Science.gov

Sample records for holmium silicates

  1. Gain-switched holmium-doped fibre laser.

    PubMed

    Wu, Ka S; Ottaway, David; Munch, Jesper; Lancaster, David G; Bennetts, Shayne; Jackson, Stuart D

    2009-11-09

    We demonstrate the first gain-switched, singly doped, single-mode holmium-doped silicate glass fibre laser that operates at 2.106 microm. Using a gain-switched 1.909-microm thulium-doped fibre laser as the pump source, output pulses of energy 3.2 microJ and pulse duration of 150 ns were generated at 80 kHz and slope efficiency of 44%. Pulse stacking within the holmium-doped fibre laser resulted in significantly shorter 70 ns pulses.

  2. Metals fact sheet: Holmium/thulium

    SciTech Connect

    1996-02-01

    This article discusses the geology, exploitation, market, and applications of holmium and thulium. Holmium and thulium are important part in the development of specific laser technologies, x-ray film and high-temperature superconductors.

  3. Holmium laser applications of the prostate.

    PubMed

    Lerner, Lori B; Tyson, Mark D

    2009-11-01

    The high-powered holmium laser is an excellent tool for the surgical treatment of benign prostatic hyperplasia. This article discusses the background of holmium use in the prostate and describes the surgical techniques of holmium laser ablation of the prostate and holmium laser enucleation of the prostate. Operative challenges are reviewed with suggestions as to how to avoid these problems or deal with them when they arise. Surgical outcomes and a thorough literature review are both presented.

  4. Early complications with the holmium laser

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Stewart, Steven C.; Ruckle, Herbert C.; Poon, Michael W.

    1997-05-01

    The purpose of this study is to report early complications in our initial experience with the holmium laser in 133 patients. A retrospective study of patients undergoing endourological procedures with the holmium laser was performed. Complications included urinary tract infection (3), post-operative bradycardia (1), inverted T-waves (1), intractable flank pain (1), urinary retention (1), inability to access a lower pole calyx with a 365 micron fiber (9), stone migration (5), termination of procedure due to poor visualization (2). No ureteral perforations or strictures occurred. The holmium laser was capable of fragmenting all urinary calculi in this study. In our initial experience, the holmium laser is safe and effective in the treatment of genitourinary pathology. Use of laser fibers larger than 200 microns occasionally limit deflection into a lower pole or dependent calyx.

  5. Holmium:YAG surgical lasers.

    PubMed

    1995-03-01

    "Holmium:YAG (Ho:YAG)" is the shorthand name for a family of solid-state lasers that use the doping element holmium in a laser crystal (e.g., YAG [yttrium-aluminum-garnet]) and that emit energy at approximately 2.1 microns. This wavelength is relatively new to medicine and has been used in laser surgery for only about the last six years. Like the carbon dioxide (CO2) laser when it was first used clinically, the Ho:YAG laser is poised for rapid and wide-spread use. Ho:YAG lasers, like CO2 lasers, offer precise cutting with minimal damage to adjacent tissue; however, unlike CO2 lasers, they also offer fiberoptic delivery (which is ideal for endoscopic use) and the ability to treat tissue in a liquid-filled environment (e.g., saline, blood). The initial specialty for which the Ho:YAG laser was used was arthroscopic surgery, especially diskectomy. Today, it is effectively used in many surgical specialties, including general surgery, urology, laparoscopy, neurosurgery, lithotripsy, angioplasty, orthopedic surgery (which includes procedures such as meniscectomy, bone sculpting [may also be performed in plastic surgery], and some experimental surgery, such as cartilage shrinking to tighten loose joints), and dentistry. Because of its broad range of potential applications, it has been called the "Swiss Army Knife" of lasers. High-powered Ho:YAG lasers, which enable surgeons to work more quickly and cut more smoothly, have been made available only within the last three years (units offering > 20 W) to 18 months (units offering > 60 W). Because of this rapid increase, high-powered units are still relatively expensive, and it is not yet clear whether maximum power outputs will continue to increase or whether the cost of higher-power units will begin to come down. Although low-power and high-power Ho:YAG lasers can be used for the same procedures, their different ranges of possible clinical techniques make them better suited to different applications: low-power units are

  6. Urological applications of the holmium laser

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Poon, Michael W.; Ruckle, Herbert C.; Stewart, Steven C.; Weil, Dane

    1998-07-01

    While the role of endoscopy was initially diagnostic, the advent of improved endoscopes and working instruments have increased its therapeutic applications. One of the most recent advances is the holmium laser. It has a broad range of urological applications due to its ability to fragment all urinary calculi and its soft tissue effects. This laser is based on laser energy delivered in a pulsatile fashion at 2100 nm. The purpose of this study is to report our experience with the holmium laser. A retrospective study of patients undergoing endourological procedures with the holmium laser was performed. One hundred and forty patients underwent 157 procedures. The holmium laser was used for the treatment of urinary calculi in 122 patients. Stone location included 61 renal, 64 ureteral, and 17 bladder stones. Renal stone burden was 17 mm (range 3-50), ureteral stone size averaged 10 mm (range 3 - 35), and mean bladder stone size was 31 mm (range 10 - 60). Other uses included treatment of transitional cell carcinoma of the renal pelvis, ureter, and bladder, incision of ureteral strictures, ureterocele, and prostate, and ablation of renal hemangiomas. Intraoperative and post operative complications were noted. Follow-up for calculi consisted of a plain film of the abdomen at one week and an ultrasound or intravenous pyelogram at six to eight weeks post procedure. No ureteral perforations or strictures occurred. The Holmium laser was capable of fragmenting all urinary calculi in this study. No complications were directly attributable to the Holmium laser. In our initial experience, the Holmium laser is safe and effective in the treatment of urinary pathology. It is the most effective lithotrite available and is able to incise and coagulate soft tissue as well. This combination allows the urologist to treat a variety of urinary pathology using a single modality. Its main limitation is the ability to access lower pole lesions in the upper urinary tract due to the fiber

  7. Use of the holmium:YAG laser in coronary disease

    NASA Astrophysics Data System (ADS)

    Heuser, Richard R.

    1992-08-01

    The holmium:YAG laser, a new solid-state, infrared laser system, is being used increasingly more often for treating peripheral vascular disease. We discuss the early use of this device in coronary laser angioplasty. The holmium:YAG laser has several advantages over excimer systems and may prove to be an effective adjunctive to coronary balloon angioplasty.

  8. Semiconductor disk laser-pumped subpicosecond holmium fibre laser

    SciTech Connect

    Chamorovskiy, A Yu; Marakulin, A V; Leinonen, T; Kurkov, Andrei S; Okhotnikov, Oleg G

    2012-01-31

    The first passively mode-locked holmium fibre laser has been demonstrated, with a semiconductor saturable absorber mirror (SESAM) as a mode locker. Semiconductor disk lasers have been used for the first time to pump holmium fibre lasers. We obtained 830-fs pulses at a repetition rate of 34 MHz with an average output power of 6.6 mW.

  9. Fluoride and Oxide Holmium Doped Lasers

    NASA Astrophysics Data System (ADS)

    Kalisky, Yehoshua

    1989-12-01

    Laser holmium belongs to a family of rare earth doped ions emitting in the near or mid-IR spectral range. Its 2.1 μm laser emission has potential applications in many fields as will be discussed below. In this review we will concentrate on the following topics: A. General characteristics of Ho3+ laser and hosts. B. Significant milestones in holmium laser development. C. Mechanism of basic processes. D. Engineering considerations E. Applications F. Trends and future. A. General Characteristics The main characteristics of holmium laser are as follows: 1-A. Its emission wavelength originates from the 517-->518 transition (≍2.1 μm) 2-A. The main laser hosts used are: oxide crystals such as YAG (Y3Al5O12), YAlO3 or fluorides such as YLF (YLiF4) or HoBaYb28. 3-A. Energy sensitizers such as Cr3+, Tm3+, Er3+ are used in order to increase the laser efficiency and to better utilize the lamp emission spectrum. 4-A. Holmium laser needs liquid nitrogen cooling for efficient operation. At ambient temperature it behaves as a quasi three-level system with high lasing threshold and low slope efficiency. 5-A. The laser can be operated both in CW or pulsed modes. 6-A. It has high gain cross section and a long lifetime of 5I7 level which results in an efficient Q-switched operation. 7-A. Applications: Medical Free space communication Eye-safe range finders or Target illuminators Remote sensing Tunable operational amplifier The most popular hosts for holmium laser are the aPHo:YAG (erbium-thulium-sensitized Ho:YAG) and aPHo:YLF. Tables 1 and 2 summarize the mechanical and optical properties of YLF, YAG and GSGG (gadolinium scandium galium garnet), respectively. The mechanical and thermal properties of YAG are better than those of GSGG and superior relative to YLF - see Table 1. From Table 2 it is inferred that YLF has a negative derivative of its refraction index with temperature, implying that YLF may show a lower thermal lensing effect than YAG in spite of its lower thermal

  10. Holmium fibre laser with record quantum efficiency

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Tsvetkov, V B; Marakulin, A V; Minashina, L A; Medvedkov, O I; Kosolapov, A F

    2011-06-30

    We report holmium-doped fibre lasers with a Ho{sup 3+} concentration of 1.6 x 10{sup 19} cm{sup -3} and lasing wavelengths of 2.02, 2.05, 2.07 and 2.1 {mu}m at a pump wavelength of 1.15 {mu}m. The slope efficiency of the lasers has been measured. The maximum efficiency, 0.455, has been obtained at a lasing wavelength of 2.05 {mu}m. The laser efficiency is influenced by both the optical loss in the wing of a vibrational absorption band of silica and active-ion clustering. (lasers)

  11. A cladding-pumped, tunable holmium doped fiber laser.

    PubMed

    Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian

    2013-11-18

    We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.

  12. Perspectives of holmium laser resection of the prostate: cutting effects with the holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Eichenauer, Rolf H.; Droege, Gerit; Brinkmann, Ralf; Neuss, Malte; Gafumbegete, Evariste; Jocham, Dieter

    1998-07-01

    Laser prostatectomy shows an improvement in peak urinary flow rates, in post-void residual urine volumes and also a symptomatic improvement when compared to the transurethral resection of the prostate (TUR-P). Time to achieve symptomatic improvement is delayed with many established laser procedures compared to standard resection. However, this disadvantage can be solved with a new resection technique using a pulsed holmium laser. Nevertheless, this advanced technique shows a few problems in a first clinical trial. Besides this clinical study, in vitro experiments were carried out in order to determine the optimal irradiation parameters with respect to resection rate, incision/ablation quality and handling. Prostate tissue of radical prostatectomies and chicken breast as model were irradiated with a pulsed holmium-laser in vitro with different laser parameters using a bare fiber in contact to tissue. The incision quality (depths and coagulation/vaporization effects) was analyzed with regard to pulse energy (speed of incision, angle of incision) and fiber diameter. Fast flash photography was performed to analyze thermo-mechanical side-effects. Fast flash photography reveals cavitation bubble up to 7 mm length in water and dissections in tissue. The ablation rate increases proportional to the laser pulse energy. The Holmium Laser Resection of the Prostate (HOLRP) in humans with available instrumentation right now shows equieffective results compared to the transurethral resection, no need for transfusion, no transurethral resection syndrome, short time for catheterization. Further technical approvement may significantly improve holmium laser prostate resection. We present a new application system for the laser resection.

  13. Picosecond holmium fibre laser pumped at 1125 \\ {\\text{nm}}

    NASA Astrophysics Data System (ADS)

    Kamynin, V. A.; Filatova, S. A.; Zhluktova, I. V.; Tsvetkov, V. B.

    2016-12-01

    We report a passively mode-locked, all-fibre holmium laser based on nonlinear polarisation rotation. As a pump source use is made of an 1125-{\\text{nm}} ytterbium-doped fibre laser. The pulse repetition rate of the holmium laser is 7.5 {\\text{MHz}}, and the pulse duration does not exceed 52 {\\text{ps}} at wavelengths of 2065 and 2080 {\\text{nm}}. The average laser output power reaches 5 {\\text{mW}}.

  14. Clinical research of holmium laser therapy in extramammary Paget's disease.

    PubMed

    Ziyao, Li; Deyong, Yang; Xiangyu, Che; Huafeng, Zong; Hafeez, Adnan; Jianbo, Wang; Xishuang, Song

    2014-11-01

    This study aims to investigate the safety and efficiency of the holmium laser therapy in extramammary Paget's disease. The clinical data of 61 patients was collected since 2002 to 2012, confirmed as non-subcutaneous invasive extramammary Paget's disease by biopsy and underwent surgery. All patients were divided into two groups. Group A included 30 patients who underwent the holmium laser therapy. Group B included 31 patients who underwent the traditional surgical therapy. The clinical data of all patients included preoperative, intraoperative, and postoperative management and follow-up records. Compared with the traditional operation group, the holmium laser group had a shorter operation time and was easier to perform. There were no significant differences between the two groups in cases of intraoperative and postoperative complications, the recurrence-free survival, and the disease-specific survival. But the holmium laser group had a longer recovery time than the traditional operation group in large and deep nidus. Multiple-factor analysis of prognostic parameters of 61 patients confirmed that any of these two methods chosen was not a prognostic parameter for recurrence-free survival. The holmium laser therapy might prove to be a preferable alternative to the traditional operative therapy of extramammary Paget's disease. However, the holmium laser therapy did not demonstrate to have an obvious advantage over traditional operative therapy in the recurrence-free survival and the disease-specific survival.

  15. Magnetodielectric coupling in multiferroic holmium iron garnets

    NASA Astrophysics Data System (ADS)

    Malar Selvi, M.; Chakraborty, Deepannita; Venkateswaran, C.

    2017-02-01

    Single phase magneto-electric multiferroics require a large magnetic or electric field for producing magneto-electric (ME) and magnetodielectric (MD) effects. For utilizing these effects in devices investigations on the room temperature and low field MD studies are necessary. Recently, efforts have been largely devoted to the investigation of rare earth iron garnets. In the physical method, the preparation of rare earth iron garnet requires high sintering temperature and processing time. To solve these problems, ball milling assisted microwave sintering technique is used to prepare nanocrystalline holmium iron garnets (Ho3Fe5O12). Magnetic and dielectric properties of the prepared sample are investigated. These properties get enhanced in nanocrystalline form when compared to the bulk. The MD coupling of the prepared sample is evident from the anomaly in the temperature dependent dielectric constant plot and the ME coupling susceptibility is derived from the room temperature MD measurements.

  16. Use of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Mattioli, Stefano

    1997-12-01

    The Holmium-YAG is a versatile laser with multiple soft- tissue applications including tissue incision and vaporization, and pulsed-laser applications such as lithotripsy. At 2140 nanometers, the wavelength is highly absorbed by tissue water. Further, like CO2 laser, the Holmium produces immediate tissue vaporization while minimizing deep thermal damage to surrounding tissues. It is an excellent instrument for endopyelotomy, internal urethrotomy, bladder neck incisions and it can be used to resect the prostate. The Holmium creates an acute TUR defect which gives immediate results like the TURP. More than 50 patients were treated from Jan. 1996 to Jan. 1997 for obstructive symptoms due to benign prostatic hyperplasia, bladder neck stricture, urethral stenosis, and superficial bladder tumors.

  17. In-vivo holmium laser angioplasty

    NASA Astrophysics Data System (ADS)

    Haase, Karl K.; Hassenstein, Stefan; Hanke, Hartmut; Hanke, Sybille; Oberhoff, Martin; Karsch, Karl R.

    1992-08-01

    Holmium laser angioplasty was performed in the atheromatous carotid artery of 10 rabbits to evaluate this mid-infrared laser as an alternative energy source for angioplasty. An additional 10 rabbits served as a control group. The laser emitted light at a wavelength of 2120 nm with pulse durations of 150 microsecond(s) . The energy density was 17.5 J/cm2. Cross sections were analyzed in regard to laser specific injury 7 and 14 days following laser irradiation. Staining of (alpha) -actin was used to identify smooth muscle cells (SMC), and bromodesoxyuridine labeling was carried out to determine the extent of proliferating cells. Integrity of the lamina elastica interna fibers was disrupted in 6 of 10 animals. In all animals, loss of medial SMCs was observed 7 and 14 days after treatment. Quantification of SMCs undergoing DNA synthesis in the intima and media showed a significant increase of labelled cells following laser irradiation. This proliferative response resulted in a significant increase of intimal thickening after laser ablation.

  18. Gain and energy storage in holmium YLF

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Deyst, John P.

    1991-01-01

    It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.

  19. Holmium:YAG laser stapedotomy: preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Stubig, Ingrid M.; Reder, Paul A.; Facer, G. W.; Rylander, Henry G.; Welch, Ashley J.

    1993-07-01

    This study investigated the use of a pulsed Holmium:YAG ((lambda) equals 2.09 micrometers ) laser- fiber microsurgical system for laser stapedotomy. This system ablates human stapes bones effectively with minimal thermal damage. The study was designed to determine the effectiveness of the Ho:YAG laser (Schwartz Electro Optics, Inc., Orlando, FL) for stapedotomy and to evaluate temperature changes within the cochlea during the ablation process. Human cadaveric temporal bones were obtained and the stapes portion of the ossicular chain was removed. A 200 micrometers diameter low OH quartz fiber was used to irradiate these stapes bones in an air environment. The laser was pulsed at 2 Hz, 250 microsecond(s) ec pulse width and an irradiance range of 100 - 240 J/cm2 was used to ablate holes in the stapes footplate. The resultant stapedotomies created had smooth 300 micrometers diameter holes with a minimum of circumferential charring. Animal studies in-vivo were carried out in chinchillas to determine the caloric spread within the cochlea. A 0.075 mm Type T thermocouple was placed in the round window. Average temperature change during irradiation of the stapes footplate recorded in the round window was 3.6 degree(s)C. The data suggest that stapedotomy using the Ho:YAG laser can result in a controlled ablation of the stapes footplate with minimal thermal damage to the surrounding stapes. Optical coupling using fiberoptic silica fibers is an ideal method for delivering laser energy to the stapes during stapedotomy.

  20. Holmium:YAG laser coronary angioplasty in acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Topaz, On; Luxenberg, Michael; Schumacher, Audrey

    1994-07-01

    Patients who sustain complicated acute myocardial infarction in whom thrombolytic agents either fail or are contraindicated often need mechanical revascularization other than PTCA. In 24 patients with acute infarction complicated by continuous chest pain and ischemia who either received lytics or with contraindication to lytics, a holmium:YAG laser (Eclipse Surgical Technologies, Palo Alto, CA) was utilized for thrombolysis and plaque ablation. Clinical success was achieved in 23/24 patients, with 23 patients (94%) surviving the acute infarction. Holmium:YAG laser is very effective and safe in thrombolysis and revascularization in this complicated clinical setting.

  1. Spectral performance of monolithic holmium and thulium lasers

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.

    1991-01-01

    Fabry-Perot resonators have been used to demonstrate single-mode lasing of holmium and neodymium YAG. The previous demonstration in the holmium laser required TE cooling the crystal to -15 C in order to achieve threshold. The present study extends that result, demonstrating +25 C operation in a 1-mm thick plano/plano resonator. The experimental configuration of lasing both the holmium and thulium lasers used a 500-mW diode laser which was collimated, circularized, and focused into a beam radius of 60 microns. The single-frequency lasing spectrum of the holmium laser is shown. By adjusting the mirror reflectivity, the ability to control the laser's wavelength is demonstrated. This laser operated with 11 mW of optical power, a 57-percent slope efficiency, and 120-mW threshold vs absorbed diode power laser for the 60-micron beam radius. The thulium laser operated very efficiently at room temperature, but on seven longitudinal modes. The Tm:TAG laser exhibits typical characteristics of spatial hole burning not seen in the Ho:Tm:YAG for flat/flat resonators.

  2. Discovery of dysprosium, holmium, erbium, thulium, and ytterbium isotopes

    SciTech Connect

    Fry, C.; Thoennessen, M.

    2013-09-15

    Currently, thirty-one dysprosium, thirty-two holmium, thirty-two erbium, thirty-three thulium, and thirty-one ytterbium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  3. Hemangioma of the prostatic urethra: holmium laser treatment.

    PubMed

    de León, Javier Ponce; Arce, Jacobo; Gausa, Luís; Villavicencio, Humberto

    2008-01-01

    Urethral hemangiomas are benign vascular tumors that are found in perimontanal prostatic localization and less frequently in the urethra. Although different urethral procedures have been postulated for its treatment, the best results are achieved using lasers. A patient who underwent endoscopic holmium laser treatment for such hemangiomas is presented. Total disappearance of the lesions without any complications was achieved.

  4. GaSe Parametric Oscillator Pumped by Powerful Holmium Laser Near 3 Microns

    DTIC Science & Technology

    2007-11-02

    GaSe Parametric Oscillator Pumped by Powerful Holmium Laser near 3 Microns EOARD OPO Contract F61775-99...COVERED (FROM - TO) xx-xx-2001 to xx-xx-2001 4. TITLE AND SUBTITLE GaSe Parametric Oscillator Pumped by Powerful Holmium Laser near 3 Microns Unclassified... holmium laser near 3 microns with a goal of achieving an output energy from the OPO near the degenerate wavelength of 10 to 20mJ per pulse. 15. SUBJECT

  5. Radioisotope synoviorthesis with Holmium-166-chitosan complex in haemophilic arthropathy.

    PubMed

    Cho, Y J; Kim, K I; Chun, Y S; Rhyu, K H; Kwon, B K; Kim, D Y; Yoo, M C

    2010-07-01

    Radiosynoviorthesis is a safe and easy method for synovectomy in haemophilic arthropathy. Various agents have been used in radiosynoviorthesis, especially newly developed agent Holmium-166-chitosan complex has good clinical outcome. This study analysed clinical results and radiologic evaluation of radioisotope synoviorthesis using Holmium-166-chitosan complex in haemophilic arthropathy. From March 2001 to December 2003, 58 radiosynoviorthesis were performed in 53 haemophiliacs. The average age at procedure was 13.8 years. The Arnold and Hilgartner stage of the patients was from I to IV. Holmium-166-chitosan complex was injected in 31 ankle joints, 19 elbow joints and 8 knee joints. Average follow-up was 33 months since primary procedure. The range of motion of each joint, frequency of intra-articular bleeding and factor dose used were analysed for clinical assessment. There was no significant improvement of range of motion in affected joints. After procedure, the average frequency of bleeding of the elbow joint has decreased from 3.76 to 0.47 times per month, the knee joint from 5.87 to 1.12 times per month, and the ankle joint from 3.62 to 0.73 times per month respectively (P < 0.05). After treatment, the average coagulation factor dose injected was significantly decreased to 779.3 units per month from 2814.8 units per month before treatment (P < 0.001). Radioisotope synoviorthesis with Holmium-166-chitosan complex in haemophilic arthropathy is a very safe and simple procedure with the expectation of a satisfactory outcome without serious complication. It has excellent bleeding control effect on target joint and the need for substitution of coagulation factor concentrate can be reduced.

  6. Hard and fragile holmium-based bulk metallic glasses

    SciTech Connect

    Luo, Q.; Zhao, D.Q.; Pan, M.X.; Wang, R.J.; Wang, W.H.

    2006-05-01

    A family of holmium-based bulk metallic glasses (BMGs) with high glass-forming ability is obtained. The Ho-based BMGs exhibit much larger elastic moduli and high thermal stability in contrast to other known rare-earth (RE)-based BMGs. In particular, the BMGs show a large value of fragility. It is expected that the hard RE-based glasses with high glass-forming ability and fragile behaviors make them the appropriate candidate for glass transition study.

  7. Evolution of the use of the holmium laser for the treatment of benign prostatic hyperplasia

    NASA Astrophysics Data System (ADS)

    Gilling, Peter J.; Cass, Carol B.; Cresswell, Michael D.; Kennett, Katie M.; Mackey, Michael; Fraundorfer, Mark R.; Kabalin, John N.

    1997-05-01

    The holmium laser is becoming an important tool in the urologists' armamentarium. In this manuscript the evolution of laser resection of the prostate using the holmium wavelength is described. This technique represents a significant advance in the surgical management of benign prostatic hyperplasia and allows even very large prostates to be safely and efficiently managed transurethrally.

  8. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    2012-05-01

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  9. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  10. Intracorporeal lithotripsy with the holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.; Razvi, Hassan A.; Chun, Samuel S.; Sales, Jack L.

    1995-05-01

    A variety of devices are currently available for intracorporeal stone fragmentation. Recently a new wavelength of laser, the Holmium:YAG, has demonstrated a variety of potential urologic applications including ablation of soft tissue lesions as well as stone fragmentation. This laser has a wavelength of 2100 nm and operates in a pulsed mode. Energy is delivered through a 400 um quartz end-firing fiber. In this presentation we review our clinical experience with the Holmium:YAG laser for the treatment of renal and ureteral calculi. Over a 23 month period, 63 patients underwent 67 procedures. Seven procedures consisted of percutaneous nephrolithotripsy for large or staghorn renal calculi. Sixty procedures were performed for ureteral stones. Procedures for proximal ureteral stones (6) employed a retrograde approach using flexible ureteroscopes (8.5 or 9.8). Stones in the mid ureter (12) and distal ureter (42) were approached transurethrally using a 6.9 rigid ureteroscope. Complete stone fragmentation without the need for additional procedures was achieved in 82% of cases. Treatment failures included 1 stone migration into the renal pelvis during laser activation, 6 patients who had incomplete fragmentation and 3 patients in which laser malfunction precluded complete fragmentation. Stone analysis available in 23 patients revealed calcium oxalate monohydrate (15), calcium oxalate dihydrate (2), cystine (2), uric acid (3) and calcium phosphate (1). A single complication of ureteral perforation occurred when the laser was fired without direct visual guidance. Radiographic follow-up at an average of 16 weeks is available in 22 patients and has identified 2 patients with ureteral strictures that are not believed to be related to laser lithotripsy. In summary, we have found the Holmium:YAG laser to be a reliable and versatile device for intracorporeal lithotripsy. Its safety and efficacy make it a suitable alternative for performing intracorporeal lithotripsy of urinary

  11. Drug metabolism: Comparison of biodistribution profile of holmium in three different compositions in healthy Wistar rats.

    PubMed

    Cerqueira-Coutinho, Cristal; Vidal, Lluis Pascual; Pinto, Suyene Rocha; Santos-Oliveira, Ralph

    2016-06-01

    Radioisotope holmium is a candidate to be used in cancer treatment and diagnosis. There are different holmium salts and they present distinct solubility and consequently different biodistribution profiles. In this work, we aimed to evaluate the biodistribution profiles of two holmium salts (chloride and sulfate) and holmium nanoparticles (oxide) through an in vivo biodistribution assay using animal model. Samples were labeled with technetium-99m and administered in Wistar rats by retro-orbital route. Holmium chloride is highly soluble in water and it was quickly filtered by the kidneys while holmium sulfate that presents lower solubility in water was mainly found in the liver and the spleen. However, both the salts showed a similar biodistribution profile. On the other hand, holmium oxide showed a very different biodistribution profile since it seemed to interact with all organs. Due to its particle size range (approximately 100nm) it was not intensively filtered by the kidneys being found in high quantities in many organs, for this reason its use as a nanoradiopharmaceutical could be promising in the oncology field.

  12. The studies on the aromaticity of fullerenes and their holmium endohedral compounds.

    PubMed

    Tan, Bisheng; Peng, Rufang; Li, Hongbo; Wang, Bing; Jin, Bo; Chu, Shijin; Long, Xinping

    2011-02-01

    Density functional theory BLYP/DNP was employed to optimize a series of fullerenes and their holmium endohedral compounds, including C(20), Ho@C(20), Ho(3+)@C(20), C(60), Ho@C(60), Ho(3+)@C(60),C(70), Ho@C(70), Ho(3+)@C(70) C(78), Ho@C(78), Ho(3+)@C(78), C(82),Ho@C(82) and Ho(3+)@C(82). DFT semi core pseudospot approximation was taken into consideration in the calculations of the element holmium because of its particular electronic structure. Fullerenes and their holmium endohedral compounds' aromaticity were studied in terms of structural criteria, energetic criteria, and reactivity criteria. The results indicate that the aromaticity of fullerenes was reduced when a holmium atom was introduced into the carbon cage, and the endohedral fullerenes' reactive activity enhance; but the aromaticity of the carbon cage increased when a Ho(3+) cation was encapsulated into a fullerene. Calculations of aromaticity and stability indicate that two paths can lead to the similar aim of preparing holmium endohedral fullerenes; that is, they can form from either a holmium atom or a holmium cation (Ho(3+)) reacting with fullerenes, respectively, and the latter is more favorable.

  13. Magnetoelastic nature of the dodecagonal anisotropy in holmium metal.

    PubMed

    Benito, L; Ciria, M; Fraile, A; Fort, D; Abell, J S; Arnaudas, J I

    2007-06-29

    We have investigated the magnetoelastic nature of the dodecagonal anisotropy in the magnetic anisotropy energy (MAE) in the basal plane of the hcp crystalline structure in holmium single crystal. We have proved that the origin of the second harmonic of the hexagonal symmetry in MAE clearly lies on a sixth-order magnetoelastic coupling term. The appearance of a 12-fold anisotropy in MAE in a single crystal having hexagonal symmetry provides a new insight on how the magnetic anisotropy can be modified in a magnetic material with giant spin-lattice coupling.

  14. Treatment of pulmonary diseases with Holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Mei-Jue; Zhu, Jing; Zhang, Hui-Guo; Wang, Fu-Juan; Ke, Lin; Ma, Wei; Luo, Qun-Hua; Zhang, Yue-E.

    1998-11-01

    We report 5 cases of pulmonary disease treated with Holmium:YAG laser through fibrous bronchoscope. 1 inflammatory granuloma was cured after three times of treatment. Compared with conventional methods such as electrocautery and microwave treatment, laser has the merit of good hemostasis effect and quick recovery of the operation area. The other 4 patients who were suffered late lung cancer received 3-7 times of palliative treatment. After the treatment, the tumor tissues become smaller variably, and tact were unobstructed, symptoms of tract- obstructed obviously alleviated. We think that laser treatment has some practical significance in alleviating tract blocking of pulmonary diseases of late stage, and therefore raise the life quality.

  15. Holmium Nitrate Complexation with Tri-n-butyl Phosphate in Supercritical Carbon Dioxide

    SciTech Connect

    Robert V. Fox; R. Duane Ball; Peter de B. Harrington; Harry W. Rollins; Chien M. Wai

    2005-12-01

    Holmium nitrate pentahydrate was reacted with tri-n-butyl phosphate in supercritical carbon dioxide at 308 K. The products of the complexation reaction were measured under supercritical fluid conditions using UV-vis spectroscopy. The solubility of the metal complexes in the supercritical fluid phase was measured. The mole-ratio titration method was used to determine the stoichiometry of the soluble complexes. Conditional extraction coefficients were calculated from spectral data using least-squares regression and hard-equilibria models. Data indicate that the holmium nitrate-tributyl phosphate system forms 1:2 and 1:4 holmium-tributyl phosphate complexes.

  16. Effect of the active-ion concentration on the lasing dynamics of holmium fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A

    2010-12-09

    The lasing dynamics of fibre lasers with a core based on quartz glass doped with holmium ions to concentrations in the range of 10{sup 19}-10{sup 20} cm{sup -3} is investigated. It is shown that fibre lasers with a high concentration of active holmium ions generate pulses, but a decrease in the holmium concentration changes the lasing from pulsed to cw regime. At the same time, a decrease in the active-ion concentration and the corresponding increase in the fibre length in the cavity reduce the lasing efficiency. (lasers)

  17. Effect of active-ion concentration on holmium fibre laser efficiency

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A

    2010-08-03

    We have measured the fraction of holmium ions that relax nonradiatively to the ground level as a result of interaction at a metastable level in optical fibres with a silica-based core doped with holmium ions to 2 x 10{sup 19} - 2 x 10{sup 20} cm{sup -3}. The percentage of such ions has been shown to depend on the absolute active-ion concentration. The fibres have been used to make a number of 2.05-{mu}m lasers, and their slope efficiency has been measured. The laser efficiency decreases with increasing holmium concentration in the fibres (lasers)

  18. Characterization of holmium loaded alginate microspheres for multimodality imaging and therapeutic applications.

    PubMed

    Zielhuis, S W; Seppenwoolde, J H; Bakker, C J G; Jahnz, U; Zonnenberg, B A; van het Schip, A D; Hennink, W E; Nijsen, J F W

    2007-09-15

    In this paper the preparation and characterization of holmium-loaded alginate microspheres is described. The rapid development of medical imaging techniques offers new opportunities for the visualisation of (drug-loaded) microparticles. Therefore, suitable imaging agents have to be incorporated into these particles. For this reason, the element holmium was used in this study in order to utilize its unique imaging characteristics. The paramagnetic behaviour of this element allows visualisation with MRI and holmium can also be neutron-activated resulting in the emission of gamma-radiation, allowing visualisation with gamma cameras, and beta-radiation, suitable for therapeutic applications. Almost monodisperse alginate microspheres were obtained by JetCutter technology where alginate droplets of a uniform size were hardened in an aqueous holmium chloride solution. Ho(3+) binds via electrostatic interactions to the carboxylate groups of the alginate polymer and as a result alginate microspheres loaded with holmium were obtained. The microspheres had a mean size of 159 microm and a holmium loading of 1.3 +/- 0.1% (w/w) (corresponding with a holmium content based on dry alginate of 18.3 +/- 0.3% (w/w)). The binding capacity of the alginate polymer for Ho(3+) (expressed in molar amounts) is equal to that for Ca(2+), which is commonly used for the hardening of alginate. This indicates that Ho(3+) has the same binding affinity as Ca(2+). In line herewith, dynamic mechanical analyses demonstrated that alginate gels hardened with Ca(2+) or Ho(3+) had similar viscoelastic properties. The MRI relaxation properties of the microspheres were determined by a MRI phantom experiment, demonstrating a strong R(2)* effect of the particles. Alginate microspheres could also be labelled with radioactive holmium by adding holmium-166 to alginate microspheres, previously hardened with calcium (labelling efficiency 96%). The labelled microspheres had a high radiochemical stability (94% after

  19. Outpatient Transurethral Cystolithotripsy of Large Bladder Stones by Holmium Laser

    PubMed Central

    Karami, Hosein; Razaghi, Mohammad Reza; Javanmard, Babak; Yaghoob, Mohammad; Hasanzadeh Hadad, Amin; Amani, Maryam; Golmohammadi Taklimi, Amin

    2016-01-01

    Introduction: To assessment of the efficacy and safety of transurethral cystolithotripsy of large bladder stones by holmium laser in the outpatient setting. Methods: In a prospective study, 48 consecutive adult patients with large bladder stones, were enrolled for transurethral cystolithotripsy. Patients older than 18 years, with bladder stones larger than 2 cm were enrolled. Urethral stricture, active urinary infection, and any anesthetic contraindications for operation, were the exclusion criteria. Demographic characteristics of patients, outcomes and complications related to operation and post operation period, were recorded. Results: Patients mean age was 46 ± 7.3 years. Male to female ratio was 45/3. Mean body mass index of patients was 28.5 ± 3.5. Mean stone size was 3.7 ± 1.6 cm. Mean operation time was 43.5 ± 15.5 minutes. Nearly complete stone clearance (98.5%) was achieved in all patients. Mean hospital stay was 6.5 ± 1.3 hours. No major complications were seen. Mean visual analog pain score (VAS) was 4.2 ± 2.1 and 1.4 ± 0.6, during and 1 hour after operation, respectively. During follow up of 22.4 ± 12.5 months, recurrence of bladder stone was not seen. No case of urethral stricture was detected. Conclusion: Transurethral holmium laser lithotripsy is an effective and safe alternative in selected patients with large bladder stones. This procedure can be easily performed in the outpatient setting. PMID:27330691

  20. Dynamics of pulsed holmium:YAG laser photocoagulation of albumen

    NASA Astrophysics Data System (ADS)

    Pfefer, T. Joshua; Foong Chan, Kin; Hammer, Daniel X.; Welch, A. J.

    2000-05-01

    The pulsed holmium:YAG laser (λ = 2.12 µm, τp = 250 µs) has been investigated as a method for inducing localized coagulation for medical procedures, yet the dynamics of this process are not well understood. In this study, photocoagulation of albumen (egg white) was analysed experimentally and results compared with optical-thermal simulations to investigate a rate process approach to thermal damage and the role of heat conduction and dynamic changes in absorption. The coagulation threshold was determined using probit analysis, and coagulum dynamics were documented with fast flash photography. The nonlinear computational model, which included a Beer's law optical component, a finite difference heat transfer component and an Arrhenius equation-based damage calculation, was verified against data from the literature. Moderate discrepancies between simulation results and our experimental data probably resulted from the use of a laser beam with an irregular spatial profile. This profile produced a lower than expected coagulation threshold and an irregular damage distribution within a millisecond after laser onset. After 1 ms, heat conduction led to smoothing of the coagulum. Simulations indicated that dynamic changes in absorption led to a reduction in surface temperatures. The Arrhenius equation was shown to be effective for simulating transient albumen coagulation during pulsed holmium:YAG laser irradiation. Greater understanding of pulsed laser-tissue interactions may lead to improved treatment outcome and optimization of laser parameters for a variety of medical procedures.

  1. Holmium:YAG laser angioplasty: treatment of acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Topaz, On

    1993-06-01

    We report our clinical experience with a group of 14 patients who presented with acute myocardial infarction. A holmium:YAG laser was applied to the infarct-related artery. This laser emits 250 - 600 mJ per pulse, with a pulse length of 250 microseconds and repetition rate of 5 Hz. Potential benefits of acute thrombolysis by lasers include the absence of systemic lytic state; a shortened thrombus clearing time relative to using thrombolytics; safe removal of the intracoronary thrombus and facilitation of adjunct balloon angioplasty. Potential clinical difficulties include targeting the obstructive clot and plaque, creation of debris and distal emboli and laser-tissue damage. It is conceivable that holmium:YAG laser can be a successful thrombolytic device as its wave length (2.1 microns) coincides with strong water absorption peaks. Since it is common to find an atherosclerotic plaque located under or distal to the thrombotic occlusion, this laser can also be applied for plaque ablation, and the patient presenting with acute myocardial infarction can clearly benefit from the combined function of this laser system.

  2. Dielectric and conducting behaviour of polycrystalline holmium octa-molybdate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Zahoor Ahmad, Bhat; Bhat, Bilal Hamid

    2014-09-01

    Polycrystalline holmium octa-molybdate spherulites have been obtained by using gel diffusion technique and characterized by different physio-chemical techniques. The surfaces of these spherulites are composed of nano-rod with an average diameter of about 80 nm. At room temperature the initial crystal structure is triclinic, space group P1. Thermal studies suggested a phase transition occurring in holmium octa-molybdate crystals at about 793 K. The electrical properties of the system have been studied as a function of frequency and temperature in the ranges of 20 Hz-3 MHz and 290-570 K, respectively. A giant dielectric constant and two loss peaks have been observed in the permittivity formalism. The conducting behaviour of the material is also discussed. The conductivity was found to be 1572 μ Ω-1 m-1 at room temperature and 3 MHz frequency. The conductivity of the polycrystalline material was attributed to the fact that it arises due to the migration of defects on the oxygen sub-lattice. Impedance studies were also performed in the frequency domain to infer the bulk and grain boundary contributions to the overall electric response of the material. The electrical responses have been attributed to the grain, grain-boundary, and interfacial effects.

  3. Holmium laser treatment of genital warts: an observational study of 1500 cases.

    PubMed

    Yang, Chun-Jun; Liu, Sheng-Xiu; Liu, Jiang-Bo; Wang, Zhong-Ying; Luo, Di-Feng; Zhang, Guo-Long; Zhang, Xue-Jun; Yang, Sen

    2008-01-01

    The treatment and relapse rate of genital warts are significant problems. The aim of this observational study was to assess the efficacy of holmium laser treatment of genital warts. A total of 1500 outpatients with genital human papillomavirus-induced lesions presenting from August 2002 to June 2005 were treated with holmium laser. The effects and side-effects of treatment were observed and analysed. Of this large cohort, lesions were excised at the first visit in 1488 cases. Twelve cases were treated a second or third time in the event that the lesions were too large to be removed at the first visit. The incidence of side-effects and complications after treatment with holmium laser was found to be low. Almost all warts can be excised at first treatment by holmium laser therapy with little bleeding during the treatment.

  4. Composition and method of treatment of arthritis and related diseases with holmium-166 radionuclides

    SciTech Connect

    Lieberman, E.; Bordoni, M.E.; Thornton, A.K.

    1991-10-29

    This patent describes a radioactive composition for the treatment of arthritis. It comprises a suspension containing particles having a minimum size of one micron, the suspension including particles containing holmium-166.

  5. Holmium laser use in the treatment of selected dry eye syndrome complications

    NASA Astrophysics Data System (ADS)

    Kecik, Dariusz; Kecik, Tadeusz; Kasprzak, Jan; Kecik, Mariusz

    1996-03-01

    The authors present initial results of treatment selected complications of dry eye syndrome with holmium laser. The lacrimal puncta obliteration and coagulation of the corneal ulcer surface were done.

  6. Cystoscopic suture removal by Holmium-YAG laser after Burch procedure.

    PubMed

    Karaşahin, Emre Kazım; Esin, Sertaç; Alanbay, Ibrahim; Ercan, Mutlu Cihangir; Mutlu, Erol; Başer, Iskender; Basal, Seref

    2011-01-01

    Burch colposuspension remains one of the successful operations performed for stress incontinence. Accidental suturing of the bladder wall during the procedure or subsequent erosion may lead to lower urinary tract symptoms. Diagnosis and management of these sutures indicate precise evaluation for which a 70 degree cystoscope is used. In selected cases, Holmium-YAG laser may enable us to manage long-standing, encrustated neglected sutures. Here we would like to report successful removal of intravesical sutures using the Holmium-YAG laser.

  7. Holmium-doped fibre amplifier operating at 2.1 μm

    SciTech Connect

    Kamynin, V A; Antipov, S O; Kurkov, A S; Baranikov, A V

    2014-02-28

    A small-signal holmium-doped fibre amplifier is demonstrated. The seed source is a cw holmium-doped fibre laser whose output power is modulated by an electro-optical modulator. The maximum gain reached (wavelength, 2.1 μm; power, 0.25 mW; pulse duration, 100 ns; pulse repetition rate, 1 μs) is 28.5 dB. (lasers)

  8. Holmium Doped Solid State Laser Resonantly Pumped and Q-Switched by Novel GaSb-Based Photonic Devices

    DTIC Science & Technology

    2011-08-31

    demonstrated for all devices. High power 1.95µm type-I quantum-well GaSb-based diode lasers were used to pump fluoride glass holmium doped fiber...II-VI semiconductors, novel type-II quantum well Sb-based semiconductors, and holmium doped crystals, glasses and fibers can be achieved. The...resonant pumping of the holmium doped fiber laser was demonstrated in this work. (a).1. High power ~2.2 µm lasers with broadened waveguide design

  9. Energy upconversion in holmium doped lead-germano-tellurite glass

    SciTech Connect

    Kamma, Indumathi; Reddy, B. Rami

    2010-06-15

    Holmium doped lead-germano-tellurite glass was prepared by the melt quenching technique. The Judd-Ofelt intensity parameters were estimated as {Omega}{sub 2}=7.6x10{sup -20}, {Omega}{sub 4}=12.9x10{sup -20}, and {Omega}{sub 6}=2.5x10{sup -20} cm{sup 2}. Radiative transition probabilities and lifetimes were also determined for some of the levels. Room temperature upconversion emissions have been observed from Ho{sup 3+} at 497 nm under 532 nm laser excitation, and at 557 and 668 nm under 762 nm laser excitation. The upconversion emission mechanisms were found to be due to a step wise excitation process. Upconversion emission intensity enhanced in a heat treated glass.

  10. Holmium laser enucleation of the prostate: patient selection and perspectives

    PubMed Central

    Marien, Tracy; Kadihasanoglu, Mustafa; Miller, Nicole L

    2016-01-01

    Background Multiple endoscopic surgical options exist to treat benign prostatic hyperplasia (BPH), including holmium laser enucleation of the prostate (HoLEP). HoLEP alleviates obstructive prostatic tissue via enucleation, both bluntly with a resectoscope and by cutting tissue with the holmium laser, and removal of adenoma via morcellation. This article reviews patient selection for HoLEP in order to optimize outcomes, costs, and patient satisfaction. Methods A literature review of all studies on HoLEP was conducted. Studies that focused on outcomes in regard to patient and procedural factors were closely reviewed and discussed. Results Various studies found that men with large or small prostates, on antithrombotic therapy, in urinary retention, with bladder hypocontractility, with prostate cancer, undergoing retreatment for BPH, or in need of concomitant surgery for bladder stones and other pathologies do well with HoLEP, as demonstrated by excellent functional and symptomatic outcomes as well as low complication rates. There is a 74–78% rate of retrograde ejaculation following HoLEP. Techniques to preserve ejaculatory function following enucleative techniques have not been able to demonstrate a significant improvement. Conclusion Patient selection for HoLEP can include most men with bothersome BPH who have evidence of bladder outlet obstruction and are healthy enough to undergo surgery. The ability to safely perform concomitant surgery with HoLEP benefits the patient by sparing them an additional anesthetic and also decreases costs. Patients should be made aware of the risk of retrograde ejaculation following HoLEP and counseled on treatment alternatives if maintaining ejaculatory function is desired. PMID:27800470

  11. Safety and efficacy of holmium:YAG laser lithotripsy in patients with bleeding diatheses

    NASA Astrophysics Data System (ADS)

    Watterson, James D.; Girvan, Andrew R.; Cook, Anthony J.; Beiko, Darren T.; Nott, Linda; Auge, Brian K.; Preminger, Glenn M.; Denstedt, John D.

