Science.gov

Sample records for homeotic gene sex

  1. Evolving expression patterns of the homeotic gene Scr in insects.

    PubMed

    Passalacqua, Karla D; Hrycaj, Steven; Mahfooz, Najmus; Popadic, Aleksandar

    2010-01-01

    While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax. PMID:20336613

  2. Evolving expression patterns of the homeotic gene Scr in insects.

    PubMed

    Passalacqua, Karla D; Hrycaj, Steven; Mahfooz, Najmus; Popadic, Aleksandar

    2010-01-01

    While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax.

  3. LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis.

    PubMed Central

    Schultz, EA; Haughn, GW

    1991-01-01

    Variation in plant shoot structure may be described as occurring through changes within a basic unit, the metamer. Using this terminology, the apical meristem of Arabidopsis produces three metameric types sequentially: type 1, rosette; type 2, coflorescence-bearing with bract; and type 3, flower-bearing without bract. We describe a mutant of Arabidopsis, Leafy, homozygous for a recessive allele of a nuclear gene LEAFY (LFY), that has an inflorescence composed only of type 2-like metamers. These data suggest that the LFY gene is required for the development of type 3 metamers and that the transition from type 2 to type 3 metamers is a developmental step distinct from that between vegetative and reproductive growth (type 1 to type 2 metamers). Results from double mutant analysis, showing that lfy-1 is epistatic to the floral organ homeotic gene ap2-6, are consistent with the hypothesis that a functional LFY gene is necessary for the expression of downstream genes controlling floral organ identity. PMID:12324613

  4. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer

    PubMed Central

    Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.

    2013-01-01

    Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265

  5. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  6. Transvection and silencing of the Scr homeotic gene of Drosophila melanogaster.

    PubMed

    Southworth, Jeffrey W; Kennison, James A

    2002-06-01

    The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.

  7. Ectopic expression of a single homeotic gene, the Petunia gene green petal, is sufficient to convert sepals to petaloid organs.

    PubMed Central

    Halfter, U; Ali, N; Stockhaus, J; Ren, L; Chua, N H

    1994-01-01

    Genetic studies in Arabidopsis and Antirrhinum showed that petal determination requires the concomitant expression of two homeotic functions, A and B, whereas the A function alone determines sepal identity. The B function is represented by at least two genes. The Petunia homeotic gene green petal (gp) is essential for petal determination as demonstrated by a Petunia gp mutant that has sepals instead of petals. We have used ectopic expression of the gp gene as a tool to study flower development in Petunia. CaMV 35S-gp expression leads to homeotic conversion of sepals into petaloid organs when expressed early in development. This demonstrates that a single homeotic gene is sufficient to induce homeotic conversion of sepals to petals, suggesting that other petal determining genes are regulated in part by ectopically expressed gp. Indeed, two other MADS-box-containing genes, pmads 2 and fbp 1, which show homology to the Antirrhinum B function gene globosa, are activated in the converted petal tissue. Furthermore, our data provide evidence for autoregulation of gp expression in the petaloid tissue and uncover the role of gp in fusion of petal tissues. Images PMID:7907980

  8. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages

    PubMed Central

    Lamb, Rebecca S.; Irish, Vivian F.

    2003-01-01

    Changes in homeotic gene expression patterns or in the functions of the encoded proteins are thought to play a prominent role in the evolution of new morphologies. The floral homeotic APETALA3 (AP3) and PISTILLATA (PI) genes encode MADS domain-containing transcription factors required to specify petal and stamen identities in Arabidopsis. We have previously shown that perianth expression of AP3 and PI homologs varies in different groups of angiosperms with diverse floral structures, suggesting that changes in expression may contribute to changing morphology. We have investigated the possibility that changes in the functions of the encoded gene products may also have played a role in the evolution of different floral morphologies. AP3 and PI are members of paralogous gene lineages and share extensive similarity along the length of the protein products. Genes within these lineages encode products with characteristic C-terminal motifs that we show are critical for functional specificity. In particular, the C terminus of AP3 is sufficient to confer AP3 functionality on the heterologous PI protein. Furthermore, we have shown that the evolution of the divergent AP3 C-terminal domain in the core eudicots is correlated with the acquisition of a role in specifying perianth structures. These results suggest that divergence in these sequence motifs has contributed to the evolution of distinct functions for these floral homeotic gene products. PMID:12746493

  9. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.

    PubMed

    Gómez-Mena, Concepción; de Folter, Stefan; Costa, Maria Manuela R; Angenent, Gerco C; Sablowski, Robert

    2005-02-01

    Floral organs, whose identity is determined by specific combinations of homeotic genes, originate from a group of undifferentiated cells called the floral meristem. In Arabidopsis, the homeotic gene AGAMOUS (AG) terminates meristem activity and promotes development of stamens and carpels. To understand the program of gene expression activated by AG, we followed genome-wide expression during early stamen and carpel development. The AG target genes included most genes for which mutant screens revealed a function downstream of AG. Novel targets were validated by in situ hybridisation and binding to AG in vitro and in vivo. Transcription factors formed a large fraction of AG targets, suggesting that during early organogenesis, much of the genetic program is concerned with elaborating gene expression patterns. The results also suggest that AG and other homeotic proteins with which it interacts (SEPALLATA3, APETALA3, PISTILLATA) are coordinately regulated in a positive-feedback loop to maintain their own expression, and that AG activates biosynthesis of gibberellin, which has been proposed to promote the shift from meristem identity to differentiation. PMID:15634696

  10. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.

    PubMed

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.

  11. Mutant alleles of the Drosophila trithorax gene produce common and unusual homeotic and other developmental phenotypes.

    PubMed Central

    Breen, T R

    1999-01-01

    trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription. PMID:10224264

  12. Homeotic Genes and the ABCDE Model for Floral Organ Formation in Wheat

    PubMed Central

    Murai, Koji

    2013-01-01

    Floral organ formation has been the subject of intensive study for over 20 years, particularly in the model dicot species Arabidopsis thaliana. These studies have led to the establishment of a general model for the development of floral organs in higher plants, the so-called ABCDE model, in which floral whorl-specific combinations of class A, B, C, D, or E genes specify floral organ identity. In Arabidopsis, class A, B, C, D, E genes encode MADS-box transcription factors except for the class A gene APETALA2. Mutation of these genes induces floral organ homeosis. In this review, I focus on the roles of these homeotic genes in bread wheat (Triticum aestivum), particularly with respect to the ABCDE model. Pistillody, the homeotic transformation of stamens into pistil-like structures, occurs in cytoplasmic substitution (alloplasmic) wheat lines that have the cytoplasm of the related wild species Aegilops crassa. This phenomenon is a valuable tool for analysis of the wheat ABCDE model. Using an alloplasmic line, the wheat ortholog of DROOPING LEAF (TaDL), a member of the YABBY gene family, has been shown to regulate pistil specification. Here, I describe the current understanding of the ABCDE model for floral organ formation in wheat. PMID:27137382

  13. Developmental Robustness by Obligate Interaction of Class B Floral Homeotic Genes and Proteins

    PubMed Central

    Lenser, Thorsten; Theißen, Günter; Dittrich, Peter

    2009-01-01

    DEF-like and GLO-like class B floral homeotic genes encode closely related MADS-domain transcription factors that act as developmental switches involved in specifying the identity of petals and stamens during flower development. Class B gene function requires transcriptional upregulation by an autoregulatory loop that depends on obligate heterodimerization of DEF-like and GLO-like proteins. Because switch-like behavior of gene expression can be displayed by single genes already, the functional relevance of this complex circuitry has remained enigmatic. On the basis of a stochastic in silico model of class B gene and protein interactions, we suggest that obligate heterodimerization of class B floral homeotic proteins is not simply the result of neutral drift but enhanced the robustness of cell-fate organ identity decisions in the presence of stochastic noise. This finding strongly corroborates the view that the appearance of this regulatory mechanism during angiosperm phylogeny led to a canalization of flower development and evolution. PMID:19148269

  14. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.

