Science.gov

Sample records for hollow microspheres assembled

  1. Electrical conductivity of hollow polyaniline microspheres synthesized by a self-assembly method

    NASA Astrophysics Data System (ADS)

    Long, Yunze; Chen, Zhaojia; Ma, Yongjun; Zhang, Ze; Jin, Aizi; Gu, Changzhi; Zhang, Lijuan; Wei, Zhixiang; Wan, Meixiang

    2004-03-01

    In this letter, we report the electrical properties of hollow polyaniline (PANI) microspheres. β-naphthalene sulfonic acid (NSA) and salicylic acid (SA) doped PANI microspheres were synthesized by a self-assembly method. The room-temperature conductivity is 8.6×10-2 S/cm for PANI-NSA microspheres (0.8-2 μm in outer diameter) and 5.6×10-4 S/cm for PANI-SA microspheres (3-7 μm in outer diameter). The conductivity of an individual PANI-SA microsphere is measured directly by a two-probe technique, about 8×10-2 S/cm (which is two orders of magnitude higher than that of a PANI-SA microsphere's pellet). The measurements of conductivity, I-V curve, and magnetoresistance demonstrate that the electrical properties of PANI microspheres are dominated by the intersphere contacts due to the sample's microscopic inhomogeneity.

  2. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair

    PubMed Central

    Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X.

    2011-01-01

    Biomaterials play pivotal roles in engineering tissue regeneration and repair. To regenerate irregular shaped defects, injectable cell carriers are desirable. Here, we report the development of self-assembled nanofibrous hollow microspheres from star-shaped biodegradable polymers as an injectable cell carrier for tissue regeneration. The nanofibrous hollow microspheres were shown to efficiently accommodate cells and enhance cartilage regeneration over control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount and higher quality cartilage regeneration over the chondrocytes alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair and integration compared to the chondrocytes alone group that simulates the clinically available autologous chondrocyte implantation (ACI) procedure. These results indicate that the nanofibrous hollow microspheres are an excellent cell carrier for cartilage regeneration and are worthy of further investigation towards the aimed clinical application. PMID:21499313

  3. ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods.

    PubMed

    Gao, Shuyan; Zhang, Hongjie; Wang, Xiaomei; Deng, Ruiping; Sun, Dehui; Zheng, Guoli

    2006-08-17

    Many efforts have been made in fabricating three-dimensional (3D) ordered zinc oxide (ZnO) nanostructures due to their growing applications in separations, sensors, catalysis, bioscience, and photonics. Here, we developed a new synthetic route to 3D ZnO-based hollow microspheres by a facile solution-based method through a water-soluble biopolymer (sodium alginate) assisted assembly from ZnO nanorods. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectroscopy. Raman and photoluminescence spectra of the ZnO-based hollow microspheres were obtained at room temperature to investigate their optical properties. The hollow microspheres exhibit exciting emission features with a wide band covering nearly all the visible region. The calculated CIE (Commission Internationale d'Eclairage) coordinates are 0.24 and 0.31, which fall at the edge of the white region (the 1931 CIE diagram). A possible growth mechanism of the 3D ZnO superstructures based on typical biopolymer-crystal interactions in aqueous solution is tentatively proposed, which might be really interesting because of the participation of the biopolymer. The results show that this biopolymer-directed crystal growth and mediated self-assembly of nanocrystals may provide promising routes to rational synthesis of various ordered inorganic and inorganic-organic hybrid materials with complex form and structural specialization.

  4. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  5. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  6. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X.

    2011-05-01

    To repair complexly shaped tissue defects, an injectable cell carrier is desirable to achieve an accurate fit and to minimize surgical intervention. However, the injectable carriers available at present have limitations, and are not used clinically for cartilage regeneration. Here, we report nanofibrous hollow microspheres self-assembled from star-shaped biodegradable polymers as an injectable cell carrier. The nanofibrous hollow microspheres, integrating the extracellular-matrix-mimicking architecture with a highly porous injectable form, were shown to efficiently accommodate cells and enhance cartilage regeneration, compared with control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount of, and higher-quality, cartilage regeneration than the chondrocytes-alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect-repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair than the chondrocytes-alone group that simulates the clinically available autologous chondrocyte implantation procedure. These results indicate that the nanofibrous hollow microspheres are an excellent injectable cell carrier for cartilage regeneration.

  7. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries.

    PubMed

    Niu, Chaojiang; Meng, Jiashen; Han, Chunhua; Zhao, Kangning; Yan, Mengyu; Mai, Liqiang

    2014-05-14

    Development of three-dimensional nanostructures with high surface area and excellent structural stability is an important approach for realizing high-rate and long-life battery electrodes. Here, we report VO2 hollow microspheres showing empty spherical core with radially protruding nanowires, synthesized through a facile and controllable ion-modulating approach. In addition, by controlling the self-assembly of negatively charged C12H25SO4(-) spherical micelles and positively charged VO(2+) ions, six-armed microspindles and random nanowires are also prepared. Compared with them, VO2 hollow microspheres show better electrochemical performance. At high current density of 2 A/g, VO2 hollow microspheres exhibit 3 times higher capacity than that of random nanowires, and 80% of the original capacity is retained after 1000 cycles. The superior performance of VO2 hollow microspheres is because they exhibit high surface area about twice higher than that of random nanowires and also provide an efficient self-expansion and self-shrinkage buffering during lithiation/delithiation, which effectively inhibits the self-aggregation of nanowires. This research indicates that VO2 hollow microspheres have great potential for high-rate and long-life lithium batteries.

  8. Method for sizing hollow microspheres

    DOEpatents

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  9. Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries.

    PubMed

    Lin, Bo; Li, Qiufeng; Liu, Baodong; Zhang, Sen; Deng, Chao

    2016-04-21

    Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of biological systems to guide molecule self-assembling facilitates the construction of distinctive architectures with desirable physicochemical characteristics. Herein, we report a biochemistry-directed "bottom-up" approach to construct hollow porous microspheres of polyanion materials for sodium ion batteries. Two kinds of polyanions, i.e. Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2, are employed as cases in this study. The microalgae cell realizes the formation of a spherical "bottom" bio-precursor. Its tiny core is subjected to destruction and its tough shell tends to carbonize upon calcination, resulting in the hollow porous microspheres for the "top" product. The nanoscale crystals of the polyanion materials are tightly enwrapped by the highly-conductive framework in the hollow microsphere, resulting in the hierarchical nano-microstructure. The whole formation process is disclosed as a "bottom-up" mechanism. Moreover, the biochemistry-directed self-assembly process is confirmed to play a crucial role in the construction of the final architecture. Taking advantage of the well-defined hollow-microsphere architecture, the abundant interior voids and the highly-conductive framework, polyanion materials show favourable sodium-intercalation kinetics. Both materials are capable of high-rate long-term cycling. After five hundred cycles at 20 C and 10 C, Na3V2(PO4)3 and Na(3.12)Fe2.44(P2O7)2 retain 96.2% and 93.1% of the initial capacity, respectively. Therefore, the biochemistry-directed technique provides a low-cost, highly-efficient and widely applicable strategy to produce high-performance polyanion-based cathodes for sodium ion batteries.

  10. Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Bo; Li, Qiufeng; Liu, Baodong; Zhang, Sen; Deng, Chao

    2016-04-01

    Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of biological systems to guide molecule self-assembling facilitates the construction of distinctive architectures with desirable physicochemical characteristics. Herein, we report a biochemistry-directed ``bottom-up'' approach to construct hollow porous microspheres of polyanion materials for sodium ion batteries. Two kinds of polyanions, i.e. Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2, are employed as cases in this study. The microalgae cell realizes the formation of a spherical ``bottom'' bio-precursor. Its tiny core is subjected to destruction and its tough shell tends to carbonize upon calcination, resulting in the hollow porous microspheres for the ``top'' product. The nanoscale crystals of the polyanion materials are tightly enwrapped by the highly-conductive framework in the hollow microsphere, resulting in the hierarchical nano-microstructure. The whole formation process is disclosed as a ``bottom-up'' mechanism. Moreover, the biochemistry-directed self-assembly process is confirmed to play a crucial role in the construction of the final architecture. Taking advantage of the well-defined hollow-microsphere architecture, the abundant interior voids and the highly-conductive framework, polyanion materials show favourable sodium-intercalation kinetics. Both materials are capable of high-rate long-term cycling. After five hundred cycles at 20 C and 10 C, Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2 retain 96.2% and 93.1% of the initial capacity, respectively. Therefore, the biochemistry-directed technique provides a low-cost, highly-efficient and widely applicable strategy to produce high-performance polyanion-based cathodes for sodium ion batteries.Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of

  11. Self-assemble ZnMn2O4 hierarchical hollow microspheres into self-supporting architecture for enhanced biosensing performance.

    PubMed

    Zhao, Minggang; Cai, Bin; Ma, Ye; Cai, Hi; Huang, Jingyun; Pan, Xinhua; He, Haiping; Ye, Zhizhen

    2014-11-15

    We demonstrate a facile and scalable approach to fabricate and self-assemble the hierarchical hollow microspheres into self-supporting architecture by naturally grown branches. The supporting branches can afford integrated transport channels and significantly improve the kinetic performance and mechanical stability. Meanwhile, the supported hierarchical microspheres acting as functional cell can provide high active sites, multiple response and suitable environment for immobilizing biomolecules. Different enzymes are immobilized for biosensors. The experiments demonstrate that the effective assembly of hierarchical microspheres into large size ordered architecture by self-supporting branches can significantly enhance the biosensing performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Polystyrene-based Hollow Microsphere Synthesized by γ-ray Irradiation-assisted Polymerization and Self-Assembly and Its Application in Detection of Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Fan, Wenhui; Li, Qing; Hu, Liang; Yan, Siqi; Wen, Wanxin; Chai, Zhifang; Liu, Hanzhou

    2017-01-01

    To simply and multitudinously synthesize hollow microspheres in a pure system is important for relevant research and application. Here, a simple and novel one-pot synthetic strategy to prepare polystyrene (PS) hollow microspheres via irradiation-assisted free-radical polymerizing and self-assembly (IFPS) approach under γ-ray irradiation with no additives introduced into the system is presented. And PS/2,5-Diphenyloxazole (PPO) fluorescent microspheres have been prepared successfully by IFPS reaction, which can be used as scintillators for the detection of ionizing radiation. A linear relationship between emitted luminescence and dose-activity in water is obtained, which suggests that composite microspheres could be used as liquid scintillation in specific environment.

  13. Polystyrene-based Hollow Microsphere Synthesized by γ-ray Irradiation-assisted Polymerization and Self-Assembly and Its Application in Detection of Ionizing Radiation

    PubMed Central

    Fan, Wenhui; Li, Qing; Hu, Liang; Yan, Siqi; Wen, Wanxin; Chai, Zhifang; Liu, Hanzhou

    2017-01-01

    To simply and multitudinously synthesize hollow microspheres in a pure system is important for relevant research and application. Here, a simple and novel one-pot synthetic strategy to prepare polystyrene (PS) hollow microspheres via irradiation-assisted free-radical polymerizing and self-assembly (IFPS) approach under γ-ray irradiation with no additives introduced into the system is presented. And PS/2,5-Diphenyloxazole (PPO) fluorescent microspheres have been prepared successfully by IFPS reaction, which can be used as scintillators for the detection of ionizing radiation. A linear relationship between emitted luminescence and dose-activity in water is obtained, which suggests that composite microspheres could be used as liquid scintillation in specific environment. PMID:28139775

  14. pH-regulated template-free assembly of Sb4O5Cl2 hollow microsphere crystallites with self-narrowed bandgap and optimized photocatalytic performance

    PubMed Central

    Yang, Liuqing; Huang, Jianfeng; Cao, Liyun; Shi, Li; Yu, Qing; Kong, Xingang; Jie, Yanni

    2016-01-01

    Sb4O5Cl2 hollow microspheres with self-narrowed bandgap and optimized photocatalytic performances are synthesized via a facile template-free method. It is found that the crystal structure and morphology of Sb4O5Cl2 crystallites are strongly dependent on the pH values of precursors. Nano-sized irregular-cuboids assembled Sb4O5Cl2 micro-particles and hollow microspheres can be synthesized at pH 1 and 2, whereas individual Sb4O5Cl2 micro-belts become to form when the pH is higher than 3. The irregular-cuboids assembled Sb4O5Cl2 micro-particles and hollow microspheres exhibit self-narrowed bandgap and higher light absorption ability compared with individual Sb4O5Cl2 micro-belts. The photoelectrochemical measurements show that the assembled Sb4O5Cl2 hollow microsphere crystallites prepared at pH 2 exhibit enhanced carrier density, improved separation efficiency of electron-hole pairs and decreased electron-transfer resistance. As a result, the irregular-cuboids assembled Sb4O5Cl2 hollow microspheres prepared at pH = 2 exhibit the highest photocatalytic activity for the degradation of gaseous iso-propanol (IPA) and Rhodamine B (RhB) aqueous solution. The good photocatalytic activity of Sb4O5Cl2 sample prepared at pH = 2 may be caused by the synergistic effect of its higher light absorption, the decreased electron-transfer resistance, the suppressed recombination of photogenerated electrons and holes, and the increased surface area. PMID:27306196

  15. pH-regulated template-free assembly of Sb4O5Cl2 hollow microsphere crystallites with self-narrowed bandgap and optimized photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Yang, Liuqing; Huang, Jianfeng; Cao, Liyun; Shi, Li; Yu, Qing; Kong, Xingang; Jie, Yanni

    2016-06-01

    Sb4O5Cl2 hollow microspheres with self-narrowed bandgap and optimized photocatalytic performances are synthesized via a facile template-free method. It is found that the crystal structure and morphology of Sb4O5Cl2 crystallites are strongly dependent on the pH values of precursors. Nano-sized irregular-cuboids assembled Sb4O5Cl2 micro-particles and hollow microspheres can be synthesized at pH 1 and 2, whereas individual Sb4O5Cl2 micro-belts become to form when the pH is higher than 3. The irregular-cuboids assembled Sb4O5Cl2 micro-particles and hollow microspheres exhibit self-narrowed bandgap and higher light absorption ability compared with individual Sb4O5Cl2 micro-belts. The photoelectrochemical measurements show that the assembled Sb4O5Cl2 hollow microsphere crystallites prepared at pH 2 exhibit enhanced carrier density, improved separation efficiency of electron-hole pairs and decreased electron-transfer resistance. As a result, the irregular-cuboids assembled Sb4O5Cl2 hollow microspheres prepared at pH = 2 exhibit the highest photocatalytic activity for the degradation of gaseous iso-propanol (IPA) and Rhodamine B (RhB) aqueous solution. The good photocatalytic activity of Sb4O5Cl2 sample prepared at pH = 2 may be caused by the synergistic effect of its higher light absorption, the decreased electron-transfer resistance, the suppressed recombination of photogenerated electrons and holes, and the increased surface area.

  16. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  17. α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis.

    PubMed

    Sun, Tuan-Wei; Zhu, Ying-Jie; Qi, Chao; Ding, Guan-Jun; Chen, Feng; Wu, Jin

    2016-02-01

    α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres (HHMSs) were prepared by thermal transformation of nanosheet-assembled hierarchical hollow mesoporous microspheres of a precursor. The precursor was rapidly synthesized using FeCl3·6H2O as the iron source, ethanolamine (EA) as the alkali source, and ethylene glycol (EG) as the solvent by the microwave-assisted solvothermal method. The samples were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm. The effects of the microwave solvothermal temperature and EA amount on the morphology of the precursor were investigated. The as-prepared α-Fe2O3 HHMSs exhibit a good photocatalytic activity for the degradation of salicylic acid, and are promising for the application in wastewater treatment.

  18. Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity.

    PubMed

    Rengaraj, Selvaraj; Venkataraj, Selvaraj; Tai, Cheuk-wai; Kim, Younghun; Repo, Eveliina; Sillanpää, Mika

    2011-05-03

    Novel template-free hierarchical-like In(2)S(3) hollow microspheres were synthesized using thiosemicarbazide (NH(2)NHCSNH(2)) as both a sulfur source and a capping ligand in a ethanol/water system. In this study, we demonstrate that several process parameters, such as the reaction time and precursor ratio, strongly influence the morphology of the final product. The In(NO(3))(3)/thiosemicarbazide ratios were found to effectively play crucial roles in the morphologies of the hierarchical-like In(2)S(3) hollow microsphere nanostructure. With the ratios increasing from two to four, the In(2)S(3) crystals exhibited almost spherical morphologies. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffused reflectance spectroscopy (UV-vis DRS). XRD analysis confirmed the tetragonal structure of the In(2)S(3) hollow microspheres. The products show complex hierarchical structures assembled from nanoscale building blocks. The morphology evolution can be realized on both outside (surface) and inside (hollow cavity) the microsphere. The surface area analysis showed that the porous In(2)S(3) possesses a specific surface area of 108 m(2)/g and uniform distribution of pore sizes corresponding to the size of pores resulting from the self-assembled structures with flakes. The optical properties of In(2)S(3) were also investigated by UV-vis DRS, which indicated that our In(2)S(3) microsphere samples possess a band gap of ∼1.96 eV. Furthermore, the photocatalytic activity studies revealed that the synthesized In(2)S(3) hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading aqueous methylene blue dye solution under visible light irradiation. These

  19. microsphere assemblies

    NASA Astrophysics Data System (ADS)

    Peña-Flores, Jesús I.; Palomec-Garfias, Abraham F.; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-09-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases.

  20. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    1999-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns, a density of about I to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cu ft and a compression strength of about 100 to about 1400 pounds/sq in.

  1. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2000-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns a density of about 1 to about 6 pounds/cubic ft and a volume change of 1 to about 20 percent by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic ft and a compression strength 2 of about 100 to about 1400 pounds/sq in.

  2. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.

  3. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  4. The preparation of composite microsphere with hollow core/porous shell structure by self-assembling of latex particles at emulsion droplet interface.

    PubMed

    He, Xiao Dong; Ge, Xue Wu; Wang, Mo Zhen; Zhang, Zhi Cheng

    2006-07-15

    A submicrometer-scaled polystyrene/melamine-formaldehyde hollow microsphere composite was prepared by self-assembling of sulfonated polystyrene (SPS) latex particles at the interface of emulsion droplets and then being fixed in place using a hard melamine-formaldehyde (MF) composite layer. For control-released purposes, the influential factors that control the size and uniformity of the packed-droplets and the permeability of the composite shell, including the initial particle location, the hydrophilicity and the size of colloidal templates, the oil phase solvent and reserving time of emulsions after the addition of MF prepolymer, were further studied. Relatively uniform sized particle packed-droplets with an average diameter of 10 microm were obtained. The assembled SPS particles kept ordering and minimal conglutination after the preparation of composite microspheres, which allows of controlling the permeability from the interstices between the particles. Porous-mesh-structured MF composite layer was formed to further control the permeability. The morphology of emulsions and composite microspheres were characterized by optical microscopy, scanning and transmission electron microscopy.

  5. Electrostatic Assembly of Sandwich-like Ag-C@ZnO-C@Ag-C Hybrid Hollow Microspheres with Excellent High-Rate Lithium Storage Properties.

    PubMed

    Xie, Qingshui; Ma, Yating; Wang, Xuanpeng; Zeng, Deqian; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2016-01-26

    Herein, we introduce a facile electrostatic attraction approach to produce zinc-silver citrate hollow microspheres, followed by thermal heating treatment in argon to ingeniously synthesize sandwich-like Ag-C@ZnO-C@Ag-C hybrid hollow microspheres. The 3D carbon conductive framework in the hybrids derives from the in situ carbonation of carboxylate acid groups in zinc-silver citrate hollow microspheres during heating treatment, and the continuous and homogeneous Ag nanoparticles on the outer and inner surfaces of hybrid hollow microspheres endow the shells with the sandwiched configuration (Ag-C@ZnO-C@Ag-C). When applied as the anode materials for lithium ion batteries, the fabricated hybrid hollow microspheres with sandwich-like shells reveal a very large reversible capacity of 1670 mAh g(-1) after 200 cycles at a current density of 0.2 A g(-1). Even at the very large current densities of 1.6 and 10.0 A g(-1), the high specific capacities of about 1063 and 526 mAh g(-1) can be retained, respectively. The greatly enhanced electrochemical properties of Ag-C@ZnO-C@Ag-C hybrid microspheres are attributed to their special structural features such as the hollow structures, the sandwich-like shells, and the nanometer-sized building blocks.

  6. A bubble-template approach for assembling Ni-Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries.

    PubMed

    Ding, Caihua; Yan, Dong; Zhao, Yongjie; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, Haibo

    2016-10-07

    Although significant advancements in the preparation of metal oxide hollow structures have been achieved, most synthesis routes have some complicated aspects such as requiring a hard-template, multistep procedures or other special reagents. This paper proposes a green and facile bubble-template approach to synthesize and organize Ni-Co hollow microspheres. The entire formation mechanism for the hollow spherical structures, including integration for nucleation, morphological tailoring and an Ostwald ripening process, has been elucidated based on time-dependent observations. The Ni-Co hollow microspheres revealed an excellent cycling stability (730 mA h g(-1) even after 140 cycles at 300 mA g(-1)) and good rate capability when evaluated as an anode material for lithium ion batteries (LIBs). The excellent electrochemical performance can be attributed to the rational design and organization of the hollow structures, which offer a large void space for accommodating volume changes, shorten the diffusion path for Li ions and electron transfer, as well as increase the contact area between the electrodes and electrolyte. Moreover, the synergistic effects of the nickel and cobalt ions with different lithiation potentials allowed the volume change to occur in a stepwise manner. The bubble-template strategy was convenient and very effective for constructing the hollow structures, and if well engineered, it could be extended to the synthesis of other advanced metal oxide anode materials for high energy storage devices and many other applications.

  7. Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Kunxu; Gao, Hanyang; Hu, Guoxin; Liu, Mengjing; Wang, Haochen

    2017-02-01

    Electrochemical performance, abundance and cost are three crucial criteria to comprehensively evaluate the feasibility of Li4Ti5O12 as an electrode material for lithium-ion batteries (LIBs). Herein, hierarchical hollow Li4Ti5O12 microspheres (HLTOMs) assembled by zigzag-like nanosheets are synthesized by hydrothermal treatment of scalable lithium peroxotitanate complex solution using low-cost commercial H2TiO3 particles as titanium sources, followed by a calcination treatment. Precursor solution concentration, Li/Ti ratio, hydrothermal temperature and duration are found correlative and should be optimized to obtain pure Li4Ti5O12 products. A high yield of HLTOMs up to 120 g L-1 was achieved. Due to the unique morphology, the HLTOMs deliver an outstanding rate capability of 139, 125 and 108 mA h g-1 at 10, 20 and 30 C, respectively, and exhibit 94% capacity retention after 1000 cycles at 30C indicating excellent stability. These values are much superior to those of commercial Li4Ti5O12 particles (CLTOPs), showing HLTOMs are promising anode materials for LIBs.

  8. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  9. Porous-wall hollow glass microspheres as carriers for biomolecules

    DOEpatents

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  10. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material

    PubMed Central

    Xiao, Wei; Zhou, Wenjie; Feng, Tong; Zhang, Yanhua; Liu, Hongdong; Tian, Liangliang

    2016-01-01

    MoS2/RGO composite hollow microspheres were hydrothermally synthesized by using SiO2/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO2 microspheres. The structure, morphology, phase, and chemical composition of MoS2/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS2/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m2·g−1. When used as supercapacitor electrode material, MoS2/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g−1 at the current density of 1 A·g−1, which was much higher than that of contrastive bare MoS2 microspheres developed in the present work and most of other reported MoS2-based materials. The enhancement of supercapacitive behaviors of MoS2/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS2/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g−1, showing excellent application potential. PMID:28773904

  11. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  12. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    PubMed

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  13. A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1)

    NASA Astrophysics Data System (ADS)

    Zhang, Suoying; Liu, Hong; Liu, Pengfei; Yang, Zhuhong; Feng, Xin; Huo, Fengwei; Lu, Xiaohua

    2015-05-01

    Uniform CuO hollow microspheres were successfully achieved from a non-uniform metal organic framework by using a template-free method. The process mechanism has been revealed to be spherical aggregation and Ostwald ripening. When tested in CO oxidation and heat treatment, these assembled microspheres exhibited an excellent catalytic performance and show a much better stability than the inherited hollow structure from MOFs.Uniform CuO hollow microspheres were successfully achieved from a non-uniform metal organic framework by using a template-free method. The process mechanism has been revealed to be spherical aggregation and Ostwald ripening. When tested in CO oxidation and heat treatment, these assembled microspheres exhibited an excellent catalytic performance and show a much better stability than the inherited hollow structure from MOFs. Electronic supplementary information (ESI) available: The experiment details, auxiliary FESEM, XRD, BET and TG results of synthesized products. See DOI: 10.1039/c5nr01443c

  14. Permeability of Hollow Microspherical Membranes to Helium

    NASA Astrophysics Data System (ADS)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  15. Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion.

    PubMed

    Liu, Yong; Lan, Kun; Bagabas, Abdulaziz A; Zhang, Pengfei; Gao, Wenjun; Wang, Jingxiu; Sun, Zhenkun; Fan, Jianwei; Elzatahry, Ahmed A; Zhao, Dongyuan

    2016-02-17

    Well ordered, uniform 3D open macro/mesoporous TiO2 hollow microspheres with highly crystalline anatase thin shells have been successfully synthesized by a simple solvent evaporation-driven confined self-assembly method. The 3D open macro/mesoporous TiO2 hollow microspheres show high energy-conversion efficiency (up to 9.5%) and remarkable photocatalytic activity (with photodegradation of 100% for methylene blue in 12 min under UV light irradiation).

  16. Fabrication of flocculation-resistant pH/ionic strength/temperature multiresponsive hollow microspheres and their controlled release.

    PubMed

    Mu, Bin; Liu, Peng; Li, Xiaorui; Du, Pengcheng; Dong, Yun; Wang, Yunjiao

    2012-01-01

    pH/ionic strength/temperature multiresponsive hollow microspheres were successfully prepared by the Ce(IV) initiated grafting polymerization of N-isopropylacrylamide (NIPAm) onto the multilayered polyelectrolyte shells encapsulating the polystyrene sulfonate (PSS) microsphere templates fabricated by the layer-by-layer assembly of chitosan (CS) and alginate (SAL), after etching the templates by dialysis. The hollow structure of the obtained multiresponsive hollow microspheres was characterized by transmission electron microscopy (TEM), which indicated that the inner diameter of the hollow microspheres was about 200 nm. The environmental responsive properties of the multiresponsive hollow microspheres were characterized with dynamic light scattering (DLS) in an aqueous system. The introduction of poly(N-isopropylacrylamide) (PNIPAm) brushes onto the pH/ionic strength dual-responsive hollow microspheres achieved temperature-responsive characteristics. It also could prevent flocculation among the obtained multiresponsive hollow microspheres in a solution with higher salt concentration. Their controlled release of drug molecules (a model hydrophobic drug, dipyridamole (DIP)) was also investigated.

  17. Template synthesis of graphene/polyaniline hybrid hollow microspheres as electrode materials for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Mu, Bin; Zhang, Wenbo; Wang, Aiqin

    2014-06-01

    Graphene/polyaniline hybrid hollow microspheres are prepared via combining layer-by-layer assembly technique with in situ chemical oxidative polymerization after etching the templates for high-performance supercapacitor application. The hollow structure is characterized by transmission electron microscopy indicating that the inner diameter of the hollow microspheres is about 2.0 µm. The electrochemical tests show that the specific capacitance of the graphene/polyaniline hybrid hollow microsphere electrode materials can reach about 633 F g-1 in a 1.0 M H2SO4 electrolyte. It is higher than that of polyaniline hollow microspheres (389 F g-1), pure polyaniline particles (152 F g-1), and graphene/sodium alginate hollow microspheres (16 F g-1). The high specific capacitance might be attributed to the unique hollow structure and the synergistic effect of the hybrid shell. Their unique structure provides an enhanced surface-to-volume ratio and reduced transport lengths for both mass and charge transport. Furthermore, graphene/polyaniline hybrid hollow microsphere electrode materials display good cycle stability with 92 % of its original specific capacitance after 1,000 cycles by continuous cyclic voltammetric scans at 80 mV s-1.

  18. Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts.

    PubMed

    Liu, Shujun; Fu, Jianwei; Wang, Minghuan; Yan, Ya; Xin, Qianqian; Cai, Lu; Xu, Qun

    2016-05-01

    Magnetic Fe3O4-polydopamine (PDA) hybrid hollow microspheres, in which Fe3O4 nanoparticles were firmly incorporated in the cross-linked PDA shell, have been prepared through the formation of core/shell PS/Fe3O4-PDA composites based on template-induced covalent assembly method, followed by core removal in a tetrahydrofuran solution. The morphology, composition, thermal property and magnetic property of the magnetic hybrid hollow microspheres were characterized by SEM, TEM, FT-IR, XRD, TGA, and vibrating sample magnetometer, respectively. Results revealed that the magnetic hybrid hollow microspheres had about 380 nm of inner diameter and about 30 nm of shell thickness, and 13.6 emu g(-1) of magnetization saturation. More importantly, the Fe3O4-PDA hybrid hollow microspheres exhibited intrinsic peroxidase-like activity, as they could quickly catalyze the oxidation of typical substrates 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Compared with PDA/Fe3O4 composites where Fe3O4 nanoparticles were loaded on the surface of PDA microspheres, the stability of Fe3O4-PDA hybrid hollow microspheres was greatly improved. As-prepared magnetic hollow microspheres might open up a new application field in biodetection, biocatalysis, and environmental monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The template-assisted synthesis of polypyrrole hollow microspheres with a double-shelled structure.

    PubMed

    Niu, Chunyu; Zou, Bingfang; Wang, Yongqiang; Chen, Lin; Zheng, Haihong; Zhou, Shaomin

    2015-03-25

    Double-shelled polypyrrole hollow microspheres were synthesized via a novel template-assisted concept, using iron oxide hollow microspheres as both the sacrificial template and initiator in acidic solution.

  20. ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Heung, L; George Wicks, G; Ray Schumacher, R

    2008-04-09

    A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

  1. Preparation of aggregation-resistant biocompatible superparamagnetic noncovalent hybrid multilayer hollow microspheres for controlled drug release.

    PubMed

    Zhao, Xubo; Du, Pengcheng; Liu, Peng

    2012-11-05

    Biocompatible superparamagnetic polyelectrolyte hybrid hollow microspheres ((CS/Fe(3)O(4)-CA)(3)-CS-NH-CH(2)-PEG) were successfully prepared by PEGylation of multilayered polyelectrolyte hybrid shell encapsulated polystyrene sulfonate (PSS) microsphere templates fabricated by the layer-by-layer self-assembly of chitosan (CS) and citrate modified ferroferric oxide magnetic nanoparticles (Fe(3)O(4)-CA), after etching the templates by dialysis. Their hollow structure with diameter of about 200 nm was confirmed by TEM analysis. The pH and ionic strength responsive properties were retained after the PEGylation of the hollow microspheres. Furthermore, their biocompatibility and stability against aggregation and fusion in media with high ionic strength were distinctly improved. A typical anti-inflammatory drug, ibuprofen, was used for drug loading, and the release behaviors of ibuprofen in a simulated body fluid (SBF) were studied. The results indicate that the biocompatible superparamagnetic polyelectrolyte hybrid hollow microspheres ((CS/Fe(3)O(4)-CA)(3)-CS-NH-CH(2)-PEG) have a high drug loading capacity and favorable release property for ibuprofen; thus, they are very promising for application in drug delivery.

  2. Nanostructured gold hollow microspheres prepared on dissolvable ceramic hollow sphere templates.

    PubMed

    Chah, S; Fendler, J H; Yi, J

    2002-06-01

    Fifty and one-hundred micrometer diameter nanostructured gold hollow microspheres (GHSs), in >98% purity, have been prepared by using ceramic hollow spheres, CHSs, as templates. Tennanometer diameter gold nanoparticles were covalently linked to the thiol moiety of (3-mercaptopropyl)trimethoxysilane, which had been self-assembled onto the CHSs. Greater structural strength was obtained by the generation of additional gold nanoparticles, in situ on the gold nanoparticle coated CHSs (by immersing the gold nanoparticle coated CHSs into an aqueous mixture of hydroxylamine and gold chloride). GHSs were obtained by dissolving the CHSs templates. The sizes, shapes, surface areas (185.3 m2/g for CHSs and 182.9 m2/g for GHSs), pore diameters (7.7 nm for CHSs and 7.8 nm for GHSs), and pore volumes (0.41 cm3/g for CHSs and 0.36 cm3/g for GHSs) of GHSs were quite similar to their CHSs counterparts. Significantly, GHSs showed surface plasmon bands whose maximum (644 nm) shifted from that observed for the parent 10-nm gold nanoparticles (522 nm).

  3. A facile synthesis of luminescent YVO4:Eu3+ hollow microspheres in virtue of template function of the SDS-PEG soft clusters

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Yan, Yinglin; Hojamberdiev, Mirabbos; Ruan, Xiaoguang; Cai, Anjiang; Xu, Yunhua

    2012-08-01

    Hollow europium-doped yttrium orthovanadate (YVO4:Eu3+) microspheres were fabricated via a sodium dodecyl sulfate (SDS)-polyethylene glycol (PEG)-assisted hydrothermal technique. The as-synthesized hollow YVO4:Eu3+ microspheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The obtained results showed that the morphology and size of the hollow microspheres have a strong dependence on the hydrothermal reaction time of the YVO4:Eu3+ powders. It is believed that the SDS-PEG clusters perform a function of dual soft-template that results in a unique template-induced secondary assembly in the one-pot synthesis of hollow YVO4:Eu3+ microspheres. The photoluminescence measurement revealed that the YVO4:Eu3+ powders with a spherical hollow shape have better red luminescence compared to the YVO4:Eu3+ solid microspheres. As a result, the controlled synthesis of hollow YVO4:Eu3+ microspheres not only has a great theoretical significance in studying the three-dimensional control and selective synthesis of inorganic materials but also benefits the potential applications based on hollow YVO4:Eu3+ microspheres owing to reducing the usage of expensive rare-earth elements.

  4. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  5. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-11-01

    In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4 emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Method for selecting hollow microspheres for use in laser fusion targets

    DOEpatents

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  7. Hollow microspheres of silica glass and method of manufacture

    DOEpatents

    Downs, Raymond L.; Miller, Wayne J.

    1982-01-01

    A method of manufacturing gel powder suitable for use as a starting material in the manufacture of hollow glass microspheres having a high concentration of silica. The powder is manufactured from a gel containing boron in the amount of about 1% to 20% (oxide equivalent mole percent), alkali metals, specifically potassium and sodium, in an amount exceeding 8% total, and the remainder silicon. Preferably, the ratio of potassium to sodium is greater than 1.5.

  8. Simultaneous Nano- and Microscale Control of Nanofibrous Microspheres Self-Assembled from Star-Shaped Polymers.

    PubMed

    Zhang, Zhanpeng; Marson, Ryan L; Ge, Zhishen; Glotzer, Sharon C; Ma, Peter X

    2015-07-08

    Star-shaped polymers with varying arm numbers and arm lengths are synthesized, and self-assembled into microspheres, which are either smooth or fibrous on the nanoscale, and either nonhollow, hollow, or spongy on the microscale. The molecular architecture and functional groups determine the structure on both length scales. This exciting mechanistic discovery guides simultaneous control of both the nano- and microfeatures of the microspheres.

  9. Hollow mesoporous titania microspheres: New technology and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Feng, Zhenliang; Wei, Wenrui; Wang, Litong; Hong, Ruoyu

    2015-12-01

    Hollow titania microspheres (HTS) were fabricated via a sol-gel process by coating the hydrolysis product of titanium tetrabutoxide (TBOT) onto the amino (-NH2) modified porous polystyrene cross-linked divinyl benzene (PS-DVB) microspheres under changing atmospheric pressure, followed by calcination in nitrogen and air atmosphere. Particularly, the atmospheric pressure was continuously and regularly changed during the formation process of PS-DVB@TiO2 microspheres. Then the TiO2 particles were absorbed into the pores and onto the surface of PS-DVB as well. The resultant HTS (around 2 μm in diameter) featured a high specific surface area (84.37 m2/g), anatase crystal and stable hollow microsphere structure, which led to high photocatalysis activity. The photocatalytic degradation of malachite green (MG) organic dye solution was conducted under ultraviolet (UV) light irradiation, which showed a high photocatalytic ability (81% of MG was degraded after UV irradiation for 88 min). Therefore, it could be potentially applied for the treatment of wastewater contaminated by organic pollutants.

  10. Titania coated hollow glass microspheres for environmental applications

    NASA Astrophysics Data System (ADS)

    Koopman, Mark C.

    The potential applicability of titania coated hollow glass microspheres (HGMs) to the photocatalytic degradation of microbiological and organic chemical water pollutants could have dramatic positive effects on improving the quality of industrial wastewaters that empty into rivers and streams, as well as potential use in economically improving the quality of drinking water. Heterogeneous photocatalysis using titania has been extensively studied since the 1990's because of its non-toxic nature, its high quantum yield of electrons and photo-holes, and its ability to use ambient solar radiation as a power source. Although titania embodies extraordinarily attractive properties for a range of environmental applications, a viable substrate or method of using the material effectively has not been recognized. HGMs are particularly attractive as a support for titania because of their low density and high surface area to volume ratio, but details of how they react to imposed loading, wear, and impact have not been addressed, nor have materials engineering analyses that could maximize their utility been made. In this study we have examined the microstructure, morphology and micro-compression properties of two types of titania coated hollow microspheres, a commercially produced HGM and cenospheres, a derivative of fly ash. Comparisons of uncoated and titania coated hollow microspheres showed improved failure loads and facture energies for the titania coated materials over the uncoated hollow microspheres. Also, the relationship between failure load and hollow microsphere diameter was characterized and the function employed to explain part of the gain in average failure load for the HGMs. Microscopic examination of titania coated HGMs that were subjected to various turbulent conditions, as well as intentional fracture, indicated good interfacial integrity, which supports the viability of both types of HGMs for potential applications. The photocatalytic reactivity of the titania

  11. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect

    Zhao, Jinbo; Wu, Lili; Zou, Ke

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  12. Synthesis of hollow hybrid hydroxyapatite microspheres based on chitosan-poly(acrylic acid) microparticles.

    PubMed

    Zhang, Haibin; Zhou, Kechao; Li, Zhiyou; Huang, Suping

    2009-06-01

    Core-template-free hybrid hydroxyapatite (HA) hollow microspheres based on a chitosan-poly acrylic acid (CS-PAA) complex were prepared. The amine groups on chitosan can interact with the carboxyl groups of poly(acrylic acid) to form hollow microspheres. The hollow HA microspheres of about 1.0 microm are obtained by heterogeneous nucleation of HA on CS-PAA hollow spheres. Gelatin (Gel), acting as a novel cross-link agent, is introduced to bind the spheres of CS-PAA and HA. The forming mechanism of hollow spheres and the influencing factors on the size of microspheres are investigated. In addition, the role of Gel is elucidated in the forming process of the hollow hybrid sphere.

  13. Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances.

    PubMed

    Zhong, Yiren; Su, Liwei; Yang, Mei; Wei, Jinping; Zhou, Zhen

    2013-11-13

    Rambutan-like FeCO3 hollow microspheres were prepared via a facile and economic one-step hydrothermal method. The structure and morphology evolution mechanism was disclosed through time-dependent experiments. After undergoing the symmetric inside-out Ostwald ripening, the resultants formed microporous/nanoporous constructions composed of numerous one-dimensional (1D) nanofiber building blocks. Tested as anode materials of Li-ion batteries, FeCO3 hollow microspheres presented attractive electrochemical performances. The capacities were over 1000 mAh g(-1) for initial charge, ~880 mAh g(-1) after 100 cycles at 50 mA g(-1), and ~710 mAh g(-1) after 200 cycles at 200 mA g(-1). The 1D nanofiber assembly and hollow interior endow this material efficient contact with electrolyte, short Li(+) diffusion paths, and sufficient void spaces to accommodate large volume variation. The cost-efficient FeCO3 with rationally designed nanostructures is a promising anode candidate for Li-ion batteries.

  14. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.

    PubMed

    Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua

    2006-03-28

    Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.

  15. Synthesis of multi-shelled ZnO hollow microspheres and their improved photocatalytic activity

    PubMed Central

    2014-01-01

    Herein, we report an effective, facile, and low-cost route for preparing ZnO hollow microspheres with a controlled number of shells composed of small ZnO nanoparticles. The formation mechanism of multiple-shelled structures was investigated in detail. The number of shells is manipulated by using different diameters of carbonaceous microspheres. The products were characterized by X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The as-prepared ZnO hollow microspheres and ZnO nanoparticles were then used to study the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation, and the triple-shelled ZnO hollow microspheres exhibit the best photocatalytic activity. This work is helpful to develop ZnO-based photocatalysts with high photocatalytic performance in addressing environmental protection issues, and it is also anticipated to other multiple-shelled metal oxide hollow microsphere structures. PMID:25328500

  16. Nickel oxide hollow microsphere for non-enzyme glucose detection.

    PubMed

    Ci, Suqin; Huang, Taizhong; Wen, Zhenhai; Cui, Shumao; Mao, Shun; Steeber, Douglas A; Chen, Junhong

    2014-04-15

    A facile strategy has been developed to fabricate nickel oxide hollow microspheres (NiO-HMSs) through a solvothermal method by using a mixed solvent of ethanol and water with the assistance of sodium dodecyl sulfate (SDS). Various techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess a hollow microsphere structure that is constructed by interconnecting porous nanoplate framework. Electrochemical studies indicate that the NiO-HMS exhibits excellent stability and high catalytic activity for electrocatalytic oxidation of glucose in alkaline solutions, which enables the NiO-HMS to be used in enzyme-free amperometric sensors for glucose determination. It was demonstrated that the NiO-HMS-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 1.67 μM-6.87 mM, short response time (3 s), a lower detection limit of 0.53 μM (S/N=3), high sensitivity (~2.39 mA mM(-1) cm(-2)) as well as good stability and repeatability. © 2013 Published by Elsevier B.V.

  17. Silicon dioxide hollow microspheres with porous composite structure: synthesis and characterization.

    PubMed

    Yan, Xiuli; Lei, Zhongli

    2011-10-15

    In this paper, a strategy for hollow porous silica microspheres with ideally flower structure is presented. SiO(2)/PAM hybrid composite microspheres with porous were synthesized by the reaction that the porous polyacrylamide (PAM) micro-gels immersed in tetraethoxysilane (TEOS) anhydrous alcohol solution and water in a moist atmosphere, with ammonium hydroxide as a catalyst. The SiO(2) hollow microspheres with porous were obtained after calcination of the composite microspheres at 550 °C for 4 h. The morphology, composition, and crystalline structure of the microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FI-IR), and X-ray diffraction (XRD), N(2) absorption analysis, respectively. The results indicated that the obtained hollow porous SiO(2) microspheres were a perfect flower structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Preparation and evaluation of glyceryl monooleate-coated hollow-bioadhesive microspheres for gastroretentive drug delivery.

    PubMed

    Liu, Yuanfen; Zhang, Jianjun; Gao, Yuan; Zhu, Jiabi

    2011-07-15

    The purpose of this study was to produce hollow and bioadhesive microspheres to lengthen drug retention time in the stomach. In these microspheres, ethylcellulose was used as the matrix, Eudragit EPO was employed to modulate the release rate, and glyceryl monooleate (GMO) was the bioadhesive polymer in situ. The morphological characteristics of the microspheres were defined using scanning electron microscopy. The in vitro release test showed that the release rate of drug from the microspheres was pH-dependent, and was not influenced by the GMO coating film. The prepared microspheres demonstrated strong mucoadhesive properties with good buoyancy both in vitro and in vivo. Pharmacokinetic analysis indicated that the elimination half-life time of the hollow-bioadhesive microspheres was prolonged, and that the elimination rate was decreased. In conclusion, the hollow-bioadhesive synergic drug delivery system may be advantageous in the treatment of stomach diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Preparation of hollow magnetite microspheres and their applications as drugs carriers

    PubMed Central

    2012-01-01

    Hollow magnetite microspheres have been synthesized by a simple process through a template-free hydrothermal approach. Hollow microspheres were surface modified by coating with a silica nanolayer. Pristine and modified hollow microparticles were characterized by field-emission electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FT-IR and Raman spectroscopy, and VSM magnetometry. The potential application of the modified hollow magnetite microspheres as a drug carrier was evaluated by using Rhodamine B and methotrexate as model drugs. The loading and release kinetics of both molecules showed a clear pH and temperature dependent profile. Graphical abstract Hollow magnetite microspheres have been synthesized. Load-release experiments with Rhodamine-B as a model drug and with Methotrexate (chemotherapy drug used in treating certain types of cancer) demonstrated the potential applications of these nanostructures in biomedical applications. PMID:22490731

  20. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  1. Template-free synthesis of amorphous double-shelled zinc-cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres.

    PubMed

    Xie, Qingshui; Li, Feng; Guo, Huizhang; Wang, Laisen; Chen, Yuanzhi; Yue, Guanghui; Peng, Dong-Liang

    2013-06-26

    A novel and facile approach was developed for the fabrication of amorphous double-shelled zinc-cobalt citrate hollow microspheres and crystalline double-shelled ZnCo2O4 hollow microspheres. In this approach, amorphous double-shelled zinc-cobalt citrate hollow microspheres were prepared through a simple route and with an aging process at 70 °C. The combining inward and outward Ostwald ripening processes are adopted to account for the formation of these double-shelled architectures. The double-shelled ZnCo2O4 hollow microspheres can be prepared via the perfect morphology inheritance of the double-shelled zinc-cobalt citrate hollow microspheres, by calcination at 500 °C for 2 h. The resultant double-shelled ZnCo2O4 hollow microspheres manifest a large reversible capacity, superior cycling stability, and good rate capability.

  2. Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability.

    PubMed

    Pan, Anqiang; Zhu, Ting; Wu, Hao Bin; Lou, Xiong Wen David

    2013-01-07

    Nanosheet-assembled hierarchical V(2)O(5) hollow microspheres are successfully obtained from V-glycolate precursor hollow microspheres, which in turn are synthesized by a simple template-free solvothermal method. The structural evolution of the V-glycolate hollow microspheres has been studied and explained by the inside-out Ostwald-ripening mechanism. The surface morphologies of the hollow microspheres can be controlled by varying the mixture solution and the solvothermal reaction time. After calcination in air, hierarchical V(2)O(5) hollow microspheres with a high surface area of 70 m(2) g(-1) can be obtained and the structure is well preserved. When evaluated as cathode materials for lithium-ion batteries, the as-prepared hierarchical V(2)O(5) hollow spheres deliver a specific discharge capacity of 144 mA h g(-1) at a current density of 100 mA g(-1), which is very close to the theoretical capacity (147 mA h g(-1)) for one Li(+) insertion per V(2)O(5) . In addition, excellent rate capability and cycling stability are observed, suggesting their promising use in lithium-ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Apparatus and process to enhance the uniform formation of hollow glass microspheres

    SciTech Connect

    Schumacher, Ray F

    2013-10-01

    A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.

  4. Synthesis of Hollow Silica Microspheres with High-Developed Surface Area

    NASA Astrophysics Data System (ADS)

    Bei, I.; Tolstov, A.; Ishchenko, A.

    Hollow silica microspheres (HSM), as efficient drug delivery carriers, were successfully prepared via a facile water-in-oil emulsion method using water glass precursor. The kinetics of drug release in aqueous medium was simulated using water-soluble erythrosine. Hollow silica microspheres show intensive release of active component at the beginning stages of introduction into aqueous (organism-imitating) conditions. Release rate of the model compound decreased and desorption time increased in the follow range: hollow silica microspheres > porous silica microparticles > silica nanoparticles.

  5. Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries.

    PubMed

    Ko, You Na; Choi, Seung Ho; Kang, Yun Chan

    2016-03-01

    The electrochemical properties of hollow cobalt oxide and cobalt selenide microspheres are studied for the first time as anode materials for Na-ion batteries. Hollow cobalt oxide microspheres prepared by one-pot spray pyrolysis are transformed into hollow cobalt selenide microspheres by a simple selenization process using hydrogen selenide gas. Ultrafine nanocrystals of Co3O4 microspheres are preserved in the cobalt selenide microspheres selenized at 300 °C. The initial discharge capacities for the Co3O4 and cobalt selenide microspheres selenized at 300 and 400 °C are 727, 595, and 586 mA h g(-1), respectively, at a current density of 500 mA g(-1). The discharge capacities after 40 cycles for the same samples are 348, 467, and 251 mA h g(-1), respectively, and their capacity retentions measured from the second cycle onward are 66, 91, and 50%, respectively. The hollow cobalt selenide microspheres have better rate performances than the hollow cobalt oxide microspheres.

  6. Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing.

    PubMed

    Yu, Jiaqing; Huang, Tzu-Rung; Lim, Zhen Han; Luo, Rongcong; Pasula, Rupali Reddy; Liao, Lun-De; Lim, Sierin; Chen, Chia-Hung

    2016-12-01

    Bacterial cellulose (BC) is a biocompatible material with high purity and robust mechanical strength used to fabricate desirable scaffolds for 3D cell culture and wound healing. However, the chemical resistance of BC and its insolubility in the majority of solutions make it difficult to manipulate using standard chemical methods. In this study, a microfluidic process is developed to produce hollow BC microspheres with desirable internal structures and morphology. Microfluidics is used to generate a core-shell structured microparticle with an alginate core and agarose shell as a template to encapsulate Gluconacetobacter xylinus for long-term static culture. G. xylinus then secretes BC, which becomes entangled within the shell of the structured hydrogel microparticles and forms BC microspheres. The removal of the hydrogel template via thermal-chemical treatments yields robust BC microspheres exhibiting a hollow morphology. These hollow microspheres spontaneously assemble as functional units to form a novel injectable scaffold. In vitro, a highly porous scaffold is created to enable effective 3D cell culture with a high cell proliferation rate and better depth distribution. In vivo, this injectable scaffold facilitates tissue regeneration, resulting in rapid wound-healing in a Sprague Dawley rat skin model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sol-gel co-assembly of hollow cylindrical inverse opals and inverse opal columns.

    PubMed

    Haibin, Ni; Ming, Wang; Wei, Chen

    2011-12-19

    A facile approach of fabricating hollow cylindrical inverse opals and inverse opal columns by sol-gel co-assembly method was proposed. Polystyrene (PS) colloidal suspension added with hydrolyzed silicate precursor solution was used to self-assemble composite colloidal crystals which consist of PS colloidal crystal template and infiltrated silica gel in the interstitial of microspheres. Continuous hollow cylindrical composite colloidal crystal films have been produced on capillaries' outside and internal surface. Composite colloidal crystal columns which filling up the interior of a capillary were fabricated by pressure assisted sol-gel co-assembly method. Hollow cylindrical inverse opals and inverse opal columns were obtained after removing PS colloidal crystal from the composite colloidal crystal. Optical properties of the silica hollow cylindrical inverse opals were characterized by transmission spectrum and a stop band was observed. Structure and optical properties of the inverse opal columns were investigated.

  8. Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties.

    PubMed

    Jia, Guang; You, Hongpeng; Liu, Kai; Zheng, Yuhua; Guo, Ning; Zhang, Hongjie

    2010-04-06

    Well-dispersed, uniform Gd(2)O(3) hollow microspheres have been successfully fabricated via a urea-based homogeneous precipitation method in the presence of colloidal melamine formaldehyde (MF) microspheres as templates, followed by subsequent heat treatment. The main process was carried out under aqueous conditions without any organic solvents, surfactants, or etching agents. The as-obtained Gd(2)O(3) microspheres with a spherical shape and hollow structure are uniform in size and distribution, and the thickness of the shell is about 200 nm. The lanthanide ion (Ln(3+))-doped Gd(2)O(3) hollow microspheres exhibit bright down- and upconversion luminescence with different colors coming from different activator ions under ultraviolet or 980 nm light excitation, which might find potential applications in fields such as drug delivery or biological labeling because of their excellent dispersing and luminescence properties. Furthermore, this synthesis route may be of great significance in the preparation of other hollow spherical materials.

