysiology, urology and gynecology.
An innovative system for supplying air and fuel mixture to a combustion chamber of an engine
NASA Astrophysics Data System (ADS)
Saikumar, G. R. Bharath
2018-04-01
Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.
NASA Technical Reports Server (NTRS)
Yeh, C. S.; Li, S. S.; Loo, R. Y.
1987-01-01
A theoretical model for computing the displacement damage defect density and the short-circuit current (I sub sc) degradation in proton-irradiated (AlGa)As-GaAs p-n junction solar cells is presented. Assumptions were made with justification that the radiation induced displacement defects form an effective recombination center which controls the electron and hole lifetimes in the junction space charge region and in the n-GaAs active layer of the irradiated GaAs p-n junction cells. The degradation of I sub sc in the (AlGa)As layer was found to be negligible compared to the total degradation. In order to determine the I sub sc degradation, the displacement defect density, path length, range, reduced energy after penetrating a distance x, and the average number of displacements formed by one proton scattering event were first calculated. The I sub sc degradation was calculated by using the electron capture cross section in the p-diffused layer and the hole capture cross section in the n-base layer as well as the wavelength dependent absorption coefficients. Excellent agreement was found between the researchers calculated values and the measured I sub sc in the proton irradiated GaAs solar cells for proton energies of 100 KeV to 10 MeV and fluences from 10 to the 10th power p/square cm to 10 to the 12th power p/square cm.
Flow visualization of discrete hole film cooling for gas turbine applications
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.
1975-01-01
Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied for three different hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing very small neutrally buoyant helium filled 'soap' bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.
Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes
NASA Astrophysics Data System (ADS)
Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.
2009-02-01
Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.
Diffusion and scaling during early embryonic pattern formation.
Gregor, Thomas; Bialek, William; de Ruyter van Steveninck, Rob R; Tank, David W; Wieschaus, Eric F
2005-12-20
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime.
Diffusion in inhomogeneous polymer membranes
NASA Astrophysics Data System (ADS)
Kasargod, Sameer S.; Adib, Farhad; Neogi, P.
1995-10-01
The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.
Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure
NASA Astrophysics Data System (ADS)
Cadiz, F.; Robert, C.; Courtade, E.; Manca, M.; Martinelli, L.; Taniguchi, T.; Watanabe, K.; Amand, T.; Rowe, A. C. H.; Paget, D.; Urbaszek, B.; Marie, X.
2018-04-01
We have combined spatially resolved steady-state micro-photoluminescence with time-resolved photoluminescence to investigate the exciton diffusion in a WSe2 monolayer encapsulated with hexagonal boron nitride. At 300 K, we extract an exciton diffusion length of LX = 0.36 ± 0.02 μm and an exciton diffusion coefficient of DX = 14.5 ± 2 cm2/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species: bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of LXD=1.5 ±0.02 μ m.
Cao, Bing; He, Xiaoming; Sorge, Jason B; Lalany, Abeed; Ahadi, Kaveh; Afshar, Amir; Olsen, Brian C; Hauger, Tate C; Mobarok, Md Hosnay; Li, Peng; Cadien, Kenneth C; Brett, Michael J; Luber, Erik J; Buriak, Jillian M
2017-11-08
Organic solar cells (OSCs) are a complex assembly of disparate materials, each with a precise function within the device. Typically, the electrodes are flat, and the device is fabricated through a layering approach of the interfacial layers and photoactive materials. This work explores the integration of high surface area transparent electrodes to investigate the possible role(s) a three-dimensional electrode could take within an OSC, with a BHJ composed of a donor-acceptor combination with a high degree of electron and hole mobility mismatch. Nanotree indium tin oxide (ITO) electrodes were prepared via glancing angle deposition, structures that were previously demonstrated to be single-crystalline. A thin layer of zinc oxide was deposited on the ITO nanotrees via atomic layer deposition, followed by a self-assembled monolayer of C 60 -based molecules that was bound to the zinc oxide surface through a carboxylic acid group. Infiltration of these functionalized ITO nanotrees with the photoactive layer, the bulk heterojunction comprising PC 71 BM and a high hole mobility low band gap polymer (PDPPTT-T-TT), led to families of devices that were analyzed for the effect of nanotree height. When the height was varied from 0 to 50, 75, 100, and 120 nm, statistically significant differences in device performance were noted with the maximum device efficiencies observed with a nanotree height of 75 nm. From analysis of these results, it was found that the intrinsic mobility mismatch between the donor and acceptor phases could be compensated for when the electron collection length was reduced relative to the hole collection length, resulting in more balanced charge extraction and reduced recombination, leading to improved efficiencies. However, as the ITO nanotrees increased in height and branching, the decrease in electron collection length was offset by an increase in hole collection length and potential deleterious electric field redistribution effects, resulting in decreased efficiency.
The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Inoue, N.; Wilmsen, C. W.; Jones, K. A.
1981-02-01
Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.
In-vitro Antimicrobial Activities of Some Iranian Conifers
Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad
2013-01-01
Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods. PMID:24250573
Method for imaging with low frequency electromagnetic fields
Lee, Ki H.; Xie, Gan Q.
1994-01-01
A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.
Method for imaging with low frequency electromagnetic fields
Lee, K.H.; Xie, G.Q.
1994-12-13
A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.
NASA Astrophysics Data System (ADS)
Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf
2017-08-01
Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.
NASA Astrophysics Data System (ADS)
Biermann, Dirk; Heilmann, Markus
Due to the tendency of downsizing of components, also the industrial relevance of bore holes with small diameters and high length-to-diameter ratios rises with the growing requirements on parts. In these applications, the combination of laser pre-drilling and single-lip deep hole drilling can shorten the process chain in machining components with non-planar surfaces, or can reduce tool wear in machining case-hardened materials. In this research, the combination of these processes was realized and investigated for the very first time.
Saturation Length of Erodible Sediment Beds Subject to Shear Flow
NASA Astrophysics Data System (ADS)
Casler, D. M.; Kahn, B. P.; Furbish, D. J.; Schmeeckle, M. W.
2016-12-01
We examine the initial growth and wavelength selection of sand ripples based on probabilistic formulations of the flux and the Exner equation. Current formulations of this problem as a linear stability analysis appeal to the idea of a saturation length-the lag between the bed stress and the flux-as a key stabilizing influence leading to selection of a finite wavelength. We present two contrasting formulations. The first is based on the Fokker-Planck approximation of the divergence form of the Exner equation, and thus involves particle diffusion associated with variations in particle activity, in addition to the conventionally assumed advective term. The role of a saturation length associated with the particle activity is similar to previous analyses. However, particle diffusion provides an attenuating influence on the growth of small wavelengths, independent of a saturation length, and is thus a sufficient, if not necessary, condition contributing to selection of a finite wavelength. The second formulation is based on the entrainment form of the Exner equation. As a precise, probabilistic formulation of conservation, this form of the Exner equation does not distinguish between advection and diffusion, and, because it directly accounts for all particle motions via a convolution of the distribution of particle hop distances, it pays no attention to the idea of a saturation length. The formulation and resulting description of initial ripple growth and wavelength selection thus inherently subsume the effects embodied in the ideas of advection, diffusion, and a saturation length as used in other formulations. Moreover, the formulation does not distinguish between bed load and suspended load, and is thus broader in application. The analysis reveals that the length scales defined by the distribution of hop distances are more fundamental than the saturation length in determining the initial growth or decay of bedforms. Formulations involving the saturation length coincide with the special case of an exponential distribution of hop distance, where the saturation length is equal to the mean hop distance.
In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale
Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...
2017-04-07
Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less
In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.
Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less
NASA Astrophysics Data System (ADS)
Cho, Seongjae; Man Kang, In; Rok Kim, Kyung; Park, Byung-Gook; Harris, James S.
2013-11-01
In this work, Ge-based high-hole-mobility transistor with Si compatibility is designed, and its performance is evaluated. A 2-dimensional hole gas is effectively constructed by a AlGaAs/Ge/Si heterojunction with a sufficiently large valence band offset. Moreover, an intrinsic Ge channel is exploited so that high hole mobility is preserved without dopant scattering. Effects of design parameters such as gate length, Ge channel thickness, and aluminum fraction in the barrier material on device characteristics are thoroughly investigated through device simulations. A high on-current above 30 μA/μm along with a low subthreshold swing was obtained from an optimized planar device for low-power applications.
A SMALL-ANGLE DRILL-HOLE WHIPSTOCK
Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.
1963-01-29
A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)
Umari, A.; Earle, J.D.; Fahy, M.F.
2006-01-01
As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.
Using Diffusion Bonding in Making Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Sager, Frank E.
2003-01-01
A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature and pressure for a specified curing time. The pressure, temperature, and time depend on the piezoelectric material selected. At the end of the diffusion-bonding process, the resulting laminated piezoelectric actuator is tested to verify the adequacy of the mechanical output as a function of an applied DC voltage.
Tyagi, Priyanka; Tuli, Suneet; Srivastava, Ritu
2015-02-07
In this work, we have studied the fluorescence quenching and solid state diffusion of 2, 3, 5, 6-tetrafluoro-7, 7', 8, 8'-tetracyano quinodimethane (F4-TCNQ) using photoluminescence (PL) spectroscopy. Quenching studies were performed with tris (8-hydroxyquinolinato) aluminum (Alq3) in solid state samples. Thickness of F4-TCNQ was varied in order to realize different concentrations and study the effect of concentration. PL intensity has reduced with the increase in F4-TCNQ thicknesses. Stern-Volmer and bimolecular quenching constants were evaluated to be 13.8 M(-1) and 8.7 × 10(8) M(-1) s(-1), respectively. The quenching mechanism was found to be of static type, which was inferred by the independent nature of excited state life time from the F4-TCNQ thickness. Further, solid state diffusion of F4-TCNQ was studied by placing a spacing layer of α-NPD between F4-TCNQ and Alq3, and its thickness was varied to probe the diffusion length. PL intensity was found to increase with the increase in this thickness. Quenching efficiency was evaluated as a function of distance between F4-TCNQ and Alq3. These studies were performed for the samples having 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ to study the thickness dependence of diffusion length. Diffusion lengths were evaluated to be 12.5, 15, and 20 nm for 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ. These diffusion lengths were found to be very close to that of determined by secondary ion mass spectroscopy technique.
Electrical wiring box with structure for fast device mounting
Johnston, Earl S.
1991-01-08
An electrical wiring box of molded insulating material is provided with bosses having screw holes for receiving a mounting screw that include two colinear portions of which a first portion proximate the front surface has an internal configuration, such as molded threads, that engage the mounting screw while permitting the mounting screw to be manually inserted therethrough without turning because of flexibility built into the boss structure. A second portion of the screw hole is of greater restriction for securely engaging the screw such as by self tapping. The flexibility of the boss is provided by a first center slot that extends from the screw hole to the boss exterior over a length substantially equal to the first portion of the screw hole. Second and third slots are located respectively on each side of the screw hole and provide projections respectively between the first and second slots and the first and third slots that flex to allow easy screw insertion through the first portion of the screw hole.
The development of rotary drum dryer for palm fruit sterilization
NASA Astrophysics Data System (ADS)
Hanifarianty, S.; Legwiriyakul, A.; Alimalbari, A.; Nuntadusit, C.; Theppaya, T.; Wae-Hayee, M.
2018-01-01
The aim of this research was to design and develop a rotary drum dryer for palm fruit sterilization. In this article, the results of the effect of ventilation hole number on the reduction of moisture content in palm fruit were presented. The experimental set up was a drum dryer which has 57.5 cm in a diameter and 90 cm in a length (the size was similar to 200-littre steel drum container). A driving gear and a gear motor rotated the drum dryer. The ventilation hole were drilled on the lateral side of the drum. The diameter of ventilation hole was 10 mm, and the number of ventilation hole were 18, 36 and 72 hole (each side was 9, 18 and 36 hole, respectively). In the experiment, the palm fruit was dried by using LPG to burn and heat the bottom of the drum. The flow rate of LPG was controlled to keep the temperature inside the drum steadily at 120°C.
Characterization of string cavitation in large-scale Diesel nozzles with tapered holes
NASA Astrophysics Data System (ADS)
Gavaises, M.; Andriotis, A.; Papoulias, D.; Mitroglou, N.; Theodorakakos, A.