    PubMed Central

    Jofuku, K D; den Boer, B G; Van Montagu, M; Okamuro, J K

    1994-01-01

    APETALA2 (AP2) plays a central role in the establishment of the floral meristem, the specification of floral organ identity, and the regulation of floral homeotic gene expression in Arabidopsis. We show here that in addition to its functions during flower development, AP2 activity is also required during seed development. We isolated the AP2 gene and found that it encodes a putative nuclear protein that is distinguished by an essential 68-amino acid repeated motif, the AP2 domain. Consistent with its genetic functions, we determined that AP2 is expressed at the RNA level in all four types of floral organs--sepals, petals, stamens, and carpels--and in developing ovules. Thus, AP2 gene transcription does not appear to be spatially restricted by the floral homeotic gene AGAMOUS as predicted by previous studies. We also found that AP2 is expressed at the RNA level in the inflorescence meristem and in nonfloral organs, including leaf and stem. Taken together, our results suggest that AP2 represents a new class of plant regulatory proteins that may play a general role in the control of Arabidopsis development. PMID:7919989

  15. Identification of planarian homeobox sequences indicates the antiquity of most Hox/homeotic gene subclasses.

    PubMed Central

    Balavoine, G; Telford, M J

    1995-01-01

    The homeotic gene complex (HOM-C) is a cluster of genes involved in the anteroposterior axial patterning of animal embryos. It is composed of homeobox genes belonging to the Hox/HOM superclass. Originally discovered in Drosophila, Hox/HOM genes have been identified in organisms as distantly related as arthropods, vertebrates, nematodes, and cnidarians. Data obtained in parallel from the organization of the complex, the domains of gene expression during embryogenesis, and phylogenetic relationships allow the subdivision of the Hox/HOM superclass into five classes (lab, pb/Hox3, Dfd, Antp, and Abd-B) that appeared early during metazoan evolution. We describe a search for homologues of these genes in platyhelminths, triploblast metazoans emerging as an outgroup to the great coelomate ensemble. A degenerate PCR screening for Hox/HOM homeoboxes in three species of triclad planarians has revealed 10 types of Antennapedia-like genes. The homeobox-containing sequences of these PCR fragments allowed the amplification of the homeobox-coding exons for five of these genes in the species Polycelis nigra. A phylogenetic analysis shows that two genes are clear orthologues of Drosophila labial, four others are members of a Dfd/Antp superclass, and a seventh gene, although more difficult to classify with certainty, may be related to the pb/Hox3 class. Together with previously identified Hox/HOM genes in other flatworms, our analyses demonstrate the existence of an elaborate family of Hox/HOM genes in the ancestor of all triploblast animals. Images Fig. 4 PMID:7638172

  16. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    SciTech Connect

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  17. A Cucumber DELLA Homolog CsGAIP May Inhibit Staminate Development through Transcriptional Repression of B Class Floral Homeotic Genes

    PubMed Central

    Zhang, Yan; Liu, Bin; Yang, Sen; An, Jingbo; Chen, Chunhua; Zhang, Xiaolan; Ren, Huazhong

    2014-01-01

    In hermaphroditic Arabidopsis, the phytohormone gibberellin (GA) stimulates stamen development by opposing the DELLA repression of B and C classes of floral homeotic genes. GA can promote male flower formation in cucumber (Cucumis sativus L.), a typical monoecious vegetable with unisexual flowers, and the molecular mechanism remains unknown. Here we characterized a DELLA homolog CsGAIP in cucumber, and we found that CsGAIP is highly expressed in stem and male flower buds. In situ hybridization showed that CsGAIP is greatly enriched in the stamen primordia, especially during the hermaphrodite stage of flower development. Further, CsGAIP protein is located in nucleus. CsGAIP can partially rescue the plant height, stamen development and fertility phenotypes of Arabidopsis rga-24/gai-t6 mutant, and ectopic expression of CsGAIP in wide-type Arabidopsis results in reduced number of stamens and decreased transcription of B class floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI). Our data suggest that monoecious CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes in Arabidopsis. PMID:24632777

  18. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila.

    PubMed

    Ho, Margaret C W; Johnsen, Holly; Goetz, Sara E; Schiller, Benjamin J; Bae, Esther; Tran, Diana A; Shur, Andrey S; Allen, John M; Rau, Christoph; Bender, Welcome; Fisher, William W; Celniker, Susan E; Drewell, Robert A

    2009-11-01

    It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs). How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab) mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.

  19. Ectopic expression of the HAM59 gene causes homeotic transformations of reproductive organs in sunflower (Helianthus annuus L.).

    PubMed

    Shulga, O A; Neskorodov, Ya B; Shchennikova, A V; Gaponenko, A K; Skryabin, K G

    2015-01-01

    The function of the HAM59 MADS-box gene in sunflower (Helianthus annuus L.) was studied to clarify homeotic C activity in the Asteraceae plant family. For the first time, transgenic sunflower plants with a modified pattern of HAM59 expression were obtained. It was shown that the HAM59 MADS-box transcription factor did mediate C activity in sunflower. In particular, it participated in termination of the floral meristem, repression of the cadastral function of A-activity, and together with other C-type sunflower protein HAM45-in the specification of the identity of stamens and pistils.

  20. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants.

    PubMed Central

    Pnueli, L; Hareven, D; Rounsley, S D; Yanofsky, M F; Lifschitz, E

    1994-01-01

    To understand the details of the homeotic systems that govern flower development in tomato and to establish the ground rules for the judicious manipulation of this floral system, we have isolated the tomato AGAMOUS gene, designated TAG1, and examined its developmental role in antisense and sense transgenic plants. The AGAMOUS gene of Arabidopsis is necessary for the proper development of stamens and carpels and the prevention of indeterminate growth of the floral meristem. Early in flower development, TAG1 RNA accumulates uniformly in the cells fated to differentiate into stamens and carpels and later becomes restricted to specific cell types within these organs. Transgenic plants that express TAG1 antisense RNA display homeotic conversion of third whorl stamens into petaloid organs and the replacement of fourth whorl carpels with pseudocarpels bearing indeterminate floral meristems with nested perianth flowers. A complementary phenotype was observed in transgenic plants expressing the TAG1 sense RNA in that first whorl sepals were converted into mature pericarpic leaves and sterile stamens replaced the second whorl petals. PMID:7908549

  1. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions.

    PubMed

    Geuten, Koen; Irish, Vivian

    2010-08-01

    B-class MADS box genes specify petal and stamen identities in several core eudicot species. Members of the Solanaceae possess duplicate copies of these genes, allowing for diversification of function. To examine the changing roles of such duplicate orthologs, we assessed the functions of B-class genes in Nicotiana benthamiana and tomato (Solanum lycopersicum) using virus-induced gene silencing and RNA interference approaches. Loss of function of individual duplicates can have distinct phenotypes, yet complete loss of B-class gene function results in extreme homeotic transformations of petal and stamen identities. We also show that these duplicate gene products have qualitatively different protein-protein interaction capabilities and different regulatory roles. Thus, compensatory changes in B-class MADS box gene duplicate function have occurred in the Solanaceae, in that individual gene roles are distinct, but their combined functions are equivalent. Furthermore, we show that species-specific differences in the stamen regulatory network are associated with differences in the expression of the microRNA miR169. Whereas there is considerable plasticity in individual B-class MADS box transcription factor function, there is overall conservation in the roles of the multimeric MADS box B-class protein complexes, providing robustness in the specification of petal and stamen identities. Such hidden variability in gene function as we observe for individual B-class genes can provide a molecular basis for the evolution of regulatory functions that result in novel morphologies.

  2. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body.

    PubMed Central

    Izpisúa-Belmonte, J C; Falkenstein, H; Dollé, P; Renucci, A; Duboule, D

    1991-01-01

    The cloning, characterization and developmental expression patterns of two novel murine Hox genes, Hox-4.6 and Hox-4.7, are reported. Structural data allow us to classify the four Hox-4 genes located in the most upstream (5') position in the HOX-4 complex as members of a large family of homeogenes related to the Drosophila homeotic gene Abdominal B (AbdB). It therefore appears that these vertebrate genes are derived from a selective amplification of an ancestral gene which gave rise, during evolution, to the most posterior of the insect homeotic genes so far described. In agreement with the structural colinearity, these genes have very posteriorly restricted expression profiles. In addition, their developmental expression is temporally regulated according to a cranio-caudal sequence which parallels the physical ordering of these genes along the chromosome. We discuss the phylogenetic alternative in the evolution of genetic complexity by amplifying either genes or regulatory sequences, as exemplified by this system in the mouse and Drosophila. Furthermore, the possible role of 'temporal colinearity' in the ontogeny of all coelomic (metamerized) metazoans showing a temporal anteroposterior morphogenetic progression is addressed. Images PMID:1676674

  3. Isolation and Functional Analyses of a Putative Floral Homeotic C-Function Gene in a Basal Eudicot London Plane Tree (Platanus acerifolia)

    PubMed Central

    Liu, Guofeng; Bao, Manzhu

    2013-01-01

    The identification of mutants in model plant species has led to the isolation of the floral homeotic function genes that play crucial roles in flower organ specification. However, floral homeotic C-function genes are rarely studied in basal eudicots. Here, we report the isolation and characterization of the AGAMOUS (AG) orthologous gene (PaAG) from a basal eudicot London plane tree (Platanus acerifolia Willd). Phylogenetic analysis showed that PaAG belongs to the C- clade AG group of genes. PaAG was found to be expressed predominantly in the later developmental stages of male and female inflorescences. Ectopic expression of PaAG-1 in tobacco (Nicotiana tabacum) resulted in morphological alterations of the outer two flower whorls, as well as some defects in vegetative growth. Scanning electron micrographs (SEMs) confirmed homeotic sepal-to-carpel transformation in the transgenic plants. Protein interaction assays in yeast cells indicated that PaAG could interact directly with PaAP3 (a B-class MADS-box protein in P. acerifolia), and also PaSEP1 and PaSEP3 (E-class MADS-box proteins in P. acerifolia). This study performed the functional analysis of AG orthologous genes outside core eudicots and monocots. Our findings demonstrate a conserved functional role of AG homolog in London plane tree, which also represent a contribution towards understanding the molecular mechanisms of flower development in this monoecious tree species. PMID:23691041

  4. Detection of a true breeding homeotic gene mutant Pps-1 with partially petaloid sepals in opium poppy (Papaver somniferum L.) and its genetic behavior.