  9. Hollow glass microspheres for temperature and irradiance control in photobioreactors.

    PubMed

    Pereira, Darlan A; José, Nadia M; Villamizar, Sonia M G; Sales, Emerson A; Perelo, Louisa W

    2014-04-01

    The addition of hollow glass microspheres (HGM) to polymers to change thermal insulation and mechanical properties is widely used. In this study HGM were tested as a new construction material for photobioreactors to control irradiance and broth temperature in microalgae cultivation. The heat isolation properties of HGMs of three different densities were tested in a polymer matrix. The transmittance (5-50%) and the thermal conductivity (182.05-190.73 W/mK) of the HGM composite material were analyzed. The results were tested in a model to predict the broth temperature and the growth rate as a function of temperature and irradiance. The addition of 1.3 and 0.6 vol.% of HGM lead to an increase in the growth rate of up to 37% and a reduction in the broth temperature up to 9°C. The mechanical resistance of the composites tested is similar to the polymer matrix.

  10. Preparation of polysulfone hollow microspheres encapsulating DNA and their functional utilization.

    PubMed

    Zhao, C; Liu, X D; Nomizu, M; Nishi, N

    2004-05-01

    Polysulfone hollow microspheres encapsulating DNA were prepared using a liquid-liquid phase separation technique. The microspheres were then used to absorb a DNA-binding intercalating material--ethidium bromide. The amount of DNA encapsulated in the microspheres depended on the concentration of the DNA solution used to prepare the microspheres, and the microsphere morphology depended on both the polymer concentration and the preparation conditions. The amount of ethidium bromide in the microspheres depended mainly on the amount of encapsulated DNA, and the microsphere morphology also affected the removal of the ethidium bromide. The new method of DNA encapsulation is proposed, and the microspheres encapsulating the DNA have the potential to be used in environmental applications.

  11. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-10-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  12. Synthesis of MnFe2O4 hollow microspheres via a sacrificial templates approach

    NASA Astrophysics Data System (ADS)

    Li, Yang; Ni, Jun; Zhang, Canying; Meng, Zhaoguo

    2017-06-01

    Manganese ferrite (MnFe2O4) hollow microspheres were synthesized through a sacrificial template approach using manganese carbonate (MnCO3) microspheres as sacrificial templates. Different from the literatures, the synthesis of MnFe2O4 hollow spheres was achieved through a one-pot hydrothermal process without subsequent calcination process. The temperature and reaction time of the hydrothermal process were set to be 180 °C and 8 h. The formation mechanism of the MnFe2O4 hollow microspheres was also investigated. Results indicate that the average diameter of the as-synthesized MnFe2O4 hollow microspheres is 1.2 μm. The shells of the hollow microspheres are composed of nanoparticles. During hydrothermal process, Mn2+ ions diffused outward and resulted in shell materials of MnFe2O4, thus MnCO3 templates were consumed and MnFe2O4 hollow microspheres were obtained.

  13. Hydrothermal synthesis and magnetic properties of CuO hollow microspheres

    SciTech Connect

    Zhao, J.G.; Yin, J.Z.; Yang, M.

    2014-01-01

    Graphical abstract: - Highlights: • CuO hollow microspheres were synthesized through hydrothermal route. • The possible growth mechanism was proposed according to the experimental results. • CuO hollow microspheres show an anomalous ferromagnetic behavior at 5 K and 300 K. - Abstract: In the present work, CuO hollow microspheres with the diameter about 2 μm were successfully synthesized through a facile hydrothermal method. The phase purity, morphologies and structure features of the as obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy, respectively. It was found that reaction temperature, reaction time and different volume ratios of ethanol and distilled water played important roles on the morphologies of the obtained CuO hollow microspheres. The possible formation mechanism was also proposed according to the corresponding experimental results. The magnetic properties were investigated by superconducting quantum interference device, revealing that the CuO hollow microspheres exhibited an anomalous ferromagnetic behavior at 5 K and 300 K. At the same time, the origin of the ferromagnetism in CuO hollow microspheres was also discussed.

  14. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework.

    PubMed

    Yin, Zhi-Jian; Xu, Shun-Qi; Zhan, Tian-Guang; Qi, Qiao-Yan; Wu, Zong-Quan; Zhao, Xin

    2017-03-07

    We herein report the construction of a new heteropore COF which consists of two different kinds of micropores with unprecedented shapes. It exists as hollow microspheres and exhibits an extremely high volatile iodine uptake (up to 481 wt%) by encapsulating iodine in the inner cavities and porous shells of the microspheres.

  15. A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls.

    PubMed

    Liu, Jia; Deng, Yonghui; Liu, Chong; Sun, Zhenkun; Zhao, Dongyuan

    2009-05-01

    In this paper, we report a simple approach for templating synthesis of magnetic hollow composite microspheres with magnetite/silica walls. This approach is based on the co-sedimentation of polymer microspheres and magnetic colloids followed by impregnation with silica oligomer from tetraethyl orthosilicate and the further removal of the polymer microspheres by pyrolysis. The diameter of the hollow microspheres can be adjusted in range of 300 nm-2.0 microm by using polymer microspheres of different sizes and the wall thickness is tunable from 10-50 nm by controlling ratio of magnetite to the polymer microspheres. Magnetic characterizations show that the hollow microspheres have superparamagnetism with magnetization saturation of 10-30 emu/g. HRTEM and N(2) adsorption-desorption isotherms reveal that the hollow microspheres have numerous nanopores in the walls with a broad distribution in the range of 2 to 80 nm, which results in a high BET surface (67.6 m(2)/g) and pores volume (0.14 cm(3)/g).

  16. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    PubMed Central

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957

  17. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    PubMed

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  18. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    SciTech Connect

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-15

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres in dilute phosphate solution at 37 {sup o}C. The results confirmed that Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres reacted in low-concentration K{sub 2}HPO{sub 4} solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  19. Size controlled synthesis and photocatalytic activity of anatase TiO2 hollow microspheres

    NASA Astrophysics Data System (ADS)

    Dwivedi, Charu; Dutta, V.

    2012-10-01

    Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 250 °C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration and applied voltage were found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

  20. Thermal oxidation synthesis hollow MoO{sub 3} microspheres and their applications in lithium storage and gas-sensing

    SciTech Connect

    Zhao, Xinyu; Cao, Minhua; Hu, Changwen

    2013-06-01

    Graphical abstract: MoO{sub 3} hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres exhibit an improved lithium storage and gas-sensing performance. Highlights: ► Hollow MoO{sub 3} microspheres were synthesized by thermal oxidation of hollow MoO{sub 2}. ► The MoO{sub 3} hollow microspheres have a relatively high specific surface area. ► The MoO{sub 3} hollow microspheres exhibit improved lithium storage performance. ► The MoO{sub 3} hollow microspheres show good responses to ammonia gas. - Abstract: In this paper, MoO{sub 3} hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres have a relatively high specific surface area, and with such a feature, the as-synthesized MoO{sub 3} hollow microspheres have potential applications in Li-ion battery and gas-sensor. When tested as a Li-storage anode material, the MoO{sub 3} hollow microspheres show a higher discharge capacity of 1377.1 mA h g{sup −1} in the first discharge and a high reversible capacity of 780 mA h g{sup −1} after 100 cycles at a rate of 1 C. Furthermore, as a gas sensing material, the MoO{sub 3} hollow microspheres exhibit an improved sensitivity and short response/recovery time to trace levels of ammonia gas.

  1. Development and Characterization of Novel Site Specific Hollow Floating Microspheres Bearing 5-Fu for Stomach Targeting

    PubMed Central

    Bhardwaj, Peeyush; Singh, Ranjit; Swarup, Anoop

    2014-01-01

    Multiple-unit-type oral floating hollow microspheres of 5-fluorouracil (5-Fu) were developed using modified solvent evaporation technique to prolong gastric residence time, to target stomach cancer, and to increase drug bioavailability. The prepared microspheres were characterized for micromeritic properties, floating behavior, entrapment efficiency, and scanning electron microscopy (SEM). The in vitro drug release and floating behavior were studied in simulated gastric fluid (SGF) at pH 1.2. The yield of microspheres was obtained up to 84.46 ± 6.47%. Microspheres showed passable flow properties. Based on optical microscopy, particle size was found to be ranging from 158.65 ± 12.02 to 198.67 ± 17.45 μm. SEM confirmed spherical size, perforated smooth surface, and a hollow cavity inside the microspheres. Different kinetic models for drug release were also applied on selected batches. PMID:25383377

  2. Hollow carbonated hydroxyapatite microspheres with mesoporous structure: hydrothermal fabrication and drug delivery property.

    PubMed

    Guo, Ya-Jun; Wang, Ying-Ying; Chen, Ting; Wei, Yi-Ting; Chu, Lian-Feng; Guo, Ya-Ping

    2013-08-01

    Hollow carbonated hydroxyapatite microspheres with mesoporous structure (HCHAs) have been fabricated by using calcium carbonated microspheres as sacrificial templates according to the following routes: (i) the in situ deposit of carbonated hydroxyapatite on the surfaces of CaCO3 microspheres by hydrothermal method and (ii) the removal of CaCO3 by chemical etching. The HCHAs consist of a hollow core and a mesoporous shell. Interestingly, the shell of the microspheres is constructed by carbonated hydroxyapatite nanoplates as building blocks. Moreover, these nanoplates are composed of many smaller nanoparticles with different crystal orientations, and the mesopores exist among these nanoparticles. The HCHAs exhibit the high drug-loading capacity and sustained drug release property, suggesting that the hierarchically porous microspheres have great potentials for bone-implantable drug-delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Zhou, Wenjie; Yu, Hong; Feng, Tong; Pu, Yong; Liu, Hongdong; Xiao, Wei; Tian, Liangliang

    2017-05-01

    Nickel silicate hydroxide/reduced graphene oxide (Ni3Si2O5(OH)4/RGO) composite hollow microspheres were one-pot hydrothermally synthesized by employing graphene oxide (GO)-wrapped SiO2 microspheres as the template and silicon source, which were prepared through sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO2 substrate microspheres. The composition, morphology, structure, and phase of Ni3Si2O5(OH)4/RGO microspheres as well as their electrochemical properties were carefully studied. It was found that Ni3Si2O5(OH)4/RGO microspheres featured distinct hierarchical porous morphology with hollow architecture and a large specific surface area as high as 67.6 m2 g-1. When utilized as a supercapacitor electrode material, Ni3Si2O5(OH)4/RGO hollow microspheres released a maximum specific capacitance of 178.9 F g-1 at the current density of 1 A g-1, which was much higher than that of the contrastive bare Ni3Si2O5(OH)4 hollow microspheres and bare RGO material developed in this work, displaying enhanced supercapacitive behavior. Impressively, the Ni3Si2O5(OH)4/RGO microsphere electrode exhibited outstanding rate capability and long-term cycling stability and durability with 97.6% retention of the initial capacitance after continuous charging/discharging for up to 5000 cycles at the current density of 6 A g-1, which is superior or comparable to that of most of other reported nickel-based electrode materials, hence showing promising application potential in the energy storage area.

  4. Adaptive Chitosan Hollow Microspheres as Efficient Drug Carrier.

    PubMed

    Fu, Ya-Nan; Li, Yongsan; Li, Guofeng; Yang, Lei; Yuan, Qipeng; Tao, Lei; Wang, Xing

    2017-07-10

    Smart drug carrier with function-oriented adaptations is highly desired due to its unique properties in medical applications. Herein, adaptive chitosan hollow microspheres (CHM) are fabricated by employing interfacial Schiff-base bonding reaction. Hydrophilic macromolecules of glycol chitosan are fixed at the oil/water interface through numerous hydrophobic small molecules of borneol 4-formylbenzoate, forming the CHM with a positively charged surface and lipophilic cavity. These CHM have an average size of 400-1000 nm after passing through the 0.22 μm apertures of filter paper. This phenomenon combined with SEM measurements demonstrates its remarkable shape-adaptive behavior. Furthermore, the CHM present a pH-dependence of structural stability. When pH value reduces from 7.06 to 5.01, the CHM begin to lose their integrity. All those characteristics make the CHM an intelligent drug carrier, especially for water-insoluble anticancer drugs, paclitaxel (PTX) in particular. Both cell uptake and cell cytotoxicity assays suggest that the PTX-loaded CHM are highly efficient on HepG2 and A549 cells. Therefore, rather than most of the traditional materials, these adaptive CHM show great potential as a novel drug carrier.

  5. Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by spray freezing method.

    PubMed

    Xiao, Qiyao; Zhou, Kechao; Chen, Chao; Jiang, Mingxiang; Zhang, Yan; Luo, Hang; Zhang, Dou

    2016-12-01

    Microspheres with hollow and/or porous structures have been widely used in various applications. A new method of spraying and freezing emulsions was developed to prepare hollow HA (hydroxyapatite) microspheres with interconnected pores by using PVA (polyvinyl alcohol) as emulsifiers and binders. The relationships between viscosity and shear time or rates were tested and the dispersing stability of oil in water (O/W) emulsions was characterized with comparison to suspensions without the addition of oil phase. The effects of solid loadings of HA and the volume ratio between oil and water on the morphologies of microspheres were investigated. Hollow HA microspheres with particle diameter of ~20μm and pore size of ~0.6μm were successfully obtained by spray freezing method. Besides, drying and sintering processes were crucial to the formation of hollow and porous structures, respectively. The gentamicin loading and releasing of HA porous microspheres with different hollow volumes were tested. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Hollow GdPO4:Eu3+ microspheres: Luminescent properties and applications as drug carrier

    NASA Astrophysics Data System (ADS)

    Tang, Yanxia; Mei, Rui; Yang, Shaokun; Tang, Hongxia; Yin, Wenzhong; Xu, Yongchun; Gao, Yaping

    2016-04-01

    GdPO4:Eu3+ samples were synthesized by a hydrothermal process using melamine formaldehyde (MF) as template. The X-ray diffraction (XRD) patterns and the Fourier Transform Infrared (FTIR) spectrum suggested that GdPO4:Eu3+ has a hexagonal phase. The scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed that the obtained GdPO4:Eu3+ are hollow microspheres with diameters in the range of 1-1.5 μm. Under the excitation at 245 nm, hexagonal GdPO4:Eu3+ hollow microspheres showed emission bands originating from the 5D0 → 7FJ (J = 1, 2, 3 and 4) transitions of Eu3+. The drug release properties of hexagonal GdPO4:Eu3+ hollow microspheres were exhibited by the doxorubicin hydrochloride (DOX) release test. The biocompatibility of hexagonal GdPO4:Eu3+ hollow microsphere was tested by the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results indicated that hollow GdPO4:Eu3+ microspheres have potential applications in biomedicine fields.

  7. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium.

    PubMed

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan

    2014-07-09

    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment.

  8. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOEpatents

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  9. A microfluidic approach to fabricate monodisperse hollow or porous poly(HEMA-MMA) microspheres using single emulsions as templates.

    PubMed

    Zhang, Hao; Ju, Xiao-Jie; Xie, Rui; Cheng, Chang-Jing; Ren, Ping-Wei; Chu, Liang-Yin

    2009-08-01

    We have successfully developed a novel and simple method to controllably prepare monodisperse poly(hydroxyethyl methacrylate-methyl methacrylate) (poly(HEMA-MMA)) microspheres with two distinct structures using single emulsions as templates. By employing a microfluidic emulsification approach to fabricate monomer-contained oil-in-water (O/W) emulsions as templates, and introducing proper initiators and different types of porogens, poly(HEMA-MMA) microspheres with hollow or porous structure are prepared in a controllable way. The shell thickness of hollow microspheres or the porosity of porous microspheres is controllably achieved by simply adjusting the porogen concentration. The prepared poly(HEMA-MMA) microspheres with controllable hollow or porous structures are favored for various potential applications. Furthermore, by using the simple preparation methodology proposed in this study, fabrication of monodisperse porous microspheres or hollow microcapsules with other materials can also be easily achieved.

  10. Spontaneous construction of photoactive hollow TiO2 microspheres and chains.

    PubMed

    Liu, Shengwei; Yu, Jiaguo; Mann, Stephen

    2009-08-12

    Discrete and chain-like aggregates of well-defined hollow TiO(2) microspheres are reproducibly synthesized in high yield by a modified fluoride-mediated self-transformation strategy using urea as a base catalyst. The shell walls are composed of agglomerated polyhedral anatase nanocrystals, and exhibit hierarchical porosity. The addition of urea tunes the nucleation dynamics and surface states of the elementary TiO(2) building blocks, which together promote the formation of metastable solid microparticles of uniform size that subsequently transform into morphologically invariant hollow microspheres and chain-like aggregates. The high surface area, bimodal mesoporosity of the shell walls, and increased band gap of the hollow TiO(2) microspheres give rise to increases in photocatalytic activity when compared with anatase nanoparticles and aggregates prepared in the absence of urea.

  11. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  12. Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui

    2017-05-01

    Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.

  13. Synthesis and Characterization of Gd₂O₃ Hollow Microspheres Using a Template-Directed Method.

    PubMed

    Jiang, Xueliang; Yu, Lu; Yao, Chu; Zhang, Fuqing; Zhang, Jiao; Li, Chenjian

    2016-04-28

    Uniform rare-earth gadolinium oxide (Gd₂O₃) hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd₂O₃ phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd₂O₃ hollow microspheres exhibited a superior photooxidation activity to that of Gd₂O₃ powder and an effect similar to P25, significantly broadening the potential of Gd₂O₃ hollow microspheres for many practical applications.

  14. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method

    PubMed Central

    Jiang, Xueliang; Yu, Lu; Yao, Chu; Zhang, Fuqing; Zhang, Jiao; Li, Chenjian

    2016-01-01

    Uniform rare-earth gadolinium oxide (Gd2O3) hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd2O3 phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd2O3 hollow microspheres exhibited a superior photooxidation activity to that of Gd2O3 powder and an effect similar to P25, significantly broadening the potential of Gd2O3 hollow microspheres for many practical applications. PMID:28773446

  15. Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin.

    PubMed

    Wei, Wei; Ma, Guang-Hui; Wang, Lian-Yan; Wu, Jie; Su, Zhi-Guo

    2010-01-01

    The delivery of insulin by non-parenteral routes has gained significant attention over the last two decades. In the present study, we prepared hollow quaternized chitosan microspheres by the SPG membrane emulsification technique and glutaraldehyde cross-linking method. The structural properties, as well as the uniform size and autofluorescence, enabled us to develop oral delivery of insulin which conserved the bioactivity of the encapsulated insulin, achieving bioadhesion of microspheres, increasing the loading ability and optimizing the release profile. In vivo evaluation also saw an optimal reduction in blood glucose level and powerful therapeutic effects after treatment with the designed microspheres, which further confirmed the feasibility of using hollow quaternized chitosan microspheres as insulin carriers for oral administration.

  16. Shear Elastic and Strength Characteristics of Syntactics Based on Hollow Glass Microspheres

    NASA Astrophysics Data System (ADS)

    Kuperman, A. M.; Turusov, R. A.; Gorenberg, A. J.; Solodilov, V. I.; Korokhin, R. A.; Gorbatkina, Yu. A.; Ivanova-Mumzhieva, V. G.; Zhuravleva, O. A.; Baikov, A. V.

    2015-01-01

    Different methods to study the elastic and strength properties of syntactics — materials based on epoxy resins filled with hollow glass microspheres (HGMs) — are presented. Measurement results for the shear modulus and strength of the materials are analyzed. The effect of microsphere volume fraction in the polymeric matrix on the characteristics is shown. Experiments are performed to investigate the failure mechanisms of syntactics under compression.

  17. Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization

    PubMed Central

    Chang, Ming-Wei; Stride, Eleanor; Edirisinghe, Mohan

    2010-01-01

    In this study, the ability to control the shell thickness of hollow polymeric microspheres prepared using electrohydrodynamic processing at ambient temperature was investigated. Polymethylsilsesquioxane (PMSQ) was used as a model material for the microsphere shell encapsulating a core of liquid perfluorohexane (PFH). The microspheres were characterized by Fourier transform infrared spectroscopy and optical and electron microscopy, and the effects of the processing parameters (flow-rate ratio, polymer concentration and applied voltage) on the mean microsphere diameter (D) and shell thickness (t) were determined. It was found that the mean diameters of the hollow microspheres could be controlled in the range from 310 to 1000 nm while the corresponding mean shell thickness varied from 40 to 95 nm. The results indicate that the ratio D : t varied with polymer concentration, with the largest value of approximately 10 achieved with a solution containing 18 wt% of the polymer, while the smallest value (6.6) was obtained at 36 wt%. For polymer concentrations above 63 wt%, hollow microspheres could not be generated, but instead PMSQ fibres encapsulating PFH liquid were obtained. PMID:20519216

  18. Preparation and photocatalytic property of porous CuO hollow microspheres via carbon sphere templates.

    PubMed

    Shao, Qian; Wang, Xiaojie; Liu, Qingyun; Wang, Lingyun; Kang, Chao; Wang, Qingyao; Ge, Shengsong

    2011-11-01

    Porous copper oxide (CuO) hollow microspheres have been successfully fabricated by using carbon spheres as templates. The products were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). The influences of different experimental parameters on the morphology of CuO structures have been investigated in detail and the possible formation mechanism of porous CuO hollow microspheres has also been proposed. The specific surface area of the hollow spheres with 74.805 m2/g is measured by BET method. Barrett-Joyner-Halenda (BJH) calculations for the pore size distribution, derived from desorption data, reveal that the average pore radius is 8.56 nm, and the total pore volume (r = 1686.1 A, P/P0 = 0.994296) is 0.107257 cc/g. UV-vis absorption spectrum shows quantum size effect of porous CuO hollow microspheres. Furthermore, the porous CuO hollow microspheres exhibit high efficiency for photodegradation of a sample organic dye, Rhodamine B (RhB), under UV light.

  19. ZnO-based hollow microspheres with mesoporous shells: Polyoxometalate-assisted fabrication, growth mechanism and photocatalytic properties

    SciTech Connect

    Li Qiuyu; Chen Weilin; Ju Mingliang; Liu Lin; Wang Enbo

    2011-06-15

    With the assistance of Keggin-type polyoxometalate, ZnO hollow microspheres with mesoporous shells were synthesized via a simple solvothermal approach without any templates and surfactants. The observations of morphology and structure performed by field emission scanning electronic microscopy and transmission electron microscopy indicated that the shells of the ZnO hollow spheres were built from nanosheets which were composed of nanoparticles. The transformation of structure and composition of samples were investigated by X-ray diffraction, X-ray photoelectron spectrometry and fourier transform infrared absorption spectroscopy. The formation mechanism of the hollow spheres is proposed based on time-dependent experimental results. The ZnO hollow microspheres exhibited a high photocatalytic activity for decolorization of Rhodamine B under ultraviolet irradiation. - Graphical Abstract: ZnO hollow spheres with mesporous shells were synthesized by an one-pot polyoxometalate-assisted solvothermal route. The ZnO hollow microspheres exhibited a high photocatalytic activity for decolorization of Rhodamine B (RhB) under UV irradiation. Highlights: > ZnO hollow microspheres were synthesized via a solvothermal route with polyoxometalate. > The polyoxometalate was vital for the formation of the hollow microspheres. > The ZnO hollow microspheres exhibited excellent photocatalytic activity of Rhodamine B.

  20. Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres.

    PubMed

    Xiao, Manda; Chen, Huanjun; Ming, Tian; Shao, Lei; Wang, Jianfang

    2010-11-23

    Localized surface plasmon resonances of noble metal nanocrystals are powerful in enhancing a variety of linear and nonlinear optical signals and photorelated processes. Here we demonstrate the plasmonic enhancement of the light scattering from hollow mesoporous silica microspheres by attaching a dense layer of gold nanocrystals onto the outer surface of the microspheres. The attachment of gold nanocrystals induces both the shift and intensity increase in the resonant scattering peaks of the microspheres. The spectral region of the resonant scattering enhancement can be controlled by using gold nanocrystals with different plasmon resonance wavelengths. The spectral region of the enhancement is independent of the microsphere diameter. The scattering enhancement factor ranges from 20 to 130, depending on the plasmonic properties and surface coverage of the attached gold nanocrystals. The systematic evolution of the scattering spectra of the individual microspheres is also revealed by chemically etching away the attached gold nanocrystals gradually.

  1. Evaluation of BSA protein release from hollow hydroxyapatite microspheres into PEG hydrogel

    PubMed Central

    Fu, Hailuo; Rahaman, Mohamed N.; Brown, Roger F.; Day, Delbert E.

    2013-01-01

    Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a high surface area, mesoporous shell wall and studied the release of a model protein, bovine serum albumin (BSA), from the microspheres into phosphate-buffered saline (PBS). The present work is an extension of our previous work to study the release of BSA from similar HA microspheres into a biocompatible hydrogel, poly(ethylene glycol) (PEG). BSA-loaded HA microspheres were placed in a PEG solution which was rapidly gelled using ultraviolet radiation. The BSA release rate into the PEG hydrogel, measured using a spectrophotometric method, was slower than into PBS, and it was dependent on the initial BSA loading and on the microstructure of the microsphere shell wall. A total of 35–40% of the BSA initially loaded into the microspheres was released into PEG over ~14 days. The results indicate that these hollow HA microspheres have promising potential as an osteoconductive device for local drug or growth factor delivery in bone regeneration and in the treatment of bone diseases. PMID:23498254

  2. Biomechanical characterization of a low density silicone elastomer filled with hollow microspheres for maxillofacial prostheses.

    PubMed

    Liu, Q; Shao, L Q; Xiang, H F; Zhen, D; Zhao, N; Yang, S G; Zhang, X L; Xu, J

    2013-01-01

    An ideal material for maxillofacial prostheses has not been found. We created a novel material: silicone elastomer filled with hollow microspheres and characterized its biomechanical properties. Expancel hollow microspheres were mixed with MDX4-4210 silicone elastomer using Q7-9180 silicone fluid as diluent. The volume fractions of microspheres were 0, 5, 15, and 30% v/v (volume ratio to the total volume of MDX4-4210 and microspheres). The microspheres dispersed well in the matrix. The physical properties and biocompatibility of the composites were examined. Shock absorption was the greatest by the 5% v/v composite, and decreased with increasing concentrations of microspheres. The density, thermal conductivity, Shore A hardness, tear and tensile strength decreased with increasing concentrations of microspheres, while elongation at break increased. Importantly, the tear strength of all composites was markedly lower than that of pure silicone elastomer. Cell viability assays indicated that the composite was of good biocompatibility. The composite with a volume fraction of 5% exhibited the optimal properties for use as a maxillofacial prosthesis, though its tear strength was markedly lower than that of silicone elastomer. In conclusion, we developed a novel light and soft material with good flexibility and biocompatibility, which holds a promising prospect for clinical application as maxillofacial prosthesis.

  3. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  4. General Synthetic Strategy for Hollow Hybrid Microspheres through a Progressive Inward Crystallization Process.

    PubMed

    Yang, Li-Ping; Lin, Xi-Jie; Zhang, Xing; Zhang, Wei; Cao, An-Min; Wan, Li-Jun

    2016-05-11

    Hollow hybrid microspheres have found great potential in different areas, such as drug delivery, nanoreactors, photonics, and lithium-ion batteries. Here, we report a simple and scalable approach to construct high-quality hollow hybrid microspheres through a previously unexplored growth mechanism. Starting from uniform solid microspheres with low crystallinity, we identified that a hollowing process can happen through the progressive inward crystallization process initiated on the particle surface: the gradual encroachment of the crystallization frontline toward the core leads to the depletion of the center and forms the central cavity. We showed that such a synthetic platform was versatile and can be applicable for a large variety of materials. By using the production of Li4Ti5O12-carbon hollow hybrid microspheres as an example, we demonstrated that high-performance anode materials could be achieved through synthesis and structure control. We expect that our findings offer new perspectives in different areas ranging from materials chemistry, energy storage devices, catalysis, to drug delivery.

  5. Low-temperature solvothermal synthesis of EuS hollow microspheres

    SciTech Connect

    Peng, Yong; Wang, Hong; Li, Peng; Fu, Yao Xing, Mingming; Jiang, Tao; Luo, Xixian

    2014-09-15

    Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: • We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. • We have successfully synthesised the EuS hollow microsphere at 230 °C in acetonitrile. • The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis, and UV–vis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 μm. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.

  6. Electrical Properties of Syntactic Foams Based on Hollow Carbon Microspheres and Polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Chukhlanov, V. Yu.; Selivanov, O. G.

    2016-11-01

    The present research focuses on the effect that hollow carbon microspheres embedded into the polydimethylsiloxane elastomer have on the electroconductive properties of the composite material. The percolation point was experimentally determined. The dependence of electrical resistance of the syntactic foam on the content of semiconducting filler in the binder was revealed. The effect of the filler on the radarabsorbing properties was studied.

  7. Facile synthesis of hollow zeolite microspheres through dissolution–recrystallization procedure in the presence of organosilanes

    SciTech Connect

    Tao, Haixiang; Ren, Jiawen; Liu, Xiaohui; Wang, Yanqin; Lu, Guanzhong

    2013-04-15

    Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride.

  8. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres.

    PubMed

    Sun, Xiaoming; Liu, Junfeng; Li, Yadong

    2006-02-20

    A general method for the synthesis of metal oxide hollow spheres has been developed by using carbonaceous polysaccharide microspheres prepared from saccharide solution as templates. Hollow spheres of a series of metal oxides (SnO2, Al2O3, Ga2O3, CoO, NiO, Mn3O4, Cr2O3, La2O3, Y2O3, Lu2O3, CeO2, TiO2, and ZrO2) have been prepared in this way. The method involves the initial absorption of metal ions from solution into the functional surface layer of carbonaceous saccharide microspheres; these are then densified and cross-linked in a subsequent calcination and oxidation procedure to form metal oxide hollow spheres. Metal salts are used as starting materials, which widens the accessible field of metal oxide hollow spheres. The carbonaceous colloids used as templates have integral and uniform surface functional layers, which makes surface modification unnecessary and ensures homogeneity of the shell. Macroporous films or cheese-like nanostructures of oxides can also be prepared by slightly modified procedures. XRD, TEM, HRTEM, and SAED have been used to characterize the structures. In a preliminary study on the gas sensitivity of SnO2 hollow spheres, considerably reduced "recovery times" were noted, exemplifying the distinct properties imparted by the hollow structure. These hollow or porous nanostructures have the potential for diverse applications, such as in gas sensitivity or catalysis, or as advanced ceramic materials.

  9. Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo

    PubMed Central

    Xiao, Wei; Bal, B. Sonny; Rahaman, Mohamed N.

    2015-01-01

    Hollow hydroxyapatite (HA) microspheres, with a high-surface-area mesoporous shell, can provide a unique bioactive and osteoconductive carrier for proteins to stimulate bone regeneration. However, synthetic HA has a slow resorption rate and a limited ability to remodel into bone. In the present study, hollow HA microspheres with controllable amounts of carbonate substitution (0–12 wt. %) were created using a novel glass conversion route and evaluated in vitro and in vivo. Hollow HA microspheres with ~12 wt. % of carbonate (designated CHA12) showed a higher surface area (236 m2g−1) than conventional hollow HA microspheres (179 m2g−1) and a faster degradation rate in a potassium acetate buffer solution. When implanted for 12 weeks in rat calvarial defects, the CHA12 and HA microspheres showed a limited capacity to regenerate bone but the CHA12 microspheres resorbed faster than the HA microspheres. Loading the microspheres with bone morphogenetic protein-2 (BMP2) (1 μg per defect) stimulated bone regeneration and accelerated resorption of the CHA12 microspheres. At 12 weeks, the amount of new bone in the defects implanted with the CHA12 microspheres (73 ± 8 %) was significantly higher than the HA microspheres (59 ± 2%) while the amount of residual CHA12 microspheres (7 ± 2% of the total defect area) was significantly lower than the HA microspheres (21 ± 3%). The combination of these carbonate-substituted HA microspheres with clinically safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. PMID:26706537

  10. Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo.

    PubMed

    Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-03-01

    Hollow hydroxyapatite (HA) microspheres, with a high-surface-area mesoporous shell, can provide a unique bioactive and osteoconductive carrier for proteins to stimulate bone regeneration. However, synthetic HA has a slow resorption rate and a limited ability to remodel into bone. In the present study, hollow HA microspheres with controllable amounts of carbonate substitution (0-12 wt.%) were created using a novel glass conversion route and evaluated in vitro and in vivo. Hollow HA microspheres with ~12 wt.% of carbonate (designated CHA12) showed a higher surface area (236 m(2) g(-1)) than conventional hollow HA microspheres (179 m(2)g(-1)) and a faster degradation rate in a potassium acetate buffer solution. When implanted for 12 weeks in rat calvarial defects, the CHA12 and HA microspheres showed a limited capacity to regenerate bone but the CHA12 microspheres resorbed faster than the HA microspheres. Loading the microspheres with bone morphogenetic protein-2 (BMP2) (1 μg per defect) stimulated bone regeneration and accelerated resorption of the CHA12 microspheres. At 12 weeks, the amount of new bone in the defects implanted with the CHA12 microspheres (73±8%) was significantly higher than the HA microspheres (59±2%) while the amount of residual CHA12 microspheres (7±2% of the total defect area) was significantly lower than the HA microspheres (21±3%). The combination of these carbonate-substituted HA microspheres with clinically safe doses of BMP2 could provide promising implants for healing non-loaded bone defects.

  11. Preparation of Ag-coated hollow microspheres via electroless plating for application in lightweight microwave absorbers

    NASA Astrophysics Data System (ADS)

    Kim, Wook-Joong; Kim, Sung-Soo

    2015-02-01

    Highly conductive Ag film is coated on hollow silica microspheres via electroless plating for application in lightweight microwave absorbers. The Ag plating is conducted using a two-step process of sensitizing and subsequent plating. The complex permeability and permittivity are determined using the reflection/transmission technique in the composite specimens of Ag-coated microspheres and silicone rubber matrix. Due to the large surface area of the microspheres, a relatively high concentration of AgNO3 is required in order to achieve a uniform Ag coating. In addition, a low concentration of fructose reducing agent is recommended for slow plating. The apparent electrical resistance of the Ag-coated microspheres is strongly dependent on the grain morphology. The thin and uniform Ag-coated particles are characterized by their low electrical resistance, which is as low as 0.1 Ω. The lower the electrical resistance of the microspheres, the higher the dielectric constant of the composite specimens, which results from the enhanced space-charge polarization between the conductive microspheres. The microwave absorbance is enhanced with decreases in the electrical resistance of microspheres due to the increased dielectric loss.

  12. Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides.

    PubMed

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-08-13

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g(-1) at room temperature and a Brunauer-Emmett-Teller specific surface area of 48.8 m(2) g(-1) with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications.

  13. Facile Synthesis of Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-Concentration Peptides

    PubMed Central

    2015-01-01

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g–1 at room temperature and a Brunauer–Emmett–Teller specific surface area of 48.8 m2 g–1 with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications. PMID:24992375

  14. Nanostructuring the surface of dual responsive hollow polymer microspheres for versatile utilization in nanomedicine-related applications.

    PubMed

    Chatzipavlidis, A; Bilalis, P; Tziveleka, L-A; Boukos, N; Charitidis, C A; Kordas, G

    2013-07-30

    The design and fabrication of hollow polymer microspheres responsive to various stimuli comprises a promising approach for the development of multifunctional and efficient systems for various nanomedicine-related applications. In this paper, we present the preparation of poly(methacrylic acid-co-N,N'-methylenebis(acrylamide)-co-poly(ethylene glycol) methyl ether methacrylate-co-N,N'-bis(acryloyl)cystamine) (PMAA(S-S)) hollow microspheres following a two-stage distillation precipitation polymerization procedure. Magnetic and silver nanocrystals were chemically grown on the surface of the hollow polymer microspheres, resulting in a composite system with interesting properties. We evaluated the performance of the composite hollow microspheres as magnetic hyperthermia mediators and their surface-enhanced Raman spectroscopy activity. Assessment of Daunorubicin-loaded PMAA(S-S) hollow microspheres performance as effective drug carriers was carried out through drug release experiments upon application of different pH and reducing conditions. pH and redox responsiveness as well as basic mechanisms of release profiles are discussed. Furthermore, in vitro cytotoxicity of empty and drug-loaded PMAA(S-S) hollow microspheres against MCF-7 cancer cells was investigated in order to evaluate their performance as drug carriers.

  15. Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation

    PubMed Central

    2012-01-01

    Cu2O p-type semiconductor hollow porous microspheres have been prepared by using a simple soft-template method at room temperature. The morphology of as-synthesized samples is hollow spherical structures with the diameter ranging from 200 to 500 nm, and the surfaces of the spheres are rough, porous and with lots of channels and folds. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was investigated by UV-visible spectroscopy. The results show that the hollow porous Cu2O particles were uniform in diameters and have an excellent ability in visible light-induced degradation of MO. Meanwhile, the growth mechanism of the prepared Cu2O was also analyzed. We find that sodium dodecyl sulfate acted the role of soft templates in the synthesis process. The hollow porous structure was not only sensitive to the soft template but also to the amount of reagents. PMID:22738162

  16. MoO2@carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties.

    PubMed

    Liu, Xiaolin; Ji, Wenxu; Liang, Jiyuan; Peng, Luming; Hou, Wenhua

    2014-10-14

    MoO2 hollow microspheres with tunable inner space have been synthesized through a hydrothermal process using MoO3 microbelts instead of bulk MoO3 as the precursor. It is found that the reactant morphology has a great impact on the product morphology and the inner space can be tuned by changing the amount of NaOH aqueous solution. An interesting evolutional process from MoO3 microbelts through a rose-like intermediate to MoO2 hollow microspheres has been clearly observed, and thus the possible formation mechanism is revealed. One layer of amorphous carbon has been subsequently coated on the surface of MoO2 hollow microspheres through a simple hydrothermal approach followed by annealing in argon. As the anode material for lithium ion batteries, MoO2@C hollow microspheres manifest excellent lithium-storage properties, such as high capacity (677 mA h g(-1)) and good cycling stability (negligible capacity fading even after 80 cycles). The significantly enhanced performance of MoO2@C hollow microspheres can be attributed to its unique structures, such as nanoscaled primary building blocks, carbon coating, hollow structure, and especially the synergy between the carbon coating and hollow structure.

  17. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  18. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, Joseph D.

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  19. Hollow microspheres with a tungsten carbide kernel for PEMFC application.

    PubMed

    d'Arbigny, Julien Bernard; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J; Rozière, Jacques

    2011-07-28

    Tungsten carbide microspheres comprising an outer shell and a compact kernel prepared by a simple hydrothermal method exhibit very high surface area promoting a high dispersion of platinum nanoparticles, and an exceptionally high electrochemically active surface area (EAS) stability compared to the usual Pt/C electrocatalysts used for PEMFC application.

  20. Preparation of Hydroxyapatite Coating on the Surface of Hollow Glass Microspheres Using a Biomimetic Process

    NASA Astrophysics Data System (ADS)

    Jiao, Yan; Yang, Hai-Ying; Zhang, Ying-Long; Duan, Rong-Shuai; Lu, Yu-Peng

    2014-07-01

    Microcarrier culture technology has attached more attention, especially for scale-up cell culture in the filed of tissue engineering. The present work introduces a microcarrier with hydroxyapatite (HA) on hollow glass microsphere. Hollow glass microspheres with a main composition of SiO2 (55-65 wt.%), Al2O3 (26-35 wt.%), were pretreated by NaOH, on which hydroxyapatite coating was deposited by biomimetic process. The phase composition and morphology were characterized by X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscope, field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscope (HRTEM), respectively. The results showed that after immersion for 15 days in 1.5 SBF, the uniform and dense HA coating was formed and it has porous surface and low crystallinity.

  1. Polypyrrole Hollow Microspheres as Echogenic Photothermal Agent for Ultrasound Imaging Guided Tumor Ablation

    PubMed Central

    Zha, Zhengbao; Wang, Jinrui; Qu, Enze; Zhang, Shuhai; Jin, Yushen; Wang, Shumin; Dai, Zhifei

    2013-01-01

    Ultrasound (US) imaging provides a valuable opportunity to administer photothermal therapy (PTT) of cancer with real-time guidance to ensure proper targeting, but only a few theranostic agents were developed by physically grafting near infrared (NIR)-absorbing inorganic nanomaterials to ready-made ultrasound contrast agents (UCAs) for US imaging guided PTT. In this paper, NIR absorbing hollow microspheres were generated from polypyrrole merely using a facile one-step microemulsion method. It was found that the obtained polypyrrole hollow microspheres (PPyHMs) can act as an efficient theranostic agent not only to enhance US imaging greatly, but also exhibit excellent photohyperthermic effects. The contrast consistently sustained the echo signals for no less than 5 min and the NIR laser light ablated the tumor completely within two weeks in the presence of PPyHMs. More importantly, no use of additional NIR absorber substantially minimizes an onetime dose of the theranostic agent. PMID:23912977

  2. Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes

    SciTech Connect

    Han, Dandan; Xu, Pengcheng; Jing, Xiaoyan; Wang, Jun; Song, Dalei; Liu, Jingyuan; Zhang, Milin

    2013-07-15

    A facile lamellar template method (see image) has been developed for the preparation of uniform hollow core–shell structure NiO (HCS–NiO) with a nanoarchitectured wall structure. The prepared NiO was found to be highly crystalline in uniform microstructures with high specific surface area and pore volume. The results indicated that ethanol interacted with trisodium citrate played an important role for the formation of hollow core–shell spheres. On the basis of the analysis of the composition and the morphology, a possible formation mechanism was investigated. NiO microspheres with hollow core–shell showed excellent capacitive properties. The exceptional cyclic, structural and electrochemical stability with ∼95% coulombic efficiency, and very low ESR value from impedance measurements promised good utility value of hollow core–shell NiO material in fabricating a wide range of high-performance electrochemical supercapacitors. - The hollow core–shell NiO was prepared with a facile lamellar template method. The prepared NiO show higher capacitance, lower ion diffusion resistance and better electroactive surface utilization for Faradaic reactions. - Highlights: • Formation of hollow core–shell NiO via a novel and facile precipitation route. • Exhibited uniform feature sizes and high surface area of hollow core–shell NiO. • Synthesized NiO has high specific capacitance ( 448 F g{sup 1}) and very low ESR value. • Increased 20% of long life cycles capability after 500 charge–discharge cycles.

  3. A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance.

    PubMed

    Li, Xiaona; Huang, Renkun; Hu, Yanhua; Chen, Yongjuan; Liu, Wenjun; Yuan, Rusheng; Li, Zhaohui

    2012-06-04

    Bi(2)WO(6) hollow microspheres with dimension of ca. 1.5 μm were synthesized via a hydrothermal method using polystyrene particles as the template. The as-prepared Bi(2)WO(6) hollow microspheres can be further transformed to double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres. The samples were fully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, N(2)-sorption Brunauer-Emmett-Teller surface area, UV-vis diffuse-reflectance spectroscopy, and X-ray photoelectron spectroscopy. The as-formed double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres exhibit enhanced photocatalytic activity due to the hollow nature and formation of the p-n junction between p-type Bi(2)O(3) and n-type Bi(2)WO(6). The study provides a general and effective method in the fabrication of composition and dimension-tunable composite hollow microspheres with sound heterojunctions that may show a variety of applications.

  4. Fullerene hollow microspheres prepared by bubble-templates as sensitive and selective electrocatalytic sensor for biomolecules.

    PubMed

    Wei, Lang; Lei, Yilong; Fu, Hongbing; Yao, Jiannian

    2012-03-01

    We developed an electrocatalytic sensor based on C(60) hollow microspheres for highly sensitive and selective detection of dopamine (DA) in the presence of ascorbic acid (AA), and uric acid (UA) in the presence of l-cysteine (RSH). The hollow microspheres of C(60) with a diameter controllable in the range of 0.5 to 1.5 μm and a thickness of 200 nm are synthesized by a high-temperature reprecipitation method with the assistance of alcohol bubbles. The superhydrophobicity of C(60) hollow microspheres makes them capable of forming a compact thin film at air/water interface, which can be readily transferred on the surface of gold or glassy carbon electrodes. This porous C(60) film made from C(60) hollow microspheres shows a specific surface area as high as 107 m(2) g(-1). In order to obtain a conducting film, the C(60)-modified electrode is pretreated by scanning the potential range from 0.0 to -1.5 V in 1 M KOH followed by potential cycling between 550 to -50 mV in a pH 7.2 phosphate buffer solution. On the basis of XPS and IR measurements, we found that surface oxides, such as -OH and C═O groups, are introduced on the surfaces of the conducting C(60) film. This, combined with the porosity that enhances the adsorption activity of C(60)-modified electrodes, enable the electrocatalytic analysis of target biomolecules with detection limit as low as 0.1 nM for DA in the presence of AA, and 1 μM for UA in the presence of RSH. © 2012 American Chemical Society

  5. Superior electrode performance of mesoporous hollow TiO2 microspheres through efficient hierarchical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Zhang, Yu; Song, Shuyan; Zhang, Hongjie

    2011-10-01

    Mesoporous hollow TiO2 microspheres with controlled size and hierarchical nanostructures are designed from a process employing in suit template-assisted and hydrothermal methods. The results show that the hollow microspheres composed of mesoporous nanospheres possess very stable reversible capacity of 184 mAh g-1 at 0.25C and exhibit extremely high power of 122 mAh g-1 at the high rate of 10C. The superior high-rate and high-capacity performance of the sample is attributed to the efficient hierarchical nanostructures. The hollow structure could shorten the diffusion length for lithium ion in the microspheres. The large mesoporous channels between the mesoporous nanospheres provide an easily-accessed system which facilitates electrolyte transportation and lithium ion diffusion within the electrode materials. The electrolyte, flooding the mesoporous channels, can also lead to a high electrolyte/electrode contact area, facilitating transport of lithium ions across the electrolyte/electrode interface. The small mesopores in the meosporous nanospheres can make the electrolyte and lithium ion further diffuse into the interior of electrode materials and increase electrolyte/electrode contact area. The small nanoparticles can also ensure high reversible capacity.

  6. Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor.

    PubMed

    Liu, Hui; Guo, Kai; Duan, Congyue; Dong, Xiaonan; Gao, Jiaojiao

    2017-01-15

    Hollow TiO2 modified reduced graphene oxide microspheres (hollow TiO2-rGO microspheres or H-TiO2-rGO MS) have been synthesized and then be used to immobilize hemoglobin (Hb) to fabricate a mediator-free biosensor. The morphology and structure of hollow TiO2-rGO microspheres were characterized by scanning electron microscopy, transmission electronic microscopy and X-ray diffraction. Results of spectroscopy and electrochemistry tests revealed that hollow TiO2-rGO microsphere is an excellent immobilization matrix with biocompatibility for redox protein, affording good protein bioactivity and stability. The hollow TiO2-rGO microspheres with special structure and component enhance the immobilization efficiency of proteins and facilitate the direct electron transfer, which result in the better H2O2 detection performance-the wide linear range of 0.1-360μM for H2O2 (sensitivity of 417.6 μA mM(-1) cm(-2)) and the extremely low detection limit of 10nM for H2O2. Moreover, the hollow microsphere can provide a protective microenvironment for Hb to make the as-prepared biosensor improve long-term stability. The as-prepared biosensor retains 95.4% of the initial response to H2O2 after 60-d storage. Hence, this work suggests that if can be fabricated a mediator-free biosensor, hollow TiO2-rGO microspheres will find wide potential applications in environmental analysis and biomedical detection.

  7. Aqueous solution synthesis of CaF2 hollow microspheres via the ostwald ripening process at room temperature.

    PubMed

    Wang, Wen-Shou; Zhen, Liang; Xu, Cheng-Yan; Chen, Jun-Zhou; Shao, Wen-Zhu

    2009-04-01

    Nearly monodispersive CaF2 hollow microspheres were synthesized by a facile aqueous solution route from the mixed aqueous solutions of CaCl2, Na2WO4, and NaF at room temperature. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, and N2 adsorption-desorption techniques. The CaF2 hollow microspheres have an average diameter of about 1.5 microm and a hollow interior of 0.5 microm. The shell is composed of numerous single-crystalline nanoparticles with diameter of about 20 nm. The morphologies and diameters of the CaF2 products are strongly dependent on the experimental parameters, such as the concentration of the aqueous NaF solution and the reaction temperature. The synthetic experiments indicate that the growth process of CaF2 hollow microspheres involves first the formation of CaWO4 solid microspheres and then the formation of CaF2 solid microspheres through the reaction between CaWO4 and F(-) ions controlled by the difference of the solubility product for CaWO4 and CaF2. Phenomenological elucidation based on TEM observations and XRD patterns of intermediate products at different precipitation stages indicates that the formation mechanism for the CaF2 hollow microspheres is related to the Ostwald ripening mechanism. N2 adsorption-desorption measurement shows that the CaF2 hollow microspheres possess a high Brunauer-Emmett-Teller surface area and porosity properties. The synthetic procedure is straightforward and represents a new example of the Ostwald ripening mechanism for the formation of inorganic hollow structures in an aqueous solution at room temperature.

  8. Self-Assemblies of Acicular Hollow Fe/C Nanostructures.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Li, Mingyu; Zheng, Qiuyu; Ren, Qingguo; Zhu, Y Q; Peng, H X

    2015-08-01

    Self-assemblies of acicular hollow Fe/C structures were synthesized using D-glucose monohydrate and ferric chloride as precursors by a simple hydrothermal process followed by carbonization at 800 °C. The self-assembled structures with an overall diameter of 15~20 µm composed of radially formed hollow needles from a central core with an average diameter of ca. 1 µm and a length up to 10 µm. The end of the needles was revealed to be a awl shape with a hollow structure formed during the self-assembly process and the subsequent heat treatment. The hollow structure was probably caused by the Kirkendall effect at 800 °C. The materials exhibit ferromagnetic characteristic with saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) of 22.2 emu/g, 3 emu/g, and 151.22 Oe, respectively, with Ms much lower than that of Fe3O4.

  9. Synthesis and characterization of hollow cadmium oxide sphere with carbon microsphere as template.

    PubMed

    Wang, Gongling; Lai, Xiaoyong; Wang, Dan

    2013-02-01

    Cadmium Oxide (CdO) hollow spheres have been synthesized by using carbon microsphere as sacrificial template. The products were characterized by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). The average diameter and shell thickness of as-prepared hollow spheres are about 600 nm and 50 nm, respectively. The formation of hollow spheres was investigated and it was found that the shell formed when the heating temperature reached about 673 K and the sequential heat treatment could remove the carbon template. Moreover, the influence of other experimental parameters including concentration (0.1-5 M) and type of cadmium salts (cadmium chloride, cadmium acetate and cadmium nitrate, etc.) as well as type of solvents (water, ethanol and dimethylfomamide) were also investigated.

  10. Hydrothermal synthesis of Ni(12)P(5) hollow microspheres, characterization and photocatalytic degradation property.

    PubMed

    Li, Jun; Ni, Yonghong; Liao, Kaiming; Hong, Jianming

    2009-04-01

    In this paper, we report the successful synthesis of Ni(12)P(5) hollow spheres via a facile hydrothermal route, employing white phosphorus (WP) and nickel nitrate as the reactants in the presence of hexamethylenetetramine (HMT) and polyethylene glycol 10000 (PEG-10000). The phase and morphology of the product were characterized by means of powder X-ray diffraction (XRD), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). HMT and surfactant (PEG-10000) played important roles in the formation of Ni(12)P(5) hollow microspheres. Furthermore, research also showed that the as-prepared Ni(12)P(5) hollow spheres could photocatalytically degrade some organic dyes such as Safranine T and Pyronine B under irradiation of 365 nm UV light.