2009-05-01
The cavitation structures formed inside enlarged transparent replicas of tapered Diesel valve covered orifice nozzles have been characterized using high speed imaging visualization. Cavitation images obtained at fixed needle lift and flow rate conditions have revealed that although the conical shape of the converging tapered holes suppresses the formation of geometric cavitation, forming at the entry to the cylindrical injection hole, string cavitation has been found to prevail, particularly at low needle lifts. Computational fluid dynamics simulations have shown that cavitation strings appear in areas where large-scale vortices develop. The vortical structures are mainly formed upstream of the injection holes due to the nonuniform flow distribution and persist also inside them. Cavitation strings have been frequently observed to link adjacent holes while inspection of identical real-size injectors has revealed cavitation erosion sites in the area of string cavitation development. Image postprocessing has allowed estimation of their frequency of appearance, lifetime, and size along the injection hole length, as function of cavitation and Reynolds numbers and needle lift.
Hole-assisted fiber based fiber fuse terminator supporting 22 W input
NASA Astrophysics Data System (ADS)
Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide
2018-05-01
We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.
Black-hole evaporation and ultrashort distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, T.
1991-09-15
The role played by ultrahigh frequencies of ultrashort distances in the usual derivations of the Hawking effect is discussed and criticized. The question would a blackhole radiate if there were a Planck scale cutoff in the rest frame of the hole '' is posed. Guidance is sought from Unruh's fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid. Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves the response of static accelerated detectors outside the horizon, and the other involves conservation of the expectation value of the stressmore » tensor. Neither argument is conclusive, but they do strongly suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a safe'' derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated. Remaining open questions are discussed.« less
Technological study on reducing blast-hole rate during laser cutting oil pipe
NASA Astrophysics Data System (ADS)
Deng, Qiansong; Yang, Weihong; Tang, Xiahui; Peng, Hao; Qin, Yingxiong
2012-03-01
In this paper, a laser cutting technology for the oil pipes with the thickness of 10mm, the diameter of 142mm and the material of N80 has been developed, in order to reduce the high hole-blast rate in processing. Experiments are taken on the Rofin DC025 slab CO2 laser cutting system and a set of flexible fixtures. The reasons of forming blast-hole have been analyzed, and the influences of technique parameters on blast-hole rate have been studied, such as laser power, pulse frequency, laser delay, focus position and oxygen pressure. The results show that the blast-hole rate can be controlled lower than 5% at the conditions of laser power 1500W, laser delay 5s, pulse frequency 180Hz, the oxygen pressure 0.6 kg/cm2, focus length 190mm, nozzle diameter 1.5mm.
Determination of carrier diffusion length in p- and n-type GaN
NASA Astrophysics Data System (ADS)
Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit
2014-03-01
Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.
2014-01-01
devices with indirect-bandgap materials such as silicon . KEYWORDS: Ultrafast imaging , strained nanomaterials, spectroscopy Lattice strain produced by...photogenerated charge cloud as a result of carrier diffusion . Normalized carrier profiles, generated by integrating the images along the direction normal to the...To test this idea, Figure 2. Charge carrier diffusion in a Si NW locally strained by a bending deformation (A) SEM image of a bent Si nanowire ∼100
How does passive lengthening change the architecture of the human medial gastrocnemius muscle?
Bolsterlee, Bart; D'Souza, Arkiev; Gandevia, Simon C; Herbert, Robert D
2017-04-01
There are few comprehensive investigations of the changes in muscle architecture that accompany muscle contraction or change in muscle length in vivo. For this study, we measured changes in the three-dimensional architecture of the human medial gastrocnemius at the whole muscle level, the fascicle level and the fiber level using anatomical MRI and diffusion tensor imaging (DTI). Data were obtained from eight subjects under relaxed conditions at three muscle lengths. At the whole muscle level, a 5.1% increase in muscle belly length resulted in a reduction in both muscle width (mean change -2.5%) and depth (-4.8%). At the fascicle level, muscle architecture measurements obtained at 3,000 locations per muscle showed that for every millimeter increase in muscle-tendon length above the slack length, average fascicle length increased by 0.46 mm, pennation angle decreased by 0.27° (0.17° in the superficial part and 0.37° in the deep part), and fascicle curvature decreased by 0.18 m -1 There was no evidence of systematic variation in architecture along the muscle's long axis at any muscle length. At the fiber level, analysis of the diffusion signal showed that passive lengthening of the muscle increased diffusion along fibers and decreased diffusion across fibers. Using these measurements across scales, we show that the complex shape changes that muscle fibers, whole muscles, and aponeuroses of the medial gastrocnemius undergo in vivo cannot be captured by simple geometrical models. This justifies the need for more complex models that link microstructural changes in muscle fibers to macroscopic changes in architecture. NEW & NOTEWORTHY Novel MRI and DTI techniques revealed changes in three-dimensional architecture of the human medial gastrocnemius during passive lengthening. Whole muscle belly width and depth decreased when the muscle lengthened. Fascicle length, pennation, and curvature changed uniformly or near uniformly along the muscle during passive lengthening. Diffusion of water molecules in muscle changes in the same direction as fascicle strains. Copyright © 2017 the American Physiological Society.
Li, Xuesong; Markandeya, Nagula; Jonusauskas, Gediminas; McClenaghan, Nathan D; Maurizot, Victor; Denisov, Sergey A; Huc, Ivan
2016-10-07
A series of photoactive triads have been synthesized and investigated in order to elucidate photoinduced electron transfer and hole migration mechanism across nanosized, rigid helical foldamers. The triads are comprised of a central helical oligoamide foldamer bridge with 9, 14, 18, 19, or 34 8-amino-2-quinolinecarboxylic acid repeat units, and of two chromophores, an N-terminal oligo(para-phenylenevinylene) electron donor and a C-terminal perylene bis-imide electron acceptor. Time-resolved fluorescence and transient absorption spectroscopic studies showed that, following photoexcitation of the electron acceptor, fast electron transfer occurs initially from the oligoquinoline bridge to the acceptor chromophore on the picosecond time scale. The oligo(para-phenylenevinylene) electron donor is oxidized after a time delay during which the hole migrates across the foldamer from the acceptor to the donor. The charge separated state that is finally generated was found to be remarkably long-lived (>80 μs). While the initial charge injection rate is largely invariant for all foldamer lengths (ca. 60 ps), the subsequent hole transfer to the donor varies from 1 × 10 9 s -1 for the longest sequence to 17 × 10 9 s -1 for the shortest. In all cases, charge transfer is very fast considering the foldamer length. Detailed analysis of the process in different media and at varying temperatures is consistent with a hopping mechanism of hole transport through the foldamer helix, with individual hops occurring on the subpicosecond time scale (k ET = 2.5 × 10 12 s -1 in CH 2 Cl 2 ). This work demonstrates the possibility of fast long-range hole transfer over 300 Å (through bonds) across a synthetic modular bridge, an achievement that had been previously observed principally with DNA structures.
Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera
We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less
Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts
Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera; ...
2018-03-06
We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less
Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.
Tränkle, B; Ruh, D; Rohrbach, A
2016-03-14
Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.
Yamamoto, Takatsugu; Ferracane, Jack L; Sakaguchi, Ronald L; Swain, Michael V
2009-04-01
Polymerization contraction of dental composite produces a stress field in the bonded surrounding substrate that may be capable of propagating cracks from pre-existing flaws. The objectives of this study were to assess the extent of crack propagation from flaws in the surrounding ceramic substrate caused by composite contraction stresses, and to propose a method to calculate the contraction stress in the ceramic using indentation fracture. Initial cracks were introduced with a Vickers indenter near a cylindrical hole drilled into a glass-ceramic simulating enamel. Lengths of the radial indentation cracks were measured. Three composites having different contraction stresses were cured within the hole using one- or two-step light-activation methods and the crack lengths were measured. The contraction stress in the ceramic was calculated from the crack length and the fracture toughness of the glass-ceramic. Interfacial gaps between the composite and the ceramic were expressed as the ratio of the gap length to the hole perimeter, as well as the maximum gap width. All groups revealed crack propagation and the formation of contraction gaps. The calculated contraction stresses ranged from 4.2 MPa to 7.0 MPa. There was no correlation between the stress values and the contraction gaps. This method for calculating the stresses produced by composites is a relatively simple technique requiring a conventional hardness tester. The method can investigate two clinical phenomena that may occur during the placement of composite restorations, i.e. simulated enamel cracking near the margins and the formation of contraction gaps.
Regimes of mini black hole abandoned to accretion
NASA Astrophysics Data System (ADS)
Paik, Biplab
2018-01-01
Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M
We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less
Fractal analysis of lateral movement in biomembranes.
Gmachowski, Lech
2018-04-01
Lateral movement of a molecule in a biomembrane containing small compartments (0.23-μm diameter) and large ones (0.75 μm) is analyzed using a fractal description of its walk. The early time dependence of the mean square displacement varies from linear due to the contribution of ballistic motion. In small compartments, walking molecules do not have sufficient time or space to develop an asymptotic relation and the diffusion coefficient deduced from the experimental records is lower than that measured without restrictions. The model makes it possible to deduce the molecule step parameters, namely the step length and time, from data concerning confined and unrestricted diffusion coefficients. This is also possible using experimental results for sub-diffusive transport. The transition from normal to anomalous diffusion does not affect the molecule step parameters. The experimental literature data on molecular trajectories recorded at a high time resolution appear to confirm the modeled value of the mean free path length of DOPE for Brownian and anomalous diffusion. Although the step length and time give the proper values of diffusion coefficient, the DOPE speed calculated as their quotient is several orders of magnitude lower than the thermal speed. This is interpreted as a result of intermolecular interactions, as confirmed by lateral diffusion of other molecules in different membranes. The molecule step parameters are then utilized to analyze the problem of multiple visits in small compartments. The modeling of the diffusion exponent results in a smooth transition to normal diffusion on entering a large compartment, as observed in experiments.
Differential Microscopic Mobility of Components within a Deep Eutectic Solvent
Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene
2015-07-13
From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less
Lian, Shichen; Weinberg, David J; Harris, Rachel D; Kodaimati, Mohamad S; Weiss, Emily A
2016-06-28
This paper describes the enhancement of the rate of hole transfer from a photoexcited CdS quantum dot (QD), with radius R = 2.0 nm, to a molecular acceptor, phenothiazine (PTZ), by linking the donor and acceptor through a phenyldithiocarbamate (PTC) linker, which is known to lower the confinement energy of the excitonic hole. Upon adsorption of PTC, the bandgap of the QD decreases due to delocalization of the exciton, primarily the excitonic hole, into interfacial states of mixed QD/PTC character. This delocalization enables hole transfer from the QD to PTZ in <300 fs (within the instrument response of the laser system) when linked by PTC, but not when linked by a benzoate group, which has a similar length and conjugation as PTC but does not delocalize the excitonic hole. Comparison of the two systems was aided by quantification of the surface coverage of benzoate and PTC-linked PTZ by (1)H NMR. This work provides direct spectroscopic evidence of the enhancement of the rate of hole extraction from a colloidal QD through covalent linkage of a hole acceptor through an exciton-delocalizing ligand.
The dynamics of oceanic fronts. I - The Gulf Stream
NASA Technical Reports Server (NTRS)
Kao, T. W.
1980-01-01
The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.
Ernst, Dominique; Köhler, Jürgen
2013-01-21
We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories comprising more than 1.5 × 10(5) data points and decomposed these long trajectories into shorter segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the relative error of the diffusion coefficient can be minimized by taking an optimum number of points into account for fitting the MSD curves, and that this optimum does not depend on the segment length. Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we compare our results with theoretical predictions and find very good qualitative and quantitative agreement between experiment and theory.
Non-Hermitian localization in biological networks.
Amir, Ariel; Hatano, Naomichi; Nelson, David R
2016-04-01
We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.
Non-Hermitian localization in biological networks
NASA Astrophysics Data System (ADS)
Amir, Ariel; Hatano, Naomichi; Nelson, David R.
2016-04-01
We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.
Diffusion and scaling during early embryonic pattern formation
Gregor, Thomas; Bialek, William; van Steveninck, Rob R. de Ruyter; Tank, David W.; Wieschaus, Eric F.