    2003-06-01

    Purpose: To assess the safety and efficacy of ureteroscopy and holmium:YAG (yttrium-aluminum-garnet) laser lithotripsy in the treatment of upper urinary tract calculi in patients with known and uncorrected bleeding diatheses. Materials and Methods: A retrospective chart review from 2 tertiary stone centers was performed to identify patients with known bleeding diatheses who were treated with holmium:YAG laser lithotripsy for upper urinary tract calculi. Twenty-five patients with 29 upper urinary tract calculi were treated with ureteroscopic holmium laser lithotripsy. Bleeding diatheses identified were coumadin administration for various conditions (17), liver dysfunction (3), thrombocytopenia (4), and von Willebrand's disease (1). Mean international normalized ratio (INR), platelet count and bleeding time were 2.3, 50 x 109/L, and > 16 minutes, for patients receiving coumadin or with liver dysfunction, thrombocytopenia, or von Willebrand's disease, respectively. Results: Overall, the stone-free rate was 96% (27/28) and 29 of 30 procedures were completed successfully without significant complication. One patient who was treated concomitantly with electrohydraulic lithotripsy (EHL) had a significant retroperitoneal hemorrhage that required blood transfusion. Conclusions: Treatment of upper tract urinary calculi in patients with uncorrected bleeding diatheses can be safely performed using contemporary small caliber ureteroscopes and holmium laser as the sole modality of lithotripsy. Ureteroscopic holmium laser lithotripsy without preoperative correction of hemostatic parameters limits the risk of thromboembolic complications and costs associated with an extended hospital stay. Avoidance of the use of EHL is crucial in reducing bleeding complications in this cohort of patients.

  12. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles.

    PubMed

    Shi, Jian-Wen; Zheng, Jing-Tang; Wu, Peng

    2009-01-15

    Holmium-doped TiO2 nanoparticles with high photocatalytic activities were prepared by sol-gel method and characterized by X-ray diffraction, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, and surface area measurement by nitrogen adsorption in this study. Experimental results indicated holmium doping could increase the surface area of TiO2 nanoparticles, and inhibit the growth of crystalline size and the anatase-to-rutile phase transformation. The results of photodegrading methyl orange showed holmium doping improved the photocatalytic activity of TiO2, and the reasons could be attributed to the synergetic effects of large surface areas, small crystallite size, lattice distortion and more charge imbalance of holmium-doped TiO2. In our experiment, the optimal doped amount was 0.3mol.% for the maximum photocatalytic degradation ratio when holmium-doped TiO2 was calcined at 500 degrees C, and the optimal calcined temperature was 600 degrees C when the doped amount was 0.5mol.%.

  13. [A Case of Holmium: YAG Laser Resection of Superficial Bladder Tumor (HoLRBT)].

    PubMed

    Sugita, Yoshiko; Shitara, Toshiya; Hirayama, Takahiro; Fujita, Tetsuo; Yoshida, Kazunari; Kubo, Seiichi; Iwamura, Masatsugu

    2015-10-01

    We present a case of holmium : YAG laser resection of superficial bladder tumor (HoLRBT). A 73-year-old male was referred to our hospital with elevated prostatic specific antigen. Due to difficulty of urination, holmium : YAG laser enucleation of the prostate was performed under the diagnosis of benign prostatic hyperplasia. During the surgery, superficial bladder tumor was incidentally identified, and HoLRBT was performed. After the operation, histopathological examination revealed urothelial carcinoma, G2 > G1, pTa. The patient has been subsequently followed up for 9 months, and there areno evidence of recurrence. Changing the holmium : YAG laser energy setting can potentially be effective and safe to approach a superficial bladder tumor.

  14. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  15. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  16. An architecture for quantum computation with magnetically trapped Holmium atoms

    NASA Astrophysics Data System (ADS)

    Saffman, Mark; Hostetter, James; Booth, Donald; Collett, Jeffrey

    2016-05-01

    Outstanding challenges for scalable neutral atom quantum computation include correction of atom loss due to collisions with untrapped background gas, reduction of crosstalk during state preparation and measurement due to scattering of near resonant light, and the need to improve quantum gate fidelity. We present a scalable architecture based on loading single Holmium atoms into an array of Ioffe-Pritchard traps. The traps are formed by grids of superconducting wires giving a trap array with 40 μm period, suitable for entanglement via long range Rydberg gates. The states | F = 5 , M = 5 > and | F = 7 , M = 7 > provide a magic trapping condition at a low field of 3.5 G for long coherence time qubit encoding. The F = 11 level will be used for state preparation and measurement. The availability of different states for encoding, gate operations, and measurement, spectroscopically isolates the different operations and will prevent crosstalk to neighboring qubits. Operation in a cryogenic environment with ultra low pressure will increase atom lifetime and Rydberg gate fidelity by reduction of blackbody induced Rydberg decay. We will present a complete description of the architecture including estimates of achievable performance metrics. Work supported by NSF award PHY-1404357.

  17. Magnetic field-dependent spin structures of nanocrystalline holmium.

    PubMed

    Szary, Philipp; Kaiser, Daniel; Bick, Jens-Peter; Lott, Dieter; Heinemann, André; Dewhurst, Charles; Birringer, Rainer; Michels, Andreas

    2016-04-01

    The results are reported of magnetic field-dependent neutron diffraction experiments on polycrystalline inert-gas condensed holmium with a nanometre crystallite size (D = 33 nm). At T = 50 K, no evidence is found for the existence of helifan(3/2) or helifan(2) structures for the nanocrystalline sample, in contrast with results reported in the literature for the single crystal. Instead, when the applied field H is increased, the helix pattern transforms progressively, most likely into a fan structure. It is the component of H which acts on the basal-plane spins of a given nanocrystallite that drives the disappearance of the helix; for nanocrystalline Ho, this field is about 1.3 T, and it is related to a characteristic kink in the virgin magnetization curve. For a coarse-grained Ho sample, concomitant with the destruction of the helix phase, the emergence of an unusual angular anisotropy (streak pattern) and the appearance of novel spin structures are observed.

  18. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  19. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  20. Holmium Doped Solid State Laser Resonantly Pumped and Q-Switched by Novel GaSb-Based Photonic Devices

    DTIC Science & Technology

    2011-08-31

    collection of information if it does not display a currently valid OMB control number. 31-08-2011 FINAL 01-03-2008 --- 31-05-2011 Holmium Doped Solid State...release Diode pumped holmium doped fiber laser was developed in cooperation with Dr. Stuart Jackson (University of Sydney, Australia) in the framework...40 C in CW regime. Holmium doped fiber laser, resonant pumping, diode pumped, high power diode lasers, GaSb-based, type-I quantum-well U U U UU AFRL

  1. Enhancement of Electrical Properties by Tailoring Nanoparticles in Holmium-doped YBa2Cu3O7-Delta Superconductors

    DTIC Science & Technology

    2008-01-01

    Nanoparticles in Holmium -doped YBa2Cu3O7-d Superconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...by ANSI Std Z39-18 2008 NRL REVIEW 185 NANOSCIENCE TECHNOLOGY Enhancement of Electrical Properties by Tailoring Nanoparticles in Holmium -doped...nanoparticles in the size range of 10 to 100 nm in an HTS coating of composition YBa2Cu3O7 (YBCO) doped with holmium (Ho:Y ratio 1:1). This particular

  2. Use of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Johnson, Douglas E.; Cromeens, Douglas M.; Price, Roger E.

    1992-06-01

    The Holmium:YAG (Ho:YAG) laser operating at a wavelength of 2.1 micrometers with a maximum power of 15 watts (W) and 10 different pulse-energy settings was systematically evaluated on kidney, bladder, prostate, ureteral, and vasal tissue, and was used to perform various urologic surgical procedures (partial nephrectomy, transurethral laser incision of the prostate, and laser-assisted vasovasostomy) in the dog. By using the SurgiTomeTM 3- inch straight delivery system with an energy-pulse setting of 0.5 joules (J) at 20 Hz (10 W), partial nephrectomies required slightly longer operating times (15 minutes) than when similar procedures were performed using the Neodymium:YAG (Nd:YAG) laser and a free GI fiber at 59 to 83 W (4 - 7 minutes); however, the total energy required was considerably less. Hemostasis was excellent and no sutures were required to control bleeding. Transurethral incisions of the prostate using TV monitoring were made at the 4 and 8 o'clock positions extending from the colliculus seminalis through the vesical neck with an energy/pulse setting of 1.0 J at 15 Hz (15 W). Attempts at laser-assisted vasovasostomies were unsuccessful due to excessive thermal affect. The LaparoTomeTM Delivery System proved helpful in performing laparoscopic pelvic lymphadenectomy in the pig. Our investigations showed that the Ho:YAG laser possesses both excellent cutting and adequate hemostatic abilities even in a fluid medium. Although these results are preliminary, we believe that the Ho:YAG laser is well suited for urologic surgery and may well become the 'urologist's laser of the future.'

  3. Holmium laser transurethral resection of bladder tumor: Our experience

    PubMed Central

    D’souza, Nischith; Verma, Ashish

    2016-01-01

    Purpose: To compare the safety and efficiency of conventional monopolar and holmium laser en bloc transurethral resection of bladder tumor (CM-TURBT and HoL-EBRBT) while managing primary nonmuscle-invasive bladder cancer. Materials and Methods: From January 2012 to October 2015, fifty patients with primary nonmuscle-invasive bladder cancer underwent endoscopic surgery. Among them, 27 patients underwent CM-TURBT and 23 patients underwent HoL-EBRBT. Clinical data, included preoperative, operative, and postoperative management and follow-up, were recorded. Results: Patient demographics and tumor characteristics in both groups were compared before surgery. There was no significant difference in operative duration among the groups. Compared with the CM-TURBT group, HoL-EBRBT group had less intraoperative and postoperative complications, including obturator nerve reflex (P < 0.01), bladder perforation (P < 0.01), as well as bleeding and postoperative bladder irritation (P < 0.01). There were no significant differences among the two groups in the transfusion rate and occurrence of urethral strictures. Patients in the HoL-EBRBT group had less catheterization and hospitalization time than those in the CM-TURBT group (P < 0.01), and there were no significant differences in each risk subgroup as well as the overall recurrence rate among the CM-TURBT and HoL-EBRBT groups. Conclusions: HoL-EBRBT might prove to be preferable alternatives to CM-TURBT management of nonmuscle-invasive bladder cancer. HoL-EBRBT however did not demonstrate an obvious advantage over CM-TURBT in tumor recurrence rate. PMID:28057988

  4. Holmium:YAG laser coronary angioplasty: results of a multicenter registry

    NASA Astrophysics Data System (ADS)

    Topaz, On

    1994-07-01

    To date, 1201 symptomatic patients with significant coronary artery disease were treated with the mid IR holmium:YAG (2.1 micron) laser in a multicenter study. Updated results of this study, as presented herein, substantiate the important role of this laser in treatment of lesions not ideal for conventional balloon angioplasty. This device is a safe and effective means of coronary revascularization.

  5. Influence of neutron irradiation on holmium acetylacetonate loaded poly(L-lactic acid) microspheres.

    PubMed

    Nijsen, J F; van Het Schip, A D; van Steenbergen, M J; Zielhuis, S W; Kroon-Batenburg, L M J; van de Weert, M; van Rijk, P P; Hennink, W E

    2002-04-01

    Holmium-loaded microspheres are useful systems in radio-embolization therapy of liver metastases. For administration to a patient, the holmium-loaded microspheres have to be irradiated in a nuclear reactor to become radioactive. In this paper. the influence of neutron irradiation on poly(L-lactic acid) (PLLA) microspheres and films, with or without holmium acetylacetonate (HoAcAc), is investigated, in particular using differential scanning calorimetry (MDSC), scanning electron microscopy, gel permeation chromatography (GPC), infrared spectroscopy, and X-ray diffraction. After irradiation of the microspheres, only minor surface changes were seen using scanning electron microscopy, and the holmium complex remained immobilized in the polymer matrix as reflected by a relatively small release of this complex. GPC and MDSC measurements showed a decrease in molecular weight and crystallinity of the PLLA, respectively, which can be ascribed to radiation induced chain scission. Irradiation of the HoAcAc loaded PLLA matrices resulted in evaporation of the non-coordinated and one coordinated water molecule of the HoAcAc complex, as evidenced by MDSC and X-ray diffraction analysis. Infrared spectroscopy indicated that some degradation of the acetylacetonate anion occurred after irradiation. Although some radiation induced damage of both the PLLA matrix and the embedded HoAcAc-complex occurs, the microspheres retain their favourable properties (no marginal release of Ho, preservation of the microsphere size), which make these systems interesting candidates for the treatment of tumours by radio-embolization.

  6. Histological evaluation of coagulation foci produced in the human lens with a holmium laser

    NASA Astrophysics Data System (ADS)

    Kecik, Dariusz; Kecik, Tadeusz; Pratnicki, Antoni; Kasprzak, Jan; Kecik, Mariusz

    1997-10-01

    We present the results of histological evaluation of human lenses treated with the holmium laser. The lenses, extracted at the time of extracapsular surgery for cataract, were placed in containers filled with Ringer's solution. After treatment with laser-emitted radiation they were histologically evaluated. The formation of crater-like defects was found in the material studied.

  7. Holmium laser for treatment of benign prostatic hyperplasia: old wine in a new bottle?

    NASA Astrophysics Data System (ADS)

    Nelius, Thomas; de Riese, Werner T. W.

    2003-06-01

    Urinary tract symptoms related to benign prostatic hyperplasia affect 70% of men older than 70 years. Complications are common problems and a significant cause of morbidity in this population, placing a considerable burden on health services. In the early 1990s laser treatment of benign prostatic hyperplasia became widely used after the introduction of the side-firing neodym: YAG laser. However, because of technical limitations and inferior results compared to classical transurethral resection of the prostate many Urologists became desinterested in this device. With the introduction of the holmium: YAG laser a new laser generation became available for use in Urology. Beside several other applications the holmium: YAG laser can be used for incision, ablation, resection, and more recently enucleation of the prostate. In this paper we reviewed the current literature regarding the holmium: YAG laser resection and enucleation of the prostate compared to transurethral resection of the prostate and open prostatectomy. The holmium: YAG laser technique is an effective and durable surgical alternative to standard transurethral resection of the prostate. Interestingly, enucleation of the prostate with this device seems to be a safe and effective procedure for large prostatic adenomas, it may become an attractive alternative to open prostatectomy.

  8. Laser-assisted hair transplantation: histologic comparison between holmium:YAG and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chu, Eugene A.; Rabinov, C. Rose; Wong, Brian J.; Krugman, Mark E.

    1999-06-01

    The histological effects of flash-scanned CO2 (λ=10.6μm) and pulsed Holmium:YAG (Ho:YAG, λ=2.12μm) lasers were evaluated in human scalp following the creation of hair transplant recipient channels. Ho:YAG laser irradiation created larger zones of thermal injury adjacent to the laser channels than irradiation with the CO2 laser device. When the two lasers created recipient sites of nearly equal depth, the Holmium:YAG laser caused a larger region of lateral thermal damage (589.30μm) than the CO2 laser (118.07μm). In addition, Holmium:YAG irradiated specimens exhibited fractures or discontinuities beyond the region of clear thermal injury. This shearing effect is consistent with the photoacoustic mechanism of ablation associated with pulsed mid-IR laser irradiation. In contrast, channels created with the CO2 exhibited minimal epithelial disruption and significantly less lateral thermal damage. While the Holmium:YAG laser is a useful tool for ablation soft tissue with minimal char in select applications (sinus surgery, arthroscopic surgery), this study suggests that the use of the CO2 laser for the creation of transplantation recipient channels result in significantly less lateral thermal injury for the laser parameters employed.

  9. Chiral holmium complex-catalyzed Diels-Alder reaction of silyloxyvinylindoles: stereoselective synthesis of hydrocarbazoles.

    PubMed

    Harada, Shinji; Morikawa, Takahiro; Nishida, Atsushi

    2013-10-18

    The catalytic and asymmetric cycloaddition between 3-[1-(silyloxy)vinyl]indoles and electron-deficient olefins gave substituted hydrocarbazoles in up to 99% yield and 94% ee. This reaction was catalyzed by a novel chiral holmium(III) complex. Alkylation of the cycloadduct gave a tricyclic compound with four continuous chiral centers, one of which was a quaternary carbon.

  10. Preparation and complex characterization of silica holmium sol-gel monoliths.

    PubMed

    Cacaina, D; Areva, S; Laaksonen, H; Simon, S; Ylänen, H

    2011-01-01

    Amorphous, sol-gel derived SiO(2) are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol-gel derived SiO(2) could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol-gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol-gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate.

  11. Transurethral Cystolithotripsy of Large Bladder Stones by Holmium Laser as a Day Care Procedure

    PubMed Central

    Naorem, Salinita; Faridi, M.S.; Akoijam, Kaku Singh; Sinam, Rajendra Singh

    2016-01-01

    Introduction Bladder stones constitute around 5% of bladder stones in the developed countries. Holmium laser lithotripsy has revolutionised the treatment of urinary lithiasis. Aim The aim of this study was to report the outcome of transurethral cystolithotripsy with Holmium Laser under Local Anaesthesia (LA) as a day care procedure in patients with bladder stones. Materials and Methods Patients with bladder stone greater than 1.5cm attending urology Outpatient Department underwent transurethral cystolithotripsy with Holmium Laser under LA as day care procedure. The results were analysed on aspects of peri-operative pain, completion of procedure, stone clearance, hospital stay, complications and patient compliance. Results A total of 85 patients with bladder stone ≥1.5cm underwent transurethral cystolithotripsy LA. The mean age of the patient was 52±7 years. There were 80 males. The mean size of stone was 3±1.2cm. Mean operation time was 40±10 minutes. Complete stone clearance was achieved in all the patients. None of the patients required hospital stay following the procedure. Conclusion Transurethral holmium laser lithotripsy is an effective and safe procedure for large bladder stones. This procedure can be easily performed as a day care procedure. PMID:28208921

  12. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water

    NASA Astrophysics Data System (ADS)

    Pratisto, Hans; Frenz, Martin; Ith, Michael; Altermatt, Hans J.; Jansen, E. Duco; Weber, Heinz P.

    1996-07-01

    Because of the high absorption of near-infrared laser radiation in biological tissue, erbium lasers and holmium lasers emitting at 3 and 2 mu m, respectively, have been proven to have optimal qualities for cutting or welding and coagulating tissue. To combine the advantages of both wavelengths, we realized a multiwavelength laser system by simultaneously guiding erbium and holmium laser radiation by means of a single zirconium fluoride (ZrF4) fiber. Laser-induced channel formation in water and poly(acrylamide) gel was investigated by the use of a time-resolved flash-photography setup, while pressure transients were recorded simultaneously with a needle hydrophone. The shapes and depths of vapor channels produced in water and in a submerged gel after single erbium and after combination erbium-holmium radiation delivered by means of a 400- mu m ZrF4 fiber were measured. Transmission measurements were performed to determine the amount of pulse energy available for tissue ablation. The effects of laser wavelength and the delay time between pulses of different wavelengths on the photomechanical and photothermal responses of meniscal tissue were evaluated in vitro by the use of histology. It was observed that the use of a short (200- mu s, 100-mJ) holmium laser pulse as a prepulse to generate a vapor bubble through which the ablating erbium laser pulse can be transmitted (delay time, 100 mu s) increases the cutting depth in meniscus from 450 to 1120 mu m as compared with the depth following a single erbium pulse. The results indicate that a combination of erbium and holmium laser radiation precisely and efficiently cuts tissue under water with 20-50- mu m collateral tissue damage. wave, cavitation, channel formation, infrared-fiber-delivery system, tissue damage, cartilage.

  13. Holmium:YAG laser coronary angioplasty: quantitative angiography and clinical results in a large experience of a single medical center

    NASA Astrophysics Data System (ADS)

    Topaz, On; Luxenberg, Michael; Schumacher, Audrey

    1994-07-01

    Clinical experience with the mid IR holmium:YAG laser in a single medical center (St. Paul Ramsey Medical Center, University of Minnesota Medical School, St. Paul, MN) includes 112 patients who underwent holmium laser coronary angioplasty. Utilizing a unique lasing technique; `pulse and retreat,' we applied this laser to thrombotic and nonthrombotic lesions in patients presenting with unstable angina, stable angina, and acute myocardial infarction. A very high clinical success and very low complication rates were achieved. Holmium:YAG laser is effective and safe therapy for patients with symptomatic coronary artery disease. Unlike excimer lasers, the clinical success, efficacy and safety of holmium laser angioplasty is not compromised when thrombus is present.

  14. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  15. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  16. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  17. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  18. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  19. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  20. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  1. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  2. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  3. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  4. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  5. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  6. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  7. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  8. Holmium-doped laser materials for eye-safe solid state laser application

    NASA Astrophysics Data System (ADS)

    Kim, Woohong; Bowman, Steven R.; Baker, Colin; Villalobos, Guillermo; Shaw, Brandon; Sadowski, Bryan; Hunt, Michael; Aggarwal, Ishwar; Sanghera, Jasbinder

    2014-06-01

    Trivalent holmium has 14 laser channels from 0.55 to 3.9 μm. The laser emission of most interest is the transition 5I7→5I8 near 2 μm because of its potential for use in eye-safe systems and medical applications. In this paper, we present our recent results in the development of Ho3+ doped laser materials for eye-safe solid state lasers. We report a calorimetric study of non-radiative losses in two micron pumped holmium doped laser host materials such as silica glass, yttrium aluminum garnet (YAG) crystal and Lu2O3 ceramics. Optical, spectral and morphological properties as well as the lasing performance from highly transparent ceramics are presented.

  9. Influence of water environment on holmium laser ablation performance for hard tissues.

    PubMed

    Lü, Tao; Xiao, Qing; Li, Zhengjia

    2012-05-01

    This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment.

  10. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  11. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    SciTech Connect

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de; Viergever, Max A.

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  12. Holmium laser enucleation of the prostate: a review of the clinical trial evidence

    PubMed Central

    2014-01-01

    Transurethral resection of the prostate (TURP) has remained the procedure of choice for the surgical treatment of bladder outflow obstruction for almost five decades, but holmium laser enucleation of the prostate (HoLEP) is now emerging as a challenger as the gold standard procedure. This review summarizes the evidence base for HoLEP, with particular reference to randomized, controlled (level 1) evidence. PMID:24688602

  13. Mathematical modelling of dispersion-managed thulium/holmium fibre lasers

    SciTech Connect

    Yarutkina, I A; Shtyrina, O V

    2013-11-30

    The mathematical model of a dispersion-managed thulium/holmium fibre laser is described; the results of numerical calculations and their comparison with the experimental data are presented. Qualitative agreement of the results of the mathematical modelling with those of the experiment is obtained. Using the methods of mathematical modelling, the variation in the characteristics of the optical pulses due to the change in the average cavity dispersion is analysed. (control of laser radiation parameters)

  14. Preparation of neutron-activatable holmium nanoparticles for the treatment of ovarian cancer metastases.

    PubMed

    Di Pasqua, Anthony J; Huckle, James E; Kim, Jin-Ki; Chung, Younjee; Wang, Andrew Z; Jay, Michael; Lu, Xiuling

    2012-04-10

    Nanoparticles containing stable holmium ((165) Ho) are prepared by nanotemplate engineering and subsequently irradiated in a neutron flux to yield (166) Ho, a beta-emitting radiotherapeutic isotope. After intraperitoneal injection to mice bearing SKOV-3 ovarian tumors, significant tumor accumulation of the (166) Ho-nanoparticles is observed by SPECT imaging indicating the potential of these neutron activatable nanoparticles for internal radiation therapy of ovarian cancer metastases.

  15. Clinical effects of FURL and PCNL with holmium laser for the treatment of kidney stones

    PubMed Central

    Li, Zhi-Gang; Zhao, Yan; Fan, Tao; Hao, Lin; Han, Cong-Hui; Zang, Guang-Hui

    2016-01-01

    In the present study, the clinical effects of flexible ureteroscopy lithotripsy (FURL) and percutaneous nephrolithotomy (PCNL) for the treatment of kidney stones of ≤2 cm was studied. Seventy-two patients with kidney stones were randomly divided into the FURL group (n=39) under ureteroscope lithotripsy with holmium laser and PCNL group (n=33) under PCNL with holmium laser and compared their clinical effects. At 3 months after the operation, the stone removal rate of the FURL group was significantly higher than that of the PCNL group. The subgroup analysis revealed that the difference in the lower kidney calyx was more obvious (P<0.05) while the difference in the complex kidney stones was not statistically significant (P>0.05). The incidence of complications of the FURL group was significantly lower than that of the PCNL group (P<0.05). The operation time and recurrence rate of the FURL group were significantly less than that of the PCNL group (P<0.05). Differences regarding the creatinine and urea nitrogen levels before operation, and 3 and 7 days after the operation between the two groups were not statistically significant (P>0.05). Additionally, 3 and 7 days after operation, the cystatin C levels of the FURL group were significantly higher than those of the PCNL group, and the KIM-1 levels were significantly lower than the PCNL group (P<0.05). In conclusion, compared with PCNL with holmium laser, FURL with holmium laser was more safe and effective in treating kidney stones ≤2 cm. Therefore, the method is worthy of wide application in clinic. PMID:28101159

  16. Efficient holmium:yttrium lithium fluoride laser longitudinally pumped by a semiconductor laser array

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1987-01-01

    Optical pumping of a holmium:yttrium lithium floride (Ho:YLF) crystal with a 790-nm continuous-wave diode-laser array has generated 56 mW of 2.1-micron laser radiation with an optical-to-optical conversion slope efficiency of 33 percent while the crystal temperature is held at 77 K. The lasing threshold occurs at 7 mW of input power, and laser operation continues up to a crystal temperature of 124 K.

  17. Long-term toxicity of holmium-loaded poly(L-lactic acid) microspheres in rats.

    PubMed

    Zielhuis, Sander W; Nijsen, J Frank W; Seppenwoolde, Jan-Henry; Bakker, Chris J G; Krijger, Gerard C; Dullens, Hub F J; Zonnenberg, Bernard A; van Rijk, Peter P; Hennink, Wim E; van het Schip, Alfred D

    2007-11-01

    The aim of this study was to get insight into the toxic effects of holmium-166-loaded poly(L-lactic acid) microspheres (Ho-PLLA-MS) which have very interesting features for treatment of liver malignancies. Acute, mid- and long-term effects were studied in healthy Wistar rats by evaluating clinical, biochemical and tissue response. Rats were divided into four treatment groups: sham, decayed neutron-irradiated Ho-PLLA-MS, non-irradiated Ho-PLLA-MS and PLLA-MS. After implantation of the microspheres into the liver of the rats, the animals were monitored (body weight, temperature and liver enzymes) for a period of 14-18 months. Some of the rats that received previously neutron-irradiated Ho-PLLA-MS were periodically scanned with magnetic resonance imaging (MRI) to see if holmium was released from the microspheres. After sacrifice, the liver tissue was histologically evaluated. Bone tissue was subjected to neutron-activation analysis in order to examine whether accumulation of released holmium in the bone had occurred. No measurable clinical and biochemical toxic effects were observed in any of the treatment groups. Furthermore, histological analyses of liver tissue samples only showed signs of a slight chronic inflammation and no significant differences in the tissue reaction between rats of the different treatment groups could be observed. The non-irradiated PLLA-MS and Ho-PLLA-MS stayed intact during the study. In contrast, 14 months after administration, the neutron-irradiated Ho-PLLA-MS was not completely spherical anymore, indicating that degradation had started. However, the holmium loading had not been released as was illustrated with MRI and affirmed by neutron-activation analysis of bone tissue. In conclusion, neutron-irradiated Ho-PLLA-MS does not provoke any toxic reaction and can be applied safely in vivo.

  18. Separation of carrier-free holmium-166 from neutron-irradiated dysprosium targets

    SciTech Connect

    Dadachova, E.; Lambrecht, R.M.; Hetherington, E.L. ); Mirzadeh, S.; Knapp, F.F. Jr. )

    1994-12-01

    Holmium-166 ([sup 166]Ho, t[sub 1/2] = 26.4 h) is utilized in radiotherapeutic applications such as radioimmunospecific pharmaceuticals, bone marrow ablation, and radiation synovectomy. High specific activity [sup 166]Ho can be obtained from the decay of dysprosium-166 ([sup 166]Dy, t[sub 1/2] = 81.5 h). Dysprosium-166 is produced by the [sup 164]Dy[n,[gamma

  19. Holmium Nanoparticles: Preparation and In Vitro Characterization of a New Device for Radioablation of Solid Malignancies

    PubMed Central

    Bult, Wouter; Varkevisser, Rosanne; Soulimani, Fouad; Seevinck, Peter R.; de Leeuw, Hendrik; Bakker, Chris J. G.; Luijten, Peter R.; van het Schip, Alfred D.; Hennink, Wim E.

    2010-01-01

    ABSTRACT Purpose The present study introduces the preparation and in vitro characterization of a nanoparticle device comprising holmium acetylacetonate for radioablation of unresectable solid malignancies. Methods HoAcAc nanoparticles were prepared by dissolving holmium acetylacetonate in chloroform, followed by emulsification in an aqueous solution of a surfactant and evaporation of the solvent. The diameter, surface morphology, holmium content, and zeta potential were measured, and thermal behavior of the resulting particles was investigated. The stability of the particles was tested in HEPES buffer. The r2* relaxivity of protons and mass attenuation coefficient of the nanoparticles were determined. The particle diameter and surface morphology were studied after neutron activation. Results Spherical particles with a smooth surface and diameter of 78 ± 10 nm were obtained, and the particles were stable in buffer. Neutron irradiation did not damage the particles, and adequate amounts of activity were produced for nuclear imaging and radioablation of malignancies through intratumoral injections. Conclusions The present study demonstrates that HoAcAc nanoparticles were prepared using a solvent evaporation process. The particle diameter can easily be adapted and can be optimized for specific therapeutic applications and tumor types. PMID:20680667

  20. Soft-tissue applications of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.; Razvi, Hassan A.; Chun, Samuel S.; Sales, Jack L.

    1995-05-01

    The ideal surgical laser for the treatment of soft tissue pathology should possess both ablative and hemostatic abilities. As well, for use in urologic conditions the laser must also be suitable for endoscopic use. The Holmium:YAG laser possesses these qualities and in preliminary clinical use has demonstrated a variety of potential urologic applications. In this study we review our initial experience with the Holmium:YAG laser over a 18 month period. A total of 51 patients underwent 53 procedures for a variety of soft tissue conditions including: bladder tumor ablation (25), incision of ureteral stricture (15), incision of urethral stricture (6), treatment of ureteropelvic junction obstruction (3), incision of bladder neck contracture (2), and ablation of a ureteral tumor (2). Satisfactory hemostasis was achieved in all cases. Procedures were considered successful (no further intervention being required to treat the condition) in 81% of the cases. Two patients with dense bladder neck contractures required electroincision under the same anesthetic for completion of the procedure. A single complication, that of urinary extravasation following incision of a urethral stricture resolved with conservative management. In summary, the Holmium:YAG laser has demonstrated safety and proficiency in the treatment of a variety of urologic soft tissue conditions.

  1. Selective determination of the holmium in rare earth mixtures by second derivative spectrophotometry with 2-isobutylformyl-1,3-dione-indan and octylphenol poly-(ethyleneglycol)ether

    SciTech Connect

    Wang Naixing; Si Zhikun; Jiang Wei

    1996-09-01

    In this paper the absorption spectra of 4f electron transitions of the system of holmium with 2-isobutylformyl-1,3-dione-indan and TX-100 have been studied by normal and derivative spectrophotometry. The molar absorptivities are 98 (at 450 nm) and 21 (at 460 nm) 1 {center_dot} mol{sup -1} {center_dot} cm{sup -1}, respectively. The use of the second derivative spectra, eliminates the interference by other lanthanides and improves the sensitivity for holmium determination. The derivative molar absorptivity is 558 1 {center_dot} mol{sup -1} {center_dot} cm{sup -1}. The calibration graph was linear up to 25{mu}g/ml of holmium. The relative standard deviation evaluated from ten independent determinations of 8.0 {mu}g/ml holmium is 1.0%. The detection limit, obtained from the sensitivity of the calibration graph and for 3 S{sub b} (S{sub b} = standard deviation of a blank without holmium, n = 11), was found to be 0.31 {mu}g/ml of holmium. The quantification limit, obtained for 10 S{sub b}, was 1.0 {mu}g/ml of holmium. A method has been developed for determining holmium in a mixture of lanthanides by means of the second derivative spectra and the analytical results obtained are satisfactory.

  2. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  3. Ureteroscopy and holmium:YAG laser lithotripsy: an emerging definitive management strategy for symptomatic ureteral calculi in pregnancy

    NASA Astrophysics Data System (ADS)

    Watterson, James D.; Girvan, Andrew R.; Beiko, Darren T.; Nott, Linda; Wollin, Timothy A.; Razvi, Hassan A.; Denstedt, John D.

    2003-06-01

    Objectives: Symptomatic urolithiasis in pregnancy that does not respond to conservative measures has traditionally been managed with ureteral stent insertion or percutaneous nephrostomy (PCN). Holmium:yttrium-aluminum-garnet (YAG) laser lithotripsy using state-of-the-art ureteroscopes represents an emerging strategy for definitive stone management in pregnancy. The purpose of this study was to review the results of holmium laser lithotripsy in a cohort of patients who presented with symptomatic urolithiasis in pregnancy. Methods: A retrospective analysis was conducted at 2 tertiary stone centers from January 1996 to August 2001 to identify pregnant patients who were treated with ureteroscopic holmium laser lithotripsy for symptomatic urolithiasis or encrusted stents. Eight patients with a total of 10 symptomatic ureteral calculi and 2 encrusted ureteral stents were treated. Mean gestational age at presentation was 22 weeks. Mean stone size was 8.1 mm. Stones were located in the proximal ureter/ureteropelvic junction (UPJ) (3), mid ureter (1), and distal ureter (6). Results: Complete stone fragmentation and/or removal of encrusted ureteral stents were achieved in all patients using the holmium:YAG laser. The overall procedural success rate was 91%. The overall stone-free rate was 89%. No obstetrical or urological complications were encountered. Conclusions: Ureteroscopy and holmium laser lithotripsy can be performed safely in all stages of pregnancy providing definitive management of symptomatic ureteral calculi. The procedure can be done with minimal or no fluoroscopy and avoids the undesirable features of stents or nephrostomy tubes.

  4. Application of Pneumatic Lithotripter and Holmium Laser in the Treatment of Ureteral Stones and Kidney Stones in Children

    PubMed Central

    2017-01-01

    Objective. Treatment options for urolithiasis in children include URSL and RIRS. Various types of energy are used in the disintegration of deposits in these procedures. We decided to evaluate the usefulness of URSL and RIRS techniques and compare the effectiveness of pneumatic lithotripters and holmium lasers in the child population based on our experience. Materials and Methods. One hundred eight (108) children who underwent URSL and RIRS procedures were enrolled in the study and divided into two (2) groups according to the type of energy used: pneumatic lithotripter versus holmium laser. We evaluated the procedures' duration and effectiveness according to the stone-free rate (SFR) directly after the procedure and after fourteen (14) days and the rate of complications. Results. The mean operative time was shorter in the holmium laser group. A higher SFR was observed in the holmium laser but it was not statistically significant in the URSL and RIRS procedures. The rate of complications was similar in both groups. Conclusions. The URSL and RIRS procedures are highly efficient and safe methods. The use of a holmium laser reduces the duration of the procedure and increases its effectiveness in comparison with the use of a pneumatic lithotripter. PMID:28299318

  5. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  6. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  7. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with...

  8. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  9. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  10. Tin in silicate melts

    NASA Astrophysics Data System (ADS)

    Paparoni, Guido

    An experimental technique that uses Re metal capsules as containers for tin-bearing systems has been developed and successfully used in the study of the compositional dependence of SnO2 solubility in silicate melts. These experiments have been performed in the absence of an aqueous fluid phase and oxygen fugacity (fO2) has been established by the addition of tin-metal to SnO2. This approach solves three long-standing problems in the study of SnO 2 solubility in silicate melts: (1) Alloying of noble-metal crucibles and corrosion of ceramic crucibles is avoided; (2) fO 2 is established by direct contact of a metal-oxide oxygen buffer; (3) Gaseous SnO is not lost to the furnace atmosphere. The Re-capsule technique, combined with evacuated silica-tube experiments, has been applied to the study of the system SnO-SiO2 at pressures of 1 atm and 10 kbar. SnO2 solubilities of up to 95 wt% SnO are reported. The system SnO-SiO2 is found to be a pseudo-binary of the ternary system Sn°-SnO2-SiO2. A revised phase diagram for the system SnO-SiO2 at a pressure ≈1 atm is provided, and a new phase diagram for the system SnOSiO2 at a pressure = 10 kbar has been constructed. These results are used to suggest the topology of the ternary system Sn°-SnO2SiO2. The Re-capsule technique has also been applied to the study of the subaluminous haplogranite system (SiO2NaAlSi3O8-KAlSi 3O8) at T = 1100°C, P = 10 kbar and fO 2 at Sn°-SnO2. Solubilities span the range of 41 to 80 wt% SnO. In the haplogranite system, the solubility of SnO2 increases with the proportion of normative SiO2, and SnO is found to expand the stability field of SiO2. In the feldspar join, Na-based melts dissolve a larger proportion of SnO than K-based melts. This effect is lost as SiO2 is progressively added to the feldspar join. Small amounts of F (1 wt%) are found to increase the solubility of SnO 2 by an equivalent 15 wt% normative quartz as shown with the Spor Mountain rhyolite. A comparison of SnO2 solubilities

  11. Thermochemistry of Silicate Speciation in Aqueous Sodium Silicate Solutions: Ionization and Polymerization of Small Silicate Ion

    DTIC Science & Technology

    1993-07-12

    reasonable success, but a number of simplifications were used. For instance, the polymerization equilibrium constants were assumed to be independent of...Another weakness lies in the functionality assumed for the ionization equilibrium constants . As will be discussed below, experimental data that the free...characterize silicate species in fairly complex alkaline silicate solutions and thereby to estimate a large number of equilibrium constants [27,28

  12. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  13. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  14. High frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: A novel electromagnetic material

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Gul, I. H.

    2014-01-01

    Nanoparticles of holmium substituted nickel ferrites (NiHoxFe2-xO4) with x ranging from 0.0 to 0.15 have been prepared by the sol-gel auto-combustion method. Structural and morphology studies have been performed by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). XRD patterns revealed the formation of pure spinel phase ferrites without any impurity phase. Lattice parameter increases along with a decrease in crystallite size with increasing the concentration of Ho3+ in the parent nickel ferrite due to large ionic radius of Ho3+ (0.901 Å) as compared to Fe3+ (0.67 Å). SEM shows the spherical, uniformly distributed homogenous nanoparticles grown by controlled reaction parameters of the sol-gel method. Complex permittivity (ɛ*) and complex electric modulus (M*) have been studied for the present nanoferrites in the frequency ranges of 1 MHz-1 GHz. Frequency dependent dielectric parameters (relative permittivity (ɛ'), dielectric loss (ɛ″), dielectric loss tangent (tan δ)) decreases due to holmium substitution in nickel ferrites, showing the electrical conduction is decreasing in the nickel holmium ferrites with increase in the concentration of holmium. Complex modulus plots shows the poorly resolved semi circles and relaxation of nanoferrite is studied in the high frequency region. Also the relaxation time increases due to increase in x (0.0-0.15). DC electrical resistivity increases (107 Ω-cm-1010 Ω-cm) due to holmium ions substitution in nickel ferrites. Magnetic behavior was also characterized using a Vibrating Sample Magnetometer (VSM) under an applied magnetic field of 10 kOe and shows that magnetization decreases with increase in composition of holmium in nickel ferrites. High frequency behavior, low losses and very high DC electrical resistivity made the material a novel one for electromagnetic devices.

  15. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  16. Transurethral holmium-YAG laser lithotripsy for large symptomatic prostatic calculi: initial experience.

    PubMed

    Goyal, Neeraj Kumar; Goel, Apul; Sankhwar, Satyanarayan

    2013-08-01

    Symptomatic prostatic calculi are a rare clinical entity with wide range of management options, however, there is no agreement about the preferred method for treating these symptomatic calculi. In this study we describe our experience of transurethral management of symptomatic prostatic calculi using holmium-YAG laser lithotripsy. Patients with large, symptomatic prostatic stones managed by transurethral lithotripsy using holmium-YAG laser over 3-year duration were included in this retrospective study. Patients were evaluated for any underlying pathological condition and calculus load was determined by preoperative X-ray KUB film/CT scan. Urethrocystoscopy was performed using 30° cystoscope in lithotomy position under spinal anesthesia, followed by transurethral lithotripsy of prostatic calculi using a 550 μm laser fiber. Stone fragments were disintegrated using 100 W laser generators (VersaPulse PowerSuite 100 W, LUMENIS Surgical, CA). Larger stone fragments were retreived using Ellik's evacuator while smaller fragments got flushed under continuous irrigation. Five patients (median age 42 years) with large symptomatic prostatic calculi were operated using the described technique. Three patients had idiopathic stones while rest two had bulbar urethral stricture and neurogenic bladder, respectively. Median operative time was 62 min. All the patients were stone free at the end of procedure. Median duration of catheterization was 2 days. Significant improvement was observed in symptoms score and peak urinary flow and none of the patient had any complication. Transurethral management using holmium-YAG laser lithotripsy is a safe and highly effective, minimally invasive technique for managing symptomatic prostatic calculi of all sizes with no associated morbidity.

  17. Percutaneous Endoscopic Holmium Laser Lithotripsy for Management of Complicated Biliary Calculi

    PubMed Central

    Healy, Kelly; Chamsuddin, Abbas; Spivey, James; Martin, Louis; Nieh, Peter

    2009-01-01

    Background and Objectives: Advances in endoscopic techniques have transformed the management of urolithiasis. We sought to evaluate the role of such urological interventions for the treatment of complex biliary calculi. Methods: We conducted a retrospective review of all patients (n=9) undergoing percutaneous holmium laser lithotripsy for complicated biliary calculi over a 4-year period (12/2003 to 12/2007). All previously failed standard techniques include ERCP with sphincterotomy (n=6), PTHC (n=7), or both of these. Access to the biliary system was obtained via an existing percutaneous transhepatic catheter or T-tube tracts. Endoscopic holmium laser lithotripsy was performed via a flexible cystoscope or ureteroscope. Stone clearance was confirmed intra- and postoperatively. A percutaneous transhepatic drain was left indwelling for follow-up imaging. Results: Mean patient age was 65.6 years (range, 38 to 92). Total stone burden ranged from 1.7 cm to 5 cm. All 9 patients had stones located in the CBD, with 2 patients also having additional stones within the hepatic ducts. All 9 patients (100%) were visually stone-free after one endoscopic procedure. No major perioperative complications occurred. Mean length of stay was 2.4 days. At a mean radiological follow-up of 5.4 months (range, 0.5 to 21), no stone recurrence was noted. Conclusions: Percutaneous endoscopic holmium laser lithotripsy is a minimally invasive alternative to open salvage surgery for complex biliary calculi refractory to standard approaches. This treatment is both safe and efficacious. Success depends on a multidisciplinary approach. PMID:19660213

  18. Combining ultrasonography and noncontrast helical computerized tomography to evaluate Holmium laser lithotripsy

    PubMed Central

    Mi, Jia; Li, Jie; Zhang, Qinglu; Wang, Xing; Liu, Hongyu; Cao, Yanlu; Liu, Xiaoyan; Sun, Xiao; Shang, Mengmeng; Liu, Qing

    2016-01-01

    Abstract The purpose of the study was to establish a mathematical model for correlating the combination of ultrasonography and noncontrast helical computerized tomography (NCHCT) with the total energy of Holmium laser lithotripsy. In this study, from March 2013 to February 2014, 180 patients with single urinary calculus were examined using ultrasonography and NCHCT before Holmium laser lithotripsy. The calculus location and size, acoustic shadowing (AS) level, twinkling artifact intensity (TAI), and CT value were all documented. The total energy of lithotripsy (TEL) and the calculus composition were also recorded postoperatively. Data were analyzed using Spearman's rank correlation coefficient, with the SPSS 17.0 software package. Multiple linear regression was also used for further statistical analysis. A significant difference in the TEL was observed between renal calculi and ureteral calculi (r = –0.565, P < 0.001), and there was a strong correlation between the calculus size and the TEL (r = 0.675, P < 0.001). The difference in the TEL between the calculi with and without AS was highly significant (r = 0.325, P < 0.001). The CT value of the calculi was significantly correlated with the TEL (r = 0.386, P < 0.001). A correlation between the TAI and TEL was also observed (r = 0.391, P < 0.001). Multiple linear regression analysis revealed that the location, size, and TAI of the calculi were related to the TEL, and the location and size were statistically significant predictors (adjusted r2 = 0.498, P < 0.001). A mathematical model correlating the combination of ultrasonography and NCHCT with TEL was established; this model may provide a foundation to guide the use of energy in Holmium laser lithotripsy. The TEL can be estimated by the location, size, and TAI of the calculus. PMID:27930563

  19. Percutaneous nephroscopic with holmium laser and ultrasound lithotripsy for complicated renal calculi.

    PubMed

    Gu, Zhengqin; Qi, Jun; Shen, Haibo; Liu, Jianhe; Chen, Jianhua

    2010-07-01

    The aim of this work is to validate the clinical efficacy of the high-power holmium:YAG laser with percutaneous nephrolithotripsy (PCNL) in combination with ultrasound lithotripsy for complicated renal calculi. From November 2006 to December 2007, 60 patients with complicated renal calculi were treated with PCNL, where an F24 standard renal access tract was established by percutaneous renal puncture under the guidance of B-mode ultrasound, and stones were fragmented and cleared by high-power holmium laser in combination with ultrasound under an F20.8 nephroscope. Of the 60 patients with complicated renal calculi, 20 were complete staghorn calculi and 30 were partial staghorn calculi, of which six patients were accompanied with renal insufficiency; two were solitary calculi, and eight were caliceal diverticular calculi. Calculi were removed by one attempt in 49 patients and by two attempts in 11 patients; through one tract in 50 patients and through two and three tracts in ten patients. The stone-free rate was 81.7%. No injury to the pleura and abdominal organs occurred during the intraoperative puncture. No postoperative blood transfusion was needed in any patient, nor did fever and secondary hemorrhage occur. The mean operation duration was 98 min (range, 60-150 min), and the mean lithotripsy time was 45 min (range, 30-85 min). Additional postoperative extracorporeal shock wave lithotripsy (ESWL) was performed on six patients. High-power holmium laser PCNL in combination with ultrasound lithotripsy is safe, effective, and minimally invasive, with a high stone-free rate, especially for complicated renal calculi.