  11. A Radically New Method for Hydrogen Storage in Hollow Glass Microspheres

    SciTech Connect

    James E. Shelby; Matthew M. Hall; Fabienne C. Raszewski

    2007-08-31

    Photo-induced hydrogen diffusion has been applied to the problem of storage of high pressure hydrogen in hollow glass microspheres. Results of this study indicate that this phenomenon can be used to provide a high mass efficiency, safe, cheap, non-toxic method for storage of high pressure hydrogen. The photo-induced response is immediate upon exposure to infrared light for hollow glass microspheres doped with iron, nickel, or cobalt oxide, which is consistent with previous results for transition metal oxide-doped bulk glass samples. This effect is not observed for HGMS which do not contain these transition metal oxide, where the slight release of hydrogen observed occurs only by heating from absorption of the light. The initial rate of hydrogen release increases with increasing concentration of the metal oxide and with increasing hydrogen fill pressure within the microspheres. To date, hydrogen storage efficiencies of 2.2 wt% have been obtained, but results suggest that storage values can be increased to at least 6 wt%. Hydrogen losses over a 5 week period are minimal at room temperature in all compositions, with somewhat greater, but acceptable, losses at 50 C. Hollow glass microspheres have been produced from an alkali alkaline earth borosilicate glass containing either 1 or 5 wt% of the oxides of iron, nickel, and cobalt. Photo-driven gas diffusion has been demonstrated for these HGMS. Demonstration of photo-induced diffusion in these samples provides the first proof-of-concept for eventual applications of HGMS for large scale hydrogen storage.

  12. Self-assembly of polymeric microspheres of complex internal structures

    NASA Astrophysics Data System (ADS)

    Fialkowski, Marcin; Bitner, Agnieszka; Grzybowski, Bartosz A.

    2005-01-01

    Self-assembly can easily produce intricate structures that would be difficult to make by conventional fabrication means. Here, self-assembly is used to prepare multicomponent polymeric microspheres of arbitrary internal symmetries. Droplets of liquid prepolymers are printed onto a water-soluble hydrogel, and are allowed to spread and coalesce into composite patches. These patches are then immersed in an isodense liquid, which both compensates the force of gravity and dissolves the gel beneath the polymers. Subsequently, the patches fold into spheres whose internal structures are dictated by the arrangement of the droplets printed onto the surface. The spheres can be solidified either thermally or by ultraviolet radiation. We present a theoretical analysis of droplet spreading, coalescence and folding. Conditions for the stability of the folded microspheres are derived from linear stability analysis. The composite microbeads that we describe are likely to find uses in optics, colloidal self-assembly and controlled-delivery applications.

  13. Porous {alpha}-Fe{sub 2}O{sub 3} hollow microspheres and their application for acetone sensor

    SciTech Connect

    Wang, Shurong; Wang, Liwei; Yang, Taili; Liu, Xianghong; Zhang, Jun; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping; Wu, Shihua

    2010-12-15

    Porous {alpha}-Fe{sub 2}O{sub 3} hollow microspheres were synthesized through a simple and efficient carbon sphere template method. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption-desorption. Structural characterization indicated that as-prepared {alpha}-Fe{sub 2}O{sub 3} hollow microspheres had porous structure with around 200 nm in diameter and thin shell about 10 nm thick. The average pore size and Brunauer-Emmett-Teller specific surface area of {alpha}-Fe{sub 2}O{sub 3} hollow microspheres were 6.5 nm and 111.6 m{sup 2}/g, respectively. The gas sensing behavior investigation showed that as-synthesized {alpha}-Fe{sub 2}O{sub 3} hollow microspheres exhibited very good gas sensing property to acetone vapor. -- Graphical Abstract: HRTEM images of the {alpha}-Fe{sub 2}O{sub 3} hollow microspheres. Display Omitted

  14. Assembly of ordered microsphere arrays: Platforms for microarrays

    NASA Astrophysics Data System (ADS)

    Xu, Wanling

    Microarrays are powerful tools in gene expression assessment, protein profiling, and protein function screening, as well as cell and tissue analysis. With thousands of small array spots assembled in an ordered array, these small devices makes it possible to screen for multiple targets in a fast, parallel, high-throughput manner. The well-developed technology of DNA microarrays, also called DNA chips, has proved successful in all kinds of biological experiments, including the human genome-sequencing project. The development of protein arrays has lagged behind that of DNA arrays mainly because of the greater complexity of proteins. Some parts of the microarray technology can be transplanted into the realm of protein arrays, while others cannot. The challenges from the complexity of protein targets demand more robust and powerful devices. Traditional planar arrays, in which proteins bind directly to a planar surface, have a drawback in that some proteins will be denatured or cluster together after immobilization. Microsphere-based microarrays represent a more advanced strategy. The functional proteins are first attached to microspheres; these microspheres are then immobilized in arrays on a planar surface. In this dissertation, two approaches to assembling arrays of microspheres will be discussed. The hydrodynamic approach uses surface micromachining and Deep Reactive Ion Etching techniques to form an array of channels through a silicon wafer. By drawing fluid containing the microspheres through the channels they become trapped in the channels and thereby immobilized. In the magnetic approach, permalloy films are deposited on a silicon substrate and subsequently patterned to form magnetic attachment sites. An external magnetic field is then applied and the magnetic microspheres then assemble on these sites. Both devices are able to immobilize microspheres in an ordered array, as opposed to coarsely grouping them in array spots. The assembled arrays are robust in that

  15. Bio-template route for facile fabrication of Cd(OH){sub 2}@yeast hybrid microspheres and their subsequent conversion to mesoporous CdO hollow microspheres

    SciTech Connect

    Bai, Bo; Guan, Weisheng; Li, Ziyan; Li Puma, Gianluca

    2011-01-15

    Cadmium oxide (CdO) microspheres with a porous hollow microstructure were prepared by a facile yeast mediated bio-template route. The yeast provides a solid scaffold for the deposition of cadmium hydroxide (Cd(OH){sub 2}) from cadmium acetate and sodium hydroxide solutions to form the hybrid Cd(OH){sub 2}@yeast precursor. Thermal conversions of this at above 500 {sup o}C in air have produced hollow CdO microspheres. The products were characterized by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), thermal gravimetric and differential thermal analysis (TGA-DTA), and Brunauer-Emmett-Teller (BET) surface analysis respectively. The obtained CdO microspheres have uniform size (length = 2.6 {+-} 0.4 {mu}m; width = 2.0 {+-} 0.2 {mu}m) and a well defined, continuous, mesoporous hollow microstructure. The shell is about 250-280 nm in thickness. The mechanism of formation of Cd(OH){sub 2}@yeast precursor and its conversion to CdO hollow microspheres is discussed. In comparison with traditional template-directed method, the present strategy represents a general, economical and environmentally benign route for the formation of metal oxide hollow microspheres. These materials have potential applications in different fields such as encapsulation, drug delivery, efficient catalysis, battery materials and photonic crystals. The method presented can be extended to the synthesis of other inorganic hollow microstructures of different sizes and shapes by pre-selecting suitable bio-templates.

  16. Improvements in processing characteristics and engineering properties of wood flour-filled high density polyethylene composite sheeting in the presence of hollow glass microspheres

    Treesearch

    Baris Yalcin; Steve E Amos; Andrew S D Souza; Craig M Clemons; I Sedat Gunes; Troy K Ista

    2012-01-01

    Hollow glass microspheres were introduced into wood flour/high density polyethylene composites by melt compounding in a twin-screw extruder. The prepared composites were subsequently converted to extruded profiles in order to obtain composite sheeting. The presence of hollow glass microspheres highly reduced the density of the extruded sheets down to 0.9 g/cc, while...

  17. Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation.

    PubMed

    Xie, Qingshui; Zhao, Yue; Guo, Huizhang; Lu, Aolin; Zhang, Xiangxin; Wang, Laisen; Chen, Ming-Shu; Peng, Dong-Liang

    2014-01-08

    In this article, well-dispersed CeO2-ZnO composite hollow microspheres have been fabricated through a simple chemical reaction followed by annealing treatment. Amorphous zinc-cerium citrate hollow microspheres were first synthesized by dispersing zinc citrate hollow microspheres into cerium nitrate solution and then aging at room temperature for 1 h. By calcining the as-produced zinc-cerium citrate hollow microspheres at 500 °C for 2 h, CeO2-ZnO composite hollow microspheres with homogeneous composition distribution could be harvested for the first time. The resulting CeO2-ZnO composite hollow microspheres exhibit enhanced activity for CO oxidation compared with CeO2 and ZnO, which is due to well-dispersed small CeO2 particles on the surface of ZnO hollow microspheres and strong interaction between CeO2 and ZnO. Moreover, when Au nanoparticles are deposited on the surface of the CeO2-ZnO composite hollow microspheres, the full CO conversion temperature of the as-produced 1.0 wt % Au-CeO2-ZnO composites reduces from 300 to 60 °C in comparison with CeO2-ZnO composites. The significantly improved catalytic activity may be ascribed to the strong synergistic interplay between Au nanoparticles and CeO2-ZnO composites.

  18. Self-construction of magnetic hollow La0.7Sr0.3MnO3 microspheres with complex units.

    PubMed

    Chu, Xuefeng; Huang, Keke; Han, Mei; Feng, Shouhua

    2013-04-15

    Perovskite structure La0.7Sr0.3MnO3 magnetic hollow microspheres with complex units were prepared via the hydrothermal route without hard and soft templates. The formation of hollow microspheres follows the self-construction mechanism involving oriented attachment, dissolution, and recrystallization processes. It exhibits a ferromagnetic behavior at room temperature.

  19. Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption.

    PubMed

    Xu, Hailong; Yin, Xiaowei; Zhu, Meng; Han, Meikang; Hou, Zexin; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2017-02-22

    In this work, mesoporous carbon hollow microspheres (PCHMs) with designable mesoporous shell and interior void are constructed by a facile in situ stöber templating approach and a pyrolysis-etching process. The PCHMs are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectra, Raman spectroscopy, and nitrogen adsorption and desorption system. A uniform mesoporous shell (pore size 4.7 nm) with a thickness of 55 nm and a cavity size of 345 nm is realized. The composite of paraffin mixed with 20 wt % PCHMs exhibits a minimum reflection coefficient (RCmin) of -84 dB at 8.2 GHz with a sample thickness of 3.9 mm and an effective absorption bandwidth (EAB) of 4.8 GHz below -10 dB (>90% electromagnetic wave is attenuated). Moreover, the composite of phenolic resin mixed with 20 wt % PCHMs exhibits an ultrawide EAB of 8 GHz below -10 dB with a thinner thickness of 2.15 mm. Such excellent electromagnetic wave absorption properties are ascribed to the large carbon-air interface in the mesoporous shell and interior void, which is favorable for the matching of characteristic impedance as compared with carbon hollow microspheres and carbon solid microspheres. Considering the excellent performance of PCHMs, we believe the as-fabricated PCHMs can be promising candidates as highly effective microwave absorbers, and the design philosophy can be extended to other spherical absorbers.

  20. Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications.

    PubMed

    Yu, Xin-Yao; Yao, Xian-Zhi; Luo, Tao; Jia, Yong; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-03-12

    A facile synthesis of novel urchin-like NiCo2O4 hierarchical hollow microspheres has been developed based on a template-free solvothermal and subsequent calcination method. The growth process of NiCo2O4 hollow microsphere precursors has been investigated, and a plausible mechanism was proposed. Because of their unique structure and high specific surface area, these NiCo2O4 hollow microspheres displayed enhanced electrochemical properties in methanol electrooxidation and determination of heavy-metal ions compared with solid urchin-like NiCo2O4 microspheres, Co3O4, and NiO microspheres. The good electrochemical performances suggested that these unique hierarchical NiCo2O4 hollow microspheres could be promising materials for energy and environmentally related applications.

  1. pH-Regulated Synthesis of Multi-Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates.

    PubMed

    Wang, Jiangyan; Tang, Hongjie; Ren, Hao; Yu, Ranbo; Qi, Jian; Mao, Dan; Zhao, Huijun; Wang, Dan

    2014-12-01

    Multi-shelled Mn2O3 hollow microspheres have been achieved through a pH-regulated method and used as supercapacitor electrodes. The designed unique architecture allows efficient use of pseudo-capacitive Mn2O3 nanomaterials for charge storage with facilitated transport for both ions and electrons, rendering them high specific capacitance, good rate capability, and remarkable cycling performance.

  2. Hollow silica microspheres for buoyancy-assisted separation of infectious pathogens from stool.

    PubMed

    Weigum, Shannon E; Xiang, Lichen; Osta, Erica; Li, Linying; López, Gabriel P

    2016-09-30

    Separation of cells and microorganisms from complex biological mixtures is a critical first step in many analytical applications ranging from clinical diagnostics to environmental monitoring for food and waterborne contaminants. Yet, existing techniques for cell separation are plagued by high reagent and/or instrumentation costs that limit their use in many remote or resource-poor settings, such as field clinics or developing countries. We developed an innovative approach to isolate infectious pathogens from biological fluids using buoyant hollow silica microspheres that function as "molecular buoys" for affinity-based target capture and separation by floatation. In this process, antibody functionalized glass microspheres are mixed with a complex biological sample, such as stool. When mixing is stopped, the target-bound, low-density microspheres float to the air/liquid surface, which simultaneously isolates and concentrates the target analytes from the sample matrix. The microspheres are highly tunable in terms of size, density, and surface functionality for targeting diverse analytes with separation times of ≤2min in viscous solutions. We have applied the molecular buoy technique for isolation of a protozoan parasite that causes diarrheal illness, Cryptosporidium, directly from stool with separation efficiencies over 90% and low non-specific binding. This low-cost method for phenotypic cell/pathogen separation from complex mixtures is expected to have widespread use in clinical diagnostics as well as basic research.

  3. Stacking-order-dependent optoelectronic properties of bilayer nanofilm photodetectors made from hollow ZnS and ZnO microspheres.

    PubMed

    Hu, Linfeng; Chen, Min; Shan, Wenze; Zhan, Tianrong; Liao, Meiyong; Fang, Xiaosheng; Hu, Xinhua; Wu, Limin

    2012-11-14

    Innovative bilayer nanofilms composed of semiconducting ZnS and ZnO hollow microspheres are successfully fabricated by an oil-water interfacial self-assembly strategy. The photocurrent of the bilayer film-based photodetectors is dependent on the stacking orders of the building blocks. The optimal optoelectronic properties of the ZnS(up)/ZnO(down) device are much better than those of the monolayer-film based device. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Encapsulation of living E. coli cells in hollow polymer microspheres of highly defined size.

    PubMed

    Flemke, Jennifer; Maywald, Matthias; Sieber, Volker

    2013-01-14

    Here, we report the preparation and characterization of hollow polymer microspheres based on the preprecipitation of porous calcium carbonate cores with an average size of 5 μm and their use for encapsulation of living microorganisms. The microspheres filled with individual living E. coli cells were prepared by layer-by-layer (LbL) deposition of different polyelectrolytes and proteins onto the porous calcium carbonate cores leading to the formation of matrix-like complexes of the compounds followed by calcium carbonate core dissolution using EDTA. Both the influence of the encapsulation process as well as of the used polyelectrolytes on the survival rate of the cells were determined by confocal laser scanning microscopy (CLSM) and microtiter plate fluorescence tests. After the encapsulation process ~40% of the cells were alive. Cultivation tests indicated that the lag phase of cells treated with polyelectrolytes increases and the encapsulated E. coli cells were able to produce green fluorescent protein inside the microcapsules.

  5. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5'-phosphate as a phosphorus source and application in drug delivery.

    PubMed

    Zhao, Xin-Yu; Zhu, Ying-Jie; Qi, Chao; Chen, Feng; Lu, Bing-Qiang; Zhao, Jing; Wu, Jin

    2013-06-01

    Three-dimensional (3D) hydroxyapatite (HAP) hierarchical nanostructures, in particular hollow nanostructures, have attracted much attention owing to their potential applications in many biomedical fields. Herein, we report a rapid microwave-assisted hydrothermal synthesis of a variety of hydroxyapatite hierarchical nanostructures that are constructed by the self-assembly of nanorods or nanosheets as the building blocks, including HAP nanorod-assembled hierarchical hollow microspheres (HA-NRHMs), HAP nanorod-assembled hierarchical microspheres (HA-NRMs), and HAP nanosheet-assembled hierarchical microspheres (HA-NSMs) by using biocompatible biomolecule pyridoxal-5'-phosphate (PLP) as a new organic phosphorus source. The PLP molecules hydrolyze to produce phosphate ions under microwave-hydrothermal conditions, and the phosphate ions react with calcium ions to form HAP nanorods or nanosheets; then, these nanorods or nanosheets self-assemble to form 3D HAP hierarchical nanostructures. The preparation method reported herein is time-saving, with microwave heating times as short as 5 min. The HA-NRHMs consist of HAP nanorods as the building units, with an average diameter of about 50 nm. The effects of the experimental conditions on the morphology and crystal phase of the products are investigated. The hydrolysis of PLP under microwave-hydrothermal conditions and the important role of PLP in the formation of 3D HAP hierarchical nanostructures are investigated and a possible formation mechanism is proposed. The products are explored for potential applications in protein adsorption and drug delivery. Our experimental results indicate that the HA-NRHMs have high drug/protein-loading capacity and sustained drug-release behavior. Thus, the as-prepared HA-NRHMs are promising for applications in drug delivery and protein adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice

    PubMed Central

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion–evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0−t): 12.53±1.65 mg/L*h vs 7.80±0.83 and 5.82±0.83 mg/L*h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU. PMID:27042001

  7. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice.

    PubMed

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion-evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0-t): 12.53±1.65 mg/L(*)h vs 7.80±0.83 and 5.82±0.83 mg/L(*)h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU.

  8. Titania nanocoating on MnCO3 microspheres via liquid-phase deposition for fabrication of template-assisted core-shell- and hollow-structured composites.

    PubMed

    Lee, Hack-Keun; Sakemi, Daisuke; Selyanchyn, Roman; Lee, Cheal-Gyu; Lee, Seung-Woo

    2014-01-08

    A novel class of core-shell- and hollow-structured MnCO3/TiO2 composites was synthesized by titania nanocoating on MnCO3 microspheres via two-step liquid-phase deposition at room temperature. Morphological change from core-shell to hollow microparticles was possible in the prepared samples by controlling prereaction time of MnCO3 and [NH4]2TiF6. Upon the prereaction process, the core of the core-shell MnCO3/TiO2 became highly porous, and a honeycomb-like surface that resembled the orientation of self-assembled MnCO3 nanocrystals was developed. The MnCO3 core was completely removed after 6 h prereaction. Calcination at 600 °C resulted in the transformation of both core-shell- and hollow-structured composites to Mn2O3/TiO2 anatase microspheres that retained their original morphologies. X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and electron probe microanalysis were employed for microsphere characterization. As the first trial for application of the synthesized materials, solid-extraction of organics from aqueous media was examined using methylene blue (MB). Both types of Mn2O3/TiO2 composites showed very fast adsorption of MB with high extraction values of 5.2 and 6.4 μmol g(-1) for the core-shell and hollow structures, respectively. Current work provides a new approach for facile fabrication of titania-metal oxide nanocomposites with unique morphological features and promising application possibilities.

  9. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency.

    PubMed

    Dong, Zhenghong; Lai, Xiaoyong; Halpert, Jonathan E; Yang, Nailiang; Yi, Luoxin; Zhai, Jin; Wang, Dan; Tang, Zhiyong; Jiang, Lei

    2012-02-21

    A series of multishelled ZnO hollow microspheres with controlled shell number and inter-shell spacing have been successfully prepared by a simple carbonaceous microsphere templating method, whose large surface area and complex multishelled hollow structure enable them load sufficient dyes and multi-reflect the light for enhancing light harvesting and realize a high conversion efficiency of up to 5.6% when used in dye-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A microfluidic approach to assembling ordered microsphere arrays

    NASA Astrophysics Data System (ADS)

    Xu, W.; Sur, K.; Zeng, H.; Feinerman, A.; Kelso, D.; Ketterson, J. B.

    2008-07-01

    Hydrodynamic flow through an array of channels has been utilized to assemble microspheres on a flat surface. The channels, about 6 µm in lateral size, were etched through a 60 µm thick silicon wafer using deep reactive ion etching (DRIE). Droplets containing 6-8 µm fluorescent polystyrene microspheres were placed on the top side of the horizontally-oriented silicon wafer, while the bottom side was connected to a syringe that draws the fluid through the channels. In this way the microspheres are guided and secured at the inlets of the channels, and remain in place when the suction ceases. This technique, which combines favorable features such as high throughput, high resolution rate and reusability, can be a powerful platform for a new generation of protein microarrays. Antigens can be bound to the microspheres as 'targets', which can then be exposed to different fluorescence-tagged antibodies so that their binding can be confirmed. This system can also be used to study the functional roles of gene fragments and their relations to human diseases. The high throughput feature will make it possible to screen a large number of DNA fragments and identify the genetic basis of various diseases effectively.

  11. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect

    Huang Yuying; Sun Fengqiang; Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe

    2011-03-15

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  12. Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor.

    PubMed

    Xie, Qing; Zhao, Yingying; Chen, Xu; Liu, Haimei; Evans, David G; Yang, Wensheng

    2011-09-01

    Nanosheet-based titania (TiO(2)) microspheres with a hollow core-shell structure have been synthesized and employed to immobilize horseradish peroxidase (HRP) in order to fabricate a mediator-free biosensor. The morphology and structure of the TiO(2) microspheres were characterized by X-ray diffraction, scanning electron microscopy and transmission electronic microscopy. A possible growth mechanism has been proposed. Spectroscopic and electrochemical measurements revealed that the TiO(2) microspheres are an immobilization support with biocompatibility for enzymes, affording good enzyme stability and bioactivity. Due to the nanosheet-based hollow core-shell structure of the TiO(2) microspheres, the direct electron transfer of HRP is facilitated and the resulting biosensor displayed good performance for the detection of H(2)O(2), with both a low detection limit of 0.05 μM and a wide linear range of 0.4-140 μM, as well as a fast response and excellent long-term stability. The nanosheet-based TiO(2) microspheres with hollow core-shell structure, can be used for the efficient entrapment of other redox-active proteins and have wide potential applications in biosensors, biocatalysis, biomedical devices and bioelectronics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Development of hollow microspheres as floating controlled-release systems for cardiovascular drugs: preparation and release characteristics.

    PubMed

    Soppimath, K S; Kulkarni, A R; Aminabhavi, T M

    2001-07-01

    Hollow microspheres of cellulose acetate loaded with four cardiovascular drugs (nifedipine [NFD], nicardapine hydrochloride [NCD], verapamil hydrochloride [VRP], and dipyridamole [DIP]) were prepared by a novel solvent diffusion-evaporation method. The oil-in-water emulsion prepared in an aqueous solution of 0.05% poly(vinyl alcohol) medium with ethyl acetate, a water-soluble and less toxic solvent, was used as the dispersing solvent. The yield of the microspheres was up to 80%. The microspheres had smooth surfaces, with free-flowing and good-packing properties. Scanning electron microscopy (SEM) confirmed their hollow structures, with sizes in the range 489-350 microm. The microspheres tended to float over the gastric media for more than 12 h. The drug loaded in hollow microspheres was in an amorphous state, as confirmed by differential scanning microscopy (DSC). The release of the drugs was controlled for more than 8 h. The release kinetics followed different transport mechanisms depending on the nature of the drug molecules.

  14. Pulsatile drug release from PLGA hollow microspheres by controlling the permeability of their walls with a magnetic field.

    PubMed

    Chiang, Wei-Lun; Ke, Cherng-Jyh; Liao, Zi-Xian; Chen, San-Yuan; Chen, Fu-Rong; Tsai, Chun-Ying; Xia, Younan; Sung, Hsing-Wen

    2012-12-07

    Pulsatile release: When a high-frequency magnetic field is applied, heat will be generated by coupling to the iron oxide nanoparticles encapsulated in the shells of PLGA hollow microspheres. As the temperature approaches the T(g) of PLGA, the polymer chains become more mobile, subsequently increasing the free volume of PLGA matrix and significantly enhancing the diffusion of drug molecules.

  15. Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants

    PubMed Central

    2014-01-01

    Three-dimensional hollow porous superparamagnetic Fe3O4 microspheres were synthesized via a facile hydrothermal process. A series of characterizations done with X-ray diffraction, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy indicated that the production of Fe3O4 microspheres possessed good monodispersity, uniform size distribution, hollow and porous structural characters, and strong superparamagnetic behavior. The obtained Fe3O4 microspheres have a diameter of ca. 300 nm, which is composed of many interconnected nanoparticles with a size of ca. 20 nm. The saturation magnetization is 80.6 emu·g-1. The as-prepared products had promising applications as novel catalysts to remove organic pollutants (methylene blue) from wastewater in the presence of H2O2 and ultrasound irradiation. PMID:25520596

  16. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries.

    PubMed

    Zhang, Genqiang; Yu, Le; Wu, Hao Bin; Hoster, Harry E; Lou, Xiong Wen David

    2012-09-04

    Novel ZnMn(2)O(4) ball-in-ball hollow microspheres are fabricated by a facile two-step method involving the solution synthesis of ZnMn-glycolate hollow microspheres and subsequent thermal annealing in air. When evaluated as an anode material for lithium-ion batteries, these ZnMn(2)O(4) ball-in-ball hollow microspheres show significantly enhanced electrochemical performance with high capacity, excellent cycling stability and good rate capability. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Porous-wall hollow glass microspheres as novel potential nanocarriers for biomedical applications

    PubMed Central

    Li, Shuyi; Nguyen, Lynsa; Xiong, Hairong; Wang, Meiyao; Hu, Tom C.-C.; She, Jin-Xiong; Serkiz, Steven M.; Wicks, George G.; Dynan, William S.

    2011-01-01

    Porous-wall hollow glass microspheres (PW-HGMs) are a novel form of glass material consisting of a 10 to 100 micron-diameter hollow central cavity surrounded by a 1 micron-thick silica shell. A tortuous network of nanometer-scale channels completely penetrates the shell. We show here that these channels promote size-dependent uptake and controlled release of biological molecules in the 3–8 nm range, including antibodies and a modified single-chain antibody variable fragment (scFv). In addition, a 6 nm (70 kDa) dextran can be used to gate the porous walls, facilitating controlled release of an internalized small interfering RNA. PW-HGMs remained in place after mouse intratumoral injection, suggesting a possible application for the delivery of anti-cancer drugs. The combination of a hollow central cavity that can carry soluble therapeutic agents with mesoporous walls for controlled release is a unique characteristic that distinguishes PW-HGMs from other glass materials for biomedical applications. PMID:19616128

  18. Self-assembled microspheres from f-block elements and nucleoamphiphiles.

    PubMed

    Moreau, Louis; Ziarelli, Fabio; Grinstaff, Mark W; Barthélémy, Philippe

    2006-04-21

    Hollow microspheres featuring a hybrid lipid-cation multilamellar shell are prepared by hydration of a nucleoside based amphiphile with an aqueous solution containing either actinide or lanthanide salts. The physico-chemical data collected clearly indicate that the formation of these microspheres is a consequence of the following concomitant stabilizing factors: (i) hydrophobic interactions, (ii) nucleobase dimer formation and (iii) phosphate/f-block element salt binding.

  19. A Radically New Method for Hydrogen Storage in Hollow Glass Microspheres

    SciTech Connect

    James E. Shelby; Matthew M. Hall; Michael J. Snyder; Peter B. Wachtel

    2009-07-13

    The primary goal of this project is to demonstrate that hydrogen gas can be rapidly extracted from hollow glass microspheres (HGMS) using a photo-induced heating effect. The results of the project demonstrate that diffusion of hydrogen is readily induced by exposure to light from an IR lamp in transition metal-doped HGMS filled to as much as 5,000 psi with hydrogen gas, which contain approximately 2.2 wt% hydrogen. Doped HGMS in conjunction with optically induced outgassing provide a solution to the traditional limitation of HGMS – i.e., the slow release of hydrogen from HGMS that are heated using a furnace. This information will also be invaluable in designing process changes for future production of HGMS able to hold higher pressures of hydrogen.

  20. Synthesis of magnetic and lightweight hollow microspheres/polyaniline/Fe 3 O 4 composite in one-step method

    NASA Astrophysics Data System (ADS)

    Sun, Li; Li, Qin; Wang, Wei; Pang, Jianfeng; Zhai, Jianping

    2011-09-01

    After hollow microspheres (HM) were surface modified, a layer of electromagnetic polyaniline/Fe3O4 composite (PAN/Fe3O4) was successfully grafted onto the surface of the self-assembled monolayer coated HM, resulting in HM/PAN/Fe3O4 composites. In this approach, γ-aminopropyltriethoxy silane was adopted to form a well-coating monolayer with amino groups for the graft polymerization of aniline, which played an important role in fabricating the core-shell structure. FeCl3 was used as the oxidant not only for aniline to form PAN, but also for FeCl2 to prepare the magnets. The structure, morphologies, and magnetic properties of the as-prepared samples were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The results indicated that the HM/PAN/Fe3O4 composites possess low density (ρ < 1.0 g/cm3), controllable morphology, and good magnetic properties at room temperature (saturation magnetization Ms = 8.32 emu g-1 and coercive force Hc ≈ 0).

  1. Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres.

    PubMed

    Zhang, Bing; Tang, Dianping; Goryacheva, Irina Yu; Niessner, Reinhard; Knopp, Dietmar

    2013-02-11

    A new anodic-stripping voltammetric immunoassay protocol for detection of IgG1, as a model protein, was designed by using CdS quantum dot (QD) layer-by-layer assembled hollow microspheres (QDHMS) as molecular tags. Initially, monoclonal anti-human IgG1 specific antibodies were anchored on amorphous magnetic beads preferably selective to capture F(ab) of IgG1 analyte from the sample. For detection, monoclonal anti-human IgG1 (F(c)-specific) antibodies were covalently coupled to the synthesized QDHMS. In a sandwich-type immunoassay format, subsequent anodic-stripping voltammetric detection of cadmium released under acidic conditions from the coupled QDs was conducted at an in situ prepared mercury film electrode. The immunoassay combines highly efficient magnetic separation with signal amplification by the multilayered QD labels. The dynamic concentration range spanned from 1.0 fg mL(-1) to 1.0 μg mL(-1) of IgG1 with a detection limit of 0.1 fg mL(-1). The electrochemical immunoassay showed good reproducibility, selectivity, and stability. The analysis of clinical serum specimens revealed good accordance with the results obtained by an enzyme-linked immunosorbent assay method. The new immunoassay is promising for enzyme-free, and cost-effective analysis of low-abundance biomarkers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance

    NASA Astrophysics Data System (ADS)

    Xu, Li; Xia, Jiexiang; Xu, Hui; Yin, Sheng; Wang, Kun; Huang, Liying; Wang, Leigang; Li, Huaming

    2014-01-01

    A route to fabricate the graphite-like C3N4 hybridized α-Fe2O3 (g-C3N4/α-Fe2O3) hollow microspheres is designed. This route develops an ionic liquid system containing iron ions for manufacturing the g-C3N4/α-Fe2O3 hollow microspheres by a novel and eco-friendly solvothermal method at low temperature condition. The effect of ionic liquids on the morphology of the g-C3N4/α-Fe2O3 hybrid composites has been investigated in detail. It is found that ionic liquid 1-butyl-3-methylimidazolium tetrachlorideferrate(III) [Bmim]FeCl4 is supposed to have the triple roles of reactant, dispersing media and template at the same time, and is vital for the structure of the g-C3N4/α-Fe2O3 hollow microspheres. In addition, the capacitance of the g-C3N4/α-Fe2O3 hollow microspheres as electrode materials for supercapacitors is tested by cyclic voltammetry and chronopotentiometry measurements. The g-C3N4/α-Fe2O3 hollow microspheres exhibit large specific capacitance, excellent cycling performance and high Coulombic efficiency. The designed g-C3N4/α-Fe2O3 hollow microspheres show potential applications in supercapacitors.

  3. Hollow microsphere with mesoporous shell by Pickering emulsion polymerization as a potential colloidal collector for organic contaminants in water.

    PubMed

    Guan, Yinyan; Meng, Xiaohui; Qiu, Dong

    2014-04-08

    Submicrometer hollow microspheres with mesoporous shells were prepared by a simple one-pot strategy. Colloidal silica particles were used as a particle stabilizer to emulsify the oil phase, which was composed of a polymerizable silicon monomer (TPM) and an inert organic solvent (PEA). The low interfacial tension between colloidal silica particles and TPM helped to form a Pickering emulsion with small droplet sizes. After the polymerization of TPM, the more hydrophobic PEA formed a liquid core, leading to a hollow structure after its removal by evaporation. BET results indicated that the shell of a hollow particle was mesoporous with a specific surface area over 400 m(2)·g(-1). With PEA as the core and silica as the shell, each resultant hollow particle had a hydrophobic cavity and an amphiphilic surface, thus serving as a good colloidal collector for hydrophobic contaminants in water.

  4. Self-assembled hollow nanospheres strongly enhance photoluminescence.

    PubMed

    Ke, Damei; Zhan, Chuanlang; Xu, Shuangping; Ding, Xunlei; Peng, Aidong; Sun, Jin; He, Shenggui; Li, Alexander D Q; Yao, Jiannian

    2011-07-27

    We report that two molecular building blocks differ only by two protons, yet they form totally different nanostructures. The protonated one self-organized into hollow nanospheres (~200 nm), whereas the one without the protons self-assembled into rectangular plates. Consequently, the geometrically defined nanoassemblies exhibit radically different properties. As self-assembly directing units, protons impart ion-pairing and hydrogen-bonding probabilities. The plate-forming nanosystem fluoresces weakly, probably due to energy transfer among chromophores (Φ < 0.2), but the nanospheres emit strong yellow fluorescence (Φ ≈ 0.58-0.85).

  5. Determination triazine pesticides in cereal samples based on single-hole hollow molecularly imprinted microspheres.

    PubMed

    Zhao, Qi; Li, Huiyu; Xu, Yang; Zhang, Fengshuang; Zhao, Jiahui; Wang, Long; Hou, Juan; Ding, Hong; Li, Yi; Jin, Haiyan; Ding, Lan

    2015-01-09

    Single-hole hollow molecularly imprinted microspheres (h-MIMs) were prepared by hard template method and applied to extract six triazine pesticides in cereal samples, followed by HPLC-MS/MS detection. The synthesis mechanism of the h-MIMs has been studied. The h-MIMs exhibited bigger specific surface area and much higher binding capacity than the molecularly imprinted polymers prepared by precipitation polymerization (p-MIPs) and surface polymerization (s-MIPs). Besides, the adsorption rate of h-MIMs to prometryn was significantly higher than that of p-MIPs and s-MIPs. Owing to the hollow structure of the h-MIMs, more binding cavities were located on the inner and outer surfaces of the h-MIMs, which could facilitate the removal of template molecules from the polymers and the rebinding of the target molecules to the polymers. Under the optimal conditions, the detection limits of triazines are in the range of 0.08-0.16ngg(-1). At the spiked level (5ngg(-1)), the recoveries of triazines are in the range of 81±4% to 96±4%. The proposed method was successfully applied to determine six triazines in five cereal samples. Atrazine was found in two rice samples and a wheat sample with the contents of 5.1, 6.7 and 5.6ngg(-1), respectively. Ametryn and prometryn were found in a maize sample with the contents of 7.6 and 7.3ngg(-1), respectively.

  6. Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents.

    PubMed

    Zhang, Huijuan; Wu, Jun; Zhou, Longping; Zhang, Dayong; Qi, Limin

    2007-01-30

    Mesoporous silica materials with a variety of morphologies, such as monodisperse microspheres, gigantic hollow structures comprising a thin shell with a hole, and gigantic hollow structures consisting of an outer thin shell and an inner layer composed of many small spheres, have been readily synthesized in mixed water-ethanol solvents at room temperature using cetyltrimethylammonium bromide (CTAB) as the template. The obtained mesoporous silica generally shows a disordered mesostructure with typical average pore sizes ranging from 3.1 to 3.8 nm. The effects of the water-to-ethanol volume ratio (r), the volume content of tetraethyl orthosilicate TEOS (x), and the CTAB concentration in the solution on the final morphology of the mesoporous silica products have been investigated. The growth process of gigantic hollow shells of mesoporous silica through templating emulsion droplets of TEOS in mixed water-ethanol solution has been monitored directly with optical microscopy. Generally, the morphology of mesoporous silica can be regulated from microspheres through gigantic hollow structures composed of small spheres to gigantic hollow structures with a thin shell by increasing the water-to-ethanol volume ratio, increasing the TEOS volume content, or decreasing the CTAB concentration. A plausible mechanism for the morphological regulation of mesoporous silica by adjusting various experimental parameters has been put forward by considering the existing state of the unhydrolyzed and partially hydrolyzed TEOS in the synthesis system.

  7. Superhydrophobic hierarchically assembled films of diblock copolymer hollow nanospheres and nanotubes.

    PubMed

    He, Guping; Hu, Jiwen; Liu, Guojun; Li, Yinhui; Zhang, Ganwei; Liu, Feng; Sun, Jianpin; Zou, Hailiang; Tu, Yuanyuan; Xiao, Dingshu

    2013-04-10

    Reported are the formation of rough particulate films from cross-linked diblock copolymer vesicles and nanotubes and the wetting properties of the resultant films. The diblock copolymers used were F66M200 and F95A135, where the subscripts denote the repeat unit numbers, whereas M, A, and F denote poly(2-cinnamoyloxyethyl methacrylate), poly(2-cinnamoyloxyethyl acrylate), and poly(2,2,2-trifluoroethyl methacrylate), respectively. The precursory polymers to F66M200 and F95A135 were prepared by atom transfer radical polymerization. In 2,2,2-trifluoroethyl methacrylate (FEMA), a selective solvent for F, vesicles and tubular micelles were prepared from F66M200 and F95A135, respectively. Photo-cross-linking the M and A blocks of these aggregates yielded hollow nanospheres and nanotubes bearing F coronal chains. These particles were dispersed into CH2Cl2/methanol, where CH2Cl2 was a good solvent for both blocks and methanol was a poor solvent for F. Casting CH2Cl2/methanol dispersions of these particles yielded films consisting of hierarchically assembled diblock copolymer nanoparticles. For example, the hollow nanospheres fused into microspheres bearing nanobumps after being cast from CH2Cl2/methanol at methanol volume fractions of 30 and 50%. The roughness of these films increased as the methanol volume fraction increased. The films that were cast at high methanol contents were superhydrophobic, possessing water contact angles of ∼160° and water sliding angles of ∼3°.

  8. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  9. Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution.

    PubMed

    Qiu, Penghe; Mao, Chuanbin

    2010-03-23

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. On the basis of this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering.

  10. Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties.

    PubMed

    Guo, Fei; Wen, Qiuying; Peng, Yubing; Guo, Zhiguang

    2017-05-15

    Superhydrophobic materials have drawn great attention due to its' remarkable non-wetting properties and applications in many fields. In this paper, we synthesize a hollow superhydrophobic SiO2 powder by typical template method and self-assembly functionalization. Robustness of many superhydrophobic surfaces has become the development bottleneck for industrial applications. Aiming at this problem, the adhesive epoxy resin is specially taken to use as the binding layer between superhydrophobic SiO2 powder and substrates to create robust superhydrophobic coating. The mechanical durability of the obtained superhydrophobic coating is evaluated by a cyclic sandpaper abrasion. Also, the chemical stability of this superhydrophobic coating is assessed by exposuring it to different pH conditions and UV irradiation, respectively. Significantly, because of the special structure and superhydrophobicity/superoleophilicity of the hollow microspheres, these hollow superhydrophobic SiO2 powders manifest great oil-adsorbing capacity, which thus can be used to separate oil/water mixtures and remove oil from oil-in-water emulsions.

  11. Electrochemical properties and controlled-synthesis of hierarchical {beta}-Ni(OH){sub 2} micro-flowers and hollow microspheres

    SciTech Connect

    Wang, Yong; Zhu, Qingshan

    2010-12-15

    {beta}-Ni(OH){sub 2} hierarchical micro-flowers, hierarchical hollow microspheres and nanosheets were synthesized via a facile, single-step and selected-control hydrothermal method. Both hierarchical micro-flowers and hierarchical hollow microspheres were built from two-dimensional nanosheets with thickness of 50-100 nm. The as-obtained products were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). It was observed that marked morphological changes in {beta}-Ni(OH){sub 2} depended on the initial concentrations of Ni{sup 2+} ions and glycine. A possible growth mechanism was proposed based on experimental results. In addition, the effect of morphology on the electrochemical properties was also investigated. Both hierarchical micro-flowers and hierarchical hollow microspheres exhibited enhanced specific capacity and high-rate discharge ability as compared with pure Ni(OH){sub 2} nanosheets. Investigations confirmed that hierarchical structures had a pronounced influence upon the electrochemical performance of nickel hydroxide.

  12. One-pot synthesis of hierarchical Cu2O/Cu hollow microspheres with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hong, Tianjie; Tao, Feifei; Lin, Jiudong; Ding, Wei; Lan, Mingxuan

    2015-08-01

    The hierarchical Cu2O/Cu hollow microspheres have been fabricated by the one-pot solvothermal redox method, which is one-step approach without any surfactant and template. By using the HRTEM, XRD, XPS and UV-vis spectroscopy, the as-prepared product is composed of Cu2O and Cu with energy band gap of 1.72 eV. Based on the time-dependent experiments, the content of Cu2O and Cu compositions can be effectively controlled by adjusting the reaction time and a possible mechanism is proposed. In addition, using various dye molecules to stimulate pollutants, the hierarchical Cu2O/Cu hollow microspheres reacted for 8 h exhibit excellent visible-light photocatalytic activities, which is much higher than those of the Cu2O/Cu catalysts formed at the shorter reaction time, commercial Cu2O powder and the mixture of alone Cu2O and Cu. This enhanced photocatalytic performance makes these hierarchical Cu2O/Cu hollow microspheres a kind of efficient visible-light photocatalyst in removing some organic compounds in wastewater.

  13. Polymer blends used to prepare nifedipine loaded hollow microspheres for a floating-type oral drug delivery system: in vitro evaluation.

    PubMed

    Zhao, Ling; Wei, Yu-meng; Yu, Yu; Zheng, Wen-wu

    2010-03-01

    The aim of this study was to investigate whether hollow microspheres prepared from polymer blends of polyvinyl pyrrolidone (PVP) and ethyl cellulose (EC) could improve the vitro release behavior of the poorly water-soluble drug nifedipine. Hollow microspheres containing nifedipine were prepared by a solvent diffusion-evaporation method using various ratios of PVP and EC codissolved with drug in ethanol/ether (5:1, v/v). The hollow microspheres could float in release medium for more than 24 h, and floating capacities were not be influenced by mixing PVP. In vitro release profiles of hollow microspheres prepared using EC along showed an initial burst release to some extent, and the cumulative release percentage was less than 55% after 24 h. But, not only the slope but also the shape of the release curves was affected by using mixture of PVP and EC. What's more important, when the ratio (PVP/EC) increased to 1.5:8.5, the cumulative release percentage could be increased to 95.8%. Furthermore, the release rate of microspheres showed a zero order approximate dynamic model and could be expressed by the following equation: Q=3.78t+8.52 (r=0.990). Consequently, hollow microspheres prepared using polymer blends of PVP and EC (1.5:8.5, w/w) could be suitable for floating-type controlled-release delivery systems for the oral administration of nifedipine.

  14. Preparation and characterization of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles using urea as precipitator via coprecipitation method

    SciTech Connect

    Pang Xiaofen; Fu Wuyou; Yang Haibin Zhu Hongyang; Xu Jing; Li Xiang; Zou Guangtian

    2009-02-04

    The composite of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles has been successfully prepared using urea as precipitator via coprecipitation method. The resultant composites were characterized by X-ray diffraction, field emission scanning electron microscope and vibrating sample magnetometer. The results showed that the slow decomposition of urea could be beneficial to form uniform and entire cobalt ferrite coating layer on the surface of hollow glass microspheres. The smoothest morphology was obtained for the sample prepared from 0.7 M urea, while the sample prepared from 1.0 M urea had the thickest shell. This indicated that there was a competition between the morphology and thickness of the coated microspheres. A possible formation mechanism of hollow glass microspheres coated with cobalt ferrite was proposed. The magnetic properties of the samples were also investigated.

  15. Facile assembly and properties of polystyrene microsphere/reduced graphene oxide/Ag composite.

    PubMed

    Zhang, Taiyang; Li, Xiangqing; Kang, Shizhao; Qin, Lixia; Yan, Wenfu; Mu, Jin

    2013-07-15

    A ternary assembly consisting of reduced graphene oxide (RGO), Ag nanoparticles, and polystyrene (PS) microsphere was prepared in aqueous solution by an electrostatic assembly combined with one-step reduction process. The composition and structure of the assembly (PS microsphere/RGO/Ag) were characterized by powder X-ray diffraction, transmission electron microscope, scanning electron microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy. The interactions among RGO, Ag nanoparticles, and PS microsphere were investigated by surface enhanced Raman scattering spectroscopy. The results showed that there existed strong interactions among RGO, Ag nanoparticles, and PS microsphere. Importantly, the assembly showed high heat stability and good dispersion in water. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Green synthesis of nickel species in situ modified hollow microsphere TiO2 with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qin, Zenan; Chen, Jie; Ren, Baosheng; Chen, Qifeng; Guo, Yanchuan; Cao, Xiaofeng

    2016-02-01

    A green template-free solvothermal approach was developed to synthesize hollow microsphere TiO2-modified in situ with nickel species (Ni2+/Ni3+). Oxalic acid played a pivotal role in the formation of hollow architecture, acting as chelating agent, structure-directing reagent, and acidity-modulation reagent, while isopropyl alcohol ensured the formation of spherical structure. The microstructure and composition of the products were characterized with various techniques, and the results showed that the products exhibited not only highly crystallized anatase phase, large specific surface areas, and the mesoporous shell and hollow architecture, but also the coexistence of Ni2+/Ni3+. The unique structure and composition of the photocatalysts resulted in improved UV and visible photocatalytic activity for degradation of Rhodamine-B and 2,4-dichlorophenol.

  17. Assembly of functional gold nanoparticle on silica microsphere.

    PubMed

    Wang, Hsuan-Lan; Lee, Fu-Cheng; Tang, Tse-Yu; Zhou, Chenguang; Tsai, De-Hao

    2016-05-01

    We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics.

  18. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life

    PubMed Central

    Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong

    2016-01-01

    Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g−1 at 1 A g−1, and still keep a high value of 704 F g−1 even at 20 A g−1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg−1 at a power density of 800 W kg−1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min−1 g−1Ni for catalytic hydrolysis of NH3BH3 (AB). PMID:27616420

  19. Efficiency enhancement in GaAs solar cells using self-assembled microspheres.

    PubMed

    Chang, Te-Hung; Wu, Pei-Hsuan; Chen, Sheng-Hui; Chan, Chia-Hua; Lee, Cheng-Chung; Chen, Chii-Chang; Su, Yan-Kuin

    2009-04-13

    In this study we develop an efficient light harvesting scheme that can enhance the efficiency of GaAs solar cells using self-assembled microspheres. Based on the scattering of the microspheres and the theory of photonic crystals, the path length can be increased. In addition, the self-assembly of microspheres is one of the simplest and the fastest methods with which to build a 2D periodic structure. The experimental results are confirmed by the use of a simulation in which a finite-difference time-domain (FDTD) method is used to analyze the absorption and electric field of the 2D periodic structure. Both the results of the numerical simulations and the experimental results show an increase in the conversion power efficiency of GaAs solar cell of about 25% when 1 microm microspheres were assembled on the surface of GaAs solar cells.

  20. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

    PubMed Central

    Panigrahi, Ritwik; Srivastava, Suneel K.

    2015-01-01

    In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59–23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported. PMID:25560384

  1. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites.

    PubMed

    Jiao, Chuanmei; Wang, Hongzhi; Li, Shaoxiang; Chen, Xilei

    2017-06-15

    Nowadays, reducing the fire hazard of thermoplastic polyurethane (TPU) is an important research direction in the fields of fire safety materials. In this article, hollow glass microsphere (HGM) was used to reduce the fire hazard of TPU in combustion process. The fire characteristics including smoke and heat production of TPU composites were evaluated using smoke density test (SDT) and cone calorimeter test (CCT). And the thermal decomposition and flammable properties were further studied using thermogravimetric analysis/infrared spectrometry (TG-IR) and limiting oxygen index (LOI), etc. The SDT results showed that the luminous flux (LF) of TPU4 containing 2.00wt% HGM was up to 24% at the end of test without flame, which is much higher than that of TPU0 (5%). And, the CCT results indicated that 2.00wt% HGM could make the total smoke release (TSR) decrease from 1019m(2)/m(2) (TPU0) to 757m(2)/m(2) (TPU4), reduced by 26%. The TG-IR results confirmed that HGM could improve the thermal stability of composites and reduce the production of some toxic gases. The above results illustrated HGM had a good prospect in reducing the fire hazard for TPU. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates

    NASA Astrophysics Data System (ADS)

    Sorge, Matthew; Bean, Thomas; Woodland, Travis; Canning, John; Cheng, I. Frank; Edwards, Dean B.

    2014-11-01

    Porous, hollow, glass microspheres (PHGMs) can be used to increase porosity in lead acid battery electrodes to improve the battery's power and energy performance at higher discharge rates. As reported in this paper, the PHGM additives did improve electrolyte storage and porosity in the electrodes. However, the nonconductive PHGMs do reduce the critical volume fraction (CVF) of the electrodes as predicted from conductivity models. The increase in electrode performance due to increased porosity may therefore be partially offset by the drop in capacity due to a lower critical volume fraction. Empirical equations are developed that relate the CFV and porosity of an electrode to the amount, size, and porosity of the additives in that electrode. The porosity estimates made from the empirical equations compare favorably with the experimental data from plates fabricated with these additives. The performance of electrodes with additives is estimated from computer models using the electrode's CVF and porosity as provided by the equations. Tests were performed on plates having volume loadings of PHGMs from 11% to 44% of total solids in positive electrodes to determine their effect on active material utilizations. The results from these discharge tests are reported and compared with theoretical models.

  3. Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system.

    PubMed

    Lai, Wen; Chen, Cen; Ren, Xiaoyuan; Lee, In-Seop; Jiang, Guohua; Kong, Xiangdong

    2016-05-01

    Porous hollow hydroxyapatite microspheres (PHHMs) are the promising biomaterials, owing to their excellent biocompatibility, biodegradability and bioactivity. PHHMs have been used as drug controlled carriers due to their advantages such as large drug loading capacity, nanochannels for drug loading and release and high specific surface area. In this study, PHHMs were prepared successfully in Na2HPO4 solution by an anion-exchange process using vaterite CaCO3 through a hydrothermal method. The previous vaterite CaCO3 was synthesized by a polymer-templated method in the poly(styrene sulfonic acid) sodium salt (PSS) aqueous solutions. The PHHMs have a size distribution from 0.8 to 2.0 μm, with an average pore size of about 24.3 nm. The wall of PHHMs is constructed with building units of hydroxyapatite nanofibers with an average length of 300 nm and an average width of 20 nm. The PHHMs displayed a high drug loading capacity and pH-responsive sustained-controlled drug release behavior when we used doxorubicin hydrochloride (DOX) as a loading drug. Moreover, the controlled drug release system showed a high ability to kill cancer cells and less damage to normal cells. These results indicated that PHHMs are promising for applications in various biomedical fields such as drug delivery system and oncotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A reporter assay for the next generation of biomaterials: porous-wall hollow glass microspheres.