    PubMed

    Dhawan, Om Prakash; Dubey, Mukesh Kumar; Khanuja, Suman Preet Singh

    2007-01-01

    A spontaneous true breeding homeotic gene mutant Pps-1 with distinct partial petaloid sepals was detected in the population of downy mildew (DM)-resistant elite accession I-14 during our studies for the identification of disease resistance sources in opium poppy. The trait was found to be stable and inherited truly in the subsequent generations. Genetic studies were carried out through systematic reciprocal crosses with the parental wild-type genotype I-14, and segregation pattern of phenotypic characteristics in F(1) and F(2) populations clearly indicated single recessive nuclear gene control of the mutant character. The studies have demonstrated that the mutant phenotype is due to mutations at the Pps-1 locus that possibly corresponds to B-class function (according to ABC model) with negative control function. The mutant Pps-1 being single-whorl homeotic mutant might greatly help in providing insight into mechanisms of flower development in opium poppy.

  5. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).

    PubMed

    Kanno, Akira; Saeki, Hiroshi; Kameya, Toshiaki; Saedler, Heinz; Theissen, Günter

    2003-07-01

    In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.

  6. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.

    PubMed Central

    Sommer, H; Beltrán, J P; Huijser, P; Pape, H; Lönnig, W E; Saedler, H; Schwarz-Sommer, Z

    1990-01-01

    Deficiens (defA+) is a homeotic gene involved in the genetic control of Antirrhinum majus flower development. Mutation of this gene (defA-1) causes homeotic transformation of petals into sepals and of stamina into carpels in flowers displaying the 'globifera' phenotype, as shown by cross sections and scanning electronmicroscopy of developing flowers. A cDNA derived from the wild type defA+ gene has been cloned by differential screening of a subtracted 'flower specific' cDNA library. The identity of this cDNA with the defA+ gene product has been confirmed by utilizing the somatic and germinal instability of defA-1 mutants. According to Northern blot analyses the defA+ gene is expressed in flowers but not in leaves, and its expression is nearly constant during all stages of flower development. The 1.1 kb long mRNA has a 681 bp long open reading frame that can code for a putative protein of 227 amino acids (mol. wt 26.2 kd). At its N-terminus the DEF A protein reveals homology to a conserved domain of the regulatory proteins SRF (activating c-fos) in mammals and GRM/PRTF (regulating mating type) in yeast. We discuss the structure and the possible function of the DEF A protein in the control of floral organogenesis. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1968830

  7. Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum

    NASA Technical Reports Server (NTRS)

    Beeman, R. W.; Stuart, J. J.; Brown, S. J.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.

  8. Activation of the Arabidopsis B class homeotic genes by APETALA1.

    PubMed

    Ng, M; Yanofsky, M F

    2001-04-01

    Proper development of petals and stamens in Arabidopsis flowers requires the activities of APETALA3 (AP3) and PISTILLATA (PI), whose transcripts can be detected in the petal and stamen primordia. Localized expression of AP3 and PI requires the activities of at least three genes: APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO). It has been proposed that UFO provides spatial cues and that LFY specifies competence for AP3 and PI expression in the developing flower. To understand the epistatic relationship among AP1, LFY, and UFO in regulating AP3 and PI expression, we generated two versions of AP1 that have strong transcriptional activation potential. Genetic and molecular analyses of transgenic plants expressing these activated AP1 proteins show that the endogenous AP1 protein acts largely as a transcriptional activator in vivo and that AP1 specifies petals by regulating the spatial domains of AP3 and PI expression through UFO. PMID:11283333

  9. Activation of the Arabidopsis B class homeotic genes by APETALA1.

    PubMed

    Ng, M; Yanofsky, M F

    2001-04-01

    Proper development of petals and stamens in Arabidopsis flowers requires the activities of APETALA3 (AP3) and PISTILLATA (PI), whose transcripts can be detected in the petal and stamen primordia. Localized expression of AP3 and PI requires the activities of at least three genes: APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO). It has been proposed that UFO provides spatial cues and that LFY specifies competence for AP3 and PI expression in the developing flower. To understand the epistatic relationship among AP1, LFY, and UFO in regulating AP3 and PI expression, we generated two versions of AP1 that have strong transcriptional activation potential. Genetic and molecular analyses of transgenic plants expressing these activated AP1 proteins show that the endogenous AP1 protein acts largely as a transcriptional activator in vivo and that AP1 specifies petals by regulating the spatial domains of AP3 and PI expression through UFO.

  10. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants.

    PubMed

    Münster, T; Pahnke, J; Di Rosa, A; Kim, J T; Martin, W; Saedler, H; Theissen, G

    1997-03-18

    Flowers sensu lato are short, specialized axes bearing closely aggregated sporophylls. They are typical for seed plants (spermatophytes) and are prominent in flowering plants sensu stricto (angiosperms), where they often comprise an attractive perianth. There is evidence that spermatophytes evolved from gymnosperm-like plants with a fern-like mode of reproduction called progymnosperms. It seems plausible, therefore, that the stamens/carpels and pollen sacs/nucelli of spermatophytes are homologous to fern sporophylls and sporangia, respectively. However, the exact mode and molecular basis of early seed and flower evolution is not yet known. Comparing flower developmental control genes to their homologs from lower plants that do not flower may help to clarify the issue. We have isolated and characterized MADS-box genes expressed in gametophytes and sporophytes of the fern Ceratopteris. The data indicate that at least two different MADS-box genes homologous to floral homeotic genes existed in the last common ancestor of contemporary vascular plants, some descendants of which underwent multiple duplications and diversifications and were recruited into novel developmental networks during the evolution of floral organs.

  11. The tomato floral homeotic protein FBP1-like gene, SlGLO1, plays key roles in petal and stamen development

    PubMed Central

    Guo, Xuhu; Hu, Zongli; Yin, Wencheng; Yu, Xiaohui; Zhu, Zhiguo; Zhang, Jianling; Chen, Guoping

    2016-01-01

    MADS-box transcription factors play important role in plant growth and development, especially floral organ identities. In our study, a MADS-box gene SlGLO1- tomato floral homeotic protein FBP1-like gene was isolated. Its tissue-specific expression profile analysis showed that SlGLO1 was highly expressed in petals and stamens. RNAi (RNA interference) repression of SlGLO1 resulted in floral organ abnormal phenotypes, including green petals with shorter size, and aberrant carpelloid stamens. SlGLO1-silenced lines are male sterile. Total chlorophyll content was increased and chlorophyll biosynthetic genes were significantly up-regulated in SlGLO1-silenced petals and stamens. Furthermore, B-class genes expression analysis indicated that the repressed function of SlGLO1 led to the enhanced expression of TAP3 and the down-regulation of TPI in the petals and stamens, while the expression of TM6 was reduced in petals and increased in stamens and carpels of SlGLO1-RNAi plants. Additionally, pollen grains of transgenic lines were aberrant and failed to germinate and tomato pollen-specific genes were down-regulated by more than 90% in SlGLO1-silenced lines. These results suggest that SlGLO1 plays important role in regulating plant floral organ and pollen development in tomato. PMID:26842499

  12. Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast

    SciTech Connect

    Mastick, G.S.; McKay, R.; Oligino, T.

    1995-01-01

    A method based on the transcriptional activation of a selectable reporter in yeast cells was used to identify genes regulated by the Utrabithorax homeoproteins in Drosophila melanogaster. Fifty-three DNA fragments that can mediate activation by UBX isoform Ia in this test were recovered after screening 15% of the Drosophila genome. Half of these fragments represent single-copy sequences in the genome. Six single-copy fragments were investigated in detail, and each was found to reside near a transcription unit whose expression in the embryo is segmentally modulated as expected for targets of homeotic genes. Four of these putative target genes are expressed in patterns that suggest roles in the development of regional specializations within mesoderm derivatives; in three cases these expression patterns depend on Ultrabithorax function. Extrapolation from this pilot study indicates that 85-170 candidate target genes can be identified by screening the entire Drosophila genome with UBX isoform Ia. With appropriate modifications, this approach should be applicable to other transcriptional regulators in diverse organisms. 69 refs., 9 figs., 2 tabs.