  20. Nonstented versus routine stented ureteroscopic holmium laser lithotripsy: a prospective randomized trial.

    PubMed

    Shao, Yi; Zhuo, Jian; Sun, Xiao-Wen; Wen, Wei; Liu, Hai-Tao; Xia, Shu-Jie

    2008-10-01

    We conducted a prospective, randomized study to evaluate whether postoperative ureteral stenting is necessary after ureteroscopic holmium laser lithotripsy. A total of 115 consecutive patients with distal or middle ureteral calculi amenable to ureteroscopic holmium laser lithotripsy were prospectively randomized into stented group (n = 58) and nonstented group (n = 57). The stent was routinely placed in the treated ureter for 2 weeks. The outcomes were measured with postoperative patient symptoms, stone-free rates, early and late postoperative complications, and cost-effectiveness. The postoperative symptoms were measured with Ureteral Stent Symptom Questionnaire (USSQ). All patients completed a 12-week follow-up. There was no significant difference between two groups with respect to the patient age, stone size, stone location and mean operative time. According to the USSQ, the symptoms of the stented group were significantly worse compared to the nonstented group (P = 0.0001). In the stented group, two patients had high fever for 1 week after the operation, stent migration was found in two patients, and the stents had to be removed earlier in five patients because of severe pain or hematuria. The cost of the stented group was significantly higher than the nonstented group. The stone-free rate was 100% in both groups. No hydronephrosis or ureteral stricture was detected by intravenous pyelogram in the 12th week postoperative follow-up. In conclusion, we believe that routine stenting after ureteroscopic intracorporeal lithotripsy with the holmium laser is not necessary as long as the procedure is uncomplicated for distal or middle ureteral calculis less than 2 cm.

  1. Spectroscopic properties, energy transfer dynamics, and laser performance of thulium-holmium doped laser systems

    NASA Astrophysics Data System (ADS)

    Kalisky, Yehoshua Y.; Rotman, Stanley R.; Boulon, Georges; Pedrini, Christian; Brenier, Alain

    1994-07-01

    Spectroscopic studies using laser induced fluorescence and numerical modelling of energy transfer and back transfer mechanism are reported in Er:Tm:Ho:YLF, Cr:Tm:Ho:YAG and Cr:Tm:YAG laser crystals at various temperatures (10 K - 300 K). Direct energy transfer from Tm3+ excited states to Ho3+ 5I7 emitting level was observed and analyzed both in YAG and YLF. Further analysis of Cr3+ and Tm3+ time-dependent emission curves indicate a strong correlation of chromium- thulium pairs. Pulsed operation of holmium laser at high temperature will be presented.

  2. Holmium laser enucleation of the prostate: a paradigm shift in benign prostatic hyperplasia surgery

    PubMed Central

    2013-01-01

    Holmium laser enucleation (HoLEP) was developed in the 1990s as a more efficient and cost effective method of benign prostatic hyperplasia surgery than laser vaporization and resection techniques. As a true anatomical enucleation it mimics open prostatectomy and is as durable. There is a significant body of level 1 evidence in support of HoLEP, including 2 meta-analyses and 14 randomized trials which compare HoLEP with a number of other procedures. This review describes the development of and summarizes the evidence for HoLEP. PMID:24082919

  3. Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser

    DTIC Science & Technology

    2015-09-01

    fibers of undoped clad (~ ∅ 200 μm), Tm-doped clad (~ ∅ 75 μm), and Ho-doped core (~ ∅ 23 μm). Through the 2-for-1 process, a single 808-nm diode light ...ARL-TR-7452 ● SEP 2015 US Army Research Laboratory Diode -Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-μm Laser by G...is no longer needed. Do not return it to the originator. ARL-TR-7452 ● SEP 2015 US Army Research Laboratory Diode -Pumped Thulium

  4. Holmium-lipiodol-alginate microspheres for fluoroscopy-guided embolotherapy and multimodality imaging.

    PubMed

    Oerlemans, Chris; Seevinck, Peter R; Smits, Maarten L; Hennink, Wim E; Bakker, Chris J G; van den Bosch, Maurice A A J; Nijsen, J Frank W

    2015-03-30

    Embolotherapy is a minimally invasive transcatheter technique aiming at reduction or complete obstruction of the blood flow by infusion of micro-sized particles in order to induce tumor regression. A major drawback of the current commercially available and clinically used microspheres is that they cannot be detected in vivo with medical imaging techniques, impeding intra- and post-procedural feedback. It can be expected that real-time monitoring of microsphere infusion and post-procedural imaging will result in better predictability and higher efficacy of the treatment. In this study, a novel microsphere formulation has been developed that can be visualized with fluoroscopy, X-ray computed tomography (CT) and magnetic resonance imaging (MRI). The microspheres were prepared with the JetCutter technique and consist of alginate (matrix-forming polymer), holmium (cross-linking and MRI contrast agent), lipiodol (radiopaque contrast agent) and Pluronic F-68 (surfactant). The mean size (±SEM) of the hydrated holmium-lipiodol-alginate microspheres (Ho-lip-ams) was 570±12 μm with a holmium content of 0.38±0.01% (w/w). Stability studies showed that the microspheres remained intact during incubation for two weeks in fetal calf serum (FCS) at 37 °C. The inclusion of lipiodol in the microspheres rendered excellent visualization capabilities for fluoroscopy and CT, whereas the holmium ions, which keep the alginate network together, also allow MR imaging. In this study it was shown that single sphere detection was possible by fluoroscopy, CT and MRI. The Ho-lip-ams were visualized in real-time, during infusion in a porcine kidney using fluoroscopy, and post-procedural, the deposition of the microspheres was examined with fluoroscopy, (cone beam rotational) CT and MRI. The different imaging modalities showed similar deposition patterns of the microspheres within the organ. The combination of intra-procedural visualization, multimodality imaging for patient follow-up and the

  5. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin

  6. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M.; Reinhardt, Frederick W.; Odinek, Judy G.

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  7. Circumstellar Crystalline Silicates: Evolved Stars

    NASA Astrophysics Data System (ADS)

    Tartar, Josh; Speck, A. K.

    2008-05-01

    One of the most exciting developments in astronomy in the last 15 years was the discovery of crystalline silicate stardust by the Short Wavelength Spectrometer (SWS) on board of ISO; discovery of the crystalline grains was indeed one of the biggest surprises of the ISO mission. Initially discovered around AGB stars (evolved stars in the range of 0.8 > M/M¤>8) at far-infrared (IR) wavelengths, crystalline silicates have since been seen in many astrophysical environments including young stellar objects (T Tauri and Herbig Ae/Be), comets and Ultra Luminous Infrared Galaxies. Low and intermediate mass stars (LIMS) comprise 95% of the contributors to the ISM, so study of the formation of crystalline silicates is critical to our understanding of the ISM, which is thought to be primarily amorphous (one would expect an almost exact match between the composition of AGB dust shells and the dust in the ISM). Whether the crystalline dust is merely undetectable or amorphized remains a mystery. The FORCAST instrument on SOFIA as well as the PACS instrument on Herschel will provide exciting observing opportunities for the further study of crystalline silicates.

  8. Amended Silicated for Mercury Control

    SciTech Connect

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly

  9. Histologic comparison of needle, holmium:YAG, and erbium:YAG endoscopic goniotomy

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Shen, Jin-Hui; Rivera, Brian K.; Hernandez, Eleut; Shetlar, Debra J.

    1995-05-01

    An endoscope allows visualization of the anterior chamber angle in porcine eyes despite the presence of cloudy corneas. The pectinate ligaments in the anterior chamber angle are a surgical model for primary infantile glaucoma. This study investigated the histologic results, one month after treating the anterior chamber angle with a goniotomy needle, the holmium:YAG laser, or the erbium:YAG laser coupled to a small endoscope. The anterior chambers were deepened with a viscoelastic material in one-month-old anesthetized pigs. An Olympus 0.8 mm diameter flexible endoscope was externally coupled to a 23 gauge needle or a 300 micron diameter fiber. The angle was treated for 120 degrees by one of the three methods, and the probe was removed. During the acute study, all three methods cut the pectinate ligaments. The histologic findings one month after healing demonstrated minimal surrounding tissue damage following goniotomy with a needle and the most surrounding tissue damage following treatment with the holmium:YAG laser.

  10. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  11. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  12. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  13. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  14. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  15. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  16. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  17. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  18. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  19. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  20. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  1. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  2. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  3. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  4. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  5. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  6. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  7. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  8. Cometary Silicates: Interstellar and Nebular Materials

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.

    2002-01-01

    Evidence for interstellar material in comets is deduced from IR spectra, insitu measurements of Halley, and chondritic porous interplanetary dust particles (CP IDPs). IR spectra of comets reveal the spectrally active minerals: amorphous carbon, amorphous silicates, and (in some comets) crystalline silicates. Evidence suggests amorphous silicates are of interstellar origin while crystalline silicates are of nebular origin. 10 microns spectra of comets and submicron amorphous silicate spherules in CP IDPs have shapes similar to lines-of-sight through the ISM. Thermal emission models of cometary IR spectra require Fe-bearing amorphous silicates. Fe-bearing amorphous silicates may be Fe-bearing crystalline silicates formed in AGB outflows that are amorphized through He+ ion bombardment in supernova shocks in the ISM. Crystalline silicates in comets, as revealed by IR spectra, and their apparent absence in the ISM, argues for their nebular origin. The high temperatures (less than l000 K) at which crystals form or are annealed occur in the inner nebula or in nebular shocks in the 5-10 AU region. Oxygen isotope studies of CP IDPs show by mass only 1 % of the silicate crystals are of AGB origin. Together this suggests crystalline silicates in comets are probably primitive grains from the early solar nebula.

  9. Surface characterization of silicate bioceramics.

    PubMed

    Cerruti, Marta

    2012-03-28

    The success of an implanted prosthetic material is determined by the early events occurring at the interface between the material and the body. These events depend on many surface properties, with the main ones including the surface's composition, porosity, roughness, topography, charge, functional groups and exposed area. This review will portray how our understanding of the surface reactivity of silicate bioceramics has emerged and evolved in the past four decades, owing to the adoption of many complementary surface characterization tools. The review is organized in sections dedicated to a specific surface property, each describing how the property influences the body's response to the material, and the tools that have been adopted to analyse it. The final section introduces the techniques that have yet to be applied extensively to silicate bioceramics, and the information that they could provide.

  10. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  11. Microscopic analysis of laser-induced proximal fiber tip damage during holmium:YAG and thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-04-01

    The thulium fiber laser (TFL) is being studied as an alternative to the standard holmium:YAG laser for lithotripsy. The TFL beam originates within an 18-μm-core thulium-doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller (e.g., 50- to 150-μm core) fibers than possible during holmium laser lithotripsy. This study examines whether the more uniform TFL beam profile also reduces proximal fiber tip damage compared with the holmium laser multimodal beam. Light and confocal microscopy images were taken of the proximal surface of each fiber to inspect for possible laser-induced damage. A TFL beam at a wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, and 500-μs pulse duration, and 100,000 pulses were delivered at each pulse rate setting of 50, 100, 200, 300, and 400 Hz. For comparison, single use, 270-μm-core fibers were collected after clinical holmium laser lithotripsy procedures performed with standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output pulse energy and average power were stable, and no proximal fiber damage was observed at settings up to 35 mJ, 400 Hz, and 14 W average power (n=5). In contrast, confocal microscopy images of fiber tips after holmium lithotripsy showed proximal fiber tip degradation, indicated by small ablation craters on the scale of several micrometers in all fibers (n=20). In summary, the proximal fiber tip of a 105-μm-core fiber transmitted up to 14 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially translate into lower costs for the surgical disposables as well.

  12. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    NASA Astrophysics Data System (ADS)

    Raghunatha, S.; Eraiah, B.

    2016-05-01

    Holmium doped lithium-antimony-lead borate glasses having 1mol% AgNO3 with composition 50B2O3-20PbO-25Sb2O3-5Li2O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  13. Magnetization process in holmium: easy axis spin reorientation induced by the magnetostrictive basal plane distortion.

    PubMed

    Benito, L; Ciria, M; de la Fuente, C; Arnaudas, J I; Ward, R C C; Wells, M R

    2005-06-10

    We report on the change of the easy axis direction in holmium, from the a to the b axis, under the application of a magnetic field in the basal plane. This spin reorientation is observed by measuring the magnetic torque in Ho(n)/Lu(15) superlattices (n and 15 are the number of atomic planes in the Ho and Lu blocks). We also observe that, at the field H0 and temperature at which the reorientation occurs, both axes are easy directions. Based on the fact that the field H0 depends on n in the same way as the field-induced magnetoelastic distortion does, we propose that this spin reorientation originates from the strong field-induced magnetoelastic deformation within the basal plane. The modulation of the alpha strains with sixfold symmetry originates a 12-fold term in the magnetic anisotropy energy.

  14. Observation of 1.5 μm photoluminescence and electroluminescence from a holmium organic complex

    NASA Astrophysics Data System (ADS)

    Zang, F. X.; Li, W. L.; Hong, Z. R.; Wei, H. Z.; Li, M. T.; Sun, X. Y.; Lee, C. S.

    2004-06-01

    Electroluminescence (EL) and photoluminescence in both the visible and near-infrared spectral range were observed from a holmium(dibenzoylmethanato)3(bathophenanthroline) [Ho(DBM)3bath]. Five peaks at 580nm, 660nm, 980nm, 1200nm, and 1500nm, respectively, were attributed to the internal 4f electronical transitions of the Ho3+ ions. Except for the emissions of the Ho3+ ions, a broadband exciplex emission from 480nmto670nm appeared in the EL cases. The emission intensity of the exciplex at organic interface showed a tendency to saturation beyond a certain driving voltage, while the emissions of the Ho3+ ions kept increasing. This evolution of visible EL spectra was discussed in terms of the extension of the charge recombination zone. The 1500nm emission corresponding to the F55→I65 transition suggests that the Ho(DBM)3bath is a potential candidate for optical communications.

  15. High power operation of cladding pumped holmium-doped silica fibre lasers.

    PubMed

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  16. Soft tissue effects of the holmium-YSGG laser in the canine trachea.

    PubMed

    Shapshay, S M; Aretz, H T; Setzer, S E

    1990-03-01

    A holmium-yttrium scandium gallium garnet laser is a pulsed mid-infrared crystalline laser (wavelength, 2.1 microns), which is easily transmissible through flexible quartz fibers. With use of a 300-microns fiber delivery system, this laser was applied in the canine trachea to create a standard 5-mm diameter lesion through mucosa and submucosa. Power settings of 400 mJ and 600 mJ per pulse at 2 pulses per second were used, and wound healing was studied over a 2-week period. Excellent control of depth of tissue ablation was noted, with uncomplicated wound repair. Although healing was somewhat slower compared with healing when the CO2 laser was used, less granulation and fewer inflammatory changes were noted. Further studies need to be performed to determine ideal laser dosimetry before this laser is applied clinically.

  17. Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.

    PubMed

    Lü, Tao; Xiao, Qing; Xia, Danqing; Ruan, Kai; Li, Zhengjia

    2010-01-01

    To overcome the inconsecutive drawback of shadow and schlieren photography, the complete dynamics of cavitation bubble oscillation or ablation products induced by a single holmium laser pulse [2.12 microm, 300 micros (FWHM)] transmitted in different core diameter (200, 400, and 600 microm) fibers is recorded by means of high-speed photography. Consecutive images from high-speed cameras can stand for the true and complete process of laser-water or laser-tissue interaction. Both laser pulse energy and fiber diameter determine cavitation bubble size, which further determines acoustic transient amplitudes. Based on the pictures taken by high-speed camera and scanned by an optical coherent microscopy (OCM) system, it is easily seen that the liquid layer at the distal end of the fiber plays an important role during the process of laser-tissue interaction, which can increase ablation efficiency, decrease heat side effects, and reduce cost.

  18. Application of 2-um wavelength holmium lasers for treatment of skin diseases

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Ivan A.; Klimov, Igor V.; Tsvetkov, Vladimir B.; Nerobeev, Alexander I.; Sadovnikova, Lija B.; Eliseenko, Vladimir I.

    1994-09-01

    Theoretical and experimental analysis of the efficiency of application of 2 micrometers pulsed holmium laser for cosmetic and plastic surgery and dermatology is carried out. Preliminary experiments were carried out on rats. Solid state 2 micrometers pulsed laser was allowed to operate in free running mode with pulse energy up to 1.5 J and pulse repetition rate up to 5 Hz. To deliver emission to the object a flexible quartz fiber without further focusing of 2.5 m in length and 400 micrometers of the core diameter was used. The effect of the different power density emission on the skin was studied. The second stage was the study of the influence of 2 micrometers emission on human skin. The results of the removal of hemangioma, papilloma, telangiectasia, nevus, nevus acantholytic, xanthelasma palpebral, verruca, chloasma, pigmental spots, tattoos, etc. are presented. Precision, simplicity, efficiency, and the high cosmetic effect of these operations is noted.

  19. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing.

    PubMed

    Yao, Chuanfei; He, Chunfeng; Jia, Zhixu; Wang, Shunbin; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2015-10-15

    Holmium (Ho3+)-doped fluorotellurite microstructured fibers based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. By using a 1.992 μm fiber laser as the pump source, lasing at 2.077 μm is obtained from a 27 cm long Ho3+-doped fluorotellurite microstructured fiber. The maximum unsaturated power is about 161 mW and the corresponding slope efficiency is up to 67.4%. The influence of fiber length on lasing at 2.1 μm is also investigated. Our results show that Ho3+-doped fluorotellurite microstructured fibers are promising gain media for 2.1 μm laser applications.

  20. Endoscopic treatment of Bouverets syndrome in an extremely elderly patient with Holmium: YAG laser.

    PubMed

    Chang, Kao-Chi; Chen, Wei-Ming; Wei, Kuo-Liang

    2016-01-01

    Bouveret's syndrome is a rare presentation of duodenal obstruction or gastric outlet obstruction caused by a large gallstone migrating through a cholecystoduodenal or choledochoduodenal fistula. Most patients are elderly and often have underlying comorbidities, complicating surgery. Endoscopic therapy should be used as first-line treatment for these patients who are not good surgical candidates. We report a case of a 98-year-old Chinese female who presented with vomiting for three days. Esophagogastroduodenoscopy and computed tomography confirmed the diagnosis of Bouveret's syndrome. The patient successfully underwent endoscopic lithotripsy with the Holmium: Yttrium- Aluminum-Garnet (Ho: YAG) laser. Ho: YAG laser lithotripsy has been used to treat Bouveret's syndrome in four case reports. It can be recommended in patients with Bouveret's syndrome who are poor candidates for surgery.

  1. Efficacy of retrograde ureteropyeloscopic holmium laser lithotripsy for intrarenal calculi >2 cm.

    PubMed

    Bader, M J; Gratzke, C; Walther, S; Weidlich, P; Staehler, M; Seitz, M; Sroka, R; Reich, O; Stief, C G; Schlenker, B

    2010-10-01

    The objectives of this study are to assess the efficacy and safety of retrograde ureteroscopic holmium laser lithotripsy for intrarenal calculi greater than 2 cm in diameter. A total of 24 patients with a stone burden >2 cm were treated with retrograde ureteroscopic laser lithotripsy. Primary study endpoints were number of treatments until the patient was stone free and perioperative complications with a follow-up of at least 3 months after intervention. In 24 patients (11 women and 13 men, 20-78 years of age), a total of 40 intrarenal calculi were treated with retrograde endoscopic procedures. At the time of the initial procedure, calculi had an average total linear diameter of 29.75 ± 1.57 mm and an average stone volume of 739.52 ± 82.12 mm(3). The mean number of procedures per patient was 1.7 ± 0.8 (range 1-3 procedures). The overall stone-free rate was 92%. After 1, 2 and 3 procedures 54, 79 and 92% of patients were stone free, respectively. There were no major complications. Minor postoperative complications included pyelonephritis in three cases (7.5%), of whom all responded immediately to parenteral antibiotics. In one patient the development of steinstrasse in the distal ureter required ureteroscopic fragment disruption and basketing. Ureteroscopy with holmium laser lithotripsy represents an efficient treatment option and allows the treatment of large intrarenal calculi of all compositions and throughout the whole collecting system even for patients with a stone burden of more than 2 cm size.

  2. Holmium:YAG laser: effect on pulpal tissues and root surfaces

    NASA Astrophysics Data System (ADS)

    Holt, Raleigh A.; Nordquist, Robert E.

    1996-04-01

    The effects of the Holmium:YAG irradiation on the pulpal tissues and surface topography on root surface dentin in human teeth in vivo were studied. The exposed root surfaces of seventeen pre-immediate denture patients were scaled and root planed with a Gracey 3 - 4 curette apical to the dentinoenamel junction until smooth and hard. The prepared root surfaces of two teeth per patient were exposed with Holmium:YAG laser energy after an application of nonfilled resin/fluoride mixture. The laser exposed areas were below the dentinoenamel junction around one-half of each root surface. The opposing sides of each of the teeth received resin/fluoride but no laser energy. A third tooth was identified as a nontreated control. The HO:YAG at 2.12 microns wavelength with a defocused beam size of 3 mm was used. The amount of laser energy delivered per 3 X 5 mm area was 0.450 (+/- .05) joules with a fluence of 2.66 - 3.30 J/cm2. The teeth were extracted after periods of 45 - 120 days. The specimens were fixed in formalin and prepared for histological examination using hematoxylin and eosin stains. Microscopic evaluation of room surfaces showed increased smoothness on the laser treated sites compared to their opposing non-lased sides. Histological examination of the pulpal tissues exhibited no abnormal changes. No clinical symptoms of pulpal pathology were produced. HO:YAG laser energy proved safe for treating room surfaces of human teeth in vivo under conditions presented in this study.

  3. Percutaneous Transhepatic Endoscopic Holmium Laser Lithotripsy for Intrahepatic and Choledochal Biliary Stones

    SciTech Connect

    Rimon, Uri; Kleinmann, Nir; Bensaid, Paul; Golan, Gil; Garniek, Alexander; Khaitovich, Boris; Winkler, Harry

    2011-12-15

    Purpose: To report our approach for treating complicated biliary calculi by percutaneous transhepatic endoscopic biliary holmium laser lithotripsy (PTBL). Patients and Methods: Twenty-two symptomatic patients (11 men and 11 women, age range 51 to 88 years) with intrahepatic or common bile duct calculi underwent PTBL. Nine patients had undergone previous gastrectomy and small-bowel anastomosis, thus precluding endoscopic retrograde cholangiopancreatography. In the other 13 patients, stone removal attempts by ERCP failed due to failed access or very large calculi. We used a 7.5F flexible ureteroscope and a 200-{mu}m holmium laser fiber by way of a percutaneous transhepatic tract, with graded fluoroscopy, to fragment the calculi with direct vision. Balloon dilatation was added when a stricture was seen. The procedure was performed with the patient under general anaesthesia. A biliary drainage tube was left at the end of the procedure. Results: All stones were completely fragmented and flushed into the small bowel under direct vision except for one patient in whom the procedure was aborted. In 18 patients, 1 session sufficed, and in 3 patients, 2 sessions were needed. In 7 patients, balloon dilatation was performed for benign stricture after Whipple operation (n = 3), for choledochalenteric anastomosis (n = 3), and for recurrent cholangitis (n = 1). Adjunctive 'balloon push' (n = 4) and 'rendezvous' (n = 1) procedures were needed to completely clean the biliary tree. None of these patients needed surgery. Conclusion: Complicated or large biliary calculi can be treated successfully using PTBL. We suggest that this approach should become the first choice of treatment before laparoscopic or open surgery is considered.

  4. Adsorption kinetics of silicic acid on akaganeite.

    PubMed

    Naren, Gaowa; Ohashi, Hironori; Okaue, Yoshihiro; Yokoyama, Takushi

    2013-06-01

    As part of a series of studies on the interaction between ferric ions and silicic acid in the hydrosphere, the adsorption of silicic acid on akaganeite was investigated kinetically at various pH values. The adsorption of silicic acid increased with increasing pH over an initial pH range of 4-11.5. In the kinetic experiment, the Cl(-) was released from akaganeite much faster than silicic acid was adsorbed. From this result, we concluded that chloride ions bound on the surface of akaganeite are released and Fe-OH or Fe-O(-) sites are formed, which then acts as an adsorption site for silicic acid. The uptake mechanism of silicic acid by akaganeite is significantly different from that by schwertmannite, despite the presence of the same tunnel structure.

  5. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  6. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A.

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  7. Tailoring polymer properties with layered silicates

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    Polymer layered silicate nanocomposites have found widespread applications in areas such as plastics, oil and gas production, biomedical, automotive and information storage, but their successful commercialization critically depends on consistent control over issues such as complete dispersion of layered silicate into the host polymer and optimal interaction between the layered silicates and the polymers. Polypropylene is a commercially important polymer but usually forms intercalated structures with organically modified layered silicate upon mixing, even it is pre-treated with compatibilizing agent such as maleic anhydride. In this work, layered silicate is well dispersed in ammonium modified polypropylene but does not provide sufficient reinforcement to the host polymer due to poor interactions. On the other hand, interactions between maleic anhydride modified polypropylene and layered silicate are fine tuned by using a small amount of maleic anhydride and mechanical strength of the resultant nanocomposites are significantly enhanced. In particular, the melt rheological properties of layered silicate nanocomposites with maleic anhydride functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the maleic anhydride treated polypropylene based nanocomposites exhibit solid-like linear dynamic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized polypropylene based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interaction in maleic anhydride functionalized nanocomposites, which facilitates formation of a long-lived silicate network mediated by physisorbed polymer chains. Further, the transient shear stress of the maleic anhydride functionalized nanocomposites in start-up of steady shear is a function of the shear

  8. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  9. Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber

    SciTech Connect

    Sadovnikova, Ya E; Kamynin, V A; Kurkov, A S; Medvedkov, O I; Marakulin, A V; Minashina, L A

    2014-01-31

    We have proposed and demonstrated a new passively Q-switched thulium-doped fibre laser configuration. A distinctive feature of this configuration is the use of a heavily holmium-doped fibre for Q-switching. Lasing was obtained at 1.96 μm, with a pulse energy of 3 μJ and pulse duration of 600 ns. The highest pulse repetition rate was 80 kHz. (control of laser radiation parameters)

  10. Holmium-loaded PLLA nanoparticles for intratumoral radiotherapy via the TMT technique: preparation, characterization, and stability evaluation after neutron irradiation.

    PubMed

    Hamoudeh, Misara; Fessi, Hatem; Salim, Hani; Barbos, Dumitru

    2008-08-01

    This article describes the preparation of biocompatible radioactive holmium-loaded particles with appropriate nanoscale size for radionuclide intratumoral administration by the targeted multitherapy (TMT) technique. For this objective, holmium acetylacetonate has been encapsulated in poly-L-lactide (PLLA)-based nanoparticles (NP) by oil-in-water emulsion-solvent evaporation method. NP sizes ranged between 100 and 1,100 m being suitable for the TMT administration method. Elemental holmium loading was found to be around 18% wt/wt and the holmium acetylacetonate trihydrate (HoAcAc) encapsulation efficacy was about 90%. Different experiments demonstrated an amorphous state of HoAcAc after incorporation in NPs. The NPs were irradiated in a nuclear reactor with a neutron flux of 1.1 x 10(13) n/cm(2)/s for 1 h, which yielded a specific activity of about 27.4 GBq/g of NPs being sufficient for our desired application. Microscopic analysis of irradiated NPs showed some alteration after neutron irradiation as some NPs looked partially coagglomerated and a few pores appeared at their surface because of the locally released heat in the irradiation vials. Furthermore, differential scanning calorimetry (DSC) results indicated a clear decrease in PLLA melting point and melting enthalpy reflecting a decrease in polymer crystallinity. This was accompanied by a clear decrease in polymer molecular weights, which can be ascribed to a radiation-induced chain scission mechanism. However, interestingly, other experiments confirmed the chemical identity retention of both HoAcAc and PLLA in irradiated NPs despite this detected decrease in the polymer crystallinity and molecular weight. Although neutron irradiation has induced some NPs damage, these NPs kept out their overall chemical composition, and their size distribution remained suitable for the TMT administration technique. Coupled with the TMT technique, these NPs may represent a novel potential radiopharmaceutical agent for

  11. Characterization of holmium fibers with various concentrations for fiber laser applications around 2.1 μm

    NASA Astrophysics Data System (ADS)

    Aubrecht, Jan; Peterka, Pavel; Honzatko, Pavel; Baravets, Yauhen; Jelinek, Michal; Kubecek, Vaclav; Pawliszewska, Maria; Sotor, Jaroslaw; Sobon, Grzegorz; Abramski, Krzysztof M.; Kasik, Ivan

    2016-04-01

    In this work, we present experimental results of characterization of the developed holmium-doped silica-based optical fibers with holmium ions concentrations in the range from 1000 to 10000 ppm. The fibers were fabricated by the modified chemical vapor deposition and solution doping method. They were characterized in terms of their spectral attenuation, refractive index profile, and especially performance in fiber laser. Simultaneously, two different fiber laser setups were tested. In the first one, holmium-doped fiber in Fabry-Perot configuration was pumping by in house developed thulium-doped fiber laser in ring arrangement. In the second one, bulk-optic pump-coupling configuration, consisted of a commercially available thulium fiber laser emitting at 1940 nm and system of lenses and mirrors was used. We have focused on comparison of laser output powers, slope efficiencies, and laser thresholds for individual holmiumdoped fiber in these different laser arrangements. Finally, the application of the developed fiber in subpicosecond fiber laser with graphene-based saturable absorber for mode-locking operation was investigated.

  12. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    quartz, Starphire soda lime silicate glass, hydrated Starphire, BOROFLOAT borosilicate glass, an iron-containing soda lime silicate glass, opal (a hydrated... Opal (hydrated amorphous silica). .............................................................................. 10 2.7. ROBAX glass ceramic...spectrum as a function of stress for BOROFLOAT borosilicate glass. .......... 29 4.8. Raman spectrum as a function of stress for opal (hydrated

  13. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    iron-containing soda lime silicate glass, opal (a hydrated silicate glass), ROBAX glass ceramic, and others were single crystal (α-quartz) and...10 2.6. Opal (hydrated amorphous silica...Raman spectrum as a function of stress for opal (hydrated silica) glass. ................... 29 4.9. Raman spectrum as a function of stress for

  14. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium...

  15. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product....

  16. The evaluation of tissue mass loss in the incision line of prostate with benign hyperplasia performed using holmium laser and cutting electrode

    PubMed Central

    Szewczyk, Mariusz; Jesionek–Kupnicka, Dorota; Lipinski, Piotr; Różański, Waldemar

    2014-01-01

    Introduction The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). Material and methods The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. Results In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Conclusions Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode. PMID:25247088

  17. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules. PMID:27873810

  18. Structure-directing and template roles of aromatic molecules in the self-assembly formation process of 3D holmium-succinate MOFs.

    PubMed

    Bernini, María C; Snejko, Natalia; Gutierrez-Puebla, Enrique; Brusau, Elena V; Narda, Griselda E; Monge, M Ángeles

    2011-07-04

    Two new holmium-succinate frameworks have been synthesized by hydrolysis in situ of the succinylsalicylic acid under different hydrothermal conditions. Compound 1, [Ho(2)(C(4)H(4)O(4))(3)(H(2)O)(2)]·0.33(C(7)H(6)O(3)), P ̅i space group, has a novel structure composed by 1D-SBUs consisting of [HoO(9)] chains of polyhedra linked by the succinate ligands giving a 3D framework. Compound 2, [Ho(2)(C(4)H(4)O(4))(3)(H(2)O)(2)], also belonging to the P ̅i space group, has a denser structure. The role of the in-situ-generated salicylic acid on formation of both structures is studied by means of a synthesis design methodology. A topological study of the new holmium succinate compounds in comparison with the previously reported 3D holmium-succinate framework is performed here.

  19. Visible absorption spectra of the 4f electron transitions of neodymium, praseodymium, holmium and erbium complexes with fleroxacin and their analytical application.

    PubMed

    Wang, Naixing; Jiang, Wei; Xu, Xiuqin; Si, Zhikun; Bai, Haitao; Tian, Cong

    2002-05-01

    The absorption spectra of the 4f electron transitions of neodymium, praseodymium, holmium and erbium complexes with fleroxacin in the presence of cetylpyridinium chloride were studied by normal and derivative spectrophotometry. Their molar absorptivity at the maximum absorption bands are about 5.3 (at 571 nm) times greater for neodymium, 2.8 (at 483 nm) times greater for praseodymium, 12.6 (at 448.5 nm) times greater for holmium and 9.7 (at 519 nm) times greater for erbium than those in the absence of complexing agents. The second-derivative spectrum is used both to eliminate the interference from other rare earths and to improve the sensitivity. Beer's law is obeyed from 3.0 - 70 microg ml(-1) for neodymium and holmium, from 6.0 - 70 microg ml(-1) for erbium, and from 12.0 - 70 microg ml(-1) for praseodymium. The relative standard deviations are 1.9% and 1.5% for 7.5 microg ml(-1) of neodymium and holmium, and 2.1% and 1.6% for 15.0 microg ml(-1) of praseodymium and erbium, respectively. Their detection limits (signal-to-noise ratio = 2) are 3.2 microg ml(-1), 1.3 microg ml(-1), (1.1) microg ml(-1) and 2.5 microg ml(-1) for praseodymium, neodymium, holmium and erbium, respectively. A new system for the simultaneous determinations of the praseodymium, neodymium, holmium and erbium in rare earth mixtures with good accuracy and selectivity is proposed.

  20. Kidney stone ablation times and peak saline temperatures during Holmium:YAG and Thulium fiber laser lithotripsy, in vitro, in a ureteral model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-02-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental Thulium fiber laser (TFL) was studied and compared to clinical gold standard Holmium:YAG laser. The Holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. TFL (λ = 1908 nm) was operated with 35 mJ, 500 μs, 150-500 Hz, and 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate / 40% calcium phosphate), of uniform mass and diameter (4-5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 ml/min and 13.7 ml/min for the TFL and Holmium laser, respectively. The temperature 3 mm from tube's center and 1 mm above mesh sieve was measured by a thermocouple and recorded during experiments. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. Holmium laser time measured 167 +/- 41 s (n = 12). TFL times measured 111 +/- 49 s, 39 +/- 11 s, and 23 +/- 4 s, for pulse rates of 150, 300, and 500 Hz (n = 12 each). Mean peak saline irrigation temperatures reached 24 +/- 1 °C for Holmium, and 33 +/- 3 °C, 33 +/- 7 °C, and 39 +/- 6 °C, for TFL at pulse rates of 150, 300, and 500 Hz. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and reduced stone retropulsion, and may provide a clinical alternative to the conventional Holmium laser for lithotripsy.

  1. Restenosis of the coronary stenotic lesions treated by holmium:YAG laser coronary angioplasty

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shunichi; Nonogi, Hiroshi; Goto, Yoichi; Itoh, Akira; Ozono, Keizaburo; Daikoku, Satoshi; Haze, Kazuo

    1994-07-01

    Clinical efficacy of newly developed Holmium YAG laser coronary angioplasty (HLCA) was assessed for 30 patients with angina. There were 12 near left main trunk (LMT) lesions and 4 aorto- ostial lesions. Adjunctive balloon angioplasty was performed for 25 of 30 lesions. Delivered energy ranged from 1.5 to 2.5 watts/pulse and the total exposure time ranged from 6 to 55 seconds. External diameter of laser catheter was 1.5 mm for 13 lesions, 1.4 mm for 17 lesions, and 1.7 mm for 5 lesions. Laser success, defined as 20% reduction of stenotic ratio, was obtained in 21 of 30 (70%) and overall procedural success rate was 93%. There were 3 cases with acute coronary occlusions relieved by adjunctive balloon angioplasty and one coronary perforation without manifestation of cardiac tamponade. There were no large coronary dissection which involved more than 5 mm of the coronary artery. Follow up coronary angiography after 3 months showed restenosis in 14 of 27 patients (52%). Percent stenosis after lasering (56%) was similar to that at 3 months after (62%). HLCA is acutely effective treatment for lesions near LMT, because of low incidence of large coronary dissection. However, angiographical restenosis rate is high at 3 months after HLCA. This may be attributed to the relatively large residual stenosis after the procedure and vessel injury caused by shock wave.

  2. Transurethral lithotripsy with holmium-YAG laser of a large exogenous prostatic calculus.

    PubMed

    Hasegawa, Masanori; Ohara, Rei; Kanao, Kent; Nakajima, Yosuke

    2011-04-01

    Prostatic calculi are classified into two types, endogenous and exogenous calculi, based on their origin. Endogenous calculi are commonly observed in elderly men; however, exogenous prostatic calculi are extremely rare. We report here the case of a 51-year-old man who suffered incontinence and pollakiuria with a giant exogenous prostatic calculus almost completely replacing the prostatic tissue. X-rays and computed tomography demonstrated a large calculus of 65 × 58 mm in the small pelvic cavity. The patient underwent a transurethral lithotripsy with a holmium-YAG laser and a total of 85 g of disintegrated stones was retrieved and chemical stone analysis revealed the presence of magnesium ammonium phosphate. The incontinence improved and the voiding volume increased dramatically, and no stone recurrence in the prostatic fossa occurred at the 2 years follow-up. The etiology of this stone formation seemed to be based on some exogenous pathways combined with urinary stasis and chronic urinary infection due to compression fracture of the lumbar vertebra.

  3. Holmium:YAG laser coronary angioplasty in patients with lesions not ideal for balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shunichi; Nonogi, Hiroshi; Goto, Yoichi; Itoh, Akira; Ozono, Keizaburo; Daikoku, Satoshi; Haze, Kazuo

    1993-06-01

    Conventional balloon coronary angioplasty has limitations for application on particular lesions, such as lesions near the left main trunk (LMT), ostial location, and highly eccentric lesions. Hence, efficacy of newly developed Holmium YAG laser coronary angioplasty (HLCA) was assessed for 24 patients with angina. Adjunctive balloon angioplasty was performed for 21 of 24 lesions. Delivered energy ranged from 1.5 to 2.5 watts/pulse and the total exposure time ranged from 6 to 32 seconds. Laser success, defined as 20% reduction of stenotic ratio, was obtained in 16 of 24 (67%) and overall procedural success rate was 92%. Follow up coronary angiography after 3 months showed restenosis in 9 of 19 patients (47%). HLCA is an acutely effective treatment for lesions identified as not ideal for balloon angioplasty. However, angiographical restenosis rate is similar to the conventional balloon angioplasty and a highly calcified complex lesion may not be a candidate for the treatment of HLCA, because of a potential risk of coronary perforation.

  4. Laser hard tissue interactions: energy transmission through human dental tissue using a holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Holt, Raleigh A.; Nordquist, Robert E.

    1995-05-01

    Laser energy transmission through hard tissue was investigated using a pulsed Holmium:YAG laser (2.12 micrometers wavelength). The surface of extracted human dental tissue, 200 micrometers to 700 micrometers in thickness, was irradiated by a laser beam of various fluences between 3 J/cm2 to 28 J/cm2. The transmitted energy through different dentinal components of the tooth was measured. For the mature teeth, the region of the dentinoenamel junction showed the least transmission and the coronal the most; the difference between the two regions could be as large as 20%. The unerupted or young teeth revealed the opposite transmission characteristics. Repeated laser treatment revealed an enhanced transmissibility and the transmitted energy reached a plateau after certain irradiation exposure. Also studied were the effects of various media on the dental transmissibility. For example, surface application of a smear layer of unfilled resin did not change the transmissibility but appeared to slow down the temperature build-up. Visible surface damage -- a yellow or a white spot on the treatment site -- appeared when the fluence reached beyond 20 J/cm2. SEM samples revealed three different surface structural changes: melting with tubule closures, surface removal with tubule exposures, and surface cracking with crater formation, depending on the level of irradiation.

  5. All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2017-01-01

    A passively mode-locked thulium/holmium-doped fiber laser (THDFL) based on tungsten disulfide (WS2) saturable absorber (SA) was demonstrated. The WS2 nanosheets were prepared by liquid phase exfoliation method and the SA was fabricated by depositing the few-layer WS2 nanosheets on the surface of a fiber taper. The modulation depth, saturable intensity, and non-saturable loss of this SA were measured to be 8.2%, 0.82 GW cm-2, and 29.4%, respectively. Based on this SA, a stable mode-locked laser operated at 1.91 µm was achieved with pulse duration of 825 fs and repetition rate of 15.49 MHz, and signal-to-noise ratio (SNR) of 67 dB. Meanwhile, by increasing the pump power and adjusting the position of polarization controller, harmonic mode-locking operations were obtained. These results showed that the WS2 nanosheet-based SA could be served as a desirable candidate for a short-pulse mode locker at 2 µm wavelength.

  6. Effectiveness and Safety of Ureteroscopic Holmium Laser Lithotripsy for Upper Urinary Tract Calculi in Elderly Patients.

    PubMed

    Yoshioka, Takashi; Otsuki, Hideo; Uehara, Shinya; Shimizu, Toshihiro; Murao, Wataru; Fujio, Koji; Fujio, Kei; Wada, Koichiro; Araki, Motoo; Nasu, Yasutomo

    2016-06-01

    Upper urinary tract calculi are common; however, there is no recommended treatment selection for elderly patients. Ureteroscopic holmium laser lithotripsy (URS lithotripsy) is minimally invasive, and it provides a high stone-free rate (SFR) treatment for upper urinary tract calculi. Here, we retrospectively evaluated the surgical outcomes of URS lithotripsy after dividing the 189 cases into 3 groups by patient age: the '<65 group' (<65 years old, n=108), the '65-74 group' (65-74 years old, n=42), and the ' 75 group' ( 75 years old, n=39). The patients' characteristics, stone status, and perioperative outcomes were assessed. The 65-74 group and the 75 group had a significantly higher prevalence of hypertension compared to the<65 group. Compared to the<65 group, the 65-74 group had a significantly higher prevalence of hyperlipidemia, and the 75 group had significantly higher the American Society of Anesthesiologists (ASA) scores. Despite these preoperative risk factors, SFR and postoperative pyelonephritis in the 65-74 group and the 75 group were similar to those of the<65 group. In conclusion, URS lithotripsy is the preferred treatment for upper urinary tract calculi, even for elderly patients who have multiple preoperative risk factors.