    PubMed

    Cunningham, Aaron; Faircloth, Hunter; Jones, Matthew; Johnson, Christopher; Coleman, Tiffany; Wicks, George; Postma, Gregory; Weinberger, Paul

    2014-06-01

    The primary objective was to design a reporter assay to measure molecular release kinetics from a new porous-wall hollow glass microsphere biomaterial with great potential in regenerative medicine and drug delivery. Second, future avenues for research will be discussed specifically in regard to potential clinical uses in laryngology. Basic science data report. We developed an assay using fluorescent nanocrystals or quantum dots (Qdot 605) as a reporter. A Nuance FX multispectral imaging system was used to detect fluorescence in aqueous phase. Spectral output of known concentrations of aqueous Qdot 605 was measured by the Nuance system to create a standard curve. These data were plotted and fit to a curve. Qdot 605 emission demonstrates excellent correlation with concentration in a log-log relationship [R(2) = 0.99649, median error = 9.9%], indicating that the Qdot 605 assay is reliable and should be explored regarding its ability to evaluate the drug-eluting properties of this material. We have derived a method to measure Qdot concentration using fluorescent microscopy, which will facilitate future research on this exciting new biomaterial. This material has great potential for use in head and neck surgery. Specific avenues within laryngology to be investigated include laryngeal and tracheal reconstruction, vocal fold healing, and nerve regeneration. Furthermore, we believe this is the first documented use of the Nuance system to determine aqueous molecular concentrations. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Template-free synthesis of hierarchical TiO2 hollow microspheres as scattering layer for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rui, Yichuan; Wang, Linlin; Zhao, Jiachang; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Xu, Jingli

    2016-04-01

    Hierarchical TiO2 hollow microspheres were synthesized by a 2-step process consisting of thermal hydrolysis and subsequent solvothermal reaction. Quasi-monodispersed solid TiO2 microspheres aggregated by amorphous particles were firstly obtained by the controlled thermal hydrolysis of titanium sulfate, and then the solid structures transformed to hollow ones and crystallized during the subsequent solvothermal treatment. SEM and TEM images of the samples revealed that the morphological evolution was in perfect accordance with the inside-out Ostwald ripening mechanism. The rich porosity and unique hierarchical hollow structure endow the TiO2 microspheres with a large specific surface area of 108.0 m2 g-1. As an effective anode material for dye-sensitized solar cells, TiO2 hollow microspheres showed good capability of dye adsorption and strong light scattering, leading to a comparable energy conversion efficiency to the commercial 18NR-T transparent titania. Finally, a high efficiency of 7.84% was achieved for the bi-layer DSSC by coating the hollow microspheres on top of the 18NR-T titania as the light scattering layer.

  6. Analysis of DNA-guided self-assembly of microspheres using imaging flow cytometry.

    PubMed

    Tang, Hao; Deschner, Ryan; Allen, Peter; Cho, Younjin; Sermas, Patrick; Maurer, Alejandro; Ellington, Andrew D; Willson, C Grant

    2012-09-19

    Imaging flow cytometry was used to analyze the self-assembly of DNA-conjugated polystyrene microspheres. This technique enables quantitative analysis of the assembly process and thereby enables detailed analysis of the effect of structural and process variables on the assembly yield. In a demonstration of the potential of this technique, the influence of DNA strand base pair (bp) length was examined, and it was found that 50 bp was sufficient to drive the assembly of microspheres efficiently, forming not only dimers but also chainlike structures. The effect of stoichiometry on the yield was also examined. The analysis demonstrated that self-assembly of 50 bp microspheres can be driven nearly to completion by stoichiometric excess in a manner similar to Le Chatelier's principle in common chemical equilibrium.

  7. Mussel-inspired polydopamine coated hollow carbon microspheres, a novel versatile filler for fabrication of high performance syntactic foams.

    PubMed

    Zhang, Liying; Roy, Sunanda; Chen, Ye; Chua, Eng Kee; See, Kye Yak; Hu, Xiao; Liu, Ming

    2014-01-01

    Syntactic foams, which can be synthesized by mechanical mixing of hollow microspheres with a matrix material, are a special class of lightweight composite materials. Developing of high-performance syntactic foams remains challenges. In this work, a facile and environmentally friendly surface modification method employing polydopamine (PDA) as a surface treatment agent for hollow carbon microspheres (HCMs) was used, aiming to extend the application of syntactic foams to seldom touched areas. The PDA coating was used as a strategy for interfacial interaction enhancement and also as a platform for further metal coating meant for electromagnetic interference (EMI) shielding. The stronger interfacial interaction between microspheres and polymer matrix provided effective interfacial stress transfer, as a result of the syntactic foams with high strength to weight ratio. Furthermore, the PDA coating on HCMs served as a versatile platform for the growth of noble metals on the surface of PDA-HCMs. Silver nanoparticles was grown by PDA medium. The silver coated HCMs (Ag-PDA-HCMs) impacted the complex permittivity of the syntactic foams leading to high EMI shielding effectiveness (SE). The specific EMI SE reached up to 46.3 dB·cm(3)/g, demonstrated the Ag-PDA-HCMs/epoxy syntactic foam as a promising candidate for lightweight high-performance EMI shielding material.

  8. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance

    NASA Astrophysics Data System (ADS)

    Xu, Jie; He, Fei; Gai, Shili; Zhang, Shenghuan; Li, Lei; Yang, Piaoping

    2014-08-01

    A unique, double-shelled, hollow, carbon-based composite with enriched nitrogen has been prepared through a facile and versatile synthetic strategy. The hierarchical composite employs the nitrogen-enriched carbon hollow sphere as an interior shell and intercrossed Ni/Al layered double hydroxide (LDH) nanosheets as an exterior shell. The obtained N-C@LDH hollow microspheres (HMS) have high nitrogen enrichment, large specific surface area (337 m2 g-1), and uniform and open mesoporous structure. Taking advantage of these characteristics, the composite exhibits obviously superior capacitive behavior, including high specific capacitance, excellent rate capability and good cycling stability, compared with nitrogen-free carbon@LDH composite and hollow LDH without carbon shell. The composite displays high specific capacitance of 1711.51 F g-1 at a current density of 1 A g-1. In particular, the high specific capacitance can be kept to 997.3 F g-1 at a high current density of 10 A g-1, which still retains 94.97% of the initial specific capacitance after 500 cycles at this high current density. This N-enriched, hollow carbon/LDH composite can be expected to be a promising electrode material for electrochemical capacitors due to its high electrochemical performance.A unique, double-shelled, hollow, carbon-based composite with enriched nitrogen has been prepared through a facile and versatile synthetic strategy. The hierarchical composite employs the nitrogen-enriched carbon hollow sphere as an interior shell and intercrossed Ni/Al layered double hydroxide (LDH) nanosheets as an exterior shell. The obtained N-C@LDH hollow microspheres (HMS) have high nitrogen enrichment, large specific surface area (337 m2 g-1), and uniform and open mesoporous structure. Taking advantage of these characteristics, the composite exhibits obviously superior capacitive behavior, including high specific capacitance, excellent rate capability and good cycling stability, compared with nitrogen

  9. Y2O3:Eu3+ core-in-multi-hollow microspheres: facile synthesis and luminescence properties.

    PubMed

    Liu, Guixia; Liu, Shujun; Dong, Xiangting; Wang, Jinxian

    2011-11-01

    Y2O3:Eu3+ core-in-multi-hollow microspheres were synthesized via a facile hydrothermal method in the presence of glucose followed by a subsequent heat-treatment process. X-ray diffraction (XRD) pattern shows that the as-obtained hollow spheres are cubic phase of Y2O3. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images indicate that the samples are three layer hollow spheres with a diameter of 2-4 microm and the outermost wall thickness of 100 nm, the size of the inner core is about 300-400 nm, and the sub-outer wall thickness is about 100 nm. X-ray energy dispersive spectrum (EDS) shows that the samples are composed of Y, Eu and O. Photoluminescence spectra show that the hollow spheres have a strong characteristic red emission corresponding to the 5D0 - 7F2 transition of Eu3+ ions under ultraviolet excitation. This method can be used to synthesize other rare earth oxide hollow luminescent materials.

  10. Interparticle interactions and direct imaging of colloidal phases assembled from microsphere-nanoparticle mixtures.

    PubMed

    Martinez, Carlos J; Liu, Jiwen; Rhodes, Summer K; Luijten, Erik; Weeks, Eric R; Lewis, Jennifer A

    2005-10-25

    We investigate the interparticle interactions, phase behavior, and structure of microsphere-nanoparticle mixtures that possess high size and charge asymmetry. We employ a novel Monte Carlo simulation scheme to calculate the effective microsphere interactions in suspension, yielding new insight into the origin of the experimentally observed behavior. The initial settling velocity, final sediment density, and three-dimensional structure of colloidal phases assembled from these binary mixtures via gravitational settling of silica microspheres in water and index-matched solutions exhibit a strong compositional dependence. Confocal laser scanning microscopy is used to directly image and quantify their structural evolution during assembly. Below a lower critical nanoparticle volume fraction (phi(nano) < phi(L,C)), the intrinsic van der Waals attraction between microspheres leads to the formation of colloidal gels. These gels exhibit enhanced consolidation as phi(nano) approaches phi(L,C). When phi(nano) exceeds phi(L,C), an effective repulsion arises between microspheres due to the formation of a dynamic nanoparticle halo around the colloids. From this stable fluid phase, the microspheres settle into a crystalline array. Finally, above an upper critical nanoparticle volume fraction (phi(nano) > phi(U,C)), colloidal gels form whose structure becomes more open with increasing nanoparticle concentration due to the emergence of an effective microsphere attraction, whose magnitude exhibits a superlinear dependence on phi(nano).

  11. Formation processes and main properties of hollow aluminosilicate microspheres in fly ash from thermal power stations

    SciTech Connect

    V.S. Drozhzhin; M.Ya. Shpirt; L.D. Danilin; M.D. Kuvaev; I.V. Pikulin; G.A. Potemkin; S.A. Redyushev

    2008-04-15

    The main parameters of aluminosilicate microspheres formed at thermal power stations in Russia were studied. These parameters are responsible for the prospective industrial application of these microspheres. A comparative analysis of the properties of mineral coal components, the conditions of coal combustion, and the effects of chemical and phase-mineralogical compositions of mineral impurities in coals from almost all of the main coal deposits on the formation of microspheres was performed. The effects of thermal treatment conditions on gas evolution processes in mineral particles and on the fraction of aluminosilicate microspheres in fly ash were considered. It was found that the yield of microspheres was higher in pulverized coal combustion in furnaces with liquid slag removal, all other factors being equal. The regularities of microsphere formation were analyzed, and the mechanism of microsphere formation in fly ash during the combustion of solid fuels was considered.

  12. Guided self-assembly of integrated hollow Bragg waveguides

    NASA Astrophysics Data System (ADS)

    Decorby, R. G.; Ponnampalam, N.; Nguyen, H. T.; Pai, M. M.; Clement, T. J.

    2007-04-01

    We describe the fabrication of integrated hollow waveguides through guided self-assembly of straight-sided, thin film delamination buckles within a multilayer system of chalcogenide glass and polymer. The process is based on silver photodoping, which was used to control both the stress and adhesion of the chalcogenide glass films. Straight, curved, crossing, and tapered microchannels were realized in parallel. The channels are cladded by omnidirectional dielectric reflectors designed for low-loss, air-core guiding of light in the 1550-1700 nm wavelength range. Loss as low as ~15 dB/cm was measured for channels of height ~2.5 μm, in good agreement with both an analytical ray optics model and finite difference numerical simulations. The loss is determined mainly by the reflectivity of the cladding mirrors, which is ~0.995 for the as-fabricated devices.

  13. Core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate: synthesis using adenosine 5'-triphosphate and application in pH-responsive drug delivery.

    PubMed

    Lu, Bing-Qiang; Zhu, Ying-Jie; Chen, Feng; Qi, Chao; Zhao, Xin-Yu; Zhao, Jing

    2014-10-01

    Drug nanocarriers with magnetic targeting and pH-responsive drug-release behavior are promising for applications in controlled drug delivery. Magnetic iron oxides show excellent magnetism, but their application in drug delivery is limited by low drug-loading capacity and poor control over drug release. Herein, core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate (MIO@ACP) were prepared and investigated as magnetic, pH-responsive drug nanocarriers. Hollow microspheres of magnetic iron oxide (HMIOs) were prepared by etching solid MIO microspheres in hydrochloric acid/ethanol solution. After loading a drug into the HMIOs, the drug-loaded HMIOs were coated with a protective layer of ACP by using adenosine 5'-triphosphate (ATP) disodium salt (Na2 ATP) as stabilizer, and drug-loaded core-shell hollow microspheres of MIO@ACP (HMIOs/drug/ACP) were obtained. The as-prepared HMIOs/drug/ACP drug-delivery system exhibits superparamagnetism and pH-responsive drug-release behavior. In a medium with pH 7.4, drug release was slow, but it was significantly accelerated at pH 4.5 due to dissolution of the ACP shell. Docetaxel-loaded core-shell hollow microspheres of MIO@ACP exhibited high anticancer activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ion-exchange synthesis of Ag/Ag2S/Ag3CuS2 ternary hollow microspheres with efficient visible-light photocatalytic activity.

    PubMed

    Xing, Chaosheng; Zhang, Yuan; Wu, Zhudong; Jiang, Deli; Chen, Min

    2014-02-21

    Ternary Ag/Ag2S/Ag3CuS2 hollow microspheres were synthesized via an in situ ion-exchange method using Cu7S4 hollow submicrospheres as the template. The as-obtained Ag/Ag2S/Ag3CuS2 composite exhibited a well-defined uniform hollow microsphere morphology with an average diameter of about 1.3 μm. The photocatalytic property of the as-prepared Ag/Ag2S/Ag3CuS2 hollow microsphere composite was investigated by the decomposition of methyl orange (MO) under visible light irradiation (λ > 420 nm). It was shown that the photocatalytic activity of the Ag/Ag2S/Ag3CuS2 hollow microsphere was higher than those of Ag/Ag2S, Cu2O, Cu7S4 and P25 for the photodegradation of MO under visible light irradiation. Radical scavenger experiments demonstrated that superoxide radicals and holes were the main reactive species for MO degradation.

  15. Enhanced Gas-Sensing Properties of the Hierarchical TiO₂ Hollow Microspheres with Exposed High-Energy {001} Crystal Facets.

    PubMed

    Yang, Yong; Liang, Yan; Wang, Guozhong; Liu, Liangliang; Yuan, Cailei; Yu, Ting; Li, Qinliang; Zeng, Fanyan; Gu, Gang

    2015-11-11

    Anatase hierarchical TiO2 with innovative designs (hollow microspheres with exposed high-energy {001} crystal facets, hollow microspheres without {001} crystal facets, and solid microspheres without {001} crystal facets) were synthesized via a one-pot hydrothermal method and characterized. Based on these materials, gas sensors were fabricated and used for gas-sensing tests. It was found that the sensor based on hierarchical TiO2 hollow microspheres with exposed high-energy {001} crystal facets exhibited enhanced acetone sensing properties compared to the sensors based on the other two materials due to the exposing of high-energy {001} crystal facets and special hierarchical hollow structure. First-principle calculations were performed to illustrate the sensing mechanism, which suggested that the adsorption process of acetone molecule on TiO2 surface was spontaneous, and the adsorption on high-energy {001} crystal facets would be more stable than that on the normally exposed {101} crystal facets. Further characterization indicated that the {001} surface was highly reactive for the adsorption of active oxygen species, which was also responsible for the enhanced sensing performance. The present studies revealed the crystal-facets-dependent gas-sensing properties of TiO2 and provided a new insight into improving the gas sensing performance by designing hierarchical hollow structure with special-crystal-facets exposure.

  16. Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2001-01-01

    The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.

  17. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Huang, Yuying; Sun, Fengqiang; Wu, Tianxing; Wu, Qingsong; Huang, Zhong; Su, Heng; Zhang, Zihe

    2011-03-01

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO 4 as cadmium source and Na 2S 2O 3 as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H 2O 2. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres.

  18. Activation of the Solid Silica Layer of Aerosol-Based C/SiO₂ Particles for Preparation of Various Functional Multishelled Hollow Microspheres.

    PubMed

    Li, Xiangcun; Luo, Fan; He, Gaohong

    2015-05-12

    Double-shelled C/SiO2 hollow microspheres with an outer nanosheet-like silica shell and an inner carbon shell were reported. C/SiO2 aerosol particles were synthesized first by a one-step rapid aerosol process. Then the solid silica layer of the aerosol particles was dissolved and regrown on the carbon surface to obtain novel C/SiO2 double-shelled hollow microspheres. The new microspheres prepared by the facile approach possess high surface area and pore volume (226.3 m(2) g(-1), 0.51 cm(3) g(-1)) compared with the original aerosol particles (64.3 m(2) g(-1), 0.176 cm(3) g(-1)), providing its enhanced enzyme loading capacity. The nanosheet-like silica shell of the hollow microspheres favors the fixation of Au NPs (C/SiO2/Au) and prevents them from growing and migrating at 500 °C. Novel C/C and C/Au/C (C/Pt/C) hollow microspheres were also prepared based on the hollow nanostructure. C/C microspheres (482.0 m(2) g(-1), 0.92 cm(3) g(-1)) were ideal electrode materials. In particular, the Au NPs embedded into the two carbon layers (C/Au/C, 431.2 m(2) g(-1), 0.774 cm(3) g(-1)) show a high catalytic activity and extremely chemical stability even at 850 °C. Moreover, C/SiO2/Au, C/Au/C microspheres can be easily recycled and reused by an external magnetic field because of the presence of Fe3O4 species in the inner carbon shell. The synthetic route reported here is expected to simplify the fabrication process of double-shelled or yolk-shell microspheres, which usually entails multiple steps and a previously synthesized hard template. Such a capability can facilitate the preparation of various functional hollow microspheres by interfacial design.

  19. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water.

    PubMed

    Zhou, Jiabin; Yang, Siliang; Yu, Jiaguo; Shu, Zhan

    2011-09-15

    Hollow microspheres of hierarchical Zn-Al layered double hydroxides (LDHs) were synthesized by a simple hydrothermal method using urea as precipitating agent. The morphology and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms and fourier transform infrared (FTIR) spectroscopy. It was found that the morphology of hierarchical Zn-Al LDHs can be tuned from irregular platelets to hollow microspheres by simply varying concentrations of urea. The effects of initial phosphate concentration and contact time on phosphate adsorption using various Zn-Al LDHs and their calcined products (LDOs) were investigated from batch tests. Our results indicate that the equilibrium adsorption data were best fitted by Langmuir isothermal model, with the maximum adsorption capacity of 54.1-232 mg/g; adsorption kinetics follows the pseudo-second-order kinetic equation and intra-particle diffusion model. In addition, Zn-Al LDOs are shown to be effective adsorbents for removing phosphate from aqueous solutions due to their hierarchical porous structures and high specific surface areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres.

    PubMed

    Niu, Chunyu; Zou, Bingfang; Wang, Yongqiang; Cheng, Lin; Zheng, Haihong; Zhou, Shaomin

    2016-01-26

    To realize highly sensitive and reproducible SERS performance, a new route was put forward to construct uniform SERS film by using magnetic composite microspheres. In the experiment, monodisperse Fe3O4@SiO2@Ag microspheres with hierarchical surface were developed and used as building block of SERS substrate, which not only realized fast capturing analyte through dispersion and collection under external magnet but also could be built into uniform film through magnetically induced self-assembly. By using R6G as probe molecule, the as-obtained uniform film exhibited great improvement on SERS performance in both sensitivity and reproducibility when compared with nonuniform film, demonstrating the perfect integration of high sensitivity of hierarchal noble metal microspheres and high reproducibility of ordered microspheres array. Furthermore, the as-obtained product was used to detect pesticide thiram and also exhibited excellent SERS performance for trace detection.

  1. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.

    PubMed

    Xia, Yang; Xiao, Zhen; Dou, Xiao; Huang, Hui; Lu, Xianghong; Yan, Rongjun; Gan, Yongping; Zhu, Wenjun; Tu, Jiangping; Zhang, Wenkui; Tao, Xinyong

    2013-08-27

    Hollow porous micro/nanostructures with high surface area and shell permeability have attracted tremendous attention. Particularly, the synthesis and structural tailoring of diverse hollow porous materials is regarded as a crucial step toward the realization of high-performance electrode materials, which has several advantages including a large contact area with electrolyte, a superior structural stability, and a short transport path for Li(+) ions. Meanwhile, owing to the inexpensive, abundant, environmentally benign, and renewable biological resources provided by nature, great efforts have been devoted to understand and practice the biotemplating technology, which has been considered as an effective strategy to achieve morphology-controllable materials with structural specialty, complexity, and related unique properties. Herein, we are inspired by the natural microalgae with its special features (easy availability, biological activity, and carbon sources) to develop a green and facile biotemplating method to fabricate monodisperse MnO/C microspheres for lithium-ion batteries. Due to the unique hollow porous structure in which MnO nanoparticles were tightly embedded into a porous carbon matrix and form a penetrative shell, MnO/C microspheres exhibited high reversible specific capacity of 700 mAh g(-1) at 0.1 A g(-1), excellent cycling stability with 94% capacity retention, and enhanced rate performance of 230 mAh g(-1) at 3 A g(-1). This green, sustainable, and economical strategy will extend the scope of biotemplating synthesis for exploring other functional materials in various structure-dependent applications such as catalysis, gas sensing, and energy storage.

  2. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  3. C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications.

    PubMed

    Wang, Songbo; Zhang, Xiangwen; Li, Shuai; Fang, Yuan; Pan, Lun; Zou, Ji-Jun

    2017-06-05

    ZnO is an important semiconductor and has been widely used in the field of photocatalysis, solar cell and environmental remediation. Herein, we fabricated C-doped ZnO ball-in-ball hollow microspheres (BHMs) by a facile solvothermal treatment of zinc acetate in ethylene glycol-ethanol mixture. The presence of ethylene glycol (EG) leads to the formation of initial single-layered hollow spheres and then a time-dependent evolution transforms them into uniform BHMs with tunable shell thickness and void space. XPS characterizations reveal that C-dopants are introduced into the lattice of ZnO BHMs, with its concentration increasing with solvothermal time and then becoming saturated in 12h. ZEG-12 (ZnO BHMs with 12-h solvothermal treatment), with an optimal hollow structure and C-doping concentration, performs the best optical absorption capability, efficiency of charge separation and transfer, and mass transfer in reaction media, as proved by SEM, TEM, PL, BET and EIS characterizations. When applied as photocatalyst for organic-pollutant degradation and as photoanode material for PEC water splitting, ZEG-12 exhibits respectively ca. 8.9-fold and 10.5-fold higher activity than pristine ZnO nanoparticles.

  4. One-pot synthesis of hierarchical Cu{sub 2}O/Cu hollow microspheres with enhanced visible-light photocatalytic activity

    SciTech Connect

    Hong, Tianjie; Tao, Feifei Lin, Jiudong; Ding, Wei; Lan, Mingxuan

    2015-08-15

    The hierarchical Cu{sub 2}O/Cu hollow microspheres have been fabricated by the one-pot solvothermal redox method, which is one-step approach without any surfactant and template. By using the HRTEM, XRD, XPS and UV–vis spectroscopy, the as-prepared product is composed of Cu{sub 2}O and Cu with energy band gap of 1.72 eV. Based on the time-dependent experiments, the content of Cu{sub 2}O and Cu compositions can be effectively controlled by adjusting the reaction time and a possible mechanism is proposed. In addition, using various dye molecules to stimulate pollutants, the hierarchical Cu{sub 2}O/Cu hollow microspheres reacted for 8 h exhibit excellent visible-light photocatalytic activities, which is much higher than those of the Cu{sub 2}O/Cu catalysts formed at the shorter reaction time, commercial Cu{sub 2}O powder and the mixture of alone Cu{sub 2}O and Cu. This enhanced photocatalytic performance makes these hierarchical Cu{sub 2}O/Cu hollow microspheres a kind of efficient visible-light photocatalyst in removing some organic compounds in wastewater. - Graphical abstract: The hierarchical Cu{sub 2}O/Cu hollow microspheres with adjustable components have been synthesized by one-step solvothermal redox approach. The special structures and composition lead to the excellent visible-light photocatalytic activity. - Highlights: • The hierarchical Cu{sub 2}O/Cu hollow microspheres are fabricated by one-step approach. • The content of Cu{sub 2}O and Cu can be controlled by adjusting the reaction time. • The material exhibits a better visible-light photocatalytic activity and stability. • Degradation kinetics of MO by Cu{sub 2}O/Cu fits the pseudo first-order model.

  5. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization.

  6. Surfactant-free synthesis, luminescent properties, and drug-release properties of LaF3 and LaCO3F hollow microspheres.

    PubMed

    Lv, Ruichan; Gai, Shili; Dai, Yunlu; He, Fei; Niu, Na; Yang, Piaoping

    2014-01-21

    Uniform LaF3 and LaCO3F hollow microspheres were successfully synthesized through a surfactant-free route by employing La(OH)CO3 colloidal microspheres as a sacrificial template and NaBF4 as the fluorine source. The synthetic process consists of two steps: the preparation of a La(OH)CO3 precursor via a facile urea-based precipitation and the following formation of lanthanide fluoride hollow microspheres under aqueous conditions at low temperature (50 °C) and short reaction time (3 h), without using any surfactant and catalyst. The formation of hollow spheres with controlled size can be assigned to the Kirkendall effect. It is found that the phase and structure of the products can be simply tuned by changing the pH values of the solution. Time-dependent experiments were employed to study the possible formation process. N2 adsorption/desorption results indicate the mesoporous nature of LaF3 hollow spheres. Yb(3+)/Er(3+) (Ho(3+)) and Yb(3+)/Tm(3+)-doped LaF3 hollow spheres exhibit characteristic up-conversion (UC) emissions of Er(3+) (Ho(3+)) and Tm(3+) under 980 nm laser-diode excitation, and Ce(3+)/Tb(3+)-doped LaF3 and LaCO3F emit bright yellow-green and near-white light under UV irradiation, respectively. In particular, LaF3:Yb/Er and LaCO3F:Ce/Tb hollow microspheres exhibit obvious sustained and pH-dependent doxorubicin release properties. The luminescent properties of the carriers allow them to be tracked or monitored during the release or therapy process, suggesting their high potential in the biomedical field.

  7. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries.

    PubMed

    Wan, Zhongming; Shao, Jie; Yun, Jiaojiao; Zheng, Huiyuan; Gao, Tian; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2014-12-10

    Monodisperse sulfonated polystyrene (SPS) microspheres are employed as both the template and carbon source to prepare MoS2 quasi-hollow microspheres-encapsulated porous carbon. The synthesis procedure involves the hydrothermal growth of MoS2 ultrathin nanosheets on the surface of SPS microspheres and subsequent annealing to remove SPS core. Incomplete decomposition of SPS during annealing due to the confining effect of MoS2 shells leaves residual porous carbon in the interior. When being evaluated as the anode materials of Li-ion batteries, the as-prepared C@MoS2 microspheres exhibit excellent cycling stability (95% of capacity retained after 100 cycles) and high rate behavior (560 mAh g(-1) at 5 A g(-1)).

  8. Process for Testing Compaction of a Swaged Heater for an Anode Sub-Assembly of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2003-01-01

    A process for testing compaction of a swaged heater for an anode sub-assembly of a Hollow Cathode Assembly (HCA), in which a test sample is cleaned, its mass measured before and after immersion in kerosene for 24 hours, and a compaction percentage calculated. A swaged heater is rejected if the compaction percentage exceeds 84%, plus or minus 4%.

  9. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Jialong; Xia, Tianyu; Wang, Shouguo; Yang, Guang; Dong, Bowen; Wang, Chao; Ma, Qidi; Sun, Young; Wang, Rongming

    2016-06-01

    Hollow nanoparticles with large surface areas exhibit a lot of advantages for applications such as catalysis and energy storage. Furthermore, their performance can be manipulated by their deliberate assemblies. Dispersive hollow FePt nanospheres have been assembled into one-dimensional hollow FePt nanochains under the magnetic fields at room temperature. Based on the activation of galvanic replacement at different reaction stages, the size of hollow FePt nanochains can be deliberately manipulated varying from 20 nm to 300 nm, together with the length changing from 200 nm to 10 μm. The competition between movement of paramagnetic Fe3+ ions and shape recovering due to thermal fluctuations plays a critical effect on the structure of contact area between hollow nanospheres, leading to perforative structures. Compared with commercial Pt/C, well aligned hollow FePt nanochains show greatly enhanced catalytic activities in the methanol oxidation reaction (MOR) due to more favorable mass flow. Magnetic measurements indicate that the magnetic properties including Curie temperature and saturation magnetization can be tuned by the control of the size and shape of hollow nanochains.Hollow nanoparticles with large surface areas exhibit a lot of advantages for applications such as catalysis and energy storage. Furthermore, their performance can be manipulated by their deliberate assemblies. Dispersive hollow FePt nanospheres have been assembled into one-dimensional hollow FePt nanochains under the magnetic fields at room temperature. Based on the activation of galvanic replacement at different reaction stages, the size of hollow FePt nanochains can be deliberately manipulated varying from 20 nm to 300 nm, together with the length changing from 200 nm to 10 μm. The competition between movement of paramagnetic Fe3+ ions and shape recovering due to thermal fluctuations plays a critical effect on the structure of contact area between hollow nanospheres, leading to perforative

  10. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of

  11. Facile synthesis of α-Fe{sub 2}O{sub 3}@ porous hollow yeast-based carbonaceous microspheres for fluorescent whitening agent-VBL wastewater treatment

    SciTech Connect

    Zheng, Pei; Tong, Zhiqing; Bai, Bo

    2016-03-15

    Porous hollow carbonaceous microspheres (PHCMs) fabricated from yeast cells by hydrothermal treatment have stimulated interest because of their outstanding chemical and physical properties. Herein, the functionalizations of PHCMs by further coating of α-Fe{sub 2}O{sub 3} nanoparticles onto the surface were carried out. The structure of resulted α-Fe{sub 2}O{sub 3}@PHCMs products were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and BET specific surface area measurements (BET), respectively. Its promising application was evaluated by the Fenton-like degradation of fluorescent whitening agent-VBL from aqueous solutions. - Graphical abstract: In this work, novel α-Fe{sub 2}O{sub 3}@porous hollow carbonaceous microspheres (α-Fe{sub 2}O{sub 3}@PHCMs) were synthesized through a combination of hydrothermal method and calcinations route and achieved excellent removal efficiency for fluorescent whitening Agent-VBL. - Highlights: • The hybrid α-Fe{sub 2}O{sub 3}@ porous hollow microspheres (PHCMs) were firstly fabricated. • The formation mechanism of α-Fe{sub 2}O{sub 3}@PHCMs microspheres was proposed and verified. • Dithizone played a key role in the synthesis of α-Fe{sub 2}O{sub 3}@PHCMs composites. • A favorable removal for the fluorescent whitening agent-VBL were achieved.

  12. High-strength lightweight concrete mixtures based on hollow microspheres: technological features and industrial experience of preparation

    NASA Astrophysics Data System (ADS)

    Inozemtcev, A. S.

    2015-01-01

    The research results concerning dependencies between technological parameters and physical properties of structural lightweight concrete are presented in the article. High-strength lightweight concrete has unique performance characteristics: low average density (less than 1500 kg/m3) and high compressive strength (more than 70 MPa). Hollow alumina-silicate microspheres with nanoscale modifier are used for obtaining these properties. It is shown in the article that the preparation of high-strength lightweight concrete in industrial conditions must be implemented using a turbine mixer having six paddles and engine power more than 39.2 kW. Oscillation frequency of more than 3000 rpm, vibro-compacting time less than 15 seconds, heat-humid treatment temperature approximately 60-65 °C and heat-humid treatment time 6-7 hours are optimal for production. The results of industrial mixing-test are presented.

  13. Synthesis of hybrid hollow sub-microspheres assisted by pre-added colloidal SiO2.

    PubMed

    Huang, Ting; Wang, Chao; Zhang, Xinping; Wang, Chen; Li, Ailing; Qiu, Dong

    2015-03-01

    A novel method was developed to synthesize organic-inorganic hybrid hollow sub-microspheres (HHSs) through the addition of colloidal SiO2. The hydrolysis rate of 3-(methacryloyloxy)propyltrimethoxysilane (MPS) was accelerated by SiO2 particles; meanwhile, the condensation rate of the hydrolytic species was decelerated. Thus, the hydrolytic monomers and oligomers of MPS were preserved as emulsifiers. These emulsifiers can then emulsify the isopentyl acetate (PEA) to form a steady O/W emulsion. The HHSs were produced by subsequent free radical polymerization and removal of the oil core. The hydrolytic MPS acted as emulsifiers and polymerizable monomers at the emulsification and polymerization stage, respectively. Thus, extra emulsifiers, co-emulsifiers, and organic monomers were omitted, which simplified the synthesis process. The good dispersion of HHSs in water and oil, as well as the EDX results, indicated the organic-inorganic hybrid structure of HHSs.

  14. Synergistic Ternary Composite (Carbon/Fe3 O4 @Graphene) with Hollow Microspherical and Robust Structure for Li-Ion Storage.

    PubMed

    Li, Xingxing; Zheng, Xueying; Shao, Jie; Gao, Tian; Shi, Qiang; Qu, Qunting

    2016-01-04

    The electrode materials with hollow structure and/or graphene coating are expected to exhibit outstanding electrochemical performances in energy-storage systems. 2D graphene-wrapped hollow C/Fe3 O4 microspheres are rationally designed and fabricated by a novel facile and scalable strategy. The core@double-shell structure SPS@FeOOH@GO (SPS: sulfonated polystyrene, GO: graphene oxide) microspheres are first prepared through a simple one-pot approach and then transformed into C/Fe3 O4 @G (G: graphene) after calcination at 500 °C in Ar. During calcination, the Kirkendall effect resulting from the diffusion/reaction of SPS-derived carbon and FeOOH leads to the formation of hollow structure carbon with Fe3 O4 nanoparticles embedded in it. In the rationally constructed architecture of C/Fe3 O4 @G, the strongly coupled C/Fe3 O4 hollow microspheres are further anchored onto 2D graphene networks, achieving a strong synergetic effect between carbon, Fe3 O4 , and graphene. As an anode material of Li-ion batteries (LIBs), C/Fe3 O4 @G manifests a high reversible capacity, excellent rate behavior, and outstanding long-term cycling performance (1208 mAh g(-1) after 200 cycles at 100 mA g(-1) ).

  15. The high surface energy of NiO {110} facets incorporated into TiO2 hollow microspheres by etching Ti plate for enhanced photocatalytic and photoelectrochemical activity

    NASA Astrophysics Data System (ADS)

    Li, Jian; Cui, Hongzhi; Song, Xiaojie; Wei, Na; Tian, Jian

    2017-02-01

    We present a rational design for the controllable synthesis of NiO/TiO2 hollow microspheres (NTHMs) with Ti plate via a one-pot template-free synthesis strategy. Specifically, to enhance the formation of hollow microspheres, part of the titanium source is provided by the Ti plate. The hollow spherical NiO/TiO2 particles possess unique microstructural characteristics, namely, a higher specific surface area (∼65.82 m2 g-1), a larger mesoporous structure (∼7.79 nm), and hierarchical nanoarchitectures connected with mesopores within the shell (monodispersed size of ∼1 μm and shell thickness of ∼80 nm). In addition, as a cocatalyst for improved catalytic activity, the incorporated NiO nanoparticles with exposed high surface energy {110} facets displayed an outstanding performance. It has been proven that this facile nanostructure possesses remarkably high photoelectrochemical and photocatalytic activities. The main mechanism for enhancement of photocatalytic activity is attributed to the construction of p-n junctions with an inner electric field between TiO2 and NiO, which can dramatically enhance the separation efficiency of the photogenerated electron-hole pairs. This strategy could be applied to fabricate mixed metal oxide hollow microspheres toward the photoelectrochemical catalysis.

  16. Multishelled Nix Co3-x O4 Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries.

    PubMed

    Wu, Lan-Lan; Wang, Zhuo; Long, Yan; Li, Jian; Liu, Yu; Wang, Qi-Shun; Wang, Xiao; Song, Shu-Yan; Liu, Xiaogang; Zhang, Hong-Jie

    2017-05-01

    Metal-organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self-sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost-efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal-organic frameworks of Ni-Co-BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni x Co3-x O4 multishelled hollow microspheres through a morphology-inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer-sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium-ion batteries, Ni x Co3-x O4 -0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g(-1) after 100 cycles at a current density of 100 mA g(-1) with an excellent high-rate capability. Appropriate capacities of 832 and 673 mAh g(-1) could also be retained after 300 cycles at large currents of 1 and 2 A g(-1) , respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs-derived mixed metal oxides with multishelled hollow structures for progressive lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CaCO3/Tetraethylenepentamine-Graphene Hollow Microspheres as Biocompatible Bone Drug Carriers for Controlled Release.

    PubMed

    Li, Jie; Jiang, Hongkun; Ouyang, Xiao; Han, Shihui; Wang, Jun; Xie, Rui; Zhu, Wenting; Ma, Ning; Wei, Hao; Jiang, Zhongyi

    2016-11-09

    CaCO3 is one kind of important biological mineral, which widely exists in coral, shell, and other organisms. Since it is similar to bone tissue elements and has good biocompatibility, it was very suitable as a candidates for bone drug carriers. In this work, we used tetraethylenepentamine-graphene (rGO-TEPA) sheet matrices induction of CaCO3 mineralization and successfully constructed CaCO3/rGO-TEPA drug carriers with a hollow structure and rough surface. As potential drug carriers, doxorubicin (DOX) loading and release measurements were carried out. It showed that load efficiency was 94.7% and the release efficiencies were 13.8% and 91.7% at values of pH 7.4 and 5.0. The as-prepared drug carriers showed some appealing advantages, such as the pH-sensitive release characteristics and mild storage-release behaviors. The excellent biocompatibility and nontoxicity of CaCO3/rGO-TEPA hybrid microspheres were tested by the cell viability of mouse preosteoblast cells (MC3T3-E1). And cytotoxicity with human osteosarcoma cells (MG-63) was carried out to demonstrate the drug release effect in the cells system. Therefore, the CaCO3/rGO-TEPA hybrid microspheres would be a competitive alternative in bone drug carriers.

  18. Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.

    PubMed

    Zhu, Yangzhi; Li, Xiangcun; He, Gaohong; Qi, Xinhong

    2015-02-18

    Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.

  19. Holographic optical assembly and photopolymerized joining of planar microspheres.

    PubMed

    Shaw, L A; Chizari, S; Panas, R M; Shusteff, M; Spadaccini, C M; Hopkins, J B

    2016-08-01

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles' Brownian motion. This technique and our demonstrated joining approach enable HOT technology to take critical steps toward automated additive fabrication of microstructures.

  20. Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Kuntz-Willits, Rebecca; Elbert, Donald L.

    2009-01-01

    Modular, bioactive, macroporous scaffolds were formed by crosslinking poly(ethylene glycol) (PEG) microspheres around living cells. Hydrogel microspheres were produced from reactive PEG derivatives in aqueous sodium sulfate solutions without the use of surfactants or copolymers. Microspheres were formed following thermally induced phase separation if the gel point was reached prior to extensive coarsening of the PEG-rich domains. Three types of PEG microspheres with different functionalities were used to form scaffolds. One type of PEG microsphere provided mechanical support, the second type provided controlled delivery of the angiogenesis-promoting molecule, sphingosine 1-phosphate (S1P), and the third type served as a slowly dissolving non-cytotoxic porogen. Scaffolds were formed by centrifuging microspheres in the presence of HepG2 hepatoma cells, resulting in a homogenous distribution of cells. During overnight incubation at 37°C, the microspheres reacted with serum proteins in cell culture medium to stabilize the scaffolds. Within two days in culture, macropores formed due to the dissolution of the porogenic PEG microspheres, without affecting cell viability. Gradients in porosity were produced by varying the buoyancy of the porogenic microspheres. Conjugated RGD cell adhesion peptides and delivery of sphingosine 1-phosphate promoted endothelial cell infiltration through macropores in the scaffolds. The scaffolds presented here differ from previous hydrogel scaffolds in that: 1) cells are not encapsulated in hydrogel, 2) macropores form in the presence of cells, and 3) scaffold properties are controlled by the modular assembly of different microspheres that perform distinct functions. PMID:19607945

  1. Synthesis, luminescence, and anti-tumor properties of MgSiO3:Eu-DOX-DPP-RGD hollow microspheres.

    PubMed

    Lv, Ruichan; Zhong, Chongna; Gulzar, Arif; Gai, Shili; He, Fei; Gu, Rui; Zhang, Shenghuan; Yang, Guixin; Yang, Piaoping

    2015-11-14

    In this report, MgSiO3:Eu-DOX-DPP-RGD hollow microspheres employed for simultaneous imaging and anti-cancer therapy have been designed by sequentially loading the anti-tumor drugs doxorubicin (DOX), light-activated platinum(iv) pro-drug PPD, and a targeted peptide of NH2-Gly-Arg-Gly-Asp-Ser (RGD) onto MgSiO3:Eu mesoporous hollow spheres, which were synthesized using solid SiO2 spheres as sacrificed template by a facile hydrothermal process based on the Kirkendall effect. The photoluminescence intensity of MgSiO3:Eu has been optimized, which can emit a recognized red signal in vitro and in vivo under modest ultraviolet (UV) irradiation. It was found that the platform has high biocompatibility and could become intracellular through fast and effective endocytosis with the aid of the targeted peptide RGD, and chemotherapeutic drugs DOX and light-activated platinum(iv) pro-drug DPP that can be released from the carrier to induce an obvious inhabitation effect to HeLa cancer cells (survival rate of only 17.4%), which has been verified by in vitro and in vivo results. Moreover, the in vitro result using a photosensitizer ZnPc loaded carrier shows that the system is not suitable for ZnPc induced photodynamic therapy. The apparent imaging effect and high anti-tumor efficacy of this functional system give it great potential in actual clinical applications.

  2. Preparation of hollow microspheres of Ce3+ doped NiCo ferrite with high microwave absorbing performance

    NASA Astrophysics Data System (ADS)

    Duan, Hong-zhen; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-01

    Hollow microspheres of Ce3+ doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 μm and the particle size of the Ni0.5Co0.5Fe2O4 sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu•g-1 and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was -18.8 dB at 5500 MHz.

  3. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2013-04-22

    Hierarchically nanostructured porous hollow microspheres of hydroxyapatite (HAP) are a promising biomaterial, owing to their excellent biocompatibility and porous hollow structure. Traditionally, synthetic hydroxyapatite is prepared by using an inorganic phosphorus source. Herein, we report a new strategy for the rapid, sustainable synthesis of HAP hierarchically nanostructured porous hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through a microwave-assisted hydrothermal method. The as-obtained products are characterized by powder X-ray diffraction (XRD), Fourier-transform IR (FTIR) spectroscopy, SEM, TEM, Brunauer-Emmett-Teller (BET) nitrogen sorptometry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). SEM and TEM micrographs show that HAP hierarchically nanostructured porous hollow microspheres consist of HAP nanosheets or nanorods as the building blocks and DLS measurements show that the diameters of HAP hollow microspheres are within the range 0.8-1.5 μm. The specific surface area and average pore size of the HAP porous hollow microspheres are 87.3 m(2) g(-1) and 20.6 nm, respectively. The important role of creatine phosphate disodium salt and the influence of the experimental conditions on the products were systematically investigated. This method is facile, rapid, surfactant-free and environmentally friendly. The as-prepared HAP porous hollow microspheres show a relatively high drug-loading capacity and protein-adsorption ability, as well as sustained drug and protein release, by using ibuprofen as a model drug and hemoglobin (Hb) as a model protein, respectively. These experiments indicate that the as-prepared HAP porous hollow microspheres are promising for applications in biomedical fields, such as drug delivery and protein adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    PubMed

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH)2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Holographic optical assembly and photopolymerized joining of planar microspheres

    DOE PAGES

    Shaw, L. A.; Chizari, S.; Panas, R. M.; ...

    2016-07-27

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enablemore » HOT technology to take critical steps toward automated additive fabrication of microstructures.« less

  6. Holographic optical assembly and photopolymerized joining of planar microspheres

    SciTech Connect

    Shaw, L. A.; Chizari, S.; Panas, R. M.; Shusteff, M.; Spadaccini, C. M.; Hopkins, J. B.

    2016-07-27

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enable HOT technology to take critical steps toward automated additive fabrication of microstructures.

  7. Holographic optical assembly and photopolymerized joining of planar microspheres

    SciTech Connect

    Shaw, L. A.; Chizari, S.; Panas, R. M.; Shusteff, M.; Spadaccini, C. M.; Hopkins, J. B.

    2016-07-27

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enable HOT technology to take critical steps toward automated additive fabrication of microstructures.

  8. Hierarchical CoS2@C hollow microspheres constructed by nanosheets with superior lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Li, Tingting; Hu, Qian; Li, Chengpin; Guo, Hong

    2015-07-01

    An effective approach of alcoholysis is employed to prepare hollow CoS2@C hybrid nanosheets aggregates as anode materials for Li-ion batteries. Amorphous carbon can be loaded on the CoS2 nanoparticles uniformly in the solvothermal alcoholysis process, and the subsequent calcination results of the formation of hollow structures. The capacity of the sample can remain stable as high as 720 mAhg-1 after 200 cycles, and it also exhibits good rate capacity. The nano-scaled characteristics of CoS2 nanosheets embedded in the aggregates ensure the electrode having a high capacity and the fast Li-ion diffusion in the electrode. The in-situ introduction of carbon renders the electrode having a good electronic conductivity and can effectively prevent the formation of polysulfide anions. The unique hollow structures can shorten the length of Li-ion diffusion, which is benefit for the rate performance. The hollow structure also offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Therefore, the prepared hierarchical hollow CoS2@C materials constructed by nanosheets exhibit outstanding electrochemical performance.

  9. IMPACT OF COMPOSITION AND HEAT TREATMENT ON PORE SIZE IN POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2007-12-04

    The Savannah River National Laboratory (SRNL) developed a new geometric form: hollow glass microspheres (HGMs), with unique porous walls. The new geometric form combines the existing technology of HGMs with basic glass science knowledge in the realm of glass-in-glass phase separation. Conceptually, the development of a HGM with porous walls (referred to as a PWHGM) provides a unique system in which various media or filling agents can be incorporated into the PWHGM (via transport through the porous walls) and ultimately has the capacity to serve as a functional delivery system in various industrial applications. Applications of these types of systems could range from hydrogen storage, molecular sieves, drug and bioactive delivery systems, to environmental, chemical and biological indicators, relevant to Energy, Environmental Processing and Homeland Security fields. As a specific example, previous studies at SRNL have introduced materials capable of hydrogen storage (as well as other materials) into the interior of the PWHGMs. The goal of this project was to determine if the microstructure (i.e., pore size and pore size distribution) of a PWHGM could be altered or tailored by varying composition and/or heat treatment (time and/or temperature) conditions. The ability to tailor the microstructure through composition or heat treatments could provide the opportunity to design the PWHGM system to accommodate different additives or fill agents. To meet this objective, HGMs of various alkali borosilicate compositions were fabricated using a flame forming apparatus installed at the Aiken County Technical Laboratory (ACTL). HGMs were treated under various heat treatment conditions to induce and/or enhance glass in glass phase separation. Heat treatment temperatures ranged from 580 C to 620 C, while heat treatment times were either 8 or 24 hours. Of the two primary variables assessed in this study, heat treatment temperature was determined to be most effective in changing the

  10. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  11. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  12. Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin

    2017-04-01

    Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g-1 at a current density of 2 A g-1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g-1 at high current densities of 0.5, 2, 5, 10, and 20 A g-1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling.

  13. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells.

    PubMed

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-03-21

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).

  14. Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes

    PubMed Central

    Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin

    2017-01-01

    Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g−1 at a current density of 2 A g−1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g−1 at high current densities of 0.5, 2, 5, 10, and 20 A g−1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling. PMID:28418001

  15. Double-walled hollow polymeric microspheres with independent pH and temperature dual-responsive and magnetic-targeting function from onion-shaped core-shell structures.

    PubMed

    Du, Pengcheng; Wang, Tingmei; Liu, Peng

    2013-02-01

    The magnetic-targeting stimuli-responsive hollow polymeric microspheres show unique performance as the intelligent carriers for the site specific controlled delivery of drugs or genes. In the work, the well-defied dual-responsive double-walled hollow microspheres with movable magnetic cores were prepared from the penta-layer onion-shaped core-shell microspheres. Their double-walled shells were independent, with the pH-responsive crosslinked poly(methacrylic acid) (PMAA) layer as the inner shell and the temperature responsive crosslinked poly(N-isopropylacrylamide) (PNIPAM) layer as the outer shell. The combination of the pH and temperature dual-responsive and the magnetic-targeting function make the hollow microspheres to be the most promising intelligent carriers in the biomedical fields. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Electric Field-Driven Assembly of Sulfonated Polystyrene Microspheres

    PubMed Central

    Mikkelsen, Alexander; Wojciechowski, Jarosław; Rajňák, Michal; Kurimský, Juraj; Khobaib, Khobaib; Kertmen, Ahmet; Rozynek, Zbigniew

    2017-01-01

    A designed assembly of particles at liquid interfaces offers many advantages for development of materials, and can be performed by various means. Electric fields provide a flexible method for structuring particles on drops, utilizing electrohydrodynamic circulation flows, and dielectrophoretic and electrophoretic interactions. In addition to the properties of the applied electric field, the manipulation of particles often depends on the intrinsic properties of the particles to be assembled. Here, we present an easy approach for producing polystyrene microparticles with different electrical properties. These particles are used for investigations into electric field-guided particle assembly in the bulk and on surfaces of oil droplets. By sulfonating polystyrene particles, we produce a set of particles with a range of dielectric constants and electrical conductivities, related to the sulfonation reaction time. The paper presents diverse particle behavior driven by electric fields, including particle assembly at different droplet locations, particle chaining, and the formation of ribbon-like structures with anisotropic properties. PMID:28772690

  17. Cell Isolation and Recovery Using Hollow Glass Microspheres Coated with Nanolayered Films for Applications in Resource-Limited Settings.

    PubMed

    Dong, Ziye; Ahrens, Caroline C; Yu, Dan; Ding, Zhenya; Lim, HyunTaek; Li, Wei

    2017-05-10

    Established cell isolation and purification techniques such as fluorescence-activated cell sorting (FACS), isolation through magnetic micro/nanoparticles, and recovery via microfluidic devices have limited application as disposable technologies appropriate for point-of-care use in remote areas where lab equipment as well as electrical, magnetic, and optical sources are restricted. We report a simple yet effective method for cell isolation and recovery that requires neither specialized lab equipment nor any form of power source. Specifically, self-floating hollow glass microspheres were coated with an enzymatically degradable nanolayered film and conjugated with antibodies to allow both fast capture and release of subpopulations of cells from a cell mixture. Targeted cells were captured by the microspheres and allowed to float to the top of the hosting liquid, thereby isolating targeted cells. To minimize nonspecific adhesion of untargeted cells and to enhance the purity of the isolated cell population, an antifouling polymer brush layer was grafted onto the nanolayered film. Using the EpCAM-expressing cancer cell line PC-3 in blood as a model system, we have demonstrated the isolation and recovery of cancer cells without compromising cell viability or proliferative potential. The whole process takes less than 1 h. To support the rational extension of this platform technology, we introduce extensive characterization of the critical design parameters: film formation and degradation, grafting with a poly(ethylene glycol) (PEG) sheath, and introducing functional antibodies. Our approach is expected to overcome practical hurdles and provide viable targeted cells for downstream analyses in resource-limited settings.

  18. Monodisperse REPO4 (RE = Yb, Gd, Y) hollow microspheres covered with nanothorns as affinity probes for selectively capturing and labeling phosphopeptides.

    PubMed

    Cheng, Gong; Zhang, Ji-Lin; Liu, Yan-Lin; Sun, De-Hui; Ni, Jia-Zuan

    2012-02-13

    Rare-earth phosphate microspheres with unique structures were developed as affinity probes for the selective capture and tagging of phosphopeptides. Prickly REPO(4) (RE = Yb, Gd, Y) monodisperse microspheres, that have hollow structures, low densities, high specific surface areas, and large adsorptive capacities were prepared by an ion-exchange method. The elemental compositions and crystal structures of these affinity probes were confirmed by energy-dispersive spectroscopy (EDS), powder X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The morphologies of these compounds were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen-adsorption isotherms. The potential ability of these microspheres for selectively capturing and labeling target biological molecules was evaluated by using protein-digestion analysis and a real sample as well as by comparison with the widely used TiO(2) affinity microspheres. These results show that these porous rare-earth phosphate microspheres are highly promising probes for the rapid purification and recognition of phosphopeptides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single-walled hollow nanospheres assembled from the aluminogermanate precursors.