  13. Homeotic function of Drosophila Bithorax-Complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the central nervous system

    PubMed Central

    Garaulet, Daniel L.; Castellanos, Monica; Bejarano, Fernando; Sanfilippo, Piero; Tyler, David M.; Allan, Douglas W.; Sánchez-Herrero, Ernesto; Lai, Eric C.

    2014-01-01

    The Drosophila Bithorax-Complex (BX-C) Hox cluster contains a bidirectionally-transcribed miRNA locus, and a deletion mutant (∆mir) lays no eggs and is completely sterile. We show these miRNAs are expressed and active in distinct spatial registers along the anterior-posterior axis in the central nervous system. ∆mir larvae derepress a network of direct homeobox gene targets in the posterior ventral nerve cord (VNC), including BX-C genes and their TALE cofactors. These are phenotypically critical targets, since sterility of ∆mir mutants was substantially rescued by heterozygosity of these genes. The posterior VNC contains Ilp7+ oviduct motoneurons, whose innervation and morphology are defective in ∆mir females, and substantially rescued by heterozygosity of ∆mir targets, especially within the BX-C. Collectively, we reveal (1) critical roles for Hox miRNAs that determine segment-specific expression of homeotic genes, which are not masked by transcriptional regulation, and (2) that BX-C miRNAs are essential for neural patterning and reproductive behavior. PMID:24909902

  14. spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo.

    PubMed Central

    Kühnlein, R P; Frommer, G; Friedrich, M; Gonzalez-Gaitan, M; Weber, A; Wagner-Bernholz, J F; Gehring, W J; Jäckle, H; Schuh, R

    1994-01-01

    The region specific homeotic gene spalt (sal) of Drosophila melanogaster promotes the specification of terminal pattern elements as opposed to segments in the trunk. Our results show that the previously reported sal transcription unit was misidentified. Based on P-element mediated germ line transformation and DNA sequence analysis of sal mutant alleles, we identified the transcription unit that carries sal function. sal is located close to the misidentified transcription unit, and it is expressed in similar temporal and spatial patterns during embryogenesis. The sal gene encodes a zinc finger protein of novel structure composed of three widely spaced 'double zinc finger' motifs of internally conserved sequences and a single zinc finger motif of different sequence. Antibodies produced against the sal protein show that sal is first expressed at the blastoderm stage and later in restricted areas of the embryonic nervous system as well as in the developing trachea. The antibodies detect sal homologous proteins in corresponding spatial and temporal patterns in the embryos of related insect species. Sequence analysis of the sal gene of Drosophila virilis, a species which is phylogenetically separated by approximately 60 million years, suggests that the sal function is conserved during evolution, consistent with its proposed role in head formation during arthropod evolution. Images PMID:7905822

  15. Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms

    PubMed Central

    Liu, Shujun; Sun, Yonghua; Du, Xiaoqiu; Xu, Qijiang; Wu, Feng; Meng, Zheng

    2013-01-01

    Background and Aims According to the floral ABC model, B-function genes appear to play a key role in the origin and diversification of the perianth during the evolution of angiosperms. The basal angiosperm Hedyosmum orientale (Chloranthaceae) has unisexual inflorescences associated with a seemingly primitive reproductive morphology and a reduced perianth structure in female flowers. The aim of this study was to investigate the nature of the perianth and the evolutionary state of the B-function programme in this species. Methods A series of experiments were conducted to characterize B-gene homologues isolated from H. orientale, including scanning electron microscopy to observe the development of floral organs, phylogenetic analysis to reconstruct gene evolutionary history, reverse transcription–PCR, quantitative real-time PCR and in situ hybridization to identify gene expression patterns, the yeast two-hybrid assay to explore protein dimerization affinities, and transgenic analyses in Arabidopsis thaliana to determine activities of the encoded proteins. Key Results The expression of HoAP3 genes was restricted to stamens, whereas HoPI genes were broadly expressed in all floral organs. HoAP3 was able to partially restore the stamen but not petal identity in Arabidopsis ap3-3 mutants. In contrast, HoPI could rescue aspects of both stamen and petal development in Arabidopsis pi-1 mutants. When the complete C-terminal sequence of HoPI was deleted, however, no or weak transgenic phenotypes were observed and homodimerization capability was completely abolished. Conclusions The results suggest that Hedyosmum AP3-like genes have an ancestral function in specifying male reproductive organs, and that the activity of the encoded PI-like proteins is highly conserved between Hedyosmum and Arabidopsis. Moreover, there is evidence that the C-terminal region is important for the function of HoPI. Our findings indicate that the development of the proposed perianth in Hedyosmum does

  16. Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.

    PubMed

    Teixeira, Rita Teresa; Farbos, Isabelle; Glimelius, Kristina

    2005-06-01

    Homeotic conversions of anthers were found in cytoplasmic male sterile (CMS) plants of Brassica napus derived from somatic hybrids of B. napus and Arabidopsis thaliana. CMS line flowers displayed petals reduced in size and width and stamens replaced by carpelloid structures. In order to investigate when these developmental aberrations appeared, flower development was analysed histologically, ultrastructurally and molecularly. Disorganized cell divisions were detected in the floral meristems of the CMS lines at stage 4. As CMS is associated with mitochondrial aberrations, ultrastructural analysis of the mitochondria in the floral meristems was performed. Two mitochondrial populations were found in the CMS lines. One type had disrupted cristae, while the other resembled mitochondria typical of B. napus. Furthermore, expression patterns of genes expressed in particular floral whorls were determined. In spite of the aberrant development of the third whorl organs, BnAP3 was expressed as in B. napus during the first six stages of development. However, the levels of BnPI were reduced. At later developmental stages, the expression of both BnAP3 and BnPI was strongly reduced. Interestingly the expression levels of genes responsible for AP3 and PI activation such as LFY, UFO and ASK1 were higher in the CMS lines, which indicates that activation of B-genes in the CMS lines does not occur as in B. napus. Disrupted and dysfunctional mitochondria seem to be one of the first aberrations manifested in CMS which result in a retrograde influence of the expression levels of genes responsible for the second and third whorl organ differentiation. PMID:15918886

  17. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    PubMed Central

    Mondragón-Palomino, Mariana; Hiese, Luisa; Härter, Andrea; Koch, Marcus A; Theißen, Günter

    2009-01-01

    Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes) are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection was less stringent in DEF

  18. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.

    PubMed

    Honma, T; Goto, K

    2000-05-01

    PISTILLATA is a B-class floral organ identity gene required for the normal development of petals and stamens in Arabidopsis. PISTILLATA expression is induced in the stage 3 flowers (early expression) and is maintained until anthesis (late expression). To explore in more detail the developmentally regulated gene expression of PISTILLATA, we have analyzed the PISTILLATA promoter using uidA (beta)-glucuronidase gene) fusion constructs (PI::GUS) in transgenic Arabidopsis. Promoter deletion analyses suggest that early PISTILLATA expression is mediated by the distal region and that late expression is mediated by the proximal region. Based on the PI::GUS expression patterns in the loss- and gain-of-function alleles of meristem or organ identity genes, we have shown that LEAFY and UNUSUAL FLORAL ORGANS induce PISTILLATA expression in a flower-independent manner via a distal promoter, and that PISTILLATA and APETALA3 maintain PISTILLATA expression (autoregulation) in the later stages of flower development via a proximal promoter. In addition, we have demonstrated that de novo protein synthesis is required for the PISTILLATA autoregulatory circuit. PMID:10769227

  19. The product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity.

    PubMed Central

    Denisenko, O N; Bomsztyk, K

    1997-01-01

    The heterogeneous nuclear ribonucleoprotein K protein represents a novel class of proteins that may act as docking platforms that orchestrate cross-talk among molecules involved in signal transduction and gene expression. Using a fragment of K protein as bait in the yeast two-hybrid screen, we isolated a cDNA that encodes a protein whose primary structure has extensive similarity to the Drosophila melanogaster extra sex combs (esc) gene product, Esc, a putative silencer of homeotic genes. The cDNA that we isolated is identical to the cDNA of the recently positionally cloned mouse embryonic ectoderm development gene, eed. Like Esc, Eed contains six WD-40 repeats in the C-terminal half of the protein and is thought to repress homeotic gene expression during mouse embryogenesis. Eed binds to K protein through a domain in its N terminus, but interestingly, this domain is not found in the Drosophila Esc. Gal4-Eed fusion protein represses transcription of a reporter gene driven by a promoter that contains Gal4-binding DNA elements. Eed also represses transcription when recruited to a target promoter by Gal4-K protein. Point mutations within the eed gene that are responsible for severe embryonic development abnormalities abolished the transcriptional repressor activity of Eed. Results of this study suggest that Eed-restricted homeotic gene expression during embryogenesis reflects the action of Eed as a transcriptional repressor. The Eed-mediated transcriptional effects are likely to reflect the interaction of Eed with multiple molecular partners, including K protein. PMID:9234727