2005-01-01
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime. PMID:16352710
Duret, Alexis; Grätzel, Michael
2005-09-15
Alpha-Fe(2)O(3) films having a mesoscopic leaflet type structure were produced for the first time by ultrasonic spray pyrolysis (USP) to explore their potential as oxygen-evolving photoanodes. The target of these studies is to use translucent hematite films deposited on conducting fluorine doped tin oxide (FTO) glass as top electrodes in a tandem cell that accomplishes the cleavage of water into hydrogen and oxygen by sunlight. The properties of layers made by USP were compared to those deposited by conventional spray pyrolysis (SP). Although both types of films show similar XRD and UV-visible and Raman spectra, they differ greatly in their morphology. The mesoscopic alpha-Fe(2)O(3) layers produced by USP consist mainly of 100 nm-sized platelets with a thickness of 5-10 nm. These nanosheets are oriented mainly perpendicularly to the FTO support, their flat surface exposing (001) facets. The mesoscopic leaflet structure has the advantage that it allows for efficient harvesting of visible light, while offering at the same time the very short distance required for the photogenerated holes to reach the electrolyte interface before recombining with conduction band electrons. This allows for water oxidation by the valence band holes even though their diffusion length is only a few nanometers. Distances are longer in the particles produced by SP favoring recombination of photoinduced charge carriers. Open-circuit photovoltage measurements indicate a lower surface state density for the nanoplatelets as compared to the round particles. These factors explain the much higher photoactivity of the USP compared to the SP deposited alpha-Fe(2)O(3) layers. Addition of hydrogen peroxide to the alkaline electrolyte further improves the photocurrent-voltage characteristics of films generated by USP indicating the hole transfer from the valence band of the semiconductor oxide to the adsorbed water to be the rate-limiting kinetic step in the oxygen generation reaction.
MO-FG-BRA-08: A Preliminary Study of Gold Nanoparticles Enhanced Diffuse Optical Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, K; Dogan, N; Yang, Y
2015-06-15
Purpose: To develop an imaging method by using gold nanoparticles (GNP) to enhance diffuse optical tomography (DOT) for better tumor detection. Methods: Experiments were performed on a tissue-simulating cylindrical optical phantom (30mm diameter, 60mm length). The GNP used are gold nanorods (10nm diameter, 44nm length) with peak light absorption at 840nm. 0.085ml GNP colloid of 96nM concentration was loaded into a 6mm diameter cylindrical hole in the phantom. An 856nm laser beam (14mW) was used as light source to irradiate the phantom at multiple locations through rotating and elevating the phantom. A CCD camera captured the light transmission through themore » phantom for each irradiation with total 40 projections (8 rotation angles in 45degree steps and 5 elevations with 3mm apart). Cone beam CT of the phantom was used to generate the three-dimensional mesh for DOT reconstruction and to identify the true location of the GNP volume. A forward simulation was performed with known phantom optical properties to establish a relationship between the absorption coefficient and concentration of the GNP by matching the simulated and measured transmission. DOT image reconstruction was performed to restore the GNP within the phantom. In addition, a region-constrained reconstruction was performed by confining the solutions within the GNP volume detected from CT. Results: The position of the GNP volume was reconstructed with <2mm error. The reconstructed average GNP concentration within an identical volume was 104nM, 8% difference from the truth. When the CT was used as “a priori”, the reconstructed average GNP concentration was 239nM, about 2.5 times of the true concentration. Conclusion: This study is the first to demonstrate GNP enhanced DOT with phantom imaging. The GNP can be differentiated from their surrounding background. However, the reconstruction methods needs to be improved for better spatial and quantification accuracy.« less
Causes and implications of suppressed vesiculation and crystallization in phenocryst embayments
NASA Astrophysics Data System (ADS)
Cashman, K. V.; Rust, A.
2016-12-01
Recent studies of crystal-hosted melt embayments have modeled water diffusion to estimate rates of magma ascent. Uncertainties in these calculations have been linked primarily to the assumed initial pressure. None of these studies, however, have addressed the conditions under which crystal-hosted clear glass channels form in samples dominated by crystal- and bubble-rich groundmass. Embayments are common in phenocrysts from the 1974 basaltic eruption of Fuego volcano. They are hosted by both plagioclase and olivine phenocrysts where rapid and spatially heterogeneous growth creates a local melt channel. Embayment shapes differ in the two phases, however, depending on the characteristic rapid growth morphologies. Embayment channels are typically 20-50 µm wide and may reach 100-200 µm in length. Interestingly, these length scales are similar to those of melt embayments in plagioclase within the dacitic Mount St. Helens. We suggest that these characteristic length scales are key to embayment preservation as clear glass. We explore two hypotheses: (1) that the space constraints of the embayment inhibit bubble nucleation and growth, or (2) that rapid decompression-driven crystal growth on all sides of the melt channel temporarily increases the melt temperature and water content (and therefore element diffusivity) above ambient. Support for the second hypothesis - that diffusion out of the melt channels is energetically more favorable than nucleation of new bubble and crystal phases - is suggested by observed diffusion profiles of melt components within the embayments. Understanding the origin of melt channels has important implications for diffusion-based studies of magma decompression. First, if the embayments are formed by rapid, syn-eruptive crystal growth, then the effective diffusion length scale must increase with time. Second, if local and temporary heating increase elemental diffusion rates, then characteristic diffusion time scales will be overestimated. By extension, we also note that similar conditions may characterize rapid growth of skeletal and hopper crystals.
Hydrogen incorporation in high hole density GaN:Mg
NASA Astrophysics Data System (ADS)
Zvanut, M. E.; Uprety, Y.; Dashdorj, J.; Moseley, M.; Doolittle, W. Alan
2011-03-01
We investigate hydrogen passivation in heavily doped p-type GaN using electron paramagnetic resonance (EPR) spectroscopy. Samples include both conventionally grown GaN (1019 cm-3 Mg, 1017 cm-3 holes) and films grown by metal modulation epitaxy (MME), which yielded higher Mg (1- 4 x 1020 cm-3) and hole (1- 40 x 1018 cm-3) densities than found in conventionally grown GaN. The Mg acceptor signal is monitored throughout 30 minute annealing steps in N2 :H2 (92%:7%)) and subsequently pure N2 . N2 :H2 heat treatments of the lower hole density films begin to reduce the Mg EPR intensity at 750 o C, but quench the signal in high hole density films at 600 o C. Revival of the signal by subsequent N2 annealing occurs at 800 o C for the low hole density material and 600 o C in MME GaN. The present work highlights chemical differences between heavily Mg doped and lower doped films; however, it is unclear whether the difference is due to changes in hydrogen-Mg complex formation or hydrogen diffusion. The work at UAB is supported by the NSF.
NASA Technical Reports Server (NTRS)
1981-01-01
A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.
STRUCTURE OF MEMBRANE HOLES IN OSMOTIC AND SAPONIN HEMOLYSIS
Seeman, P.; Cheng, D.; Iles, G. H.
1973-01-01
Serial section electron microscopy of hemolysing erythrocytes (fixed at 12 s after the onset of osmotic hemolysis) revealed long slits and holes in the membrane, extending to around 1 µm in length. Many but not all of the slits and holes (about 100–1000 Å wide) were confluent with one another. Ferritin and colloidal gold (added after fixation) only permeated those cells containing membrane defects. No such large holes or slits were seen in saponin-treated erythrocytes, and the membrane was highly invaginated, giving the ghost a scalloped outline. Freeze-etch electron microscopy of saponin-treated membranes revealed 40–50 Å-wide pits in the extracellular surface of the membrane. If these pits represent regions from which cholesterol was extracted, then cholesterol is uniformly distributed over the entire erythrocyte membrane. PMID:4566525
Inspection of aircraft fastener holes using a conically shaped multi-element phased array probe
NASA Astrophysics Data System (ADS)
Selman, J. J.; Miller, J. T.; Moles, M. D. C.; Dupuis, O.; Herzog, P. G.
2002-05-01
A novel inspection technique is described using phased ultrasonic arrays to detect faying surface cracks in the first layer around the base of a fastener hole with fasteners installed. A unique phased array probe incorporates a matrix of ultrasonic elements arranged in a conical configuration encircling the fastener head. This arrangement permits deflection of the ultrasonic beam in three dimensions, and adapts to different hole diameters and skin thickness. Full circumferential scans are performed using a pre-programmed sequence of phased array focal laws. The inspection method uses pulse-echo at a variety of angles incident on the crack to thoroughly cover the fastener hole and surrounding area, and is designed to detect cracks as small as 0.030″ in length.
Simulation of polarization-dependent film with subwavelength nano-hole array
NASA Astrophysics Data System (ADS)
Yu, Yue; Wei, Dong; Long, Huabao; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
When lightwave passes through a metal thin film with a periodic subwavelength hole arrays structure, its transmittance is significantly improved in the partial band compared to other wavelength. Changing the size of the hole, the period or metal material, will make the transmission curve different. Here, we add a layer of dielectric material on the surface of the metal film, such as liquid crystal(LC), by controlling voltage on LC to change the refractive index of this layer, then we can change the transmission curve, and achieve using voltage to move the transmission curve. When there is need for polarization, the holes can be made of a rectangle whose length and width are different or other shapes, for different polarization state of the light, and the film will display different transmission characteristics.
Coexistence of two electronic phases in LaTiO3+δ (0.01⩽δ⩽0.12) and their evolution with δ
NASA Astrophysics Data System (ADS)
Zhou, H. D.; Goodenough, J. B.
2005-04-01
Although LaTiO3+δ(0.01⩽δ⩽0.12) is single-phase to powder x-ray diffraction, its properties reveal that a hole-poor strongly correlated electronic phase coexists with a hole-rich itinerant-electron phase. With δ⩽0.03 , the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With δ⩾0.08 , isolated hole-poor clusters are embedded in an itinerant-electron matrix. As δ>0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to superparamagnetic strong-correlation fluctuations by δ=0.12 . This behavior is consistent with prediction from the virial theorem of a first-order phase change at the crossover from localized (or strongly correlated) to itinerant electronic behavior, a smaller equilibrium (Ti-O) bond length being in the itinerant-electron phase. Accordingly, the variation of volume with oxidation state does not obey Végard’s law; the itinerant-electron minority phase exerts a compressive force on the hole-poor matrix, and the hole-poor minority phase exerts a tensile stress on the hole-rich matrix.
Scalar Resonant Relaxation of Stars around a Massive Black Hole
NASA Astrophysics Data System (ADS)
Bar-Or, Ben; Fouvry, Jean-Baptiste
2018-06-01
In nuclear star clusters, the potential is governed by the central massive black hole (MBH), so that stars move on nearly Keplerian orbits and the total potential is almost stationary in time. Yet, the deviations of the potential from the Keplerian one, due to the enclosed stellar mass and general relativity, will cause the stellar orbits to precess. Moreover, as a result of the finite number of stars, small deviations of the potential from spherical symmetry induce residual torques that can change the stars’ angular momentum faster than the standard two-body relaxation. The combination of these two effects drives a stochastic evolution of orbital angular momentum, a process named “resonant relaxation” (RR). Owing to recent developments in the description of the relaxation of self-gravitating systems, we can now fully describe scalar resonant relaxation (relaxation of the magnitude of the angular momentum) as a diffusion process. In this framework, the potential fluctuations due to the complex orbital motion of the stars are described by a random correlated noise with statistical properties that are fully characterized by the stars’ mean field motion. On long timescales, the cluster can be regarded as a diffusive system with diffusion coefficients that depend explicitly on the mean field stellar distribution through the properties of the noise. We show here, for the first time, how the diffusion coefficients of scalar RR, for a spherically symmetric system, can be fully calculated from first principles, without any free parameters. We also provide an open source code that evaluates these diffusion coefficients numerically.
Sorption and diffusion of selenium oxyanions in granitic rock
NASA Astrophysics Data System (ADS)
Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew
2016-09-01
The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0 ± 2.0) × 10- 3 m3/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5 ± 0.3) × 10- 3 m3/kg and (1.0 ± 0.6) × 10- 4 m3/kg. The De of selenium was significantly higher for GG; De = (2.5 ± 1.5) × 10- 12 m2/s than for KGG; De = (7 ± 2) × 10- 13 m2/s due to the higher permeability of GG compared with KGG.
Sorption and diffusion of selenium oxyanions in granitic rock.
Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew
2016-09-01
The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0±2.0)×10(-3)m(3)/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5±0.3)×10(-3)m(3)/kg and (1.0±0.6)×10(-4)m(3)/kg. The De of selenium was significantly higher for GG; De=(2.5±1.5)×10(-12)m(2)/s than for KGG; De=(7±2)×10(-13)m(2)/s due to the higher permeability of GG compared with KGG. Copyright © 2016 Elsevier B.V. All rights reserved.
Colliding holes in Riemann surfaces and quantum cluster algebras
NASA Astrophysics Data System (ADS)
Chekhov, Leonid; Mazzocco, Marta
2018-01-01
In this paper, we describe a new type of surgery for non-compact Riemann surfaces that naturally appears when colliding two holes or two sides of the same hole in an orientable Riemann surface with boundary (and possibly orbifold points). As a result of this surgery, bordered cusps appear on the boundary components of the Riemann surface. In Poincaré uniformization, these bordered cusps correspond to ideal triangles in the fundamental domain. We introduce the notion of bordered cusped Teichmüller space and endow it with a Poisson structure, quantization of which is achieved with a canonical quantum ordering. We give a complete combinatorial description of the bordered cusped Teichmüller space by introducing the notion of maximal cusped lamination, a lamination consisting of geodesic arcs between bordered cusps and closed geodesics homotopic to the boundaries such that it triangulates the Riemann surface. We show that each bordered cusp carries a natural decoration, i.e. a choice of a horocycle, so that the lengths of the arcs in the maximal cusped lamination are defined as λ-lengths in Thurston-Penner terminology. We compute the Goldman bracket explicitly in terms of these λ-lengths and show that the groupoid of flip morphisms acts as a generalized cluster algebra mutation. From the physical point of view, our construction provides an explicit coordinatization of moduli spaces of open/closed string worldsheets and their quantization.
NASA Astrophysics Data System (ADS)
Rätzke, K.; Hüppe, P. W.; Faupel, F.
1992-04-01
The isotope effect E=(Dα/Dβ-1)/[(mβ/mα)1/2-1] of cobalt diffusion has been measured in melt-spun amorphous Co76.7Fe2Nb14.3B7 ribbon at different stages of structural relaxation. A drastic drop of the isotope effect from E>0.5 in the as-quenched glass to E=0.1 in the relaxed state wass observed. While the latter value relflects highly cooperative diffusion, the large isotope effect in the as-quenched ribbon points to the prevalence of single-atom jumps and vacancylike holes of excess volume.
2013-12-01
tight aluminum box internal view. Each SiPMT is held securely in each aluminum jig with nylon washers and screws. The threaded rod extends length-wise...hole in the aluminum jig located between the threaded rod and nylon screw is the hole where the single BCF-12 scintillating fiber would be placed to...additional pixel firing from the SiPMT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 42 A typical Hamamatsu
Experimental assessment of film cooling performance of short cylindrical holes on a flat surface
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Premachandran, B.; Ravi, M. R.
2016-12-01
The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.
Friction pull plug welding: dual chamfered plate hole
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.
Correlation Length of Energy-Containing Structures in the Base of the Solar Corona
NASA Astrophysics Data System (ADS)
Abramenko, V.; Zank, G. P.; Dosch, A. M.; Yurchyshyn, V.
2013-12-01
An essential parameter for models of coronal heating and fast solar wind acceleration that relay on the dissipation of MHD turbulence is the characteristic energy-containing length of the squared velocity and magnetic field fluctuations transverse to the mean magnetic field inside a coronal hole (CH) at the base of the corona. The characteristic length scale defines directly the heating rate. Rather surprisingly, almost nothing is known observationally about this critical parameter. Currently, only a very rough estimate of characteristic length was obtained based on the fact that the network spacing is about 30000 km. We attempted estimation of this parameter from observations of photospheric random motions and magnetic fields measured in the photosphere inside coronal holes. We found that the characteristic length scale in the photosphere is about 600-2000 km, which is much smaller than that adopted in previous models. Our results provide a critical input parameter for current models of coronal heating and should yield an improved understanding of fast solar wind acceleration. Fig. 1-- Plotted is the natural logarithm of the correlation function of the transverse velocity fluctuations u^2 versus the spatial lag r for the two CHs. The color code refers to the accumulation time intervals of 2 (blue), 5 (green), 10 (red), and 20 (black) minutes. The values of the Batchelor integral length λ the correlation length ς and the e-folding length L in km are shown. Fig. 2-- Plot of the natural logarithm of the correlation function of magnetic fluctuations b^2 versus the spatial lag r. The insert shows this plot with linear axes.
NASA Astrophysics Data System (ADS)
Maekura, T.; Tanaka, K.; Motoyama, C.; Yoneda, R.; Yamamoto, K.; Nakashima, H.; Wang, D.
2017-10-01
The direct band gap electroluminescence (EL) intensity was investigated for asymmetric metal/Ge/metal diodes fabricated on n-type Ge with doping levels in the range of 4.0 × 1013-3.1 × 1018 cm-3. Up to a doping level of 1016 cm-3 order, commercially available (100) n-Ge substrates were used. To obtain a doping level higher than 1017 cm-3 order, which is commercially unavailable, n+-Ge/p-Ge structures were fabricated by Sb doping on p-type (100) Ge substrates with an in-diffusion at 600 °C followed by a push-diffusion at 700 °C-850 °C. The EL intensity was increased with increasing doping level up to 1.0 × 1018 cm-3. After that, it was decreased with a further increase in n-type doping level. This EL intensity decrease is explained by the decreased number of holes in the active region. One reason is the difficulty in hole injection through the PtGe/n-Ge contact due to the occurring of tunneling electron current. Another reason is the loss of holes caused by both the small thickness of n+-Ge layer and the existence of n+p junction.
The 4D-var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere
NASA Astrophysics Data System (ADS)
Ssessanga, Nicholas; Kim, Yong Ha; Choi, Byungyu; Chung, Jong-Kyun
2018-03-01
We have developed a four-dimensional variation data assimilation technique (4D-var) and utilized it to reconstruct three-dimensional images of the ionospheric hole created during Kwangmyongsong-4 rocket launch. Kwangmyongsong-4 was launched southward from North Korea Sohae space center (124.7°E, 39.6°N) at 00:30 UT on 7 February 2016. The data assimilated were Global Positioning System total electron content from the South Korean Global Positioning System-receiver network. Due to lack of publicized information about Kwangmyongsong-4, the rocket was assumed to inherit its technology from previous launches (Taepodong-2). The created ionospheric hole was assumed to be made by neutral molecules, water (H2O) and hydrogen (H2), deposited in exhaust plumes. The dispersion model was developed based on advection and diffusion equation, and a simple asymmetric diffusion model assumed. From the analysis, using the adjoint technique, we estimated an ionospheric hole with the largest depletion existing around 6-7 min after launch and gradually recovering within 30 min. These results are in agreement with temporal total electron content analyses of the same event from previous studies. Furthermore, Kwangmyongsong-4 second stage exhaust emissions were estimated as 1.9 × 1026 s-1 of which 40% was H2 and the rest H2O.
Therapy of Adult Respiratory Distress Syndrome with Alpha-1- Antiproteinase or Lung Surfactant.
1991-03-15
sufficient to be the primary cause of pulmonary edema, and is diffuse in nature as reflected by pan-lobar infiltrates on the chest radiograph. In the presence...support are eligible if they. (a) develop acute respiratory failure within seven days; (b) have diffuse pulmonary edema as documented by roentgenogram; and...2.5 mm holes are punched in the agarose and the plugs are removed by gentle aspiration. The plate is placed into a Bio-Rad Model 1400 electrophoresis
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
Li, Qiuyang; Wu, Kaifeng; Chen, Jinquan; Chen, Zheyuan; McBride, James R; Lian, Tianquan
2016-03-22
CdSe/CdS core/crown nanoplatelet type I heterostructures are a class of two-dimensional materials with atomically precise thickness and many potential optoelectronic applications. It remains unclear how the precise thickness and lack of energy disorder affect the properties of exciton transport in these materials. By steady-state photoluminescence excitation spectroscopy and ultrafast transient absorption spectroscopy, we show that in five CdSe/CdS core/crown structures with the same core and increasing crown size (with thickness of ∼1.8 nm, width of ∼11 nm, and length from 20 to 40 nm), the crown-to-core exciton localization efficiency is independent of crown size and increases with photon energy above the band edge (from 70% at 400 nm to ∼100% at 370 nm), while the localization time increases with the crown size. These observations can be understood by a model that accounts for the competition of in-plane exciton diffusion and selective hole trapping at the core/crown interface. Our findings suggest that the exciton localization efficiency can be further improved by reducing interfacial defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.Y.; Turner, B.R.; Schowalter, L.J.
1993-07-01
Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottkymore » barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Wang, Haopeng
With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free volume hole size in propylene/ethylene copolymers over a range in comonomer content. Above the glass transition temperature (Tg), the reduced free volume hole size and the densification of the amorphous phase were attributed to constraint imposed on rubbery amorphous chain segments by attached chain segments in crystals. However constant free volume fraction was found at Tg, across the crystallinity range of the copolymers, in agreement with the iso-free volume concept of glass transition.
Application of the SEM to the measurement of solar cell parameters
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Andrews, C. W.
1977-01-01
A pair of techniques are described which make use of the SEM to measure, respectively, the minority carrier diffusion length and the metallurgical junction depth in silicon solar cells. The former technique permits the measurement of the true bulk diffusion length through the application of highly doped field layers to the back surfaces of the cells being investigated. The technique yields an absolute value of the diffusion length from a knowledge of the collected fraction of the injected carriers and the cell thickness. It is shown that the secondary emission contrast observed in the SEM on a reverse-biased diode can depict the location of the metallurgical junction if the diode has been prepared with the proper beveled geometry. The SEM provides the required contrast and the option of high magnification, permitting the measurement of extremely shallow junction depths.
Chandra Observations of the M31
NASA Technical Reports Server (NTRS)
Garcia, Michael; Lavoie, Anthony R. (Technical Monitor)
2000-01-01
We report on Chandra observations of the nearest Spiral Galaxy, M3l, The nuclear source seen with previous X-ray observatories is resolved into five point sources. One of these sources is within 1 arc-sec of the M31 central super-massive black hole. As compared to the other point sources in M3l. this nuclear source has an unusually soft spectrum. Based on the spatial coincidence and the unusual spectrum. we identify this source with the central black hole. A bright transient is detected 26 arc-sec to the west of the nucleus, which may be associated with a stellar mass black hole. We will report on a comparison of the x-ray spectrum of the diffuse emission and point sources seen in the central few arcmin
Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later
NASA Astrophysics Data System (ADS)
Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.
2001-12-01
Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.
Xiao, Zhengguo; Dong, Qingfeng; Bi, Cheng; ...
2014-08-26
Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. Thus, the carrier diffusion length of MAPbI 3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI 3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.
2015-10-01
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.
Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12-28) Peptides.
Lin, Yi-Chih; Li, Chen; Fakhraai, Zahra
2018-04-17
Surfaces or interfaces are considered to be key factors in facilitating the formation of amyloid fibrils under physiological conditions. In this report, we study the kinetics of the surface-mediated fibrillization (SMF) of an amyloid-β fragment (Aβ 12-28 ) on mica. We employ a spin-coating-based drying procedure to control the exposure time of the substrate to a low-concentration peptide solution and then monitor the fibril growth as a function of time via atomic force microscopy (AFM). The evolution of surface-mediated fibril growth is quantitatively characterized in terms of the length histogram of imaged fibrils and their surface concentration. A two-dimensional (2D) kinetic model is proposed to numerically simulate the length evolution of surface-mediated fibrils by assuming a diffusion-limited aggregation (DLA) process along with size-dependent rate constants. We find that both monomer and fibril diffusion on the surface are required to obtain length histograms as a function of time that resemble those observed in experiments. The best-fit simulated data can accurately describe the key features of experimental length histograms and suggests that the mobility of loosely bound amyloid species is crucial in regulating the kinetics of SMF. We determine that the mobility exponent for the size dependence of the DLA rate constants is α = 0.55 ± 0.05, which suggests that the diffusion of loosely bound surface fibrils roughly depends on the inverse of the square root of their size. These studies elucidate the influence of deposition rate and surface diffusion on the formation of amyloid fibrils through SMF. The method used here can be broadly adopted to study the diffusion and aggregation of peptides or proteins on various surfaces to investigate the role of chemical interactions in two-dimensional fibril formation and diffusion.