    PubMed

    Bac, Bui Hoang; Song, Yungoo; Kim, Myung Hun; Lee, Young-Boo; Kang, Il Mo

    2009-10-14

    Ordered single-walled hollow aluminogermanate (ALGE) nanospheres (NSs) with average monodisperse diameters of 5 nm have been synthesized for the first time using simple pH control. This involved basification of the ALGE precursors (having an Al/Ge ratio of 1.33) to a pH value of 13, followed by immediate acidification to a pH value of 9.

  20. Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances

    NASA Astrophysics Data System (ADS)

    Li, Xiaomin; Zai, Jiantao; Liu, Yuanyuan; He, Xiaobo; Xiang, Shijie; Ma, Zifeng; Qian, Xuefeng

    2016-09-01

    LDHs in atomic thickness (mono-/bi-layers) usually exhibit novel physicochemical properties, especially in surface-dependent energy storage and catalysis areas. However, the thickness of the commonly reported 2D LDHs is in nanoscale and the bottom-up synthesis of atomically thin LDHs is rarely reported. Herein, high-quality atomically thin layered NiFe-LDHs assembled 3D microspheres were synthesized via a rational designed reaction system, where the formation of atomically thin building blocks was controlled by the synergetic effects of released carbonate anions and butanol. Furthermore, the complexant and solvents played important effects on the process of coprecipitation and the assembling of LDHs. Due to the nature of atomically thin LDHs nanosheets and unique 3D hierarchical structures, the obtained microspheres exhibited excellent electrocatalytic oxygen evolution reaction (OER) activity in alkaline medium with an onset overpotential (0.435 V, which is lower than that of common LDHs) and good durability. The as-prepared 3D NiFe-LDHs microspheres were also firstly used as supercapacitor materials and displayed a high specific capacitance of 1061 F g-1 at the current density of 1 A g-1.

  1. Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process.

    PubMed

    Han, Pingping; Shi, Jiafu; Nie, Teng; Zhang, Shaohua; Wang, Xueyan; Yang, Pengfei; Wu, Hong; Jiang, Zhongyi

    2016-03-01

    In this study, multifunctional chitin microspheres are synthesized and utilized as a platform for multiple potential applications in enzyme immobilization, catalytic reduction and adsorption. Porous chitin microspheres with an average diameter of 111.5 μm and a porous architecture are fabricated through a thermally induced phase separation method. Then, the porous chitin microspheres are conferred with surface multifunctionality through facile coordination-enabled self-assembly of tannic acid (TA) and titanium (Ti(IV)) bis(ammonium lactate)dihydroxide (Ti-BALDH). The multipoint hydrogen bonds between TA and chitin microspheres confer the TA-Ti(IV) coating with high adhesion capability to adhere firmly to the surface of the chitin microspheres. In view of the biocompatibility, porosity and surface activity, the multifunctional chitin microspheres are used as carriers for enzyme immobilization. The enzyme-conjugated multifunctional porous microspheres exhibit high catalytic performance (102.8 U·mg(-1) yeast alcohol dehydrogenase). Besides, the multifunctional chitin microspheres also find potential applications in the catalytic reduction (e.g., reduction of silver ions to silver nanoparticles) and efficient adsorption of heavy metal ions (e.g., Pb(2+)) taking advantages of their porosity, reducing capability and chelation property.

  2. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

    PubMed Central

    Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2016-01-01

    Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g−1, and good rate performance of 126.7 F g−1 at 50 A g−1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g−1 and much improved rate performance (213.4 F g−1 at 50 A g−1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g−1), it still exhibits a very high specific capacitance of 245.8 F g−1, which is 65.2% retention of the initial capacitance (377.0 F g−1 at 1 A g−1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds. PMID:26880276

  3. Effect of PAHM (Poly-acrylonitrile Hollow Microsphere) addition on the Lightweight and Firing Behavior of Whiteware

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Pee, J. H.; Kim, G. H.; Kim, J. Y.; Cho, W. S.; Kim, K. J.

    2011-10-01

    The pore generation technology using PAHM (Poly-acrylonitrile Hollow Microsphere) was studied in order to reduce the weights of tableware. In this study, we verify the property of modified slurry and plasticity of green body by adding PAHM. The modified slurry was prepared by adding 25~55vol% of PAHM to the slurry for whiteware. The viscosity of slurry was controlled to be low value (25~45vol%). However, the viscosity of modified slurry increased and the plasticity of modified green body decreased inside the 45~55vol% range. The formed specimen by slip casting was fired at 1225 °C, 1240°C. As the amount of PAHM content increased, the weight decreased and the addition of 45vol/% of PAHM resulted in a weight drop of 39%. However, when the PAHM content increased, the strength decreases over 50%. This is caused by the presence of a large volume of surface defects (pores) and defects from the agglomeration of PAHM.

  4. Preparation and microwave absorbing property of Ni-Zn ferrite-coated hollow glass microspheres with polythiophene

    NASA Astrophysics Data System (ADS)

    Li, Lindong; Chen, Xingliang; Qi, Shuhua

    2016-11-01

    The composite of hollow glass microspheres (HMG) coated by Ni0.7Zn0.3Fe2O4 particles was fabricated via sol-gel method, and then the ternary composite (HMG/Ni0.7Zn0.3Fe2O4/PT) was synthesized by in situ polymerization. The electrical property, magnetic performance and reflection loss of the composites were measured, and the results suggest that the conductivity and the saturation magnetization (Ms) of HMG/Ni0.7Zn0.3Fe2O4/PT reach 6.87×10-5 S/cm and 11.627 emu/g, respectively. The ternary composite has good microwave absorbing properties (Rmin=-13.79 dB at 10.51 GHz) and the bandwidth less than -10 dB can reach 2.6 GHz (from 9.4 to 12.0 GHz) in X band (8.2-12.4 GHz). The morphology and chemical structure of the samples were measured through scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). This paper also analyzes the relationship between the reflection loss of the absorber and its thickness.

  5. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    NASA Astrophysics Data System (ADS)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  6. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air.

    PubMed

    Dong, Fan; Lee, S C; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo

    2011-11-15

    Rose-like monodisperse hierarchical (BiO)(2)CO(3) hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO)(2)CO(3) superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO)(2)CO(3) microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO)(2)CO(3). The band gap of 3.25 eV is intrinsic and the formation of smaller band gap of 2.0 eV can be ascribed to the in situ doped nitrogen in lattice. The performance of hierarchical (BiO)(2)CO(3) microspheres as efficient photocatalyst are further demonstrated in the removal of NO in indoor air under both visible light and UV irradiation. It is found that the hierarchical (BiO)(2)CO(3) microspheres not only exhibit excellent photocatalytic activity but also high photochemical stability during long term photocatalytic reaction. The special microstructure, the high charge separation efficiency due to the inductive effect, and two-band-gap structure in all contribute to the outstanding photocatalytic activities. The discovery of monodisperse hierarchical nitrogen doped (BiO)(2)CO(3) hollow structure is significant because of its potential applications in environmental pollution control, solar energy conversion, catalysis and other related

  7. Surface-assembled poly(I:C) on PEGylated PLGA microspheres as vaccine adjuvant: APC activation and bystander cell stimulation.

    PubMed

    Hafner, Annina M; Corthésy, Blaise; Textor, Marcus; Merkle, Hans P

    2016-11-30

    Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres are potential vehicles to deliver antigens for vaccination. Because they lack the full capacity to activate professional antigen presenting cells (APCs), combination with an immunostimulatory adjuvant may be considered. A candidate is the synthetic TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), which drives cell-mediated immunity. However, poly(I:C) has also been linked to the pathogenesis of autoimmunity, as affected by widespread stimulation of non-hematopoietic bystander cells. To address this aspect, we propose to minimize the poly(I:C) dose as well as to control the stimulation of non-immune bystander cells by poly(I:C). To facilitate the maturation of APCs with minimal poly(I:C) doses, we surface-assembled poly(I:C) onto PLGA microspheres. The microspheres' surface was further modified by poly(ethylene glycol) (PEG) coronas with varying PEG-densities. PLGA microspheres loaded with tetanus toxoid (tt) as model antigen were manufactured by microextrusion-based solvent extraction. The negatively charged PLGA(tt) microspheres were coated with polycationic poly(l-lysine) (PLL) polymers, either PLL itself or PEG-grafted PLL (PLL-g-PEG) with varying grafting ratios (g=2.2 and g=10.1). Stable surface assembly of poly(I:C) was achieved by subsequent incubation of polymer-coated PLGA microspheres with aqueous poly(I:C) solutions. We evaluated the immunostimulatory potential of such PLGA(tt) microsphere formulations on monocyte-derived dendritic cells (MoDCs) as well as human foreskin fibroblasts (HFFs) as model for non-hematopoietic bystander cells. Formulations with surface-assembled poly(I:C) readily activated MoDCs with respect to the expression of maturation-related surface markers, proinflammatory cytokine secretion and directed migration. When surface-assembled, poly(I:C) enhanced its immunostimulatory activity by more than one order of magnitude as compared to free poly

  8. A microsphere assembly method with laser microwelding for fabrication of three-dimensional periodic structures

    NASA Astrophysics Data System (ADS)

    Takagi, Kenta; Omote, Masanori; Kawasaki, Akira

    2010-03-01

    The orderly build-up of monosized microspheres with sizes of hundreds of micrometres enabled us to develop three-dimensional (3D) photonic crystal devices for terahertz electromagnetic waves. We designed and manufactured an original 3D particle assembly system capable of fabricating arbitrary periodic structures from these spherical particles. This method employs a pick-and-place assembling approach with robotic manipulation and interparticle laser microwelding in order to incorporate a contrivance for highly accurate arraying: an operation that compensates the size deviation of raw monosized particles. Pre-examination of particles of various materials revealed that interparticle laser welding must be achieved with local melting by suppressing heat diffusion from the welding area. By optimizing the assembly conditions, we succeeded in fabricating an accurate periodic structure with a diamond lattice from 400 µm polyethylene composite particles. This structure demonstrated a photonic bandgap in the terahertz frequency range.

  9. High quality factor silica microspheres functionalized with self-assembled nanomaterials.

    PubMed

    Kandas, Ishac; Zhang, Baigang; Daengngam, Chalongrat; Ashry, Islam; Jao, Chih-Yu; Peng, Bo; Ozdemir, Sahin K; Robinson, Hans D; Heflin, James R; Yang, Lan; Xu, Yong

    2013-09-09

    With extremely low material absorption and exceptional surface smoothness, silica-based optical resonators can achieve extremely high cavity quality (Q) factors. However, the intrinsic material limitations of silica (e.g., lack of second order nonlinearity) may limit the potential applications of silica-based high Q resonators. Here we report some results in utilizing layer-by-layer self-assembly to functionalize silica microspheres with nonlinear and plasmonic nanomaterials while maintaining Q factors as high as 10(7). We compare experimentally measured Q factors with theoretical estimates, and find good agreement.

  10. Facile synthesis of SnO2 coated urchin-like TiO2 hollow microspheres as efficient scattering layer for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Fengyan; Li, Yafeng; Dou, Jie; Wu, Junxiu; Wei, Mingdeng

    2016-12-01

    SnO2 coated urchin-like TiO2 hollow microspheres are prepared via a facile one-step hydrothermal method by using titanium tetrabutoxide (TBOT) as titanium source. The synthesized products are characterized by XRD, SEM and TEM measurements. It's found that the as-prepared microspheres with a diameter of 500-800 nm are consisted of densely interconnected nanowires and possessed a high specific surface area of 134.92 m2 g-1. Moreover, HRTEM and element mapping results show that the surface of urchin-like microsphere is coated by lots of SnO2 nanoparticles. When used as scattering layer for dye-sensitized solar cells, the microspheres show good dye adsorption capability, superior light scattering and electron diffusibility, leading to a higher photovoltaic conversion efficiency of 8.33%, which is a 28.4% enhancement comparable to that of bare nanocrystalline TiO2 (Dyesol 18NR-T, 6.49%).

  11. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a

  12. Anisotropic photoelectric film assembled from mesoporous silica (MS)@CuO@FeS2 composite microspheres for improving photoelectric conversion.

    PubMed

    Zong, Jie; Zhu, Yihua; Shen, Jianhua; Yang, Xiaoling; Li, Chunzhong

    2013-07-15

    We report a novel strategy for the fabrication of mesoporous silica (MS)@CuO@FeS2 composite microsphere-based anisotropic films that combine the advantages of the CuO and FeS2 materials to improve photoelectric conversion. This was achieved by aligning MS@CuO@FeS2 composite microspheres in a cross-linked gel under a homogeneous magnetic field. The MS@CuO@FeS2 composite microspheres, which were synthesized by a simple layer-by-layer (LbL) self-assembly technique together with a solvothermal method, can absorb a wide range of light and exhibit ferromagnetic properties. In addition, the resulting MS@CuO@FeS2 composite microsphere-based anisotropic film shows photoelectric anisotropy. Such systems are promising for improving the performance of solar cells.

  13. One-pot solvothermal route to self-assembly of cauliflower-shaped CdS microspheres

    NASA Astrophysics Data System (ADS)

    Ge, Ming; Cui, Yao; Liu, Lu; Zhou, Zhen

    2011-05-01

    Nearly monodispersed cauliflower-shaped CdS microspheres were prepared through a simple one-step solvothermal route on a large scale by employing sodium dodecyl sulfate (SDS) as the surfactant. Images by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) indicate that cauliflower-shaped CdS microspheres with diameters in the range from 1.3 to 4.5 μm are assembled by nanoparticles with an average diameter of approximately 30 nm. The possible formation mechanism of the cauliflower-shaped CdS microspheres was also proposed. The photovoltaic activity of cauliflower-shaped CdS architectures has been investigated, indicating that the as-obtained CdS microspheres exhibited higher photovoltaic performance in comparison with CdS nanoparticles.

  14. Facile synthesis of α-Fe2O3@ porous hollow yeast-based carbonaceous microspheres for fluorescent whitening agent-VBL wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Pei; Tong, Zhiqing; Bai, Bo

    2016-03-01

    Porous hollow carbonaceous microspheres (PHCMs) fabricated from yeast cells by hydrothermal treatment have stimulated interest because of their outstanding chemical and physical properties. Herein, the functionalizations of PHCMs by further coating of α-Fe2O3 nanoparticles onto the surface were carried out. The structure of resulted α-Fe2O3@PHCMs products were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and BET specific surface area measurements (BET), respectively. Its promising application was evaluated by the Fenton-like degradation of fluorescent whitening agent-VBL from aqueous solutions.

  15. A Quasi-Solid-State Li-Ion Capacitor Based on Porous TiO2 Hollow Microspheres Wrapped with Graphene Nanosheets.

    PubMed

    Wang, Faxing; Wang, Chun; Zhao, Yujuan; Liu, Zaichun; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Zhao, Dongyuan

    2016-12-01

    The quasi-solid-state Li-ion capacitor is demonstrated with graphene nanosheets prepared by an electrochemical exfoliation as the positive electrode and the porous TiO2 hollow microspheres wrapped with the same graphene nanosheets as the negative electrode, using a Li-ion conducting gel polymer electrolyte. This device may be the key to bridging the gap between conventional lithium-ion batteries and supercapacitors, meanwhile meeting the safety demands of electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage

    NASA Astrophysics Data System (ADS)

    Guo, Bangjun; Yu, Ke; Song, Haili; Li, Honglin; Tan, Yinghua; Fu, Hao; Li, Chao; Lei, Xiang; Zhu, Ziqiang

    2015-12-01

    A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g-1 at 100 mA g-1), superior high-rate capability (805 mA h g-1 at 5000 mA g-1) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries.A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g-1 at 100 mA g-1), superior high-rate capability (805 mA h g-1 at 5000 mA g-1) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05595d

  17. Hollow glass microsphere-epoxy composite material for helmet application to reduce impact energy due to collision

    NASA Astrophysics Data System (ADS)

    Sutikno, Berata, Wajan; Wijanarko, Wahyu

    2017-06-01

    Helmet is used as a safety gear to prevent the impact energy from a collision, due to a motorcycle accident, from injuring the rider's head. Manufacturing of a light weighted helmet with a high absorption of impact energy, is much expected because it could increase the rider's safety and mobility. Meanwhile there are composites, which are made from two or more materials that have different characteristics, that will give a better mechanical properties compared to its original constituent material. In this research, a particular composite which is consist of 84% epoxy as its matrix and 16% Hollow Glass Microsphere (HGM) as its reinforce, is simulated by finite element method. The three-dimensional open-faced helmet model has an initial thickness of 4 mm, diameter of 87.57 mm, height 114 mm and foam thickness 20 mm. The experiment simulation is conducted according to the SNI 1811-2007 (Standar Nasional Indonesia) regulations. The penetration and absorption test instruments model are prepared also referring to the stated regulations, which are a three-dimensional head piece as the helmet holder, a 3 kg sharp pendulum, a 5 kg helmet weigh and a runway. The simulation concluded that the helmet with an 8 mm thickness has fulfilled the SNI 1811 - 2007 provisions, which stated that penetration should not happen on the lid of the helmet and the impact absorption forwarded by the helmet to the rider's head should not exceed 2000 kgf. The maximum stress and deformation are 15.44 Mpa and 8.28E-4 mm respectively. As for the impact energy forwarded by the helmet is only 460 kgf.

  18. Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Jiang, Zhifeng; Wei, Wei; Mao, Danjun; Chen, Cheng; Shi, Yunfei; Lv, Xiaomeng; Xie, Jimin

    2014-12-01

    Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and ciprofloxacin under visible light irradiation. The experimental results indicate that N-doped yolk-shell mesoporous TiO2 hollow microspheres show higher photocatalytic activity than P25 TiO2 under visible light irradiation because of N doping and the unique yolk-shell structure. In addition, Ag-N-TiO2-YSM shows enhanced activity compared with N-TiO2-YSM due to the SPR absorption of silver NPs and the fast generation, separation and transportation of the photogenerated carriers. Moreover, the Ag contents can affect the photocatalytic activity of the Ag-N-TiO2-YSM composite. A suitable amount of Ag deposition gives the highest photocatalytic activity. A higher loading does not improve the photocatalytic activity of N-TiO2-YSM further. The active species generated in the photocatalytic system were also investigated. Based on our experimental results, a possible photocatalytic mechanism was proposed. The strategy presented here gives a promising route towards the development of delicate metal@hollow semiconductor composites for many applications in photocatalysis.Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and

  19. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies

    SciTech Connect

    Zhou, Feng-Lei; Parker, Geoff J.M.; Eichhorn, Stephen J.; Hubbard Cristinacce, Penny L.

    2015-11-15

    The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x–y translation stage in co-ES. Scanning electron microscopy (SEM) images of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level. - Highlights: • Hollow microfibrous assemblies based on co-electrospinning are demonstrated. • The thickness and width of co-electrospun strips were controllable. • Cross-sections of fibres had non-normally distributed pore sizes and shapes. • Cross-sections were significantly influenced by production time and flow rate. • Co-electrospun strips had reasonably good reproducible cross-sections.

  20. Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Jiang, Chuanjia; Cheng, Bei; You, Wei; Yu, Jiaguo

    2017-08-01

    Nickel (II) oxide (NiO) nanosheet grown on N-doped carbon hollow spheres (NiO/NCHS) with hierarchical pore structure are obtained via facile chemical bath deposition followed by calcination at 350 °C under nitrogen atmosphere. Phase structure measurements indicate that the material is composed of NiO and N-doped carbon. The NiO/NCHS composite exhibits a unique flower-like morphology, where ultrathin NiO nanosheets are vertically grown on the surface of NCHS. This hierarchical nanostructure is beneficial for facilitating electron and electrolyte ion transport and accelerating the reversible redox reaction. The specific capacitance of the NiO/NCHS composite (585 F g-1 at 1 A g-1) is higher than that of pure NiO particle (453 F g-1 at 1 A g-1). Meanwhile, the NiO/NCHS composite exhibits excellent rate performance and superior cycling stability over 6000 cycles. The enhanced supercapacitive performance of the NiO/NCHS nanocomposite indicates that it can be an appealing candidate electrode material for supercapacitors.

  1. Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water.

    PubMed

    Guan, Zhengrong; Liu, Li; He, Lilu; Yang, Sen

    2011-11-30

    Amphiphilic porous hollow carbonaceous spheres (PHCSs) were synthesized via mild hydrothermal treatment of yeast cells and further pyrolyzing post treatment. The morphology, chemical composition, porosity, and structure of the carbonaceous materials were investigated. It is evident that the carbonaceous materials were composed of the carbonized organic matter (COM) and the noncarbonized organic matter (NOM), and the relative COM and NOM fractions could be adjusted through changing the temperature of hydrothermal and/or pyrolyzing treatment. The phenol sorption properties of the carbonaceous materials had been investigated and the sorption isotherms fit well to the modified Freundlich equation. It was found that the sorption isotherm of phenol onto PHCSs was practically linear even at extreme high concentrations, which was fewer reported for activated carbon or other inorganic materials. This type of sorption isothermals was assigned to a partition mechanism, and the largest value of the partition coefficient (K(f)) and carbon-normalized K(f) (K(oc)) is 56.7 and 91.5 mL g(-1), respectively. Moreover, PHCSs exhibit fast sorption kinetic and facile regeneration property. The results indicate PHCSs are potential effective sorbents for removal of undesirable organic chemicals in wastewater, especially at high concentrations.

  2. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies

    PubMed Central

    Zhou, Feng-Lei; Parker, Geoff J.M.; Eichhorn, Stephen J.; Hubbard Cristinacce, Penny L.

    2015-01-01

    The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x–y translation stage in co-ES. Scanning electron microscopy (SEM) images of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level. PMID:26702249

  3. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  4. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  5. Design and Manufacturing Processes of Long-Life Hollow Cathode Assembles

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for testing an impregnated insert of a Hollow Cathode Assembly (HCA) subsequent to every exposure of the HCA to air, and prior to ignition, using a heater and an oil-free assembly having a base pressure of less than 5.0 x 10(exp -6) torr. The process comprises the steps of: installing the HCA in a vacuum; energizing the heater to a particular current level; de-energizing the heater after one-half hour; again energizing the heater to a particular current level; and de-energizing the heater for at least one-half hour.

  6. Unique Urchin-like Ca2Ge7O16 Hierarchical Hollow Microspheres as Anode Material for the Lithium Ion Battery

    PubMed Central

    Li, Dan; Feng, Chuanqi; Liu, Hua Kun; Guo, Zaiping

    2015-01-01

    Germanium is an outstanding anode material in terms of electrochemical performance, especially rate capability, but its developments are hindered by its high price because it is rare in the crust of earth, and its huge volume variation during the lithium insertion and extraction. Introducing other cheaper elements into the germanium-based material is an efficient way to dilute the high price, but normally sacrifice its electrochemical performance. By the combination of nanostructure design and cheap element (calcium) introduction, urchin-like Ca2Ge7O16 hierarchical hollow microspheres have been successfully developed in order to reduce the price and maintain the good electrochemical properties of germanium-based material. The electrochemical test results in different electrolytes show that ethylene carbonate/dimethyl carbonate/diethyl carbonate (3/4/3 by volume) with 5 wt% fluoroethylene carbonate additive is the most suitable solvent for the electrolyte. From the electrochemical evaluation, the as-synthesized Ca2Ge7O16 hollow microspheres exhibit high reversible specific capacity of up to 804.6 mA h g−1 at a current density of 100 mA g−1 after 100 cycles and remarkable rate capability of 341.3 mA h g−1 at a current density of 4 A g−1. The growth mechanism is proposed based on our experimental results on the growth process. PMID:26061390

  7. Unique Urchin-like Ca2Ge7O16 Hierarchical Hollow Microspheres as Anode Material for the Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Li, Dan; Feng, Chuanqi; Liu, Hua Kun; Guo, Zaiping

    2015-06-01

    Germanium is an outstanding anode material in terms of electrochemical performance, especially rate capability, but its developments are hindered by its high price because it is rare in the crust of earth, and its huge volume variation during the lithium insertion and extraction. Introducing other cheaper elements into the germanium-based material is an efficient way to dilute the high price, but normally sacrifice its electrochemical performance. By the combination of nanostructure design and cheap element (calcium) introduction, urchin-like Ca2Ge7O16 hierarchical hollow microspheres have been successfully developed in order to reduce the price and maintain the good electrochemical properties of germanium-based material. The electrochemical test results in different electrolytes show that ethylene carbonate/dimethyl carbonate/diethyl carbonate (3/4/3 by volume) with 5 wt% fluoroethylene carbonate additive is the most suitable solvent for the electrolyte. From the electrochemical evaluation, the as-synthesized Ca2Ge7O16 hollow microspheres exhibit high reversible specific capacity of up to 804.6 mA h g-1 at a current density of 100 mA g-1 after 100 cycles and remarkable rate capability of 341.3 mA h g-1 at a current density of 4 A g-1. The growth mechanism is proposed based on our experimental results on the growth process.

  8. Unique Urchin-like Ca2Ge7O16 Hierarchical Hollow Microspheres as Anode Material for the Lithium Ion Battery.

    PubMed

    Li, Dan; Feng, Chuanqi; Liu, Hua Kun; Guo, Zaiping

    2015-06-10

    Germanium is an outstanding anode material in terms of electrochemical performance, especially rate capability, but its developments are hindered by its high price because it is rare in the crust of earth, and its huge volume variation during the lithium insertion and extraction. Introducing other cheaper elements into the germanium-based material is an efficient way to dilute the high price, but normally sacrifice its electrochemical performance. By the combination of nanostructure design and cheap element (calcium) introduction, urchin-like Ca2Ge7O16 hierarchical hollow microspheres have been successfully developed in order to reduce the price and maintain the good electrochemical properties of germanium-based material. The electrochemical test results in different electrolytes show that ethylene carbonate/dimethyl carbonate/diethyl carbonate (3/4/3 by volume) with 5 wt% fluoroethylene carbonate additive is the most suitable solvent for the electrolyte. From the electrochemical evaluation, the as-synthesized Ca2Ge7O16 hollow microspheres exhibit high reversible specific capacity of up to 804.6 mA h g(-1) at a current density of 100 mA g(-1) after 100 cycles and remarkable rate capability of 341.3 mA h g(-1) at a current density of 4 A g(-1). The growth mechanism is proposed based on our experimental results on the growth process.

  9. Process for testing a xenon gas feed system of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  10. Process for Ignition of Gaseous Electrical Discharge Between Electrodes of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2000-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  11. Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. (Inventor); Soulas, George C. (Inventor)

    2002-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma at voltages of less than 20 Volts.

  12. Non-Layer-by-Layer Assembly and Encapsulation Uses of Nanoparticle-Shelled Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Kini, Gautam C.; Biswal, Sibani L.; Wong, Michael S.

    Nanoparticles (NPs, diameter range of 1-100nm) can have size-dependent physical and electronic properties that are useful in a variety of applications. Arranging them into hollow shells introduces the additional functionalities of encapsulation, storage, and controlled release that the constituent NPs do not have.This chapter examines recent developments in the synthesis routes and properties of hollow spheres formed out of NPs. Synthesis approaches reviewed here are recent developments in the electrostatics-based tandem assembly and interfacial stabilization routes to the formation of NP-shelled structures. Distinct from the well-established layer-by-layer (LBL) synthesis approach, the former route leads to NP/polymer composite hollow spheres that are potentially useful in medical therapy, catalysis, and encapsulation applications. The latter route is based on interfacial activity and stabilization by NPs with amphiphilic properties, to generate materials like colloidosomes, Pickering emulsions, and foams. The varied types of NP shells can have unique materials properties that are not found in the NP building blocks, or in polymer-based, surfactant-based, or LBL-assembled capsules.

  13. Epitaxial growth of ZnO nanorod arrays via a self-assembled microspheres lithography

    NASA Astrophysics Data System (ADS)

    Lin, Bo-Cheng; Ku, Ching-Shun; Lee, Hsin-Yi; Wu, Albert T.

    2017-08-01

    Through a simple hydrothermal method, well-aligned and periodic honeycomb-like ZnO nanorod arrays were fabricated on a c-plane sapphire with an aluminum-doped ZnO (AZO) seed layer. Vertical and highly ordered ZnO nanostructures with the <0002> orientation were synthesized by employing a self-assembled monolayer of polystyrene (PS) microspheres as a mask. The optimal growth conditions allowed the growth of only one rod in the confined space between the microspheres. A ϕ-scan exhibited six-fold symmetry, which indicates a favorable epitaxial relationship between the ZnO nanorods, seed layer, and c-plane sapphire substrate. The epitaxial relation is as follows: [0001]ZnO∥[0001]AZO∥[0001]c-planesapphire. These results indicate that the AZO seed layer acts as a buffer layer that can relax the strain between ZnO and c-plane sapphire generated by the large lattice mismatch of 18%. The size of the resulting ZnO nanorods of diameter 20-90 nm could be tuned by varying the concentration of the solution, pH, and duration of reaction. The large aspect ratio of the ZnO nanorod arrays can serve as a template for high-surface-area applications.

  14. A new synergic-assembly strategy towards three-dimensional (3D) hollow nanoarchitectures.

    PubMed

    Wu, Changzheng; Xie, Yi

    2008-12-01

    Large-scale synthesis and assembly of meso-, micro- and nanostructured building blocks with the desired orientations are of great interest for the next-generation nanoarchitecture design. On the consideration that the traditional synthetic methodologies for nanostructures often produce tangled nanounits, how to align the nanounits into the ordered orientation at high production yield is a great challenge to current methods. The present review describes a facile and controllable way to grow and assemble the 3D hollow nanoarchitectures, with the utilization of the synergic effects of hollowing process from the self-produced templates and the highly anisotropic growth of nanounits of the target materials in one-pot reaction. In this process, the building block nanounits spontaneously in-situ form owing to their highly anisotropic internal structure, while the self-produced templates act as the supporter and growth-direction guidance for the in-situ formed nanounits. Therefore, the whole assembly process is simple, controllable and without the complicated manipulations. Herein, in the light of the different kinds of self-produced templates involved in the assembly process, recent developments based on the new synergic-assembly strategy are reviewed according to the classifications: (1) self-produced gas bubble template strategy; (2) self-produced homogeneous solid template strategy; (3) self-produced heterogeneous solid template strategy. Notably, the synergic-assembly methodology described in this review provides a newly essential way to construct and assemble nanoarchitectures facilely and controllably, and is also a crucial step for the next-generation of nanoarchitecture design in the near future. In conclusion, the challenges and prospects for the future are discussed.

  15. Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates

    PubMed Central

    2013-01-01

    Herein we report a simple, one-pot, surfactant-free synthesis of 3D Ag microspheres (AgMSs) in aqueous phase at room temperature. The 3D AgMSs act as supports to fix the gold nanoparticles (GNPs) in 3D space via the interaction between the carboxyl groups of GNPs and the Ag atoms of AgMSs. The ensemble of AgMSs@GNPs with high surface-enhanced Raman scattering (SERS) activity and sensitivity can be an ideal 3D substrate choice for practical SERS detection applications. The simple self-assembly strategy may be extended to other metallic materials with great potentials in SERS, catalysis, and photoelectronic devices. PMID:23587323

  16. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases.

    PubMed

    Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa

    2008-09-15

    The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.

  17. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers.

    PubMed

    Duan, Bo; Zheng, Xing; Xia, Zhixiong; Fan, Xiaoli; Guo, Lin; Liu, Jianfeng; Wang, Yanfeng; Ye, Qifa; Zhang, Lina

    2015-04-20

    In this work, chitin microspheres (NCM) having a nanofibrous architecture were constructed using a "bottom-up" fabrication pathway. The chitin chains rapidly self-assembled into nanofibers in NaOH/urea aqueous solution by a thermally induced method and subsequently formed weaved microspheres. The diameter of the chitin nanofibers and the size of the NCM were tunable by controlling the temperature and the processing parameters to be in the range from 26 to 55 nm and 3 to 130 μm, respectively. As a result of the nanofibrous surface and the inherent biocompatibility of chitin, cells could adhere to the chitin microspheres and showed a high attachment efficiency, indicating the great potential of the NCM for 3D cell microcarriers.

  18. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives.

    PubMed

    Pang, Maolin; Zeng, Hua Chun

    2010-04-20

    Highly ordered superlattices assembled from transition metal oxide/sulfide submicrometer particles are difficult to prepare due to lack of monodisperse primary building blocks. In this work, we have successfully synthesized monodisperse Cu(2)O spheres with diameters in the submicrometer regime of 130-135 nm. Using the as-prepared Cu(2)O spheres as solid precursor, uniform hollow CuS and CuSe derivatives have also been synthesized in solution media. More importantly, a range of two-dimensional and three-dimensional superlattices of Cu(2)O, CuS, and CuSe solid/hollow spheres have been assembled for the first time. Without assistance of conventional sacrificing solid templates, the degree of ordering achieved in these superlattices is comparable to those reported for well-studied silica and polystyrene beads. The realization of these self-assembled superlattices may provide a new way of thin film design and fabrication for this class of photosensitive semiconducting materials using their prefabricated building blocks.

  19. Self-assembly of regular hollow icosahedra in salt-free catanionic solutions.

    PubMed

    Dubois, M; Demé, B; Gulik-Krzywicki, T; Dedieu, J C; Vautrin, C; Désert, S; Perez, E; Zemb, T

    2001-06-07

    Self-assembled structures having a regular hollow icosahedral form (such as those observed for proteins of virus capsids) can occur as a result of biomineralization processes, but are extremely rare in mineral crystallites. Compact icosahedra made from a boron oxide have been reported, but equivalent structures made of synthetic organic components such as surfactants have not hitherto been observed. It is, however, well known that lipids, as well as mixtures of anionic and cationic single chain surfactants, can readily form bilayers that can adopt a variety of distinct geometric forms: they can fold into soft vesicles or random bilayers (the so-called sponge phase) or form ordered stacks of flat or undulating membranes. Here we show that in salt-free mixtures of anionic and cationic surfactants, such bilayers can self-assemble into hollow aggregates with a regular icosahedral shape. These aggregates are stabilized by the presence of pores located at the vertices of the icosahedra. The resulting structures have a size of about one micrometre and mass of about 1010 daltons, making them larger than any known icosahedral protein assembly or virus capsid. We expect the combination of wall rigidity and holes at vertices of these icosahedral aggregates to be of practical value for controlled drug or DNA release.

  20. Double-Shelled TiO2 Hollow Spheres Assembled with TiO2 Nanosheets.

    PubMed

    Zhang, Chao; Zhou, Yuming; Zhang, Yiwei; Zhao, Shuo; Fang, Jiasheng; Sheng, Xiaoli; Zhang, Tao; Zhang, Hongxing

    2017-02-08

    High-quality double-shelled TiO2 hollow spheres (DHS-Ti) assembled with TiO2 nanosheets have been synthesized for the first time through a simple hydrothermal treatment of sSiO2 @TiO2 (TiO2 -coated solid SiO2 spheres). The double-shelled structure shows a high BET surface area up to 417.6 m(2)  g(-1) . Anatase DHS-Ti of high crystallinity can be obtained without structural collapse by calcination treatment. The effects of cetyl trimethylammonium bromide (CTAB) concentration, pH, and hydrothermal reaction temperature have also been investigated with a series of contrast experiments. A formation mechanism involving the in situ growth of amorphous TiO2 nanosheets followed by the redeposition of dissolved silica species is proposed. Lastly, the DHS-Ti forming strategy can be extended as a general strategy to fabricate various morphological hollow nanostructures and double-shelled Pt nanocatalysts by rationally selecting functional sSiO2 nanoparticles as core materials. This work could open up a new strategy for controllable synthesis of complex hollow structures and other functional materials.

  1. Tailor-made hollow silver nanoparticle cages assembled with silver nanoparticles: an efficient catalyst for epoxidation.

    PubMed

    Anandhakumar, S; Sasidharan, M; Tsao, Cheng-Wen; Raichur, Ashok M

    2014-03-12

    A novel approach toward the synthesis of hollow silver nanoparticle (NP) cages built with building blocks of silver NPs by layer-by-layer (LbL) assembly is demonstrated. The size of the NP cage depends on the size of template used for the LbL assembly. The microcages showed a uniform distribution of spherical silver nanoparticles with an average diameter of 20 ± 5 nm, which increased to 40 ± 5 nm when the AgNO3 concentration was increased from 25 to 50 mM. Heat treatment of the polyelectrolyte capsules at 80 °C near their pKa values yielded intact nano/micro cages. These cages produced a higher conversion for the epoxidation of olefins and maintained their catalytic activity even after four successive uses. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for further development as heterogeneous catalysts.

  2. Porous Ni0.14Mn0.86O1.43 hollow microspheres as high-performing anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zhong; Yuan, Xianxia; Li, Lin; Ma, Zi-Feng; Zhang, Lei; Mai, Liqiang; Zhang, Jiujun

    2015-09-01

    A uniformly dispersed bi-component nanocompotise of transition metal oxide (Mn2O3)/mixed transition metal oxide (NiMn2O4) with a porous and hollow microspheric sructure has been successfully prepared with a facile method based on the complexation between Ni2+ and NH3. The obtained nanocomposite of 0.29 Mn2O3/0.14 NiMn2O4, expressed as Ni0.14Mn0.86O1.43, with nanometer-sized building blocks exhibits a high reversible capacity of 615 mA h g-1, which is about 90% of theoretical value at the current density of 800 mA h g-1, and long lifespan with retained capacities of 553 and 408 mA h g-1 after 150 cycles at 200 and 800 mA g-1, respectively, as an anode material for lithium-ion batteries.

  3. Dual phase Li4Ti5O12-TiO2 hierarchical hollow microspheres as anode materials for high rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Kunxu; Hu, Guoxin

    2017-01-01

    Dual phase Li4Ti5O12-TiO2 hierarchical hollow microspheres composed of nanosheets are successfully fabricated by the calcination of hydrothermal product obtained from lithium peroxotitanate complex solution. Low-cost industrial H2TiO3 particles are chosen as titanium sources, which is significant for the inexpensive and large-scale production of Li4Ti5O12-TiO2 composite material. The Li4Ti5O12-TiO2 electrode yields excellent rate capability (151, 139 and 134 mA h g-1 at 10, 20 and 25 C, respectively) and good cycling stability (96% capacity retention after 500 cycles at 10 C). The mesoporous hierarchical morphology and high grain boundary density are likely the contributing factors to the excellent electrochemical performance of Li4Ti5O12-TiO2 composite.

  4. Palladium nanoparticles dispersed on the hollow aluminosilicate microsphere@hierarchical γ-AlOOH as an excellent catalyst for the hydrogenation of nitroarenes under ambient conditions

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Cui, Xueliang; Dong, Chunxu; Dong, Zhengping

    2016-12-01

    In this study, a novel catalyst has been prepared through supporting Pd nanoparticles (NPs) on the surface of boehmite (γ-AlOOH) based hollow aluminosilicate microspheres (HAM@γ-AlOOH). The prepared Pd/HAM@γ-AlOOH catalyst has high catalytic activity for the hydrogenation of nitroarenes to their corresponding amino derivatives with high yields at ambient conditions. The high catalytic efficiency is attributed to the large pore size of the flower-like hierarchical flakes structure of HAM@γ-AlOOH, that gives Pd NPs on the support surface easy accessibility. Moreover, the Pd/HAM@γ-AlOOH catalyst can also be easily recycled at least five times without obvious decrease of catalytic activity. This work may provide a useful method for the fabrication of supported noble metal NP-based catalysts on the surface of mesoporous hierarchical structure materials with easy accessibility and superior activity.

  5. Facile Directed Assembly of Hollow Polymer Nanocapsules within Spontaneously Formed Catanionic Surfactant Vesicles

    SciTech Connect

    Kim, Mariya D.; Dergunov, Sergey; Richter, Andrew; Durbin, Jeffrey; Shmakov, Sergey; Jia, Ying; Kenbeilova, Saltanat; Orazbekuly, Yerbolat; Kengpeiil, Aigerim; Lindner, Erno; Pingali, Sai Venkatesh; Urban, Volker S; Weigand, Steven; Pinkhassik, Eugene

    2014-01-01

    Surfactant vesicles containing monomers in the interior of the bilayer were used to template hollow polymer nanocapsules. This study investigated the formation of surfactant/monomer assemblies by two loading methods, concurrent loading and diffusion loading. The assembly process and the resulting aggregates were investigated with dynamic light scattering, small angle neutron scattering, and small-angle X-ray scattering. Acrylic monomers formed vesicles with a mixture of cationic and anionic surfactants in a broad range of surfactant ratios. Regions with predominant formation of vesicles were broader for compositions containing acrylic monomers compared with blank surfactants. This observation supports the stabilization of the vesicular structure by acrylic monomers. Diffusion loading produced monomer-loaded vesicles unless vesicles were composed from surfactants at the ratios close to the boundary of a vesicular phase region on a phase diagram. Both concurrent-loaded and diffusion-loaded surfactant/monomer vesicles produced hollow polymer nanocapsules upon the polymerization of monomers in the bilayer followed by removal of surfactant scaffolds.

  6. Tollen’s reagent assisted synthesis of hollow polyaniline microsphere/Ag nanocomposite and its applications in sugar sensing and electromagnetic shielding

    SciTech Connect

    Panigrahi, R.; Srivastava, S.K.

    2015-04-15

    Graphical abstract: Probable scheme to demonstrate the mechanism of PnHMAg showing enhanced EMI shielding compared to PnHM. - Highlights: • Hollow polyaniline microsphere (PnHM) exhibits superior properties due to its enhanced surface to volume ratio. • PnHMAg has been used in developing efficient sensor for the detection of sugar. • Presence of Ag nanoparticles enhances the electrical conductivity of PnHMAg resulting in the improvement of electromagnetic interference shielding in both X- and S-band regions. • Such properties could be harnessed effectively for development of devices for commercial as well as national purposes. - Abstract: The present study is focused on synthesis of polyaniline hollow microspheres (PnHM) nanocomposites of silver (Ag) i.e., PnHMAg by emulsion polymerization of aniline and Tollen’s reagent as a source for Ag nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of PnHMAg indicated presence of silver nanoparticles dispersed on polyaniline surface. The electrical conductivity of PnHMAg is increased by ∼6 times compared to PnHM. Cyclic voltammogram of PnHM in sugar sensing exhibits characteristics redox peaks at ∼0.09 (sugar) and ∼0.53 V (polyaniline). Interestingly, PnHMAg showed a single peak at ∼−0.18 V with increased intensity (∼5 times) indicating its high sugar sensing ability. PnHMAg also exhibits high shielding efficiency of 19.5 dB (11.2 GHz) due to the presence of highly conducting Ag nanoparticles. TEM studies confirmed that Ag nanoparticles are well distributed on PnHM. As a result, a continuous electronic path is developed due to enhanced interconnectivity of PnHM.

  7. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Yang, Zeheng; Xu, Feifei; Zhang, Weixin; Mei, Zhousheng; Pei, Bo; Zhu, Xiao

    2014-01-01

    In this work, we demonstrate a facile layer-by-layer (LBL) self-assembly method for controllable preparation of single-, double-, and triple-shelled NiO hollow nanospheres by calcining Ni(OH)2/C precursors formed at different stage. It is observed that the external nanoflakes of the NiO hollow nanospheres are inherited from the Ni(OH)2 precursors organized on the surface of carbon spheres via a self-assembly growth process and the inner shells result from the formation of different Ni(OH)2 layers within the carbon spheres during different preparation cycles. Supercapacitive performance of the three types of NiO hollow nanospheres as active electrode materials has been evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge. The results indicate that double-shelled NiO hollow nanosphere sample with largest surface area (92.99 m2 g-1) exhibits the best electrochemical properties among the three NiO hollow nanosphere samples. It delivers a high capacitance of 612.5 F g-1 at 0.5 A g-1 and demonstrates a superior long-term cyclic stability, with over 90% specific capacitance retention after 1000 charge-discharge cycles. This excellent performance is ascribed to the short diffusion path and large surface area of the unique hollow structure with nanoflake building blocks for bulk accessibility of faradaic reaction.

  8. Engineered Cartilage via Self-Assembled hMSC Sheets with Incorporated Biodegradable Gelatin Microspheres Releasing Transforming Growth Factor-β1

    PubMed Central

    Solorio, Loran D.; Vieregge, Eran L.; Dhami, Chirag D.; Dang, Phuong N.; Alsberg, Eben

    2011-01-01

    Self-assembling cell sheets have shown great potential for use in cartilage tissue engineering applications, as they provide an advantageous environment for the chondrogenic induction of human mesenchymal stem cells (hMSCs). We have engineered a system of self-assembled, microsphere-incorporated hMSC sheets capable of forming cartilage in the presence of exogenous transforming growth factor β1 (TGF-β1) or with TGF-β1 released from incorporated microspheres. Gelatin microspheres with two different degrees of crosslinking were used to enable different cell-mediated microsphere degradation rates. Biochemical assays, histological and immunohistochemical analyses, and biomechanical testing were performed to determine biochemical composition, structure, and equilibrium modulus in unconfined compression after 3 weeks of culture. The inclusion of microspheres with or without loaded TGF-β1 significantly increased sheet thickness and compressive equilibrium modulus, and enabled more uniform matrix deposition by comparison to control sheets without microspheres. Sheets incorporated with fast-degrading microspheres containing TGF-β1 produced significantly more GAG and GAG per DNA than all other groups tested and stained more intensely for type II collagen. These findings demonstrate improved cartilage formation in microsphere-incorporated cell sheets, and describe a tailorable system for the chondrogenic induction of hMSCs without necessitating culture in growth factor-containing medium. PMID:22100386

  9. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  10. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  11. Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres.

    PubMed

    Przybyla, David E; Rubert Pérez, Charles M; Gleaton, Jeremy; Nandwana, Vikas; Chmielewski, Jean

    2013-03-06

    A 27 amino acid collagen-based peptide (Hbyp3) was designed to radially display nine hydrophobic bipyridine moieties from a triple helical scaffold. Self-assembly of such functionalized triple helices led to the formation of micrometer-scaled disks with a curved morphology, presumably mediated by aromatic interactions, with a height that is in the range of the length of the triple helical peptide. Higher order assembly of these curved disks into micrometer-sized hollow spheres was accomplished through metal-ligand interactions between bipyridine groups of the disks and metal ions such as Fe(II), Co(II), Zn(II) and Cu(II). The thickness of the shell of these hollow spheres corresponds well with the thickness of the collagen peptide-based triple helix and the corresponding self-assembled disks. Addition of a metal ion chelator was found to reverse the assembly of the hollow spheres back to the curved disk structures. These data support the formation of the hollow spheres from the self-assembled disks of Hbyp3 upon addition of metal ions.

  12. Method for the production of fabricated hollow microspheroids

    DOEpatents

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  13. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.

  14. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    SciTech Connect

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang Zhang, Tingting; Guo, Tingting

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.

  15. Spontaneous self-assembly of metal-organic cationic nanocages to form monodisperse hollow vesicles in dilute solutions.

    PubMed

    Li, Dong; Zhang, Jie; Landskron, Kai; Liu, Tianbo

    2008-04-02

    In this communication we report the unprecedented spontaneous self-assembly of cationic nanoporous metal-organic coordination cages (nanocages) into giant hollow vesicle-like structures in polar solvents. Such highly soluble nanocages (macrocations) have separated hydrophobic regions. However, their assembly is not due to hydrophobic interactions but the counterion-mediated attractions, very similar to the unique self-assembly of polyoxometalate macroanions into single-layer, spherical blackberry structures, as characterized by laser light scattering and TEM studies. This is the first study on the solution behavior of metal-organic nanocages and also the first report on the self-assembly of soluble macrocations. Therefore, the blackberry structure is likely to be a universal type of self-assembly for soluble macroions. In addition, the self-assembled nanocages can provide blackberry structures a wide range of organic functionalities that are impossible to reach with purely inorganic systems, which may open the door to many types of applications.

  16. Influence of annealing conditions on the formation of hollow Al{sub 2}O{sub 3} microspheres studied by in situ ESEM

    SciTech Connect

    Pedraza, F.; Podor, R.

    2016-03-15

    The transformation of Al microparticles into hollow and broken Al{sub 2}O{sub 3} microspheres was investigated by in situ environmental scanning electron microscopy (ESEM) up to 1150 °C under different heating rates and 120 Pa of gas atmospheres. Slow heating rates (2 °C min{sup −1}) resulted in a better coverage of the particles shell than with fast heating rates (20 °C min{sup −1}) that delayed the threshold temperature at which the particles opened. Above this threshold, the amount of opened spheres increased with heating rate, with the coarser particles opening more than the small ones. It appeared that inert atmospheres (He–4%H{sub 2}) increased the temperature at which the particles transformed, while air and pure oxygen tended to lower it. In contrast, the temperature interval was larger and was size-dependent when using water vapour. Irrespective of the gas atmosphere, opening of the spheres allowed molten Al to flow out from the core and aluminise the substrate while leaving behind a top coat of hollow alumina spheres. - Graphical abstract: (a) Effect of the increasing of oxidizing power of the gas atmosphere and of the heating rate. The former provokes in a better surface coverage of the Al microparticles while the latter results in thinner alumina shells. (b) The supply of Al to the substrate and the interdiffusion mechanisms result in an aluminised layer underneath the top coat of Al microparticles. - Highlights: • Transformations of Al microparticles with temperature demonstrated by in-situ SEM • The gas atmospheres changed the temperature of transformation of the Al microparticles. • The Al supply from the microparticles aluminized the superalloy substrate. • A potential thermal barrier coating was thus obtained in a single step process.

  17. Self-assembly of CdSe quantum dots and colloidal titanium dioxide on copolymer microspheres (PS) for CdSe/PS and TiO2/CdSe/PS sub-microspheres with yolk-shell structure

    NASA Astrophysics Data System (ADS)

    Zhao, Qingchun

    2015-07-01

    Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, chemical/biological sensors, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in nanostructures. In this paper, relying on the interaction including van der Waals forces and hydrogen bond, CdSe/PS sub-microspheres composite and TiO2/CdSe/PS sub-microspheres with yolk-shell structure were prepared via self-assembly of CdSe quantum dots and colloidal titanium dioxide on modified PS surface. The morphology, structure and composition obtained products were investigated by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy disperse X-ray spectroscopy (EDX). Transmission electron microscopy (TEM) investigations show the CdSe quantum dots and colloidal titanate were assembled on the surface of PS sub-microspheres. CdSe QD-polymer sub-microspheres composites in which the QDs retain their original emission efficiency can be obtained. TiO2/CdSe/PS sub-microspheres with yolk-shell structure can improve the efficiency of charge separation.

  18. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    PubMed Central

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-01-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release. PMID:27876876

  19. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    NASA Astrophysics Data System (ADS)

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-11-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release.

  20. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties.

    PubMed

    Guan, Mei-Li; Ma, De-Kun; Hu, Sheng-Wei; Chen, Yan-Jun; Huang, Shao-Ming

    2011-02-07

    In this study, hollow olive-shaped BiVO(4) and n-p core-shell BiVO(4)@Bi(2)O(3) microspheres were synthesized by a novel sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-assisted mixed solvothermal route and a thermal solution of NaOH etching process under hydrothermal conditions for the first time, respectively. The as-obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, Brunauer-Emmett-Teller surface area, and UV-vis diffuse-reflectance spectroscopy in detail. The influence of AOT and solvent ratios on the final products was studied. On the basis of SEM observations and XRD analyses of the samples synthesized at different reaction stages, the formation mechanism of hollow olive-shaped BiVO(4) microspheres was proposed. The photocatalytic activities of hollow olive-shaped BiVO(4) and core-shell BiVO(4)@Bi(2)O(3) microspheres were evaluated on the degradation of rhodamine B under visible-light irradiation (λ > 400 nm). The results indicated that core-shell BiVO(4)@Bi(2)O(3) exhibited much higher photocatalytic activities than pure olive-shaped BiVO(4). The mechanism of enhanced photocatalytic activity of core-shell BiVO(4)@Bi(2)O(3) microspheres was discussed on the basis of the calculated energy band positions as well. The present study provides a new strategy to enhancing the photocatalytic activity of visible-light-responsive Bi-based photocatalysts by p-n heterojunction.