  20. Temperature sex reversal implies sex gene dosage in a reptile.

    PubMed

    Quinn, Alexander E; Georges, Arthur; Sarre, Stephen D; Guarino, Fiorenzo; Ezaz, Tariq; Graves, Jennifer A Marshall

    2007-04-20

    Sex in reptiles is determined by genes on sex chromosomes or by incubation temperature. Previously these two modes were thought to be distinct, yet we show that high incubation temperatures reverse genotypic males (ZZ) to phenotypic females in a lizard with ZZ and ZW sex chromosomes. Thus, the W chromosome is not necessary for female differentiation. Sex determination is probably via a dosage-sensitive male-determining gene on the Z chromosome that is inactivated by extreme temperatures. Our data invite a novel hypothesis for the evolution of temperature-dependent sex determination (TSD) and suggest that sex chromosomes may exist in many TSD reptiles.

  1. Comparative analysis of leg and antenna development in wild-type and homeotic Drosophila melanogaster.

    PubMed

    Cummins, Mark; Pueyo, Jose I; Greig, Steve A; Couso, Juan Pablo

    2003-07-01

    The insect leg and antenna are thought to be homologous structures, evolved from a common ancestral appendage. The homeotic transformations of antenna to leg in Drosophila produced by mutation of the Hox gene Antennapedia are position-specific, such that every particular antenna structure is transformed into a specific leg counterpart. This has been taken to suggest that the developmental programmes of these two appendages are still similar. In particular, the mechanisms for the specification of a cell's position within the appendage would be identical, only their interpretation would be different and subject to homeotic gene control. Here we explore the degree of conservation between the developmental programmes of leg and antenna in Drosophila and other dipterans, in wild-type and homeotic conditions. Most of the appendage pattern-forming genes are active in both appendages, and their expression domains are partially conserved. However, the regulatory relationships and interactions between these genes are different, and in fact cells change their expression while undergoing homeotic transformation. Thus, the positional information, and the mechanisms which generate it, are not strictly conserved between leg and antenna; and homeotic genes alter the establishment of positional clues, not only their interpretation. The partial conservation of pattern-forming genes in both appendages ensures a predictable re-specification of positional clues, producing the observed positional specificity of homeotic transformations.

  2. Sex determination in the monoecious species cucumber is confined to specific floral whorls.

    PubMed

    Kater, M M; Franken, J; Carney, K J; Colombo, L; Angenent, G C

    2001-03-01

    In unisexual flowers, sex is determined by the selective repression of growth or the abortion of either male or female reproductive organs. The mechanism by which this process is controlled in plants is still poorly understood. Because it is known that the identity of reproductive organs in plants is controlled by homeotic genes belonging to the MADS box gene family, we analyzed floral homeotic mutants from cucumber, a species that bears both male and female flowers on the same individual. To study the characteristics of sex determination in more detail, we produced mutants similar to class A and C homeotic mutants from well-characterized hermaphrodite species such as Arabidopsis by ectopically expressing and suppressing the cucumber gene CUCUMBER MADS1 (CUM1). The cucumber mutant green petals (gp) corresponds to the previously characterized B mutants from several species and appeared to be caused by a deletion of 15 amino acid residues in the coding region of the class B MADS box gene CUM26. These homeotic mutants reveal two important concepts that govern sex determination in cucumber. First, the arrest of either male or female organ development is dependent on their positions in the flower and is not associated with their sexual identity. Second, the data presented here strongly suggest that the class C homeotic function is required for the position-dependent arrest of reproductive organs.

  3. Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls

    PubMed Central

    Kater, Martin M.; Franken, John; Carney, Kim J.; Colombo, Lucia; Angenent, Gerco C.

    2001-01-01

    In unisexual flowers, sex is determined by the selective repression of growth or the abortion of either male or female reproductive organs. The mechanism by which this process is controlled in plants is still poorly understood. Because it is known that the identity of reproductive organs in plants is controlled by homeotic genes belonging to the MADS box gene family, we analyzed floral homeotic mutants from cucumber, a species that bears both male and female flowers on the same individual. To study the characteristics of sex determination in more detail, we produced mutants similar to class A and C homeotic mutants from well-characterized hermaphrodite species such as Arabidopsis by ectopically expressing and suppressing the cucumber gene CUCUMBER MADS1 (CUM1). The cucumber mutant green petals (gp) corresponds to the previously characterized B mutants from several species and appeared to be caused by a deletion of 15 amino acid residues in the coding region of the class B MADS box gene CUM26. These homeotic mutants reveal two important concepts that govern sex determination in cucumber. First, the arrest of either male or female organ development is dependent on their positions in the flower and is not associated with their sexual identity. Second, the data presented here strongly suggest that the class C homeotic function is required for the position-dependent arrest of reproductive organs. PMID:11251091

  4. A deficiency of the homeotic complex of the beetle Tribolium

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).

  5. Characterization of Sex Determination and Sex Differentiation Genes in Latimeria

    PubMed Central

    Forconi, Mariko; Canapa, Adriana; Barucca, Marco; Biscotti, Maria A.; Capriglione, Teresa; Buonocore, Francesco; Fausto, Anna M.; Makapedua, Daisy M.; Pallavicini, Alberto; Gerdol, Marco; De Moro, Gianluca; Scapigliati, Giuseppe

    2013-01-01

    Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique “living fossils”, could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development. PMID:23634199

  6. Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins

    PubMed Central

    Filler, Aaron G.

    2007-01-01

    Background Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale. Methodology/Principal Findings This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)–quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)–frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)–duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)–emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)–inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems. Conclusion/Significance Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new “hominiform” clade and suggests a homeotic

  7. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella).

    PubMed

    Huang, Yuping; Chen, Yazhou; Zeng, Baosheng; Wang, Yajun; James, Anthony A; Gurr, Geoff M; Yang, Guang; Lin, Xijian; Huang, Yongping; You, Minsheng

    2016-08-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide agricultural pest that has developed resistance to multiple classes of insecticides. Genetics-based approaches show promise as alternative pest management approaches but require functional studies to identify suitable gene targets. Here we use the CRISPR/Cas9 system to target a gene, abdominal-A, which has an important role in determining the identity and functionality of abdominal segments. We report that P. xylostella abdominal-A (Pxabd-A) has two structurally-similar splice isoforms (A and B) that differ only in the length of exon II, with 15 additional nucleotides in isoform A. Pxabd-A transcripts were detected in all developmental stages, and particularly in pupae and adults. CRISPR/Cas9-based mutagenesis of Pxabd-A exon I produced 91% chimeric mutants following injection of 448 eggs. Phenotypes with abnormal prolegs and malformed segments were visible in hatched larvae and unhatched embryos, and various defects were inherited by the next generation (G1). Genotyping of mutants demonstrated several mutations at the Pxabd-A genomic locus. The results indicate that a series of insertions and deletions were induced in the Pxabd-A locus, not only in G0 survivors but also in G1 individuals, and this provides a foundation for genome editing. Our study demonstrates the utility of the CRISPR/Cas9 system for targeting genes in an agricultural pest and therefore provides a foundation the development of novel pest management tools. PMID:27318252

  8. Sex chromosomes and sex-determining genes: insights from marsupials and monotremes.

    PubMed

    Pask, A; Graves, J A

    1999-06-01

    Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate genes in different vertebrate groups has been crucial to our understanding of their function and positioning in a conserved vertebrate sex-determining pathway. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.

  9. [Elucidation of key genes in sex determination in genetics teaching].

    PubMed

    Li, Meng; He, Zhumei

    2014-06-01

    Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.

  10. Sex chromosomes and sex-determining genes: insights from marsupials and monotremes.

    PubMed

    Pask, A; Graves, J A

    2001-01-01

    Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate sex determining genes in marsupials and monotremes has been crucial to our understanding of their function and positioning in a conserved mammalian sex-determining pathway, as well as their evolution. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.