  7. Laser processing of siliceous materials

    NASA Astrophysics Data System (ADS)

    Panzner, Michael; Lenk, Andreas; Wiedemann, Guenter R.; Hauptmann, Jan; Weiss, Hans J.; Ruemenapp, Thomas; Morgenthal, Lothar; Beyer, Eckhard

    2000-08-01

    Laser processing of siliceous materials becomes increasingly important. Analogous to the laser processing of conventional materials there are applications in the fields of cleaning, surface processing, cutting, etc. The present paper concerns the state of the art and new applications: (1) Laser cleaning of natural stone surfaces. The good disability allows restoration work to be carried out conveniently, as for example the complete removal of crusts or the removal to such degree that moisture is not trapped beneath. (2) Non-slip finish of polished natural stone surfaces: The excellent focusing of laser beams on spots as small as 100 micrometer and below can be exploited to produce macroscopically invisible structures on the surfaces of different materials. This permits microscopically small craters and lentil shaped depressions to be generated on the stone surface. Therefore it is possible to provide a non-slip finish to polished natural stone surfaces without noticeably impairing the gloss. (3) Concrete cutting: In Europe, and particularly in Germany, there is a growing demand for redevelopment of concrete apartment buildings, involving the removal of non-bearing walls and the cutting of openings. The temporal relocation of residents due to the noise and moisture from the use of diamond tools could be avoided by applying a laser cutting technology. With a 3 kW-Nd-YAG-laser, 70 mm concrete can be cut with rates up to 25 mm/min.

  8. Organically modified silicate aerogels, ``Aeromosils``

    SciTech Connect

    Kramer, S.J.; Mackenzie, J.D.; Rubio-Alonso, F.

    1996-12-31

    Aerogels derived from sol-gel oxides such as silica have become quite scientifically popular because of their extremely low densities, high surface areas, and their interesting optical, dielectric, thermal and acoustic properties. However, their commercial applicability has thus far been rather limited, due in great part to their brittleness and hydrophilicity. In prior work by the research group, modifying silicate gel structures with flexible, organic containing polymers such as polydimethylsiloxane imparted significant compliance (even rubbery behavior) and hydrophobicity. These materials have been referred to as Ormosils. This study expounds on the current effort to extend these desirable properties to aerogels, and in-so-doing, creating novel ``Aeromosils``. Reactive incorporation of hydroxy-terminal polydimethylsiloxane (PDMS) into silica sol-gels was made using both acid and two-step acid/base catalyzed processes. Aerogels were derived by employing the supercritical CO{sub 2} technique. Analyses of microstructure were made using nitrogen adsorption (BET surface area and pore size distribution), and some mechanical strengths were derived from tensile strength testing. Interesting Aeromosil properties obtained include optical transparency, surface areas of up to 1,200 m{sup 2}/g, rubberiness, and better strength than corresponding silica aerogels with elongations at break exceeding 5% in some cases.

  9. Improved alkali-metal/silicate binders

    NASA Technical Reports Server (NTRS)

    Schutt, J.

    1978-01-01

    Family of inorganic binders utilizes potassium or sodium oxide/silicate dispersion and employs high mole ratio of silicon dioxide to alkali-metal binder. Binders are stable, inexpensive, extremely water resistant, and easy to apply.

  10. Holmium Laser Lithotripsy with Semi-Rigid Ureteroscopy: A First-Choice Treatment for Impacted Ureteral Stones in Children?

    PubMed Central

    Adanur, Senol; Aydin, Hasan Riza; Ozkaya, Fatih; Ziypak, Tevfik; Polat, Ozkan

    2014-01-01

    Background We aimed to assess the effectiveness of semi-rigid ureteroscopy and holmium laser lithotripsy in the treatment of impacted ureteral stones in children. Material/Methods We evaluated a total of 32 children under the age of 18 years treated with ureteroscopic holmium laser lithotripsy for impacted ureteral stones between January 2005 and July 2013. Their stone-free state was defined as the absence of any residual stone on radiologic evaluation performed 4 weeks postoperatively. Complications were evaluated according to the modified Clavien classification. Result The mean patient age was 9.5±5.1 years (range 1–18 years). Seven (21.8%) of the stones were located in the proximal ureter, 9 (28.2%) were in the mid-ureter, and 16 (50%) were in the distal ureter. The mean stone size was calculated as being 10.46±3.8 mm2 (range 5–20). The stone-free rate was 93.75% (30/32 patients) following primary URS. Additional treatment was required for only 2 (6.25%) of the patients. After the procedure, a D-J stent was placed in all the patients. The total complication rate was 15.6% (5 patients). The 10 total complications in these 5 patients were 5 (15.6%) Grade I, 1 (3.1%) Grade II, 2 (6.25%) Grade IIIa, and 2 (6.25%) Grade IIIb. The mean follow-up period was 16.5 months (range 3–55). Conclusions For the treatment of impacted ureteral stones in children, holmium laser lithotripsy with semi-rigid ureteroscopy, with its low retreatment requirement and acceptable complication rates, is an effective and reliable method in experienced and skilled hands as a first-choice treatment approach. PMID:25415256

  11. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs

    PubMed Central

    Nijsen, J. F. W.; de Wit, T. C.; Seppenwoolde, J. H.; Krijger, G. C.; Seevinck, P. R.; Huisman, A.; Zonnenberg, B. A.; van den Ingh, T. S. G. A. M.; van het Schip, A. D.

    2008-01-01

    Purpose The aim of this study is to evaluate the toxicity of holmium-166 poly(l-lactic acid) microspheres administered into the hepatic artery in pigs. Methods Healthy pigs (20–30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres (165HoMS; n = 5) or with holmium-166-loaded microspheres (166HoMS; n = 13). The microspheres’ biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and (166HoMS group only) hematologically over a period of 1 month (165HoMS group) or over 1 or 2 months (166HoMS group). Finally, a pathological examination was undertaken. Results After microsphere administration, some animals exhibited a slightly diminished level of consciousness and a dip in appetite, both of which were transient. Four lethal adverse events occurred in the 166HoMS group due either to incorrect administration or comorbidity: inadvertent delivery of microspheres into the gastric wall (n = 2), preexisting gastric ulceration (n = 1), and endocarditis (n = 1). AST levels were transitorily elevated post-166HoMS administration. In the other blood parameters, no abnormalities were observed. Nuclear scans were acquired from all animals from the 166HoMS group, and MRI scans were performed if available. In pigs from the 166HoMS group, atrophy of one or more liver lobes was frequently observed. The actual radioactivity distribution was assessed through ex vivo 166mHo measurements. Conclusion It can be concluded that the toxicity profile of HoMS is low. In pigs, hepatic arterial embolization with 166HoMS in amounts corresponding with liver-absorbed doses of over 100 Gy, if correctly administered, is not associated with clinically relevant side effects. This result offers a good perspective for upcoming patient trials. PMID:18330569

  12. Intratumoral Administration of Holmium-166 Acetylacetonate Microspheres: Antitumor Efficacy and Feasibility of Multimodality Imaging in Renal Cancer

    PubMed Central

    Elschot, Mattijs; Seevinck, Peter R.; Beekman, Freek J.; de Jong, Hugo W. A. M.; Uges, Donald R. A.; Kosterink, Jos G. W.; Luijten, Peter R.; Hennink, Wim E.; van het Schip, Alfred D.; Bosch, J. L. H. Ruud; Nijsen, J. Frank W.

    2013-01-01

    Purpose The increasing incidence of small renal tumors in an aging population with comorbidities has stimulated the development of minimally invasive treatments. This study aimed to assess the efficacy and demonstrate feasibility of multimodality imaging of intratumoral administration of holmium-166 microspheres (166HoAcAcMS). This new technique locally ablates renal tumors through high-energy beta particles, while the gamma rays allow for nuclear imaging and the paramagnetism of holmium allows for MRI. Methods 166HoAcAcMS were administered intratumorally in orthotopic renal tumors (Balb/C mice). Post administration CT, SPECT and MRI was performed. At several time points (2 h, 1, 2, 3, 7 and 14 days) after MS administration, tumors were measured and histologically analyzed. Holmium accumulation in organs was measured using inductively coupled plasma mass spectrometry. Results 166HoAcAcMS were successfully administered to tumor bearing mice. A striking near-complete tumor-control was observed in 166HoAcAcMS treated mice (0.10±0.01 cm3 vs. 4.15±0.3 cm3 for control tumors). Focal necrosis and inflammation was present from 24 h following treatment. Renal parenchyma outside the radiated region showed no histological alterations. Post administration CT, MRI and SPECT imaging revealed clear deposits of 166HoAcAcMS in the kidney. Conclusions Intratumorally administered 166HoAcAcMS has great potential as a new local treatment of renal tumors for surgically unfit patients. In addition to strong cancer control, it provides powerful multimodality imaging opportunities. PMID:23320070

  13. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  14. Peralkaline silicic volcanic rocks in northwestern nevada.

    PubMed

    Noble, D C; Chipman, D W; Giles, D L

    1968-06-21

    Late Tertiary silicic ashflow tuffs and lavas peralkaline in chemical character (atomic Na + K greater than Al), mainly comendites, occur over wide areas in northwestern Nevada and appear to be widespread in southeastern Oregon. Such peralkaline rocks-which are not uncommon in the western United States-and other chemically unusual silicic rocks are found near the margins rather than toward the center of the Great Basin.

  15. Hybrid method of transurethral resection of ejaculatory ducts using holmium:yttriumaluminium garnet laser on complete ejaculatory duct obstruction.

    PubMed

    Lee, Joo Yong; Diaz, Richilda Red; Choi, Young Deuk; Cho, Kang Su

    2013-07-01

    A 32-year old single man presented with azoospermia and low semen volume which was noted one and half a year ago. Transrectal ultrasonography and seminal vesiculography were performed to evaluate ejaculatory duct obstruction, and transurethral resection of the ejaculatory duct was performed using a hybrid technique of holmium:yttriumaluminium garnet laser with monopolar transurethral resection to overcome the narrow prostatic urethra. To our knowledge, this is the first report on the successful outcome of a hybrid technique applied for transurethral resection of the ejaculatory duct.

  16. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  17. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron

  18. Results of a retrospective single institution analysis of targeted skeletal radiotherapy with (166)Holmium-DOTMP as conditioning regimen for autologous stem cell transplant for patients with multiple myeloma. Impact on transplant outcomes.

    PubMed

    Christoforidou, Anna V; Saliba, Rima M; Williams, Patricia; Qazilbash, Muzaffar; Roden, Linda; Aleman, Ana; Weber, Donna; Mendoza, Floralyn; Podoloff, Donald; Wendt, Richard; Breitz, Hazel; Alexanian, Raymond; Champlin, Richard; Giralt, Sergio

    2007-05-01

    (166)Holmium-DOTMP is a beta-emitting radiophosphonate that localizes specifically to the bone surfaces and can deliver high-dose radiation to the bone marrow. Phase I/II trials showed feasibility and tolerability when combined with high-dose melphalan with or without total-body irradiation (TBI) in patients with multiple myeloma (MM) undergoing autologous stem cell transplantation (ASCT). The purpose of this study was to define the potential impact of (166)Holmium-DOTMP on outcomes in patients with MM undergoing ASCT. Retrospective review of transplant outcomes among patients with MM who received an ASCT between January 1998 to December 2001 with either melphalan 200 mg/m(2) or a (166)Holmium-DOTMP containing regimen as part of their initial therapy. Univariate analysis was performed for response, overall survival (OS), and event free survival (EFS). One hundred four patients were identified, of which 41 received a (166)Holmium-DOTMP containing regimen and 63 received melphalan alone. The (166)Holmium-DOTMP patients were divided into 2 groups according to the dose received (<2400 mCi versus > or = 2400 mCi). The (166)Holmium-DOTMP group had a trend towards a higher complete remission (CR) rate compared to patients receiving melphalan alone (51% versus 32%). The median EFS for the low-dose (166)Holmium-DOTMP, the high-dose (166)Holmium-DOTMP, and melphalan alone was 30, 23, and 19 months, respectively; the OS rate at 5 years for the 3 groups was 61%, 40%, and 43%, respectively. (166)Holmium-DOTMP, in combination with high-dose melphalan, can result in higher CR rates when given in optimal doses (<2400 mCi) when compared to melphalan alone, and should be further tested in phase III trials in patients with MM undergoing ASCT.

  19. Holmium laser enucleation of the prostate: a size-independent new "gold standard".

    PubMed

    Elzayat, Ehab A; Habib, Enmar I; Elhilali, Mostafa M

    2005-11-01

    We report our experience with holmium laser enucleation of the prostate (HoLEP) for treatment of 552 patients with symptomatic benign prostatic hyperplasia (BPH) and their long-term outcome. Between March 1998 and January 2005, a retrospective review was conducted at our institution of 552 cases in which patients underwent HoLEP. Patient characteristics, indications for surgery, preoperative and postoperative International Prostate Symptom Score (I-PSS), peak flow rate (Qmax), postvoid residual urine, operative data, catheterization time, hospital stay, and immediate and long-term complications were recorded. The mean age of patients was 73.7 +/- 7.9 years, and the mean follow-up time was 36 months. The mean preoperative prostate size was 83.7 +/- 49.7 cm3 (range, 20 to 351 cm3), the mean enucleation time was 86 minutes (range, 15 to 255 minutes), and the mean enucleated tissue weight was 52.1 +/- 43.7 g (range, 5 to 340 g). The voiding parameters were significantly improved, with a 200% increase in Qmax, as well as a 75% improvement in I-PSS at 1 year postoperatively, which continued to improve during subsequent follow-up. A total of 11 patients required blood transfusion; 8 of them were on anticoagulant therapy. Irritative symptoms were noted in 9.4% and transient stress incontinence in 4.2% of patients. Bladder neck contracture and urethral stricture each developed in 1.3% of patients. We conclude that HoLEP is a safe and effective procedure for treatment of symptomatic BPH, regardless of prostate size, with low morbidity and short hospital stay. HoLEP appears to be the modern alternative to transurethral resection of the prostate and open prostatectomy, and it may be considered a size-independent new "gold standard."

  20. An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry.

    PubMed

    Travis, John C; Zwinkels, Joanne C; Mercader, Flora; Ruíz, Arquímedes; Early, Edward A; Smith, Melody V; Noël, Mario; Maley, Marissa; Kramer, Gary W; Eckerle, Kenneth L; Duewer, David L

    2002-07-15

    Commercial spectrophotometers typically use absorption-based wavelength calibration reference materials to provide wavelength accuracy for their applications. Low-mass fractions of holmium oxide (Ho2O3) in dilute acidic aqueous solution and in glass matrixes have been favored for use as wavelength calibration materials on the basis of spectral coverage and absorption band shape. Both aqueous and glass Ho2O3 reference materials are available commercially and through various National Metrology Institutes (NMIs). Three NMIs of the North American Cooperation in Metrology (NORAMET) have evaluated the performance of Ho3-(aq)-based Certified Reference Materials (CRMs) under "routine" operating conditions using commercial instrumentation. The study was not intended to intercompare national wavelength scales but to demonstrate comparability of wavelength measurements among the participants and between two versions of the CRMs. It was also designed to acquire data from a variety of spectrophotometers for use in a NIST study of wavelength assignment algorithms and to provide a basis for a possible reassessment of NIST-certified Ho3+(aq) band locations. The resulting data show a substantial level of agreement among laboratories, instruments, CRM preparations, and peak-location algorithms. At the same time, it is demonstrated that the wavelength comparability of the five participating instruments can actually be improved by calibrating all of the instruments to the consensus Ho3+(aq) band locations. This finding supports the value of absorption-based wavelength standards for calibrating absorption spectrophotometers. Coupled with the demonstrated robustness of the band position values with respect to preparation and measurement conditions, it also supports the concept of extending the present approach to additional NMIs in order to certify properly prepared dilute acidic Ho2O3 solution as an intrinsic wavelength standard.

  1. Large Dumbbell Shaped Vesicovaginal Calculus Managed with Holmium Laser Cystolithotripsy Followed by Staged Repair of Vesicovaginal Fistula

    PubMed Central

    Sawant, Ajit; Pawar, Prakash; Kasat, Gaurav Vinod; Kapadnis, Lomesh

    2016-01-01

    Complicated Vesicovaginal Fistulae (VVF) is prevalent in developing countries following obstetric injury. We report a rare case of a large dumbbell shaped vesicovaginal calculus measuring 7x 4.6cm in a patient with recurrent, complicated VVF managed successfully in two stages 6 weeks apart. Holmium laser (30 Watt) cystolithotripsy was used to break the vesical portion of the stone at the waist of the dumbbell, followed by delivery of vaginal part of the stone. Trans-abdominal VVF repair (O’Connor method) with omental interposition flap with right side ureteric reimplant was done after six weeks. Our case was unique because of occurrence of a larger sized fistula after a gynaecological surgery. She had developed larger stone (weight more than190gm- vaginal component) into the fistula tract. Also she had undergone multiple failed VVF repair attempts before. Use of holmium laser energy to break the stone was unique which minimized the morbidity of the first procedure leading to early recovery followed by staged repair of fistula after six weeks. PMID:27790520

  2. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy.

  3. Determination of some trace elements in food and soil samples by atomic absorption spectrometry after coprecipitation with holmium hydroxide.

    PubMed

    Saracoglu, Sibel; Soylak, Mustafa; Cabuk, Dilek; Topalak, Zeynep; Karagozlu, Yasemin

    2012-01-01

    The determination of trace elements in food and soil samples by atomic absorption spectrometry was investigated. A coprecipitation procedure with holmium hydroxide was used for separation-preconcentration of trace elements. Trace amounts of copper(II), manganese(II), cobalt(II), nickel(ll), chromium(lll), iron(Ill), cadmium(ll), and lead(ll) ions were coprecipitated with holmium hydroxide in 2.0 M NaOH medium. The optimum conditions for the coprecipitation process were investigated for several commonly tested experimental parameters, such as amount of coprecipitant, effect of standing time, centrifugation rate and time, and sample volume. The precision, based on replicate analysis, was lower than 10% for the analytes. In order to verify the accuracy of the method, the certified reference materials BCR 141 R calcareous loam soil and CRM 025-050 soil were analyzed. The procedure was successfully applied for separation and preconcentration of the investigated ions in various food and soil samples. An amount of the solid samples was decomposed with 15 mL concentrated hydrochloric acid-concentrated nitric acid (3 + 1). The preconcentration procedure was then applied to the final solutions. The concentration of trace elements in samples was determined by atomic absorption spectrometry.

  4. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  5. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  6. Hydrothermal synthesis of ytterbium silicate nanoparticles.

    PubMed

    Chen, Hongfei; Gao, Yanfeng; Liu, Yun; Luo, Hongjie

    2010-02-15

    A simple, low-cost hydrothermal method was developed to synthesize 20-nm-diameter single-crystalline ytterbium silicate (Yb(2)Si(2)O(7) and Yb(2)SiO(5)) nanoparticles at 200 degrees C. This is nearly 1000 degrees C lower than that for the typical sol-gel route to ytterbium silicate powders. Obtained powders showed very low thermal conductivity, a suitable thermal expansion coefficient, and excellent thermal/structural stability, suggesting a potential application to environmental and thermal barrier coatings. Special focus was placed on assessing the hydrothermal reaction mechanism for particle formation.

  7. Mafic silicates in the Orgueil carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Macdougall, J. D.

    1976-01-01

    Iron-bearing olivines and pyroxenes occurring in Orgueil may represent a separate population distinct from the magnesian varieties previously reported. Compositions of these iron-bearing silicates are inconsistent with an origin by direct equilibrium condensation in the nebula. Such an origin is more plausible for the magnesian silicates, but lacks conclusive evidence. An extra-solar system origin for either mafic population is possible, though similarly lacking in evidence. About 15% of the olivines, randomly distributed with respect to iron content, retain particle track evidence of a precompaction irradiation.

  8. Reaction of silicate minerals to form tetramethoxysilane.

    PubMed

    Lewis, Larry N; Schattenmann, Florian J; Jordan, Tracey M; Carnahan, James C; Flanagan, William P; Wroczynski, Ronald J; Lemmon, John P; Anostario, Joseph M; Othon, Michelle A

    2002-05-06

    Several silicon dioxide sources were used as reagents in the base-mediated reaction with dimethyl carbonate (DMC) to make tetramethoxysilane (Q'). Several commercially available diatomaceous earth materials were investigated. High throughput screening was employed to explore over 200 silicate rocks and minerals as alternative silicon dioxide sources for formation of Q' from DMC and base. Amorphous silicon dioxide materials are effective reagents for the Q' forming reaction. Effective silicon dioxide sources in addition to the diatomaceous earth materials include opal and various synthetic silicates (Li, Co, and Ca).

  9. Holmium Laser Enucleation of the Prostate is Safe for Patients Above 80 Years: A Prospective Study

    PubMed Central

    2016-01-01

    Purpose: To evaluate the effect of age on the efficacy and safety of holmium laser enucleation of the prostate (HoLEP) for the treatment of symptomatic benign prostatic hyperplasia (BPH). Methods: A total of 579 patients underwent HoLEP procedure performed by a single surgeon (SJO) between December 2009 and May 2013. The perioperative and functional outcomes of patients in the age groups of 50–59 (group A, n=44), 60–69 (group B, n=253), 70–79 (group C, n=244), and ≥80 years (group D, n=38) were compared. The Clavien-Dindo system was used to evaluate clinical outcomes. The International Prostate Symptom Score (IPSS), maximum urinary flow rate (Qmax), postvoid residual (PVR) urine volume, and urinary continence were used to assess functional outcomes. Results: In this study, the patients ≥80 years had significantly higher presence of hypertension (P=0.007), total prostate volumes (P=0.024), transitional zone volume (P=0.002), American Society of Anesthesiologists scores (P=0.006), urinary retention (P=0.032), and anticoagulation use (P=0.008) at preoperative period. Moreover, the mean values of operation time, enucleation time, morcellation time, and enucleation weight were higher in group D compared with other group patients (P=0.002, P=0.010, P<0.01, and P=0.009, respectively). Patients aged ≥80 years had a longer hospital stay time (2.9±1.8 days) than other groups (group A, 2.3±0.7 days; group B, 2.3±0.7 days vs. group C, 2.4±0.7 days; P=0.001). All groups were similar in regard to the incidence of complications (Clavien-Dindo grade) post operatively (P>0.05). All the patients in the present study showed improvement in functional outcomes after HoLEP. By the sixth month, there were no significant differences in IPSS, quality of life, Qmax, and PVR among the groups (P>0.05). Conclusions: Compared with younger patients, the patients aged ≥80 years had a similar overall morbidity and 6-month functional outcomes of HoLEP. HoLEP is a safe and

  10. Histological changes and wound healing response following noncontact holmium: YAG laser thermal keratoplasty.

    PubMed Central

    Koch, D D

    1996-01-01

    PURPOSE: To evaluate acute histological changes and the induced wound healing response in corneal tissue following noncontact holmium:YAG laser thermal keratoplasty (LTK). METHODS: LTK using 10 pulses and a range of radiant energies was performed on 3 human corneas one day prior ro their removal at penetrating keratoplasty. Rabbit corneas were treated with 10-pulse and 5-pulse LTK and followed for up to 3 months. Tissues were studies with light and transmission electron microscopy and immunohistochemistry. RESULTS: The amount of acute tissue injury increased with increasing pulse radiant energy. In human corneas, changes in the irradiated zones included epithelial cell injury and death loss of fine filamentous structure in Bowman's layer, disruption of stromal lamallae, and keratocyte injury and death. In the rabbit corneas, similar acute changes were noted. By 3 weeks, epithelial hyperplasia and stromal contraction were present. Wound healing in the rabbit corneas included repair of the epithelial attachment complex, keratocyte activation, synthesis of type I collagen, partial restoration of stromal keratan sulfate and type VI collagen, and retrocorneal membrane formation. Compared to 10-pulse treatments, 5-pulse treatments produced less acute tissue injury and had more rapid restoration of normal stromal architecture. CONCLUSION: Noncontact LTK produces acute epithelial and stromal tissue changes and in rabbit corneas stimulates a brisk wound healing response. These changes could contribute to postoperative regression of induced refractive correction. Further work is required to determine if reductions in the magnitude of acute tissue injury and induced wound healing response will enhance the efficacy and stability of LTK. Images FIGURE 1A FIGURE 1B FIGURE 2A FIGURE 2B FIGURE 3A FIGURE 3B FIGURE 4A FIGURE 4B FIGURE 4C FIGURE 4D FIGURE 5A FIGURE 5B FIGURE 5C FIGURE 5D FIGURE 6A FIGURE 6B FIGURE 6C FIGURE 6D FIGURE 7A FIGURE 7B FIGURE 8A FIGURE 8B FIGURE 8C FIGURE

  11. Outcomes of transurethral resection and holmium laser enucleation in more than 60 g of prostate: A prospective randomized study

    PubMed Central

    Jhanwar, Ankur; Sinha, Rahul J.; Bansal, Ankur; Prakash, Gaurav; Singh, Kawaljit; Singh, Vishwajeet

    2017-01-01

    Aim: Transurethral resection of prostate (TURP) is considered a gold standard surgical procedure. The management of benign prostatic hyperplasia (BPH) has undergone tremendous change in recent years and shifted from open to minimal invasive procedure. With the advancement in technology and skills of surgeons, lasers have been used more liberally, particularly holmium laser. Holmium laser enucleation of prostate (HoLEP) is seen as close rival of TURP. The objective if this study is to observe long- and short-term outcomes of transurethral resection and holmium laser enucleation in the prostate of more than 60 g. Materials and Methods: This prospective randomized study includes 164 patients. Inclusion criteria were age <75 years after failed or poor response to medical therapy, prostatic size >60 g, gross hematuria secondary to BPH, recurrent urinary tract infection, acute urinary retention, postvoid residual >150 ml, and Schafer Grade II or more. BPH associated with neurogenic bladder, stricture urethra, and carcinoma prostate were excluded from the study. Group 1 comprises patients who underwent TURP and Group 2 comprises who underwent HoLEP. Follow-up was done at 1, 3, 6, 12, and 24 months after the surgery. Results: Data of 144 patients were analyzed. The mean age of patients in TURP and HoLEP group was 66.78 ± 7.81 and 67.70 ± 7.44 years, respectively (P = 0.47), mean prostatic volume was 74.5 ± 12.56 and 75.6 ± 12.84 g, respectively (P = 0.60), operative time was 73.10 ± 10.49 and 89.56 ± 13.81 min, respectively (P = 0.0001). Mean resected tissue was 44.80 ± 9.87 and 48.49 ± 10.87, respectively (P = 0.03). The sexual function did not changed significantly in postoperative follow-up. Conclusion: HoLEP is associated with less blood loss, lower transfusion rates, and a shorter hospital stay. The disadvantage of HoLEP is longer operative time and postoperative dysuria. PMID:28216929

  12. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  13. Dopant penetration studies through Hf silicate

    NASA Astrophysics Data System (ADS)

    Quevedo-Lopez, M. A.; Visokay, M. R.; Chambers, J. J.; Bevan, M. J.; LiFatou, A.; Colombo, L.; Kim, M. J.; Gnade, B. E.; Wallace, R. M.

    2005-02-01

    We present a study of the penetration of B, P, and As through Hf silicate (HfSixOy) and the effect of N incorporation in Hf silicate (HfSixOyNz) on dopant penetration from doped polycrystalline silicon capping layers. The extent of penetration through Hf silicate was found to be dependent upon the thermal annealing budget for each dopant investigated as follows: B(T⩾950°C/60s), P(T⩾1000°C/20s), and As (T⩾1050°C/60s). We propose that the enhanced diffusion observed for these dopants in HfSixOy, compared with that of SiO2 films, is related to grain boundary formation resulting from HfSixOy film crystallization. We also find that, as in the case of SiO2, N incorporation inhibits dopant (B, P, and As) diffusion through the Hf silicate and thus penetration into the underlying Si substrate. Only B penetration is clearly observed through HfSiON films for anneals at 1050 °C for durations of 10 s or longer. The calculated B diffusivity through the HfSixOyNz layer is D0=5.2×10-15cm2/s.

  14. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  15. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  16. Lithium Manganese Silicate Positive Electrode Material

    NASA Astrophysics Data System (ADS)

    Yang, Qiong

    As the fast development of the electronic portable devices and drastic fading of fossil energy sources. The need for portable secondary energy sources is increasingly urgent. As a result, lithium ion batteries are being investigated intensely to meet the performance requirements. Among various electrode materials, the most expensive and capacity limiting component is the positive materials. Based on this, researches have been mostly focused on the development of novel cathode materials with high capacity and energy density and the lithium transition metal orthosilicates have been identified as possible high performance cathodes. Here in, we report the synthesis of a kind of lithium transition metal orthosilicates electrode lithium manganese silicate. Lithium manganese silicate has the advantage of high theoretical capacity, low cost raw material and safety. In this thesis, lithium manganese silicate are prepared using different silicon sources. The structure of silicon sources preferred are examined. Nonionic block copolymers surfactant, P123, is tried as carbon source and mophology directing agent. Lithium manganese silicate's performances are improved by adding P123.

  17. Thermoset polymer-layered silicic acid nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  18. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  19. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (i.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ∼1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ∼ 270 K, the ∼5–8 μm continuum emission is mostly from carbon dust of T ∼ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  20. High chloride content calcium silicate glasses.

    PubMed

    Chen, Xiaojing; Karpukhina, Natalia; Brauer, Delia S; Hill, Robert G

    2017-03-08

    Chloride is known to volatilize from silicate glass melts and until now, only a limited number of studies on oxychloride silicate glasses have been reported. In this paper we have synthesized silicate glasses that retain large amounts of CaCl2. The CaCl2 has been added to the calcium metasilicate composition (CaO·SiO2). Glasses were produced via a melt quench route and an average of 70% of the chloride was retained after melting. Up to 31.6 mol% CaCl2 has been successfully incorporated into these silicate glasses without the occurrence of crystallization. (29)Si MAS-NMR spectra showed the silicon being present mainly as a Q(2) silicate species. This suggests that chloride formed Cl-Ca(n) species, rather than Si-Cl bonds. Upon increasing the CaCl2 content, the Tg reduced markedly from 782 °C to 370 °C. Glass density and glass crystallization temperature decreased linearly with an increase in the CaCl2 content. However, both linear regressions revealed a breakpoint at a CaCl2 content just below 20 mol%. This might be attributed to a significant change in the structure and is also correlated with the nature of the crystallizing phases formed upon heat treatment. The glasses with less than 19.2 mol% CaCl2 crystallized to wollastonite, whilst the compositions with CaCl2 content equal to or greater than 19.2 mol% are thought to crystallize to CaCl2. In practice, the crystallization of CaCl2 could not occur until the crystallization temperature fell below the melting point of CaCl2. The implications of the results along with the high chloride retention are discussed.

  1. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... AGENCY 40 CFR Part 180 Silicic Acid, Sodium Salt etc.; Tolerance Exemption AGENCY: Environmental... requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with... residues of Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl...

  2. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  3. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation....

  4. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  5. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  6. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  7. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  8. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  9. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  10. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  11. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  12. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  13. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  14. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  15. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  16. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  17. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  18. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  19. Studies on the sorption of praseodymium (III), holmium (III) and cobalt (II) from nitrate medium using TVEX-PHOR resin.

    PubMed

    El-Dessouky, S I; El-Sofany, E A; Daoud, J A

    2007-05-08

    The use of TVEX-PHOR resin for the sorption of praseodymium (III), holmium (III) and cobalt (II) from nitrate medium was carried out using batch and column techniques. Various parameters affecting the uptake of these metal ions such as v/m ratio, pH and the metal ion concentration were separately studied. Effect of temperature on the equilibrium distribution values has been studied to evaluate the changes in standard thermodynamic quantities. Experimental results of the investigated metal ions were found to fit to Freundlich isotherm model over the entire studied concentration range. Selectivity sequence of the resin for these metals is Ho>Pr>Co. The recovery of the investigated metals from the loaded resin is preformed with 0.1M sulphuric acid.

  20. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber.

    PubMed

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2015-12-01

    By coupling black phosphorus (BP) nanoplatelets (NPs) with a fiber-taper evanescent light field, a saturable absorber (SA) based on the BP NPs has been successfully fabricated and used in a thulium/holmium-doped fiber laser as the mode locker. The SA had a modulation depth of ∼9.8% measured at 1.93 μm. A stable mode-locking operation at 1898 nm was achieved with a pulse width of 1.58 ps and a fundamental mode-lock repetition rate of 19.2 MHz. By increasing the pump intensity, phenomena of multi-pulsing operations, including harmonic mode-locked states and soliton bunches, were obtained in the experiment, showing that the BP NPs possess an ultrafast optical response time. This work suggests that the BP NPs-based SA is potentially useful for ultrashort, pulsed laser operations in the eye-safe region of 2 μm.

  1. Holmium YLF amplifier performance and the prospects for multi-Joule energies using diode-laser pumping

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.

    1993-01-01

    Laser studies were performed to examine the amplifier characteristics of holmium-doped yttrium lithium fluoride (YLF) at 300 K. An inversion ratio of 0.37 was reached resulting in a measured small-signal gain coefficient of 0.50/cm. In a flashlamp pumping experiment, an output energy of 240 mJ was achieved for 38.5 mJ of input energy resulting in a large gain of 6.2. An amplifier model was developed for diode laser pumping and adapted to consider this flashlamp-pumped case. There is good agreement between the theory and experiment. Multipass amplifier calculations using the model suggest that the Ho: Tm: YLF laser crystal can support a 12 percent electrical to optical efficiency at 300 K even in the presence of upconversion.

  2. Neutron diffraction and electrical transport studies on the incommensurate magnetic phase transition in holmium at high pressures.

    PubMed

    Thomas, Sarah A; Uhoya, Walter O; Tsoi, Georgiy M; Wenger, Lowell E; Vohra, Yogesh K; Chesnut, Gary N; Weir, Samuel T; Tulk, Christopher A; dos Santos, Antonio M

    2012-05-30

    Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Néel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.

  3. Neutron diffraction and electrical transport studies on the incommensurate magnetic phase transition in holmium at high pressures

    SciTech Connect

    Thomas, Sarah; Uhoya, Walter; Tsoi, Georgiy; Wenger, Lowell E; Vohra, Yogesh; Chesnut, Gary Neal; Weir, S. T.; Tulk, Christopher A; Moreira Dos Santos, Antonio F

    2012-01-01

    Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Neel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.

  4. Line Identification of Atomic and Ionic Spectra of Holmium in the Near-UV. Part I. Spectrum of Ho I

    NASA Astrophysics Data System (ADS)

    Al-Labady, N.; Özdalgiç, B.; Er, A.; Güzelçimen, F.; Öztürk, I. K.; Kröger, S.; Kruzins, A.; Tamanis, M.; Ferber, R.; Başar, Gö.

    2017-02-01

    The Fourier Transform spectra of a Holmium hollow cathode discharge lamp have been investigated in the UV spectral range from 25,000 up to 31,530 cm‑1 (317 to 400 nm). Two Ho spectra have been measured with neon and argon as buffer gases. Based on the intensity ratios from these two spectra, a distinction was made between atomic and ionic lines (ionic lines are discussed in an accompanying paper). Using the known Ho i energy levels, 71 lines could be classified as transitions of atomic Ho, 34 of which have not been published previously. Another 32 lines, which could not be classified, are listed in the literature and assigned as atomic Ho. An additional 370 spectral lines have been assigned to atomic Ho based on the signal-to-noise ratio in the two spectra measured under different discharge conditions, namely with buffer gases argon and neon, respectively. These 370 lines have not been previously listed in the literature.

  5. Resection of a plantar calcaneal spur using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser.

    PubMed

    Smith, W K; Noriega, J A; Smith, W K

    2001-03-01

    Many procedures have been described for the resection of plantar calcaneal spurs as treatment of heel spur syndrome and chronic plantar fasciitis. Most of these techniques involve a medial incision of between 2 and 6 cm for adequate exposure of the calcaneal spur. This article describes a new technique for resecting a calcaneal spur with a smaller medial incision using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser. This laser permits adequate resection of a plantar calcaneal spur as well as coagulation of the bone and surrounding tissues. This minimally invasive procedure has been used with good results over the past year by the senior author (W.K.S.) for the resection of calcaneal spurs.

  6. Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet.

    PubMed

    Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2017-03-15

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm(-1) . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from (165) Ho (I=7/2) with a natural abundance of 100 %.

  7. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer.

    PubMed

    Munaweera, Imalka; Levesque-Bishop, Daniel; Shi, Yi; Di Pasqua, Anthony J; Balkus, Kenneth J

    2014-12-24

    Radiation therapy is used as a primary treatment for inoperable tumors and in patients that cannot or will not undergo surgery. Radioactive holmium-166 ((166)Ho) is a viable candidate for use against skin cancer. Nonradioactive holmium-165 ((165)Ho) iron garnet nanoparticles have been incorporated into a bandage, which, after neutron-activation to (166)Ho, can be applied to a tumor lesion. The (165)Ho iron garnet nanoparticles ((165)HoIG) were synthesized and introduced into polyacrylonitrile (PAN) polymer solutions. The polymer solutions were then electrospun to produce flexible nonwoven bandages, which are stable to neutron-activation. The fiber mats were characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma mass spectrometry. The bandages are stable after neutron-activation at a thermal neutron-flux of approximately 3.5 × 10(12) neutrons/cm(2)·s for at least 4 h and 100 °C. Different amounts of radioactivity can be produced by changing the amount of the (165)HoIG nanoparticles inside the bandage and the duration of neutron-activation, which is important for different stages of skin cancer. Furthermore, the radioactive bandage can be easily manipulated to irradiate only the tumor site by cutting the bandage into specific shapes and sizes that cover the tumor prior to neutron-activation. Thus, exposure of healthy cells to high energy β-particles can be avoided. Moreover, there is no leakage of radioactive material after neutron activation, which is critical for safe handling by healthcare professionals treating skin cancer patients.

  8. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  9. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  10. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    PubMed

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  11. Photoemission study of cerium silicate model systems

    NASA Astrophysics Data System (ADS)

    Skála, Tomáš; Matolín, Vladimír

    2013-01-01

    Interaction of silicon with cerium oxide was studied by photoelectron spectroscopy using two model systems CeOx/Si(1 1 1) and Si/CeO2(1 1 1)/Cu(1 1 1) which can be used for fundamental studies in the field of microelectronics and heterogeneous catalysis. The interaction was found to be strong and lead to a formation of cerium silicate films of the proposed stoichiometry Ce4.67Si3O13. Their maximum thickness was limited by diffusion of silicon. Beside silicate other compounds were growing on the surface - SiO2, Si2O, Si, and CeO2. The assignment of the formed species is based on the interpretation of photoemission spectra involving the measurements of various reference O/Si and Sisbnd O/Cu systems.

  12. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  13. Polymorphism in silicate-postperovskite reviewed (Invited)

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.

    2010-12-01

    Early on in the examination of postperovskite(ppv)-type magnesium metasilicate it had been debated if this potential deep mantle mineral can be subject to further structural transformation as function of composition, pressure, and temperature within the range of conditions in the lower mantle. MgSiO3-perovskite accommodates minor elements through local lattice distortions by tilt of the corner-sharing octahedral framework. The CaIrO3-type ppv structure does not seem to possess a similar mechanism of local relaxation of lattice strain. Instead minor elements may rather be accommodated by periodic kinks in this layered structure (1). This kinking-mechanism allows for generating a plethora of polymorphs similar in structure and free energy (1,2). However, the elastic properties of ppv may be strongly affected by this type of structural modification. While structural analogues of silicate-ppv exhibit this type of polymorphism (3,4) previous attempts to examine polymorphism in silicate-ppv remained suggestive (2,5). This is mostly owed to the severe constraints imposed on powder diffraction studies conducted under the extreme conditions of stability of MgSiO3-ppv. Here I present new results on silicate-ppv based on different experimental strategies which shed more light on this complex yet important issue of structural modifications in minor-element bearing silicate-ppv. (1) Oganov et al. Nature 438, 1142 (2005);(2) Tschauner et al. Am. Min. 93, 533 (2008); (3) Shirako et al. Phys. Chem. Min. 36, 455 (2009); Yakovlev et al. J. Sol. Stat. Chem. 182, 1545 (2009) Work supported through NNSA Cooperative Agreement DOE-FC88-01NV14049

  14. Biodegradable Polyester/Layered Silicate Nanocomposites

    DTIC Science & Technology

    2003-01-01

    compatible with the polymer [5-9]. In this paper we report the synthesis and properties of both PLA and PHB nanocomposites with different nanoclays...hydroxy polyester, polylactide (PLA) and fl-hydroxy polyester, polyhydroxybutyrate ( PHB ) with layered silicates have been successfully prepared by melt...extrusion of PLA and PHB with organically modified montmorillonite (MMT) and fluoromica. The mechanical properties of the nanocomposites are improved

  15. Outcome analysis of holmium laser and pneumatic lithotripsy in the endoscopic management of lower ureteric calculus in pediatric patients: a prospective study

    PubMed Central

    Jhanwar, Ankur; Bansal, Ankur; Sankhwar, Satyanarayan; Kumar, Manoj; Kanodia, Gautam; Prakash, Gaurav

    2016-01-01

    ABSTRACT Objective: To analyse outcomes of holmium laser and pneumatic lithotripsy in treatment of lower ureteric calculus in pediatric patients. Materials and methods: Prospective study conducted between August 2013 and July 2015. Inclusion criteria were lower ureteric calculus with stone size ≤1.5cms. Exclusion criteria were other than lower ureteric calculus, stone size ≥1.5cms, congenital renal anomalies, previous ureteral stone surgery. Patients were divided into two groups. Group A underwent pneumatic and group B underwent laser lithotripsy procedure. Patient's baseline demographic and peri-operative data were recorded and analysed. Post operatively X-ray/ultrasound KUB (Kidney, ureter and bladder) was performed to assess stone free status. Results: A total of 76 patients who met the inclusion criteria to ureteroscopic intracorporeal lithotripsy were included. Group A and B included 38 patients in each. Mean age was 12.5±2.49 in Group A and 11.97±2.74 years in Group B respectively (p=0.38). Overall success rate was 94.73% in Group A and 100% in Group B, respectively (p=0.87). Conclusion: Holmium Laser lithotripsy is as efficacious as pneumatic lithotripsy and can be used safely for the endoscopic management of lower ureteric calculus in pediatric patients. However, holmium laser requires more expertise and it is a costly alternative. PMID:27622283

  16. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  17. Water and the density of silicate glasses

    NASA Astrophysics Data System (ADS)

    Richet, Pascal; Whittington, Alan; Holtz, François; Behrens, Harald; Ohlhorst, Susanne; Wilke, Max

    A review of published and newly measured densities for 40 hydrous silicate glasses indicates that the room-temperature partial molar volume of water is 12.0+/-0.5cm3/mol. This value holds for simple or mineral compositions as well as for complex natural glasses, from rhyolite to tephrite compositions, prepared up to 10-20kbar pressures and containing up to 7wt% H2O. This volume does not vary either with the molar volume of the water-free silicate phase, with its degree of polymerization or with water speciation. Over a wide range of compositions, this constant value implies that the volume change for the reaction between hydroxyl ions and molecular water is zero and that, at least in glasses, speciation does not depend on pressure. Consistent with data from Ochs and Lange (1997, 1999), systematics in volume expansion for SiO2-M2O systems (M=H, Li, Na, K) suggests that the partial molar thermal expansion coefficient of H2O is about 4× 10-5 K-1 in silicate glasses.

  18. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  19. Structure and properties of ITQ-8: a hydrous layer silicate with microporous silicate layers.

    PubMed

    Marler, Bernd; Müller, Melanie; Gies, Hermann

    2016-06-21

    ITQ-8 is a new hydrous layer silicate (HLS) with a chemical composition of [C4H8(C7H13N)2]8 [Si64O128(OH)16]·48H2O per unit cell. The synthesis of ITQ-8 was first described in 2002 by Díaz-Cabañas et al., the structure of this material, however, remained unsolved at that time. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and FTIR spectroscopy confirmed that ITQ-8 is a layer silicate. The XRD powder pattern was indexed in the monoclinic system with lattice parameters of a0 = 35.5168(5) Å, b0 = 13.3989(2) Å, c0 = 16.0351(2) Å, β = 106.74(2)°. The crystal structure was solved by simulated annealing. Rietveld refinement of the structure in space group C2/c converged to residual values of RBragg = 0.023, RF = 0.022 and chi(2) = 2.3 confirming the structure model. The structure of ITQ-8 contains silicate layers with a topology that resembles a (11-1) section of the framework of zeolite levyne. So far, this layer topology is unique among layer silicates. The layer can be regarded as made up of 4-, 6-, double-six and 8-rings which are interconnected to form cup-like "half-cages". Unlike other HLSs, which possess impermeable silicate layers, ITQ-8 contains 8-rings pores with a free diameter of 3.5 Å × 3.4 Å and can be regarded as a "small-pore layer silicate". In the crystal structure, the organic cations, 1,4-diquiniclidiniumbutane, used as structure directing agents during synthesis are intercalated between the silicate layers. Clusters (bands) of water molecules which are hydrogen bonded to each other and to the terminal Si-OH/Si-O(-) groups are located between the organic cations and interconnect the silicate layers. ITQ-8 is a very interesting material as precursor for the synthesis of microporous framework silicates by topotactic condensation or interlayer expansion reactions leading to 3D micro-pore systems which may be useful in applications as e.g. catalysts, catalyst supports and adsorbents of for separation.