  1. One-step synthesis of in situ reduced metal Bi decorated bismuth molybdate hollow microspheres with enhancing photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Jin, Meng; Lu, Shiyu; Ma, Li; Gan, Mengyu

    2017-02-01

    In this feature work, in situ metal Bi are successfully modified bismuth molybdate hollow spheres using an effective one-pot solvthermal reduction without any temple. In order to deeply understand the influence of reduction conditions on the texture, surface state, and photocatalytic performance of the resulting samples, a series of products were synthesized by tuning the temperatures. The similar morphology, surface area of photocatalysis (BMO-160 and BMO-170) were synthesized, only with the different composition. The detailed characterization and analysis distinctly suggested that increasing solvothermal reduction temperature led to Bi3+ was in situ reduced to elementary substance Bi0 by ethylene glycol gradually and dispersed very uniform in bismuth molybdate. Benefiting from the enhanced charge separation, transfer, and donor density resulting from the formation of Bi decorated bismuth molybdate where Bi as cocatalyst, the photocatalytic performance of the reductive Bi/Bi2-xMoOy hollow spheres (BMO-170) is higher than that of the untreated Bi2-xMoOy hollow spheres (BMO-160) for Rh6G degradation under visible light irradiation. Additionally, the reductive BMO-170 has a superior stability after five cycles.

  2. Polymeric hollow spheres assembled from ALG-g-PNIPAM and β-cyclodextrin for controlled drug release.

    PubMed

    Li, Guiying; Yu, Nana; Gao, Yurong; Tao, Qian; Liu, Xunyong

    2016-01-01

    In this paper, thermo-sensitive polymeric hollow spheres assembled from sodium alginate-graft-poly(N-isopropylacrylamide) (ALG-g-PNIPAM) and β-cyclodextrin (β-CD) were prepared for controlled release of 5-fluorouracil (5-FU). In aqueous solutions, β-CD and PNIPAM formed rod-like segments through inclusion complexation interactions and sodium alginate acted as coil segments, which resulted in the formation of hollow structures. The size and wall thickness of assemblies increased with the increase of β-CD in mixtures. The lower critical solution temperature (LCST) of hollow spheres varied in the range of 35-37°C. The hollow spheres exhibited high drug loading efficiency for 5-FU due to the hydrophilic cavities. The initial composition of mixtures, temperature and pH had a significant effect on the inclusion ability and drug release. Increasing temperatures above the LCST or decreasing pH to acidic conditions, a more rapid release rate was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hierarchically assembled NiCo@SiO2@Ag magnetic core-shell microspheres as highly efficient and recyclable 3D SERS substrates.

    PubMed

    Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui

    2015-01-21

    The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.

  4. Synthesis and photoluminescence properties of Eu3+-doped silica@coordination polymer core-shell structures and their calcinated silica@Gd2O3:Eu and hollow Gd2O3:Eu microsphere products.

    PubMed

    Lee, Hee Jung; Park, Ju-Un; Choi, Sora; Son, Juhee; Oh, Moonhyun

    2013-02-25

    The conjugation of Eu(3+)-doped coordination polymers constructed from Gd(3+) and isophthalic acid (H(2)IPA) with silica particles is investigated for the production of luminescent microspheres. A series of doping ratio-controlled silica@coordination polymer core-shell spheres is easily synthesized by altering the amounts of metal nodes used in the reactions, where the ratios of Gd(3+) and Eu(3+) are 10:0 (1a), 9:1 (1b), 8:2 (1c), 7:3 (1d), 5:5 (1e), and 0:10 (1f). The formation of monodisperse uniform core-shell structures is achieved throughout the entirety of a series. Investigations of the photoluminescence property of the resulting series of silica@coordination polymer core-shell spheres reveal that 20% Eu(3+)-doped product (1c) has the strongest emission intensity. The subsequent calcination process on the silica@coordination polymer core-shell structures (1a-f) results in the formation of a series of doping ratio-controlled silica@Gd(2)O(3):Eu core-shell microspheres (2a-f) with uniform shell thickness. During the calcination step, the coordination polymers within silica@coordination polymer core-shells are transformed into metal oxides, resulting in silica@Gd(2)O(3):Eu core-shell structures. The final etching process on the silica@Gd(2)O(3):Eu core-shell microspheres (2a-f) produces a series of hollow Gd(2)O(3):Eu microspheres (3a-f) as a result of the elimination of silica cores. The luminescence intensities of silica@Gd(2)O(3):Eu core-shell (2a-f) and hollow Gd(2) O(3):Eu microspheres (3a-f) also vary depending upon the doping ratio of Eu(3+) ions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sequential Enrichment with Titania-coated Magnetic Mesoporous Hollow Silica Microspheres and Zirconium Arsenate-modified Magnetic Nanoparticles for the Study of Phosphoproteome of HL60 Cells

    PubMed Central

    Yu, Qiong-Wei; Li, Xiao-Shui; Xiao, Yongsheng; Guo, Lei; Zhang, Fan; Cai, Qian; Feng, Yu-Qi; Yuan, Bi-Feng; Wang, Yinsheng

    2014-01-01

    As one of the most important types of post-translational modifications, reversible phosphorylation of proteins plays crucial roles in a large number of biological processes. However, owing to the relatively low abundance and dynamic nature of phosphorylation and the presence of the unphosphorylated peptides in large excess, phosphopeptide enrichment is indispensable in large-scale phosphoproteomic analysis. Metal oxides including titanium dioxide have become prominent affinity materials to enrich phosphopeptides prior to their analysis using liquid chromatography-mass spectrometry (LC-MS). In the current study, we established a novel strategy, which encompassed strong cation exchange chromatography, sequential enrichment of phosphopeptides using titania-coated magnetic mesoporous hollow silica microspheres (TiO2/MHMSS) and zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe3O4@SiO2), and LC-MS/MS analysis, for the proteome-wide identification of phosphosites of proteins in HL60 cells. In total, we were able to identify 11579 unique phosphorylation sites in 3432 unique proteins. Additionally, our results suggested that TiO2/MHMSS and ZrAs-Fe3O4@SiO2 are complementary in phosphopeptide enrichment, where the two types of materials displayed preferential binding of peptides carrying multiple and single phosphorylation sites, respectively. PMID:25262027

  6. Interaction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions

    PubMed Central

    Jiang, Zhong-Jie; Jiang, Zhongqing

    2016-01-01

    Nitrogen doped graphene hollow microspheres (NGHSs) have been used as the supports for the growth of the CoO nanoparticles. The nitrogen doped structure favors the nucleation and growth of the CoO nanoparticles and the CoO nanoparticles are mostly anchored on the quaternary nitrogen doped sites of the NGHSs with good monodispersity since the higher electron density of the quaternary nitrogen favors the nucleation and growth of the CoO nanoparticles through its coordination and electrostatic interactions with the Co2+ ions. The resulting NGHSs supported CoO nanoparticles (CoO/NGHSs) are highly active for the oxygen reduction reaction (ORR) with activity and stability higher than the Pt/C and for the oxygen evolution reaction (OER) with activity and stability comparable to the most efficient catalysts reported to date. This indicates that the CoO/NGHSs could be used as efficient bi-functional catalysts for ORR and OER. Systematic analysis shows that the superior catalytic activities of the CoO/NGHSs for ORR and OER mainly originate from the nitrogen doped structure of the NGHSs, the small size of the CoO nanoparticles, the higher specific and electroactive surface area of the CoO/NGHSs, the good electric conductivity of the CoO/NGHSs, the strong interaction between the CoO nanoparticles and the NGHSs, etc. PMID:27255562

  7. The super-hydrophobic IR-reflectivity TiO2 coated hollow glass microspheres synthesized by soft-chemistry method

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Wang, Yuanhao; An, Zhenguo; Zhang, Jingjie; Yang, Hongxing

    2016-11-01

    The super-hydrophobic and IR-reflectivity hollow glass microspheres (HGM) was synthesized by being coated with anatase TiO2 and a super-hydrophobic material. The super-hydrophobic self-cleaning property prolong the life time of the IR reflectivity. TBT and PFOTES were firstly applied and hydrolyzed on HGM and then underwent hydrothermal reaction to synthesis anatase TiO2 film. For comparison, the PFOTES/TiO2 mutual-coated HGM (MCHGM), PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The MCHGM had bigger contact angle (153°) but smaller sliding angle (16°) than F-SCHGM (contact angle: 141.2°; sliding angle: 67°). Ti-SCHGM and MCHGM both showed similar IR reflectivity with ca. 5.8% increase compared with original HGM and F-SCHGM. For the thermal conductivity, coefficients of F-SCHGM (0.0479 W/(m K)) was basically equal to that of the original HGM (0.0475 W/(m K)). Negligible difference was found between the thermal conductivity coefficients of MCHGM-coated HGM (0.0543 W/(m K)) and Ti-SCHGM (0.0546 W/(m K)).

  8. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  9. Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis.

    PubMed

    Chung, Ming-Fan; Chia, Wei-Tso; Liu, Hung-Yi; Hsiao, Chun-Wen; Hsiao, Hsu-Chan; Yang, Chih-Man; Sung, Hsing-Wen

    2014-11-01

    In the conventional treatment of osteomyelitis, the penetration of antibiotics into the infected bone is commonly poor. To ensure that the local antibiotic concentration is adequate, this work develops an injectable calcium phosphate (CP) cement in which is embedded pH-responsive hollow microspheres (HMs) that can control the release of a drug according to the local pH. The HMs are fabricated using a microfluidic device, with a shell of poly(D,L-lactic-co-glycolic acid) (PLGA) and an aqueous core that contains vancomycin (Van) and NaHCO3. At neutral pH, the CP/HM cement elutes a negligible concentration of the drug. In an acidic environment, the NaHCO3 that is encapsulated in the HMs reacts with the acid rapidly to generate CO2 bubbles, disrupting the PLGA shells and thereby releasing Van locally in excess of a therapeutic threshold. The feasibility of using this CP/HM cement to treat osteomyelitis is studied using a rabbit model. Analytical results reveal that the CP/HM cement provides highly effective local antibacterial activity. Histological examination further verifies the efficacy of the treatment by the CP/HM cement. The above findings suggest that the CP/HM cement is a highly efficient system for the local delivery of antibiotics in the treatment of osteomyelitis.

  10. Fabrication of low-methanol-permeability sulfonated poly(phenylene oxide) membranes with hollow glass microspheres for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ahn, Kisang; Kim, Myeongjin; Kim, Kiho; Ju, Hyun; Oh, Ilgeun; Kim, Jooheon

    2015-02-01

    Organic/inorganic composite membranes, based on sulfonated poly(phenylene oxide) (SPPO) and hollow glass microspheres (HGMs), with various compositions are prepared for use as proton exchange membranes in direct methanol fuel cells (DMFCs). Reaction time between chlorosulfonic acid solution and PPO is controlled to improve proton conductivity of the SPPO membrane. As a result, SPPO at 38.2% sulfonation is selected as the optimum degree of sulfonation. Afterwards, SPPO is successfully introduced onto the surfaces of HGMs to increase their dispersion in the SPPO matrix. The ion exchange capacities (IEC) and proton conductivities of the membranes decrease with increasing amounts of the SPPO-HGMs, because of the decrease of ionic sites with increasing HGM content. The SPPO-HGM composite membranes exhibit proton conductivities ranging from 0.0350 to 0.0212 S cm-1 and low methanol permeability ranging from 1.02 × 10-6 to 3.41 × 10-7 cm2 s-1 at 20 °C. Furthermore, the SPPO-HGM 9 wt%/SPPO membrane presents a maximum power density of 81.5 mW cm-2 and open circuit voltage of 0.70 V.

  11. Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine.

    PubMed

    Xiao, Chunhui; Chu, Xiaochen; Yang, Yan; Li, Xing; Zhang, Xiaohua; Chen, Jinhua

    2011-02-15

    Hollow nitrogen-doped carbon microspheres (HNCMS) as a novel carbon material have been prepared and the catalytic activities of HNCMS-modified glassy carbon (GC) electrode towards the electro-oxidation of uric acid (UA), ascorbic acid (AA) and dopamine (DA) have also been investigated. Comparing with the bare GC and carbon nanotubes (CNTs) modified GC (CNTs/GC) electrodes, the HNCMS modified GC (HNCMS/GC) electrode has higher catalytic activities towards the oxidation of UA, AA and DA. Moreover, the peak separations between AA and DA, and DA and UA at the HNCMS/GC electrode are up to 212 and 136 mV, respectively, which are superior to those at the CNTs/GC electrode (168 and 114 mV). Thus the simultaneous determination of UA, AA and DA was carried out successfully. In the co-existence system of UA, AA and DA, the linear response range for UA, AA and DA are 5-30 μM, 100-1000 μM and 3-75 μM, respectively and the detection limits (S/N = 3) are 0.04 μM, 0.91 μM and 0.02 μM, respectively. Meanwhile, the HNCMS/GC electrode can be applied to measure uric acid in human urine, and may be useful for measuring abnormally high concentration of AA or DA. The attractive features of HNCMS provide potential applications in the simultaneous determination of UA, AA and DA.

  12. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  13. Self-assembly of triangular amphiphiles into diverse nano/microstructures and release behavior of the hollow sphere.

    PubMed

    Lv, Kai; Zhang, Li; Liu, Minghua

    2014-08-12

    Amphiphilic triangular derivatives containing imine bond have been designed and used as building blocks for the construction of soft colloidal materials. The acylhydrazone derivative was found to form various nano/microstructures in different solvents. The microspheres, flower-like, and hollow spheres were formed in the polar solvents, while organogels with microporous structures were formed in nonpolar solvents. However, the simple Schiff base amphiphile without amide group did not form any ordered structures in the tested solvents. Therefore, besides the π-π stacking between the aromatic core and the van der Waals interactions between the alkyl chains, the hydrogen bonding between the acylhydrazone moieties played an important role in promoting the formation of various organized structures. More interestingly, the hollow sphere structure which was formed in THF could be used to encapsulate and release the rhodamine B. It was found that rhodamine B was encapsulated within their interiors under neutral conditions and released in an acidic condition due to the breakage of the imine bond.

  14. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  15. Morphology and photoluminescence of self-assembled CaWO4:Sm3+ microspheres: effect of pH and surfactant concentration

    NASA Astrophysics Data System (ADS)

    Ningombam, Goutam Singh; Nongmaithem, Rajmuhon Singh

    2017-03-01

    Self-assembled CaWO4:Sm3+ microspheres were prepared via surfactant (sodium dodecyl sulfate) mediated hydrothermal method. The effect of pH and the concentration of surfactant on the morphology and photoluminescence of the synthesized phosphors have been studied. Samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy. The microspheres were found to have an average size of 1-2 µm. They were mesoporous in nature and constituted of nanocrystals of about 10-30 nm dimension. The TEM images revealed the interlinking framework of the nano-sized constituents which consequently lead to the formation of mesoporous microspheres. The lowering of pH causes a slight reduction in the size of microspheres which could have been attributed to loss of OH from the nanoparticle surface and subsequent retardation in the adsorption of growing molecular CaWO4:Sm3+ units. Also, as pH increases, crystallinity decreases. The increase in amount of SDS reduced the crystallinity of the materials, destroyed the monodispersity of microspheres and lowered the luminescence output. It was found that lower pH and higher monodispersity of microspheres are quite favourable for high luminescence output.

  16. Multifunctional hollow CaF2:Yb(3+)/Er(3+)/Mn(2+)-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging.

    PubMed

    Deng, Xiaoran; Dai, Yunlu; Liu, Jianhua; Zhou, Ying; Ma, Ping'an; Cheng, Ziyong; Chen, Yinyin; Deng, Kerong; Li, Xuejiao; Hou, Zhiyao; Li, Chunxia; Lin, Jun

    2015-05-01

    Combining the multi-modal medical imaging with cancer therapy in one single system has attracted the great interests for theranostic purpose. In this paper, CaF2:Yb(3+)/Er(3+)/Mn(2+)-poly(2-Aminoethyl methacrylate) (UCHNs-PAMA) hybrid microspheres were successfully fabricated. The synthetic route to the nanocomposite based on a facile hydrothermal method for fabrication of hollow upconversion (UC) nanospheres at first and then post-filling the PAMA interiorly through photo-initiated polymerization. The UCHNs showed orange fluorescence under 980 nm near infrared (NIR) laser excitation, which provided the upconverting luminescence (UCL) imaging modality. Meanwhile, the presence of functional Mn(2+) and Yb(3+) offered the enhanced T1-weighted magnetic resonance (MR) and computed tomography (CT) imaging, respectively. Thanks to introducing amine groups-containing PAMA inside the hollow nanospheres, the Pt(IV) pro-drug, c,c,t-Pt(NH3)2Cl2(OOCCH2CH2COOH)2 (DSP), can be conveniently bonded on the polymer network to construct a nanoscale anti-cancer drug carrier. The UCHNs-PAMA-Pt(IV) nanocomposite shows effective inhibition for Hela cell line via MTT assay. In contrast, Pt(IV) pro-drug and UCHNs-PAMA microspheres behave little cytotoxicity to Hela cells. This should be attributed the fact that the anti-cancer ability can be recovered only when Pt(IV) pro-drug was reduced to Pt(II)-drug in cellular environment. Furthermore, the in vivo experiments on small mice also confirm that the hybrid microspheres have relatively low toxic side effects and high tumor inhibition rate. These findings show that the multifunctional hybrid microspheres have potential to be used as UCL/MR/CT tri-modal imaging contrast agent and anti-cancer drug carriers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Bartels, Carl; Yu, Yisong; Shen, Hongwei; Eisenberg, Adi

    1997-12-01

    Mesosize crystal-like aggregates with an internal structure of hexagonally packed hollow hoops (HHH) in a polystyrene matrix have been prepared in solution by self-assembly of asymmetric polystyrene-b-poly(acrylic acid) diblock copolymers. Most of the aggregates are cylindrical or in the shape of truncated cones. The external surface of the aggregates and the internal surface of the hollow hoops are lines with short poly(acrylic acid) chains. The hoop morphology is imposed because the end-capping energy of a rod on this size scale is more important than the curvature energy. A strong interdependence between the external shape and the internal structure in these mesosize particles is demonstrated.

  18. Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Geints, Y. E.; Zemlyanov, A. A.

    2017-10-01

    Specific spatially-localized optical field structure, which is often referred to as a photonic nanojet (PNJ), is formed in the near-field scattering area of non-absorbing dielectric micron-sized particle exposed to an optical radiation. By virtue of the finite-difference time-domain technique we numerically simulate the two-dimensional array of PNJs created by an ordered single-layer microassembly of glass microspheres immersed in a transparent polymer matrix. The behavior of the main PNJ parameters (length, diameter, and intensity) is analyzed subject to the immersion depth of the microparticles and cooperative interference effects of the neighboring microspheres. We show that depending on microassembly configuration, the PNJ quality can be significantly improved; in particular, the PNJ spatial resolution better than λ/5 can be achieved.

  19. Novel Erythrocyte-like Graphene Microspheres with High Quality and Mass Production Capability via Electrospray Assisted Self-Assembly

    NASA Astrophysics Data System (ADS)

    Tian, Yayang; Wu, Guan; Tian, Xike; Tao, Xiaoming; Chen, Wei

    2013-11-01

    We report for the first time a novel erythrocyte-like graphene microsphere (ELGMs) which can be produced with high quality and mass production capability via electrospray assisted self-assembly. Through simple electrospray treatment of GO suspension into coagulation bath followed by chemical reduction, large quantity of ELGMs with uniform morphology and size can be obtained with production rate of around 2.4 mg/h. Compared with other 3D structures, the ELGMs have a very interesting structural characteristic of perfect exterior doughnut shape and interior porous network. Accordingly, the as-prepared porous ELGMs exhibit excellent capability for fast and recyclable removal of oil and toxic organic solvents from water, reaching up to 216 times of its weight in absorption efficiency, which is tens of times higher than that of conventional sorbent materials. It is strongly believed that the novel hierarchical graphene structures and synergy among different techniques will lead to more future advances in graphene applications.

  20. Microspheres in Plasma Display Panels

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Filling small bubbles of molten glass with gases is just as difficult as it sounds, but the technical staff at NASA is not known to shy away from a difficult task. When Microsphere Systems, Inc. (MSI), of Ypsilanti, Michigan, and Imaging Systems Technology, Inc. (IST), of Toledo, Ohio, were trying to push the limits of plasma displays but were having difficulty with the designs, NASA s Glenn Garrett Morgan Commercialization Initiative (GMCI) assembled key personnel at Glenn Research Center and Ohio State University for a brainstorming session to come up with a solution for the companies. They needed a system that could produce hollow, glass micro-sized spheres (microspheres) that could be filled with a variety of gasses. But the extremely high temperature required to force the micro-sized glass bubbles to form at the tip of a metal nozzle resulted in severe discoloration of the microspheres. After countless experiments on various glass-metal combinations, they had turned to the GMCI for help. NASA experts in advanced metals, ceramics, and glass concluded that a new design approach was necessary. The team determined that what was needed was a phosphate glass composition that would remain transparent, and they went to work on a solution. Six weeks later, using the design tips from the NASA team, Tim Henderson, president of MSI, had designed a new system in which all surfaces in contact with the molten glass would be ceramic instead of metal. Meanwhile, IST was able to complete a Phase I Small Business Innovation Research (SBIR) grant supported by the National Science Foundation (NSF) and supply a potential customer with samples of the microspheres for evaluation as filler materials for high-performance insulations.

  1. Stimuli-sensitive hollow spheres from chitosan-graft-β-cyclodextrin for controlled drug release.

    PubMed

    Yu, Nana; Li, Guiying; Gao, Yurong; Liu, Xunyong; Ma, Songmei

    2016-12-01

    In this paper, sensitive polymeric hollow spheres self-assembled from chitosan-grafted-β-cyclodextrin (CS-g-CD) and sodium tripolyphosphate (TPP) were prepared for controlled release of doxorubicin (DOX). The assemblies were formed by electrostatic interactions between positively charged amino group in CS-g-CD and negatively charged phosphate in TPP. The hollow spheres with diameters about 100nm were confirmed by transmission electron microscopy (TEM) and laser particle analyzer. The microspheres with hollow cavity were beneficial to improve the drug loading capacity for DOX with entrapment efficiency above 60%. The cumulative release of DOX from CS-g-CD/TPP hollow microspheres increased with the decrease of pH and the increase of temperature or ionic strength. At 37 °C and pH 5.2, the maximum drug release was above 90% with a continuous release rate. In-vitro cytotoxicity tests indicate that drug loaded hollow spheres exhibited evidently inhibition against cancer cells. These sensitive polymeric hollow spheres are expected to be used in biomedical field as potential carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) Self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres

    PubMed Central

    El-Sherbiny, I. M.; Smyth, H. D. C.

    2012-01-01

    Design of appropriate inhaled carriers with adequate aerodynamic properties, drug release, biodegradation and evasion of macrophage uptake is a major challenge for controlled release pulmonary drug delivery. In this study, PEG graft copolymerized onto N-phthaloyl chitosan (NPHCs) was synthesized then characterized using FTIR, EA, DSC and 2D-XRD. The resulting PEG-g-NPHCs copolymers were self-assembled into drug loaded nanoparticles and encapsulated in respirable/swellable sodium alginate semi-IPN hydrogel microspheres as novel biodegradable carriers for controlled release pulmonary drug delivery. The developed nano-/microspheres carrier systems were formed via spray drying followed by ionotropic crosslinking in mild aqueous medium. The size of the developed self-assembled nanoparticles and the microspheres was measured using dynamic light scattering and laser diffraction, respectively. Morphology, moisture content, in-vitro biodegradation and dynamic swelling studies were also investigated for the developed carriers. A model protein was entrapped and the in-vitro release profiles were determined in PBS, pH 7.4 at 37°C. A dry powder aerosolization study was conducted using a Next Generation Impactor (NGI). The developed microspheres had suitable aerodynamic diameters (1.02–2.63 μm) and an excellent fine particle fraction, FPF of 31.52%. The microspheres showed also a very fast initial swelling within the first 2 min and started to enzymatically degrade within the first two hours. Moreover, the microspheres entrapped up 90% of the model drug and showed promising in-vitro sustained release profiles as compared to the control formulation. PMID:20580794

  3. Preparation of Highly Thermally Conductive Polymer Composite at Low Filler Content via a Self-Assembly Process between Polystyrene Microspheres and Boron Nitride Nanosheets.

    PubMed

    Wang, Xiongwei; Wu, Peiyi

    2017-06-14

    Rational distribution and orientation of boron nitride nanosheets (BNNSs) are very significant for a polymer/BNNS composite to obtain a high thermal conductivity at low filler content. In this paper, a high-performance thermal interface material based on exfoliated BNNSs and polystyrene (PS) microspheres was fabricated by latex blending and subsequent compression molding. In this case, BNNSs and PS microspheres first self-assembled to form the complex microspheres via strong electrostatic interactions between them. The as-prepared complex microspheres were further hot-pressed around the glass transition temperature, which brought the selective distribution of BNNSs at the interface of the deformed PS microspheres. As a consequence, a polymer composite with homogeneous dispersion and high in-plane orientation of BNNSs in PS matrix was obtained. Benefitted from this unique structure, the resultant composite exhibits a significant thermal conductivity enhancement of 8.0 W m(-1) K(-1) at a low filler content of 13.4 vol %. This facile method provides a new strategy to design and fabricate highly thermally conductive composites.

  4. Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors.

    PubMed

    Chen, Hao; Wang, Min Qiang; Yu, Yanan; Liu, Heng; Lu, Shi-Yu; Bao, Shu-Juan; Xu, Maowen

    2017-09-26

    Metal-organic framework (MOF)-derived hollow cobalt sulfides have attracted extensive attention due to their porous shell that provides rich redox reactions for energy storage. However, their ultradispersed structure and the large size of MOF precursors result in relatively low conductivity, stability, and tap density. Therefore, the construction of an array of continuous hollow cages and tailoring of the inner cavity of MOF-derived materials is very effective for enhancing the electrochemical performance. Herein, we in situ assembled small Co-based zeolitic imidazolate framework (ZIF-67) on the both sides of negatively charged MnO2 nanosheets to fabricate a hierarchical sandwich-type composite with hollow cobalt sulfide nanocages/graphene-like MnO2. The graphene-like MnO2 nanosheets acted not only as a structure-directing agent to grow a ZIF-67 array but also as a promising electroactive material of electrochemical capacitors to provide capacitance. As an electrode material of supercapacitors, the as-prepared composites exhibit high specific capacitance (1635 F g(-1) at 1 A g(-1)), great rate performance (reaching 1160 F g(-1) at 10 A g(-1)), and excellent cycling stability (80% retention after 5000 cycles). The outstanding electrochemical properties of our designed materials can be attributed to the unique nanostructure that improved electrical conductivity, created more reactive active sites, and increased the diffusion pathway for electrolyte ions.

  5. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries.

    PubMed

    Xu, Xijun; Ji, Shaomin; Gu, Mingzhe; Liu, Jun

    2015-09-23

    Uniform MnS hollow microspheres in situ crystallized on reduced graphene oxide (RGO) nanosheets via a facile hydrothermal method. The MnS/RGO composite material was used as the anode for Na-ion batteries for the first time and exhibited excellent cycling performance, superior specific capacity, and great cycle stability and rate capability for both Li- and Na-ion batteries. Compared with nonencapsulated pure MnS hollow microspheres, these MnS/RGO nanocomposites demonstrated excellent charge-discharge stability and long cycle life. Li-ion storage testing revealed that these MnS/RGO nanocomposites deliver high discharge-charge capacities of 640 mAh g(-1) at 1.0 A g(-1) after 400 cycles and 830 mAh g(-1) at 0.5 A g(-1) after 100 cycles. The MnS/RGO nanocomposites even retained a specific capacity of 308 mAh g(-1) at a current density of 0.1 A g(-1) after 125 cycles as the anode for Na-ion batteries. The outstanding electrochemical performance of the MnS/RGO composite attributed to the RGO nanosheets greatly improved the electronic conductivity and efficiently mitigated the stupendous volume expansion during the progress of charge and discharge.

  6. Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process

    SciTech Connect

    Li, Shan; Wang, Fei; Dai, Hongqi; Jiang, Xingmao; Ye, Chunhong; Min, Jianzhong

    2016-02-15

    Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporation and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.

  7. Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres.

    PubMed

    Wang, Chao; Wang, Qihua; Wang, Tingmei

    2010-12-07

    In this Article, we addressed a facile method for the fabrication of porous polyimide film with an ordered surface based on the solvent-evaporation-assisted in situ self-assembly of polyamic acid (PAA, precursor of polyimide) and silica microspheres during vacuum-drying of PAA/silica colloid solution. Hydroxyl groups on the surface of silica microspheres have strong hydrogen-bonding with PAA chains, which improve the dispersion of silica microspheres in PAA/DMF solution and further help the self-assembly of PAA/silica colloid solution via solvent evaporation. The approach is simple, neither the preparation of special template nor complex preparation process and precise control over condition is necessary. Furthermore, the method could be employed for mass production of ordered porous polyimide films, and by changing the content and size of silica microspheres, the pore size and porous structure of the porous polyimide films could be tunable. The wettability behavior of the as-prepared porous polyimide films is also studied; the ordered surface topography of the porous polyimide films could change the wettability from hydrophilicity to hydrophobicity.

  8. TiO2-coated Hollow Glass Microspheres with Superhydrophobic and High IR-reflective Properties Synthesized by a Soft-chemistry Method.

    PubMed

    Wong, Yinting; Zhong, Dan; Song, Aotian; Hu, Yan

    2017-04-26

    This manuscript proposes a soft-chemistry method to develop superhydrophobic and highly IR-reflective hollow glass microspheres (HGM). The anatase TiO2 and a superhydrophobic agent were coated on the HGM surface in one step. TBT and PFOTES were selected as the Ti source and the superhydrophobic agent, respectively. They were both coated on the HGM, and after the hydrothermal process, the TBT turned to anatase TiO2. In this way, a PFOTES/TiO2-coated HGM (MCHGM) was prepared. For comparison, PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The PFOTES and TiO2 coatings on the HGM surface were demonstrated through X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive detector (EDS) characterizations. The MCHGM showed a higher contact angle (153°) but a lower sliding angle (16°) than F-SCHGM, with a contact angle of 141.2° and a sliding angle of 67°. In addition, both Ti-SCHGM and MCHGM displayed similar IR reflectivity values, which were about 5.8% higher than the original HGM and F-SCHGM. Also, the PFOTES coating barely changed the thermal conductivity. Therefore, F-SCHGM, with a thermal conductivity of 0.0479 W/(m·K), was quite like the original HGM, which was 0.0475 W/(m·K). MCHGM and Ti-SCHGM were also similar. Their thermal conductivity values were 0.0543 W/(m·K) and 0.0543 W/(m·K), respectively. The TiO2 coating slightly increased the thermal conductivity, but with the increase in reflectivity, the overall heat-insulation property was enhanced. Finally, since the IR-reflecting property is provided by the HGM coating, if the coating is fouled, the reflectivity decreases. Therefore, with the superhydrophobic coating, the surface is protected from fouling, and its lifetime is also prolonged.

  9. The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ZnO nanosheets-assembled microspheres

    NASA Astrophysics Data System (ADS)

    Deng, Quan; Tang, Haibin; Liu, Gang; Song, Xiaoping; Xu, Guoping; Li, Qian; Ng, Dickon H. L.; Wang, Guozhong

    2015-03-01

    A new micro/nanostructure photocatalyst, Ag nanoparticles decorated ZnO nanosheets-assembled microspheres (Ag-NPs/ZnOs), was synthesised by a two-step method. The flower-like micron-sized ZnO spheres assembled with ∼25 nm thick ZnO nanosheets were initially fabricated via a facile solvothermal method. Then, highly dispersed Ag nanoparticles (Ag-NPs) with dimension ranging from 15 to 50 nm were anchored onto the surface of the each ZnO nanosheet by the Sn(II) ion activation method. The as-prepared Ag-NPs/ZnOs demonstrated enhanced photocatalytic performance in eliminating methylene blue and methyl orange aqueous solutions under UV irradiation, showing twice faster reaction rate than the bare ZnOs. The enhanced photocatalytic activity was due to the suppression of electron/hole pair recombination and the acceleration of surface charge transfer induced by the highly dispersive Ag-NPs, which was further demonstrated by the cyclic voltammetry and impedance spectra measurements.

  10. Correlation of Hollow Cathode Assembly and Plasma Contactor Data from Ground Testing and In-Space Operation on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.

    2001-01-01

    Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.

  11. Large-Scale Self-Assembly of 3D Flower-like Hierarchical Ni/Co-LDHs Microspheres for High-Performance Flexible Asymmetric Supercapacitors.

    PubMed

    Li, T; Li, G H; Li, L H; Liu, L; Xu, Y; Ding, H Y; Zhang, T

    2016-02-03

    In this study, a facile and inexpensive and self-assembled strategy to massively fabricate Ni/Co layered double hydroxides (LDHs) is developed under mild reaction conditions (55 °C). The resulting composite material displays a special three-dimensional hierarchical microsphere structure with well-defined flower-like configuration. The fabrication mechanism can be ascribed to stepwise and regular reaction process of nanoparticles and nanosheets gradually growing to nanopetals and then assembling into flower-like microspheres, based on the systematically investigation of various reaction factors including the Ni:Co feeding ratio, the reaction time and the initial pH-value. Because of its large surface, ultrathin feature and synergetic results of this Ni/Co LDHs nanosheets (20 nm), these Ni/Co-LDHs microspheres deliver an excellent capacitance value about 2228 F·g(-1) (1 A·g(-1)). An all-solid-state flexible asymmetric supercapacitor is designed and assembled by exploiting this Ni/Co-LDHs as the positive materials, which exhibits energy density of 165.51 Wh·kg(1-) at 1.53 KW·kg(1-). It may have vast potential significance in personal wearable equipment. Moreover, this monolithic design provides a promising approach for large scale fabrication of other LDHs materials.

  12. Modeling the Formation of Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Weiser, E. S.; Gonsoulin, B.; Hubert, P.

    2002-01-01

    High temperature polyimide microspheres have been developed from polyimide solid residuum by a simple inflation process. Microspheres have been fabricated from several polyimide precursors through the use of a circulating air oven. Microsphere formation and final physical property characterization have been limited to simple mechanical and thermal testing. The present paper focuses on developing an understanding of microsphere formation through simple geometric rules for an incompressible polymeric material and microscopic observations of precursor residuum inflation. Inflation kinematics of the hollow polyimide microspheres as a function of time and temperature is discussed.

  13. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application

    NASA Astrophysics Data System (ADS)

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-10-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g-1 at 100 mA g-1vs. 590 mA h g-1 of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ~4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g-1 (current density, 200 mA g-1) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP

  14. Surfactant directed self-assembly of size-tunable mesoporous titanium dioxide microspheres and their application in quasi-solid state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Qiu, Yongcai; Yan, Keyou; Yang, Shihe

    This paper provides mechanistic insight into the self-assembly involved in the controlled synthesis of mesoporous TiO 2 microspheres with tunable sizes (200 nm, 400 nm and 600 nm on average). The salient features of these microspheres, when used as building blocks of photoanode films in lieu of traditional small nanoparticles, have been systematically studied for the first time in highly viscous gel-electrolyte-based dye-sensitized solar cells. The light scattering property, electron transport and interface recombination kinetics have been critically compared with respect to the morphology and the size of the building blocks. A >6.78% power conversion efficiency was achieved with the 400 nm microspheres due to the balanced combination of light scattering, electrolyte permeation and charge collection advantages. This accentuates the performance limiting factor of the small nanoparticles and the 600 nm microsphere photoanodes as the difficulty for the quasi-solid electrolyte to fill in their long, narrow mesoscopic pore channels, a scenario supported by their short electron lifetimes as measured by intensity modulated photovoltage spectroscopy (IMVS).

  15. Fe3O4/PANI/P(MAA-co-NVP) multilayer composite microspheres with electric and magnetic features: assembly and characterization.

    PubMed

    Luo, Yan-Ling; Fan, Li-Hua; Gao, Gai-Ling; Chen, Ya-Shao; Shao, Xiao-Hua

    2009-11-01

    A core-shell multilayered composite microsphere with electric and magnetic features was designed and prepared on the basis of mutilayered fabrication. This kind of microspheres was obtained by introducing a rod-like conductive polyanilline (PANI) or its derivatives onto the surface of magnetic Fe3O4 nanoparticles with 4,4'-diphenylmethane diisocyanate as a anchor molecule. Subsequently, the Fe3O4/PANI or Fe3O4/aniline oligomers microspheres, as a secondary core, were covered with a cross-linked shell layer which was constructed by a dispersion polymerization process of methacrylic acid and vinyl pyrrolidone. The structure and morphologies were characterized by using a FTIR, XRD, UV-vis, SEM, TEM and TGA. The average diameter of Fe3O4 nanoparticles prepared is about 10.7 nm, and the PANI nanobars hold the size in the range of about 20.4-25.6 nm. The PANI nanobars are covalently assembled on the surface of Fe3O4 nanoparticles mainly in a mode of extended or horizontal arrangements through XRD and TEM results. The electromagnetic properties were examined based on different polymerization degrees and component ratios of PANI or its derivatives, showing characteristics of soft magnetic materials and controllable conductivity. The multilayer microspheres can be readily used to perform separation and magnetism guide, even electric and pH-modulated drug release in the light of swelling determination and a laser diffraction particle size analyzer, and are potentially of interest for drug targeting purpose.

  16. Self-assembly 'micro-origami' photon cages as hollow micro-resonators

    NASA Astrophysics Data System (ADS)

    Danescu, A.; Chevalier, C.; Artinyan, R.; Regreny, P.; Grenet, G.; Callard, S.; Rojo-Romeo, P.; Letartre, X.; Leclercq, J. L.

    2015-06-01

    Selective etching of pre-stressed multi-layered structures releases intrinsic stresses creating flexible macroscopic shapes (rolls, spirals, tubes…). Combining mechanical and photonic concepts, we develop an experimental approach by controlling material composition, mask design and etching process in order to obtain prescribed macroscopic 3D hollow optical micro-cavities. New photonic microstructures are proposed for an efficient light trapping in low index media. Cylindrical hollow cavities formed by bending a photonic crystal membrane are designed. Using numerical simulations, strong confinement of photons is demonstrated for very open resonators. The resulting strong light matter interaction can be exploited in optical devices comprising an active material embedded in a low index matrix like polymer or even gaz.

  17. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application.

    PubMed

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-11-07

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g(-1) at 100 mA g(-1)vs. 590 mA h g(-1) of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ∼4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g(-1) (current density, 200 mA g(-1)) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.

  18. MEMS-compatible Integrated Hollow Waveguides Fabricated by Buckling Self-assembly

    NASA Astrophysics Data System (ADS)

    Epp, Eric Richard

    This thesis describes the fabrication and characterization of integrated hollow Bragg waveguides fabricated by controlled thin film buckling. Hollow waveguides based on two different set of materials were studied. In the first case, thermal tuning of air-core dimensions was studied using waveguides, with chalcogenide glass and polymer claddings. Results showed that the change in air-core height as a function of small temperature variations was in good agreement with theory. Planar, silicon based, hollow core waveguides with Si/SiO2 Bragg reflector claddings are also described. Fabrication was accomplished by incorporating compressive stress in the sputtered Si and SiO2 layers and then heating samples to induce buckling along predefined areas of low adhesion. Several low adhesion layers were studied, but a fluorocarbon layer was deposited by CVD gave the best results. Optical experiments demonstrated optical confinement in the air-core, with loss in the 5 dB/cm range at the 1550 nm wavelength.

  19. Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells.

    PubMed

    Pang, Hongchang; Yang, Hongbin; Guo, Chun Xian; Lu, Jinlin; Li, Chang Ming

    2012-09-11

    Submicrometer-sized hollow TiO(2) spheres are directly self-assembled from TiO(2) nanoparticles without using any template or surfactant as a scattering layer for dye-sensitized solar cells, showing good visible light scattering match to significantly improve the photoconversion efficiency.

  20. Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template.

    PubMed

    Wang, Hao; Yu, Jong-Sung; Li, Xiao-Dong; Kim, Dong-Pyo

    2004-10-21

    Three-dimensional long range ordered hollow SiC and filled SiCN sphere assemblies were prepared for the first time by embedding low molecular weight pre-ceramic polymers of polymethylsilane and polysilazane into sacrificial 3DOM carbon templates which were subsequently burned out in air after pyrolysis under a nitrogen atmosphere.

  1. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures

    NASA Astrophysics Data System (ADS)

    Carné-Sánchez, Arnau; Imaz, Inhar; Cano-Sarabia, Mary; Maspoch, Daniel

    2013-03-01

    Metal-organic frameworks (MOFs) are among the most attractive porous materials known today. Their miniaturization to the nanoscale—into nanoMOFs—is expected to serve myriad applications from drug delivery to membranes, to open up novel avenues to more traditional storage and catalysis applications, and to enable the creation of sophisticated superstructures. Here, we report the use of spray-drying as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm. This strategy conceptually mimics the emulsions used by chemists to confine the synthesis of materials, but does not require secondary immiscible solvents or surfactants. We demonstrate that the resulting spherical, hollow superstructures can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nanoMOFs. This spray-drying strategy enables the construction of multicomponent MOF superstructures, and the encapsulation of guest species within these superstructures. We anticipate that this will provide new routes to capsules, reactors and composite materials.

  2. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  3. Novel Erythrocyte-like Graphene Microspheres with High Quality and Mass Production Capability via Electrospray Assisted Self-Assembly

    PubMed Central

    Tian, Yayang; Wu, Guan; Tian, Xike; Tao, Xiaoming; Chen, Wei

    2013-01-01

    We report for the first time a novel erythrocyte-like graphene microsphere (ELGMs) which can be produced with high quality and mass production capability via electrospray assisted self-assembly. Through simple electrospray treatment of GO suspension into coagulation bath followed by chemical reduction, large quantity of ELGMs with uniform morphology and size can be obtained with production rate of around 2.4 mg/h. Compared with other 3D structures, the ELGMs have a very interesting structural characteristic of perfect exterior doughnut shape and interior porous network. Accordingly, the as-prepared porous ELGMs exhibit excellent capability for fast and recyclable removal of oil and toxic organic solvents from water, reaching up to 216 times of its weight in absorption efficiency, which is tens of times higher than that of conventional sorbent materials. It is strongly believed that the novel hierarchical graphene structures and synergy among different techniques will lead to more future advances in graphene applications. PMID:24270315

  4. Porous fluorinated SnO(2) hollow nanospheres: transformative self-assembly and photocatalytic inactivation of bacteria.

    PubMed

    Liu, Shengwei; Huang, Guocheng; Yu, Jiaguo; Ng, Tsz Wai; Yip, Ho Yin; Wong, Po Keung

    2014-02-26

    Highly porous surface fluorinated SnO2 hollow nanospheres (SnO2(F) HNS) were produced in high yield by a hydrothermal treatment of stannous fluoride in the presence of hydrogen peroxide. Two important processes in terms of oriented self-assembly and in situ self-transformation were highlighted for the formation of as-prepared SnO2(F) HNS, which were largely relying on the directing effects of selected specific chemical species in the present synthesis system. Significantly, these SnO2(F) HNS showed considerable activity in photocatalytic inactivation of a surface negatively charged bacterium, Escherichia coli K-12, in aqueous saline solution. The dominant reactive species involved in the inactivation process were also identified.

  5. Self-assembly of hollow MoS2 microflakes by one-pot hydrothermal synthesis for efficient electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Chen, Aishi; Cui, Renjie; He, Yanna; Wang, Qi; Zhang, Jian; Yang, Jianping; Li, Xing'ao

    2017-07-01

    Molybdenum disulfide (MoS2) has emerged as a promising non-precious metal catalyst for hydrogen evolution reaction (HER) in recent years. Some strategies including nanotechnology as well as atom doping have been employed in the preparing of electrocatalysts for high-activity and stability. To the best of our knowledge, hollow MoS2 microflakes assembled from ultrathin nanosheets have not been prepared previously. In this work, a simple, facile and environmentally friendly hydrothermal synthesis was utilized for the fabrication of hollow MoS2 microflakes for the first time. The unique hollow structures have fascinating properties, such as the large surface and low density. The morphology and structure of MoS2 microflakes were confirmed by XRD, SEM, TEM and Raman. The composition of these materials was identified by the X-ray photoelectron spectroscopy. Notably, the as-prepared hollow MoS2 microflakes showed better electrocatalytic activity than other samples. The hollow flake-like structure can not only increase the active edge sites owing to the large specific surface area, but also enhance the electron transport to improve the electrocatalytic activity. Benefiting from these factors, the hollow MoS2 microflakes exhibited electrocatalytic activity and excellent stability with a low overpotential about 85 mV and a Tafel slope of 59 mV per decade.

  6. Hollow nanospheres based on the self-assembly of alginate-graft-poly(ethylene glycol) and α-cyclodextrin.

    PubMed

    Meng, Xian-Wei; Ha, Wei; Cheng, Cong; Dong, Zhen-Qiang; Ding, Li-Sheng; Li, Bang-Jing; Zhang, Sheng

    2011-12-06

    This article studies the self-assembly of alginate-graft-poly(ethylene glycol) (Alg-g-PEG) and α-cyclodextrin (α-CD) in aqueous solution. It was found that they could form hollow spheres because of the formation of coil-rod Alg-g-PEG/α-CD inclusion complexes. In these Alg-g-PEG/α-CD complexes, the α-CDs are stacked along the PEG side chains to form a rod block, and alginate main chains act as a coil block. More rod-like blocks in Alg-g-PEG/α-CD favor the formation of small assemblies. The assemblies of Alg-g-PEG/α-CD show a dependence on concentration, temperature, pH, and salt concentration. At low concentration (below 0.125%) or high temperature (above 32 °C), Alg-g-PEG/α-CD particles were unstable and disrupted. Increasing the salt or decreasing the pH resulted in the aggregation of Alg-g-mPEG/α-CD particles, as detected by the increase in the recorded hydrodynamic diameter (D(h)). © 2011 American Chemical Society

  7. CoMn2O4 Spinel Hierarchical Microspheres Assembled with Porous Nanosheets as Stable Anodes for Lithium-ion Batteries

    PubMed Central

    Hu, Lin; Zhong, Hao; Zheng, Xinrui; Huang, Yimin; Zhang, Ping; Chen, Qianwang

    2012-01-01

    Herein, we report the feasibility to enhance the capacity and stability of CoMn2O4 anode materials by fabricating hierarchical mesoporous structure. The open space between neighboring nanosheets allows for easy diffusion of the electrolyte. The hierarchical microspheres assembled with nanosheets can ensure that every nanosheet participates in the electrochemical reaction, because every nanosheet is contacted with the electrolyte solution. The hierarchical structure and well interconnected pores on the surface of nanosheets will enhance the CoMn2O4/electrolyte contact area, shorten the Li+ ion diffusion length in the nanosheets, and accommodate the strain induced by the volume change during the electrochemical reaction. The last, hierarchical architecture with spherical morphology possesses relatively low surface energy, which results in less extent of self-aggregation during charge/discharge process. As a result, CoMn2O4 hierarchical microspheres can achieve a good cycle ability and high rate capability. PMID:23248749

  8. A biodegradable polymeric system for peptide–protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process

    PubMed Central

    Alcalá-Alcalá, Sergio; Urbán-Morlán, Zaida; Aguilar-Rosas, Irene; Quintanar-Guerrero, David

    2013-01-01

    A biodegradable polymeric system is proposed for formulating peptides and proteins. The systems were assembled through the adsorption of biodegradable polymeric nanoparticles onto porous, biodegradable microspheres by an adsorption/infiltration process with the use of an immersion method. The peptide drug is not involved in the manufacturing of the nanoparticles or in obtaining the microspheres; thus, contact with the organic solvent, interfaces, and shear forces required for the process are prevented during drug loading. Leuprolide acetate was used as the model peptide, and poly(d,l-lactide-co-glycolide) (PLGA) was used as the biodegradable polymer. Leuprolide was adsorbed onto different amounts of PLGA nanoparticles (25 mg/mL, 50 mg/mL, 75 mg/mL, and 100 mg/mL) in a first stage; then, these were infiltrated into porous PLGA microspheres (100 mg) by dipping the structures into a microsphere suspension. In this way, the leuprolide was adsorbed onto both surfaces (ie, nanoparticles and microspheres). Scanning electron microscopy studies revealed the formation of a nanoparticle film on the porous microsphere surface that becomes more continuous as the amount of infiltrated nanoparticles increases. The adsorption efficiency and release rate are dependent on the amount of adsorbed nanoparticles. As expected, a greater adsorption efficiency (~95%) and a slower release rate were seen (~20% of released leuprolide in 12 hours) when a larger amount of nanoparticles was adsorbed (100 mg/mL of nanoparticles). Leuprolide acetate begins to be released immediately when there are no infiltrated nanoparticles, and 90% of the peptide is released in the first 12 hours. In contrast, the systems assembled in this study released less than 44% of the loaded drug during the same period of time. The observed release profiles denoted a Fickian diffusion that fit Higuchi’s model (t1/2). The manufacturing process presented here may be useful as a potential alternative for formulating

  9. High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin

    2014-11-01

    Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping

  10. Polysaccharide-based polyelectrolytes hollow microcapsules constructed by layer-by-layer technique.

    PubMed

    Zhang, Yifeng; Chen, Cong; Wang, Jianguo; Zhang, Lina

    2013-07-25

    Two water-soluble polysaccharide derivatives, carboxymethylated and quarternized glucans (CMGP and QGP) were synthesized for the first time from water-insoluble polysaccharides (GP) extracted from Ganoderma lucidum. Hollow microspheres were constructed using electrostatic layer-by-layer (LbL) deposition of the CMGP and QGP polyelectrolytes onto colloidal ZnO particles followed by the core decomposition with an acid solution. The structures of the multilayered CMGP/QGP microspheres were investigated by transmission electron microscopy (TEM), zeta potential and dynamic light scattering (DLS). The results revealed that the multilayer thickness increased regularly from 48 to 145 nm as the number of deposited CMGP/QGP layers was increased from two to seven, and the mean increment of thickness was ∼25 nm per layer, reflecting the high regularity of the layer-by-layer assembly. This work provided an easy method to construct hollow microcapsules with biocompatibility and controlled dimensions.

  11. Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres

    SciTech Connect

    Kushida, Soh; Yamamoto, Yohei; Braam, Daniel; Lorke, Axel

    2015-12-31

    Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.

  12. Microcavity substrates casted from self-assembled microsphere monolayers for spheroid cell culture

    PubMed Central

    Shen, Keyue; Lee, Jungwoo; Yarmush, Martin L.

    2015-01-01

    Multicellular spheroids are an important 3-dimensional cell culture model that reflects many key aspects of in vivo microenvironments. This paper presents a scalable, self-assembly based approach for fabricating microcavity substrates for multicellular spheroid cell culture. Hydrophobic glass microbeads were self-assembled into a tightly packed monolayer through the combined actions of surface tension, gravity, and lateral capillary forces at the water-air interface of a polymer solution. The packed bead monolayer was subsequently embedded in the dried polymer layer. The surface was used as a template for replicating microcavity substrates with perfect spherical shapes. We demonstrated the use of the substrate in monitoring the formation process of tumor spheroids, a proof-of-concept scale-up fabrication procedure into standard microplate formats, and its application in testing cancer drug responses in the context of bone marrow stromal cells. The presented technique offers a simple and effective way of forming high-density uniformlysized spheroids without microfabrication equipment for biological and drug screening applications. PMID:24781882

  13. A Vesicle Supra-Assembly Approach to Synthesize Amine-Functionalized Hollow Dendritic Mesoporous Silica Nanospheres for Protein Delivery.