Yang, Jie; Bao, Chunxiong; Yu, Tao; Hu, Yingfei; Luo, Wenjun; Zhu, Weidong; Fu, Gao; Li, Zhaosheng; Gao, Hao; Li, Faming; Zou, Zhigang
2015-12-09
Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method. The J-V curves and IPCE of ITO@α-Fe2O3 core-shell nanowire array electrode showed nearly twice as high performance as those of the α-Fe2O3 on planar Pt-coated silicon wafers (Pt/Si) and on planar ITO substrates, which was considered to be attributed to more efficient hole collection and more loading of α-Fe2O3 nanocrystals in the core-shell structure than planar structure. Electrochemical impedance spectra (EIS) characterization demonstrated a low interface resistance between α-Fe2O3 and ITO nanowire arrays, which benefits from the well contact between the core and shell. The stability test indicated that the prepared ITO@α-Fe2O3 core-shell nanowire array electrode was stable under AM1.5 illumination during the test period of 40,000 s.
Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures
NASA Astrophysics Data System (ADS)
Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.
2017-12-01
The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7 × 104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.
Proton transfer and the diffusion of H+ and OH- ions along water wires.
Lee, Song Hi; Rasaiah, Jayendran C
2013-09-28
Hydrogen and hydroxide ion transport in narrow carbon nanotubes (CNTs) of diameter 8.1 Å and lengths up to 582 Å are investigated by molecular dynamics simulations using a dissociating water model. The diffusion coefficients of the free ions in an open chain are significantly larger than in periodically replicated wires that necessarily contain D or L end defects, and both are higher than they are in bulk water. The free hydroxide ion diffuses faster than the free hydronium ion in short CNTs, unlike diffusion in liquid water, and both coefficients increase and converge to nearly the same value with increasing tube length. The diffusion coefficients of the two ions increase further when the tubes are immersed in a water reservoir and they move easily out of the tube, suggesting an additional pathway for proton transport via OH(-) ions in biological channels.
NASA Astrophysics Data System (ADS)
Park, Gaye; Lee, HyeYeon; Cho, HyungSu; Kim, DaeYoung; Han, JaeWan; Ouh, ChiHwan; Jung, ChangHyun
2018-02-01
The treatment using photodynamic therapy (PDT) among cancer treatment methods shows remedial value in various cancers. The optical fiber probe infiltrates into affected parts of the tissues that are difficult to access, such as pancreatic cancer, carcinoma of extrahepatic bile duct, prostate cancer, and bladder cancer by using endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasonography (EUS) with various types of diffusing tips. In this study, we developed cylindrical diffusing optical fiber probe (CDOFP) for PDT, manufactured ball-shaped end which is easily infiltrated into tissues with diffusing length ranging from 10mm to 40mm through precision laser processing, and conducted beam profile characterization of manufactured CDOFP. Also, chemical reaction between photo-sensitizer and laser in PDT is important, and hence the thermal effect in tissues as per diffusing length of probe was also studied as it was used in a recent study.
2012-07-01
SHM). 3 Approved for public release; distribution unlimited. The transducers, which are Lead Zirconate Titanate ( PZT ) discs, are permanently... fatigued . Data were recorded as a function of load before the hole was drilled, after the hole was drilled, and at intervals thereafter as a function...of fatigue life. Figure 7 illustrates the effects of matched loads on a fatigue crack about 5 mm in length. Figures 7(a), (b) and (c) correspond
Black holes in multi-fractional and Lorentz-violating models
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-05-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
NASA Technical Reports Server (NTRS)
Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark
1989-01-01
The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.
Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials
NASA Astrophysics Data System (ADS)
Barletti, Luigi; Negulescu, Claudia
2018-05-01
We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.
Geometric diffusion of quantum trajectories
Yang, Fan; Liu, Ren-Bao
2015-01-01
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745
Influence of annealing temperature on the Dy diffusion process in NdFeB magnets
NASA Astrophysics Data System (ADS)
Hu, Sheng-qing; Peng, Kun; Chen, Hong
2017-03-01
Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10-8 cm2 s-1 and 2.4×10-7 cm2 s-1, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions.
Visualization of vortex flow field around a flat plate with noncircular hole
NASA Astrophysics Data System (ADS)
Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.
2018-02-01
In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.
Research on Supersonic Inlet Bleed
NASA Technical Reports Server (NTRS)
Davis, David O.; Vyas, Manan A.; Slater, John W.
2012-01-01
Phase I data results of the Fundamental Inlet Bleed Experiments project at NASA Glenn Research Center (GRC) are presented which include flow coefficient results for two single-hole boundary-layer bleed configurations. The bleed configurations tested are round holes at inclination angles of 90deg and 20deg both having length-to-diameter ratios of 2.0. Results were obtained at freestream Mach numbers of 1.33, 1.62, 1.98, 2.46, and 2.92 and unit Reynolds numbers of 0.984, 1.89, and 2.46 10(exp 7)/m. Approach boundary-layer data are presented for each flow condition and the flow coefficient results are compared to existing multi-hole data obtained under similar conditions. For the 90deg hole, the single and multi-hole distributions agree fairly well with the exception that under supercritical operation, the multi-hole data chokes at higher flow coefficient levels. This behavior is also observed for the 20deg hole but to a lesser extent. The 20deg hole also shows a markedly different characteristic at subcritical operation. Also presented are preliminary results of a Computational Fluid Dynamics (CFD) analysis of both configurations at the Mach 1.33 and a unit Reynolds number of 2.46 10(exp 7)/m. Comparison of the results shows the agreement to be very good.
Traumatic thrombosis of internal carotid artery sustained by transfer of kinetic energy.
Kalcioglu, Mahmut Tayyar; Celbis, Osman; Mizrak, Bulent; Firat, Yezdan; Selimoglu, Erol
2012-06-01
A 31-year-old male patient with a fatal thrombosis of the internal carotid artery caused by gun shot injury was presented in this case report. The patient was referred to the hospital with a diffuse edema on his left cheek. On otolaryngologic examination, there was a bullet entrance hole at the left mandibular corpus. No exit hole could be found. The finding from his axial computed tomography of neck and paranasal sinuses was normal. On neurological examination, a dense right hemiparesis was observed. In his cerebral angiogram, left common carotid artery was totally obliterated. Diffuse ischemia was observed in the left cerebral hemisphere. Despite intensive interventions, the patient died 4 days after the accident. In the autopsy, a large thrombosis was obtained in the left common carotid artery. This case emphasizes a fatal kinetic energy effect in vascular structures. It is stressed that a gun shot injury could be fatal with its indirect kinetic energy effects at subacute phase.
The effect of balance holes to centrifugal pump performance
NASA Astrophysics Data System (ADS)
Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.
2017-07-01
The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.
NASA Astrophysics Data System (ADS)
Yakovenko, Victor
2010-03-01
We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).
NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie
2013-02-01
We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Jonathan H.; Fairbairn, Malcolm, E-mail: jonathan.davis@kcl.ac.uk, E-mail: malcolm.fairbairn@kcl.ac.uk
We make projections for measuring the black hole birth rate from the diffuse supernova neutrino background (DSNB) by future neutrino experiments, and constrain the black hole merger fraction ε, when combined with information on the black hole merger rate from gravitational wave experiments such as LIGO. The DSNB originates from neutrinos emitted by all the supernovae in the Universe, and is expected to be made up of two components: neutrinos from neutron-star-forming supernovae, and a sub-dominant component at higher energies from black-hole-forming 'unnovae'. We perform a Markov Chain Monte Carlo analysis of simulated data of the DSNB in an experimentmore » similar to Hyper-Kamiokande, focusing on this second component. Since all knowledge of the neutrino emission from unnovae comes from simulations of collapsing stars, we choose two sets of priors: one where the unnovae are well-understood and one where their neutrino emission is poorly known. By combining the black hole birth rate from the DSNB with projected measurements of the black hole merger rate from LIGO, we show that the fraction of black holes which lead to binary mergers observed today ε could be constrained to be within the range 2 ⋅ 10{sup −4} ≤ ε ≤ 3 ⋅ 10{sup −2} at 3 σ confidence, after ten years of running an experiment like Hyper-Kamiokande.« less
A density based algorithm to detect cavities and holes from planar points
NASA Astrophysics Data System (ADS)
Zhu, Jie; Sun, Yizhong; Pang, Yueyong
2017-12-01
Delaunay-based shape reconstruction algorithms are widely used in approximating the shape from planar points. However, these algorithms cannot ensure the optimality of varied reconstructed cavity boundaries and hole boundaries. This inadequate reconstruction can be primarily attributed to the lack of efficient mathematic formulation for the two structures (hole and cavity). In this paper, we develop an efficient algorithm for generating cavities and holes from planar points. The algorithm yields the final boundary based on an iterative removal of the Delaunay triangulation. Our algorithm is mainly divided into two steps, namely, rough and refined shape reconstructions. The rough shape reconstruction performed by the algorithm is controlled by a relative parameter. Based on the rough result, the refined shape reconstruction mainly aims to detect holes and pure cavities. Cavity and hole are conceptualized as a structure with a low-density region surrounded by the high-density region. With this structure, cavity and hole are characterized by a mathematic formulation called as compactness of point formed by the length variation of the edges incident to point in Delaunay triangulation. The boundaries of cavity and hole are then found by locating a shape gradient change in compactness of point set. The experimental comparison with other shape reconstruction approaches shows that the proposed algorithm is able to accurately yield the boundaries of cavity and hole with varying point set densities and distributions.
Excess entropy scaling for the segmental and global dynamics of polyethylene melts.
Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C
2014-11-28
The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.
NASA Astrophysics Data System (ADS)
Eachus, R. S.; Pawlik, Th D.; Baetzold, R. C.
2000-10-01
By using a combination of multifrequency EPR spectroscopy, ENDOR spectroscopy and calculations of structure and energy, the reactivities of photo-generated holes in microcrystalline AgBr and AgCl dispersions (photographic emulsions) have been followed in detail. Progress has been facilitated by the use of both gelatin and polyvinyl alcohol (PVA) as peptizers. The initial trapped hole centres produced by band-gap excitation have been identified. In AgBr, this species is [(Br4)3-.V], a neutral complex formed from hole trapping by the four nearest neighbours of a surface Ag+ vacancy (=V). [(Br4)3-.V] reacts with gelatin to produce a transient organic radical at the grain's surface. It does not, however, react with PVA. The formation of the oxidized gelatin radical might involve atomic bromine as an intermediate. In AgCl, the well-known self-trapped hole centre (AgCl6)4- is the initial hole species. The hole diffuses by an electron exchange process until it is trapped by a silver ion on the grain's surface or within its penultimate layer of lattice ions. It is subsequently released from this Ag2+ site to be retrapped at a centre containing four equivalent Cl- ions. The precise identity of this defect has yet to be determined, but its decay also results in the oxidation of gelatin.
Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Jiangwei; Niu, Guangda; Li, Wenzhe; Cao, Kun; Wang, Mingkui; Wang, Liduo
2016-07-01
Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve.Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve. Electronic supplementary information (ESI) available: Fig. S1-S11, Tables S1, S2 and details of the Avrami model for reaction kinetics. See DOI: 10.1039/c6nr03359h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babb, James; Kunstatter, Gabor; Daghigh, Ramin
2011-10-15
Quasinormal modes provide valuable information about the structure of spacetime outside a black hole. There is also a conjectured relationship between the highly damped quasinormal modes and the semiclassical spectrum of the horizon area/entropy. In this paper, we show that for spacetimes characterized by more than one scale, the 'infinitely damped' modes in principle probe the structure of spacetime outside the horizon at the shortest length scales. We demonstrate this with the calculation of the highly damped quasinormal modes of the nonsingular, single-horizon, quantum corrected black hole derived in [A. Peltola and G. Kunstatter, Phys. Rev. D 79, 061501 (2009);more » ].« less
Adiabatic description of long range frequency sweeping
NASA Astrophysics Data System (ADS)
Breizman, Boris; Nyqvist, Robert; Lilley, Matthew
2012-10-01
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.