  11. Sex-Specific Selection and Sex-Biased Gene Expression in Humans and Flies

    PubMed Central

    Kirkpatrick, Mark

    2016-01-01

    Sexual dimorphism results from sex-biased gene expression, which evolves when selection acts differently on males and females. While there is an intimate connection between sex-biased gene expression and sex-specific selection, few empirical studies have studied this relationship directly. Here we compare the two on a genome-wide scale in humans and flies. We find a distinctive “Twin Peaks” pattern in humans that relates the strength of sex-specific selection, quantified by genetic divergence between male and female adults at autosomal loci, to the degree of sex-biased expression. Genes with intermediate degrees of sex-biased expression show evidence of ongoing sex-specific selection, while genes with either little or completely sex-biased expression do not. This pattern apparently results from differential viability selection in males and females acting in the current generation. The Twin Peaks pattern is also found in Drosophila using a different measure of sex-specific selection acting on fertility. We develop a simple model that successfully recapitulates the Twin Peaks. Our results suggest that many genes with intermediate sex-biased expression experience ongoing sex-specific selection in humans and flies. PMID:27658217

  12. Multiple interactions amongst floral homeotic MADS box proteins.

    PubMed Central

    Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H

    1996-01-01

    Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961

  13. Vertebrate sex-determining genes play musical chairs.

    PubMed

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. PMID:27291506

  14. Sex as a response to oxidative stress: stress genes co-opted for sex.

    PubMed

    Nedelcu, Aurora M

    2005-09-22

    Despite a great deal of interest, the evolutionary origins and roles of sex remain unclear. Recently, we showed that in the multicellular green alga, Volvox carteri, sex is a response to increased levels of reactive oxygen species (ROS), which could be indicative of the ancestral role of sex as an adaptive response to stress-induced ROS. To provide additional support for the suggestion that sex evolved as a response to oxidative stress, this study addresses the hypothesis that genes involved in sexual induction are evolutionarily related to genes associated with various stress responses. In particular, this study investigates the evolutionary history of genes specific to the sexual induction process in V. carteri--including those encoding the sexual inducer (SI) and several SI-induced extracellular matrix (ECM) proteins. Surprisingly, (i) a highly diversified multigene family with similarity to the V. carteri SI and SI-induced pherophorin family is present in its unicellular relative, Chlamydomonas reinhardtii (which lacks both a SI and an ECM) and (ii) at least half of the 12 identified gene members are induced (as inferred from reported expressed sequence tags) under various stress conditions. These findings suggest an evolutionary connection between sex and stress at the gene level, via duplication and/or co-option.

  15. Sex-dependent gene regulatory networks of the heart rhythm

    PubMed Central

    Iacobas, S.; Thomas, N.; Spray, D. C.

    2010-01-01

    Expression level, control, and intercoordination of 66 selected heart rhythm determinant (HRD) genes were compared in atria and ventricles of four male and four female adult mice. We found that genes encoding various adrenergic receptors, ankyrins, ion channels and transporters, connexins, cadherins, plakophilins, and other components of the intercalated discs form a complex network that is chamber dependent and differs between the two sexes. In addition, most HRD genes in atria had higher expression in males than in females, while in ventricles, expression levels were mostly higher in females than in males. Moreover, significant chamber differences were observed between the sexes, with higher expression in atria than ventricles for males and higher expression in ventricles than atria for females. We have ranked the selected genes according to their prominence (new concept) within the HRD gene web defined as extent of expression coordination with the other web genes and stability of expression. Interestingly, the prominence hierarchy was substantially different between the two sexes. Taken together, these findings indicate that the organizational principles of the heart rhythm transcriptome are sex dependent, with the newly introduced prominence analysis allowing identification of genes that are pivotal for the sexual dichotomy. PMID:19756788

  16. Breaking evolutionary and pleiotropic constraints in mammals: On sloths, manatees and homeotic mutations

    PubMed Central

    2011-01-01

    Background Mammals as a rule have seven cervical vertebrae, except for sloths and manatees. Bateson proposed that the change in the number of cervical vertebrae in sloths is due to homeotic transformations. A recent hypothesis proposes that the number of cervical vertebrae in sloths is unchanged and that instead the derived pattern is due to abnormal primaxial/abaxial patterning. Results We test the detailed predictions derived from both hypotheses for the skeletal patterns in sloths and manatees for both hypotheses. We find strong support for Bateson's homeosis hypothesis. The observed vertebral and rib patterns cannot be explained by changes in primaxial/abaxial patterning. Vertebral patterns in sloths and manatees are similar to those in mice and humans with abnormal numbers of cervical vertebrae: incomplete and asymmetric homeotic transformations are common and associated with skeletal abnormalities. In sloths the homeotic vertebral shift involves a large part of the vertebral column. As such, similarity is greatest with mice mutant for genes upstream of Hox. Conclusions We found no skeletal abnormalities in specimens of sister taxa with a normal number of cervical vertebrae. However, we always found such abnormalities in conspecifics with an abnormal number, as in many of the investigated dugongs. These findings strongly support the hypothesis that the evolutionary constraints on changes of the number of cervical vertebrae in mammals is due to deleterious pleitropic effects. We hypothesize that in sloths and manatees low metabolic and activity rates severely reduce the usual stabilizing selection, allowing the breaking of the pleiotropic constraints. This probably also applies to dugongs, although to a lesser extent. PMID:21548920

  17. Novel sex-determining genes in fish and sex chromosome evolution.

    PubMed

    Kikuchi, Kiyoshi; Hamaguchi, Satoshi

    2013-04-01

    Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes.

  18. Identification of the sex genes in an early diverged fungus.

    PubMed

    Idnurm, Alexander; Walton, Felicia J; Floyd, Anna; Heitman, Joseph

    2008-01-10

    Sex determination in fungi is controlled by a small, specialized region of the genome in contrast to the large sex-specific chromosomes of animals and some plants. Different gene combinations reside at these mating-type (MAT) loci and confer sexual identity; invariably they encode homeodomain, alpha-box, or high mobility group (HMG)-domain transcription factors. So far, MAT loci have been characterized from a single monophyletic clade of fungi, the Dikarya (the ascomycetes and basidiomycetes), and the ancestral state and evolutionary history of these loci have remained a mystery. Mating in the basal members of the kingdom has been less well studied, and even their precise taxonomic inter-relationships are still obscure. Here we apply bioinformatic and genetic mapping to identify the sex-determining (sex) region in Phycomyces blakesleeanus (Zygomycota), which represents an early branch within the fungi. Each sex allele contains a single gene that encodes an HMG-domain protein, implicating the HMG-domain proteins as an earlier form of fungal MAT loci. Additionally, one allele also contains a copy of a unique, chromosome-specific repetitive element, suggesting a generalized mechanism for the earliest steps in the evolution of sex determination and sex chromosome structure in eukaryotes.

  19. Molecular evolution of sex-biased genes in Drosophila.

    PubMed

    Zhang, Zhi; Hambuch, Tina M; Parsch, John

    2004-11-01

    Studies of morphology, interspecific hybridization, protein/DNA sequences, and levels of gene expression have suggested that sex-related characters (particularly those involved in male reproduction) evolve rapidly relative to non-sex-related characters. Here we report a general comparison of evolutionary rates of sex-biased genes using data from cDNA microarray experiments and comparative genomic studies of Drosophila. Comparisons of nonsynonymous/synonymous substitution rates (d(N)/d(S)) between species of the D. melanogaster subgroup revealed that genes with male-biased expression had significantly faster rates of evolution than genes with female-biased or unbiased expression. The difference was caused primarily by a higher d(N) in the male-biased genes. The same pattern was observed for comparisons among more distantly related species. In comparisons between D. melanogaster and D. pseudoobscura, genes with highly biased male expression were significantly more divergent than genes with highly biased female expression. In many cases, orthologs of D. melanogaster male-biased genes could not be identified in D. pseudoobscura through a Blast search. In contrast to the male-biased genes, there was no clear evidence for accelerated rates of evolution in female-biased genes, and most comparisons indicated a reduced rate of evolution in female-biased genes relative to unbiased genes. Male-biased genes did not show an increased ratio of nonsynonymous/synonymous polymorphism within D. melanogaster, and comparisons of polymorphism/divergence ratios suggest that the rapid evolution of male-biased genes is caused by positive selection.

  20. Sex steroid-related candidate genes in psychiatric disorders.

    PubMed

    Westberg, Lars; Eriksson, Elias

    2008-07-01

    Sex steroids readily pass the blood-brain barrier, and receptors for them are abundant in brain areas important for the regulation of emotions, cognition and behaviour. Animal experiments have revealed both important early effects of these hormones on brain development and their ongoing influence on brain morphology and neurotransmission in the adult organism. The important effects of sex steroids on human behaviour are illustrated by, for example, the effect of reduced levels of these hormones on sexual drive and conditions such as premenstrual dysphoric disorder, perimenopausal dysphoria, postpartum depression, postpartum psychosis, dysphoria induced by oral contraceptives or hormonal replacement therapy and anabolic steroid-induced aggression. The fact that men and women (as groups) differ with respect to the prevalence of several psychiatric disorders, certain aspects of cognitive function and certain personality traits may possibly also reflect an influence of sex steroids on human behaviour. The heritability of most behavioural traits, including personality, cognitive abilities and susceptibility to psychiatric illness, is considerable, but as yet, only few genes of definite importance in this context have been identified. Given the important role of sex steroids for brain function, it is unfortunate that relatively few studies so far have addressed the possible influence of sex steroid-related genes on interindividual differences with respect to personality, cognition and susceptibility to psychiatric disorders. To facilitate further research in this area, this review provides information on several such genes and summarizes what is currently known with respect to their possible influence on brain function.