    PubMed

    Meka, Anand Kumar; Abbaraju, Prasanna Lakshmi; Song, Hao; Xu, Chun; Zhang, Jun; Zhang, Hongwei; Yu, Meihua; Yu, Chengzhong

    2016-10-01

    Intracellular delivery of proteins is a promising strategy of intervention in disease, which relies heavily on the development of efficient delivery platforms due to the cell membrane impermeability of native proteins, particularly for negatively charged large proteins. This work reports a vesicle supra-assembly approach to synthesize novel amine-functionalized hollow dendritic mesoporous silica nanospheres (A-HDMSN). An amine silica source is introduced into a water-oil reaction solution prior to the addition of conventional silica source tetraethylorthosilicate. This strategy favors the formation of composite vesicles as the building blocks which further assemble into the final product. The obtained A-HDMSN have a cavity core of ≈170 nm, large dendritic mesopores of 20.7 nm in the shell and high pore volume of 2.67 cm(3) g(-1) . Compared to the calcined counterpart without amine groups (C-HDMSN), A-HDMSN possess enhanced loading capacity to large negative proteins (IgG and β-galactosidase) and improved cellular uptake performance, contributed by the cationic groups. A-HDMSN enhance the intracellular uptake of β-galactosidase by up to 5-fold and 40-fold compared to C-HDMSN and free β-galactosidase, respectively. The active form of β-galactosidase delivered by A-HDMSN retains its intracellular catalytic functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New home-made assembly for hollow-fibre membrane extraction of persistent organic pollutants from real world samples.

    PubMed

    Manso, J; García-Barrera, T; Gómez-Ariza, J L

    2011-11-04

    Nowadays, hollow fibre membrane extraction techniques are widely used but they are usually applied to water or very simple matrices such as water. In this paper, we propose a new assembly that allows the extraction of forty persistent organic pollutants in real world samples, namely orange juice, porcine plasma and tomatoes. The limits of detection obtained are very low even in the analysis of real samples (9-182 ng L(-1)). The relative standard deviations vary from 1 to 18% and the averaged recoveries in the spike experiments are very high (65-120%) in the different types of samples studied. The new assembly allows a very good precision overcoming in one of the most important shortcomings of membrane extraction techniques. A central composite design has been performed to get optimal extraction conditions for the analytes and also the combined response of all the analytes has been obtained to attain the simultaneous optimum. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Synthesis and drug-loading properties of folic acid-modified superparamagnetic Fe3O4 hollow microsphere core/mesoporous SiO2 shell composite particles

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Guo, Xue; Wei, Kaiwei; Wang, Lijuan; Yang, Dandan; Lai, Lifang; Cheng, Meiling; Liu, Qi

    2014-01-01

    A drug delivery system, which not only has superparamagnetic property, higher surface area but also has targeting function, has been developed. The core/shell structural magnetic magnetite mesoporous silica microspheres with amine groups (Fe3O4-SiO2-NH2) were first fabricated by a one-pot direct co-condensation method, then folic acid-modified magnetic mesoporous silica composite microspheres (Fe3O4-SiO2-NHFA) were obtained by the bonding of the Fe3O4-SiO2-NH2 with folic acid as targeted molecule. The resultant composite microspheres were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, low temperature nitrogen adsorption-desorption, and vibrating sample magnetometer. A well-known inflammational drug ibuprofen was used as a model drug to assess the loading and releasing behavior of the composite microspheres. Fe3O4-SiO2-NHFA system exhibits magnetic properties typical for superparamagnetic material with a higher saturation magnetization value of about 41.2 emu/g and has better capacity of drug storage (32.0 %) and sustained drug-release property. So this system has potential applications in biomedical field.

  16. Assembly of graphene and nickel nanoparticles on anion exchange resin microspheres for the amperometric detection of carbohydrates in combination with capillary electrophoresis.

    PubMed

    Zhang, Ren; Lu, Sijie; Zhang, Luyan; Chen, Gang

    2014-12-29

    Graphene and nickel nanoparticles (NiNPs) were assembled on anion exchange resin (AER) microspheres based on the electrostatic interaction between graphene oxide sheets and AER and the subsequent chemical reduction. The prepared AER@graphene-NiNP composite core-shell microspheres were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Moreover, they were embedded in the bores of pipette tips to fabricate electrodes. The performance of the novel electrodes was demonstrated by measuring sucrose, glucose and fructose in combination with capillary electrophoresis. The three analytes were well separated within 8min in a 40cm long capillary at a separation voltage of 12kV. The graphene-NiNP composite microsphere electrodes exhibited higher sensitivity (213.578-317.064nAmM(-1)), lower detection limits (0.75-1.05μM) and enhanced separation efficiency in the detection of these carbohydrates. The advantages of the electrodes include ease of fabrication, low cost and pronounced electrocatalytic activity toward carbohydrates, indicating great promise for a wide range of applications.

  17. High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.

    PubMed

    Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin

    2014-12-21

    Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m(2) g(-1) were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.

  18. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres.

    PubMed

    Tang, Changyu; Long, Gucheng; Hu, Xin; Wong, Ka-wai; Lau, Woon-ming; Fan, Meikun; Mei, Jun; Xu, Tao; Wang, Bin; Hui, David

    2014-07-21

    A novel and highly conductive 3-dimensional (3D) hierarchical multi-scale structure is formed by a new, simple, facile, and water-based method that enables practical production of conductive carbon nanofiller/polymer composites. More specifically, the π-π interaction between CNTs and graphene oxide (GO) is exploited to disperse conductive but non-polar CNTs with amphiphilic GO sheets to form a stable aqueous colloidal solution. Aqueous-dispersible latex-polystyrene microspheres are then added to enable the self-assembly processes of anchoring CNTs on GO and wrapping microspheres with GO-stabilized CNTs for the formation of an intriguing 3D hierarchical multi-scale structure. During this process, GO is reduced to conductive reduced-graphene oxide (RGO). The resultant RGO sheets act as "nano-walls" to prevent CNTs from randomly diffusing into the polymer bulk during thermal pressing of RGO-CNT/microspheres, which results in the formation of a 3D foam-like network of RGO-CNTs with high quality. The resultant composite with such a structure gives an ultra-low percolation threshold (0.03 vol% RGO-CNTs) and a reasonably high conductivity (153 S m(-1) at 4 vol% RGO-CNTs), which could satisfy various applications requiring both transparency and electrical conduction characteristics (e.g. transparent antistatic coatings, capacitive touch-screens, and transparent electronic devices).

  19. Substrate effect of laser surface sub-micro patterning by means of self-assembly SiO2 microsphere array

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Ji, Lingfei; Lin, Zhenyuan; Li, Qiurui; Jiang, Yijian

    2015-12-01

    Close-packed monolayer silica spheres organized through a self-assembly process have been widely used in micro/nano fabrications. In this study, we present the effects of substrate on the near-field enhancement of microsphere-assisted laser processing. There are significant differences in the surface morphology of sub-micro hole arrays on substrates with different refractive indices, which were fabricated at the same laser fluence by a KrF excimer laser (λ = 248 nm). It is found that the position of the maximum enhancement removes from the exit surface of the silica sphere into the sphere as the refractive index of substrate increased based on the simulation. In addition, the field distribution curve oscillates when there is a substrate under the microsphere, and oscillation spreads deeper into the substrate with a high refractive index. The results contribute toward the optimization of the process conditions of the microsphere-assisted laser micro/nano patterning technique and make the modification profile of the material more controllable.

  20. Mechanism for bipolar resistive switching memory behaviors of a self-assembled three-dimensional MoS2 microsphere composed active layer

    NASA Astrophysics Data System (ADS)

    Zhou, G. D.; Lu, Z. S.; Yao, Y. Q.; Wang, G.; Yang, X. D.; Zhou, A. K.; Li, P.; Ding, B. F.; Song, Q. L.

    2017-04-01

    A self-assembled three-dimensional (3-D) MoS2 microsphere-based memristor with a favorable ON/OFF resistance ratio of ˜104, endurance, and retention time is demonstrated at room temperature. The formation and rupture of a localized Ag metallic filament, establishment and destruction of a boundary-based hopping path, and charge trapping and detrapping from the space charge region co-contribute to the bipolar resistive switching memory behaviours observed in the device of Ag/MoS2/ITO. This work may give insight into the mechanism of the resistive switching memory behaviours of a device with a 3-D micro-scale.

  1. KH2PO4-Assisted Synthesis and Electrochemical Performance of Highly Uniform CuBi2O4 Microspheres Hierarchically Self-Assembled by Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Yang, Hua; Zhang, Yunchuan; Zhang, Haimin

    2017-03-01

    The effect of KH2PO4 on the synthesis of CuBi2O4 microstructures was investigated. The samples were characterized by powder x-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, x-ray photoelectron spectroscopy (XPS) and ultraviolet (UV)-visible diffuse reflectance spectroscopy. It is demonstrated that the use of KH2PO4 leads to the production of highly uniform CuBi2O4 microspheres hierarchically self-assembled by nanoparticles. With increasing the KH2PO4 concentration from 0.5 M to 1.4 M, the average diameter of the resultant microspheres decreases gradually from 3.3 μm to 1.4 μm. However, further increase in the KH2PO4 concentration up to 1.5 M leads to a sudden increase in the average diameter of the resultant microspheres up to 2.3 μm. In addition, a minor amount of bamboo leaf- or pine needle-like structures are visible in the samples prepared at the KH2PO4 concentrations of 1.0-1.5 M. The bandgap energy of the as-prepared samples is measured to be 1.89 eV by UV-visible diffuse reflectance spectroscopy. The electrochemical performance of the samples was investigated by cyclic voltammetry, galvanostatic charge-discharge measurements, and electrochemical impedance spectroscopy in 2 M KOH electrolyte. Among the hierarchical microspheres, those prepared at the KH2PO4 concentration of 1.4 M deliver a relatively higher specific capacitance due to their smaller size (1284 F g-1 at a current density of 2 A g-1).

  2. KH2PO4-Assisted Synthesis and Electrochemical Performance of Highly Uniform CuBi2O4 Microspheres Hierarchically Self-Assembled by Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Yang, Hua; Zhang, Yunchuan; Zhang, Haimin

    2017-08-01

    The effect of KH2PO4 on the synthesis of CuBi2O4 microstructures was investigated. The samples were characterized by powder x-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, x-ray photoelectron spectroscopy (XPS) and ultraviolet (UV)-visible diffuse reflectance spectroscopy. It is demonstrated that the use of KH2PO4 leads to the production of highly uniform CuBi2O4 microspheres hierarchically self-assembled by nanoparticles. With increasing the KH2PO4 concentration from 0.5 M to 1.4 M, the average diameter of the resultant microspheres decreases gradually from 3.3 μm to 1.4 μm. However, further increase in the KH2PO4 concentration up to 1.5 M leads to a sudden increase in the average diameter of the resultant microspheres up to 2.3 μm. In addition, a minor amount of bamboo leaf- or pine needle-like structures are visible in the samples prepared at the KH2PO4 concentrations of 1.0-1.5 M. The bandgap energy of the as-prepared samples is measured to be 1.89 eV by UV-visible diffuse reflectance spectroscopy. The electrochemical performance of the samples was investigated by cyclic voltammetry, galvanostatic charge-discharge measurements, and electrochemical impedance spectroscopy in 2 M KOH electrolyte. Among the hierarchical microspheres, those prepared at the KH2PO4 concentration of 1.4 M deliver a relatively higher specific capacitance due to their smaller size (1284 F g-1 at a current density of 2 A g-1).

  3. Contact assembly of cell-laden hollow microtubes through automated micromanipulator tip locating

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Shi, Qing; Guo, Yanan; Li, Yanan; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-01-01

    This paper presents an automated contact assembly method to fabricate a cell-laden microtube based on accurate locating of the micromanipulator tip. Essential for delivering nutrients in thick engineered tissues, a vessel-mimetic microtube can be precisely assembled through microrobotic contact biomanipulation. The biomanipulation is a technique to spatially order and immobilize cellular targets with high precision. However, due to image occlusion during contact, it is challenging to locate the micromanipulator tip for fully automated assembly. To achieve pixel-wise tracking and locating of the tip in contact, a particle filter algorithm integrated with a determined level set model is employed here. The model ensures precise convergence of the micromanipulator’s contour during occlusion. With the converged active contour, the algorithm is able to pixel-wisely separate the micromanipulator from the low-contrast background and precisely locate the tip with error around 1 pixel (2 µm at 4  ×  magnification). As a result, the cell-laden microtube is automatically assembled at six layers/min, which is effective enough to fabricate vessel-mimetic constructs for vascularization in tissue engineering.

  4. Aerosol-based self-assembly of nanoparticles into solid or hollow mesospheres.

    PubMed

    Wu, Chunwei; Lee, Donggeun; Zachariah, Michael R

    2010-03-16

    The ability to manipulate miniature object assemblies with well-defined structures in a controllable manner is of both fundamental and applied interests. This article presents general strategies, with nanospheres as building blocks, to engineer mesoscopic spherical architectures via a process of evaporation-driven self-assembly in aerosol droplets. Uniform magnetite iron oxide (Fe(3)O(4), approximately 2.5 nm), silica (SiO(2), approximately 15 nm), and cupric oxide (CuO, approximately 6 nm) nanoparticles were employed for the structural architecture. The method enables microstructural control of the self-assembled mesospheres by tuning the competition between solvent evaporation and solute diffusion within an aerosol droplet. Furthermore, we have demonstrated it is technically feasible to assemble surface-dissimilar binary components, i.e., charge-stabilized hydrophilic SiO(2) and hydrophobic ligand-capped Fe(3)O(4) nanoparticles, into hierarchical composite structures, which could be extended for preparation of more hierarchically textured materials with desired functionalities.

  5. Macroscopic Graphene Fibers Directly Assembled from CVD-Grown Fiber-Shaped Hollow Graphene Tubes.

    PubMed

    Chen, Tao; Dai, Liming

    2015-12-01

    Using a copper wire as the substrate for the CVD growth of a hollow multilayer graphene tube, we prepared a macroscopic porous graphene fiber by removing the copper in an aqueous mixture solution of iron chloride (FeCl3, 1 M) and hydrochloric acid (HCl, 3 M) and continuously drawing the newly released graphene tube out of the liquid. The length of the macroscopic graphene fiber thus produced is determined mainly by the length of the copper wire used. The resultant macroscopic graphene fiber with the integrated graphene structure exhibited a high electrical conductivity (127.3 S cm(-1)) and good flexibility over thousands bending cycles, showing great promise as flexible electrodes for wearable optoelectronics and energy devices-exemplified by its use as a flexible conductive wire for lighting a LED and a cathode in a fiber-shaped dye-sensitized solar cell (DSSC) with one of the highest energy conversion efficiencies (3.25%) among fiber-shaped DSSCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals.

    PubMed

    Sun, Zhenkun; Liu, Yong; Li, Bin; Wei, Jing; Wang, Minghong; Yue, Qin; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2013-10-22

    A general confined coassembly process has been demonstrated to produce discrete uniform mesoporous carbon microspheres with 0.8-1 μm particle size using 3-D-ordered macroporous silica as the template. The obtained mesoporous carbon microspheres (MC-MSs) have uniform and discrete spherical morphology, variable symmetry (hexagonal p6mm or cubic Im3m) of mesostructures, high specific surface areas (500-1100 m(2)/g), large pore volumes (0.6-2.0 cm(3)/g), and highly accessible large mesopores (7-10.3 nm). The particle size of the carbon microspheres can be easily tuned by simply using templates with different macropore sizes. It was found that the smaller MC-MSs (330 nm) with higher surface-to-volume ratio tend to shape into an integral monolithic MC-MS matrix and larger MC-MSs (>800 nm) with lower surface-to-volume ratio to discrete spherical morphology. This feature is attributed to the difference in shrinkage behavior of mesoporous carbon spheres confined in the macropores caused by the interaction between the silica wall and carbon microspheres. Adsorption experiments indicate that the cobalt-based nanoparticle-incorporated mesoporous carbon microspheres exhibit excellent size selectivity for protein adsorption in a complex solution and good magnetic separability for easy recycling.

  7. Polymer assisted hydroxyapatite microspheres suitable for biomedical application.

    PubMed

    Sinha, A; Mishra, T; Ravishankar, N

    2008-05-01

    Hollow Microspheres of hydroxyapatite-polymer composite can be used as carriers in drug delivery and fillers in tissue engineering. Based on the concept of soft chemistry, a battery of technique is available in the literature to synthesize hollow microspheres, however, an economically viable synthesis route, having good control over the microarchitect and easy to be scaled up, is yet to be developed. Polymer matrix mediated synthesis of inorganic nanoparticles is known to synthesize nanoparticles with controlled morphology and dimensions. It is termed as biomimetic synthesis. Integrating the biomimetic synthesis of nano-particles and spray drying techniques, a novel process of producing hydroxyapatite-polymer composite hollow microspheres is briefly discussed here.

  8. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres.

    PubMed

    Sarawade, Pradip; Tan, Hua; Anjum, Dalaver; Cha, Dongkyu; Polshettiwar, Vivek

    2014-02-01

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures.

  9. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current

    DOE PAGES

    Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; ...

    2015-03-17

    Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge2Sb2Te5) and a heater (TiN) electrode.more » The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.« less

  10. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current

    SciTech Connect

    Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; Hur, Yoon Hyoung; Choi, Young Joong; Kwon, Se-Hun; Hong, Seungbum; Yin, You; Jung, Yeon Sik; Kim, Kwang Ho

    2015-03-17

    Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge2Sb2Te5) and a heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.

  11. Controllable synthesis of Bi2WO6 nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yang, Zhenya; Huang, Lin; Xie, Yanyu; Lin, Zheguan; Fan, Yunyan; Liu, Dan; Chen, Lu; Zhang, Zizhong; Wang, Xuxu

    2017-05-01

    This work provides a simple approach of the F--assisted one-pot hydrothermal reaction to successfully synthesize Bi2WO6 hierarchical erythrocyte microspheres. The importance role of F- was systematically investigated by comparing different type of halogen ions, hydrothermal temperature and time. The possible growth mechanism of Bi2WO6 hierarchical structures was proposed. The hierarchical erythrocytes were formed through the well-ordered and oriented self-assembly of thin Bi2WO6 nanoplate primary subunits. F- ions were absorbed on Bi2WO6 nanoplate surface to suppress the nanoplate stack but to induce a self-assembly through the edge interaction of Bi2WO6 nanoplates into erythrocyte-like hierarchical microspheres superstructures. This erythrocyte structure narrowed the band gap energy and enhanced the visible-light photocatalytic activity of Bi2WO6. Moreover, superoxide radical anions and h+ were revealed as the main active species responding for the RhB degradation on Bi2WO6 under visible light irradiation.

  12. Going beyond the classical amphiphilicity paradigm: the self-assembly of completely hydrophobic polymers into free-standing sheets and hollow nanostructures in solvents of variable quality.

    PubMed

    Huang, Huanting; Liao, Yin; Bu, Weifeng; Wang, Wenjie; Sun, Jing Zhi

    2016-06-14

    Self-assembly is well-known to occur in amphiphiles, and the totally hydrophobic ones are never reported to self-assemble. In this work we report for the first time that the latter can self-assemble into free-standing sheets and hollow spheres in toluene/methanol mixed solvents by modulating the solvent quality. The homopolymers studied in this work are polystyrene (PS), polyphenylacetylene (PPA), and poly(3-hexyl thiophene) (P3HT), representing polymers with different rigidity. All the three form a homogenous solution in toluene, but self-assembly occurs in the toluene/methanol mixed solvents. Micrometer sized free-standing sheets were formed for PS, PPA, and P3HT at methanol volume fractions being 43%, 50%, and 67%, respectively, and hollow spheres were observed for PPA at higher methanol fractions of 75 and 90%. Under the latter solvent conditions, PS forms solid spheres, yet ill-defined aggregates and free-standing sheets coexist in the case of P3HT. This non-solvent induced self-assembly was explained by a delicate balance of two "opposing forces": van der Waals attractive and entropic repulsive forces generated between the segments of these homopolymers within a single chain, between two chains, and among more chains in the solvents of worsened quality.

  13. Triple assembly of ZnO, large-scale hollow spherical shells with flower-like species consisting of rods grown on the outer surfaces of shells

    SciTech Connect

    Shang Yazhuo; Hu Jun; Liu Honglai; Hu Ying

    2010-03-15

    Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centered at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.

  14. Ionic liquid assisted chemical strategy to TiO2 hollow nanocube assemblies with surface-fluorination and nitridation and high energy crystal facet exposure for enhanced photocatalysis.

    PubMed

    Yu, Shengli; Liu, Baocang; Wang, Qin; Gao, Yuxi; Shi, Ying; Feng, Xue; An, Xiaoting; Liu, Lixia; Zhang, Jun

    2014-07-09

    Realization of anionic nonmetal doping and high energy crystal facet exposure in TiO2 photocatalysts has been proven to be an effective approach for significantly improving their photocatalytic performance. A facile strategy of ionic liquid assisted etching chemistry by simply hydrothermally etching hollow TiO2 spheres composed of TiO2 nanoparticles with an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate without any other additives is developed to create highly active anatase TiO2 nanocubes and TiO2 nanocube assemblies. With this one-pot ionic liquid assisted etching process, the surface-fluorination and nitridation and high energy {001} crystal facets exposure can be readily realized simultaneously. Compared with the benchmark materials of P25 and TiO2 nanostructures with other hierarchical architectures of hollow spheres, flaky spheres, and spindles synthesized by hydrothermally etching hollow TiO2 spheres with nonionic liquid of NH4F, the TiO2 nanocubes and TiO2 nanocube assemblies used as efficient photocatalysts show super high photocatalytic activity for degradation of methylene blue, methyl orange, and rhodamine B, due to their surface-fluorination and nitridation and high energy crystal facet exposure. The ionic liquid assisted etching chemistry is facile and robust and may be a general strategy for synthesizing other metal oxides with high energy crystal facets and surface doping for improving photocatalytic activity.

  15. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres

    NASA Astrophysics Data System (ADS)

    Tang, Changyu; Long, Gucheng; Hu, Xin; Wong, Ka-Wai; Lau, Woon-Ming; Fan, Meikun; Mei, Jun; Xu, Tao; Wang, Bin; Hui, David

    2014-06-01

    A novel and highly conductive 3-dimensional (3D) hierarchical multi-scale structure is formed by a new, simple, facile, and water-based method that enables practical production of conductive carbon nanofiller/polymer composites. More specifically, the π-π interaction between CNTs and graphene oxide (GO) is exploited to disperse conductive but non-polar CNTs with amphiphilic GO sheets to form a stable aqueous colloidal solution. Aqueous-dispersible latex-polystyrene microspheres are then added to enable the self-assembly processes of anchoring CNTs on GO and wrapping microspheres with GO-stabilized CNTs for the formation of an intriguing 3D hierarchical multi-scale structure. During this process, GO is reduced to conductive reduced-graphene oxide (RGO). The resultant RGO sheets act as ``nano-walls'' to prevent CNTs from randomly diffusing into the polymer bulk during thermal pressing of RGO-CNT/microspheres, which results in the formation of a 3D foam-like network of RGO-CNTs with high quality. The resultant composite with such a structure gives an ultra-low percolation threshold (0.03 vol% RGO-CNTs) and a reasonably high conductivity (153 S m-1 at 4 vol% RGO-CNTs), which could satisfy various applications requiring both transparency and electrical conduction characteristics (e.g. transparent antistatic coatings, capacitive touch-screens, and transparent electronic devices).A novel and highly conductive 3-dimensional (3D) hierarchical multi-scale structure is formed by a new, simple, facile, and water-based method that enables practical production of conductive carbon nanofiller/polymer composites. More specifically, the π-π interaction between CNTs and graphene oxide (GO) is exploited to disperse conductive but non-polar CNTs with amphiphilic GO sheets to form a stable aqueous colloidal solution. Aqueous-dispersible latex-polystyrene microspheres are then added to enable the self-assembly processes of anchoring CNTs on GO and wrapping microspheres with GO

  16. One step fabrication of hydrogel microcapsules with hollow core for assembly and cultivation of hepatocyte spheroids.

    PubMed

    Siltanen, Christian; Diakataou, Michaela; Lowen, Jeremy; Haque, Amranul; Rahimian, Ali; Stybayeva, Gulnaz; Revzin, Alexander

    2017-03-01

    3D hepatic microtissues can serve as valuable liver analogues for cell-based therapies and for hepatotoxicity screening during preclinical drug development. However, hepatocytes rapidly dedifferentiate in vitro, and typically require 3D culture systems or co-cultures for phenotype rescue. In this work we present a novel microencapsulation strategy, utilizing coaxial flow-focusing droplet microfluidics to fabricate microcapsules with liquid core and poly(ethylene glycol) (PEG) gel shell. When entrapped inside these capsules, primary hepatocytes rapidly formed cell-cell contacts and assembled into compact spheroids. High levels of hepatic function were maintained inside the capsules for over ten days. The microencapsulation approach described here is compatible with difficult-to-culture primary epithelial cells, allows for tuning gel mechanical properties and diffusivity, and may be used in the future for high density suspension cell cultures. Our paper combines an interesting new way for making capsules with cultivation of difficult-to-maintain primary epithelial cells (hepatocytes). The microcapsules described here will enable high density suspension culture of hepatocytes or other cells and may be used as building blocks for engineering tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects.

  18. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  19. Carbon microsphere-filled Pyrrone foams.

    NASA Technical Reports Server (NTRS)

    Kimmel, B. G.

    1973-01-01

    Syntactic foam formulations were prepared from mixtures of Pyrrone prepolymers and hollow carbon microspheres. Very low curing shrinkages were obtained for high volume loadings of microspheres. The resulting syntactic foams were found to be remarkably stable over a wide range in temperature. A technique was developed for the emplacement of these foam formulations in polyimide-fiberglass, titanium alloy and stainless steel honeycomb without sacrificing low curing shrinkage or thermal stability.

  20. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  1. Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Hsiao, Min-Chien; Chang, Chin-Yu; Niu, Li-Juan; Bai, Feng; Li, Lain-Jong; Shen, Hsin-Hui; Lin, Jeng-Yu; Lin, Tsung-Wu

    2017-03-01

    The composite of MoS2 and hollow carbon sphere (MoS2@HCS) is prepared via a glucose-assisted one pot synthesis. The composite consists of hierarchical spheres with a diameter of 0.5-4 μm and these hollow spheres are decorated with a number of curled and interlaced MoS2 nanosheets. After the composite is subject to the lithium intercalation, the MoS2 is converted from 2H to 1T phase. In this current work, the activities of 1T-MoS2@HCS toward photocatalytic hydrogen evolution and the reduction of I3- in dye-sensitized solar cells (DSCs) are systemically investigated. When evaluated as the photocatalyst for hydrogen evolution, the amount of evolved hydrogen over 1T-MoS2@HCS can reach 143 μmol in 2 h, being 3.6 times higher than as-synthesized 2H-MoS2@HCS. Additionally, the 1T-MoS2@HCS can be employed as the counter electrode (CE) material in DSCs. The DSCs based on 1T-MoS2@HCS CE possesses the power conversion efficiency of 8.94%, being higher than that with 2H-MoS2@HCS CE (8.16%) and comparable to that with Pt CE (8.87%). Our study demonstrates that 1T-MoS2@HCS has a great potential as an inexpensive alternative to Pt catalysts.

  2. Facile synthesis of PbSe hollow nanostructure assemblies via a solid/liquid-phase chemical route and their electrogenerated chemiluminescence properties.

    PubMed

    Han, Min; Li, Yanrong; Niu, Hongyan; Liu, Lili; Chen, Kunji; Bao, Jianchun; Dai, Zhihui; Zhu, Jianming

    2011-03-21

    Spherical PbSe hollow nanostructure assemblies (HNSAs) were synthesized by a simple one-pot solid/liquid-phase reaction in which solid KPbI(3)⋅2 H(2)O and SeO(2) are heated in oleic acid/dodecylamine/1-octadecene at 250 °C for 30 min. XRD analysis shows that the obtained product is cubic-phase PbSe and well crystallized. FESEM and TEM images reveal that the obtained spherical PbSe assemblies are made up of small, irregular, and fused hollow nanostructure building blocks. On the basis of temperature- and time-dependent investigations as well as control experiments, molten-salt corrosion of solid PbSe nanocrystal aggregates formed in situ during the high-temperature ripening stage is suggested to explain the formation of such novel assemblies. Moreover, when the reaction temperature is further increased to 280 or 320 °C with other conditions unchanged, cubic and orthorhombic mixed-phase PbSe HNSAs is generated. The obtained PbSe HNSAs exhibit excellent electrogenerated chemiluminescence (ECL) performance. Two strong and stable emission peaks at about -1.4 and +1.5 V (vs. Ag/AgCl) are observed. In particular, the ECL intensity is influenced by the crystal phase of PbSe.

  3. Stable jets of viscoelastic fluids and self-assembled cylindrical capsules by hydrodynamic focusing.

    PubMed

    Edmond, K V; Schofield, A B; Marquez, Manuel; Rothstein, J P; Dinsmore, A D

    2006-10-10

    We demonstrate formation of long-lived cylindrical jets of a viscoelastic fluid using hydrodynamic focusing. A solution of polyacrylamide in water is driven coaxially with immiscible oil and subjected to strong extensional flow. At high flow rates, the aqueous phase forms jets that are 4-90 microm in diameter and several centimeters long. The liquid surfaces of these jets are then used as templates for assembly of microspheres into novel rigid and hollow cylinders.

  4. Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles.

    PubMed

    Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing; Li, Jia-Xin; Ye, Chen; Wang, Jiu-Ju; Yu, Shan; Li, Cheng-Bo; Gao, Yu-Ji; Meng, Qing-Yuan; Tung, Chen-Ho; Wu, Li-Zhu

    2014-06-11

    Hollow spheres are one of the most promising micro-/nanostructures because of their unique performance in diverse applications. Templates, surfactants, and structure-directing agents are often used to control the sizes and morphologies of hollow spheres. In this Article, we describe a simple method based on visible light catalysis for preparing hollow nanospheres from CdE (E = Te, Se, and S) quantum dots (QDs) and nickel (Ni(2+)) salts in aqueous media. In contrast to the well-developed traditional approaches, the hollow nanospheres of QDs are formed in situ by the photogeneration of hydrogen (H2) gas bubbles at room temperature. Each component, that is, the QDs, metal ions, ascorbic acid (H2A), and visible light, is essential for the formation of hollow nanospheres. The quality of the hollow nanospheres depends on the pH, metal ions, and wavelength and intensity of visible light used. Of the various metal ions investigated, including Cu(+), Cu(2+), Fe(2+), Fe(3+), Ni(2+), Mn(2+), RuCl5(2-), Ag(+), and PtCl4(2-), Ni(2+) ions showed the best ability to generate H2 and hollow-structured nanospheres under visible light irradiation. The average diameter and shell thickness of the nanospheres ranged from 10 to 20 nm and from 3 to 6 nm, respectively, which are values rarely reported in the literature. Studies using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma-mass spectroscopy (ICP-AES), and steady-state and time-resolved spectroscopy revealed the chemical nature of the hollow nanospheres. Additionally, the hollow-structured nanospheres exhibit excellent photocatalytic activity and stability for the generation of H2 with a rate constant of 21 μmol h(-1) mg(-1) and a turnover number (TON) of 137,500 or 30,250 for CdTe QDs or nickel, respectively, under visible light irradiation for 42 h.

  5. Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Fang, Hua-Bin; Zheng, Yan-Zhen; Ye, Rongqin; Tao, Xia; Chen, Jian-Feng

    2015-11-01

    A high-efficiency visible-light-driven photocatalyst composed of homogeneously distributed Au nanoparticles (AuNPs) well-defined on hierarchical ZnO microspheres (ZMS) via a controllable layer-by-layer self-assembly technique is demonstrated. The gradual growth of the characteristic absorption bands of Au loaded on ZnO in the visible light region with an increasing number of assemblies indicates the enhancement of the light harvesting ability of the ZMS/Au composites as well as the reproducibility and controllability of the entire assembly process. Results on the photoelectrochemical performance characterized by EIS and transient photocurrent response spectra indicate that the ZMS/Au composites possess increased photoinduced charge separation and transfer efficiency compared to the pure ZMS film. As a result, the hybrid composites exhibited enhanced decomposition activity for methylene blue and salicylic acid as well as antibacterial activity in killing S. aureus and E. coli under visible light irradiation. It can be noted that well-distributed Au components even at a rather low Au/ZnO weight ratio of ~1.2% also exhibited extraordinary photocatalysis. Such a facile and controllable self-assembly approach may be viable for preparing high-performance visible-light-driven ZMS/Au photocatalysts in a simple and controllable way, and consequently, the technology may extend to other plasmon-enhanced heterostructures made of nanostructured semiconductors and noble metals for great potential application in environmental protection.A high-efficiency visible-light-driven photocatalyst composed of homogeneously distributed Au nanoparticles (AuNPs) well-defined on hierarchical ZnO microspheres (ZMS) via a controllable layer-by-layer self-assembly technique is demonstrated. The gradual growth of the characteristic absorption bands of Au loaded on ZnO in the visible light region with an increasing number of assemblies indicates the enhancement of the light harvesting ability of

  6. Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties

    SciTech Connect

    Cao Shaowen; Zhu Yingjie; Cui Jingbiao

    2010-07-15

    A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures such as solid microspheres, microspheres with the core in the hollow shell, and double-shelled hollow microspheres were synthesized by a simple one-step microwave-solvothermal ionic liquid method. The effects of the experimental parameters on the morphology and crystal phase of the resultant materials were investigated. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres and the underlying mechanisms were discussed. - Graphical abstract: A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures were synthesized by a simple one-step microwave-solvothermal ionic liquid method. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres.

  7. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.

    A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.

  8. Function-Led Design of Aerogels: Self-Assembly of Alloyed PdNi Hollow Nanospheres for Efficient Electrocatalysis.

    PubMed

    Cai, Bin; Wen, Dan; Liu, Wei; Herrmann, Anne-Kristin; Benad, Albrecht; Eychmüller, Alexander

    2015-10-26

    One plausible approach to endow aerogels with specific properties while preserving their other attributes is to fine-tune the building blocks. However, the preparation of metallic aerogels with designated properties, for example catalytically beneficial morphologies and transition-metal doping, still remains a challenge. Here, we report on the first aerogel electrocatalyst composed entirely of alloyed PdNi hollow nanospheres (HNSs) with controllable chemical composition and shell thickness. The combination of transition-metal doping, hollow building blocks, and the three-dimensional network structure make the PdNi HNS aerogels promising electrocatalysts for ethanol oxidation. The mass activity of the Pd83 Ni17 HNS aerogel is 5.6-fold higher than that of the commercial Pd/C catalyst. This work expands the exploitation of the electrocatalysis properties of aerogels through the morphology and composition control of its building blocks. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    PubMed

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.

  10. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  11. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  12. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  13. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  14. Self-assembled Monolayer Mediated Surface Environment Modification of Poly(vinylpyrrolidone)-Coated Hollow Au-Ag Nanoshells for Enhanced Loading of Hydrophobic Drug and Efficient Multimodal Therapy.

    PubMed

    Jang, Hongje; Kim, Dong-Eun; Min, Dal-Hee

    2015-06-17

    Hollow Au-Ag bimetallic nanoshell possessing hydrophobic interior space and hydrophilic exterior surface was prepared and its application as a chemo-thermo-gene therapeutic agent based on its high payload of multiple drugs having different water solubility was demonstrated. The multifunctional drug delivery system is based on the hydrophobic interior created by the self-assembled monolayer (SAM) of hexanethiol onto the inner surface of the hollow metallic nanoshells whereas the outer surface was mostly coated by hydrophilic biocompatible polymer. The nanoshells having surface environment modified by hexanethiol SAMs provided high capacity both for hydrophilic DNAzyme (Dz) to induce gene silencing and for hydrophobic SN38 (7-ethyl-10-hydroxycamptothecin), anticancer drug. The release of the loaded Dz and SN38 was independently triggered by an acidic environment and by photothermal temperature elevation upon irradiation, respectively. The chemo-thermo-gene multitherapy based on the present nanoshells having modified surface environment showed high efficacy in quantitative cell-based assays using Huh7 human liver cell containing hepatitis C viral NS3 gene replicon RNA.

  15. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles

    PubMed Central

    2012-01-01

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies. PMID:22296968

  16. Gelatin-methotrexate conjugate microspheres as a potential drug delivery system.

    PubMed

    Pica, Karen; Tchao, Ruy; Ofner, Clyde M

    2006-09-01

    Gelatin-methotrexate microspheres for intra-tumor administration have possibilities for minimizing systemic toxicities of methotrexate (MTX) and overcoming its resistance. Gelatin-MTX conjugates prepared by a carbodiimide reaction were crosslinked with glutaraldehyde to form microspheres (MTX:gelatin molar ratios of 2:1, 15:1, and 21:1). Microspheres were evaluated under in vitro tumor conditions at pH 6.5 and 37 degrees C with and without Cathepsin B (Cat B). Some microspheres were capped with an ethanolamine/cyanoborohydride procedure. SEM of broken microspheres revealed a hollow shell structure. Superficial Cat B degradation influenced some free MTX release but produced no conjugate fragment release. HPLC measured release of fragments (<10 kDa) was very little and release of free MTX was small. However, higher drug load microspheres released less free MTX than lower drug load, a substantial lag phase of free MTX release from capped microspheres changed to an initial rapid release in uncapped microspheres, and fragments were only released from uncapped microspheres. Opened unstable Schiff base crosslinks in uncapped microspheres may allow enzyme to produce conjugate fragments not observed in capped microspheres. Free MTX release may occur from dissolved uncrosslinked conjugate within the hollow microspheres. Important relationships and observations are described that will be useful for gelatin and perhaps other proteinaceous microspheres. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  17. Hollow-Fiber Clinostat

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Miller, Teresa Y.; Snyder, Robert S.

    1990-01-01

    Hollow-fiber clinostat, is bioreactor used to study growth and other behavior of cells in simulated microgravity. Cells under study contained in porous hollow fiber immersed in culture medium inside vessel. Bores in hollow fiber allow exchange of gases, nutrients, and metabolic waste products between living cells and external culture media. Hollow fiber lies on axis of vessel, rotated by motor equipped with torque and speed controls. Desired temperature maintained by operating clinostat in standard tissue-culture incubator. Axis of rotation made horizontal or vertical. Designed for use with conventional methods of sterilization and sanitation to prevent contamination of specimen. Also designed for asepsis in assembly, injection of specimen, and exchange of medium.

  18. Hollow-Fiber Clinostat

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Miller, Teresa Y.; Snyder, Robert S.

    1990-01-01

    Hollow-fiber clinostat, is bioreactor used to study growth and other behavior of cells in simulated microgravity. Cells under study contained in porous hollow fiber immersed in culture medium inside vessel. Bores in hollow fiber allow exchange of gases, nutrients, and metabolic waste products between living cells and external culture media. Hollow fiber lies on axis of vessel, rotated by motor equipped with torque and speed controls. Desired temperature maintained by operating clinostat in standard tissue-culture incubator. Axis of rotation made horizontal or vertical. Designed for use with conventional methods of sterilization and sanitation to prevent contamination of specimen. Also designed for asepsis in assembly, injection of specimen, and exchange of medium.

  19. In situ assembly of monodisperse, multifunctional silica microspheres embedded with magnetic and fluorescent nanoparticles and their application in adsorption of methylene blue.

    PubMed

    Shi, Jianhui; Ren, Xiaozhen; Tong, Lizhu; Chen, Xiaodong; Yang, Xuwei; Yang, Hua

    2013-11-14

    Many efforts have been devoted towards the fabrication of multifunctional (mesoporous, magnetic and fluorescent) nanocomposites due to their growing applications as adsorbents, catalysts, and biomedical application, etc. Novel, flower-structured multifunctional Fe3O4/YVO4:Eu(3+)@SiO2 microspheres were successfully synthesized through a simple self-assembled process. The as-obtained products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, photoluminescence (PL) spectroscopy and using a vibrating sample magnetometer (VSM). The results reveal that the novel composites exhibit typical mesoporous structure, narrow size distribution, good monodispersity, excellent luminescent properties and superparamagnetic features. The effects of magnetic field on the luminescent intensity of multifunctional composites have been discussed in our manuscript. Furthermore, the adsorption experiments indicate that the resulting multifunctional composites are powerful adsorbents for the removal of methylene blue from water with a maximum adsorption efficiency of 98%. It is envisioned that multifunctional composites with high surface area are of particular interest for adsorption of pollutants, separation, and water purification.

  20. Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide.

    PubMed

    Yan, Chenglin; Xue, Dongfeng

    2006-06-15

    Hydrozincite (Zn5(CO3)2(OH)6) microspheres with a tunable surface architecture have been successfully synthesized via a homogeneous precipitation method under solvothermal conditions. For a smooth hydrozincite microsphere, various building blocks such as nanocubes, nanorods, and nanosheets are arranged to cover a spherical surface by concisely controlling reaction time and the volume of ethylene glycol. Hexagonal Zn5(CO3)2(OH)6 with nanostep structures are also prepared without any additives. The hollow ZnO microspheres with a porous surface have been successfully fabricated via a solution-based method by the room-temperature treatment of filled Zn5(CO3)2(OH)6 microspheres composed of nanocubes. A possible growth mechanism of these hollow ZnO microspheres is proposed. The similar filled ZnO microspheres can also be obtained by a direct pyrolysis of Zn5(CO3)2(OH)6 microspheres composed of nanocubes at 450 degrees C.

  1. Microspheres and nanoparticles from ultrasound

    NASA Astrophysics Data System (ADS)

    Suh, Won Hyuk

    Improved preparations of various examples of monodispersed, porous, hollow, and core-shell metal and semiconductor nanoparticles or nanowires have been developed. Now titania microspheres and nanoparticles and silica microspheres can be synthesized using an inexpensive high frequency (1.7 MHz) ultrasonic generator (household humidifier; ultrasonic spray pyrolysis; USP). Morphology and pore size of titania microspheres were controlled by the silica to Ti(IV) ratio and silica particle size. Fine tuning the precursor ratio affords sub-50 nm titania nanoparticles as well. In terms of silica microspheres, morphology was controlled by the silica to organic monomer ratio. In liquids irradiated with high intensity ultrasound (20 kHz; HIUS), acoustic cavitation produces high energy chemistry through intense local heating inside the gas phase of collapsing bubbles in the liquid. HIUS and USP confine the chemical reactions to isolated sub-micron reaction zones, but sonochemistry does so in a heated gas phase within a liquid, while USP uses a hot liquid droplet carried by a gas flow. Thus, USP can be viewed as a method of phase-separated synthesis using submicron-sized droplets as isolated chemical reactors for nanomaterial synthesis. While USP has been used to create both titania and silica spheres separately, there are no prior reports of titania-silica composites. Such nanocomposites of metal oxides have been produced, and by further manipulation, various porous structures with fascinating morphologies were generated. Briefly, a precursor solution was nebulized using a commercially available household ultrasonic humidifier (1.7 MHz ultrasound generator), and the resulting mist was carried in a gas stream of air through a quartz glass tube in a hot furnace. After exiting the hot zone, these microspheres are porous or hollow and in certain cases magnetically responsive. In the case of titania microspheres, they are rapidly taken up into the cytoplasm of mammalian cells and

  2. Self-assembly of an amphiphilic macromolecule under spherical confinement: an efficient route to generate hollow nanospheres.

    PubMed

    Glagoleva, A A; Vasilevskaya, V V; Yoshikawa, K; Khokhlov, A R

    2013-12-28

    In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.

  3. Self-assembly of an amphiphilic macromolecule under spherical confinement: An efficient route to generate hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.

    2013-12-01

    In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.

  4. Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties

    NASA Astrophysics Data System (ADS)

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2015-02-01

    Zinc-nickel citrate microspheres are prepared by a simple aging process of zinc citrate solid microspheres in nickel nitrate solution. As the concentration of nickel nitrate solution increases, the morphology of the produced zinc-nickel citrate evolves from solid, yolk-shell to hollow microspheres. The formation mechanism of different zinc-nickel citrate microspheres is discussed. After annealing treatment of the corresponding zinc-nickel citrate microspheres in air, three different ZnO-NiO hybrid architectures including solid, yolk-shell and hollow microspheres can be successfully fabricated. When applied as the anode materials for lithium ion batteries, ZnO-NiO hybrid yolk-shell microspheres demonstrate the best electrochemical properties than solid and hollow counterparts. After 200th cycles, ZnO-NiO hybrid yolk-shell microspheres deliver a high reversible capacity of 1176 mA h g-1. The unique yolk-shell configuration, the synergetic effect between ZnO and NiO and the catalytic effect of metal Ni generated by the reduction of NiO during discharging process are responsible for the excellent lithium storage properties of ZnO-NiO hybrid yolk-shell microspheres.

  5. Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties

    PubMed Central

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2015-01-01

    Zinc-nickel citrate microspheres are prepared by a simple aging process of zinc citrate solid microspheres in nickel nitrate solution. As the concentration of nickel nitrate solution increases, the morphology of the produced zinc-nickel citrate evolves from solid, yolk-shell to hollow microspheres. The formation mechanism of different zinc-nickel citrate microspheres is discussed. After annealing treatment of the corresponding zinc-nickel citrate microspheres in air, three different ZnO-NiO hybrid architectures including solid, yolk-shell and hollow microspheres can be successfully fabricated. When applied as the anode materials for lithium ion batteries, ZnO-NiO hybrid yolk-shell microspheres demonstrate the best electrochemical properties than solid and hollow counterparts. After 200th cycles, ZnO-NiO hybrid yolk-shell microspheres deliver a high reversible capacity of 1176 mA h g−1. The unique yolk-shell configuration, the synergetic effect between ZnO and NiO and the catalytic effect of metal Ni generated by the reduction of NiO during discharging process are responsible for the excellent lithium storage properties of ZnO-NiO hybrid yolk-shell microspheres. PMID:25684436

  6. One-pot reaction to synthesize PEG-coated hollow magnetite nanostructures with excellent magnetic properties.

    PubMed

    Gao, Qian; Zhang, Jilin; Hong, Guangyan; Ni, Jiazuan

    2010-10-01

    We first demonstrate a simple "one-pot" method to synthesis uniform Fe3O4 hollow microspheres in the presence of PEG in ethylene glycol by using urea to control their morphologies. The interior cavity of the hollow spheres can be tunable by reaction time. The Lamer model was used to explain the formation of magnetite hollow spherical structures based on the experimental observations. The obtained hollow Fe3O4 microspheres showing superparamagnetism with a high saturation magnetization of ca. 86.4 emu/g, and also had an enrichment surface of -OH groups, which will be favorable to the further modification with other biomedical molecules.

  7. Fluorescent microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1978-01-01

    Latex particles with attached antibodies have potential biochemical and environmental applications. Human red blood cells and lymphocytes have been labeled with fluorescent microspheres by either direct or indirect immunological technique. Immunolatex spheres can also be used for detecting and localizing specific cell surface receptors. Hormones and toxins may also be bondable.

  8. Novel microsphere chain fiber tips for use in mid-infrared ophthalmic laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-01-01

    Ophthalmic surgery may benefit from the use of more precise fiber delivery systems for laser surgery. In this study, chains of sapphire microspheres integrated into the distal tip of a hollow waveguide are used for preliminary mid-infrared, Erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The combination of the Er:YAG laser's short optical penetration depth and small spot diameters achieved with this novel fiber probe may provide more precise tissue removal. One, three, and five microsphere chain structures were assembled and compared, resulting in spot diameters of 67, 32, and 30 μm, respectively. Single laser pulses of 0.1 mJ energy and 75 μs duration produced craters with average widths of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one, three, and five sphere structures, respectively. Chains of microspheres produced spatial filtering of the multimode Er:YAG laser beam and fiber, thus providing spot diameters not otherwise available for precise tissue ablation using conventional fiber delivery systems. With further probe development, this novel approach to mid-IR laser ablation may provide an alternative to mechanical tools for ultra-precise surgical dissection and removal of ophthalmic tissues.

  9. Air jet levitation furnace system for observing glass microspheres during heating and melting

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Dunn, S. L.

    1982-01-01

    A collimated hole structure air jet levitation system has been developed which can be used to levitate hollow glass microspheres used in inertial confinement fusion studies. An ellipsoidal furnace has been added to the system to provide a heating source. A video camera and a 16 mm movie camera connected to a microsphere system provide real time observation as well as permanent documentation of the experiments. Microspheres have been levitated at temperatures over 1400 C for over 10 minutes at a time.

  10. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  11. Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Wu, Feng; Li, Jian; Su, Yuefeng; Wang, Jing; Yang, Wen; Li, Ning; Chen, Lai; Chen, Shi; Chen, Renjie; Bao, Liying

    2016-09-14

    In the present work, polyelectrolyte multilayers (PEMs) and graphene sheets are applied to sequentially coat on the surface of hollow carbon spheres/sulfur composite by a flexible layer-by-layer (LBL) self-assembly strategy. Owing to the strong electrostatic interactions between the opposite charged materials, the coating agents are very stable and the coating procedure is highly efficient. The LBL film shows prominent impact on the stability of the cathode by acting as not only a basic physical barrier, and more importantly, an ion-permselective film to block the polysulfides anions by Coulombic repulsion. Furthermore, the graphene sheets can help to stabilize the polyelectrolytes film and greatly reduce the inner resistance of the electrode by changing the transport of the electrons from a "point-to-point" mode to a more effective "plane-to-point'' mode. On the basis of the synergistic effect of the PEMs and graphene sheets, the fabricated composite electrode exhibits very stable cycling stability for over 200 cycles at 1 A g(-1), along with a high average Coulombic efficiency of 99%. With the advantages of rapid and controllable fabrication of the LBL coating film, the multifunctional architecture developed in this study should inspire the design of other lithium-sulfur cathodes with unique physical and chemical properties.

  12. Assembly and electrochemical properties of novel alkaline rechargeable Ni/Bi battery using Ni(OH)2 and (BiO)4CO3(OH)2 microspheres as electrode materials

    NASA Astrophysics Data System (ADS)

    Sun, Jinfeng; Wang, Jinqing; Li, Zhangpeng; Niu, Lengyuan; Hong, Wei; Yang, Shengrong

    2015-01-01

    In this work, Ni(OH)2 and (BiO)4CO3(OH)2 microspheres are synthesized by solvothermal method. Then, a novel alkaline rechargeable Ni/Bi battery is assembled for the first time using the synthesized Ni(OH)2 and (BiO)4CO3(OH)2 as the positive electrode and negative electrode materials, respectively. As a result, the assembled Ni/Bi battery delivers a high specific capacity of 113 mAh g-1 at a discharge rate of 0.2C based on the total mass of the electrode materials, as well as a high energy density of 92 Wh kg-1 at a power density of 27.3 W kg-1.

  13. Hollow Retroreflectors

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A hollow retroreflector is a mirror-like instrument that reflects light and other radiations back to the source. After developing a hollow retroreflector for NASA's Apollo-Soyuz mission, PLX, Inc. continued to expand the technology and develop a variety of retroreflector systems. The Lateral Transfer Hollow Retroreflector maintains precise separation, at any wavelength, of incoming and existing beams regardless of their orientation. It can be used as an instrument or as a component of an optical system. In the laboratory, it offers a new efficient means of beam positioning. In other applications, it connects laser resonators, aligns telescope mirrors and is useful in general boresighting and alignment.

  14. Focusing capability of integrated chains of microspheres in the limit of geometrical optics

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Allen, Kenneth W.; Fardad, Amir; Fried, Nathaniel M.; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.

    2011-03-01

    The effects of periodical focusing of light were studied in chains of sapphire microspheres with 300 μm diameters assembled either on a substrate or inside capillary tubing. Dye-doped fluorescent microspheres were used as multimodal sources of light in experimental studies. Significant reduction of the focused spot sizes was observed for chains of spheres compared to a single sphere case. Numerical ray tracing simulations were performed for similar chains assembled inside hollow waveguides to be used as an optical delivery system with mid-infrared lasers for ultra-precise surgery. The device designs were optimized for contact conditions during laser surgery involving short optical penetration depths of light in tissue. It is shown that chains of spheres with n around 1.65-1.75 provide a two-fold improvement of the spatial resolution over single spheres. Potential applications of these microprobes include ultraprecise laser procedures in the eye and brain or piercing a cell, and coupling of multimodal beams into photonic microstructures.