Minority carrier diffusion length and edge surface-recombination velocity in InP
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Bailey, Sheila G.
1993-01-01
A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.
Subdiffusive exciton transport in quantum dot solids.
Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulović, Vladimir; Tisdale, William A
2014-06-11
Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.
Mechanisms limiting the performance of large grain polycrystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.
1984-01-01
The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.
NASA Technical Reports Server (NTRS)
Vonroos, O. H.
1982-01-01
When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.
NASA Astrophysics Data System (ADS)
Takeuchi, Noboru; Selloni, Annabella; Myers, T. H.; Doolittle, A.
2005-09-01
We present density-functional-theory calculations of the binding and diffusion of Ga and N adatoms on GaN (0001) and (000-1) surfaces under different conditions, including stoichiometric and Ga-rich surfaces, as well as in the presence of electron-hole (e-h) pairs induced by light- or electron-beam irradiation. We find that both Ga-rich conditions and electronic excitations cause a significant reduction of the adatom diffusion barriers, as required to improve the quality of the material. However, the two effects are nonadditive, as the influence of e-h pairs are found to be less important for the more metallic situations.
Super-diffusion of excited carriers in semiconductors
Najafi, Ebrahim; Ivanov, Vsevolod; Zewail, Ahmed; Bernardi, Marco
2017-01-01
The ultrafast spatial and temporal dynamics of excited carriers are important to understanding the response of materials to laser pulses. Here we use scanning ultrafast electron microscopy to image the dynamics of electrons and holes in silicon after excitation with a short laser pulse. We find that the carriers exhibit a diffusive dynamics at times shorter than 200 ps, with a transient diffusivity up to 1,000 times higher than the room temperature value, D0≈30 cm2s−1. The diffusivity then decreases rapidly, reaching a value of D0 roughly 500 ps after the excitation pulse. We attribute the transient super-diffusive behaviour to the rapid expansion of the excited carrier gas, which equilibrates with the environment in 100−150 ps. Numerical solution of the diffusion equation, as well as ab initio calculations, support our interpretation. Our findings provide new insight into the ultrafast spatial dynamics of excited carriers in materials. PMID:28492283
Kim, Seongtak; Bae, Soohyun; Lee, Sang-Won; Cho, Kyungjin; Lee, Kyung Dong; Kim, Hyunho; Park, Sungeun; Kwon, Guhan; Ahn, Seh-Won; Lee, Heon-Min; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan
2017-04-26
Organic-inorganic hybrid perovskite solar cells (PSCs) have been extensively studied because of their outstanding performance: a power conversion efficiency exceeding 22% has been achieved. The most commonly used PSCs consist of CH 3 NH 3 PbI 3 (MAPbI 3 ) with a hole-selective contact, such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spiro-bifluorene (spiro-OMeTAD), for collecting holes. From the perspective of long-term operation of solar cells, the cell performance and constituent layers (MAPbI 3 , spiro-OMeTAD, etc.) may be influenced by external conditions like temperature, light, etc. Herein, we report the effects of temperature on spiro-OMeTAD and the interface between MAPbI 3 and spiro-OMeTAD in a solar cell. It was confirmed that, at high temperatures (85 °C), I - and CH 3 NH 3 + (MA + ) diffused into the spiro-OMeTAD layer in the form of CH 3 NH 3 I (MAI). The diffused I - ions prevented oxidation of spiro-OMeTAD, thereby degrading the electrical properties of spiro-OMeTAD. Since ion diffusion can occur during outdoor operation, the structural design of PSCs must be considered to achieve long-term stability.
Optical and Magnetic Resonance Studies of Na-Diffused ZnO Bulk Single Crystals
NASA Astrophysics Data System (ADS)
Glaser, E. R.; Garces, N. Y.; Parmar, N. S.; Lynn, K. G.
2013-03-01
Photoluminescence (PL) and optically-detected magnetic resonance (ODMR) at 24 GHz were performed on bulk ZnO crystals after diffusion of Na impurities that were explored as an alternate doping source for p-type conductivity. PL at 2K revealed strong bandedge excitonic recombination at 3.361 eV and a broad ``orange'' PL band at 2.17 eV with FWHM of ~0.5 eV. This ``orange'' emission is very similar to that reported previously[1] from thermoluminescence measurements of intentionally Na-doped bulk ZnO and, thus, strongly suggests the incorporation and activation of the Na-diffused impurities. ODMR performed on this ``orange'' PL revealed two signals. The first was a sharp feature with g-value of ~1.96 and is a well-known ``fingerprint'' of shallow donors in ZnO. The second signal consisted of a pair of lines with an intensity ratio of ~3:1 and with g-tensors (g∥,g⊥ ~2.008-2.029) very similar to ESR signals attributed previously[2] to holes bound to Na impurities located at the axial and non-axial Zn host lattice sites in Na-doped ZnO. Thus, the ``orange'' PL can be tentatively assigned to radiative recombination between residual shallow donors and deep Na-related hole traps.
Film cooling performance of a row of dual-fanned holes at various injection angles
NASA Astrophysics Data System (ADS)
Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu
2017-10-01
Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.
Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity
Jirjis, Michael B.; Kurpad, Shekar N.
2013-01-01
Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233
Energy-Containing Length Scale at the Base of a Coronal Hole: New Observational Findings
NASA Astrophysics Data System (ADS)
Abramenko, V.; Dosch, A.; Zank, G. P.; Yurchyshyn, V.; Goode, P. R.
2012-12-01
Dynamics of the photospheric flux tubes is thought to be a key factor for generation and propagation of MHD waves and magnetic stress into the corona. Recently, New Solar Telescope (NST, Big Bear Solar Observatory) imaging observations in helium I 10830 Å revealed ultrafine, hot magnetic loops reaching from the photosphere to the corona and originating from intense, compact magnetic field elements. One of the essential input parameters to run the models of the fast solar wind is a characteristic energy-containing length scale, lambda, of the dynamical structures transverse to the mean magnetic field in a coronal hole (CH) in the base of the corona. We used NST time series of solar granulation motions to estimate the velocity fluctuations, as well as NST near-infrared magnetograms to derive the magnetic field fluctuations. The NST adaptive optics corrected speckle-reconstructed images of 10 seconds cadence were an input for the local correlation tracking (LCT) code to derive the squared transverse velocity patterns. We found that the characteristic length scale for the energy-carrying structures in the photosphere is about 300 km, which is two orders of magnitude lower than it was adopted in previous models. The influence of the result on the coronal heating and fast solar wind modeling will be discussed.; Correlation functions calculated from the squared velocities for the three data sets: a coronal hole, quiet sun and active region plage area.
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.
NASA Astrophysics Data System (ADS)
Thakur, Ujwal Kumar; Askar, Abdelrahman M.; Kisslinger, Ryan; Wiltshire, Benjamin D.; Kar, Piyush; Shankar, Karthik
2017-07-01
This is the first report of a 17.6% champion efficiency solar cell architecture comprising monocrystalline TiO2 nanorods (TNRs) coupled with perovskite, and formed using facile solution processing without non-routine surface conditioning. Vertically oriented TNR ensembles are desirable as electron transporting layers (ETLs) in halide perovskite solar cells (HPSCs) because of potential advantages such as vectorial electron percolation pathways to balance the longer hole diffusion lengths in certain halide perovskite semiconductors, ease of incorporating nanophotonic enhancements, and optimization between a high contact surface area for charge transfer (good) versus high interfacial recombination (bad). These advantages arise from the tunable morphology of hydrothermally grown rutile TNRs, which is a strong function of the growth conditions. Fluorescence lifetime imaging microscopy of the HPSCs demonstrated a stronger quenching of the perovskite PL when using TNRs as compared to mesoporous/compact TiO2 thin films. Due to increased interfacial contact area between the ETL and perovskite with easier pore filling, charge separation efficiency is dramatically enhanced. Additionally, solid-state impedance spectroscopy results strongly suggested the suppression of interfacial charge recombination between TNRs and perovskite layer, compared to other ETLs. The optimal ETL morphology in this study was found to consist of an array of TNRs ∼300 nm in length and ∼40 nm in width. This work highlights the potential of TNR ETLs to achieve high performance solution-processed HPSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.
Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less
Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.; ...
2017-05-31
Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less
Performance Characteristics of Plane-Wall Two-Dimensional Diffusers
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1953-01-01
Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
Entropy of a (1+1)-dimensional charged black hole to all orders in the Planck length
NASA Astrophysics Data System (ADS)
Kim, Yong-Wan; Park, Young-Jai
2013-02-01
We study the statistical entropy of a scalar field on the (1+1)-dimensional Maxwell-dilaton background without an artificial cutoff by considering corrections to all orders in the Planck length obtained from a generalized uncertainty principle applied to the quantum state density. In contrast to the previous results for d ≥ 3 dimensional cases, we obtain an unadjustable entropy due to the independence of the minimal length, which plays the role of an adjustable parameter. However, this entropy is still proportional to the Bekenstein-Hawking entropy.
Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR.
Infanzón, Belén; Sotelo, Pablo H; Martínez, Josefina; Diaz, Pilar
2018-01-01
Rhodococcus sp CR-53 lipase LipR was the first characterized member of bacterial lipase family X. Interestingly, LipR displays some similarity with α/β-hydrolases of the C. antartica lipase A (CAL-A)-like superfamily (abH38), bearing a Y-type oxyanion hole, never found before among bacterial lipases. In order to explore this unusual Y-type oxyanion hole, and to improve LipR performance, two modification strategies based on site directed or saturation mutagenesis were addressed. Initially, a small library of mutants was designed to convert LipR Y-type oxyanion hole (YDS) into one closer to those most frequently found in bacteria (GGG(X)). However, activity was completely lost in all mutants obtained, indicating that the Y-type oxyanion hole of LipR is required for activity. A second approach was addressed to modify the two main oxyanion hole residues Tyr 110 and Asp 111 , previously described for CAL-A as the most relevant amino acids involved in stabilization of the enzyme-substrate complex. A saturation mutagenesis library was prepared for each residue (Tyr 110 and Asp 111 ), and activity of the resulting variants was assayed on different chain length substrates. No functional LipR variants could be obtained when Tyr 110 was replaced by any other amino acids, indicating that this is a crucial residue for catalysis. However, among the Asp 111 variants obtained, LipR D111G produced a functional enzyme. Interestingly, this LipR-YGS variant showed less activity than wild type LipR on short- or mid- chain substrates but displayed a 5.6-fold increased activity on long chain length substrates. Analysis of the 3D model and in silico docking studies of this enzyme variant suggest that substitution of Asp by Gly produces a wider entrance tunnel that would allow for a better and tight accommodation of larger substrates, thus justifying the experimental results obtained. Copyright © 2017 Elsevier Inc. All rights reserved.
Wei, Yong; Wang, Ningli; Zu, Zhongqiao; Bi, Chuncao; Wang, Huaizhou; Chen, Fenghua; Yang, Xingguang
2013-06-01
To compare the outcomes of pars plana vitrectomy (PPV) with or without the adjuvant surgical procedures: triamcinolone acetonide (TA) assistance and/or internal limiting membrane (ILM) peeling for the treatment of highly myopic macular hole retinal detachment (MHRD). Case-control study. Pars plana vitrectomy combined with 2 kinds of adjuvant surgical procedures were used on 96 highly myopic eyes with MHRD. These eyes were assigned to 4 groups randomly: Group 1, non-TA-assisted PPV and without ILM peeling; Group 2, non-TA-assisted PPV with ILM peeling; Group 3, TA-assisted PPV and without ILM peeling; Group 4, TA-assisted PPV with ILM peeling. Anatomical reattachment of the retina, macular hole closure, and best-corrected visual acuity were measured. The rates of both retinal reattachment and macular hole closure were higher in Group 2 (84.0 and 44.0%) and Group 3 (80.8 and 46.2%) than Group 1 (73.9 and 17.4%); however, there were no differences between Group 2 and Group 3 (P > 0.05). The rates of macular hole closure were extremely low in Group 1 and also in eyes with extreme long axial lengths (≥29.0 mm), "severe" chorioretinal atrophy, and posterior staphyloma. Pars plana vitrectomy with either TA assistance or ILM peeling was effective for the treatment of highly myopic MHRD. If you peel the ILM, adding TA does not affect closure rates; and if TA is used to visualize the vitreous, ILM peeling may not be necessary in MHRD. There was a lower anatomical success rate in MHRD with extreme long axial lengths, severe chorioretinal atrophy, and posterior staphyloma.