  20. Silicate release from glass for pharmaceutical preparations.

    PubMed

    Bohrer, Denise; Bortoluzzi, Fabiana; Nascimento, Paulo Cícero; Carvalho, Leandro Machado; Ramirez, Adrian Gustavo

    2008-05-01

    Glass is made of polymeric silica and other minor components, which are necessary for turning the silica into a material more easily moldable and resistant to temperature changes. Glass containers for pharmaceutical usage are classified according to their resistance to a chemical attack, a test carried out in the presence of water and heat. The test is designed to show the released alkalinity, a variable dependent on the amount of sodium oxide, one of the minor components added to the glass mass. In this work, the release of silica from glass by action of constituents from pharmaceutical formulations was investigated. The study included products used in large volumes and usually stored in glass containers. Solutions of amino acids, electrolytes, glucose, oligoelements and others such as heparin and sodium bicarbonate were individually stored in glass containers and heated at 121 degrees C for 30min, as in the water attack test. The test was also carried out only with water, where the pH varied from 2 to 12. The released silicate was measured either by photometry or atomic absorption spectrometry, depending on the nature of the sample. The results showed that silicate is released during the heating cycle even if the contact is with pure water only. The pH exerts a considerable influence on the release, being that the higher the pH, the higher the silica dissolved. An elevated pH, however, is not the only factor responsible for silica dissolution. While in the solutions of NaCl, KCl, Mg Cl2 and ZnSO4 and in most of the amino acids, the concentration of silicate was as high as in pure water (0.1-1.0mg Si/L). In the solutions of sodium acetate, bicarbonate and gluconate, its concentration was much higher, over 30mg Si/L. These results were confirmed by the analysis of commercial products, where in solutions of amino acids the level of silicate ranged from 0.14 to 0.19mg Si/L. On the other hand, calcium gluconate, sodium bicarbonate and potassium phosphate presented

  1. Diseases associated with exposure to silica and nonfibrous silicate minerals. Silicosis and Silicate Disease Committee

    SciTech Connect

    Not Available

    1988-07-01

    Silicosis, a disease of historical importance, continues to occur cryptically today. Its pathogenesis is under ongoing study as new concepts of pathobiology evolve. In this article, the gross and microscopic features of the disease in the lungs and the lesions in lymph nodes and other viscera are described. These tissue changes are then discussed in the context of clinical disease and other possible or established complications of silica exposure (ie, scleroderma and rheumatoid arthritis, glomerulonephritis, and bronchogenic carcinoma). Silicates are members of a large family of common minerals, some of which have commercial importance. Silicates are less fibrogenic than silica when inhaled into the lungs, but cause characteristic lesions after heavy prolonged exposure. The features of these disease conditions are described herein. Various aspects of the mineralogy and tissue diagnosis of silicosis and lung disease due to silicates are reviewed. An overview of contemporary regulatory considerations is provided.204 references.

  2. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    NASA Astrophysics Data System (ADS)

    Dolph, Brittany Helen

    Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

  3. Adsorption of β-carotene on modified magnesium silicate

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Guo, Ning; Fu, Yongfeng

    2016-02-01

    Modified flocculation magnesium silicate is prepared by a hydrothermal process at 120°C for 18 h after adding Al2(SO4)3 into the magnesium silicate gel. Compared with standard magnesium silicate with 328.116 m2 g-1 surface area, this modified magnesium silicate has a bigger BET surface area of 536.803 m2 g-1 and a lower interlayer water content. Modified magnesium silicate exhibits high β-carotene adsorption with a maximum adsorption capacity of 364.96 mg g-1. It is shown that when suspended in organic solvent, this material can be used effectively for carotenoid separation. Furthermore, our results suggest that modified magnesium silicate may be a promising candidate as an absorbent in the decoloring of oil.

  4. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial

    PubMed Central

    2010-01-01

    Background Intra-arterial radioembolization with yttrium-90 microspheres ( 90Y-RE) is an increasingly used therapy for patients with unresectable liver malignancies. Over the last decade, radioactive holmium-166 poly(L-lactic acid) microspheres ( 166Ho-PLLA-MS) have been developed as a possible alternative to 90Y-RE. Next to high-energy beta-radiation, 166Ho also emits gamma-radiation, which allows for imaging by gamma scintigraphy. In addition, Ho is a highly paramagnetic element and can therefore be visualized by MRI. These imaging modalities are useful for assessment of the biodistribution, and allow dosimetry through quantitative analysis of the scintigraphic and MR images. Previous studies have demonstrated the safety of 166Ho-PLLA-MS radioembolization ( 166Ho-RE) in animals. The aim of this phase I trial is to assess the safety and toxicity profile of 166Ho-RE in patients with liver metastases. Methods The HEPAR study (Holmium Embolization Particles for Arterial Radiotherapy) is a non-randomized, open label, safety study. We aim to include 15 to 24 patients with liver metastases of any origin, who have chemotherapy-refractory disease and who are not amenable to surgical resection. Prior to treatment, in addition to the standard technetium-99m labelled macroaggregated albumin ( 99mTc-MAA) dose, a low radioactive safety dose of 60-mg 166Ho-PLLA-MS will be administered. Patients are treated in 4 cohorts of 3-6 patients, according to a standard dose escalation protocol (20 Gy, 40 Gy, 60 Gy, and 80 Gy, respectively). The primary objective will be to establish the maximum tolerated radiation dose of 166Ho-PLLA-MS. Secondary objectives are to assess tumour response, biodistribution, performance status, quality of life, and to compare the 166Ho-PLLA-MS safety dose and the 99mTc-MAA dose distributions with respect to the ability to accurately predict microsphere distribution. Discussion This will be the first clinical study on 166Ho-RE. Based on preclinical studies

  5. Experiments of water formation on warm silicates

    SciTech Connect

    He, Jiao; Vidali, Gianfranco

    2014-06-10

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σ{sub H} = 1.6 ± 0.27 Å{sup 2} and σ{sub D} = 0.94 ± 0.09 Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  6. Modeling Nanomechanical Behavior of Calcium-Silicate-Hydrate

    DTIC Science & Technology

    2012-08-01

    ER D C/ G SL T R -1 2 -3 0 Multiscale Modeling of the Structure of Material Modeling Nanomechanical Behavior of Calcium - Silicate -Hydrate...Nanomechanical Behavior of Calcium - Silicate -Hydrate Mei Qiang Chandler and John F. Peters Geotechnical and Structures Laboratory U.S. Army Engineer...DEM) was used to model the nanomechanical behavior of Calcium - Silicate -Hydrate (C-S-H). The inter- particle forces consist of the traditional friction

  7. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, Ming-Shing; Chen, James M.; Yang, Ralph T.

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  8. Lithium metaborate flux in silicate analysis

    USGS Publications Warehouse

    Ingamells, C.O.

    1970-01-01

    Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.

  9. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  10. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  11. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  12. Microbial dissolution of silicate materials. Final report

    SciTech Connect

    Schwartzman, D.

    1996-03-26

    The objective of this research was to better understand the role of selected thermophilic bacteria in the colonization and dissolution of silicate minerals, with potential applications to the HDR Project. The demonstration of enhanced dissolution from microbial effects is critically dependent on providing a mineral bait within a media deficient in the critical nutrient found in the mineral (e.g., Fe). Reproducible experimental conditions in batch experiments require agitation to expose mineral powders, as well as nearly similar initial conditions for both inoculated cultures and controls. It is difficult, but not impossible to ensure reproducible conditions with microbes favoring filamentous growth habits.

  13. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A. |; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  14. Thermochemistry of dense hydrous magnesium silicates

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  15. Tip-induced nanoreactor for silicate

    PubMed Central

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-01-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales. PMID:26364882

  16. Research drilling in young silicic volcanoes

    SciTech Connect

    Eichelberger, J.C.

    1989-06-30

    Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

  17. Silicate mineralogy at the surface of Mercury

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard

    2017-01-01

    NASA's MESSENGER spacecraft has revealed geochemical diversity across Mercury's volcanic crust. Near-infrared to ultraviolet spectra and images have provided evidence for the Fe2+-poor nature of silicate minerals, magnesium sulfide minerals in hollows and a darkening component attributed to graphite, but existing spectral data is insufficient to build a mineralogical map for the planet. Here we investigate the mineralogical variability of silicates in Mercury's crust using crystallization experiments on magmas with compositions and under reducing conditions expected for Mercury. We find a common crystallization sequence consisting of olivine, plagioclase, pyroxenes and tridymite for all magmas tested. Depending on the cooling rate, we suggest that lavas on Mercury are either fully crystallized or made of a glassy matrix with phenocrysts. Combining the experimental results with geochemical mapping, we can identify several mineralogical provinces: the Northern Volcanic Plains and Smooth Plains, dominated by plagioclase, the High-Mg province, strongly dominated by forsterite, and the Intermediate Plains, comprised of forsterite, plagioclase and enstatite. This implies a temporal evolution of the mineralogy from the oldest lavas, dominated by mafic minerals, to the youngest lavas, dominated by plagioclase, consistent with progressive shallowing and decreasing degree of mantle melting over time.

  18. Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: a biodistribution study.

    PubMed

    Nijsen, F; Rook, D; Brandt, C; Meijer, R; Dullens, H; Zonnenberg, B; de Klerk, J; van Rijk, P; Hennink, W; van het Schip, F

    2001-06-01

    Intra-arterial administration of beta-emitting particles that become trapped in the vascular bed of a tumour and remain there while delivering high doses, represents a unique approach in the treatment of both primary and metastatic liver tumours. Studies on selective internal radiation therapy of colorectal liver metastases using yttrium-90 glass microspheres have shown encouraging results. This study describes the biodistribution of 40-microm poly lactic acid microspheres loaded with radioactive holmium-166, after intra-arterial administration into the hepatic artery of rats with implanted liver tumours. Radioactivity measurements showed >95% retention of injected activity in the liver and its resident tumour. The average activity detected in other tissues was < or =0.1%ID/g, with incidental exceptions in the lungs and stomach. Very little 166Ho activity was detected in kidneys (<0.1%ID/g), thereby indicating the stability of the microspheres in vivo. Tumour targeting was very effective, with a mean tumour to liver ratio of 6. 1+/-2.9 for rats with tumour (n=15) versus 0.7+/-0.5 for control rats (n=6; P<0.001). These ratios were not significantly affected by the use of adrenaline. Histological analysis showed that five times as many large (>10) and medium-sized (4-9) clusters of microspheres were present within tumour and peritumoural tissue, compared with normal liver. Single microspheres were equally dispersed throughout the tumour, as well as normal liver parenchyma.

  19. In 2013, holmium laser enucleation of the prostate (HoLEP) may be the new 'gold standard'.

    PubMed

    van Rij, Simon; Gilling, Peter J

    2012-12-01

    In this review article, we assess why holmium laser enucleation of the prostate (HoLEP) has become an important treatment modality for benign prostatic hypertrophy (BPH). Meta-analysis comparing HoLEP with both open prostatectomy (OP) and transurethral resection of prostate (TURP) shows TURP to be as effective with less morbidity. More recently, HoLEP has long-term durability data confirming a very low reoperation rate. This article investigates how previous hurdles to the widespread uptake of HoLEP have been overcome. Recent literature shows that the learning curve is actually similar to many other current urological procedures, and that the efficiency of HoLEP is equal to that of other surgical procedures. HoLEP is also beneficial in the growing population of men on anticoagulation who require treatment for BPH. Finally, HoLEP is the only laser treatment for BPH with level 1 evidence and endorsement in both the American Urological Association (AUA) and European Association of Urology (EAU) guidelines.

  20. The Impact of Increased Bladder Blood Flow on Storage Symptoms after Holmium Laser Enucleation of the Prostate

    PubMed Central

    Ide, Hisamitsu; Aoki, Hiroaki; Muto, Satoru; Yamaguchi, Raizo; Tsujimura, Akira; Horie, Shigeo

    2015-01-01

    In order to investigate how holmium laser enucleation of the prostate (HoLEP) improves urinary storage symptoms, we assessed blood flow in the urinary bladder mucosa of patients with benign prostatic hyperplasia (BPH) before and after laser surgery. Seventy-four consecutive patients with BPH (median age 69 years, range; 53–88) underwent HoLEP at our institution and are included in this study. We prospectively assessed the International Prostate Symptom Score (IPSS), IPSS-QOL Score, the Overactive Bladder Symptom Score (OABSS), uroflowmetry, and blood flow in the urinary bladder, before and after surgery. Blood flow in the bladder mucosa was measured using the OMEGA FLOW (OMEGAWAVE, Tokyo, Japan) laser Doppler flowmeter. The median volume of the enucleated adenomas was 45.0 g (range: 25.0 to 83.2). The median IPSS improved significantly from 20 (range: 6–35) to 3 (0–22) (p<0.001; Wilcoxon signed-rank test), as did the storage symptoms score, which decreased from 13 (2–20) to 3 (1–8) (p<0.001). Median bladder blood flow increased at the trigone from 9.57±0.83 ml/sec to 17.60±1.08 ml/sec. Multiple regression analysis for the improved storage symptom score eliminated all explanatory variables except increased bladder perfusion. The data suggest that HoLEP improves blood flow in the bladder mucosa, which independently leads to the improvement of storage symptoms. PMID:26090819

  1. Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radio-embolization: a validation study.

    PubMed

    Vente, M A D; Nijsen, J F W; de Roos, R; van Steenbergen, M J; Kaaijk, C N J; Koster-Ammerlaan, M J J; de Leege, P F A; Hennink, W E; van Het Schip, A D; Krijger, G C

    2009-08-01

    Poly(L-lactic acid) microspheres loaded with holmium-166 acetylacetonate (166Ho-PLLA-MS) are a novel microdevice for intra-arterial radio-embolization in patients with unresectable liver malignancies. The neutron activation in a nuclear reactor, in particular the gamma heating, damages the 166Ho-PLLA-MS. The degree of damage is dependent on the irradiation characteristics and irradiation time in a particular reactor facility. The aim of this study was to standardize and objectively validate the activation procedure in a particular reactor. The methods included light- and scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry, viscometry, thermal neutron flux measurements and energy deposition calculations. Seven hours-neutron irradiation results in sufficient specific activity of the 166Ho-PLLA-MS while structural integrity is preserved. Neutron flux measurements and energy deposition calculations are required in the screening of other nuclear reactors. For the evaluation of microsphere quality, light microscopy, SEM and particle size analysis are appropriate techniques.

  2. The Impact of Increased Bladder Blood Flow on Storage Symptoms after Holmium Laser Enucleation of the Prostate.

    PubMed

    Saito, Keisuke; Hisasue, Shin-ichi; Ide, Hisamitsu; Aoki, Hiroaki; Muto, Satoru; Yamaguchi, Raizo; Tsujimura, Akira; Horie, Shigeo

    2015-01-01

    In order to investigate how holmium laser enucleation of the prostate (HoLEP) improves urinary storage symptoms, we assessed blood flow in the urinary bladder mucosa of patients with benign prostatic hyperplasia (BPH) before and after laser surgery. Seventy-four consecutive patients with BPH (median age 69 years, range; 53-88) underwent HoLEP at our institution and are included in this study. We prospectively assessed the International Prostate Symptom Score (IPSS), IPSS-QOL Score, the Overactive Bladder Symptom Score (OABSS), uroflowmetry, and blood flow in the urinary bladder, before and after surgery. Blood flow in the bladder mucosa was measured using the OMEGA FLOW (OMEGAWAVE, Tokyo, Japan) laser Doppler flowmeter. The median volume of the enucleated adenomas was 45.0 g (range: 25.0 to 83.2). The median IPSS improved significantly from 20 (range: 6-35) to 3 (0-22) (p < 0.001; Wilcoxon signed-rank test), as did the storage symptoms score, which decreased from 13 (2-20) to 3 (1-8) (p < 0.001). Median bladder blood flow increased at the trigone from 9.57 ± 0.83 ml/sec to 17.60 ± 1.08 ml/sec. Multiple regression analysis for the improved storage symptom score eliminated all explanatory variables except increased bladder perfusion. The data suggest that HoLEP improves blood flow in the bladder mucosa, which independently leads to the improvement of storage symptoms.

  3. Holmium:YAG laser lithotripsy for the management of urolithiasis in small ruminants and pot-bellied pigs

    NASA Astrophysics Data System (ADS)

    Halland, Spring K.; House, John K.; George, Lisle

    2001-05-01

    Obstructive urolithiasis is a common problem in small ruminants and pot-bellied pigs. The most common site of urinary tract obstruction in these species is the urethra. Surgical procedures developed to relieve obstructions, in our experience have been effective in approximately 75% of cases. Urethral stricture is a common complication if the mucosa of the urethra is disrupted. The objective of this project was to evaluate endoscopy guided laser lithotripsy as a therapeutic modality to relieve urethral obstructions in small ruminants and pot-bellied pigs. The study population consisted of patients presented to the Veterinary Medical Teaching Hospital at the University of California Davis with obstructive urolithiasis. Lithotripsy was performed using a Holmium:YAG laser via a 200-micron low water quartz fiber passed through a flexible mini-endoscope. Two types of urinary calculi were managed with this technique, calcium carbonate and calcium hydroxyphosphate. Laser lithotripsy was effective at relieving obstructions caused by both types of calculi when conventional methods had failed. Laser lithotripsy performed via urethral endoscopy is a safe and effective therapeutic modality for management of obstructive urolithiasis in small ruminants and pot-bellied pigs and reduces the risk of post procedural urethral stricture.

  4. New framework hydrous silicate K{sub 3}Sc[Si{sub 3}O{sub 9}] {center_dot} H{sub 2}O related to the high-temperature anhydrous silicate K{sub 3}Ho[Si{sub 3}O{sub 9}] and symmetry analysis of a phase transition with prediction of structures

    SciTech Connect

    Belokoneva, E. L. Zorina, A. P.; Dimitrova, O. V.

    2013-07-15

    Crystals of a new framework silicate K{sub 3}Sc[Si{sub 3}O{sub 9}] {center_dot} H{sub 2}O, space group Pm2{sub 1}n (nonstandard setting of space group Pmn2{sub 1} = C{sub 2v}{sup 7}), are obtained under hydrothermal conditions. The structure is determined without preliminary knowledge of the chemical formula. The absolute configuration is determined. The structure is close to that of the high-temperature K{sub 3}Ho[Si{sub 3}O{sub 9}] phase, which was obtained upon the heating of K{sub 3}HoSi{sub 3}O{sub 8}(OH){sub 2}. This structural similarity is due to the specific conditions of synthesis and an analogous formula, where holmium is replaced by scandium. A symmetry analysis shows that the high local symmetry of a block (rod) is responsible for the first-order phase transition of both the order-disorder (OD) and displacement type. The number of structures in which the simplest and high-symmetry layers are multiplied by different symmetry elements are predicted.

  5. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  6. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  7. Immobilisation of fully sulfonated polyaniline on nanostructured calcium silicate.

    PubMed

    Borrmann, Thomas; Dominis, Anton; McFarlane, Andrew J; Johnston, James H; Richardson, Michael J; Kane-Maguire, Leon A P; Wallace, Gordon G

    2007-12-01

    Up to 7.4% (w/w) of the sulfonated polyaniline, poly(2-methoxyaniline-5-sulfonic acid) (PMAS) can be absorbed onto nanostructured calcium silicates. Spectroscopic and leaching studies on the novel PMAS-silicate nanocomposites obtained indicate that attachment of the PMAS occurs via electrostatic binding of PMAS sulfonate groups to Ca2+ sites on the silicates. The surface area and pore volume of the nanocomposites are comparable to those of pure silicate and increase the surface area of the PMAS polymer by several orders of magnitude. The PMAS emeraldine salt in the nanocomposites retains its chemical reactivity, being readily oxidised and reduced to its pernigraniline and leucoemeraldine forms, respectively. The conductivity of the composite is comparable to that of the pure PMAS, several orders of magnitude higher than that of dried nanostructured calcium silicate.

  8. Optical Properties of Astronomical Silicates in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.

    2008-01-01

    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  9. Laboratory Studies on Silicates Relevant for the Physics of TNOs

    NASA Astrophysics Data System (ADS)

    Brucato, John Robert; Strazzulla, Giovanni; Baratta, Giuseppe; Mennella, Vito; Colangeli, Luigi

    2003-06-01

    Silicates are one of the principal components present in Solar System objects. Silicates evolve in space modifying their physical properties according to the astronomical environments they go through. To characterise the nature of TNOs in the framework of the formation and evolution of the Solar System, experiments on structural transitions of silicates have been performed in the laboratory to simulate some of the processing suffered by the dust. The infrared spectral properties of possible silicate candidates thought to be present in TNOs have been studied. The results of thermal annealing of amorphous silicates and amorphisation of crystalline forsterite (pure-Mg olivine) by ion irradiation are presented. The observable properties of TNOs surfaces are inferred.

  10. The identification of crystalline olivine in cometary silicates

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; Ryan, Eileen V.

    1989-01-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  11. Impact of holmium fibre laser radiation (λ = 2.1 μm) on the spinal cord dura mater and adipose tissue

    NASA Astrophysics Data System (ADS)

    Filatova, S. A.; Kamynin, V. A.; Ryabova, A. V.; Loshchenov, V. B.; Zelenkov, P. V.; Zolotovskii, I. O.; Tsvetkov, V. B.; Kurkov, A. S.

    2015-08-01

    The impact of holmium fibre laser radiation on the samples of biologic tissues (dura mater of spinal cord and adipose tissue with interlayers of muscle) is studied. The experimental results are evaluated by the size of carbonisation and coagulation necrosis zones. The experiment shows that in the case of irradiation of the spinal cord dura mater samples the size of carbonisation and coagulation necrosis zones is insignificant. In the adipose tissue the carbonisation zone is also insignificant, but the region of cellular structure disturbance is large. In the muscle tissue the situation is opposite. The cw laser operation provides clinically acceptable degree of destruction in tissue samples with a minimal carbonisation zone.

  12. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300  nm spectral band.

    PubMed

    Honzatko, Pavel; Baravets, Yauhen; Kasik, Ivan; Podrazky, Ondrej

    2014-06-15

    We have experimentally demonstrated two extremely wideband amplified spontaneous emission (ASE) sources. High bandwidth is achieved by combining the backward and forward ASEs generated in thulium-holmium-doped fiber using appropriate wideband couplers. The ASE source optimized for flat spectral power density covers a spectral range from 1527 to 2171 nm at a -10  dB level. The ASE source optimized for spectroscopy features an enhancement with respect to single-mode fiber (SMF) coupled halogen lamps within the spectral range from 1540 nm to more than 2340 nm covering the 800 nm bandwidth.

  13. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  14. Organics Synthesized Using Iron-Grain Silicates

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Cody, G. D.; Nuth, J. A., III

    2003-01-01

    We use Fischer-Tropsch type (FTT) synthesis to produce hydrocarbons by hydrogenating carbon monoxide via catalytic reactions. The products of these reactions have been studied using 'natural' catalysts and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to the composition of material near three AU. We coat Fe-silicate grains with organic material using FTT synthesis to simulate the chemistry in the early Solar Nebula. In our experimental setup, we roughly model a nebular environment where grains are successively transported from hot to cold regions of the nebula. In other words, the starting gases and FTT products are continuously circulated through the grains at high temperature with intervals of cooling. Organics generated in this manner could represent the carbonaceous material incorporated in comets and meteorites. We analyze the resulting organics and present the results.

  15. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  16. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  17. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  18. A water-ethanol mixed-solution hydrothermal route to silicates nanowires

    SciTech Connect

    Wang Xun . E-mail: wangxun@mail.tsinghua.edu.cn; Zhuang Jing; Peng Qing; Li Yadong . E-mail: ydli@mail.tsinghua.edu.cn

    2005-07-15

    In this manuscript, series of silicates nanowires, such as calcium silicate, strontium silicate, barium silicate, zinc silicate and cadmium silicate, etc., have been successfully prepared from a water-ethanol mixed solution system through a hydrothermal synthetic way. The formation process of these silicates nanowires has been studied in detail. Due to their rich sources and possible novel properties from reduced dimensionalities, we believe that the synthesis of these silicates nanowires may bring some new opportunity in the solid state chemistry and nanoscience and technology fields, etc.

  19. INTERSTELLAR SILICATE DUST IN THE z = 0.89 ABSORBER TOWARD PKS 1830-211: CRYSTALLINE SILICATES AT HIGH REDSHIFT?

    SciTech Connect

    Aller, Monique C.; Kulkarni, Varsha P.; Som, Debopam; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni

    2012-03-20

    We present evidence of a >10{sigma} detection of the 10 {mu}m silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of {tau}{sub 10} = 0.27 {+-} 0.05. The fit is slightly improved upon by including small contributions from additional materials, such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z = 0.886 absorber toward PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.

  20. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  1. Holmium Laser Enucleation of the Prostate: Comparison of Immediate Postoperative Outcomes in Patients with and without Antithrombotic Therapy

    PubMed Central

    Bishop, Conrad V.; Liddell, Heath; Ischia, Joseph; Paul, Eldho; Appu, Sree; Frydenberg, Mark; Pham, Trung

    2013-01-01

    Objective To compare the immediate postoperative outcomes of patients with benign prostatic hyperplasia undergoing Holmium laser enucleation of the prostate (HOLEP) with and without full anticoagulation or antiplatelet therapy at the time of surgery. Materials and Methods A retrospective review was performed on a series of consecutive patients undergoing HOLEP at our institution by a single surgeon from February 2004 to September 2010. Demographic, surgical, pathological and outcome data were collected. Two cohorts were identified on the basis of antithrombotic therapy at the time of surgery. Patients who continued on aspirin, aspirin/dipyridamole, clopidogrel and warfarin throughout the surgery were included in the antithrombotic cohort. Univariate analysis was performed to determine differences in outcomes between the 2 cohorts. Results Total 125 consecutive patients underwent HOLEP with 52 patients on antithrombotic therapy at the time of surgery and 73 patients were not on antithrombotic therapy during surgery. Patients in the antithrombotic group were older (75.1 ±7.5 vs. 71.7 ± 8.3 years; p = 0.02) and had a higher median ASA physical status (3 (3-3) vs. 2 (2-3), p < 0.0001). The mean operating time and median specimen volume were not significantly different between the 2 cohorts. The median length of stay (2 (1-3) vs. 1 (1-2) d, p = 0.014) was longer in the antithrombotic cohort. The transfusion rate (7.7 vs. 0%, p = 0.028) was predictably higher in the antithrombotic cohort. No patients required re-operation for bleeding. Conclusions The use of HOLEP in patients on antithrombotic therapy is safe despite the higher surgical risk profile of that particular patient population and the potential increased risk for significant bleeding. PMID:24917753

  2. Comparison of Photoselective Vaporization versus Holmium Laser Enucleation for Treatment of Benign Prostate Hyperplasia in a Small Prostate Volume

    PubMed Central

    Kim, Kang Sup; Choi, Jin Bong; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Kim, Sang Hoon; Kim, Hyun Woo; Cho, Su Yeon; Kim, Sae Woong

    2016-01-01

    Objective Photoselective vaporization of the prostate (PVP) using GreenLight and Holmium laser enucleation of the prostate (HoLEP) is an important surgical technique for management of benign prostate hyperplasia (BPH). We aimed to compare the effectiveness and safety of PVP using a 120 W GreenLight laser with HoLEP in a small prostate volume. Methods Patients who underwent PVP or HoLEP surgery for BPH at our institutions were reviewed from May 2009 to December 2014 in this retrospective study. Among them, patients with prostate volumes < 40 mL based on preoperative trans-rectal ultrasonography were included in this study. Peri-operative and post-operative parameters—such as International Prostate Symptom Score (IPSS), quality of life (QoL), maximum urinary flow rate (Qmax), post-void residual urine volume (PVR), and complications—were compared between the groups. Results PVP was performed in 176 patients and HoLEP in162 patients. Preoperative demographic data were similar in both groups, with the exception of PVR. Operative time and catheter duration did not show significant difference. Significant improvements compared to preoperative values were verified at the postoperative evaluation in both groups in terms of IPSS, QoL, Qmax, and PVR. Comparison of the postoperative parameters between the PVP and HoLEP groups demonstrated no significant difference, with the exception of IPSS voiding subscore at 1 month postoperatively (5.9 vs. 3.8, P< 0.001). There was no significant difference in postoperative complications between the two groups. Conclusion Our data suggest that PVP and HoLEP are efficient and safe surgical treatment options for patients with small prostate volume. PMID:27227564

  3. Holmium laser enucleation of the prostate: surgical, functional, and quality-of-life outcomes upon extended follow-up

    PubMed Central

    Alkan, Ilter; Ozveri, Hakan; Akin, Yigit; Ipekci, Tumay; Alican, Yusuf

    2016-01-01

    ABSTRACT Objectives: To evaluate the long-term surgical, functional, and quality-of-life (QoL) outcomes after Holmium laser enucleation of the prostate (HoLEP) in patients with symptomatic benign prostatic hyperplasia (BPH). Materials and Methods: We retrospectively reviewed recorded data on patients who underwent HoLEP between June 2002 and February 2005. Ninety-six patients were enrolled. Demographic, perioperative, and postoperative data were recorded. On follow-up, International Prostate Symptom Scores (IPSSs), prostate-specific antigen (PSA) levels, QoL scores, peak uroflowmetric data (Qmax values), and post-voiding residual urine volumes (PVR volumes), were recorded. Complications were scored using the Clavien system. Statistical significance was set at p<0.05. Results: The mean follow-up time was 41.8±34.6 months and the mean patient age 73.2±8.7 years. The mean prostate volume was 74.6±34.3mL. Significant improvements in Qmax values, QoL, and IPSSs and decreases in PSA levels and PVR volumes were noted during follow-up (all p values=0.001). The most common complication was a requirement for re-catheterisation because of urinary retention. Two patients had concomitant bladder tumours that did not invade the muscles. Eight patients (8.3%) required re-operations; three had residual adenoma, three urethral strictures, and two residual prostate tissue in the bladder. Stress incontinence occurred in one patient (1%). All complications were of Clavien Grade 3a. We noted no Clavien 3b, 4, or 5 complications during follow-up. Conclusions: HoLEP improved IPSSs, Qmax values, PVR volumes, and QoL and was associated with a low complication rate, during extended follow-up. Thus, HoLEP can be a viable option to transurethral resection of the prostate. PMID:27256184

  4. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (~10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J/cm2, respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  5. A comparison of efficacies of holmium YAG laser, and pneumatic lithotripsy in the endoscopic treatment of ureteral stones

    PubMed Central

    Akdeniz, Ekrem; İrkılata, Lokman; Demirel, Hüseyin Cihan; Saylık, Acun; Bolat, Mustafa Suat; Şahinkaya, Necmettin; Zengin, Mehmet; Atilla, Mustafa Kemal

    2014-01-01

    Objective: We aimed to compare the effectiveness of holmium YAG laser and pneumatic lithotripsy in the treatment of ureteral stones. Material and methods: A total of 216 patients who had established indications of ureteroscopy between November 2011 and June 2012 were included in this study. Patients’ files were retrospectively reviewed by dividing cases as groups that underwent pneumatic (PL) or laser lithotripsy (LL) procedures. Age, sex, stone burden and localization, duration of follow-up, operative times were evaluated. Stone-free rates were evaluated by ureteroscopical examination, postoperative scout films and ultrasonography. Results: Group PL consisted of 109 and group LL of 107 patients. Median age was 43.93±15.94 years in Group PL and 46.15±14.54 years in Group LL. Male to female ratio, stone burden and localization were similar for both groups. Overall success rate was 89.9% in Group PL and 87.9% in Group LL, respectively (p<0.791). With the aid of additional procedures, success rate was 100% for both groups at the end of the first month. Groups were not different as for operative time, rate of insertion of an ureteral catheter and its removal time. Hospitalization period was apparently somewhat shorter in Group LL (p=0.00). Conclusion: Pneumatic lithotripsy can be as efficacious as laser lithotripsy and be used safely in the endoscopic management of ureteral stone. In comparison of both methods, we detected no differences as to operative time, success of operation and the time to removal of the catheter, however, hospitalization period was shorter in Group LL. PMID:26328167

  6. Comparison of Surgical Outcomes Between Holmium Laser Enucleation and Transurethral Resection of the Prostate in Patients With Detrusor Underactivity

    PubMed Central

    2017-01-01

    Purpose Currently, holmium laser enucleation of the prostate (HoLEP) and transurethral resection of the prostate (TURP) are the standard surgical procedures used to treat benign prostatic hyperplasia (BPH). Several recent studies have demonstrated that the surgical management of BPH in patients with detrusor underactivity (DU) can effectively improve voiding symptoms, but comparative data on the efficacy of HoLEP and TURP are insufficient. Therefore, we compared the short-term surgical outcomes of HoLEP and TURP in patients with DU. Methods From January 2010 to May 2015, 352 patients underwent HoLEP or TURP in procedures performed by a single surgeon. Of these patients, 56 patients with both BPH and DU were enrolled in this study (HoLEP, n=24; TURP, n=32). Surgical outcomes were retrospectively compared between the 2 groups. DU was defined as a detrusor pressure at maximal flow rate of <40 cm H2O as measured by a pressure flow study. Results The preoperative characteristics of patients and the presence of comorbidities were comparable between the 2 groups. The TURP group showed a significantly shorter operative time than the HoLEP group (P=0.033). The weight of the resected prostate was greater in the HoLEP group, and postoperative voiding parameters, including peak flow rate and postvoid residual urine volume were significantly better in the HoLEP group than in the TURP group. Conclusions HoLEP can be effectively and safely performed in patients with DU and can be expected to have better surgical outcomes than TURP in terms of the improvement in lower urinary tract symptoms. PMID:28361512

  7. Semiempirical quantum chemistry model for the lanthanides: RM1 (Recife Model 1) parameters for dysprosium, holmium and erbium.

    PubMed

    Filho, Manoel A M; Dutra, José Diogo L; Rocha, Gerd B; Simas, Alfredo M; Freire, Ricardo O

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes' coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models.

  8. Predictors of urgency improvement after Holmium laser enucleation of the prostate in men with benign prostatic hyperplasia

    PubMed Central

    Hur, Won Sok; Kim, Joon Chul; Kim, Hyo Sin; Koh, Jun Sung; Kim, Sang Hoon; Kim, Hyun Woo; Cho, Su Yeon

    2016-01-01

    Purpose To investigate the change in urinary urgency and predictors of urgency improvement after holmium laser enucleation of the prostate (HoLEP) in men with benign prostatic hyperplasia (BPH). Materials and Methods We retrospectively analyzed the medical records of patients who were treated with HoLEP for BPH and had preoperative urgency measuring ≥3 on a 5-point urinary sensation scale. Those with prostate cancer diagnosed prior to or after HoLEP, a history of other prostatic and/or urethral surgery, moderate to severe postoperative complications, and neurogenic causes were excluded. Patients who had improved urgency with antimuscarinic medication after HoLEP were excluded. We divided the patients into 2 groups based on urgency symptoms 3 months after HoLEP: improved and unimproved urgency. Improved urgency was defined as a reduction of 2 or more points on the 5-point urinary sensation scale. Preoperative clinical and urodynamic factors as well as perioperative factors were compared between groups. Results In total, 139 patients were included in this study. Voiding parameters in all patients improved significantly after HoLEP. Seventy-one patients (51.1%) had improved urgency, while 68 (48.9%) did not show any improvement. A history of acute urinary retention (AUR) and postvoid residual were associated with postoperative urgency improvement in univariate analysis. In multivariate analysis, a history of AUR was an independent factor affecting urgency improvement. Conclusions A preoperative history of AUR could influence the change in urgency after HoLEP surgery in patients with BPH. PMID:27847917

  9. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Mackinnon, I. D. R.

    1985-01-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  10. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.; MacKinnon, I. D. R.

    1985-11-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  11. On the Stabilization of Ribose by Silicate Minerals

    NASA Astrophysics Data System (ADS)

    Vázquez-Mayagoitia, Álvaro; Horton, Scott R.; Sumpter, Bobby G.; Šponer, Jiří; Šponer, Judit E.; Fuentes-Cabrera, Miguel

    2011-03-01

    The RNA-world theory hypothesizes that early Earth life was based on the RNA molecule. However, the notion that ribose, the sugar in RNA, is unstable still casts a serious doubt over this theory. Recently, it has been found that the silicate-mediated formose reaction facilitates the stabilization of ribose. Using accurate quantum chemical calculations, we determined the relative stability of the silicate complexes of arabinose, lyxose, ribose, and xylose with the intent to determine which would form predominantly from a formose-like reaction. Five stereoisomers were investigated for each complex. The stereoisomers of 2:1 ribose-silicate are the more stable ones, to the extent that the least stable of these is even more stable than the most stable stereoisomer of the other 2:1 sugar-silicate complexes. Thus, thermodynamically, a formose-like reaction in the presence of silicate minerals should preferentially form the silicate complex of ribose over the silicate complex of arabinose, lyxose, and xylose.

  12. Characterization of chitin-metal silicates as binding superdisintegrants.

    PubMed

    Rashid, Iyad; Daraghmeh, Nidal; Al-Remawi, Mayyas; Leharne, Stephen A; Chowdhry, Babur Z; Badwan, Adnan

    2009-12-01

    When chitin is used in pharmaceutical formulations, processing of chitin with metal silicates is advantageous, from both an industrial and pharmaceutical perspective, compared to processing using silicon dioxide. Unlike the use of acidic and basic reagents for the industrial preparation of chitin-silica particles, coprecipitation of metal silicates is dependent upon a simple replacement reaction between sodium silicate and metal chlorides. When coprecipitated onto chitin particles, aluminum, magnesium, or calcium silicates result in nonhygroscopic, highly compactable/disintegrable compacts. Disintegration and hardness parameters for coprocessed chitin compacts were investigated and found to be independent of the particle size. Capillary action appears to be the major contributor to both water uptake and the driving force for disintegration of compacts. The good compaction and compression properties shown by the chitin-metal silicates were found to be strongly dependent upon the type of metal silicate coprecipitated onto chitin. In addition, the inherent binding and disintegration abilities of chitin-metal silicates are useful in pharmaceutical applications when poorly compressible and/or highly nonpolar drugs need to be formulated.

  13. Reagentless and calibrationless silicate measurement in oceanic waters.

    PubMed

    Giraud, William; Lesven, Ludovic; Jońca, Justyna; Barus, Carole; Gourdal, Margaux; Thouron, Danièle; Garçon, Véronique; Comtat, Maurice

    2012-08-15

    Determination of silicate concentration in seawater without addition of liquid reagents was the key prerequisite for developing an autonomous in situ electrochemical silicate sensor (Lacombe et al., 2007) [11]. The present challenge is to address the issue of calibrationless determination. To achieve such an objective, we chose chronoamperometry performed successively on planar microelectrode (ME) and ultramicroelectrode (UME) among the various possibilities. This analytical method allows estimating simultaneously the diffusion coefficient and the concentration of the studied species. Results obtained with ferrocyanide are in excellent agreement with values of the imposed concentration and diffusion coefficient found in the literature. For the silicate reagentless method, successive chronoamperometric measurements have been performed using a pair of gold disk electrodes for both UME and ME. Our calibrationless method was tested with different concentrations of silicate in artificial seawater from 55 to 140×10(-6) mol L(-1). The average value obtained for the diffusion coefficient of the silicomolybdic complex is 2.2±0.4×10(-6) cm(2) s(-1), consistent with diffusion coefficient values of molecules in liquid media. Good results were observed when comparing known concentration of silicate with experimentally derived ones. Further work is underway to explore silicate determination within the lower range of oceanic silicate concentration, down to 0.1×10(-6) mol L(-1).

  14. Chemistry of the subalkalic silicic obsidians

    USGS Publications Warehouse

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various

  15. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  16. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  17. Magnetic fabric interpretation complicated by inclusions in mafic silicates

    NASA Astrophysics Data System (ADS)

    Lagroix, France; Borradaile, Graham J.

    2000-10-01

    The expected relationships between anisotropy of low-field magnetic susceptibility (AMS) and crystal symmetry of mafic silicates are disturbed by the presence of magnetite inclusions. Measurements of AMS, anisotropy of anhysteretic remanence (AARM) and theoretically predicted bulk susceptibilities from chemical composition all favour the exercise of great caution in the interpretation of preferred orientation distributions of silicates from a rock's AMS. These results pertain mainly to the mafic silicates of lower crustal rocks (pyroxene, orthopyroxene, amphibole) and some of their low-grade metamorphic alterations (serpentine, epidote).

  18. Thermally responsive aqueous silicate mixtures and use thereof

    SciTech Connect

    Smith, W.H.; Vinson, E.F.

    1987-02-03

    A method is described of plugging or sealing a zone in a subterranean formation comprising: (a) contacting the zone with an aqueous silicate composition consisting essentially of (i) an aqueous solution containing an alkali metal silicate; and, (ii) a thermally responsive gelation activator selected from the group consisting of lactose, dextrose, fructose, galactose, mannose, mantose, xylose and mixtures thereof; and (b) activating the gelation activator in response to a thermal change in the composition within the formation whereby the silicate composition is caused to form a gel in the zone.

  19. Sialendoscopy with holmium:YAG laser treatment for multiple large sialolithiases of the Wharton duct: a case report and literature review.

    PubMed

    Sun, Yu-Ting; Lee, Kuo-Sheng; Hung, Shih-Han; Su, Chin-Hui

    2014-12-01

    Sialolithiasis is defined as calcified stone(s) in the salivary duct or glands. Submandibular gland sialolithiasis is the most common (80 to 90%), followed by parotid gland sialolithiasis (5 to 15%). The typical clinical presentation is salivary gland swelling after eating. As the swelling persists, symptoms owing to local inflammation, such as pain and trismus, emerge. In severe cases, cellulitis and even abscess formation occur and subsequently lead to salivary gland atrophy or fistula formation if the sialolithiasis remains untreated. The most common treatment is complete excision of the affected gland together with the stone(s). In some cases, intraoral sialolithotomy is performed when the stone is solitary and easily palpable through the oral cavity. Sialendoscopy is increasingly performed because of its minimal invasiveness. The major limitation of endoscopic laser lithotripsy of the salivary glands is the size of the stone. Often, for a stone larger than 4 mm, multiple fragmentations of the stone into small pieces is necessary before the pieces can be removed by wire basket or grasping forceps. Recently, the holmium:YAG laser has been reported as quite effective in removing larger salivary gland stones. However, sialoendoscopic laser lithotripsy is a very time-consuming procedure and in most cases, when there are multiple large stones in a single gland, entire gland excision is recommended. This report describes a male patient diagnosed with multiple large stones in his left submandibular gland who was successfully treated under sialendoscopy with holmium:YAG laser lithotripsy.

  20. Metal/Silicate Partitioning of W, Ge, Ga and Ni: Dependence on Silicate Melt Composition

    NASA Astrophysics Data System (ADS)

    Singletary, S.; Drake, M. J.

    2004-12-01

    Metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle (Drake and Righter, 2002; Jones and Drake, 1986; Righter et al. 1997). The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. In this work, we investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid. Experiments were performed in the Experimental Geochemistry Laboratory at the University of Arizona utilizing a non-end loaded piston cylinder apparatus with a barium carbonate pressure medium. Starting materials were created by combining the mafic and silicic compositions of Jaeger and Drake (2000) with Fe powder (~25 wt% of the total mixture) to achieve metal saturation. Small amounts of W, Ge, Ga2O3 and NiO powder (less than 2 wt% each) were also added to the starting compositions. The experiments were contained in a graphite capsule and performed with temperature and pressure fixed at 1400ºC and 1.5 GPa. Experimental run products were analyzed with the University of Arizona Cameca SX50 electron microprobe with four wavelength dispersive spectrometers and a PAP ZAF correction program. All experiments in our set are saturated with metal and silicate liquid, indicating that oxygen fugacity is below IW. Several of the runs also contain a gallium-rich spinel as an additional saturating phase. Quench phases are also present in the silicate liquid in all runs. The experimentally produced liquids have nbo/t values (calculated using the method of Mills, 1993) that range from 1.10 to 2.97. These values are higher than those calculated for the liquids in the Jaeger and Drake (2000) study. The higher nbo/t values are due to uptake of Fe by the melt. The initial silicate

  1. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  2. The di- and tricalcium silicate dissolutions

    SciTech Connect

    Nicoleau, L.; Nonat, A.; Perrey, D.