  1. Point Mutations within and outside the Homeodomain Identify Sequences Required for Proboscipedia Homeotic Function in Drosophila

    PubMed Central

    Benassayag, C.; Boube, M.; Seroude, L.; Cribbs, D. L.

    1997-01-01

    The Drosophila homeotic gene proboscipedia (pb) encodes a homeodomain protein homologous to vertebrate HoxA2/B2 required for adult mouthparts formation. A transgenic Hsp70-pb (HSPB) element that rescues pb mutations also induces the dominant transformation of antennae to maxillary palps. To identify sequences essential to PB protein function, we screened for EMS-induced HSPB mutations leading to phenotypic reversion of the HSPB transformation. Ten revertants harbor identified point mutations in HSPB coding sequences. The point mutations that remove all detectable phenotypes in vivo reside either within the homeodomain or, more unexpectedly, in evolutionarily nonconserved regions outside the homeodomain. Two independent homeodomain mutations that change the highly conserved Arginine-5 in the N-terminal hinge show effects on adult eye development, suggesting a previously unsuspected role for Arg5 in functional specificity. Three additional revertant mutations outside the homeodomain reduce but do not abolish PB(+) activity, identifying protein elements that contribute quantitatively to pb function. This in vivo analysis shows that apart from the conserved motifs of PB, other elements throughout the protein make important contributions to homeotic function. PMID:9215898

  2. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    PubMed Central

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  3. Sex-biased expression of sex-differentiating genes FOXL2 and FGF9 in American alligators, Alligator mississippiensis

    PubMed Central

    Janes, Daniel E.; Elsey, Ruth M.; Langan, Esther M.; Valenzuela, Nicole; Edwards, Scott V.

    2013-01-01

    Across amniotes, sex-determining mechanisms exhibit great variation yet the genes that govern sexual differentiation are largely conserved. Studies of evolution of sex-determining and sex-differentiating genes require an exhaustive characterization of functions of those genes such as FOXL2 and FGF9. FOXL2 is associated with ovarian development and FGF9 is known to play a role in testicular organogenesis in mammals and other amniotes. As a step toward characterization of the evolutionary history of sexual development, we measured expression of FOXL2 and FGF9 across three developmental stages and eight juvenile tissue types in male and female American alligators, Alligator mississippiensis. We report surprisingly high expression of FOXL2 before the stage of embryonic development when sex is determined in response to temperature and sustained and variable expression of FGF9 in juvenile male but not female tissue types. Novel characterization of gene expression in reptiles with temperature-dependent sex determination such as American alligators may inform the evolution of sex-determining and sex-differentiating gene networks as they suggest alternative functions from which the genes may have been exapted. Future functional profiling of sex-differentiating genes should similarly follow other genes and other species to enable a broad comparison across sex-determining mechanisms. PMID:23689672

  4. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

    PubMed

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-09-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.

  5. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

    PubMed

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-09-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  6. SEX LINKAGE, SEX-SPECIFIC SELECTION, AND THE ROLE OF RECOMBINATION IN THE EVOLUTION OF SEXUALLY DIMORPHIC GENE EXPRESSION

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2010-01-01

    Sex-biased genes -- genes that are differentially expressed within males and females -- are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. While sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. PMID:20874735

  7. Gene-sex interactions in schizophrenia: focus on dopamine neurotransmission

    PubMed Central

    Godar, Sean C.; Bortolato, Marco

    2014-01-01

    Schizophrenia is a severe mental disorder, with a highly complex and heterogenous clinical presentation. Our current perspectives posit that the pathogenic mechanisms of this illness lie in complex arrays of gene × environment interactions. Furthermore, several findings indicate that males have a higher susceptibility for schizophrenia, with earlier age of onset and overall poorer clinical prognosis. Based on these premises, several authors have recently begun exploring the possibility that the greater schizophrenia vulnerability in males may reflect specific gene × sex (G×S) interactions. Our knowledge on such G×S interactions in schizophrenia is still rudimentary; nevertheless, the bulk of preclinical evidence suggests that the molecular mechanisms for such interactions are likely contributed by the neurobiological effects of sex steroids on dopamine (DA) neurotransmission. Accordingly, several recent studies suggest a gender-specific association of certain DAergic genes with schizophrenia. These G×S interactions have been particularly documented for catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), the main enzymes catalyzing DA metabolism. In the present review, we will outline the current evidence on the interactions of DA-related genes and sex-related factors, and discuss the potential molecular substrates that may mediate their cooperative actions in schizophrenia pathogenesis. PMID:24639636

  8. Sex-linked dosage-sensitive modifiers as imprinting genes.

    PubMed

    Sapienza, C

    1990-01-01

    It is proposed that differential genome imprinting is the result of dosage-sensitive modifier genes located on the sex chromosomes. Parallels between variegating position-effects in Drosophila, the phenotype elicited by transgenes in the mouse and data from several pediatric tumors indicate that the net result of the activity of such modifier genes is often cellular mosaicism in the expression of affected alleles. The mechanism by which inactivation of affected alleles is achieved is proposed to be through the formation of heterochromatic domains. Because the relevant sex-linked modifying loci are dosage sensitive in their activity, differential imprinting will occur even within homogeneous genetic backgrounds. The presence of allelic variants at these loci in non-inbred populations will give rise to variation in the observed expressivity and mode of inheritance of affected traits.

  9. Tissue Specificity and Sex-Specific Regulatory Variation Permit the Evolution of Sex-Biased Gene Expression.

    PubMed

    Dean, Rebecca; Mank, Judith E

    2016-09-01

    Genetic correlations between males and females are often thought to constrain the evolution of sexual dimorphism. However, sexually dimorphic traits and the underlying sexually dimorphic gene expression patterns are often rapidly evolving. We explore this apparent paradox by measuring the genetic correlation in gene expression between males and females (Cmf) across broad evolutionary timescales, using two RNA-sequencing data sets spanning multiple populations and multiple species. We find that unbiased genes have higher Cmf than sex-biased genes, consistent with intersexual genetic correlations constraining the evolution of sexual dimorphism. However, we found that highly sex-biased genes (both male and female biased) also had higher tissue specificity, and unbiased genes had greater expression breadth, suggesting that pleiotropy may constrain the breakdown of intersexual genetic correlations. Finally, we show that genes with high Cmf showed some degree of sex-specific changes in gene expression in males and females. Together, our results suggest that genetic correlations between males and females may be less important in constraining the evolution of sex-biased gene expression than pleiotropy. Sex-specific regulatory variation and tissue specificity may resolve the paradox of widespread sex bias within a largely shared genome.

  10. Progress Report for DOE DE-FG03-98ER20317 ''Regulation of the floral homeotic gene AGAMOUS'' Current and Final Funding Period: September 1, 2002, to December 31, 2002

    SciTech Connect

    Weigel, D.

    2003-03-11

    OAK-B135 Results obtained during this funding period: (1) Phylogenetic footprinting of AG regulatory sequences Sequences necessary and sufficient for AGAMOUS (AG) expression in the center of Arabidopsis flowers are located in the second intron, which is about 3 kb in size. This intron contains binding sites for two transcription factors, LEAFY (LFY) and WUSCHEL (WUS), which are direct activators of AG. We used the new method of phylogenetic shadowing to identify new regulatory elements. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. (2) Repression of AG by MADS box genes A candidate for repressing AG in the shoot apical meristem has been the MADS box gene FUL, since it is expressed in the shoot apical meristem and since an activated version (FUL:VP16) leads to ectopic AG expression in the shoot apical meristem. However, there is no ectopic AG expression in full single mutants. We therefore started to generate VP16 fusions of several other MADS box genes expressed in the shoot apical meristem, to determine which of these might be candidates for FUL redundant genes. We found that AGL6:VP16 has a similar phenotype as FUL:VP16, suggesting that AGL6 and FUL interact. We are now testing this hypothesis. (3) Two candidate AG regulators, WOW and ULA Because the phylogenetic footprinting project has identified several new candidate regulatory motifs, of which at least one (the CCAATCA motif) has rather strong effects, we had decided to put the analysis of WOW and ULA on hold, and to focus on using the newly identified motifs as tools. We conduct ed yeast one-hybrid screen with two of the conserved motifs, and identified several classes of transcription factors that can interact with them. One of these is encoded by the PAN gene

  11. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    PubMed

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  12. Association testing to detect gene-gene interactions on sex chromosomes in trio data.