Avalanche multiplication and impact ionization in amorphous selenium photoconductive target
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-03-01
The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.
Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; ...
2017-03-24
Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less
NASA Astrophysics Data System (ADS)
Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; Bossert, D. J.; Doyle, B. L.
2017-05-01
The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.
Zhang, Xuewen; Liang, Chunjun; Sun, Mengjie; Zhang, Huimin; Ji, Chao; Guo, Zebang; Xu, Yajun; Sun, Fulin; Song, Qi; He, Zhiqun
2018-03-14
Planar perovskite solar cells (PSCs) have gained great interest due to their low-temperature solution preparation and simple process. In inverted planar PSCs, an additional buffer layer is usually needed on the top of the PCBM electron-transport layer (ETL) to enhance the device performance. In this work, we used a new buffer layer, zirconium acetate (Zr(Ac) 4 ). The inclusion of the Zr(Ac) 4 buffer layer leads to the increase of FF from ∼68% to ∼79% and PCE from ∼14% to ∼17% in the planar PSCs. The UPS measurement indicates that the Zr(Ac) 4 layer has a low HOMO level of -8.2 eV, indicating that the buffer layer can act as a hole-blocking layer. Surface morphology and surface chemistry investigations reveal that the elements I, MA and Pb can diffuse across the PCBM ETL, damaging the device performance. The covering Zr(Ac) 4 molecules fill in the pinholes of the PCBM layer and effectively block the ions/molecules of the perovskite from diffusion across the ETL. The resulting more robust PCBM/Zr(Ac) 4 ETL leads to weaker ionic charge accumulation and lower diode leakage current. The double role of hole-and-ion blocking of the Zr(Ac) 4 layer explains the improved FF and PCE in the PSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auden, E. C.; Vizkelethy, G.; Serkland, D. K.
Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less
Photonic Devices Based on Surface and Composition-Engineered Infrared Colloidal Nanocrystals
2012-01-27
NQD/P3HT solar cells , the need for submicron-phase-separated polymer-NQD blends is therefore expressed by the limiting exciton diffusion length ...P3HT:PbSe are very critical in designing the PM-HJ solar cells : The thickness of P3HT should approximate to the thickness of exciton diffuse length in... cells , luminescent solar concentrators, light emitting diodes, lasers, photonic crystals, CdSe, PbSe, Germanium Jian Xu Pennsylvania State University
Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H
2015-06-03
Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determination of carrier diffusion length in GaN
NASA Astrophysics Data System (ADS)
Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard
2015-01-01
Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...
2015-10-06
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou
2018-01-01
After first reviewing the gravitational wave (GW) spectral classification. we discuss the sensitivities of GW detection in space aimed at low frequency band (100 nHz-100 mHz) and middle frequency band (100 mHz-10 Hz). The science goals are to detect GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries; (v) Stellar-Size Black Hole Binaries; and (vi) Relic GW Background. The detector proposals have arm length ranging from 100 km to 1.35×109 km (9 AU) including (a) Solar orbiting detectors and (b) Earth orbiting detectors. We discuss especially the sensitivities in the frequency band 0.1-10 μHz and the middle frequency band (0.1 Hz-10 Hz). We propose and discuss AMIGO as an Astrodynamical Middlefrequency Interferometric GW Observatory.
Synthesis and cathodoluminescence of beta-Ga2O3 nanowires with holes.
Zhang, Xitian; Liu, Zhuang; Hark, Suikong
2008-03-01
Gallium oxide nanowires were synthesized on Si (001) substrate by chemical vapor deposition, using a Ga/Ga2O3 mixture as a precursor and Au as a catalyst. The structure of the as-synthesized products was examined by X-ray powder diffraction and high-resolution transmission electron microscopy, and found to be monoclinic beta-Ga2O3. The morphologies of the beta-Ga2O3 nanowires were characterized by scanning electron microscopy. The majority of the nanowires contain holes along their length, but a few were also found without holes. The holes are believed to be formed by the reaction of adsorbed Ga droplets on reactive terminating surfaces of the nanowires. For nanowires where these reactive surfaces are not exposed, the reaction of Ga is retarded. Cathodoluminescence (CL) of the nanowires was measured. Three emission bands centered at 376, 454, and 666 nm, respectively, were observed.
Rarefaction waves, solitons, and holes in a pure electron plasma
NASA Astrophysics Data System (ADS)
Moody, J. D.; Driscoll, C. F.
1995-12-01
The propagation of holes, solitons, and rarefaction waves along the axis of a magnetized pure electron plasma column is described. The time dependence of the radially averaged density perturbation produced by the nonlinear waves is measured at several locations along the plasma column for a wide range of plasma parameters. The rarefaction waves are studied by measuring the free expansion of the plasma into a vacuum. A new hydrodynamic theory is described that quantitatively predicts the free expansion measurements. The rarefaction is initially characterized by a self-similar plasma flow, resulting in a perturbed density and velocity without a characteristic length scale. The electron solitons show a small increase in propagation speed with increasing amplitude and exhibit electron bursts. The holes show a decrease in propagation speed with increasing amplitude. Collisions between holes and solitons show that these objects pass through each other undisturbed, except for a small offset.
Temperature and strain characterization of long period gratings in air guiding fiber
NASA Astrophysics Data System (ADS)
Iadicicco, Agostino; Cutolo, Antonello; Cusano, Andrea; Campopiano, Stefania
2013-05-01
This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. This procedure permits to preserve the holey structure of the host fiber avoiding any hole collapsing and it enables a local effective refractive index change due to the size and shape modifications of core and cladding holes. Periodically repeated EAD treatments permit the fabrication of LPGs based devices in hollow core optical fibers enabling new functionalities hitherto not possible. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the HC-LPGs sensitivity to environmental parameters such as strain and temperature are investigated.
Study of compressible flow through a rectangular-to-semiannular transition duct
NASA Technical Reports Server (NTRS)
Foster, Jeffry; Okiishi, Theodore H.; Wendt, Bruce J.; Reichert, Bruce A.
1995-01-01
Detailed flow field measurements are presented for compressible flow through a diffusing rectangular-to-semiannular transition duct. Comparisons are made with published computational results for flow through the duct. Three-dimensional velocity vectors and total pressures were measured at the exit plane of the diffuser model. The inlet flow was also measured. These measurements are made using calibrated five-hole probes. Surface oil flow visualization and surface static pressure data were also taken. The study was conducted with an inlet Mach number of 0.786. The diffuser Reynolds based on the inlet centerline velocity and the exit diameter of the diffuser was 3,200,000. Comparison of the measured data with previously published computational results are made. Data demonstrating the ability of vortex generators to reduce flow separation and circumferential distortion is also presented.
High temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, X. J., E-mail: xjhan@sjtu.edu.cn; Li, J. G., E-mail: lijg@sjtu.edu.cn; Schober, H. R., E-mail: h.schober@fz-juelich.de
Transport properties and the Stokes-Einstein (SE) relation in liquid Cu{sub 8}Zr{sub 3} are studied by molecular dynamics simulation with a modified embedded atom potential. The critical temperature T{sub c} of mode coupling theory (MCT) is derived as 930 K from the self-diffusion coefficient D and viscosity η. The SE relation breaks down around T{sub SE} = 1900 K, which is far above T{sub c}. At temperatures below T{sub SE}, the product of D and η fluctuates around a constant value, similar to the prediction of MCT near T{sub c}. The influence of the microscopic atomic motion on macroscopic properties ismore » investigated by analyzing the time dependent liquid structure and the self-hole filling process. The self-holes for the two components are preferentially filled by atoms of the same component. The self-hole filling dynamics explains the different breakdown behaviors of the SE relation in Zr-rich liquid CuZr{sub 2} compared to Cu-rich Cu{sub 8}Zr{sub 3}. At T{sub SE}, a kink is found in the temperature dependence of both partial and total coordination numbers for the three atomic pair combinations and of the typical time of self-hole filling. This indicates a strong correlation between liquid structure, atomic dynamics, and the breakdown of SE relation. The previously suggested usefulness of the parameter d(D{sub 1}/D{sub 2})/dT to predict T{sub SE} is confirmed. Additionally we propose a viscosity criterion to predict T{sub SE} in the absence of diffusion data.« less
NASA Astrophysics Data System (ADS)
Baumgardt, H.; Amaro-Seoane, P.; Schödel, R.
2018-01-01
Context. The distribution of stars around a massive black hole (MBH) has been addressed in stellar dynamics for the last four decades by a number of authors. Because of its proximity, the centre of the Milky Way is the only observational test case where the stellar distribution can be accurately tested. Past observational work indicated that the brightest giants in the Galactic centre (GC) may show a density deficit around the central black hole, not a cusp-like distribution, while we theoretically expect the presence of a stellar cusp. Aims: We here present a solution to this long-standing problem. Methods: We performed direct-summation N-body simulations of star clusters around massive black holes and compared the results of our simulations with new observational data of the GC's nuclear cluster. Results: We find that after a Hubble time, the distribution of bright stars as well as the diffuse light follow power-law distributions in projection with slopes of Γ ≈ 0.3 in our simulations. This is in excellent agreement with what is seen in star counts and in the distribution of the diffuse stellar light extracted from adaptive-optics (AO) assisted near-infrared observations of the GC. Conclusions: Our simulations also confirm that there exists a missing giant star population within a projected radius of a few arcsec around Sgr A*. Such a depletion of giant stars in the innermost 0.1 pc could be explained by a previously present gaseous disc and collisions, which means that a stellar cusp would also be present at the innermost radii, but in the form of degenerate compact cores.
Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady
2008-02-01
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald ripening (only one hole survives at the end), and we report a particular regime where the "hole ripening" statistics exhibits a simple dynamic scaling behavior.
A Diffusive-Particle Theory of Free Recall
Fumarola, Francesco
2017-01-01
Diffusive models of free recall have been recently introduced in the memory literature, but their potential remains largely unexplored. In this paper, a diffusive model of short-term verbal memory is considered, in which the psychological state of the subject is encoded as the instantaneous position of a particle diffusing over a semantic graph. The model is particularly suitable for studying the dependence of free-recall observables on the semantic properties of the words to be recalled. Besides predicting some well-known experimental features (forward asymmetry, semantic clustering, word-length effect), a novel prediction is obtained on the relationship between the contiguity effect and the syllabic length of words; shorter words, by way of their wider semantic range, are predicted to be characterized by stronger forward contiguity. A fresh analysis of archival free-recall data allows to confirm this prediction. PMID:29085521
Effective optical path length for tandem diffuse cubic cavities as gas absorption cell
NASA Astrophysics Data System (ADS)
Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.
2014-12-01
Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.
Dynamics of an Unsteady Diffusion Flame: Effects of Heat Release and Gravity
1990-09-27
UNSTEADY DIFFUSION FLAME: EFFECTS OF HEAT RELEASE AND GRAVITY INTRODUCTION Experiments on laminar diffusion flames have shown that gravity affects the flame ... length and width as well as its extinction characteristics (1-4). These studies have been conducted in drop towers and have focused on fuel jets with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang
2014-11-07
This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO 2 were derived for both intrinsic conditions and under irradiation. The importance of the large X eU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequencemore » of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.« less
Hole pairing and ground state properties of high-Tc superconductivity within the t-t'-J-V model
NASA Astrophysics Data System (ADS)
Roy, Krishanu; Pal, Papiya; Nath, Subhadip; Ghosh, Nanda Kumar
2018-04-01
The t-t'-J-V model, one of the realistic models for studying high-Tc cuprates, has been investigated to explore the hole pairing and other ground state properties using exact diagonalization (ED) technique with 2 holes in a small 8-site cluster. The role of next-nearest-neighbor (NNN) hopping and nearest-neighbor (NN) Coulomb repulsion has been considered. It appears that qualitative behavior of the ground state energies of an 8-site and 16- or 18-site cluster is similar. Results show that a small short-ranged antiferromagnetic (AF) correlation exists in the 2 hole case which is favored by large V/t. A superconducting phase emerges at 0 ≤ V/t ≤ 4J. Hole-hole correlation calculation also suggests that the two holes of the pair are either at |i - j| = 1 or √2. Negative t'/t suppresses the possibility of pairing of holes. Though s-wave pairing susceptibility is dominant, pairing correlation length calculation indicates that the long range pairing, which is suitable for superconductivity, is in the d-wave channel. Both s- and d-wave pairing susceptibility gets suppressed by V/t while d-(s-) wave susceptibility gets favored (suppressed) by t'/t. The charge gap shows a gapped behavior while a spin-gapless region exists at small V/t for finite t'/t.