    2013-05-15

    In this study, a specially designed reactor connected to an ICP spectrometer enabled the careful determination of the dissolution rates of C{sub 3}S, C{sub 2}S and CaO, respectively, over a broad range of concentration of calcium and silicates under conditions devoid of C–S–H. The kinetic laws, bridging the dissolution rates and the undersaturations, were obtained after extrapolation of rate zero allowing the estimation of the true experimental solubility products of C{sub 3}S (K{sub sp} = 9.6 · 10{sup −23}), C{sub 2}S (K{sub sp} = 4.3 · 10{sup −18}) and CaO (K{sub sp} = 9.17 · 10{sup −6}). The latter are then compared to the solubilities calculated from the enthalpies of formation. We propose that the observed deviations result from the protonation of the unsaturated oxygen atoms present at the surface of these minerals. Hydration rates measured in cement pastes or in C{sub 3}S pastes are in excellent agreement with the kinetic law found in this study for C{sub 3}S under conditions undersaturated with respect to C–S–H.

  3. Lithologic mapping of silicate rocks using TIMS

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    Common rock-forming minerals have thermal infrared spectral features that are measured in the laboratory to infer composition. An airborne Daedalus scanner (TIMS) that collects six channels of thermal infrared radiance data (8 to 12 microns), may be used to measure these same features for rock identification. Previously, false-color composite pictures made from channels 1, 3, and 5 and emittance spectra for small areas on these images were used to make lithologic maps. Central wavelength, standard deviation, and amplitude of normal curves regressed on the emittance spectra are related to compositional information for crystalline igneous silicate rocks. As expected, the central wavelength varies systematically with silica content and with modal quartz content. Standard deviation is less sensitive to compositional changes, but large values may result from mixed admixture of vegetation. Compression of the six TIMS channels to three image channels made from the regressed parameters may be effective in improving geologic mapping from TIMS data, and these synthetic images may form a basis for the remote assessment of rock composition.

  4. Silicate Urolithiasis during Long-Term Treatment with Zonisamide

    PubMed Central

    Taguchi, Satoru; Nose, Yorito; Sato, Toshikazu; Kobayashi, Teruaki; Takaya, Kanami; Homma, Yukio

    2013-01-01

    Silicate urinary calculi are rare in humans, with an incidence of 0.2% of all urinary calculi. Most cases were related to excess ingestion of silicate, typically by taking magnesium trisilicate as an antacid for peptic ulcers over a long period of time; however, there also existed unrelated cases, whose mechanism of development remains unclear. On the other hand, zonisamide, a newer antiepileptic drug, is one of the important causing agents of iatrogenic urinary stones in patients with epilepsy. The supposed mechanism is that zonisamide induces urine alkalinization and then promotes crystallization of urine components such as calcium phosphate by inhibition of carbonate dehydratase in renal tubular epithelial cells. Here, we report a case of silicate urolithiasis during long-term treatment with zonisamide without magnesium trisilicate intake and discuss the etiology of the disease by examining the silicate concentration in his urine. PMID:23935637

  5. Metal-silicate catalysts: Single site, mesoporous systems without templates

    SciTech Connect

    Barnes, Craig E.; Sharp, Katherine; Albert, Austin A; Abbott, Joshua; Peretich, Michael E; Fulvio, Pasquale; Ciesielski, Peter N.; Donohoe, Bryon S.

    2015-06-01

    The textural properties of a family of silicate and mixed metal-silicate materials prepared by a nonaqueous sol-gel reaction involving the cubic silicate Si8O20(SnMe3)8 and metal chlorides MCl4 (M = Si, Ti, Zr) cross-linking reagents are described. Nitrogen adsorption isotherm data is presented and surface area and pore size distribution analyses for several examples of these materials are developed and correlated with the ratio of cross-linking reagent and the cubic silicate building block at the time of synthesis. Significant surface area and pore size distributions that shift to higher pore diameters are observed as the ratio of cross-linking reagent-to-cubic building block increases. A simple strategy for simultaneously controlling the porosity of these matrices while homogeneously dispersing identical metal centers on their surfaces for next generation catalysts is described.

  6. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life.

  7. Reactivity and applications of layered silicates and layered double hydroxides.

    PubMed

    Selvam, Thangaraj; Inayat, Alexandra; Schwieger, Wilhelm

    2014-07-21

    Layered materials, such as layered sodium silicates and layered double hydroxides (LDHs), are well-known for their remarkable adsorption, intercalation and swelling properties. Their tunable interlayers offer an interesting avenue for the fabrication of pillared nanoporous materials, organic-inorganic hybrid materials and catalysts or catalyst supports. This perspective article provides a summary of the reactivity and applications of layered materials including aluminium-free layered sodium silicates (kanemite, ilerite (RUB-18 or octosilicate) and magadiite) and layered double hydroxides (LDHs). Recent developments in the use of layered sodium silicates as precursors for the preparation of various porous, functional and catalytic materials including zeolites, mesoporous materials, pillared layered silicates, organic-inorganic nanocomposites and synthesis of highly dispersed nanoparticles supported on silica are reviewed in detail. Along this perspective, we have attempted to illustrate the reactivity and transformational potential of LDHs in order to deduce the main differences and similarities between these two types of layered materials.

  8. Relationship Between Carbon and Silicates in Cometary Dust

    NASA Astrophysics Data System (ADS)

    Starkey, N. A.; Franchi, I. A.; Salge, T.; Brearley, A. J.

    2015-07-01

    An ultracarbonaceous IDP fragment is analysed with combined high spatial resolution SEM-EDX and H, C, O isotope mapping to investigate the relationship between the organic matter matrix and the small silicate grains contained within.

  9. Processing and Properties of Chemically Derived Calcium Silicate Cements

    DTIC Science & Technology

    1992-02-27

    1991 Air Force Grant No. AFOSR-88-0184 Prepared for AIR FORCE OFFICE OF SCIENTIFIC RESEARCH ELECTRONIC AND MATERIAL SCIENCES DIRECTORATE Principal...Heiland, Processing and Properties of Chemically Derived Calcium Silicate Cement. Master of Science , Solid State Science , The Pennsylvania State...University, May 1990. Appendix IV Kelly Markowski, A Fundamental Study of the Surface Chemistry of Calcium Silicate Hydrate, Bachelor of Science Thesis

  10. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  11. The application of silicon and silicates in dentistry: a review.

    PubMed

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

  12. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  13. Metal/Silicate Partitioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition

    NASA Technical Reports Server (NTRS)

    Bailey, Edward; Drake, Michael J.

    2004-01-01

    The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.

  14. Effect of silicate structure on thermodynamic properties of calcium silicate melts: Quantitative analysis of Raman spectra

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun

    2013-05-01

    The distribution of silicate anionic species (Qn units, n=0, 1, 2, 3) and the chemical speciation of oxygen in CaO-SiO2-MO (M=Mn and Mg) slags were investigated by micro-Raman spectroscopic analysis. Furthermore, the thermochemical properties were evaluated using a concentration of free oxygen and a degree of polymerization. A good linear relationship was obtained between sulfide capacity and concentration of free oxygen in the CaO-SiO2 (-MnO) melts at 1500 to 1600 °C. However, even though there was more abundant free oxygen in the CaO-SiO2-MgO system than in the CaO-SiO2 system, the sulfide capacity of the former was lower than the latter, indicating that the sulfur dissolution behavior in the silicate melts cannot be simply explained by the content of free oxygen, because the composition dependency of the stability ratio of oxygen and sulfide ions should be taken into account. The excess free energy of CaO, MgO and MnO linearly decreased as the ln (Q3/Q2) increased. The effect of the degree of polymerization on the excess free energy of mixing of MgO-containing slag was larger than that of MnO-containing slag, which was explained by the difference of the ionization potential between Mn2+ and Mg2+ ions.

  15. Spectroscopy and Excitation Dynamics of the Trivalent Lanthanides THULIUM(3+) and HOLMIUM(3+) in Yttrium Lithium Fluoride.

    NASA Astrophysics Data System (ADS)

    Walsh, Brian Michael

    A detailed study of the spectroscopy and excitation dynamics of the trivalent lanthanides Tm^ {3+} and Ho^{3+} in Yttrium Lithium Fluoride, LiYF_4 (YLF), has been done. YLF is a very versatile laser host that has been used to produce laser action at many different wavelengths when doped with trivalent lanthanides. Since the early 1970's YLF has been the subject of many studies, the main goal of which has been to produce long wavelength lasers in the eye safe 2mum region. This study concentrates on a presentation and analysis of the spectroscopic features, and the temporal evolution of excitation energy in YLF crystals doped with Tm^{3+ } and Ho^{3+} ions. Absorption spectroscopy is studied to identify wavelength regions where energy can be absorbed in Holmium YLF and Thulium YLF, and to determine their respective absorption cross sections. These measurements are applied in the Judd-Ofelt theory to determine radiative transition rates of spontaneous emission. Luminescence spectroscopy is studied under cw diode laser excitation at 785nm. The effect of dopant ion concentration and excitation power on the observed luminescence are considered in these measurements. An analysis of these measurements have been used to determine channels of energy transfer between Tm^ {3+} and Ho^{3+} ions (cross relaxation, upconversion, and resonant energy transfer). The temporal response of Tm and Ho in singly and co-doped YLF to pulsed laser excitation with a Ti:Al_2O_3 laser and a CoMgF_2 laser tuned to various wavelengths have also been studied. The energy transfer mechanisms of cross relaxation, upconversion, and resonant energy transfer between Tm^ {3+} and Ho^{3+} ions have been modeled, and the model parameters extracted by a fitting procedure to the measured temporal response curves. Rate equation approaches to modeling are presented that result in predictions of rate constants for energy transfer processes, as well as more conventional approaches to modeling such as the Forster

  16. Holmium laser enucleation versus simple prostatectomy for treating large prostates: Results of a systematic review and meta-analysis

    PubMed Central

    Jones, Patrick; Alzweri, Laith; Rai, Bhavan Prasad; Somani, Bhaskar K.; Bates, Chris; Aboumarzouk, Omar M.

    2015-01-01

    Objective To compare and evaluate the safety and efficacy of holmium laser enucleation of the prostate (HoLEP) and simple prostatectomy for large prostate burdens, as discussion and debate continue about the optimal surgical intervention for this common pathology. Materials and methods A systematic search was conducted for studies comparing HoLEP with simple prostatectomy [open (OP), robot-assisted, laparoscopic] using a sensitive strategy and in accordance with Cochrane collaboration guidelines. Primary parameters of interest were objective measurements including maximum urinary flow rate (Qmax) and post-void residual urine volume (PVR), and subjective outcomes including International Prostate Symptom Score (IPSS) and quality of life (QoL). Secondary outcomes of interest included volume of tissue retrieved, catheterisation time, hospital stay, blood loss and serum sodium decrease. Data on baseline characteristics and complications were also collected. Where possible, comparable data were combined and meta-analysis was conducted. Results In all, 310 articles were identified and after screening abstracts (114) and full manuscripts (14), three randomised studies (263 patients) were included, which met our pre-defined inclusion criteria. All these compared HoLEP with OP. The mean transrectal ultrasonography (TRUS) volume was 113.9 mL in the HoLEP group and 119.4 mL in the OP group. There was no statistically significant difference in Qmax, PVR, IPSS and QoL at 12 and 24 months between the two interventions. OP was associated with a significantly shorter operative time (P = 0.01) and greater tissue retrieved (P < 0.001). However, with HoLEP there was significantly less blood loss (P < 0.001), patients had a shorter hospital stay (P = 0.03), and were catheterised for significantly fewer hours (P = 0.01). There were no significant differences in the total number of complications recorded amongst HoLEP and OP (P = 0.80). Conclusion The results of the meta

  17. Partitioning coefficients between olivine and silicate melts

    NASA Astrophysics Data System (ADS)

    Bédard, J. H.

    2005-08-01

    Variation of Nernst partition coefficients ( D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO 2, H 2O, MgO and MgO/MgO + FeO total. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO 2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE-Sc-Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta-Hf-Zr-Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.

  18. Modular flexible ureteroscopy and holmium laser lithotripsy for the treatment of renal and proximal ureteral calculi: A single-surgeon experience of 382 cases.

    PubMed

    Yan, Zejun; Xie, Guohai; Yuan, Hesheng; Cheng, Yue

    2015-10-01

    To determine the safety and efficacy of modular flexible ureteroscopy and holmium laser lithotripsy for the treatment of renal and proximal ureteral calculi, a retrospective chart review of a single surgeon's 3-year modular flexible ureteroscopy experience was performed. All of the patients were treated with modular flexible ureteroscopy and holmium laser lithotripsy by a single surgeon. Stone-free status was defined as no fragments or a single fragment ≤4 mm in diameter at the 3-month follow-up. The procedure number, operative time, stone-free rates, repeat usage of the multilumen catheter, and perioperative complications were documented. The present study included 215 male patients and 167 female patients, with an average age of 48.5±13.7 years (range, 17-84 years). The mean stone size was 11.5±4.1 mm (range, 4-28 mm), and the mean total stone burden was 17.5±5.7 mm (range 15-46 mm). A total of 305 patients (79.8%) had a stone burden ≤20 mm, and 77 patients (20.2%) had a stone burden >20 mm. The mean number of primary procedures was 1.3±0.2 (range, 1-3). The stone-free rate following the first and the second procedure was 73.4 and 86.9%, respectively. The mean postoperative hospital stay was 3.1±1.2 days (range, 2-6 days). The highest clearance rates were observed for proximal ureteral stones (100%) and renal pelvic stones (88.7%), whereas the lowest clearance rates were observed for lower calyx stones (76.7%) and multiple calyx stones (77.8%). The higher the initial stone burden, the lower the postoperative stone-free rate (≤20 vs. >20 mm; 89.8 vs. 75.3%). The overall complication rate was 8.1%. The results of the present study suggest that modular flexible ureteroscopy with holmium laser lithotripsy may be considered the primary method for the treatment of renal and proximal ureteral calculi in select patients, due to its acceptable efficacy, low morbidity, and relatively low maintenance costs.

  19. Comparison of ablation channels created by the ultrapulsed CO2 laser, holmium laser, and 308-nm excimer laser in view of transmyocardial revascularization

    NASA Astrophysics Data System (ADS)

    Sachinopoulou, Anna; Verdaasdonck, Rudolf M.; Beek, Johan F.

    1996-05-01

    The perfusion of hibernating myocardium by oxygenated blood coming from transmyocardial channels to the left ventricular cavity has been considered as an alternative for patients unsuitable for bypass surgery. Channels created by lasers are believed to assure patency in the long term. At this moment, several laser systems have become available to create these channels with minimal thermal effects. The systems should be ECG triggered and the exposure should preferably be within the relaxation phase of the cardiac cycle (0.1 - 0.2 s). The lasers examined were an ultrapulsed carbon-dioxide laser with long focus delivery optics, a Holmium laser coupled to a 1 mm spot fiber and an Excimer laser coupled to a 950 fiber. Pieces of bovine myocardium (10 - 20 mm thickness) were exposed while the displacement during penetration was monitored. Pulse trains were delivered within 0.05 - 0.2 s with a repetition rate of 1 - 3 Hz. The fiber delivery devices were loaded with weights between 10 - 80 gram to study the influence of exerted force. For the carbon dioxide laser the creation of the channels was also recorded on high speed video and with a thermal imaging method in a model tissue to visualize explosive and thermal effects. With the Holmium laser immediate penetration of the fiber was obtained while with the Excimer laser the penetration of the fiber started only after several pulses within the train depending on force and energy. The carbon-dioxide laser beam created a channel instantly, up to 30 mm/pulse depending on spotsize and energy. We conclude that all three lasers are capable of creating a channel of 20 mm long on the heart within a few cardiac cycles. Histologic analysis showed that in contrast to the smooth channels of the carbon-dioxide laser, the Holmium and Excimer laser create irregular channels with ruptures to the sides with some thermal damage. It is not clear which kind of channels will have the best potentials to provide maximum perfusion of the

  20. Comment on "The shape and composition of interstellar silicate grains"

    SciTech Connect

    Bradley, J P; Ishii, H

    2007-09-27

    In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS) amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with those of IS amorphous silicates. It is widely accepted that circumstellar outflows are important sources of IS silicates, and whether GEMS are processed or not, the circumstellar heritage of some has been rigorously confirmed through measurements of non-solar oxygen (O) isotope abundances (Messenger et al., 2003; Floss et al., 2006). Keller et al. (2000) assert that even GEMS without detectable O isotope anomalies are probably also extrasolar IS silicates because they are embedded in carbonaceous material with non-solar D/H isotopic composition. (Much of the silicate dust in the ISM may be isotopically homogenized (Zhukovska et al., 2007)). Recent

  1. Line Identification of Atomic and Ionic Spectra of Holmium in the Near-UV. II. Spectra of Ho II and Ho III

    NASA Astrophysics Data System (ADS)

    Başar, Gö.; Al-Labady, N.; Özdalgiç, B.; Güzelçimen, F.; Er, A.; Öztürk, I. K.; Ak, T.; Bİlİr, S.; Tamanis, M.; Ferber, R.; Kröger, S.

    2017-02-01

    Fourier Transform spectra of holmium (Ho) in the UV spectral range from 31,530 to 25,000 cm‑1 (317 to 400 nm) have been investigated, particularly focusing on the ionic lines. The distinction between the different degrees of ionization (I, II, and III) is based on differences in signal-to-noise ratios from two Ho spectra, which have been measured with different buffer gases, i.e., neon and argon. Based on 106 known Ho ii and 126 known Ho iii energy levels, 97 lines could be classified as transitions of singly ionized Ho and 9 lines could be classified as transitions of doubly ionized Ho. Of the 97 Ho ii lines, 6 have not been listed in the extant literature. Another 215 lines have been assigned to Ho ii, though they could not be classified on the basis of the known energy levels.

  2. Impact of holmium fibre laser radiation (λ = 2.1 μm) on the spinal cord dura mater and adipose tissue

    SciTech Connect

    Filatova, S A; Kamynin, V A; Ryabova, A V; Loshchenov, V B; Tsvetkov, V B; Kurkov, A S; Zelenkov, P V; Zolotovskii, I O

    2015-08-31

    The impact of holmium fibre laser radiation on the samples of biologic tissues (dura mater of spinal cord and adipose tissue with interlayers of muscle) is studied. The experimental results are evaluated by the size of carbonisation and coagulation necrosis zones. The experiment shows that in the case of irradiation of the spinal cord dura mater samples the size of carbonisation and coagulation necrosis zones is insignificant. In the adipose tissue the carbonisation zone is also insignificant, but the region of cellular structure disturbance is large. In the muscle tissue the situation is opposite. The cw laser operation provides clinically acceptable degree of destruction in tissue samples with a minimal carbonisation zone. (laser applications in medicine)

  3. Sub-100  fs passively mode-locked holmium-doped fiber oscillator operating at 2.06  μm.

    PubMed

    Li, Peng; Ruehl, Axel; Grosse-Wortmann, Uwe; Hartl, Ingmar

    2014-12-15

    We demonstrate a simple and compact Holmium-doped fiber femtosecond oscillator, in-band pumped by a commercial Tm-doped fiber laser. The oscillator operates in the dispersion managed soliton regime at net zero intracavity dispersion and delivers >1  nJ pulse energy at 35 MHz repetition rate. The pulse duration directly at the oscillator output is 160 fs FWHM, close to the Fourier-limit of 145 fs FWHM. Using an additional nonlinear compressor stage, sub-100 fs FWHM pulse durations could be achieved. The nonlinear fiber compressor is implemented by a solid core highly nonlinear fiber for spectral broadening and a single mode fiber for pulse compression.

  4. Behavior of Np(VII, VI, V) in Silicate Solutions

    SciTech Connect

    Shilov, V P.; Fedoseev, A M.; Yusov, A B.; Delegard, Calvin H.

    2004-11-30

    Spectrophotometric methods were used to investigate the properties of neptunium(VII), (VI), and (V) in silicate solution. The transition of cationic neptunium(VII) to anionic species in non-complexing environments proceeds in the range of ?? 5.5 to 7.5. In the presence of carbonate, this transition occurs at ?? 10.0 to 11.5 and in silicate solutions at ?? 10.5-12.0. These findings show that cationic neptunium(VII) forms complexes with both carbonate and silicate and that the silicate complex is stronger than that of the carbonate. The competition of complex formation reactions for neptunium(VI) with carbonate and silicate and on the known complex stability constant of NpO2(CO3)34- allowed the NpO2SiO3 complex stability constant, log ? = 16.5, to be estimated. Determination of the formation constant of Np(V) complexes with SiO32- was not possible using similar methods.

  5. Properties of cometary crystalline silicate before and after perihelion passage

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2013-01-01

    Crystalline silicate is sometimes observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to be born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough OC samples, while we have observed several ECs. Fortunately, we can observe three comets in this semester. In particular, C/2012 S1 (ISON) is a bright sungrazing comet, and we might expect possible splitting and exposing of pristine materials inside the nucleus after its perihelion passage. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet. The comet C/2012 S1 (ISON), along with two other comets, is an unparalleled target for this study.

  6. Preparation and Insulation Properties of Epoxy-Layered Silicate Nanocomposite

    NASA Astrophysics Data System (ADS)

    Imai, Takahiro; Sawa, Fumio; Ozaki, Tamon; Nakano, Toshiyuki; Shimizu, Toshio; Yoshimitsu, Tetsuo

    Recent rapid progress in nanotechnology has focused research and development efforts on new high performance materials. Organic-inorganic hybrid materials such as nylon-layered silicate nanocomposites have attracted special interest and various studies continue to be conducted on thermoplastic resins. In this study, we found out the best organic modifier of layered silicate that contributed to an affinity for epoxy resin (thermosetting resin), and succeeded in creating an intercalated-type epoxy-layered silicate nanocomposite. This nanocomposite realized some improvements by the addition of 5 or 6 weight percentage of organically modified layered silicates, which have 20oC higher thermal resistance, 60% higher fracture toughness, 19% higher flexural strength and 10% higher insulation breakdown strength than these of an epoxy resin without layered silicate fillers. An electrical treeing growth was observed in the nanocomposite. The electrical treeing progress with many branches in the nanocomposite seemed to result in an increase in the insulation breakdown strength. These results suggest the possibility of practical use as an insulating material in heavy apparatuses.

  7. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  8. Amorphous to crystalline transition of magnesium silicate and silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Fabian, D.; Jäger, C.; Henning, Th.; Dorschne, J.; Mutschke, H.

    2000-11-01

    Amorphous magnesium silicate and silica nanoparticles (smoke) have been transformed into the crystalline state by the process of thermal annealing. It has been shown that the magnesium silicate smoke evolves into crystalline forsterite (c- Mg2SiO4), tridymite (a crystalline modification of SiO2) and amorphous silica (a-SiO2) according to the initial Mg/Si-ratio of the smoke. Crystallization took place within a few hours for the Mg2SiO4 smoke and within one day for the MgSiO3 smoke. Amorphous silica nanoparticles have been annealed at 1220 K and are characterized by distinctly lower rates of thermal evolution compared to the magnesium silicates. Silica changed into cristobalite and tridymite.

  9. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  10. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    SciTech Connect

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  11. Origin of silicic magma in Iceland revealed by Th isotopes

    SciTech Connect

    Sigmarsson, O.; Condomines, M. ); Hemond, C. ); Fourcade, S. ); Oskarsson, N. )

    1991-06-01

    Th, Sr, Nd, and O isotopes have been determined in a suite of volcanic rocks from Hekla and in a few samples from Askja and Krafla volcanic centers in Iceland. Although {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd ratios are nearly the same for all compositions at Hekla, the ({sup 230}Th/{sup 232}Th) ratios differ and thus clearly show that the silicic rocks cannot be derived from fractional crystallization of a more primitive magma. Similar results are obtained for the Krafla and Askja volcanic centers, where the {delta}{sup 18}O values are much lower in the silicic magma than in the mafic magma. These data suggest that large volumes of silicic rocks in central volcanoes of the neovolcanic zones in Iceland are produced by partial melting of the underlying crust.

  12. FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES

    SciTech Connect

    Jing Dapeng; He Jiao; Vidali, Gianfranco; Brucato, John Robert; Tozzetti, Lorenzo; De Sio, Antonio

    2012-09-01

    Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

  13. Structural chemistry of anhydrous sodium silicates - a review.

    PubMed

    Kahlenberg, Volker

    2010-01-01

    Sodium silicates are of considerable importance for many fields of inorganic chemistry and applied mineralogy, being either raw materials for synthesis or already finished products. In addition to their industrial relevance they have also been studied intensively because of their interesting physico-chemical properties including high ion-exchange capacity and selectivity or two-dimensional sodium diffusion and conductivity. Furthermore, the structural chemistry of crystalline sodium silicates offers the crystallographer challenging tasks such as polytypism, polymorphism, temperature and/or pressure-dependent phase transitions, pseudo-symmetry, complex twinning phenomena as well as incommensurately modulated structures. Many of these structural problems have been solved only recently, although in some cases they have been known for several decades. This article will provide an overview on the structurally characterized sodium silicates and their fascinating crystallochemical characteristics.

  14. The Lassell Massif - a Silicic Lunar Volcano

    NASA Astrophysics Data System (ADS)

    Ashley, J.; Robinson, M. S.; Stopar, J. D.; Glotch, T. D.; Hawke, B. R.; Lawrence, S. J.; Jolliff, B. L.; Greenhagen, B. T.; Paige, D. A.

    2013-12-01

    Lunar volcanic processes were dominated by mare-producing basaltic extrusions. However, limited occurrences of non-mare, geochemically evolved (Si-enriched) volcanic deposits have long been suspected on the basis of spectral anomalies (red spots), landform morphologies, and the occurrence of minor granitic components in Apollo sample suites [e.g., 1-5]. The LRO Diviner Lunar Radiometer Experiment (Diviner) measured thermal emission signatures considered diagnostic of highly silicic rocks in several red spot areas [6,7], within the Marius domes [8], and from the Compton-Belkovich feature on the lunar farside [9]. The present study focuses on the Lassell massif red spot (14.73°S, 350.97°E) located in northeastern Mare Nubium near the center of Alphonsus A crater. Here we use Diviner coverage co-projected with Lunar Reconnaissance Orbiter Camera (LROC) images [10] and digital elevation models to characterize the Lassell massif geomorphology and composition. Localized Diviner signatures indicating relatively high silica contents correlate with spatially distinct morphologic features across the Lassell massif. These features include sub-kilometer scale deposits with clear superposing relationships between units of different silica concentrations. The zone with the strongest signal corresponds to the southern half of the massif and the Lassell G and K depressions (formerly thought to be impact craters [11]). These steep-walled pits lack any obvious raised rims or ejecta blankets that would identify them as impact craters; they are likely explosive volcanic vents or collapse calderas. This silica-rich area is contained within the historic red spot area [4], but does not appear to fully overlap with it, implying compositionally distinct deposits originating from the same source region. Low-reflectance deposits, exposed by impact craters and mass wasting across the massif, suggest either basaltic pyroclastics or minor late-stage extrusion of basaltic lavas through vents

  15. Formation of Magnesium Silicates is Limited around Evolved Stars

    NASA Astrophysics Data System (ADS)

    Kimura, Yuki; Nuth, J. A., III

    2009-05-01

    Laboratory experiments suggest that magnesium silicide (Mg2Si) grains could be produced in the hydrogen dominant gas outflow from evolved stars in addition to amorphous oxide minerals. Astronomical observations have shown the existence of abundant silicate grains around evolved stars and we have long realized that most of the silicate grains are amorphous, based on the observed infrared features. Only high mass loss stars show the feature attributed to magnesium-rich crystalline silicate about 10-20 % respect to total silicates, so far. The lower degree of crystallinity observed in silicates formed in outflows of lower mass-loss-rate stars might be caused by the formation of magnesium silicide in this relatively hydrogen-rich environment. As a result of predominant distribution of magnesium into the silicide, the composition of interstellar amorphous silicates could be magnesium poor compared with silicon. Indeed, the chemical composition of isotopically anomalous GEMS (glass with embedded metal and sulfides) is magnesium poor with respect to a forsteritic composition (Floss et al. 2006; Keller & Messenger 2007). Infrared observations suggest that there is little or no crystalline forsterite in interstellar environments while there is an abundance of crystalline forsterite in our Solar System. If the forsterite is a result of the oxidation of interstellar magnesium silicide, then it is clear both why crystalline forsterite is stoichiometric olivine and why the chemical composition of isotopically anomalous GEMS is magnesium poor with respect to a forsteritic composition. In addition, it may also explain why the chemical composition of olivine is iron poor. Unfortunately, magnesium silicide has never been detected via astronomical observation or in the analysis of primitive meteorites. I would suggest that future analysis of meteorites and theoretical calculations could confirm the possibility of the formation of magnesium silicide grains around evolved stars.

  16. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  17. Simultaneous spectrophotometric calibration of wavelength and absorbance in an interlaboratory survey using holmium oxide (Ho2O3) in perchloric acid as reference, compared with p-nitrophenol and cobaltous sulphate solutions (1978-1984).

    PubMed

    Jansen, A P; van Kampen, E J; Steigstra, H; van der Ploeg, P H; Zwart, A

    1986-02-01

    The wavelength accuracy of ten different types of spectrophotometer was tested with holmium perchlorate solutions. It was found to be good, with mean deviations from the literature values of maximally 0.3 nm. Standard deviations over the entire spectral range were within 0.75 nm. The absorbance accuracy for different types of instruments was generally within 5%, except in the 287 nm range where higher deviations were found. The sharpness of the holmium peaks, in combination with band width and sensitivity of the instruments, troubled the majority of the participants. 150 spectrophotometers were involved in the surveys. Linearity of the spectrophotometers was tested with p-nitrophenol and cobaltous sulphate and found to be satisfactory.

  18. Discovery of ancient silicate stardust in a meteorite.

    PubMed

    Nguyen, Ann N; Zinner, Ernst

    2004-03-05

    We have discovered nine presolar silicate grains from the carbonaceous chondrite Acfer 094. Their anomalous oxygen isotopic compositions indicate formation in the atmospheres of evolved stars. Two grains are identified as pyroxene, two as olivine, one as a glass with embedded metal and sulfides (GEMS), and one as an Al-rich silicate. One grain is enriched in 26Mg, which is attributed to the radioactive decay of 26Al and provides information about mixing processes in the parent star. This discovery opens new means for studying stellar processes and conditions in various solar system environments.

  19. Crystalline silicates and hydrocarbon-conversion processes employing same

    SciTech Connect

    Kouwenhoven, H.W.; Stork, W.H.

    1980-12-09

    Novel crystalline silicates which in dehydrated form have the composition in terms of moles of the oxides: (1.0 +- 3)(R)2/no.(AFe/sub 2/O/sub 3/.BAl/sub 2/O/sub 3/ . CGa/sub 2/O/sub 3/ . Y(DSiO/sub 2/ . EGeO/sub 2/)), wherein R one or more mono- or bivalent cations and A, B, C, D, E, Y and N are as defined hereinafter are disclosed. The thermally stable silicates are suitably employed as extracting agents, drying agents, ion exchange agents, catalysts and catalyst carriers.

  20. An Equation of State for Silicate Melts Under Compression

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Karato, S.

    2011-12-01

    Density of silicate melts at elevated pressures and temperatures (i.e., equation of state) is critical to our understanding of melting processes such as the generation and differentiation of silicate melts in Earth and is a key parameter to the thermodynamic and dynamic models of melting at high pressures. In the past, equations of state of silicate melts were often treated in analogy with that of crystalline solids for which the change in internal energy due to the change in inter-atomic distance plays an important role. However, liquids are different from solids in their ability to change structures, which implies the importance of entropy contribution to compression in addition to the internal energy contribution. This results in the distinct compressional properties of liquids such as (1) Liquids have much smaller bulk moduli than solids and do not follow the Birch's law of corresponding state (the relationship between bulk modulus and density) as opposed to solids; (2) The Grüneisen parameter increases with increasing pressure for (non-metallic) liquids but decreases for solids. In this work, we propose a new equation of state for multi-component silicate melts based on the hard sphere mixture model of a liquid to account for the role of entropic contribution. We assign a hard sphere for each cation species that moves in the liquid except for the volume occupied by other spheres. The geometrical arrangements of these spheres give the entropic contribution to compression, while the Columbic attraction between the spheres and the uniformly distributed oxygen background provides the internal energy contribution to compression. We calibrate the equation of state for the SiO2-Al2O3-FeO-MgO-CaO 5-component melts. The effective size of a hard sphere for each component is determined. The temperature and volume dependencies of sphere diameters are also included in the model in order to explain the melt density data at high pressures. We have also investigated the

  1. The Ice and Silicate Spectral Features for Dust Aggregates

    NASA Technical Reports Server (NTRS)

    Ilin, A. E.

    1996-01-01

    The optical properties of inhomogeneous aggregates of dust particles are calculated. The Discrete Dipole Approximation (DDA) is applied to the calculation of light scattering by the dust aggregates. The mixtures of ices and silicates are considered. The IR profiles near ice and silicate spectral features (3 micron and 10 micron) are constructed. The influence of grain topology, chemical composition and porosity have been investigated. The comparison of exact results for inhomogeneous aggregate and the effective medium theory (the rules of Maxwell-Garnett and Bruggeman) is made.

  2. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  3. EVIDENCE THAT POLYWATER IS A COLLOIDAL SILICATE SOL.

    DTIC Science & Technology

    A study was made of the ’anomalous’ condensation of water and its conversion to ’ polywater ’ in glass and silica capillaries. The condensate was...to contain significant amounts of silicon and sodium. These results suggest that the unusual properties of ’ polywater ’ may be due to the presence of...silica or silicate. It is further shown that, since alkaline silicate solutions can absorb CO2, the infrared spectra of ’ polywater ’ may actually be due, in part, to bicarbonate ion. (Author)

  4. Polymerization of silicate on hematite surfaces and its influence on arsenic sorption.

    PubMed

    Christl, Iso; Brechbühl, Yves; Graf, Moritz; Kretzschmar, Ruben

    2012-12-18

    Iron oxides and oxyhydroxides are important sorbents for arsenic in soils, sediments, and water treatment systems, but their long-term potential for arsenic retention may be diminished by the formation of polymeric silicate on their surfaces. To study these interactions, we first investigated the sorption of silicate to colloidal hematite (α-Fe(2)O(3)) in short-term (48 h) and long-term (210 days) batch experiments. The polymerization of silicate on the hematite surface was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The pH dependence of silicate sorption exhibited a maximum between pH 9.0 and 9.5. The condensation of silicate on hematite surfaces adsorbed from monomeric silicate solutions steadily continued over the 210 day period, whereby surface polymerization was slower at pH 3 than at pH 6. The effect of silicate surface polymerization on arsenate and arsenite sorption was studied by use of hematite pre-equilibrated with silicate for different time periods of up to 210 days. The competitive effect of silicate on arsenate and arsenite sorption increased with increasing silicate pre-equilibration time. Only under strongly acidic conditions (pH 3), where silicate sorption was weakest and surface polymerization was slowest, was arsenate and arsenite sorption not affected by the presence of silicate. We conclude that the long-term exposure to dissolved silicate can decrease the potential of natural iron (oxyhydr)oxides for adsorbing inorganic arsenic.

  5. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  6. High Abundance of Silicate Stardust from Supernovae in the QUE 99177 Meteorite

    NASA Astrophysics Data System (ADS)

    Hoppe, P.; Leitner, J.; Kodolányi, J.

    2016-08-01

    Our work on QUE 99177 is an extension of our previous work on Acfer 094 and suggests that the abundance of silicate stardust from supernovae is relatively high (30% by number) among the smallest presolar silicate grains.

  7. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  8. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  9. Estimation of high temperature metal-silicate partition coefficients

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-01-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  10. Comparative FeNi and Silicate Chronology in Portales Valley

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A.; Wasserburg, G. J.

    2000-01-01

    Re-Os and U-Pb data on Portales Valley suggest an early formation for the metal and silicates. These two chronometers and Rb-Sr and Sm-Nd require a young disturbance. This is inconsistent with the 39 Ar-40 Ar age and in need of clarification.

  11. Determination of boron in silicates after ion exchange separation

    USGS Publications Warehouse

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  12. Thermal conductivity and dielectric constant of silicate materials

    NASA Technical Reports Server (NTRS)

    Simon, I.; Wechsler, A. E.

    1968-01-01

    Report on the thermal conductivity and dielectric constant of nonmetallic materials evaluates the mechanisms of heat transfer in evacuated silicate powders and establishes the complex dielectric constant of these materials. Experimental measurements and results are related to postulated lunar surface materials.

  13. Strong anisotropy of ferroelectricity in lead-free bismuth silicate

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Taniguchi, Hiroki; Hwang, Jae-Yeol; Itoh, Mitsuru; Shin, Hyunjung; Kim, Sung Wng; Kim, Yunseok

    2015-07-01

    Bismuth silicate (Bi2SiO5) was recently suggested as a potential silicate based lead-free ferroelectric material. Here, we show the existence of ferroelectricity and explore the strong anisotropy of local ferroelectricity using piezoresponse force microscopy (PFM). Domain structures are reconstructed using angle-resolved PFM. Furthermore, piezoresponse hysteresis loops and piezoelectric coefficients are spatially investigated at the nanoscale. The obtained results confirm the existence of ferroelectricity with strong c-axis polarization. These results could provide basic information on the anisotropic ferroelectricity in Bi2SiO5 and furthermore suggest its considerable potential for lead-free ferroelectric applications with silicon technologies.Bismuth silicate (Bi2SiO5) was recently suggested as a potential silicate based lead-free ferroelectric material. Here, we show the existence of ferroelectricity and explore the strong anisotropy of local ferroelectricity using piezoresponse force microscopy (PFM). Domain structures are reconstructed using angle-resolved PFM. Furthermore, piezoresponse hysteresis loops and piezoelectric coefficients are spatially investigated at the nanoscale. The obtained results confirm the existence of ferroelectricity with strong c-axis polarization. These results could provide basic information on the anisotropic ferroelectricity in Bi2SiO5 and furthermore suggest its considerable potential for lead-free ferroelectric applications with silicon technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03161c

  14. Oxygen from the lunar soil by molten silicate electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1992-01-01

    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed.

  15. Spectrophotometric determination of silicate traces in hemodialysis solutions.

    PubMed

    Raggi, M A; Sabbioni, C; Mandrioli, R; Zini, Q; Varani, G

    1999-06-01

    Reliable methods for the analysis of silicon are of great importance, because it seems that the silicate anion can reduce aluminum bioavailability in patients undergoing dialysis. Thus, a simple and sensitive spectrophotometric method is described for the determination of silicate traces in dialysis solutions. The method is based on the reaction between silicate ions and excess ammonium molybdate reagent to give a yellow silico-molybdic complex. This complex is then reduced to the heteropoly blue compound by means of ascorbic acid. Absorbance values are measured at 830 nm, and are stable for more than 2 h. A good linearity was obtained up to 300 ng ml(-1) of silicon concentration. The accuracy and the precision of the method were good; relative standard deviation values of 2% intraday and of 3.9% interday for six replicates on 40 ng ml(-1) standard silicate solutions were found. Results of the analysis of some commercial hemodialysis solution samples, obtained by means of the 'standard additions' method, are provided.

  16. Efficient nucleation of stardust silicates via heteromolecular homogeneous condensation

    NASA Astrophysics Data System (ADS)

    Goumans, T. P. M.; Bromley, Stefan T.

    2012-03-01

    Dust particles, ubiquitous throughout the Universe, continuously evolve in processes closely entangled with the stellar life cycle. Dust nucleates in outflows of dying stars and is heavily processed in the journey through the interstellar medium, until it is finally subsumed in a next-generation star or its surrounding planetary system. Although the formation of silicates has been studied experimentally and theoretically for decades, the stardust nucleation process in the condensation zone of oxygen-rich stellar outflows still remains mysterious. These silicates are mostly ternary oxides consisting of O, Mg and Si, which cannot nucleate directly from gaseous monomers. Previous work has suggested that silicates form on nucleation seeds consisting of low-abundant elements or from addition of metals to SiO-nuclei. However, our extensive computational study of the thermodynamic properties of a large number of clusters shows that pure SiO nucleation is unfeasible, while heteromolecular nucleation of Mg, SiO and H2O is a plausible mechanism to form magnesium silicates under stellar outflow conditions.

  17. Fate of silicate minerals in a peat bog

    USGS Publications Warehouse

    Bennett, Philip C.; Siegel, Donald I.; Hillier, Barbara M.; Glaser, Paul H.

    1991-01-01

    An investigation of silicate weathering in a Minnesota mire indicates that quartz and aluminosilicates rapidly dissolve in anoxic, organic-rich, neutral- pH environments. Vertical profiles of pH, dissolved silicon, and major cations were obtained at a raised bog and a spring fen and compared. Profiles of readily extractable silicon, diatom abundance, ash mineralogy, and silicate surface texture were determined from peat cores collected at each site.In the bog, normally a recharge mound, dissolved silicon increases with depth as pH increases, exceeding the background silicon concentration by a factor of two. Silicate grain surfaces, including quartz, are chemically etched at this location, despite being in contact with pore water at neutral pH with dissolved silicon well above the equilibrium solubility of quartz. The increasing silica concentrations at circum-neutral pH are consistent with a system where silicate solubility is influenced by silica-organic-acid complexes. Silica-organic-acid complexes therefore may be the cause of the almost complete absence of diatoms in decomposed peat and contribute to the formation of silica-depleted underclays commonly found beneath coal.

  18. SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE

    EPA Science Inventory

    The effect of sintering on the reactivity of solids at high temperature was studied. The nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C. The kinetics of the sintering and sulfation processes were measured independentl...

  19. Ubiquitous high-FeO silicates in enstatite chondrites

    NASA Technical Reports Server (NTRS)

    Lusby, David; Scott, Edward R. D.; Keil, Klaus

    1987-01-01

    SEM and EMPA were used to determine the mineral contents of four EH3 chondrites. All four showed the dominant enstatite peak, Fs 0-5, with 4-8 percent of FeO-rich pyroxene with Fs 5-20. Among the 542 objects found to contain high-FeO silicates, 18 were chondrules, 381 were rimmed or unrimmed grains, and 143 were aggregates. The high-FeO silicates in these objects are very largely pyroxene with Fs 5-23. Large grains of both FeO-rich and FeO-poor silicates were found to be present in the FeO-rich chondrules. This fact, together with the absence of clasts of FeO-rich chondritic material in the EH3 chondrites, suggests that FeO-rich grains were introduced before or during chondrule formation. It is concluded that FeO-rich and FeO-poor silicates were both present in the nebular region where E chondrites originated.

  20. Energetics of silicate melts from thermal diffusion studies

    SciTech Connect

    Walker, D.

    1992-07-01

    Efforts are reported in the following areas: laboratory equipment (multianvils for high P/T work, pressure media, SERC/DL sychrotron), liquid-state thermal diffusion (silicate liquids, O isotopic fractionation, volatiles, tektites, polymetallic sulfide liquids, carbonate liquids, aqueous sulfate solutions), and liquid-state isothermal diffusion (self-diffusion, basalt-rhyolite interdiffusion, selective contamination, chemical diffusion).

  1. Electron stimulated hydroxylation of a metal supported silicate film.

    PubMed

    Yu, Xin; Emmez, Emre; Pan, Qiushi; Yang, Bing; Pomp, Sascha; Kaden, William E; Sterrer, Martin; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Goikoetxea, Itziar; Wlodarczyk, Radoslaw; Sauer, Joachim

    2016-02-07

    Water adsorption on a double-layer silicate film was studied by using infrared reflection-absorption spectroscopy, thermal desorption spectroscopy and scanning tunneling microscopy. Under vacuum conditions, small amounts of silanols (Si-OH) could only be formed upon deposition of an ice-like (amorphous solid water, ASW) film and subsequent heating to room temperature. Silanol coverage is considerably enhanced by low-energy electron irradiation of an ASW pre-covered silicate film. The degree of hydroxylation can be tuned by the irradiation parameters (beam energy, exposure) and the ASW film thickness. The results are consistent with a generally accepted picture that hydroxylation occurs through hydrolysis of siloxane (Si-O-Si) bonds in the silica network. Calculations using density functional theory show that this may happen on Si-O-Si bonds, which are either parallel (i.e., in the topmost silicate layer) or vertical to the film surface (i.e., connecting two silicate layers). In the latter case, the mechanism may additionally involve the reaction with a metal support underneath. The observed vibrational spectra are dominated by terminal silanol groups (ν(OD) band at 2763 cm(-1)) formed by hydrolysis of vertical Si-O-Si linkages. Film dehydroxylation fully occurs only upon heating to very high temperatures (∼ 1200 K) and is accompanied by substantial film restructuring, and even film dewetting upon cycling hydroxylation/dehydroxylation treatment.