  15. Hybrid microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  16. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  17. TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Cao, Yongqiang; Yang, Ping

    2013-04-01

    Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.

  18. Patterning of silica microsphere monolayers with focused femtosecond laser pulses

    SciTech Connect

    Cai Wenjian; Piestun, Rafael

    2006-03-13

    We demonstrate the patterning of monolayer silica microsphere lattices with tightly focused femtosecond laser pulses. We selectively removed microspheres from a lattice and characterized the effect on the lattice and the substrate. The proposed physical mechanism for the patterning process is laser-induced breakdown followed by ablation of material. We show that a microsphere focuses radiation in its interior and in the near field. This effect plays an important role in the patterning process by enhancing resolution and accuracy and by reducing the pulse energy threshold for damage. Microsphere patterning could create controlled defects within self-assembled opal photonic crystals.

  19. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.

    PubMed

    Wei, Wei; Chen, Dezhi; Wang, Ruining; Guo, Lin

    2012-11-30

    In this paper, LiFePO(4)/C microspheres consisting of closely packed nanosheets have been synthesized via a simple solvothermal method and a subsequent carbon coating procedure. In order to clarify the microstructure of the product, the as-prepared composite has been characterized by various techniques, such as powder x-ray diffraction, scanning electron microscopy, energy dispersive spectrum, Raman spectroscopy and high-resolution transmission microscopy. Results show that the LiFePO(4)/C microspheres are uniform with a particle size of 8-10 μm. The microspheres are composed of densely compacted nanosheets with a thickness of 20-30 nm. The gaps between the nanosheets are estimated to be 10-50 nm; a carbon layer with a thickness of ~4 nm is coated on the surface of the LiFePO(4) spheres. The tap density of the LiFePO(4)/C composite reaches up to 1.5 g cm(-3). As cathode material for Li-ion batteries, the composite exhibits a high capacity: 155 mAh g(-1), 144 mAh g(-1), 129 mAh g(-1), and 104 mAh g(-1) at 0.1 C, 1 C, 5 C and 10 C, respectively. Furthermore, the material also shows good cycling stability at both low and high current rates. The unique nanostructure of the material promises its excellent electrochemical properties as a cathode material for lithium batteries.

  20. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property.

    PubMed

    Liu, Wei; Cao, Lixin; Su, Ge; Liu, Haisong; Wang, Xiangfei; Zhang, Lan

    2010-04-01

    Bismuth vanadate (BiVO(4)) spindle particles with monoclinic scheelite structure have been successfully synthesized via a facile sonochemical method. The as-prepared BiVO(4) photocatalyst exhibited a hollow interior structure constructed from the self-assembly of cone shape primary nanocrystals. A possible oriented attachment growth mechanism has been proposed based on the results of time-dependent experiments, which indicates the formation of spindle particles is mainly attributed to the phase transformation procedure induced by ultrasound irradiation. A series of morphology evolutions of BiVO(4) from compact microspheres, to hollow microspheres, and then to spindle particles have been arrested in the process of sonochemical treatment. Optical absorption experiments revealed the BiVO(4) spindle had strong absorption in the visible light region. A much higher photocatalytic activity of these spindle particles was found in comparison with the SSR-BiVO(4) material for degradation of rhodamine-B under visible light irradiation, which may be ascribed to its special single-crystalline nanostructure.

  1. Constructing Novel Si@SnO2 Core-Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage.

    PubMed

    Zhou, Zheng-Wei; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying

    2016-03-23

    Developing an industrially viable silicon anode, featured by the highest theoretical capacity (4200 mA h g(-1)) among common electrode materials, is still a huge challenge because of its large volume expansion during repeated lithiation-delithiation as well as low intrinsic conductivity. Here, we expect to address these inherent deficiencies simultaneously with an interesting hybridization design. A facile self-assembly approach is proposed to decorate silicon hollow nanospheres with SnO2 nanowires. The two building blocks, hand in hand, play a wonderful duet by bridging their appealing functionalities in a complementary way: (1) The silicon hollow nanospheres, in addition to the major role as a superior capacity contributor, also act as a host material (core) to partially accommodate the volume expansion, thus alleviating the capacity fading by providing abundant hollow interiors, void spaces, and surface areas. (2) The SnO2 nanowires serve as a conductive coating (shell) to enable efficient electron transport due to a relatively high conductivity, thereby improving the cyclability of silicon. Compared to other conductive dopants, the SnO2 nanowires with a high theoretical capacity (790 mA h g(-1)) can contribute outstanding electrochemical reaction kinetics, further adding value to the ultimate electrochemical performances. The resulting novel Si@SnO2 core-shell heterostructures exhibit remarkable synergy in large, reversible lithium storage, delivering a reversible capacity as high as 1869 mA h g(-1)@500 mA g(-1) after 100 charging-discharging cycles.

  2. Self-assembly of ambivalent organic/inorganic building blocks containing Re6 metal atom cluster: formation of a luminescent honeycomb, hollow, tubular metal-organic framework.

    PubMed

    Shestopalov, Michael A; Cordier, Stéphane; Hernandez, Olivier; Molard, Yann; Perrin, Christiane; Perrin, André; Fedorov, Vladimir E; Mironov, Yuri V

    2009-02-16

    Reactions in a sealed glass tube between melted pyrazine (pyz) and a Cs(3)Re(6)Q(i)(7)Br(i)Br(a)(6).H(2)O inorganic rhenium cluster compound (Q = S, Se; "i" for inner and "a" for apical positions) containing [Re(6)Q(i)(7)Br(i)Br(a)(6)](3-) units led to the substitution of three apical bromine ligands by three pyrazine groups with the formation of 3 CsBr as a byproduct. The resulting fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3) building unit, based on a Re(6) metal atom cluster, is neutral and noncentrosymmetric and exhibits an ambivalent organic/inorganic nature owing to the opposite disposition of the three apical pyrazine groups versus the three apical bromine atoms. These compounds were characterized by single-crystal and powder X-ray diffraction, elemental and thermal analyses, and luminescence measurements. The crystal structure of fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3).xH(2)O (Q = S (1) and Se (2)) displays an original, neutral metal-organic framework based on the self-assembling of fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3) hybrid building units. The latter are held together by supramolecular interactions: pi-pi, hydrogen bonds (C-H...N, C-H...Br(a), and C-H...Br(i)), and van der Waals contacts. It gives rise to a honeycomb porous structure of parallel hollow open-ended channels wherein the water molecules are located. Their removal does not lead to the collapsing of the structural edifice. The channel walls are constituted by hydrogen atoms from pyrazine as well as apical bromine from the cluster unit. To our knowledge, the structures of 1 and 2 constitute with that of PTMTC (perchlorotriphenylmethyl functionalized by carboxylic group radicals) one of the rare examples of stable open frameworks stabilized by supramolecular interactions between neutral molecules. Moreover, 1 is the first example of luminescent Re(6) compound built up from a noncentrosymmetric Re(6)S(i)(7)Br(i) cluster core.

  3. Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage

    PubMed Central

    Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-01-01

    A hollow hybrid Ni-Fe-O nanomaterial (NiFe2O4) is synthesized using a precursor of metal-organic frameworks through a simple and cost-effective method. The unique hollow nanocage structures shorten the length of Li-ion diffusion. The hollow structure offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Besides, the hybrid elements allow the volume change to take place in a stepwise manner during electrochemical cycle. And thus, the hierarchical hollow NiFe2O4 nanocage electrode exhibits extraordinary electrochemical performance. The stable cyclic performance is obtained for all rates from 1 C to 10 C. Even when the current reaches 10 C, the capacity can also arrive at 652 mAhg−1. Subsequently, a specific capacity of ca. 975 mAhg−1 is recovered when the current rate reduces back to 1 C after 200 cycles. This strategy that derived from NMOFs may shed light on a new route for large-scale synthesis of hollow porous hybrid nanocages for energy storage, environmental remediation and other novel applications. PMID:26347981

  4. Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-09-01

    A hollow hybrid Ni-Fe-O nanomaterial (NiFe2O4) is synthesized using a precursor of metal-organic frameworks through a simple and cost-effective method. The unique hollow nanocage structures shorten the length of Li-ion diffusion. The hollow structure offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Besides, the hybrid elements allow the volume change to take place in a stepwise manner during electrochemical cycle. And thus, the hierarchical hollow NiFe2O4 nanocage electrode exhibits extraordinary electrochemical performance. The stable cyclic performance is obtained for all rates from 1 C to 10 C. Even when the current reaches 10 C, the capacity can also arrive at 652 mAhg-1. Subsequently, a specific capacity of ca. 975 mAhg-1 is recovered when the current rate reduces back to 1 C after 200 cycles. This strategy that derived from NMOFs may shed light on a new route for large-scale synthesis of hollow porous hybrid nanocages for energy storage, environmental remediation and other novel applications.

  5. Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wen, Zhenhai; Li, Jinghong

    To benefit from the large capacity gain advantages offered by lithium-induced electrochemical alloying and to overcome poor kinetics, a novel concept to tackle such issues by using porous hierarchical microspheres with an interconnected network of nanoplate building blocks, has been introduced and demonstrated with Sn 1.0P 1.17O 4.72 glass as an example. Such desired three-dimensional microarchitectures with exciting nanosize effects can be exploited to fabricate next generation of lithium-ion batteries where outstanding rate capability and sustained reversible capacity are achieved.

  6. Hollow memories

    NASA Astrophysics Data System (ADS)

    2014-04-01

    A hollow-core optical fibre filled with warm caesium atoms can temporarily store the properties of photons. Michael Sprague from the University of Oxford, UK, explains to Nature Photonics how this optical memory could be a useful building block for fibre-based quantum optics.

  7. Immobilization of silver nanoparticles on silica microspheres

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Kai; Chen, Chia-Yin; Han, Jin-Lin; Chen, Chii-Chang; Jiang, Meng-Dan; Hsu, Jen-Sung; Chan, Chia-Hua; Hsieh, Kuo-Huang

    2010-01-01

    The silver nanoparticles (Ag NPs) have been immobilized onto silica microspheres through the adsorption and subsequent reduction of Ag+ ions on the surfaces of the silica microspheres. The neat silica microspheres that acted as the core materials were prepared through sol-gel processing; their surfaces were then functionalized using 3-mercaptopropyltrimethoxysilane (MPTMS). The major aims of this study were to immobilize differently sized Ag particles onto the silica microspheres and to understand the mechanism of formation of the Ag nano-coatings through the self-assembly/adsorption behavior of Ag NPs/Ag+ ions on the silica spheres. The obtained Ag NP/silica microsphere conglomerates were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). Their electromagnetic wave shielding effectiveness were also tested and studied. The average particle size of the obtained Ag NPs on the silica microsphere was found that could be controllable (from 2.9 to 51.5 nm) by adjusting the ratio of MPTMS/TEOS and the amount of AgNO3.

  8. Collective interaction of microscale matters in natural analogy: human cancer cells vs. microspheres

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon; Postech Team

    2014-11-01

    Collective behaviors have been considered both in living and lifeless things as a natural phenomenon. During the ordering process, a sudden and spontaneous transition is typically generated between an order and a disorder according to the population density of interacting elements. In a cellular level collective behavior, the cells are distributed in the characteristic patterns according to the population density and the mutual interaction of the individual cells undergo density-dependent diffusive motion. On the other hand, density-controlled surface-modified hollow microsphere suspension induces an overpopulation via buoyancy which provides a driving force to induce an assembly. The collective behaviors of the cells and microspheres in a designed liquid medium are explained in terms of the deviation from the interparticle distance distribution and the induced strength to organize the particle position in a specific distance range. as a result, microscale particulate matters exhibit high resemblance in their pair correlation and dynamical heterogeneity in the intermediate range between a single individual and an agglomerate. Therefore, it is suggested that biological systems are analogically explained to be dominated by physically interactive aspects.

  9. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  10. A Comparative Study of Production of Glass Microspheres by using Thermal Process

    NASA Astrophysics Data System (ADS)

    Lee, May Yan; Tan, Jully; Heng, Jerry YY; Cheeseman, Christopher

    2017-06-01

    Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. Microspheres typical ranges from 1 to 200 μm in diameter. Microsphere are made from glass, ceramic, carbon or plastic depending on applications. Solid glass microsphere is manufactured by direct burning of glass powders while hollow glass microspheres is produced by adding blowing agent to glass powder. This paper presented the production of glass microspheres by using the vertical thermal flame (VTF) process. Pre-treated soda lime glass powder with particle sized range from 90 to 125μm was used in this work. The results showed that glass microspheres produced by two passes through the flame have a more spherical shape as compared with the single pass. Under the Scanning Electron Microscope (SEM), it is observed that there is a morphology changed from uneven surface of glass powders to smooth spherical surface particles. Qualitative analysis for density of the pre-burned and burned particles was performed. Burned particles floats in water while pre-burned particles sank indicated the change of density of the particles. Further improvements of the VTF process in terms of the VTF set-up are required to increase the transformation of glass powders to glass microspheres.

  11. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  12. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  13. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  14. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  15. Fibrin-based microsphere reservoirs for delivery of neurotrophic factors to the brain.

    PubMed

    Samal, Juhi; Hoban, Deirdre B; Naughton, Carol; Concannon, Ruth; Dowd, Eilis; Pandit, Abhay

    2015-01-01

    The in vivo therapeutic potential of neurotrophic factors to modify neuronal dysfunctions is limited by their short half-life. A biomaterials-based intervention, which protects these factors and allows a controlled release, is required. Hollow fibrin microspheres were fabricated by charge manipulation using polystyrene templates and were loaded with NGF. Bioactivity of released NGF was demonstrated by neuronal outgrowth assay in PC-12 cells followed by in vivo assessment for NGF release and host response. Fibrin-based hollow spheres showed high loading efficiency (>80%). Neurotrophin encapsulation into the microspheres did not alter its bioactivity and controlled release of NGF was observed in the in vivo study. Fibrin hollow microspheres act as a suitable delivery platform for neurotrophic factors with tunable loading efficiency and maintaining their bioactive form after release in vivo.

  16. Goodbye, Hollows

    NASA Image and Video Library

    2015-04-21

    As NASA MESSENGER enters its final days, we are getting our last looks at some of our favorite features. Hollows, discovered in MDIS images during the orbital phase of the mission, are always photogenic. Three small hollows can be spotted in this scene located to the northwest of the Caloris basin near Timgad Vallis, including one that is surrounded by low-reflectance material. Date acquired: April 14, 2015 Image Mission Elapsed Time (MET): 71304311 Image ID: 8326733 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 59.1° Center Longitude: 116.2° E Resolution: 17.1 meters/pixel Scale: This scene is approximately 17 km (11 miles) across http://photojournal.jpl.nasa.gov/catalog/PIA19425

  17. A reinforced composite structure composed of polydiacetylene assemblies deposited on polystyrene microspheres and its application to H5N1 virus detection

    PubMed Central

    Dong, Wenjie; Luo, Jing; He, Hongxuan; Jiang, Long

    2013-01-01

    In this study, we immobilized polydiacetylene vesicles (PDAVs) onto the surface of polystyrene (PS) microspheres (1 μm in diameter) by using both electrical charge and conjugated forces to form a reinforced composite structure. These reinforced complexes could be easily washed, separated by centrifugation, and resuspended by gentle agitation. After passing through a narrow 200 μm-diameter channel, the composite structures maintained their original shape, demonstrating their resilience and potential for use in microfluidic technologies. The number of PDAVs in the composite structure could be mediated by changing the extent of layer deposition, which affected the sensitivity of detection. It showed that PDAVs did not change their blue color after addition of detecting probes such as anti-H5N1, which was of great importance in the fabrication and modification of stable color-changeable biosensors based on PDAVs. By conjugating anti-H5N1 antibodies to the PS@PDAV via N -hydroxysuccinimide and 1-ethyl3-(3-dimethylaminopropyl) carbodiimide chemistry, a stable blue complex, anti-H5N1 microsphere (PS@PDAV-anti-H5N1) was formed. A target antigen of H5N1 (HAQ [H5N1 strain A/ environment/Qinghai/1/2008{H5N1} in clade 0]) was detected by PS@PDAV-anti-H5N1. At an optimal PDAV deposition level of three layers, the limit of detection was determined to be approximately 3 0 ng/mL of HAQ by using optical spectrum measurement and visual inspection, meeting the needs of fast and simple color-changeable detection. However, a much lower limitation of detection (1 ng/mL) was able to be obtained using laser-scanning confocal microscopy, which could be compared with the results obtained with other sophisticated equipment. PMID:23403826

  18. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  19. Magnetic microsphere-based mixers for microdroplets

    NASA Astrophysics Data System (ADS)

    Roy, Tamal; Sinha, Ashok; Chakraborty, Sayan; Ganguly, Ranjan; Puri, Ishwar K.

    2009-02-01

    While droplet-based microfluidic systems have several advantages over traditional flow-through devices, achieving adequate mixing between reagents inside droplet-based reactors remains challenging. We describe an active mixing approach based on the magnetic stirring of self-assembled chains of magnetic microspheres within the droplet as these stirrers experience a rotating magnetic field. We measure the mixing of a water-soluble dye in the droplet in terms of a dimensional mixing parameter as the field-rpm, fluid viscosity, and microsphere loading are parametrically varied. These show that the mixing rate has a maximum value at a critical Mason number that depends upon the operating conditions.

  20. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition.

    PubMed

    Mishra, P K; Wimmer, R

    2017-03-01

    Lignin, a major constituent of plant cell-wall and by-product of paper based industries is traditionally used for low value applications (heat or electricity generation), but its potential in high value utilization has also been widely reported. In this work, we synthesized lignin colloidal particles using ultrasonic spray-freezing route without any chemical functionalization of material, and stabilized it by electrostatic route. As per our knowledge, this technique is the first reported method which yields hollow/solid lignin colloids having good particle size control without any chemical functionalization of material. Dioxane soluble fraction of Alkali lignin (d-lignin) was used without any further chemical functionalization. d-lignin dissolved in DMSO was sprayed upon liquid nitrogen cooled copper plate using an ultrasonic nebulizer. The resulting frozen droplets were collected and found to possess hollow and solid morphology. Particles thus obtained were characterized for their size distribution and morphology, and compared to theoretically anticipated values. Size tunability of particles in relation to concentration of sprayed lignin solution was also studied. In addition to that, six layers of lignin colloids were deposited on quartz slide with the aid of negligible UV absorbing polyelectrolyte aqueous solution PDADMAC [Poly (diallyldimethylammonium chloride)]. Gradation in UV absorbing ability of lignin with increase in number of layers could be clearly observed. Hollow and solid lignin colloids, apart from their application in sunscreen cosmetics owing to their UV absorbing ability, show potential applications in drug delivery also.

  1. Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate.

    PubMed

    Zhang, X; Aravindan, V; Kumar, P Suresh; Liu, H; Sundaramurthy, J; Ramakrishna, S; Madhavi, S

    2013-07-07

    We report the formation and extraordinary Li-storage properties of TiO2 hollow nanofibers by co-axial electrospinning in both the half-cell and full-cell configurations. Li-insertion properties are first evaluated as anodes in the half-cell configuration (Li/TiO2 hollow nanofibers) and we found that reversible insertion of ~0.45 moles is feasible at a current density of 100 mA g(-1). The half-cell displayed a good cyclability and retained 84% of its initial reversible capacity after 300 galvanostatic cycles. The full-cell is fabricated with a commercially available olivine phase LiFePO4 cathode under optimized mass loading. The LiFePO4/TiO2 hollow nanofiber cell delivered a reversible capacity of 103 mA h g(-1) at a current density of 100 mA g(-1) with an operating potential of ~1.4 V. Excellent cyclability is noted for the full-cell configuration, irrespective of the applied current densities, and it retained 88% of reversible capacity after 300 cycles in ambient conditions at a current density of 100 mA g(-1).

  2. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    PubMed

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  3. Proteinoid/hydroxyapatite hybrid microsphere composites.

    PubMed

    Tallawi, Marwa

    2011-02-01

    Organic/hydroxyapatite (HA) hybrid composites are promising materials for orthopedic applications. Proteinoid/HA hybrid microsphere composite is an ideal material for bioresorbable and biocompatible three-dimensional scaffolds. Proteinoids are thermally condensed mixtures of amino acids, forming microspheres via self-assembly of proteinoid chains. Synthesis of an onion-type multilayer proteinoid/HA hybrid composite is achieved by thermally condensing a mixture of amino acids in the presence of commercially available HA. Proteinoid/HA microsphere composite of about 40 μm are achieved as a result of heterogeneous nucleation of HA on proteinoids chains. The formation mechanism is based on the interaction between calcium ions of HA and carboxyl side groups of proteinoid. The morphology was gleaned by scanning electron microscopy, and the organic and inorganic constituents were characterized by several analytical methods. Copyright © 2010 Wiley Periodicals, Inc.

  4. Liquid molded hollow cell core composite articles

    NASA Technical Reports Server (NTRS)

    Bernetich, Karl R. (Inventor)

    2005-01-01

    A hollow core composite assembly 10 is provided, including a hollow core base 12 having at least one open core surface 14, a bondable solid film 22 applied to the open core surface 14, at least one dry face ply 30 laid up dry and placed on top of the solid film 22, and a liquid resin 32 applied to the at least one dry face ply 30 and then cured.

  5. Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies

    PubMed Central

    2014-01-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases. PMID:25276103

  6. Nano-particle assembled porous core–shell ZnMn2O4 microspheres with superb performance for lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Yue, Huijuan; Qiu, Hailong; Wei, Yingjin; Wang, Chunzhong; Chen, Gang; Zhang, Dong

    2017-03-01

    Porous ZnMn2O4 microspheres were prepared via a facile co-precipitation method followed by calcination at various temperatures and evaluated as anode materials for lithium ion batteries. The sample prepared at 600 °C outperformed the other samples in terms of electrochemical performance with high reversible capacity, high-rate capability, and excellent cycling performance. The capacity of the sample remained as high as 999 mAh g‑1 at a current rate of 100 mA g‑1 after 50 cycles—one of the best ever reported for ZnMn2O4-based materials. A high reversible capacity of 400 mAh g‑1 was retainable at a current density of 2000 mA g‑1 after 2500 cycles. A novel electrochemical reaction mechanism of ZnMn2O4 anodes was established and investigated at length. The Mn3O4 observed during the charge process was largely responsible for the enhanced performance, as confirmed by x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The relatively large surface area, abundant porosity, large ion exchange space, and strong mechanical stability of the porous connected 3D framework were responsible for the unique oxidation/reduction Mn2+ ↔ Mn3+ process we observed.

  7. Nano-particle assembled porous core-shell ZnMn2O4 microspheres with superb performance for lithium batteries.

    PubMed

    Zhang, Tong; Yue, Huijuan; Qiu, Hailong; Wei, Yingjin; Wang, Chunzhong; Chen, Gang; Zhang, Dong

    2017-03-10

    Porous ZnMn2O4 microspheres were prepared via a facile co-precipitation method followed by calcination at various temperatures and evaluated as anode materials for lithium ion batteries. The sample prepared at 600 °C outperformed the other samples in terms of electrochemical performance with high reversible capacity, high-rate capability, and excellent cycling performance. The capacity of the sample remained as high as 999 mAh g(-1) at a current rate of 100 mA g(-1) after 50 cycles-one of the best ever reported for ZnMn2O4-based materials. A high reversible capacity of 400 mAh g(-1) was retainable at a current density of 2000 mA g(-1) after 2500 cycles. A novel electrochemical reaction mechanism of ZnMn2O4 anodes was established and investigated at length. The Mn3O4 observed during the charge process was largely responsible for the enhanced performance, as confirmed by x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The relatively large surface area, abundant porosity, large ion exchange space, and strong mechanical stability of the porous connected 3D framework were responsible for the unique oxidation/reduction Mn(2+) ↔ Mn(3+) process we observed.

  8. Metallic coating of microspheres

    SciTech Connect

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  9. Ca(OH).sub.2 -treated ceramic microsphere

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

  10. Ca(OH).sub.2 -treated ceramic microsphere

    DOEpatents

    Sugama, Toshifumi

    1990-01-01

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

  11. Ca(OH)[sub 2]-treated ceramic microsphere

    DOEpatents

    Sugama, Toshifumi.

    1989-04-18

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

  12. Ca(OH)[sub 2]-treated ceramic microsphere

    DOEpatents

    Sugama, Toshifumi.

    1990-06-26

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

  13. Hierarchical Assembly of α-Fe₂O₃ Nanosheets on SnO2₂Hollow Nanospheres with Enhanced Ethanol Sensing Properties.

    PubMed

    Sun, Peng; Wang, Chen; Liu, Jiangyang; Zhou, Xin; Li, Xiaowei; Hu, Xiaolong; Lu, Geyu

    2015-09-02

    We present the preparation of a hierarchical nanoheterostructure consisting of inner SnO2 hollow spheres (SHS) surrounded by an outer α-Fe2O3 nanosheet (FNS). Deposition of the FNS on the SHS outer surface was achieved by a facile microwave hydrothermal reaction to generate a double-shell SHS@FNS nanostructure. Such a composite with novel heterostructure acted as a sensing material for gas sensors. Significantly, the hierarchical composites exhibit excellent sensing performance toward ethanol, which is superior to the single component (SHS), mainly because of the synergistic effect and heterojunction.

  14. Hierarchical flower-like carbon nanosheet assembly with embedded hollow NiCo2O4 nanoparticles for high- performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Ling; Qiu, Huajun; Luo, Pan; Li, Wenxiang; Zhang, Huijuan; Wang, Yu

    2017-05-01

    The fabrication of closely bounded metal oxides/carbon hybrid nano-structures is significant for its use in energy-related areas especially lithium ion batteries (LIBs). In this research, a flower-like carbon sphere with hollow NiCo2O4 nanoparticles encapsulated inside the carbon thin nanopetal is fabricated by using a mixed basic carbonate nickel and cobalt sphere as the precursor and templates followed by the outer carbon membrane covering and two-step calcination process. When tested as anode material for LIBs, this flower-like carbon-based hybrid sphere demonstrates a significantly enhanced reversible capacity and cycling stability at various current densities.

  15. Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia.

    PubMed

    Miyazaki, Toshiki; Anan, Shota; Ishida, Eiichi; Kawashita, Masakazu

    2013-05-01

    Recently, organic-inorganic hybrids composed of derivatives of dextran, a polysaccharide, and magnetite nanoparticles have attracted much attention as novel thermoseeds. If they can be fabricated into microspheres of size 20-30 μm, they are expected to show not only hyperthermia effects but also embolization effects in human liver and kidney cancers. In this study, we examined the fabrication of carboxymethyldextran/magnetite microspheres using a water/oil emulsion as the reaction medium. Improvement of the chemical stability of the microcapsules by coating with silica using a sol-gel process was also investigated. The obtained hollow microspheres contained particles of size 20-30 μm. Silica coating using an appropriate catalyst for hydrolysis and polycondensation of alkoxysilanes was found to be effective for preventing dissolution and collapse in simulated body environments.

  16. Preparation and characterization of hollow magnetic composite nanoparticles for cisplatin delivery

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Chao, Ting; Lei, Zhongli

    2014-05-01

    Magnetic polymer microsphere is a kind of hybrid microsphere composed of polymer and inorganic magnetic particles. The materials have potential applications in biomedicine, catalysis, sewage treatment, etc. The objective of this paper was to develop a targeted anticancer drug delivery system based on carboxymethyl chitosan-coated Fe3O4/SiO2 hollow microspheres (HMS-CMCS) combining receptor-mediated targeting and magnetic targeting. The binding of chitosan to the surface of modified Fe3O4/SiO2 hollow microspheres could effectively prevent them from fusing with one another and undesirable payload release in regular storage or physiological environments. The synthesized HMS-CMCS microspheres could completely release the CDDP which was used as a model drug. The obtained HMS-CMCS had the hollow structure, and the walls of the HMS-CMCS had numerous micropores with a broad distribution of approximately 1 nm. The composite particles were characterized by TEM, FT-IR, and VSM. The results showed that the microspheres had an average size of 400 nm. The fabricated material is thus proposed as a biological material for drug delivery.

  17. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  18. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  19. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    PubMed Central

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-01

    Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries. PMID:28772435

  20. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g(-1) at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  1. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  2. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolyis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  3. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolyis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  4. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  5. SnO₂ nanosheet hollow spheres with improved lithium storage capabilities.

    PubMed

    Ding, Shujiang; Wen David Lou, Xiong

    2011-09-01

    In this work, we employ new chemistry to grow tin oxide nanosheets in the gel matrix of sulfonated polystyrene hollow spheres. After calcination in air, hierarchical hollow spheres assembled from SnO(2) nanosheets can be obtained. In virtue of the porous shell structure and internal voids, these SnO(2) hierarchical nanosheet hollow spheres exhibit improved lithium storage capability.

  6. Enzyme Shielding in a Large Mesoporous Hollow Silica Shell for Improved Recycling and Stability Based on CaCO3 Microtemplates and Biomimetic Silicification.

    PubMed

    Cui, Jiandong; Tan, Zhilei; Han, Peipei; Zhong, Cheng; Jia, Shiru

    2017-05-17

    We report a novel "anchor-shield" approach for synthesizing a yolk-shell-structured biocatalytic system that consists of a phenylalanine ammonia lyase (PAL) protein particle core and a hollow silica shell with large mesopores by a combination of CaCO3 microtemplates and biomimetic silicification. The method is established upon filling porous CaCO3 cores with PAL via co-precipitation, controlled self-assembly and polycondensation of silanes, cross-link of the PAL molecules, and subsequent CaCO3 dissolution. During this process, the self-assembled layer of cetyltrimethylammonium bromide served as a structure-directing agent of the mesostructure and directed the overgrowth of the mesostructured silica on the external surface of PAL/CaCO3 hybrid microspheres; after CaCO3 dissolution, the cross-linked PAL particles were encapsulated in the hollow silica shell. The hollow silica shell around the enzyme particles provided a "shield" to protect from biological, thermal, and chemical degradation for the enzyme. As a result, the recycling of the PAL enzyme was improved remarkably in comparison to adsorbed PAL on CaCO3. PAL particles with a hollow silica shell still retained 60% of their original activity after 13 cycles, whereas adsorbed PAL on CaCO3 microparticles lost activity after 7 cycles. Moreover, immobilized PAL exhibited higher stability against a proteolytic agent, denaturants, heat, and extreme pH than adsorbed PAL on CaCO3 microparticles. These results demonstrated that the "anchor-shield" approach is an efficient method to obtain a stable and recycled biocatalyst with a yolk-shell structure.

  7. Directed growth of TiO2 nanorods into microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zhao, Yaping; Liu, Huajie; Kou, Hui-Zhong; Wang, Yuqiu

    2006-10-01

    In this paper, we report a synthetic route to curved 3D microspheres assembled by TiO2 nanorods, which were built from pure 1D TiO2 nanocrystals through a solvothermal approach under controlled conditions. The method involves the reaction of titanium trichloride with urea in an n-butanol and water mixture at 150 °C assisted by a surfactant (span80). The decomposition of urea provided OH- to form 1D TiO2 nanostructures that further assembled giving rise to 3D microspheres.

  8. A Field of Hollows

    NASA Image and Video Library

    2015-04-01

    Mercury's hollows are among its most distinctive -- and unusual -- surface features. In this stunning view, we see a field of hollows in the western portion of the floor of Zeami impact basin. Hollows populate much of the rest of the basin's interior, with large concentrations several kilometers across occurring in the north and northeast parts of the floor. Individual hollows, however, can be as small as a couple of hundred meters in width. http://photojournal.jpl.nasa.gov/catalog/PIA19267

  9. Compact lanthanum hexaboride hollow cathode.

    PubMed

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.

  10. Self-assembly synthesis of hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes

    NASA Astrophysics Data System (ADS)

    Tian, Yaxi; Cui, Guijia; Liu, Yan; Li, Haizhen; Sun, Zebin; Yan, Shiqiang

    2016-11-01

    In this work, novel hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes (MgSNTs) were successfully synthesized by using magnetic mesoporous silica nanocapsules (MSNCs) as morphology templates via a hydrothermal method for the first time. MgSNTs were characterized by transmission electron microscopy, Mapping, X-ray diffraction, Fourier transform infraed spetroscopy, N2 adorption-desorption, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The synthesized MgSNTs with high specific surface area (588 m2/g), average pore width (7.13 nm) and pore volume (1.05 cm3/g) had high removal efficiency for low concentration methylene blue (70 mg/L, 299 mg/g) and high adsorption capacities for high concentration rodamine B (300 mg/L, 752 mg/g). Besides, it could be easily recovered due with the help of γ-Fe2O3 in the inner chamber. Moreover, the adsorption capacity, the influence of pH, adsorption kinetics and adsorption mechanism were also carefully and comprehensively investigated. The results indicated that magnetic magnesium silicate nanotubes (MgSNTs) using mesoporous silica nanocapsules as the assisted templates were promsing adsorbents for water purification.

  11. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  12. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  13. Compartmentalization in proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Brooke, S.; Fox, S. W.

    1977-01-01

    Proteinoid microspheres with stable internal compartments and internal structure are made from acidic proteinoid and basic proteinoid with calcium. The populations of microspheres are characterized by a wide diversity of structure. A model of primitive intracellular communication is suggested by the observed movement of internal particles between compartments of a multicompartmentalized unit. Differential response to pH change and to temperature change has been demonstrated within one population and suggests one mode of adaptive selection among primordial cell populations.

  14. Selective, controllable, and reversible aggregation of polystyrene latex microspheres via DNA hybridization.

    PubMed

    Rogers, Phillip H; Michel, Eric; Bauer, Carl A; Vanderet, Stephen; Hansen, Daniel; Roberts, Bradley K; Calvez, Antoine; Crews, Jackson B; Lau, Kwok O; Wood, Alistair; Pine, David J; Schwartz, Peter V

    2005-06-07

    The directed three-dimensional self-assembly of microstructures and nanostructures through the selective hybridization of DNA is the focus of great interest toward the fabrication of new materials. Single-stranded DNA is covalently attached to polystyrene latex microspheres. Single-stranded DNA can function as a sequence-selective Velcro by only bonding to another strand of DNA that has a complementary sequence. The attachment of the DNA increases the charge stabilization of the microspheres and allows controllable aggregation of microspheres by hybridization of complementary DNA sequences. In a mixture of microspheres derivatized with different sequences of DNA, microspheres with complementary DNA form aggregates, while microspheres with noncomplementary sequences remain suspended. The process is reversible by heating, with a characteristic "aggregate dissociation temperature" that is predictably dependent on salt concentration, and the evolution of aggregate dissociation with temperature is observed with optical microscopy.

  15. Preparation and characterization of polystyrene/Ag core-shell microspheres--a bio-inspired poly(dopamine) approach.

    PubMed

    Wang, Wencai; Jiang, Yi; Wen, Shipeng; Liu, Li; Zhang, Liqun

    2012-02-15

    A facile and versatile method using a biopolymer as a chelating agent for silver ions and as a reducing agent for the formation of catalytic sites is proposed to prepare polystyrene (PS)/Ag core-shell microspheres. More specifically, the core-shell microspheres were fabricated by electroless plating after the formation of poly(dopamine) (PDA) on the surface of PS microspheres through insitu spontaneous oxidative polymerization of dopamine. The PS-PDA microspheres were characterized by SEM, XPS, and TGA. The results showed that a uniform PDA layer was formed on the PS microsphere surface and the thickness of the PDA layer could be well controlled by varying the concentration of dopamine solution. The PDA layer was used as a chelating agent for silver ions, as a reducing agent for the formation of catalytic sites by reducing the silver ions into silver nanoparticles, and as an adhesion layer between the PS microspheres and silver layer. SEM and XRD results indicate that the diameter of the silver nanoparticles decreased with the increase in the thickness of the PDA layer. The silver nanoparticles could form a continuous and compact silver layer on the surface of the PS microspheres. Furthermore, the PS-PDA/Ag core-shell microspheres showed a good conductivity of 10S/cm and a low effective density of 1.8 g/cm(3), much lower than the corresponding values for block silver. Finally, hollow silver microspheres could be prepared by removing the PS core through calcination. SEM images showed that the hollow Ag microspheres remained unbroken and retained the spherical shape.

  16. A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose.

    PubMed

    Li, Chengchao; Liu, Yanli; Li, Limiao; Du, Zhifeng; Xu, Shoujiang; Zhang, Ming; Yin, Xiaoming; Wang, Taihong

    2008-10-19

    NiO hollow nanospheres were synthesized by controlled precipitation of metal ions with urea using carbon microspheres as templates, which were for the first time adopted to construct a novel amperometric glucose biosensor. Glucose oxidase was immobilized on the surface of hollow nanospheres through chitosan-assisted cross-linking technique. Due to the high specific active sites and high electrocatalytic activity of NiO hollow nanospheres, the constructed glucose biosensors exhibited a high sensitivity of 3.43 microA/mM. The low detection limit was estimated to be 47 microM (S/N=3), and the Michaelis-Menten constant was found to be 7.76 mM, indicating the high affinity of enzyme on NiO hollow nanospheres to glucose. These results show that the NiO hollow nanospheres are a promising material to construct enzyme biosensors.

  17. Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline

    NASA Astrophysics Data System (ADS)

    Bu, Dan; Zhuang, Huisheng

    2013-01-01

    Copper-doped titania (Cu/TiO2) hollow microspheres were fabricated using the rape pollen as biotemplates via an improved sol-gel method and a followed calcinations process. In the fabricated process, a titanium(IV)-isopropoxide-based sol directly coated onto the surface of rape pollen. Subsequently, after calcinations, rape pollen was removed by high temperature and the hollow microsphere structure was retained. The average diameter of as-obtained hollow microspheres is 15-20 μm and the thickness of shell is approximately 0.6 μm. Knowing from XRD results, the main crystal phase of microspheres is anatase, coupled with rutile. The specific surface area varied between 141.80 m2/g and 172.51 m2/g. This hollow sphere photocatalysts with high specific surface area exhibited stronger absorption ability and higher photoactivity, stimulated by visible light. The degradation process of chlortetracycline (CTC) solution had been studied. The degradated results indicate that CTC could be effective degradated by fabricated hollow spherical materials. And the intermediate products formed in the photocatalytic process had been identified.

  18. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-01-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  19. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  20. Dual-Layered Nanogel-Coated Hollow Lipid/Polypeptide Conjugate Assemblies for Potential pH-Triggered Intracellular Drug Release

    PubMed Central

    Chiang, Wen-Hsuan; Huang, Wen-Chia; Shen, Ming-Yin; Wang, Che-Hsu; Huang, Yi-Fong; Lin, Sung-Chyr; Chern, Chorng-Shyan; Chiu, Hsin-Cheng

    2014-01-01

    To achieve effective intracellular anticancer drug delivery, the polymeric vesicles supplemented with the pH-responsive outlayered gels as a delivery system of doxorubicin (DOX) were developed from self-assembly of the lipid/polypeptide adduct, distearin grafted poly(γ-glutamic acid) (poly(γ-GA)), followed by sequential deposition of chitosan and poly(γ-GA-co-γ-glutamyl oxysuccinimide)-g-monomethoxy poly(ethylene glycol) in combination with in situ covalent cross-linking on assembly surfaces. The resultant gel-caged polymeric vesicles (GCPVs) showed superior performance in regulating drug release in response to the external pH change. Under typical physiological conditions (pH 7.4 and 37°C) at which the γ-GA/DOX ionic pairings remained mostly undisturbed, the dense outlayered gels of GCPVs significantly reduced the premature leakage of the uncomplexed payload. With the environmental pH being reduced from pH 7.4 to 4.7, the drug liberation was appreciably promoted by the massive disruption of the ionic γ-GA/DOX complexes along with the significant swelling of nanogel layers upon the increased protonation of chitosan chain segments. After being internalized by HeLa cells via endocytosis, GCPVs exhibited cytotoxic effect comparable to free DOX achieved by rapidly releasing the payload in intracellular acidic endosomes and lysosomes. This strongly implies the great promise of such unique GCPVs as an intracellular drug delivery carrier for potential anticancer treatment. PMID:24651156

  1. Vacuum vapor deposition gun assembly

    DOEpatents

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  2. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    reaction, I found that Pd nanoparticles supported on mesoporous TiO2 exhibit the best catalytic performance. The demonstrated low-cost and high-productivity preparation method can be extended to other catalysts, which can contain various metals and oxide substrates and will have high potential for industrial applications. Our preparation method also provides a platform for the studies of the synergetic catalytic effects between different oxide substrates and metals. I further fabricated hollow mesoporous microspheres containing differently shaped noble metal nanocrystals. Hollow structures are strongly desired in many applications because of their high pore volumes, surface areas, and possible light-trapping effect. In my study, the hollow structures were obtained by simply dispersing polystyrene (PS) nanospheres into the precursor solution for aerosol spray. The PS spheres were removed by thermal calcination to produce hollow mesoporous microspheres. In my first study, the noble metal salts were dissolved in the precursor solutions, and the noble metal nanoparticles were obtained through thermal calcination. In this way, the size and shape of the metal nanoparticles cannot be well controlled. In my second study, I first grew noble metal nanocrystals and then incorporated them into the oxide supports. This preparation route allowed me to incorporate metal nanocrystals with controlled sizes, shapes, and compositions into the oxide matrices. The metal nanocrystals I used in this experiment included Pd nanocubes, Au nanorods, and Au core--Pd shell nanorods. These nanocrystals were functionalized with thiol-terminated methoxypoly(ethylene glycol) . The surface functionalization allowed them to adsorb on the PS spheres. After thermal calcination, the noble metal nanocrystals were left inside and adsorbed on the inner surface of the hollow mesoporous metal oxide microspheres. I investigated the catalytic activities of the Pd nanocube-embedded hollow mesoporous TiO2 and ZrO2

  3. Synthesis of biocompatible hybrid magnetic hollow spheres based on encapsulation strategy.

    PubMed

    Ha, Wei; Wu, Hao; Ma, Yuan; Fan, Min-Min; Peng, Shu-Lin; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2013-01-30

    A kind of novel magnetic hollow spheres was prepared by encapsulating magnetofluid into polymeric hollow spheres. Polymeric hollow nanospheres were constructed by self-assembly of rod-coil complexes, in which the rod-like segments were formed by inclusion of α-cyclodextrins (α-CD) and grafting poly(ethylene glycol) (PEG) chains of chitosan-graft-PEG (CS-g-PEG). Structural characteristics of CS-g-PEG/α-CD hollow spheres were investigated in detail by NMR, XRD, TEM, etc. Furthermore, those hollow spheres showed a pH responsive property which induced a considerable change of their radius. Magnetofluid was physically entrapped into the empty domain while hollow spheres were formed, it was found that the hollow spheres can encapsulate large quantities of magnetofluid and the encapsulated magnetofluid still possess magnetic responsiveness properties. We expect that this strategy may be served as a novel and more straightforward approach to obtain magnetic hollow spheres for biomedical application.

  4. Fabrication of biodegradable polyurethane microspheres by a facile and green process.

    PubMed

    Lin, Cheng-Yen; Hsu, Shan-hui

    2015-05-01

    Two different compositions of water-based biodegradable polyurethane (PU) in the form of homogeneous nanoparticles (NPs) were synthesized using biodegradable polyesters as the soft segment. The first PU (PU01) was based on poly(ε-caprolactone) (PCL) diol and the second PU (PU02) was based on 40% PCL diol and 60% polyethylene butylene adipate diol. The PU NP dispersions with different solid contents were sprayed into liquid nitrogen and resuspended in water to generate elastic microspheres (50-60 µm) with different nanoporosities. In vitro degradation analysis revealed that microspheres of PU02 (i.e., PU02 MS) degraded faster than those of PU01 (PU01 MS). Methylene blue was encapsulated during microsphere formation and the release was investigated. Microspheres made from a lower content (10%) of PU02 dispersion (i.e., PU02 MS_10) showed a greater burst release of methylene blue in 6 h, whereas those made from a higher content (30%) of PU01 dispersion (i.e., PU01 MS_30) revealed a prolonged release with a significantly lower burst release. Biocompatibility evaluation using L929 fibroblasts demonstrated that cells were attached and proliferated on microspheres after 24 h. On the other hand, microspheres may further self-assemble into films and scaffolds. Surface modification of microspheres by chitosan may modify the self-assembly behavior of microspheres. Microspheres could be stacked to form scaffolds with different macroporosities. Fibroblasts were successfully seeded and grown in the microsphere-stacked scaffolds. We concluded that the biodegradable and elastic microspheres may be facilely produced from a green and sustainable process with potential applications in drug release and three-dimensional cell culture. © 2014 Wiley Periodicals, Inc.

  5. High Performance Hollow Projectiles

    DTIC Science & Technology

    Development of hollow projectiles was first advocated to achieve ’silent’ (low pressure signal) projectiles having higher performance. Although the...present effort concentrates on small arms (specifically 7.62 mm), the confirmed fundamental theory applies to all sizes of hollow projectiles. The...report can thus serve as a basis for (1) evaluating specific hollow projectile developments and (2) formulating programs to develop a wide spectrum of

  6. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  7. Bacterial protease triggered release of biocides from microspheres with an oily core.

    PubMed

    Craig, Marina; Amiri, Mona; Holmberg, Krister

    2015-03-01

    This study deals with controlled release of drugs to a Staphylococcus aureus infected site from microspheres with an oily core and a polymeric shell. The intended use of the microspheres is for chronic wounds and the microspheres may be administered in the form of a wash liquid or incorporated in a gel. Chronic wounds often carry infection, and the use of microspheres with drug release triggered by the bacterial infection is therefore of interest. A lipophilic drug or a model of the drug was dissolved in an oil and the oil phase was dispersed into an o/w emulsion. A nanofilm shell was then assembled around the oil droplets with the layer-by-layer technique using the two biodegradable polypeptides anionic poly-L-glutamic acid (PLGA) and cationic poly-L-lysine (PLL). Since S. aureus exudes proteases such as glutamyl endopeptidase (V8) during colonization and infection, its substrate specificity was key when assembling the nanofilm. Since V8 is known to be substrate specific to the Glu-X bond, PLGA was chosen as the terminating layer of the nanofilm. Crosslinking the nanofilm after assembly lead to increased stability of the microspheres. It was shown that in a non-infectious environment, i.e. when a human wound enzyme, HNE (human neutrophile elastase), was present, the microspheres remained intact. The staphylococcal protease V8, on the other hand, readily catalyzed degradation of the microspheres, thus releasing the drug when triggered by the infectious environment.

  8. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-sensitized Solar Cells with a High Efficiency Exceeding 11%

    PubMed Central

    Li, Zhao-Qian; Chen, Wang-Chao; Guo, Fu-Ling; Mo, Li-E; Hu, Lin-Hua; Dai, Song-Yuan

    2015-01-01

    Yolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells. PMID:26384004

  9. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-sensitized Solar Cells with a High Efficiency Exceeding 11%.

    PubMed

    Li, Zhao-Qian; Chen, Wang-Chao; Guo, Fu-Ling; Mo, Li-E; Hu, Lin-Hua; Dai, Song-Yuan

    2015-09-18

    Yolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells.

  10. Mesoporous TiO2 Yolk-Shell Microspheres for Dye-sensitized Solar Cells with a High Efficiency Exceeding 11%

    NASA Astrophysics Data System (ADS)

    Li, Zhao-Qian; Chen, Wang-Chao; Guo, Fu-Ling; Mo, Li-E.; Hu, Lin-Hua; Dai, Song-Yuan

    2015-09-01

    Yolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells.

  11. Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro.

    PubMed

    Cipriano, Madalena; Freyer, Nora; Knöspel, Fanny; Oliveira, Nuno G; Barcia, Rita; Cruz, Pedro E; Cruz, Helder; Castro, Matilde; Santos, Jorge M; Zeilinger, Katrin; Miranda, Joana P

    2017-04-01

    3D cultures of human stem cell-derived hepatocyte-like cells (HLCs) have emerged as promising models for short- and long-term maintenance of hepatocyte phenotype in vitro cultures by better resembling the in vivo environment of the liver and consequently increase the translational value of the resulting data. In this study, the first stage of hepatic differentiation of human neonatal mesenchymal stem cells (hnMSCs) was performed in 2D monolayer cultures for 17 days. The second stage was performed by either maintaining cells in 2D cultures for an extra 10 days, as control, or alternatively cultured in 3D as self-assembled spheroids or in multicompartment membrane bioreactor system. All systems enabled hnMSC differentiation into HLCs as shown by positive immune staining of hepatic markers CK-18, HNF-4α, albumin, the hepatic transporters OATP-C and MRP-2 as well as drug-metabolizing enzymes like CYP1A2 and CYP3A4. Similarly, all models also displayed relevant glucose, phase I and phase II metabolism, the ability to produce albumin and to convert ammonia into urea. However, EROD activity and urea production were increased in both 3D systems. Moreover, the spheroids revealed higher bupropion conversion, whereas bioreactor showed increased albumin production and capacity to biotransform diclofenac. Additionally, diclofenac resulted in an IC50 value of 1.51 ± 0.05 and 0.98 ± 0.03 in 2D and spheroid cultures, respectively. These data suggest that the 3D models tested improved HLC maturation showing a relevant biotransformation capacity and thus provide more appropriate reliable models for mechanistic studies and more predictive systems for in vitro toxicology applications.

  12. Electrostatically Self-Assembled Nanocomposite Reactive Microspheres

    DTIC Science & Technology

    2009-01-01

    steady and range from approximately 100 to 700 m/s, depending on a variety of parameters, including the oxidizer and diluent species , * To whom...the reactivity are larger due to the aggregation of like species . Furthermore, sonica- tion is not a viable method for mixing if the production of...constant-volume equilibrium calculations were per- formed ( CHEETAH 4.0 (19) with the JCZS product library (20)) and the equilibrium temperature was

  13. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  14. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  15. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  16. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  17. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  18. Fusion microsphere targets

    SciTech Connect

    Koo, J.C.

    1980-07-28

    It was shown that a microsphere within the structure limitations is hydrodynamically stable. To insure its perfect formation, the initial chemical compositions must have a blowing capability, more important, the resultant liquid compositions must also have sufficient surface tension and low viscosity.

  19. Preparation of porous LaFeO3 microspheres and their gas-sensing property

    NASA Astrophysics Data System (ADS)

    Xiao, Hongxia; Xue, Cheng; Song, Peng; Li, Jia; Wang, Qi

    2015-05-01

    Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous microspheres composed of LaFeO3 nanoparticles were prepared by a convenient and effective method. The obtained microspheres have been structurally characterized by X-ray diffraction analysis (XRD), which confirms the single crystalline orthorhombic structure. By using scanning electron microscopy (SEM), it can be seen that porous LaFeO3 microspheres with rough surface were assembled from a large amount of interconnected nanoparticles. And transmission electron microscopy (TEM) image has also confirmed their porous feature. A subsequent plausible formation mechanism of porous LaFeO3 microspheres has been explained in accordance with the Ostwald ripening process. Moreover, gas sensing investigation showed that the sensor based on porous LaFeO3 microspheres exhibited potential applications in monitoring acetone gas due to their unique morphology and porous structure.

  20. Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Yang, Da-Peng; Zhang, Chunlei; Lin, Jing; He, Meng; Bao, Le; Cui, Daxiang

    2011-09-01

    Biocompatible Ag@BSA microspheres were successfully synthesized via one-pot reaction in aqueous phase at room temperature by using BSA as soft templates. The individual Ag microsphere is composed of nanoscale Ag assemblies and shows enhanced radiation effects on gastric cancer cells.Biocompatible Ag@BSA microspheres were successfully synthesized via one-pot reaction in aqueous phase at room temperature by using BSA as soft templates. The individual Ag microsphere is composed of nanoscale Ag assemblies and shows enhanced radiation effects on gastric cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10586h