Thirty years since diffuse sound reflection by maximum length
NASA Astrophysics Data System (ADS)
Cox, Trevor J.; D'Antonio, Peter
2005-09-01
This year celebrates the 30th anniversary of Schroeder's seminal paper on sound scattering from maximum length sequences. This paper, along with Schroeder's subsequent publication on quadratic residue diffusers, broke new ground, because they contained simple recipes for designing diffusers with known acoustic performance. So, what has happened in the intervening years? As with most areas of engineering, the room acoustic diffuser has been greatly influenced by the rise of digital computing technologies. Numerical methods have become much more powerful, and this has enabled predictions of surface scattering to greater accuracy and for larger scale surfaces than previously possible. Architecture has also gone through a revolution where the forms of buildings have become more extreme and sculptural. Acoustic diffuser designs have had to keep pace with this to produce shapes and forms that are desirable to architects. To achieve this, design methodologies have moved away from Schroeder's simple equations to brute force optimization algorithms. This paper will look back at the past development of the modern diffuser, explaining how the principles of diffuser design have been devised and revised over the decades. The paper will also look at the present state-of-the art, and dreams for the future.
Diffusion lengths in irradiated N/P InP-on-Si solar cells
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.
1996-01-01
Indium phosphide (InP) solar cells were made on silicon (Si) wafers (InP/Si) by to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. Spire has made N/P InP/Si cells of sizes up to 2 cm by 4 cm with beginning-of-life (BOL) AM0 efficiencies over 13% (one-sun, 28C). These InP/Si cells have higher absolute efficiency and power density after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells after a fluence of about 2e15 1 MeV electrons/sq. cm. In this work, we investigate the minority carrier (electron) base diffusion lengths in the N/P InP/Si cells. A quantum efficiency model was constructed for a 12% BOL AM0 N/P InP/Si cell which agreed well with the absolutely measured quantum efficiency and the sun-simulator measured AM0 photocurrent (30.1 mA/sq. cm). This model was then used to generate a table of AM0 photocurrents for a range of base diffusion lengths. AM0 photocurrents were then measured for irradiations up to 7.7e16 1 MeV electrons/sq. cm (the 12% BOL cell was 8% after the final irradiation). By comparing the measured photocurrents with the predicted photocurrents, base diffusion lengths were assigned at each fluence level. A damage coefficient K of 4e-8 and a starting (unirradiated) base electron diffusion length of 0.8 microns fits the data well. The quantum efficiency was measured again at the end of the experiment to verify that the photocurrent predicted by the model (25.5 mA/sq. cm) agreed with the simulator-measured photocurrent after irradiation (25.7 mA/sq. cm).
Ackerman, David M.; Evans, James W.
2017-01-19
Here, we perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient D tr(x), at various positions x within themore » pore. D tr(x) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.« less
NASA Astrophysics Data System (ADS)
Ackerman, David M.; Evans, James W.
2017-01-01
We perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient Dtr(x ) , at various positions x within the pore. Dtr(x ) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.
A no-short scalar hair theorem for rotating Kerr black holes
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-06-01
If a black hole has hair, how short can this hair be? A partial answer to this intriguing question was recently provided by the ‘no-short hair’ theorem which asserts that the external fields of a spherically symmetric electrically neutral hairy black-hole configuration must extend beyond the null circular geodesic which characterizes the corresponding black-hole spacetime. One naturally wonders whether the no-short hair inequality {r}{hair}\\gt {r}{null} is a generic property of all electrically neutral hairy black-hole spacetimes. In this paper we provide evidence that the answer to this interesting question may be positive. In particular, we prove that the recently discovered cloudy Kerr black-hole spacetimes—non-spherically symmetric non-static black holes which support linearized massive scalar fields in their exterior regions—also respect this no-short hair lower bound. Specifically, we analytically derive the lower bound {r}{field}/{r}+\\gt {r}+/{r}- on the effective lengths of the external bound-state massive scalar clouds (here {r}{field} is the peak location of the stationary bound-state scalar fields and r ± are the horizon radii of the black hole). Remarkably, this lower bound is universal in the sense that it is independent of the physical parameters (proper mass and angular harmonic indices) of the exterior scalar fields. Our results suggest that the lower bound {r}{hair}\\gt {r}{null} may be a general property of asymptotically flat electrically neutral hairy black-hole configurations.
Event Horizon Telescope observations as probes for quantum structure of astrophysical black holes
NASA Astrophysics Data System (ADS)
Giddings, Steven B.; Psaltis, Dimitrios
2018-04-01
The need for a consistent quantum evolution for black holes has led to proposals that their semiclassical description is modified not just near the singularity, but at horizon or larger scales. If such modifications extend beyond the horizon, they influence regions accessible to distant observation. Natural candidates for these modifications behave like metric fluctuations, with characteristic length scales and timescales set by the horizon radius. We investigate the possibility of using the Event Horizon Telescope to observe these effects, if they have a strength sufficient to make quantum evolution consistent with unitarity, without introducing new scales. We find that such quantum fluctuations can introduce a strong time dependence for the shape and size of the shadow that a black hole casts on its surrounding emission. For the black hole in the center of the Milky Way, detecting the rapid time variability of its shadow will require nonimaging timing techniques. However, for the much larger black hole in the center of the M87 galaxy, a variable black-hole shadow, if present with these parameters, would be readily observable in the individual snapshots that will be obtained by the Event Horizon Telescope.
Lassoing saddle splay and the geometrical control of topological defects
NASA Astrophysics Data System (ADS)
Tran, Lisa; Lavrentovich, Maxim O.; Beller, Daniel A.; Li, Ningwei; Stebe, Kathleen J.; Kamien, Randall D.
2016-06-01
Systems with holes, such as colloidal handlebodies and toroidal droplets, have been studied in the nematic liquid crystal (NLC) 4-cyano-4'-pentylbiphenyl (5CB): Both point and ring topological defects can occur within each hole and around the system while conserving the system's overall topological charge. However, what has not been fully appreciated is the ability to manipulate the hole geometry with homeotropic (perpendicular) anchoring conditions to induce complex, saddle-like deformations. We exploit this by creating an array of holes suspended in an NLC cell with oriented planar (parallel) anchoring at the cell boundaries. We study both 5CB and a binary mixture of bicyclohexane derivatives (CCN-47 and CCN-55). Through simulations and experiments, we study how the bulk saddle deformations of each hole interact to create defect structures, including an array of disclination lines, reminiscent of those found in liquid-crystal blue phases. The line locations are tunable via the NLC elastic constants, the cell geometry, and the size and spacing of holes in the array. This research lays the groundwork for the control of complex elastic deformations of varying length scales via geometrical cues in materials that are renowned in the display industry for their stability and easy manipulability.
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q -derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q -derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q -derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells
2011-01-01
Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662
Laser inscription of pseudorandom structures for microphotonic diffuser applications.
Alqurashi, Tawfiq; Alhosani, Abdulla; Dauleh, Mahmoud; Yetisen, Ali K; Butt, Haider
2018-04-19
Optical diffusers provide a solution for a variety of applications requiring a Gaussian intensity distribution including imaging systems, biomedical optics, and aerospace. Advances in laser ablation processes have allowed the rapid production of efficient optical diffusers. Here, we demonstrate a novel technique to fabricate high-quality glass optical diffusers with cost-efficiency using a continuous CO2 laser. Surface relief pseudorandom microstructures were patterned on both sides of the glass substrates. A numerical simulation of the temperature distribution showed that the CO2 laser drills a 137 μm hole in the glass for every 2 ms of processing time. FFT simulation was utilized to design predictable optical diffusers. The pseudorandom microstructures were characterized by optical microscopy, Raman spectroscopy, and angle-resolved spectroscopy to assess their chemical properties, optical scattering, transmittance, and polarization response. Increasing laser exposure and the number of diffusing surfaces enhanced the diffusion and homogenized the incident light. The recorded speckle pattern showed high contrast with sharp bright spot free diffusion in the far field view range (250 mm). A model of glass surface peeling was also developed to prevent its occurrence during the fabrication process. The demonstrated method provides an economical approach in fabricating optical glass diffusers in a controlled and predictable manner. The produced optical diffusers have application in fibre optics, LED systems, and spotlights.
Dynamic fisheye grids for binary black hole simulations
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Noble, Scott C.
2014-03-01
We present a new warped gridding scheme adapted to simulating gas dynamics in binary black hole spacetimes. The grid concentrates grid points in the vicinity of each black hole to resolve the smaller scale structures there, and rarefies grid points away from each black hole to keep the overall problem size at a practical level. In this respect, our system can be thought of as a ‘double’ version of the fisheye coordinate system, used before in numerical relativity codes for evolving binary black holes. The gridding scheme is constructed as a mapping between a uniform coordinate system—in which the equations of motion are solved—to the distorted system representing the spatial locations of our grid points. Since we are motivated to eventually use this system for circumbinary disc calculations, we demonstrate how the distorted system can be constructed to asymptote to the typical spherical polar coordinate system, amenable to efficiently simulating orbiting gas flows about central objects with little numerical diffusion. We discuss its implementation in the Harm3d code, tailored to evolve the magnetohydrodynamics equations in curved spacetimes. We evaluate the performance of the system’s implementation in Harm3d with a series of tests, such as the advected magnetic field loop test, magnetized Bondi accretion, and evolutions of hydrodynamic discs about a single black hole and about a binary black hole. Like we have done with Harm3d, this gridding scheme can be implemented in other unigrid codes as a (possibly) simpler alternative to adaptive mesh refinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu
Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less
Microscopic diffusion processes measured in living planarians
Mamontov, Eugene
2018-03-08
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plelnevaux, C.
The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)
Microscopic diffusion processes measured in living planarians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
Steric effects on diffusion into bituminous coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
John W. Larsen; Doyoung Lee
2006-02-01
The reactions of maleic anhydride, cis-maleate esters, and acetylenedicarboxylate esters with Pittsburgh No. 8 or Illinois No. 6 coal using o-xylene or o-dichlorobenzene solvent are diffusion controlled. Diffusion is Fickian in all cases. The measured activation energies are between 5.4 and 7.6 kcal/mol. Diffusion rates decrease slowly with increasing alkyl chain length and sharply with branching. Diffusion rates are slightly faster with o-xylene than when o-dichlorobenzene is used. 40 refs., 5 figs., 4 tabs.
NASA Technical Reports Server (NTRS)
Leiter, D.
1979-01-01
A consistent theoretical interpretation is given for the suggestion that a steepening of the spectrum between X-ray and gamma ray energies may be a general, gamma-ray characteristic of Seyfert galaxies, if the diffuse gamma ray spectrum is considered to be a superposition of unresolved contributions, from one or more classes of extragalactic objects. In the case of NGC 4151, the dominant process is shown to be Penrose Compton scattering in the ergosphere of a Kerr black hole, assumed to exist in the Seyfert's active galactic nucleus.
Heremans, Paul; Cheyns, David; Rand, Barry P
2009-11-17
Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a phosphorescent molecule, we demonstrate an increase in the exciton diffusion length of a polymer from 4 to 9 nm. If researchers can identify suitable phosphorescent dopants, this method could be employed with other materials. The carrier transport from the junction to the contacts is markedly different for a bulk heterojunction cell than for planar junction cells. Unlike for bulk heterojunction cells, the open-circuit voltage of planar-junction cells is independent of the contact work functions, as a consequence of the balance of drift and diffusion currents in these systems. This understanding helps to guide the development of new materials (particularly donor materials) that can further boost the efficiency of single-junction cells to 10%. With multijunction architectures, we expect that efficiencies of 12-16% could be attained, at which point organic photovoltaic cells could become an important renewable energy source.
Balcom, B J; Petersen, N O
1993-01-01
We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892