  2. Effect of antioxidants and silicates on peroxides in povidone.

    PubMed

    Narang, Ajit S; Rao, Venkatramana M; Desai, Divyakant S

    2012-01-01

    Reactive peroxides in povidone often lead to degradation of oxidation-labile drugs. To reduce peroxide concentration in povidone, the roles of storage conditions, antioxidants, and silicates were investigated. Povidone alone and its physical mixtures with ascorbic acid, propyl gallate, sodium sulfite, butylated hydroxyanisole (BHA), or butylated hydroxytoluene (BHT) were stored at 25 °C and 40 °C, at 11%, 32%, and 50% relative humidity. In addition, povidone solution in methanol was equilibrated with silicates (silica gel and molecular sieves), followed by solvent evaporation to recover povidone powder. Peroxide concentrations in povidone were measured. The concentration of peroxides in povidone increased under very-low-humidity storage conditions. Among the antioxidants, ascorbic acid, propyl gallate, and sodium sulfite reduced the peroxide concentration in povidone, whereas BHA and BHT did not. Water solubility appeared to determine the effectiveness of antioxidants. Also, some silicates significantly reduced peroxide concentration in povidone without affecting its functionality as a tablet binder. Porosity of silicates was critical to their ability to reduce the peroxide concentration in povidone. A combination of these approaches can reduce the initial peroxide concentration in povidone and minimize peroxide growth under routine storage conditions.

  3. Mercury-like Planets: Separating Metals and Silicates by Photophoresis

    NASA Astrophysics Data System (ADS)

    Wurm, Gerhard; Trieloff, M.; Rauer, H.; Kuepper, M.

    2013-10-01

    Particles at the inner edge of protoplanetary disks are embedded in gas and are illuminated by starlight. This leads to photophoretic forces which - acting best on low thermal conductivity particles - push silicates outward. Metal grains remain behind and get separated from the silicates. If planetesimal formation is set on top of this separation an outward migrating edge will naturally lead to a metal-silicate gradient. Metal rich bodies like Mercury will form close to the star and metal poor bodies will be located further outward. This is consistent with chondrites being mostly metal poor and it is consistent with the smallest rocky planets CoRoT-7b and Kepler-10b - found close to their host star - being Mercury-like. In contrast to high temperature processing photophoresis does not change the abundance of volatile elements. We started to model the particle transport in the transition region between the optical thin disk gap and the optical thick outer protoplanetary disk. Also, first drop tower experiments have been carried out to quantify the strength of the photophoretic force on silicate grains.

  4. Experiments on metal-silicate plumes and core formation.

    PubMed

    Olson, Peter; Weeraratne, Dayanthie

    2008-11-28

    Short-lived isotope systematics, mantle siderophile abundances and the power requirements of the geodynamo favour an early and high-temperature core-formation process, in which metals concentrate and partially equilibrate with silicates in a deep magma ocean before descending to the core. We report results of laboratory experiments on liquid metal dynamics in a two-layer stratified viscous fluid, using sucrose solutions to represent the magma ocean and the crystalline, more primitive mantle and liquid gallium to represent the core-forming metals. Single gallium drop experiments and experiments on Rayleigh-Taylor instabilities with gallium layers and gallium mixtures produce metal diapirs that entrain the less viscous upper layer fluid and produce trailing plume conduits in the high-viscosity lower layer. Calculations indicate that viscous dissipation in metal-silicate plumes in the early Earth would result in a large initial core superheat. Our experiments suggest that metal-silicate mantle plumes facilitate high-pressure metal-silicate interaction and may later evolve into buoyant thermal plumes, connecting core formation to ancient hotspot activity on the Earth and possibly on other terrestrial planets.

  5. PREFACE: 5th Baltic Conference on Silicate Materials

    NASA Astrophysics Data System (ADS)

    Mezinskis, G.; Bragina, L.; Colombo, P.; Frischat, G. H.; Grabis, J.; Greil, P.; Deja, J.; Kaminskas, R.; Kliava, J.; Medvids, A.; Nowak, I.; Siauciunas, R.; Valancius, Z.; Zalite, I.

    2011-12-01

    Logo This Volume of IOP Conference Series: Materials Science and Engineering presents a selection of the contributions to the 5th Baltic Conference on Silicate Materials (BaltSilica2011) held at Riga Technical University, Riga, Latvia from 23-25 May 2011. The conference was organized by Riga Technical University (Latvia) and Kaunas University of Technology (Lithuania). The series of Baltic conferences on silicate materials was started since 2004: the first conference was held in Riga, Latvia, 2004; the second conference was held in Kaunas, Lithuania 2005; the third was held again in Riga, Latvia, 2007, and the fourth was held in Kaunas, Lithuania 2009. BaltSilica 2011 was attended by around 50 participants from Latvia, Lithuania, Estonia, Germany, Poland, Italy, France, Ukraine and Russia. In comparison with previous silicate materials conferences, the broadening of participating countries is an indication of the interest of scientists, engineers and students to exchange research ideas, latest results, and to find new research topics for cooperation in the fields of silicate, high temperature materials, and inorganic nanomaterials. The scientific programme included 8 invited plenary lectures 23 oral presentations and 25 posters [1]. Scientific themes covered in the conference and in this special issue: Natural and Artificial Stone Materials; Traditional and New Ceramic and Glass-Like Materials; Nanoparticles and Nanomaterials. This volume consists of 23 selected proceeding papers. The Editor of this special issue is grateful to all the contributors to BaltSilica 2011. I am also very grateful to the scientific committee, the local organizing committee, the session chairs, the referees who refereed the submitted articles to this issue, and to students from the Department of Silicate, High Temperature and Inorganic Nanomaterials Technology of the Riga Technical University who ensured the smooth running of the conference. Particular thanks goes to eight plenary

  6. Synthesis and structure of nanocrystalline mixed Ce–Yb silicates

    SciTech Connect

    Małecka, Małgorzata A. Kępiński, Leszek

    2013-07-15

    Graphical abstract: - Highlights: • New method of synthesis of nanocrystalline mixed lanthanide silicates is proposed. • Formation of A-type (Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} in well dispersed Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. • Formation of Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} in agglomerated Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. - Abstract: This work presents results of studies on synthesis and structure of mixed, nanocrystalline Ce–Yb silicates. Using TEM, XRD and FTIR we showed that heat treatment of nanocrystalline Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)} (x = 0.3, 0.5) mixed oxide supported on amorphous silica in reducing atmosphere, results in formation of Ce–Yb mixed silicates. Dispersion of the oxide on the silica surface and thus a local lanthanide/Si atomic ratio determines the stoichiometry of the silicate. Oxide crystallites uniformly dispersed on the silica surface transformed into A-(Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} disilicate, while the agglomerated nanoparticles converted into Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} oxyapatite silicate as an intermediate phase.

  7. X-ray spectral diagnostics of synthetic lanthanide silicates

    NASA Astrophysics Data System (ADS)

    Kravtsova, A. N.; Guda, A. A.; Soldatov, A. V.; Goettlicher, J.; Taroev, V. K.; Kashaev, A. A.; Suvorova, L. F.; Tauson, V. L.

    2015-12-01

    Potassium and rare-earth (Eu, Sm, Yb, Ce) silicate and aluminosilicate crystals are hydrothermally synthesized under isothermal conditions at 500°C and a pressure of 100 MPa. The chemical and structural formulas of the synthesized compounds HK6Eu[Si10O25], K7Sm3[Si12O32], K2Sm[AlSi4O12] · 0.375H2O, K4Yb2[Si8O21], and K4Ce2[Al2Si8O24] are determined. In addition, a synthesis product with Eu, in which the dominant phase is assumed to be K3Eu3+[Si6O15] · 2H2O, is studied. The oxidation state of lanthanides in the silicates under study is determined based on X-ray absorption near-edge structure spectroscopy. The Eu L 3-, Sm L 3-, Yb L 3-, and Ce L 3-edge X-ray absorption spectra of the studied silicates and reference samples are recorded using a Rigaku R-XAS laboratory spectrometer. As reference samples, Eu2+S, Eu3+F3, Eu 2 3+ O3, Sm 2 3+ O3, Yb 2 3+ O3, Yb3+F3, Yb3+Cl3, Ce 2 3+ O3, and Ce4+O2 are used. Comparison of the absorption edge energies of lanthanide silicates and reference samples shows that Eu, Sm, Yb, and Ce in all the samples studied are in the oxidation state 3+. The synthesized silicates will supplement our knowledge of possible rare-earth minerals existing in hydrothermal systems, which is important for analyzing the distribution spectra of rare elements, which are widely used for diagnostics of geochemical processes and determination of sources of ore materials.

  8. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    NASA Technical Reports Server (NTRS)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  9. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  10. Molecular dynamics simulation of silicate glasses and their surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Xianglong

    1999-12-01

    The bulk and surface structures of vitreous silica and silicate glasses have been modeled using the molecular dynamics technique. An extensive preliminary study, on the influences of different potential models and of different simulation approaches on the final bulk and surface structures, concludes that good result can be obtained using the constant volume simulation with a modified pair-wise potential from van Beest and coworkers, together with alkali-oxygen potential models developed in this study. Glass structures with the reliability factors, Rchi of 7.2% for vitreous silica and 5.6% for sodium silicate have been achieved. The environments of O, Si and Na in silicate glasses have been thoroughly examined. Considerable similarities in local structures exist between crystalline and the simulated glass structures. It is found that our simulated glasses more resemble high-pressured experimental glasses, which is implied by the existence of fivefold silicon species. Based on bulk structures studied, glass surfaces were created by a fracture process. It is speculated that surface defect concentrations depend on the topological characteristics of the network structure, and are essential for the viability of surfaces. Analysis of local structures for difference species implies that the sodium silicate surfaces resemble more the Na-rich regions in the bulk structures. An efficient algorithm for finding primitive rings in a topological network has been developed. Analysis using this algorithm shows that reconstruction of Na-rich regions occurs on extending simulation size, demonstrating simulation size influence on modeled glass structures. Finally, our detailed analysis of Si-O-Si bond angle distributions demonstrates that vitreous silica glass has a broader Si-O-Si BAD, whilst sodium silicate glasses favor narrower distributions.

  11. On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates

    NASA Astrophysics Data System (ADS)

    Liu, Jiaming; Jiang, B. W.; Li, Aigen; Gao, Jian

    2017-04-01

    For decades ever since the early detection in the 1990s of the emission spectral features of crystalline silicates in oxygen-rich evolved stars, there is a long-standing debate on whether the crystallinity of the silicate dust correlates with the stellar mass-loss rate. To investigate the relation between the silicate crystallinities and the mass-loss rates of evolved stars, we carry out a detailed analysis of 28 nearby oxygen-rich stars. We derive the mass-loss rates of these sources by modelling their spectral energy distributions from the optical to the far-infrared. Unlike previous studies in which the silicate crystallinity was often measured in terms of the crystalline-to-amorphous silicate mass ratio, we characterize the silicate crystallinities of these sources with the flux ratios of the emission features of crystalline silicates to that of amorphous silicates. This does not require the knowledge of the silicate dust temperatures, which are the major source of uncertainties in estimating the crystalline-to-amorphous silicate mass ratio. With a Pearson correlation coefficient of ∼-0.24, we find that the silicate crystallinities and the mass-loss rates of these sources are not correlated. This supports the earlier findings that the dust shells of low mass-loss rate stars can contain a significant fraction of crystalline silicates without showing the characteristic features in their emission spectra.

  12. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  13. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  14. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  15. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  16. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  17. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with...

  18. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with...

  19. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with...

  20. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with...

  1. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with...

  2. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    NASA Astrophysics Data System (ADS)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  3. Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core-mantle boundaries

    NASA Astrophysics Data System (ADS)

    Van Roosbroek, Nadia; Hamann, Christopher; McKibbin, Seann; Greshake, Ansgar; Wirth, Richard; Pittarello, Lidia; Hecht, Lutz; Claeys, Philippe; Debaille, Vinciane

    2017-01-01

    We have investigated a piece of the Netschaëvo IIE iron meteorite containing a silicate inclusion by means of electron microprobe analysis (EMPA) and transmission electron microscopy (TEM). Netschaëvo contains chondrule-bearing clasts and impact melt rock clasts were also recently found. The examined inclusion belongs to the latter and is characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a hyaline matrix. This matrix material has a quasi-basaltic composition in the inner part of the inclusion, whereas the edge of the inclusion has a lower SiO2 concentration and is enriched in MgO, P2O5, CaO, and FeO. Close to the metal host, the inclusion also contains euhedral Mg-chromite crystals and small (<2 μm), Si-rich globules. A TEM foil was cut from this glassy, silico-phosphate material. It shows that the material consists of elongated olivine crystallites containing up to 14 wt% P2O5, amorphous material, and interstitial Cl-apatite crystals. The Si-rich silicate glass globules show a second population of Fe-rich silicate glass droplets, indicating they formed by silicate liquid immiscibility. Together with the presence of phosphoran olivine and quenched Cl-apatite, these textures suggest rapid cooling and quenching as a consequence of an impact event. Moreover, the enrichment of phosphorus in the silicate inclusion close to the metal host (phosphoran olivine and Cl-apatite) indicates that phosphorus re-partitioned from the metal into the silicate phase upon cooling. This probably also took place in pallasite meteorites that contain late-crystallizing phases rich in phosphorus. Accordingly, our findings suggest that oxidation of phosphorus might be a general process in core-mantle environments, bearing on our understanding of planetesimal evolution. Thus, the Netschaëvo sample serves as a natural planetesimal core-mantle boundary experiment

  4. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    PubMed Central

    2013-01-01

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources. PMID:23298332

  5. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy.

    PubMed

    Jurkić, Lela Munjas; Cepanec, Ivica; Pavelić, Sandra Kraljević; Pavelić, Krešimir

    2013-01-08

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  6. Mid-IR water and silicate relation in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Antonellini, S.; Bremer, J.; Kamp, I.; Riviere-Marichalar, P.; Lahuis, F.; Thi, W.-F.; Woitke, P.; Meijerink, R.; Aresu, G.; Spaans, M.

    2017-01-01

    Context. Mid-IR water lines from protoplanetary disks around T Tauri stars have a detection rate of 50%. Models have identified multiple physical properties of disks such as dust-to-gas mass ratio, dust size power law distribution, disk gas mass, disk inner radius, and disk scale height as potential explanations for the current detection rate. Aims: In this study, we aim to break degeneracies through constraints obtained from observations. We search for a connection between mid-IR water line fluxes and the strength of the 10 μm silicate feature. Methods: We analyze observed water line fluxes from three blends at 15.17, 17.22 and 29.85 μm published earlier and compute the 10 μm silicate feature strength from Spitzer spectra to search for possible trends. We use a series of published ProDiMo thermo-chemical models, to explore disk dust and gas properties, and also the effects of different central stars. In addition, we produced two standard models with different dust opacity functions, and one with a parametric prescription for the dust settling. Results: Our series of models that vary properties of the grain size distribution suggest that mid-IR water emission anticorrelates with the strength of the 10 μm silicate feature. The models also show that the increasing stellar bolometric luminosity simultaneously enhance the strength of this dust feature and the water lines fluxes. No correlation is found between the observed mid-IR water lines and the 10 μm silicate strength. Two-thirds of the targets in our sample show crystalline dust features, and the disks are mainly flaring. Our sample shows the same difference in the peak strength between amorphous and crystalline silicates that was noted in earlier studies, but our models do not support this intrinsic difference in silicate peak strength. Individual properties of our models are not able to reproduce the most extreme observations, suggesting that more complex dust properties (e.g., vertically changing) are

  7. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  8. Efficacy and Safety of 120-W Thulium:Yttrium-Aluminum-Garnet Vapoenucleation of Prostates Compared with Holmium Laser Enucleation of Prostates for Benign Prostatic Hyperplasia

    PubMed Central

    Hong, Kai; Liu, Yu-Qing; Lu, Jian; Xiao, Chun-Lei; Huang, Yi; Ma, Lu-Lin

    2015-01-01

    Background: This study compared the efficacy and safety between 120-W thulium:yttrium-aluminum-garnet (Tm:YAG) vapoenucleation of prostates (ThuVEP) and holmium laser enucleation of prostates (HoLEP) for patients with lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH). Methods: A retrospective analysis of 88 consecutive patients with symptomatic BPH was carried out, who underwent either 120-W ThuVEP or HoLEP nonrandomly. Patient demographics and peri-operative and 12-month follow-up data were analyzed with the International Prostate Symptom Score (IPSS), quality of life (QoL) score, maximum flow rate (Qmax), postvoid residual urine volume (PVR), and rates of peri-operative and late complications. Results: The patients in each group showed no significant difference in preoperative parameters. Compared with the HoLEP group, patients in the 120-W ThuVEP group required significantly shorter time for laser enucleation (58.3 ± 12.8 min vs. 70.5 ± 22.3 min, P = 0.003), and resulted in a significant superiority in laser efficiency (resected prostate weight/laser enucleation time) for 120-W Tm:YAG laser compared to holmium:YAG laser (0.69 ± 0.18 vs. 0.61 ± 0.19, P = 0.048). During 1, 6, and 12 months of follow-ups, the procedures did not demonstrate a significant difference in IPSS, QoL score, Qmax, or PVR (P > 0.05). Mean peri-operative decrease of hemoglobin in the HoLEP group was similar to the ThuVEP group (17.1 ± 12.0 g/L vs. 15.2 ± 10.1 g/L, P = 0.415). Early and late incidences of complications were low and did not differ significantly between the two groups of 120-W ThuVEP and HoLEP patients (P > 0.05). Conclusions: 120-W ThuVEP and HoLEP are potent, safe and efficient modalities of minimally invasive surgeries for patients with LUTS due to BPH. Compared with HoLEP, 120-W ThuVEP offers advantages of reduction of laser enucleation time and improvement of laser efficiency. PMID:25836607

  9. Impressive Performance: New Disposable Digital Ureteroscope Allows for Extreme Lower Pole Access and Use of 365 μm Holmium Laser Fiber

    PubMed Central

    Kelly, Emily Fell

    2016-01-01

    Abstract Background: Since the development of the first flexible ureteroscope, in 1964, technological advances in image quality, flexibility, and deflection have led to the development of the first single-use digital flexible ureteroscope, LithoVue™ (Boston Scientific, Marlborough, MA). With respect to reusable fiber-optic and now digital ureteroscopes, there is an initial capital cost of several thousand dollars (USD) as well as, controversy regarding durability, the cost of repairs and the burdensome reprocessing steps of ureteroscopy. The single-use LithoVue eliminates the need for costly repairs, the occurrence of unpredictable performance, and procedural delays. Renal stones located in the lower pole of the kidney can be extremely challenging as extreme deflections of greater than 160° are difficult to maintain and are often further compromised when using stone treatment tools, such as laser fibers and baskets. This case describes an initial use of the LithoVue digital disposable ureteroscope in the effective treatment of lower pole calculi using a 365 μm holmium laser fiber. Case Report: A 35-year-old female, with a medical history significant for chronic bacteriuria, and recurrent symptomatic culture proven urinary tract infections, underwent localization studies. Retrograde ureteropyelography demonstrated two calcifications adjoining, measuring a total of 1.4 cm, overlying the left renal shadow. Urine aspirated yielded clinically significant, >100,000, Escherichia coli and Streptococcus anginosus bacteriuria, which was felt to be originating from the left lower calix. This case used the newly FDA-approved LithoVue flexible disposable ureteroscope. The two stones were seen using the ureteroscope passed through an ureteral access sheath in the lower pole calix. A 365 μm holmium laser fiber was inserted into the ureteroscope and advanced toward the stones. There was no loss of deflection as the ureteroscope performed reproducibly. The laser was used

  10. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  11. IN SITU INFRARED MEASUREMENTS OF FREE-FLYING SILICATE DURING CONDENSATION IN THE LABORATORY

    SciTech Connect

    Ishizuka, Shinnosuke; Kimura, Yuki; Sakon, Itsuki

    2015-04-20

    We developed a new experimental system for infrared (IR) measurements on free-flying nucleating nanoparticles in situ and applied it to studies on silicate particles. We monitored the condensation of magnesium-bearing silicate nanoparticles from thermally evaporated magnesium and silicon monoxide vapor under an atmosphere of oxygen and argon. The IR spectrum of newly condensed particles showed a spectral feature for non-crystalline magnesium-bearing silicate that is remarkably consistent with the IR spectrum of astronomically observed non-crystalline silicate around oxygen-rich evolved stars. The silicate crystallized at <500 K and eventually developed a high crystallinity. Because of the size effects of nanoparticles, the silicate would be expected to be like a liquid at least during the initial stages of nucleation and growth. Our experimental results therefore suggest decreasing the possible formation temperature of crystalline silicates in dust formation environments with relatively higher pressure.

  12. Calc-silicate mineralization in active geothermal systems

    SciTech Connect

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  13. Osmium Solubility in Silicate Melts: New Efforts and New Results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Walker, R. J.

    1998-01-01

    In a recent paper, Borisov and Palme reported the first experimental results on the partitioning of Os between metal (Ni-rich OsNi alloys) and silicate melt of anorthite-diopside eutectic composition at 1400 C and 1 atm total pressure and and at function of O2 from 10(exp -8) to 10(exp -12) atm. Experiments were done by equilibrating OsNi metal loops with silicate melt. Metal and glass were analyzed separately by INAA. D(sup 0s) ranged from 10(exp 6) to 10(exp 7), which is inconsistent with core/ mantle equilibrium for HSEs and favors the late veneer hypothesis. Unfortunately, there was practically no function of O2 dependence of Os partitioning, and the scatter of experimental results was quite serious, so the formation of Os nuggets was suspected. This new set of experiments was specifically designed to avoid of at least minimize the nugget problem

  14. Carbon and silicate dust formation in V1280 Sco

    NASA Astrophysics Data System (ADS)

    Sakon, I.; Sako, S.; Oanaka, T.; Nozawa, T.; Kimura, Y.; Fujiyoshi, T.; Shimonishi, T.; Usui, F.; Takahashi, H.; Ohsawa, R.; Arai, A.; Uemura, M.; Nagayama, T.; Koo, B.-C.; Kozasa, T.

    2016-07-01

    This study investigates the temporal evolution of the infrared emission from the dusty nova V1280 Sco over 2000 days from the outburst. We have revealed that the infrared spectral energy distributions at 1272, 1616 and 1947 days are explained by the emissions produced by amorphous carbon dust of mass (6.6-8.7) × 10-8 Mʘ with a representative grain size of 0.01 µm and astronomical silicate dust of mass (3.4-4.3) × 10-7 Mʘ with a representative grain size of 0.3-0.5 µm. Both of carbon and silicate dust travel farther away from the white dwarf without an apparent mass evolution throughout those later epochs.

  15. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate

    PubMed Central

    Robinson, Nathaniel D.

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5×10-8 m2/V s and hydrodynamic resistance per unit length of 70 ×1017 Pa s/m4 with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template. PMID:26629907

  16. Enzyme-Mimicking properties of silicates and other minerals

    NASA Astrophysics Data System (ADS)

    Siegel, B. Z.; Siegel, S. M.

    The adsorptive and/or catalytic properties of clays, silicates in general, and other minerals are well known. More recently, their probable role in prebiotic syntheses of bio-organic compounds has become a matter of record. We demonstrate that, in addition to their role in de novo formation of important biomolecules, clays, micas, fibrous silicates and other minerals mimick the activities of contemporary enzymes including oxidases, esterases, phosphatases and glucosidases. The existence of such capabilities in substances likely to be represented on the surfaces of Earth-like planets may offer a challenge to the technology and design of remote life detection systems which must then distinguish between bona fide biological chemistry and mineral-base pseudometabolism. It also raises questions about the importance of mineral surfaces in post-mortem transformations of organic metabolites in our own biosphere.

  17. Inorganic phosphors in lead-silicate glass for white LEDs

    NASA Astrophysics Data System (ADS)

    Nikonorov, N. V.; Kolobkova, E. V.; Aseev, V. A.; Bibik, A. Yu.; Nekrasova, Ya. A.; Tuzova, Yu. V.; Novogran, A. I.

    2016-09-01

    Luminescent composites of the "phosphor-in-glass" type, based on a highly reflective lead-silicate matrix and fine-grained powders of YAG:Ce3+ and SiAlON:Eu2+ crystals, are developed and synthesized. Phosphor and glass powders are sintered at a temperature of 550°C to obtain phosphor samples for white LEDs. The composites are analyzed by X-ray diffraction and luminescence spectroscopy. The dependence of the light quantum yield on the SiAlON:Eu2+ content in the samples is investigated. A breadboard of a white LED is designed using a phosphor-in-glass composite based on lead-silicate glass with a low glasstransition temperature. The total emission spectra of a blue LED and glass-based composites are measured. The possibility of generating warm white light by choosing an appropriate composition is demonstrated.

  18. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  19. Analysis of the Barrier Properties of Polyimide-Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Johnston, J. Chris; Inghram, Linda; McCorkle, Linda; Silverman, Edward

    2003-01-01

    Montmorillonite clay was organically modified and dispersed into a thermoplastic (BPADA-BAPP) and a thermosetting (PMR-15) polyimide matrix. The barrier properties of the neat resins and the nanocomposites were evaluated. Reductions in gas permeability and water absorption were observed in thermoplastic polyimide nanocomposites. The thermosetting polyimide showed a reduction in weight loss during isothermal aging at 288 C. Carbon fabric (T650-35, 8 HS, 8 ply) composites were prepared using both the BPADE-BAPP and PMR-15 based nanocomposites. Dispersion of the layered silicate in the BPADA-BAPP matrix reduced helium permeability by up to 70 percent. The PMR-15/ silicate nanocomposite matrix had an increase in thermal oxidative stability of up to 25 percent.

  20. Reprobing the mechanism of negative thermal expansion in siliceous faujasite

    SciTech Connect

    Attfield, Martin P.; Feygenson, Mikhail; Neuefeind, Joerg C.; Proffen, Thomas E.; Lucas, T. C. A.; Hriljac, Joseph Anthony

    2016-02-11

    A combination of Rietveld refinement and PDF analysis of total neutron scattering data are used to provide further insight into the negative thermal expansion mechanism of siliceous faujasite. The negative thermal expansion mechanism of siliceous faujasite is attributed to the transverse vibrations of bridging oxygen atoms resulting in the coupled librations of the SiO4 tetrahedra. The constituent SiO4 tetrahedra are revealed to expand in size with temperature which is a behaviour that has not been determined directly previously and they are also shown to undergo some distortion as temperature is increased. However, these distortions are not distinct enough in any geometric manner for the average behaviour of the SiO4 tetrahedra not to be considered as that of a rigid units. The work further displays the benefits of using total scattering experiments to unveil the finer details of dynamic thermomechanical processes within crystalline materials.

  1. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  2. Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Smith, Dorian G. W.; Lambert, Richard St. J.; Gaffey, Michael J.

    1990-01-01

    The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal are experimentally studied, and the obtained variations in spectral properties are used to constrain the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak-to-peak and peak-to-minimum reflectance ratios, and band widths. Band width and band areas are useful for determining metal abundance in olivine and metal and orthopyroxene and metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. An application of these parameters to the S-class asteroid Flora is presented.

  3. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    SciTech Connect

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Vuono, Daniel J

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.

  4. Thermochemistry of Rare Earth Silicates for Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    Rare earth silicates are promising candidates as environmental protective coatings (EBCs) for silica-forming ceramics and composites in combustion environments since they are predicted to have lower reactivity with the water vapor combustion products. The reactivity of rare earth silicates is assessed by the thermodynamic activity of the silica component which is best measured by Knudsen effusion mass spectrometry (KEMS). Here, we discuss a novel method based on a reducing agent to increase the partial pressure of SiO(g) which is then used to calculate thermodynamic activity of silica in Y2O3-SiO2 and Yb2O3-SiO2 systems. After the KEMS measurements, samples were probed by X-ray diffraction and their phase content was calculated from Rietveld refinement.

  5. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate.

    PubMed

    Nilsson, Sara; Erlandsson, Per G; Robinson, Nathaniel D

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5 × 10(-8) m(2)/V s and hydrodynamic resistance per unit length of 70 × 10(17) Pa s/m(4) with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template.

  6. Reprobing the mechanism of negative thermal expansion in siliceous faujasite

    DOE PAGES

    Attfield, Martin P.; Feygenson, Mikhail; Neuefeind, Joerg C.; ...

    2016-02-11

    A combination of Rietveld refinement and PDF analysis of total neutron scattering data are used to provide further insight into the negative thermal expansion mechanism of siliceous faujasite. The negative thermal expansion mechanism of siliceous faujasite is attributed to the transverse vibrations of bridging oxygen atoms resulting in the coupled librations of the SiO4 tetrahedra. The constituent SiO4 tetrahedra are revealed to expand in size with temperature which is a behaviour that has not been determined directly previously and they are also shown to undergo some distortion as temperature is increased. However, these distortions are not distinct enough in anymore » geometric manner for the average behaviour of the SiO4 tetrahedra not to be considered as that of a rigid units. The work further displays the benefits of using total scattering experiments to unveil the finer details of dynamic thermomechanical processes within crystalline materials.« less

  7. EXAFS studies of uranium sorption on layer-silicate minerals

    SciTech Connect

    Hudson, E.A.; Terminello, L.J.; Viani, B.E.

    1995-12-31

    The local structure of uranium sorbed on mineral surfaces was investigated by uranium L{sub 3}-edge EXAFS. Solutions of uranyl chloride, UO{sub 2}Cl{sub 2}, were exposed to vermiculite, an expansible layer silicate mineral, under conditions which favor sorption by either cation exchange or surface complexation. EXAFS of the resulting mineral samples indicates a larger distortion of the uranyl equatorial shell for cation exchange, possibly due to steric effects of interlayer sorption. The uranyl U-O axial bond distance is greater for surface complexation than for ion exchange. Uranyl sorption on talc and pyrophyllite, layer silicate minerals with essentially no cation-exchange capacity, gives results which generally support the trends for surface complexation on vermiculite.

  8. The solubility of gold in silicate melts: First results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Palme, H.; Spettel, B.

    1993-01-01

    The effects of oxygen fugacity and temperature on the solubility of Au in silicate melts were determined. Pd-Au alloys were equilibrated with silicate of anorthite-diopside eutectic composition at different T-fO2 conditions. The behavior of Au was found to be similar to that of Pd reported recently. Au solubilities for alloys with 30 to 40 at. percent Au decrease at 1400 C from 12 ppm in air to 160 ppb at a log fO2 = -8.7. The slope of the log(Me-solubility) vs. log(fO2) curve is close to 1/4 for Au and the simultaneously determined Pd suggesting a formal valence of Au and Pd of 1+. Near the IW buffer Pd and Au solubilities become even less dependent on fO2 perhaps reflecting the presence of some metallic Au and Pd.

  9. Effect of mechanical treatment on the silicate lattice of kaolinite

    NASA Astrophysics Data System (ADS)

    Zulumyan, N. H.; Papakhchyan, L. R.; Isahakyan, A. R.; Beglaryan, H. A.; Aloyan, S. G.

    2012-12-01

    X-ray diffraction, differential thermal and chemical analysis have been used to investigate the effect of mechanical treatment on the crystalline lattice of kaolinite. It was established that mechanical treatment leads to amorphization of the mineral and the release of hydroxyl water, but the continuity of kaolinite's silicate lattice remains intact despite certain deformations, and the phase transformations of the mineral thus occur without any noticeable change in temperature.

  10. Rapid determination of nanogram amounts of tellurium in silicate rocks

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1976-01-01

    A hydride-generation flameless atomic-absorption technique is used to determine as little as 5 ng g-1 tellurium in 0.25 g of silicate rock. After acid decomposition of the sample, tellurium hydride is generated with sodium borohydride and the vapor passed directly to a resistance-heated quartz cell mounted in an atomic-absorption spectrophotometer. Analyses of 11 U.S. Geological Survey standard rocks are presented. ?? 1976.

  11. Scenario of Growing Crops on Silicates in Lunar Gargens

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N.; Kovalchuk, M.; Negutska, V.; Lar, O.; Korniichuk, O.; Alpatov, A.; Rogutskiy, I.; Kordyum, V.; Foing, B.

    Self-perpetuating gardens will be a practical necessity for humans, living in permanently manned lunar bases. A lunar garden has to supplement less appetizing packaged food brought from the Earth, and the ornamental plants have to serve as valuable means for emotional relaxation of crews in a hostile lunar environment. The plants are less prone to the inevitable pests and diseases when they are in optimum condition, however, in lunar greenhouses there is a threat for plants to be hosts for pests and predators. Although the lunar rocks are microorganism free, there will be a problem with the acquired infection (pathogens brought from the Earth) in the substrate used for the plant growing. On the Moon pests can be removed by total fumigation, including seed fumigation. However, such a treatment is not required when probiotics (biocontrol bacteria) for seed inoculation are used. A consortium of bacteria, controlling plant diseases, provides the production of an acceptable harvest under growth limiting factors and a threatening infection. To model lunar conditions we have used terrestrial alumino-silicate mineral anorthosite (Malyn, Ukraine) which served us as a lunar mineral analog for a substrate composition. With the idea to provide a plant with some essential growth elements siliceous bacterium Paenibacillus sp. has been isolated from alumino-silicate mineral, and a mineral leaching has been simulated in laboratory condition. The combination of mineral anorthosite and siliceous bacteria, on one hand, and a consortium of beneficial bacteria for biocontrol of plant diseases, on the other hand, are currently used in model experiments to examine the wheat and potato growth and production in cultivating chambers under controlled conditions.

  12. Optical properties of silicates in the far ultraviolet

    NASA Technical Reports Server (NTRS)

    Lamy, P. L.

    1978-01-01

    Near-normal incidence reflectance measurements in the interval 1026-1640 A were performed on four silicates already studied in the visible and infrared. A Kramers-Kronig analysis of these data is used to calculate the complex index of refraction m = n - ik. New transmission measurements improve the determination of k in the interval 2500-4500 A, except for andesite, which is more opaque than had been previously observed.

  13. Silicate versus trace mineral susceptibility in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham; MacKenzie, Allan; Jensen, Eleanor

    1990-06-01

    Rates of change of magnetic susceptibility during leaching can characterize the presence of certain common types of magnetic minerals in metamorphic rocks. In this study the results of leaching are confirmed by mineral separation, optical microscopy, scanning electron microscopy (SEM) and microchemical analysis under SEM. Leaching curves provide a simple, rapid way of determining the relative roles of oxides, sulfides, and silicates in carrying the susceptibility in metamorphic rocks.

  14. Electrochemical Studies on Silicate and Bicarbonate Ions for Corrosion Inhibitors

    NASA Astrophysics Data System (ADS)

    Mohorich, Michael E.; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jaak; Rebak, Raul B.

    2010-10-01

    Several types of carbon and high-strength low-alloy (HSLA) steels are being considered for use in the underground reinforcement of the Yucca Mountain Nuclear Waste Repository. In this study, potentiodynamic polarization under reducing conditions was used to determine the corrosion rates (CRs) and passivity behavior of AISI 4340 steel using different combinations of sodium silicate (Na2SiO3) and sodium bicarbonate (NaHCO3), in both pure water (PW) and simulated seawater (SW, 3.5 pct NaCl). These experiments were carried out to examine the potential inhibiting properties of the silicate or bicarbonate ions on the surface of the steel. The addition of sodium silicate to solution reduced the observed CR at room temperature to 19 μm/y at 0.005 M concentration and 7 μm/y at 0.025 M concentration in PW. The addition of sodium bicarbonate increased the CR from 84 μm/y (C = 0.1 M) to 455 μm/y (C = 1 M). These same behaviors were also observed at higher temperatures.

  15. CARBON DIOXIDE SEQUESTRATION BY MECHANOCHEMICAL CARBONATION OF MINERAL SILICATES

    SciTech Connect

    Michael G. Nelson

    2004-04-01

    The University of Utah and the University of Idaho investigated the carbonation of silicate minerals by mechanochemical processing. This method uses intense grinding, and has the potential of being much less expensive than other methods of mineral sequestration. Tests were conducted in three types of grinding devices. In these tests, natural and synthetic silicate compounds were ground for varying times in the presence of gaseous CO{sub 2}. A significant change takes place in the lizardite variety of serpentine after 15 to 20 minutes of intense grinding in the presence of gaseous CO{sub 2}. The X-ray diffraction spectrum of lizardite thus treated was much different than that of the untreated mineral. This spectrum could not be identified as that of any natural or synthetic material. Laboratory analyses showed that small amounts of carbon are fixed by grinding lizardite, forsterite, and wollastonite (all naturally-occurring minerals), and synthetic magnesium silicate, in the presence of gaseous CO{sub 2}. It was thus concluded that further investigation was warranted, and a follow-up proposal was submitted to the Department of Energy under solicitation number.

  16. Evolution of peralkaline silicic complexes: Lessons from the extrusive rocks

    NASA Astrophysics Data System (ADS)

    Macdonald, Ray

    2012-11-01

    Young (< 1 Ma) volcanic complexes in the Kenya Rift Valley are used to outline recent progress in our understanding of how peralkaline silicic systems evolve. Such systems are all to some degree unique, varying in their structural development, the interplay of petrogenetic complexes, and the range of lithologies. Peralkaline silicic reservoirs vary greatly in size and form (even beneath volcanoes of roughly similar size) but all are basalt-driven, in that basaltic magma is the fundamental source of heat and volatiles in the magmatic system. Fractional crystallisation of basaltic magma is the dominant differentiation mechanism but important contributions are made by magma mixing, remobilisation of crystal mushes and feldspar resorption, exsolution of carbonate phases and various volatile-magma interactions. Peralkaline silicic magmas are water-rich (> 4 wt.%) and the rhyolitic varieties evolve to temperatures < 800 °C at oxygen fugacities largely within the range ∆FMQ 0 to - 1. They can be categorised as of cold-wet-reduced type. Low viscosities (< 104-106 Pa s) result in rapid growth of volcanic edifices, highly efficient crystal-melt separation and the ubiquitous development of compositionally zoned caps to reservoirs. No peralkaline equivalent of the monotonous intermediate ignimbrites found in some calc-alkaline systems has yet been found.

  17. Development of Li+ alumino-silicate ion source

    SciTech Connect

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-04-21

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E< 5 MeV) kinetic energy beam and a thin target[1]. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  18. Structure and dynamics of iron doped and undoped silicate glasses

    NASA Astrophysics Data System (ADS)

    Santos, Cristiane N.; Meneses, Domingos D. S.; Echegut, Patrick; Lecomte, Emmanuel

    2010-03-01

    The optical properties of common silicate glass compositions are well known at room temperature. However, their radiative properties and structural evolution of these glasses with temperature are still largely unexplored. In this work we have measured the emissivity of a set of iron doped and undoped silicate and borosilicate glasses over an unprecedented temperature (up to 1700 K) and spectral range (40 -- 20000 cm-1). This was achieved by means of a home-made apparatus composed of a CO2 laser as the heat source, a black-body reference and two spectrometers. The optical functions were assessed using a dielectric function model [1], and the structure and dynamics of the glassy network, as well the absorption of iron species in different redox states were evidenced. We believe that these new data will help to understand the heat transfer in molten silicates. [4pt] [1] D. D. S. Meneses, G. Gruener, M. Malki, and P. Echegut, J. Non-Cryst. Solids 351, 124 (2005)

  19. Identifying the crystal graveyards remaining after large silicic eruptions

    NASA Astrophysics Data System (ADS)

    Gelman, Sarah E.; Deering, Chad D.; Bachmann, Olivier; Huber, Christian; Gutiérrez, Francisco J.

    2014-10-01

    The formation of crystal-poor high-silica rhyolite via extraction of interstitial melt from an upper crustal mush predicts the complementary formation of large amounts of (typically unerupted) silicic cumulates. However, identification of these cumulates remains controversial. One hindrance to our ability to identify them is a lack of clear predictions for complementary chemical signatures between extracted melts and their residues. To address this discrepancy, we present a generalized geochemical model tracking the evolution of trace elements in a magma reservoir concurrently experiencing crystallization and extraction of interstitial melt. Our method uses a numerical solution rather than analytical, thereby allowing for various dependencies between crystallinity, partition coefficients for variably compatible and/or incompatible elements, and melt extraction efficiency. Results reveal unambiguous fractionation signatures for the extracted melts, while those signatures are muted for their cumulate counterparts. Our model is first applied to a well-constrained example (Searchlight pluton, USA), and provides a good fit to geochemical data. We then extrapolate our results to understanding the relationship between volcanic and plutonic silicic suites on a global scale. Utilizing the NAVDAT database to identify crystal accumulation or depletion signatures for each suite, we suggest that many large granitoids are indeed silicic cumulates, although their crystal accumulation signature is expected to be subtle.

  20. Grasslands, silicate weathering and diatoms: Cause and effect

    SciTech Connect

    Johansson, A.K. . Dept. of Geological Sciences)

    1993-03-01

    Diatoms are silica-limited, photosynthetic, single-celled eukaryotes that today occupy a wide variety of habitats both in freshwater and marine environments. Ultimately the silica they use is derived from the weathering of silicates on land. Although marine diatoms first appear in the Jurassic, the fossil record shows a remarkable correlation between the Mid-Miocene appearance of widespread grasslands and the drastic increase in diatom-rich deposits in freshwater, as well as in marine environments throughout the world. Grasses actively weather silicates, accumulating soluble silica into their leaves. Decomposing grasses release this soluble silica into the soil from whence it is transported into lakes and oceans and made available to diatoms. Grasses also probably increased chemical weathering, and hence the release of soluble silica, in previously weakly vegetated semi-arid areas. Increased weathering of silicates also led to cooler climates as evidenced by the Mid-Miocene [delta][sup 18]O record. The author suggests that the Tertiary expansion of grasslands is responsible for the explosive increase in diversity and abundance of diatoms in the oceans and freshwaters of the Mid-Miocene.

  1. Laboratory studies of actinide metal-silicate fractionation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Burnett, D. S.

    1980-01-01

    Actinide and Sm partition coefficients between silicate melt and several metallic phases have been measured. Under reducing conditions Si, Th, U and Pu can be reduced to metals from silicate melts and alloyed with a platinum-gold alloy. U and Pu enter a molten Pt-Si alloy with roughly equal affinity but U strongly partitions into the solid Pt. Th behaves qualitatively the same as Pu but is much less readily reduced than U, and Sm appears to remain unreduced. Experiments with Fe metal have shown that the partition coefficients of the actinides between Fe and silicate liquid are extremely low, suggesting a very low actinide concentration in planetary cores. Experiments show that platinum metals can efficiently fractionate actinides and fractionate actinides from lanthanides and this process may be relevant to the condensation behavior of these elements from the solar nebula. Pt-metal grains in Allende Ca-Al-rich inclusions appear to be U-poor, although the sub-class of Zr-bearing Pt metals may have high U contents.

  2. Contrasting siliceous replacement mineralization, east-central Nevada

    SciTech Connect

    Barton, M.D.; Ilchik, R.P. . Dept. of Geosciences); Seedorff, C.E. )

    1993-04-01

    Fine-grained siliceous replacement of carbonate-bearing rocks (jasperoid) occurs in most mineral districts in east-central Nevada. In most of these occurrences, jasperoid contains Au and(or) Ag and little or no base metals, although concentrations and ratios vary significantly. Broadly, two end-members are distinguished: (1) silicification as an intermediate- to late-stage part of complex alteration associated with igneous centers, and (2) jasperoids lacking other associated alteration and having few or no associated igneous rocks. Within this region, siliceous replacements are found with all metallic ([+-] magmatic) suites. No single factor in these occurrences relates the distribution, metal contents, fluid geochemistry, igneous rocks and associated alteration. Summarizing these characteristics: geochemical and fluid inclusion evidence shows that fluids in igneous-related jasperoids can be high-salinity magmatic (Ely), low-salinity magmatic (McCullough Butte), or metoric (Ward). Fluids in igneous-poor systems are low-salinity, exchanged meteoric waters from which a minor magmatic component can not be excluded. At this level of detail, the best predictor of Ag:Au are the district-scale alteration characteristics. Siliceous replacement takes place in many kinds systems and probably requires no more than a cooling, mildly acidic hydrothermal fluid. Metal suites, other fluid characteristics, and geological environment all need to be considered in evaluating the significance of any jasperoid.

  3. Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Watersby Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of dissolved silicate concentration in estuarine and coastal waters. The dissolved silicate is mainly in the form of silicic acid, H SiO , in estuarine and 4 4 coastal waters. All soluble silicate, including colloidal silici...

  4. The characteristic saturation phenomenon of upconversion luminescence in holmium ytterbium-co-doped oxyfluoride glass Ho(0.1)Yb(5):FOG

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobo; Song, Zengfu; Sawanobori, Naruhito; Ohtsuka, Masaaki; Li, Xiaowen; Wang, Yafei; Xu, Xiaoling; He, Chenjuan; Ma, Hui; Chen, Ying; Zhu, Jianyang

    2008-11-01

    The upconversion luminescence of holmium Ho 3+ ion sensitized by ytterbium Yb 3+ ion in Ho 3+Yb 3+-co-doped oxyfluoride glass Ho(0.1)Yb(5):FOG is investigated in this paper. A plenty of upconversion luminescence lines are measured out. The upconversion mechanism of Ho(0.1)Yb(5):FOG, when excited by 960 nm laser, is the energy transfer from Yb 3+ to Ho 3+ ion. A very weak 795.5 nm common photoemission fluorescence is detected, which is recognized as the 5I 4→ 5I 8 fluorescence transition based on careful measurement, calculation and analysis. And moreover, a novel characteristic upconversion luminescence saturation phenomenon is found. It is that the log F-log P curve of upconversion fluorescence vs. pumping laser power is a straight line, and meanwhile the slopes of these double-logarithmic F- P plots are smaller than normal multi-photon relation clearly. When pumping laser spot is increased, the slopes of these double logarithmic F- P plots could be enhanced noticeably from small value to near the normal multi-photon relation value. The mechanism of this characteristic saturation phenomenon is the energy expansion resulted from energy resonant migration among Yb 3+ ions.

  5. Special optical fibers doped with nanocrystalline holmium-yttrium titanates (HoxY1-x)2Ti2O7 for fiber-lasers

    NASA Astrophysics Data System (ADS)

    Mrázek, Jan; Kašík, Ivan; Boháček, Jan; Proboštová, Jana; Aubrecht, Jan; Podrazký, Ondřej; Cajzl, Jakub; Honzátko, Pavel

    2015-05-01

    The paper deals with the preparation and characterization of the silica optical fibers doped with nanocrystalline holmium-yttrium titanates (HoxY1-x)2Ti2O7 with optimized luminescence properties. The sol-gel approach was employed to prepare colloidal solution of (HoxY1-x)2Ti2O7 precursors. The concentration of Ho3+ ions in the compounds was varied up to x=0.4. Prepared sols were calcined at 1000 °C forming xerogels which were characterized by X-ray diffraction to confirm their structure. The xerogels were analyzed by the mean of steady-state luminescence technique to optimize the concentration of Ho3+ ions in the compound. The most intensive emission at 2050 nm was observed for the compound (Ho5Y95)2Ti2O7. Sol of the corresponding composition was soaked into the porous silica frit deposed inside the silica substrate tube which was collapsed into preform and drawn into optical fiber. Single mode optical fiber with the core diameter 12 μm and outer diameter 125 μm was prepared. Numerical aperture of prepared fiber was 0.16. The concentration of Ho3+ ions in the fiber core was 0.03 at %. Background attenuation of prepared fiber at 850 nm was smaller than 0.5 dBṡm-1.

  6. Holmium(III)-selective fluorimetric optode based on N,N-bis(salicylidene)-naphthylene-1,8-diamine as a neutral fluorogenic ionophore

    NASA Astrophysics Data System (ADS)

    Ganjali, Mohammad Reza; Hosseini, Morteza; Karimi, Anahita; Haji-Hashemi, Hedieh; Salavati-Niasari, Masoud; Norouzi, Parviz

    2014-03-01

    For the first time a highly sensitive and selective fluorimetric optode for determination of trace amounts of Ho3+ ions was prepared. The sensing system was prepared by incorporating of N,N-bis(salicylidene)-naphthylene-1,8-diamine (L) as a neutral Ho3+-selective fluoroionophore, in a plasticized PVC membrane containing sodium tetraphenyl borate as a lipophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Ho3+ ions. At pH 5.4, the proposed sensor displays a calibration curve over a wide concentration range of 1.0 × 10-10-1.0 × 10-3 M, with a relatively fast response time of less than 1 min. In addition to high stability, high reproducibility and a relatively long working lifetime, the sensor shows a good selectivity towards Ho3+ ion with respect to common coexisting cations. The fluorescence optode was applied to determination of holmium ion contents of water samples.

  7. Titanium Dioxide (TiO2) film as a new saturable absorber for generating mode-locked Thulium-Holmium doped all-fiber laser

    NASA Astrophysics Data System (ADS)

    Mohd Rusdi, Muhammad Farid; Latiff, Anas Abdul; Paul, Mukul Chandra; Das, Shyamal; Dhar, Anirban; Ahmad, Harith; Harun, Sulaiman Wadi

    2017-03-01

    We report the generation of mode-locked thulium-holmium doped fiber laser (THDFL) at 1979 nm. This is a first demonstration of mode-locked by using Titanium Dioxide (TiO2) film as a saturable absorber (SA). A piece of 1 mm×1 mm TiO2 film was sandwiched in between two fiber ferrule in the cavity. Fabrication process of TiO2 film incorporated a TiO2 and a polyvinyl alcohol (PVA). The stable 9 MHz repetition rate of mode-locked mode operation with 58 dB SNR was generated under pump power of 902-1062 mW. At maximum pump power, the mode-locked THDFL has output power and pulse energy of 15 mW and 1.66 nJ, respectively. Our results demonstrate the TiO2 can be used promisingly in ultrafast photonics applications.

  8. Developmental competence of mouse embryos following zona drilling using a non-contact holmium:yttrium scandian gallium garnet (Ho:YSGG) laser system.

    PubMed

    Schiewe, M C; Neev, J; Hazeleger, N L; Balmaceda, J P; Berns, M W; Tadir, Y

    1995-07-01

    The purpose of this study was to assess the efficacy of the holmium:yttrium scandian gallium garnet (Ho:YSGG) laser, operating in a pipette-free, non-contact mode, to assist hatching and sustain normal embryonic development. Two-cell mouse embryos were recovered and assigned to laser-assisted hatching (LAH) treatment or control human tubal fluid (HTF) culture with or without serum (HTF-s, HTF-o) or with late serum supplementation (HTF-o/s). The basic experimental apparatus for LAH consisted of a stationary 2.1 microns Ho:YSGG laser beam directed through a mechanical shutter into an input port of a Zeiss Axiomat inverted microscope. Fewer (P < 0.05) embryos developed to the blastocyst stage in the HTF-s group (81%) than in the LAH (90%), HTF-o (94%) and HTF-o/s (92%) groups. The level of hatching was significantly increased (P < 0.01) after the LAH treatment (57%) compared to HTF-o/s (32%), HTF-s (18%) or HTF-o (5%). Implantation rates were not significantly impaired following the LAH treatment (21%). These data demonstrate that LAH using the Ho:YSGG laser is a simple, accurate and effective procedure for assisted hatching.

  9. Holmium(III)-selective fluorimetric optode based on N,N-bis(salicylidene)-naphthylene-1,8-diamine as a neutral fluorogenic ionophore.

    PubMed

    Ganjali, Mohammad Reza; Hosseini, Morteza; Karimi, Anahita; Haji-Hashemi, Hedieh; Salavati-Niasari, Masoud; Norouzi, Parviz

    2014-01-01

    For the first time a highly sensitive and selective fluorimetric optode for determination of trace amounts of Ho(3+) ions was prepared. The sensing system was prepared by incorporating of N,N-bis(salicylidene)-naphthylene-1,8-diamine (L) as a neutral Ho(3+)-selective fluoroionophore, in a plasticized PVC membrane containing sodium tetraphenyl borate as a lipophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Ho(3+) ions. At pH 5.4, the proposed sensor displays a calibration curve over a wide concentration range of 1.0×10(-10)-1.0×10(-3)M, with a relatively fast response time of less than 1 min. In addition to high stability, high reproducibility and a relatively long working lifetime, the sensor shows a good selectivity towards Ho(3+) ion with respect to common coexisting cations. The fluorescence optode was applied to determination of holmium ion contents of water samples.

  10. Investigation of synthesized Be-bearing silicate glass as laboratory reference sample at X-ray electron probe microanalysis of silicates

    NASA Astrophysics Data System (ADS)

    Belozerova, Olga Yu.; Mikhailov, Mikhail A.; Demina, Tamara V.

    2017-01-01

    The article discusses estimates of the stability and homogeneity in Be-Mg-Al-silicate glass produced by the authors and its applicability as a laboratory reference sample for X-ray electron probe microanalysis (EPMA) of Be-bearing silicate matters: crystals and quenching melt (glasses), silicates and oxides. The results were obtained using Superprobe-733 and Superprobe JXA-8200 (JEOL Ltd, Japan) devices. The sample homogeneity was studied on macro (10-100 μm) and micro (1-10 μm) levels and was evaluated by the scheme of dispersion analysis. The applicability of Be-bearing silicate glass as a reference sample for Mg, Al, Si determinations was tested on the international certified reference glasses and laboratory reference samples of minerals with a known composition. The obtained experimental metrological characteristics correspond to the "applied geochemistry" type of analysis (second category) and suggest that Be-bearing silicate glass is appropriate as a laboratory reference sample for EPMA of Be-bearing silicate matters, silicates and oxides. Using Be-Mg-Al-silicate glass as a reference sample we obtained satisfactory data on the composition of both some minerals including cordierite and beryllium cordierite, beryllium indialite, beryl and metastable phases (chrysoberyl, compounds with structure of β-quartz and petalite).

  11. Compositional dependence of in vitro response to commercial silicate glasses

    NASA Astrophysics Data System (ADS)

    Jedlicka, Amy B.

    Materials are often incorporated into the human body, interacting with surrounding fluids, cells and tissues. The reactions that occur between a material and this surrounding biological system are not fundamentally understood. Basic knowledge of material biocompatibility and the controlling processes is lacking. This thesis examines material biocompatibility of a series of silicate-based glasses on a primary level determining cell response to material composition and durability. The silicate glass system studied included two BioglassRTM compositions with known biologically favorable response, two fiberglass compositions, with demonstrated 'not-unfavorable' in vitro response, a ternary soda-lime-silicate glass, a binary alkali silicate glass, and pure silica. Chemical durability was analyzed in three different fluids through solution analysis and material characterization. In vitro response to the substrates was observed. Cell behavior was then directly correlated to the material behavior in cell culture medium under the same conditions as the in vitro test, yet in the absence of cells. The effect of several physical and chemical surface treatments on substrates with predetermined biocompatible behavior was subsequently determined. The chemically durable glasses with no added B2O3 elicited similar cell response as the control polystyrene substrate. The addition of B2O3 resulted in polygonal cell shape and restricted cell proliferation. The non-durable glasses presented a dynamic surface to the cells, which did not adversely affect in vitro response. Extreme dissolution of the binary alkali silicate glass in conjunction with increased pH resulted in unfavorable cell response. Reaction of the Bioglass RTM compositions, producing a biologically favorable calcium-phosphate surface film, caused enhanced cell attachment and spreading. Surface energy increase due to sterilization procedures did not alter cellular response. Surface treatment procedures influencing substrate

  12. Mg-perovskite/silicate melt and magnesiowuestite/silicate melt partition coefficients for KLB-1 at 250 Kbars

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Rubie, David C.; Mcfarlane, Elisabeth A.

    1992-01-01

    The partitioning of elements amongst lower mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. Because of the technical difficulty in carrying out such measurements, only one direct set of measurements was reported previously, and these results as well as interpretations based on them have generated controversy. Here we report what are to our knowledge only the second set of directly measured trace element partition coefficients for a natural system (KLB-1).

  13. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    PubMed

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  14. Silicate sulfidation and chemical differences between enstatite chondrites and Earth

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; Petaev, M. I.; Buseck, P. R.

    2013-12-01

    Isotopic similarity between the Earth-Moon system and enstatite chondrites (ECs) led to the idea that ECs were Earth's building blocks [1-3]. However, compared to Earth's mantle, ECs have low Fe0/Fe ratios, are enriched in volatile elements, and depleted in refractory lithophile elements and Mg [4]. Therefore, deriving Earth composition from ECs requires a loss of volatiles during or prior to accretion and sequestering a large fraction of Si in the deep Earth. Alternatively, the isotopic similarity between the Earth and ECs is explained by their formation from a common precursor that experienced different evolutionary paths resulting in the chemical difference [4]. The vestiges of such a precursor are still present in the unequilibrated ECs as FeO-rich silicates with O isotopic compositions identical to bulk ECs and Earth [5]. Conversion of such a precursor into the characteristic EC mineral assemblage requires high-temperature processing in an H-poor environment with high fS2 and fO2 close to that of the classic solar nebula [6], consistent with redox conditions inferred from Ti4+/Ti3+ ratios in EC pyroxene [7]. Under such conditions reaction of FeO-rich silicates with S-rich gas results in their replacement by the assemblage of FeO-poor silicates; Fe, Mg, Ca sulfides; free silica; and Si-bearing Fe,Ni metal alloy. The progressive sulfidation of ferromagnesian silicates in chondrules results in loss of Mg and addition of Fe, Mn, S, Na, K and, perhaps, other volatiles [6]. At the advanced stages of silicate sulfidation recorded in the metal-sulfide nodules [8], a portion of Si is reduced and dissolved in the Fe,Ni metal. This process is known to fractionate Si isotopes [9,10] and would explain the differences between the ECs and Earth's mantle [11]. The sulfidation of silicates also produces porous S-rich silica, a peculiar phase observed so far only in the ECs. It consists of a sinewy SiO2-rich framework enclosing numerous vesicles filled with beam

  15. Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate

    SciTech Connect

    Bellmann, Frank; Damidot, Denis; Moeser, Bernd; Skibsted, Jorgen

    2010-06-15

    Tricalcium silicate (Ca{sub 3}SiO{sub 5}) with a very small particle size of approximately 50 nm has been prepared and hydrated for a very short time (5 min) by two different modes in a paste experiment, using a water/solid-ratio of 1.20, and by hydration as a suspension employing a water/solid-ratio of 4000. A phase containing uncondensed silicate monomers close to hydrogen atoms (either hydroxyl groups or water molecules) was formed in both experiments. This phase is distinct from anhydrous tricalcium silicate and from the calcium-silicate-hydrate (C-S-H) phase, commonly identified as the hydration product of tricalcium silicate. In the paste experiment, approximately 79% of silicon atoms were present in the hydrated phase containing silicate monomers as determined from {sup 29}Sileft brace{sup 1}Hright brace CP/MAS NMR. This result is used to show that the hydrated silicate monomers are part of a separate phase and that they cannot be attributed to a hydroxylated surface of tricalcium silicate after contact with water. The phase containing hydrated silicate monomers is metastable with respect to the C-S-H phase since it transforms into the latter in a half saturated calcium hydroxide solution. These data is used to emphasize that the hydration of tricalcium silicate proceeds in two consecutive steps. In the first reaction, an intermediate phase containing hydrated silicate monomers is formed which is subsequently transformed into C-S-H as the final hydration product in the second step. The introduction of an intermediate phase in calculations of the early hydration of tricalcium silicate can explain the presence of the induction period. It is shown that heterogeneous nucleation on appropriate crystal surfaces is able to reduce the length of the induction period and thus to accelerate the reaction of tricalcium silicate with water.

  16. Efficacy of holmium laser urethrotomy and intralesional injection of Santosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase and N-acetyl cysteine) on the outcome of urethral strictures

    PubMed Central

    Kishore, Lalit; Sharma, Aditya Prakash; Garg, Nitin; Singh, Shrawan Kumar

    2015-01-01

    Introduction To study the efficacy of holmium laser urethrotomy with intralesional injection of Santosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase and N-acetyl cysteine) in the treatment of urethral strictures. Material and methods A total of 50 patients with symptomatic urethral stricture were evaluated by clinical history, physical examination, uroflowmetry and retrograde urethrogram preoperatively. All patients were treated with holmium laser urethrotomy, followed by injection of tetra-inject at the urethrotomy site. Tetra-inject was prepared by diluting acombination of 40 mg Triamcinolone, 2 mg Mitomycin, 3000 UHyaluronidase and 600 mg N-acetyl cysteine in 5–10 ml of saline, according to the stricture length. An indwelling 18 Fr silicone catheter was left in place for 7–10 days.All patients were followed-up for 6-18 months postoperatively by history, uroflowmetry, and if required, retrograde urethrogram and micturating urethrogram every 3 months. Results 41 (82%) patients had asuccessful outcome,whereas 9 (18%) had recurrences during a follow-up ranging from 6–18 months. In <1 cm length strictures, the success rate was 100%, while in 1–3 cm and >3 cm lengthsthe success rates were 81.2% and 66.7% respectively. This modality, thus, has an encouraging success rate, especially in those with short segment urethral strictures (<3 cm). Conclusions Holmium laser urethrotomy with intralesional injection ofSantosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase, N-acetyl cysteine) is a safe and effective minimally-invasive therapeutic modality for short segment urethral strictures. PMID:26855803

  17. Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite

    NASA Technical Reports Server (NTRS)

    Wooden, Diane

    2012-01-01

    Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8

  18. SILICATES ON IAPETUS FROM CASSINI’S COMPOSITE INFRARED SPECTROMETER

    SciTech Connect

    Young, Cindy L.; Wray, James J.; Clark, Roger N.; Spencer, John R.; Jennings, Donald E.; Hand, Kevin P.; Carlson, Robert W.; Poston, Michael J.

    2015-10-01

    We present the first spectral features obtained from Cassini’s Composite Infrared Spectrometer (CIRS) for any icy moon. The spectral region covered by CIRS focal planes (FP) 3 and 4 is rich in emissivity features, but previous studies at these wavelengths have been limited by low signal-to-noise ratios (S/Ns) for individual spectra. Our approach is to average CIRS FP3 spectra to increase the S/N and use emissivity spectra to constrain the composition of the dark material on Iapetus. We find an emissivity feature at ∼855 cm{sup −1} and a possible doublet at 660 and 690 cm{sup −1} that do not correspond to any known instrument artifacts. We attribute the 855 cm{sup −1} feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths. Silicates on the dark terrains of Saturn’s icy moons have been suspected for decades, but there have been no definitive detections until now. Serpentines reported in the literature at ambient temperature and pressure have features near 855 and 660 cm{sup −1}. However, peaks can shift depending on temperature and pressure, so measurements at Iapetus-like conditions are necessary for more positive feature identifications. As a first investigation, we measured muscovite at 125 K in a vacuum and found that this spectrum does match the emissivity feature near 855 cm{sup −1} and the location of the doublet. Further measurements are needed to robustly identify a specific silicate, which would provide clues regarding the origin and implications of the dark material.

  19. Conduction mechanism in bismuth silicate glasses containing titanium

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  20. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciTech Connect

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  1. Sealing of cracks in cement using microencapsulated sodium silicate

    NASA Astrophysics Data System (ADS)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.

    2016-08-01

    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  2. Impact of atmospheric CO2 levels on continental silicate weathering

    NASA Astrophysics Data System (ADS)

    Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.

    2010-07-01

    Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by weathering of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental weathering (WITCH). It allows simultaneous calculations of the different components of continental weathering fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the global pattern of weathering rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral weathering. We calculate an increase of about 3% of the CO2 consumption through silicate weathering (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the weathering system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.

  3. Geoengineering potential of artificially enhanced silicate weathering of olivine.

    PubMed

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A

    2010-11-23

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique.

  4. The geoengineering potential of artificially enhanced silicate weathering of olivine

    NASA Astrophysics Data System (ADS)

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.

    2010-05-01

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate in more detail the potential of a specific geoengineering technique, the carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. We here show the consequences of this technique for the chemistry of the surface ocean at rates necessary for geoengineering. We calculate that olivine dissolution has the potential to sequestrate up to one Pg C yr-1 directly, if olivine is distributed as fine powder over land areas of the humid tropics. The carbon sequestration potential is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg C yr-1. Open water dissolution of fine grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1 to 5 Pg C yr-1 for the 21st century by this technique. At maximum this technique would reduce global warming by 1 K and counteract ocean acidification by a rise in surface ocean pH by 0.1 in the year 2100.

  5. Geoengineering potential of artificially enhanced silicate weathering of olivine

    PubMed Central

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.

    2010-01-01

    Geoengineering is a proposed action to manipulate Earth’s climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1–5 Pg of C per year for the 21st century by this technique. PMID:21059941

  6. Proton tunneling in low dimensional cesium silicate LDS-1

    SciTech Connect

    Matsui, Hiroshi Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-14

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi{sub 2}O{sub 5}), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm{sup −1} are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O–O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm{sup −1}, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm{sup −1} are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm{sup −1}) and asymmetric mode (155 and 1220 cm{sup −1}). The broad absorption at 100–600 cm{sup −1} reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs{sup +} but also with the proton oscillation relevant to the second excited state (n = 2)

  7. Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate

    NASA Technical Reports Server (NTRS)

    Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

    2005-01-01

    Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

  8. Micro-PIXE analysis of silicate reference standards

    USGS Publications Warehouse

    Czamanske, G.K.; Sisson, T.W.; Campbell, J.L.; Teesdale, W.J.

    1993-01-01

    The accuracy and precision of the University of Guelph proton microprobe have been evaluated through trace-element analysis of well-characterized silicate glasses and minerals, including BHVO-1 glass, Kakanui augite and hornblende, and ten other natural samples of volcanic glass, amphibole, pyroxene, and garnet. Using the 2.39 wt% Mo in a NIST steel as the standard, excellent precision and agreement between reported and analyzed abundances were obtained for Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, and Nb. -from Authors

  9. High-temperature silicate volcanism on Jupiter's moon Io

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Spencer, J.R.; Schubert, G.; Matson, D.L.; Lopes-Gautier, R.; Klaasen, K.P.; Johnson, T.V.; Head, J.W.; Geissler, P.; Fagents, S.; Davies, A.G.; Carr, M.H.; Breneman, H.H.; Belton, M.J.S.

    1998-01-01

    Infrared wavelength observations of Io by the Galileo spacecraft show that at last 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patea, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with thse high-temperature hot spots.

  10. Alkali-metal silicate binders and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B. (Inventor)

    1979-01-01

    A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.

  11. High-temperature silicate volcanism on Jupiter's moon Io.

    PubMed

    McEwen, A S; Keszthelyi, L; Spencer, J R; Schubert, G; Matson, D L; Lopes-Gautier, R; Klaasen, K P; Johnson, T V; Head, J W; Geissler, P; Fagents, S; Davies, A G; Carr, M H; Breneman, H H; Belton, M J

    1998-07-03

    Infrared wavelength observations of Io by the Galileo spacecraft show that at least 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patera, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with these high-temperature hot spots.

  12. Sulfide and sulfate saturation in hydrous silicate melts

    NASA Technical Reports Server (NTRS)

    Carroll, M. R.; Rutherford, M. J.

    1985-01-01

    A series of hydrothermal experiments was performed over a wide range of pressures, temperatures, oxygen fugacities, and melt FeO content, in order to examine the effects of physical changes on sulfur solubility in fractionated hydrous silicate melts. On the basis of the experimental results, it is concluded that upper crustal oxidation-reduction reactions and crystal fractionation processes may exert considerable influence on the amount of sulfur contained in magmas erupted at the surface. The application of the experimental results to investigations of volatile transport and volcanic degassing processes on the earth, Venus, and Mars is discussed

  13. Discovery of the Largest Historic Silicic Submarine Eruption

    NASA Astrophysics Data System (ADS)

    Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

    2014-05-01

    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

  14. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    SciTech Connect

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  15. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1992-01-01

    Melting and electrolyzing lunar silicates yields oxygen gas and potentially can be practiced in situ to produce oxygen. With the present experiments conducted with simulant oxides at 1425-1480 C, it was ascertained that oxygen can be obtained anodically at feasible rates and current efficiencies. An electrolysis cell was operated with platinum anodes in a sealed vessel, and the production of gas was monitored. In these electrolysis experiments, stability of anodes remained a problem, and iron and silicon did not reduce readily into the liquid silver cathode.

  16. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, R.; Larimer, K. T.

    1991-01-01

    To produce oxygen from lunar resources, it may be feasible to melt and electrolyze local silicate ores. This possibility was explored experimentally with synthesized melts of appropriate compositions. Platinum electrodes were employed at a melt temperature of 1425 C. When silicon components of the melt were reduced, the platinum cathode degraded rapidly, which prompted the substitution of a graphite cathode substrate. Discrete particles containing iron or titanium were found in the solidified electrolyte after three hours of electrolysis. Electrolyte conductivities did not decrease substantially, but the escape of gas bubbles, in some cases, appeared to be hindered by high viscosity of the melt.

  17. Activity composition relationships in silicate melts. Final report

    SciTech Connect

    Glazner, A.F.

    1990-12-31

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  18. Sublithospheric Triggers for Episodic Silicic Magmatism in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Vogt, K.; Schubert, M.

    2014-12-01

    The melt source and ascent mechanisms for crustal-scale silicic magmatism in subduction zones remain a matter of debate. Recent petrological-thermo-mechanical numerical experiments suggest that important physical controls of this process can be of sublithospheric origin. Firstly, deep sources of silicic magma can be related to episodic development of positively buoyant diapiric structures in the mantle wedge originated from deeply subducted rock mélanges (Gerya and Yuen, 2003; Castro and Gerya, 2008). Partial melting of these rapidly ascending lithologically mixed structures can produce silicic magmas with a relatively constant major element composition and variable time-dependent isotopic ratios inherited from the mélange (Vogt et al., 2013). Secondly, episodic injections of subduction-related mantle-derived mafic magmas into a partially molten hot zone of the arc lower crust can drive ascents of pre-existing felsic crustal magmas toward upper crustal levels. The injection of mafic magma induces overpressure in the lower crustal magma reservoir, which increases crustal stresses and triggers development of brittle/plastic fracture zones serving as conduits for the rapid episodic ascent of felsic magmas (Shubert et al., 2013). Our numerical results thus imply that subduction-related sublithospheric magma intrusions into the lower arc crust may both be the prime source for the generation of silicic magmas and the major physical driving mechanism for their episodic ascent toward upper crustal levels. References:Castro, A., and Gerya, T.V., 2008. Magmatic implications of mantle wedge plumes: experimental study. Lithos 103, 138-148. Gerya, T.V., and Yuen, D.A., 2003. Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones. Earth and Planetary Science Letters 212, 47-62.Schubert, M., Driesner, T., Gerya, T.V., Ulmer, P., 2013. Mafic injection as a trigger for felsic magmatism: A numerical study. Geochemistry, Geophysics

  19. U.S. Geological Survey silicate rock standards

    USGS Publications Warehouse

    Flanagan, F.J.

    1967-01-01

    The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.

  20. First-principles study of blue silicate phosphors.

    PubMed

    Ishida, M; Imanari, Y; Isobe, T; Kuze, S; Ezuhara, T; Umeda, T; Ohno, K; Miyazaki, S

    2010-09-29

    First-principles calculations were performed to investigate the optical property of blue silicate phosphor, CMS:Eu. The optical absorption property is discussed based on electronic band structure and density of states. Our calculation results indicate that hybridization of the wavefunction plays an important role for nonradiative migration of electrons and holes. The calculated optical absorption spectrum could reproduce the optical features of the experimental excitation spectrum. It is also demonstrated that a practical approach using computational materials screening is effective in phosphor materials development.

  1. Hydrothermal preparation of diatomaceous earth combined with calcium silicate hydrate gels.

    PubMed

    Maeda, Hirotaka; Ishida, Emile Hideki

    2011-01-30

    A novel composite for the removal of color in waste water was prepared by subjecting slurries consisting diatomaceous earth and slaked lime to a hydrothermal reaction at 180 °C. Subsequently, calcium silicate hydrate gels covered the surface of diatomaceous earth due to the reaction between the amorphous silica of diatomaceous earth and slaked lime. The formation of calcium silicate hydrate gels led to an increase in the specific surface area. The composites showed higher methylene blue adsorption capacity compared with diatomaceous earth. The improved adsorption capacity of the composites depended on the amount of the calcium silicate hydrate gels and their silicate anion chain-lengths.

  2. Studying regimes of convective heat transfer in the production of high-temperature silicate melts

    NASA Astrophysics Data System (ADS)

    Volokitin, O. G.; Sheremet, M. A.; Shekhovtsov, V. V.; Bondareva, N. S.; Kuzmin, V. I.

    2016-09-01

    The article presents the results of theoretical and experimental studies of the production of high-temperature silicate melts using the energy of low-temperature plasma in a conceptually new setup. A mathematical model of unsteady regimes of convective heat and mass transfer is developed and numerically implemented under the assumption of non-Newtonian nature of flow in the melting furnace with plasma-chemical synthesis of high-temperature silicate melts. Experiments on melting silicate containing materials were carried out using the energy of low-temperature plasma. The dependence of dynamic viscosity of various silicate materials (basalt, ash, waste of oil shale) was found experimentally.

  3. Nature of very small grains - PAH molecules or silicates?. [Polycyclic Aromatic Hydrocarbon in interstellar dust

    NASA Technical Reports Server (NTRS)

    Desert, F. X.; Leger, A.; Puget, J. L.; Boulanger, F.; Sellgren, K.

    1986-01-01

    The predictions of the model of Puget et al. (1985) for the emission from Very Small Grains (VSGs) including both graphitic and silicate components are compared with published 8-13-micron observations of astronomical sources. The VSGs are found to be mainly graphitic and an upper limit is placed on the relative mass of silicates based on lack of the 9.7-micron silicate emission feature on M 82 and NGC 2023. This dissymetry in the composition of VSGs supports the suggestion that they are formed in grain-grain collisions where the behaviors of graphite and silicate grains are expected to be quite different.

  4. Holmium:YAG (λ=2120nm) vs. Thulium fiber laser (λ=1908nm) ablation of kidney stones: thresholds, rates, and retropulsion

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-03-01

    The Holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but its efficient operation is limited to relatively low pulse rates (~10 Hz) during lithotripsy. On the contrary, the Thulium Fiber Laser (TFL) is limited to low pulse energies, but can operate at very high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion effects for different Ho:YAG and TFL operation modes. The TFL (λ=1908 nm) was operated with pulse energies of 5-35 mJ, 500-μs pulse duration, and pulse rates of 10-400 Hz. The Ho:YAG laser (λ=2120 nm) was operated with pulse energies of 30-550 mJ, 350-μs pulse duration, and pulse rate of 10 Hz. Laser energy was delivered through small-core (200-270-μm) optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 J/cm2and 20.8 J/cm2, respectively. Stone retropulsion with Ho:YAG laser increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies < 175 mJ at 10 Hz, and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies (e.g. 100-200 mJ) and high pulse rates (100-150 Hz) may also provide higher ablation rates, when retropulsion is not the primary concern.

  5. Management of upper ureteral stones exceeding 15 mm in diameter: Shock wave lithotripsy versus semirigid ureteroscopy with holmium:yttrium–aluminum–garnet laser lithotripsy

    PubMed Central

    Aboutaleb, Hamdy; Omar, Mohamed; Salem, Shady; Elshazly, Mohamed

    2016-01-01

    Objectives: We conducted a retrospective study to evaluate the efficacy and outcome of shock wave lithotripsy versus semirigid ureteroscopy in the management of the proximal ureteral stones of diameter exceeding 15 mm. Methods: During the 2009−2014 study period, 147 patients presenting with the proximal ureteral stones exceeding 15 mm in diameter were treated. Both shock wave lithotripsy and ureteroscopy with laser lithotripsy were offered for our patients. A 6/8.9 Fr semirigid ureteroscope was used in conjunction with a holmium:yttrium–aluminum–garnet laser. The stone-free rate was assessed at 2 weeks and 3 months post-treatment. All patients were evaluated for stone-free status, operation time, hospital stay, perioperative complications, and auxiliary procedures. Results: Of the 147 patients who took part in this study, 66 (45%) had undergone shock wave lithotripsy and 81 (55%) underwent ureteroscopy. At the 3-month follow-up, the overall stone-free rate in the shock wave lithotripsy group was 39/66 (59%) compared to 70/81 (86.4%) in the ureteroscopic laser lithotripsy group. Ureteroscopic laser lithotripsy achieved a highly significant stone-free rate (p = 0.0002), and the mean operative time, auxiliary procedures, and postoperative complication rates were comparable between the two groups. Conclusion: In terms of the management of proximal ureteral stones exceeding 15 mm in diameter, ureteroscopy achieved a greater stone-free rate and is considered the first-line of management. Shock wave lithotripsy achieved lower stone-free rate, and it could be used in selected cases. PMID:28348743

  6. Optimized evaluation of a pulsed 2.09 microns holmium:YAG laser impact on the rat brain and 3 D-histomorphometry of the collateral damage.

    PubMed

    Ludwig, H C; Bauer, C; Fuhrberg, P; Teichmann, H H; Birbilis, T; Markakis, E

    1998-12-01

    Since more than 20 years CO2 and Nd:YAG lasers are established in the microsurgery of the nervous system. CO2 lasers can be used handheld, but may be focused on the target area by mirror optics and sideports of the operating microscope's micromanipulator. Nd:YAG lasers have the disadvantage of deep penetration into the brain and provocation of a large collateral damage. The need is for a fibre conducted solid system for surgery in delicate areas as for brain stem surgery. Fibre conduction of near infrared lasers allows better exposure of the target area compared to hollow wave guides or mirror equipment. Fibres can be tapered and modified according to the purpose. The holmium:YAG (Ho:YAG) laser has acquired interest by introducing the system into microsurgery of parenchymal tissue. They have not been proven yet sufficiently for neurosurgical tasks. The effort to minimalize the collateral tissue damage has to be maximalized in the surgery of nervous tissue and functional low redundant brain stem or spinal cord tissue. Volumetric data may be more precise in comparison to depth and width data of the laser lesion even when the different levels of the tissue interaction have to be analyzed for estimation of the real side effects in nervous tissue. We have used 50-800 ml delivered Ho:YAG single pulses in cortical areas of Sprague-Dawley rats and investigated the different lesion zones by volumetric data. The functional lesion zone was detected and measured by immunohistological staining of the heat shock protein HSP 72. For further reduction of the focus area, we have used tapered 400 to 200 microns fibres.

  7. Vanadium isotopic difference between the silicate Earth and meteorites

    NASA Astrophysics Data System (ADS)

    Nielsen, Sune G.; Prytulak, Julie; Wood, Bernard J.; Halliday, Alex N.

    2014-03-01

    It has been argued that the stable isotopic composition of the element vanadium (V) provides a potential indicator of the effects high-energy irradiation early in Solar System development. Such irradiation would produce enrichment in the minor isotope, 50V compared with the 400 times more abundant 51V (Gounelle et al., 2001; Lee et al., 1998). Here we show that the vanadium isotopic composition of the silicate Earth is enriched in 51V by ∼0.8‰ compared with carbonaceous and ordinary chondrites as well as achondrites from Mars and the asteroid 4 Vesta. Although V is depleted by core formation, experiments reveal no isotopic fractionation between metal and silicate that could account for the observed difference in V isotope composition between terrestrial and extraterrestrial materials. Nucleosynthetic provenance of the terrestrial vanadium isotope offset is inconsistent with anomalies of other nucleosynthetically produced isotopes in bulk meteorites, which are more variable than vanadium (Burkhardt et al., 2011; Carlson et al., 2007; Trinquier et al., 2009). Furthermore, V isotopes are unlikely to have been affected by volatilization, parent body alteration or impact erosion of Earth's surface. Therefore, the cause of the isotopic difference is unclear. One possibility is that Earth's isotopically heavier V reflects a deficit in material irradiated during the initial stages of Solar System formation. Whatever the cause, the terrestrial deficit in 50V implies that bulk Earth cannot be entirely reconstructed by mixtures of different meteorites.

  8. The electrical conductivity of silicate liquids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Scipioni, R.; Stixrude, L. P.

    2015-12-01

    Could the Earth have had a silicate dynamo early in its history? One requirement is that the electrical conductivity of silicate liquids be sufficiently high. However, very little is known about this property at the extreme conditions of pressure and temperature that prevailed in the magma ocean. We have computed from first principles molecular dynamics simulations the dc conductivity of liquid Silica SiO2 at pressure and temperature conditions spanning those of the magma ocean and super-Earth interiors. We find semi-metallic values of the conductivity at conditions typical of the putative basal magma ocean in the Early Earth. The variation of the conductivity with pressure and temperature displays interesting behavior that we rationalize on the basis of the closing the pseudo-gap at the Fermi level. For temperatures lower than T < 20,000 K electrical conductivity exhibits a maximum at intermediate compressions. We further explain this behavior in terms of stuctural changes that occur in silica liquid at high pressure; we find that the structure approaches that of the iso-electronic rare earth element Ne. We compare with Hugoniot data, including the equation of state, heat capacity, and reflectivity. The behavior of the heat capacity is different to that inferred from multiple Hugoniot experiments. These differences and the effect of including exact exchange on the calculations are discussed. Our results have important consequences for magnetic field generation in the early Earth and super-Earths.

  9. Signatures of aging silicate dust. [in interstellar medium

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Hecht, James H.

    1990-01-01

    A self-consistent explanation for the width, strength, and position of spectral features which may be diagnostic of the structure and composition of circumstellar and interstellar silicate grains is presented based on a long series of laboratory experiments using simple oxide analogs. The ratio of the integrated absorption strength of the grains near 10 mu to that near 20 mu is shown to decrease monotonically with increased processing. This ratio may be diagnostic of the relative age of the silicate. The oxidation state of iron in the grains is directly related to both the near-IR grain opacity and enhanced absorption in the UV. The oxidation state of both iron and silicon is directly related to the rate of nucleation, growth, and processing in a circumstellar outflow, as well as to the processing history of the grain after it reaches the interstellar medium. Other diagnostic indicators of the average silicon oxidation state, degree of structural polymerization, and dispersion in the average degree of structural polymerization are discussed.

  10. Authigenic Mineralization of Silicates at the Organic-water Interface

    NASA Astrophysics Data System (ADS)

    McEvoy, B.; Wallace, A. F.

    2015-12-01

    It is relatively common for some fraction of organic material to be preserved in the sedimentary rock record as disseminated molecular fragments. The survival of wholly coherent tissues from primarily soft-bodied organisms is far more unusual. However, the literature is now well- populated with spectacular examples of soft-tissue preservation ranging from a 2,600 year old human brain to the tissues of the Ediacaran biota that have survived ~600 million years. Some of the most exceptional examples of soft tissue preservation are from the Proterozoic-Cambrian transition, however, nearly all modes of fossil preservation during this time are debated. Clay mineral templates have been implicated as playing a role in several types of soft tissue preservation, including Burgess Shale and Beecher's Trilobite-type preservation, and more recently, Bitter Springs-type silicification. Yet, there is still much debate over whether these clay mineral coatings form during early stage burial and diagenesis, or later stage metamorphism. This research addresses this question by using in situ fluid cell Atomic Force Microscopy (AFM) to investigate the nucleation and growth of silicate minerals on model biological surfaces. Herein we present preliminary results on the deposition of hydrous magnesium silicates on self-assembled monolayers (-OH, -COOH, -CH3, and -H2PO3 terminated surfaces) at ambient conditions.

  11. The structure of alkali silicate gel by total scattering methods

    SciTech Connect

    Benmore, C.J.; Monteiro, Paulo J.M.

    2010-06-15

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO{sub 2}. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi{sub 2}O{sub 5}:3H{sub 2}O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested.

  12. Mechanism of stabilization of dicalcium silicate solid solution with aluminium.

    PubMed

    Cuesta, Ana; Aranda, Miguel A G; Sanz, Jesús; de la Torre, Angeles G; Losilla, Enrique R

    2014-02-07

    Stoichiometric dicalcium silicate, Ca2SiO4, displays a well-known polymorphism with temperature. When this phase is doped by a range of elements, belite, one of the main phases of cements, is generated. Here, we thoroughly study the aluminum doping of dicalcium silicate. This type of study is important for cement characterization and also from a basic point of view. Ca2Si(1-2x)Al(2x)O(4-x)□(x) (x = 0, 0.010, 0.014, 0.03) has been prepared and studied by X-ray powder diffraction and the Rietveld method. The limiting composition has been established as Ca2Si0.972Al0.028O3.986□0.014. The (27)Al MAS NMR band located close to ~-70 ppm is ascribed to tetrahedral environments, in agreement with the proposed aliovalent Si/Al atomic substitution mechanism. Thermal analysis measurements under a wet atmosphere indirectly confirm the increase of oxygen vacancies as the amount of incorporated protons increases with the aluminium content. A thorough electrical characterization has been carried out including overall conductivity measurements under wet and dry atmospheres and conductivity as a function of the oxygen partial pressure. The samples show oxide anion conductivity with a small p-type electronic contribution under oxidizing conditions. These compounds display a very important proton contribution to the overall conductivities under humidified atmospheres.

  13. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya

    USGS Publications Warehouse

    Eugster, H.P.; Jones, B.F.

    1968-01-01

    Sodium-aluminum silicate gels are found in surftcial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67?? to 82??C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na2O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  14. The structure of alkali silicate gel by total scattering methods.

    SciTech Connect

    Benmore, C. J.; Monteiro, P. J. M.; X-Ray Science Division; Univ. of California at Berkeley

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO{sub 2}. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi{sub 2}O{sub 5}:3H{sub 2}O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested.

  15. Santaclaraite, a new calcium-manganese silicate hydrate from California.

    USGS Publications Warehouse

    Erd, Richard C.; Ohashi, Y.

    1984-01-01

    Santaclaraite, ideally CaMn4(Si5O14(OH))(OH).H2O, occurs as pink and tan veins and masses in Franciscan chert in the Diablo Range, Santa Clara and Stanislaus counties, California. It is associated with four unidentified Mn silicates, Mn-howieite, quartz, braunite, calcite, rhodochrosite, kutnahorite, baryte, harmotome, chalcopyrite and native copper. Santaclaraite is triclinic, space group B1, a 15.633(1), b 7.603(1) , c 12.003(1) A, alpha 109.71(1)o, beta 88.61(1)o, gamma 99.95(1) o, V 1322.0(3) A3; Z = 4. The strongest lines of the X-ray pattern are 7.04(100), 3.003(84), 3.152(80), 7.69(63), 3.847(57) A. Crystals are lamellar to prismatic (flattened on (100)), with good cleavage on (100) and (010); H. 61/2 Dcalc. 3.398 g/cm3, Dmeas. 3.31 (+ or -0.01); optically biaxial negative, alpha 1.681, beta 1.696, gamma 1.708 (all + or - 0.002), 2Valpha 83 (+ or -1)o. Although chemically a hydrated rhodonite, santaclaraite dehydrates to Mn-bustamite at approx 550oC (in air) . Santaclaraite is a five-tetrahedral-repeat single-chain silicate and has structural affinities with rhodonite, nambulite, marsturite, babingtonite and inesite.-J.A.Z.

  16. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  17. Boron in chert and Precambrian siliceous iron formations

    NASA Astrophysics Data System (ADS)

    Truscott, Marilyn G.; Shaw, Denis M.

    1984-11-01

    In order to assess the importance of siliceous sediments as a sink for oceanic B and to determine the effect of diagenesis on the mobilization of B, samples were analysed from chert nodules, bedded cherts, and siliceous banded iron formations from a variety of sedimentary environments and geologic ages. Boron analyses on bulk samples were made by prompt gamma neutron activation analysis. The distribution of B in rocks was mapped using α-track methods. Nodular Phanerozoic cherts typically contain 50-150 ppm B, and bedded cherts somewhat less. The B is initially concentrated in tests of silica-secreting organisms, but some is lost in early diagenesis as silica progressively recrystallises to quartz. Banded iron formation silica of Archean and Proterozoic age usually contains < 2 ppm B. This conforms with the view that such silica is not of biogenic origin but, since many iron formations are undoubtedly of marine origin, raises the question whether Precambrian oceans were impoverished in B. Analyses of Precambrian marine argillaceous sediments, averaging 70 ppm B, do not resolve this question.

  18. Ab-Initio Study of Incongruent Melting in Silicates

    NASA Astrophysics Data System (ADS)

    Pinilla, C.; Stixrude, L. P.

    2014-12-01

    Knowledge of the multi-component thermodynamics and phase equilibria of silicate melts at Earth's interior conditions are key to understand the chemical and thermal evolution of the planet. Yet they remain poorly constrained with a wide uncertainty on the eutectic composition and temperature. In this work we present results from ab-initio molecular dynamics in combination with the two-phase coexistance method to study properties of a system of MgSiO3 liquid coexisting with crystalline MgO at conditions of the deep lower mantle. During incongruent melting the crystal may either grow via partial freezing of the liquid or shrink via partial melting at a given temperature and pressure. The melting process can be studied using the two-phases method where liquid and solid are in contact at a given temperature and pressure and so under thermodynamic equilibrium. We characterise the composition and densities of the resultant solid and liquid phases, provide chemical potentials of the liquid phase and study the structural and dynamical properties of the melt. In addition, we discuss the performance of alternative computational methods applied to the study of incongruent melting in silicate systems where long simulation times and a large number of atoms are usually needed. Finally, we discuss the implication of our findings for the evolution of the Earth's interior.

  19. Ion-specific effects influencing the dissolution of tricalcium silicate

    SciTech Connect

    Nicoleau, L.; Schreiner, E.; Nonat, A.

    2014-05-01

    It has been recently demonstrated that the dissolution kinetics of tricalcium silicate (C{sub 3}S) is driven by the deviation from its solubility equilibrium. In this article, special attention is paid to ions relevant in cement chemistry likely to interact with C{sub 3}S. In order to determine whether specific effects occur at the interface C{sub 3}S–water, particular efforts have been made to model ion activities using Pitzer's model. It has been found that monovalent cations and monovalent anions interact very little with the surface of C{sub 3}S. On the other side, divalent anions like sulfate slow down the dissolution more strongly by modifying the surface charging of C{sub 3}S. Third, aluminate ions covalently bind to surface silicate monomers and inhibit the dissolution in mildly alkaline conditions. The formation and the breaking of these bonds depend on pH and on [Ca{sup 2+}]. Thermodynamic calculations performed using DFT combined with the COSMO-RS solvation method support the experimental findings.

  20. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    PubMed

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).