    PubMed

    Lee, Yeonok; Ghosh, Debashis; Zhang, Yu

    2013-01-01

    Autism Spectrum Disorder (ASD) occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to the X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  13. Disorders of sex development: new genes, new concepts.

    PubMed

    Ono, Makoto; Harley, Vincent R

    2013-02-01

    Formerly known as 'intersex' conditions, disorders of sex development (DSDs) are congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. A complete revision of the nomenclature and classification of DSDs has been undertaken, which emphasizes the genetic aetiology of these disorders and discards pejorative terms. Uptake of the new terminology is widespread. DSDs affecting gonadal development are perhaps the least well understood. Unravelling the molecular mechanisms underlying gonadal development has revealed new causes of DSDs, although a specific molecular diagnosis is made in only ∼20% of patients. Conversely, identification of the molecular causes of DSDs has provided insight into the mechanisms of gonadal development. Studies of N-ethyl-N-nitrosourea mutagenesis in the mouse, and multigene diagnostic screening and genome-wide approaches, such as array-comparative genomic hybridization and next-generation sequencing, in patients with DSDs are accelerating the discovery of genes involved in gonadal development and DSDs. Furthermore, long-range gene regulatory mutations and multiple gene mutations are emerging as new causes of DSDs. Patients with DSDs, their parents and medical staff are confronted with challenging decisions regarding gender assignment, genital surgery and lifelong care. These advances are refining prognostic prediction and systematically improving the diagnosis and long-term management of children with DSDs.

  14. Male-biased genes are overrepresented among novel Drosophila pseudoobscura sex-biased genes

    PubMed Central

    2008-01-01

    Background The origin of functional innovation is among the key questions in biology. Recently, it has been shown that new genes could arise from non-coding DNA and that such novel genes are often involved in male reproduction. Results With the aim of identifying novel genes, we used the technique "generation of longer cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI)" to extend 84 sex-biased 3'end SAGE tags that previously could not be mapped to the D. pseudoobscura transcriptome. Eleven male-biased and 33 female-biased GLGI fragments were obtained, of which 5 male-biased and 3 female-biased tags corresponded to putatively novel genes. This excess of novel genes with a male-biased gene expression pattern is consistent with previous results, which found novel genes to be primarily expressed in male reproductive tissues. 5' RACE analysis indicated that these novel transcripts are very short in length and could contain introns. Interspecies comparisons revealed that most novel transcripts show evidence for purifying selection. Conclusion Overall, our data indicate that among sex-biased genes a considerable number of novel genes (~2–4%) exist in D. pseudoobscura, which could not be predicted based on D. melanogaster gene models. PMID:18577217

  15. Conserved meiotic genes point to sex in the choanoflagellates.

    PubMed

    Carr, Martin; Leadbeater, Barry S C; Baldauf, Sandra L

    2010-01-01

    The choanoflagellates are a widespread group of heterotrophic aquatic nanoflagellates, which have recently been confirmed as the sister-group to Metazoa. Asexual reproduction is the only mode of cell division that has been observed within the group; at present the range of reproductive modes, as well as the ploidy level, within choanoflagellates are unknown. The recent discovery of long terminal repeat retrotransposons within the genome of Monosiga brevicollis suggests that this species also has sexual stages in its life cycle because asexual organisms cannot tolerate retrotransposons due to the rapid accumulation of deleterious mutations caused by their transposition. We screened the M. brevicollis genome for known eukaryotic meiotic genes, using a recently established "meiosis detection toolkit" of 19 genes. Eighteen of these genes were identified, none of which appears to be a pseudogene. Four of the genes were also identified in expressed sequence tag data from the distantly related Monosiga ovata. The presence of these meiosis-specific genes provides evidence for meiosis, and by implication sex, within this important group of protists.

  16. B-Function Expression in the Flower Center Underlies the Homeotic Phenotype of Lacandonia schismatica (Triuridaceae)[C][W][OA

    PubMed Central

    Álvarez-Buylla, Elena R.; Ambrose, Barbara A.; Flores-Sandoval, Eduardo; Englund, Marie; Garay-Arroyo, Adriana; García-Ponce, Berenice; de la Torre-Bárcena, Eduardo; Espinosa-Matías, Silvia; Martínez, Esteban; Piñeyro-Nelson, Alma; Engström, Peter; Meyerowitz, Elliot M.

    2010-01-01

    Spontaneous homeotic transformations have been described in natural populations of both plants and animals, but little is known about the molecular-genetic mechanisms underlying these processes in plants. In the ABC model of floral organ identity in Arabidopsis thaliana, the B- and C-functions are necessary for stamen morphogenesis, and C alone is required for carpel identity. We provide ABC model-based molecular-genetic evidence that explains the unique inside-out homeotic floral organ arrangement of the monocotyledonous mycoheterotroph species Lacandonia schismatica (Triuridaceae) from Mexico. Whereas a quarter million flowering plant species bear central carpels surrounded by stamens, L. schismatica stamens occur in the center of the flower and are surrounded by carpels. The simplest explanation for this is that the B-function is displaced toward the flower center. Our analyses of the spatio-temporal pattern of B- and C-function gene expression are consistent with this hypothesis. The hypothesis is further supported by conservation between the B-function genes of L. schismatica and Arabidopsis, as the former are able to rescue stamens in Arabidopsis transgenic complementation lines, and Ls-AP3 and Ls-PI are able to interact with each other and with the corresponding Arabidopsis B-function proteins in yeast. Thus, relatively simple molecular modifications may underlie important morphological shifts in natural populations of extant plant taxa. PMID:21119062

  17. corto genetically interacts with Pc-G and trx-G genes and maintains the anterior boundary of Ultrabithorax expression in Drosophila larvae.

    PubMed

    Lopez, A; Higuet, D; Rosset, R; Deutsch, J; Peronnet, F

    2001-12-01

    In Drosophila melanogaster, segment identity is determined by specific expression of homeotic genes (Hox). The Hox expression pattern is first initiated by gap and pair-rule genes and then maintained by genes of the Polycomb-group (Pc-G) and the trithorax-group (trx-G). The corto gene is a putative regulator of the Hox genes since mutants exhibit homeotic transformations. We show here that, in addition to previously reported genetic interactions with the Pc-G genes Enhancer of zeste, Polycomb and polyhomeotic, mutations in corto enhance the extra-sex-comb phenotype of multi sex combs, Polycomb-like and Sex combs on midleg. corto also genetically interacts with a number of trx-G genes (ash1, kismet, kohtalo, moira, osa, Trithorax-like and Vha55). The interactions with genes of the trx-G lead to phenotypes displayed in the wing, in the postpronotum or in the thoracic mechanosensory bristles. In addition, we analyzed the regulation of the Hox gene Ultrabithorax (Ubx) in corto mutants. Our results provide evidence that corto maintains the anterior border of Ubx expression in third-instar larvae. We suggest that this regulation is accomplished through an interaction with the products of the Pc-G and trx-G genes.

  18. Nuclear genes with sex bias in Ruditapes philippinarum (Bivalvia, veneridae): Mitochondrial inheritance and sex determination in DUI species.

    PubMed

    Milani, Liliana; Ghiselli, Fabrizio; Nuzhdin, Sergey V; Passamonti, Marco

    2013-11-01

    Mitochondria are inherited maternally in most metazoans, but in bivalves with Doubly Uniparental Inheritance (DUI) a mitochondrial lineage is transmitted through eggs (F-type), and another through sperm (M-type). In DUI species, a sex-ratio distortion of the progeny was observed: some females produce a female-biased offspring (female-biased family), others a male-biased progeny (male-biased family), and others a 50:50 sex-ratio. A peculiar segregation pattern of M-type mitochondria in DUI organisms appears to be correlated with the sex bias of these families. According to a proposed model for the inheritance of M-type mitochondria in DUI, the transmission of sperm mitochondria is controlled by three nuclear genes, named W, X, and Z. An additional S gene with different dosage effect would be involved in sex determination. In this study, we analyzed structure and localization of three transcripts (psa, birc, and anubl1) with specific sex and family biases in the Manila clam Ruditapes philippinarum. In situ hybridization confirmed the localization of these transcripts in gametogenic cells. In other animals, homologs of these genes are involved in reproduction and ubiquitination. We hypothesized that these genes may have a role in sex determination and could also be responsible for the maintenance/degradation of spermatozoon mitochondria during embryo development of the DUI species R. philippinarum, so that we propose them as candidate factors of the W/X/Z/S system.

  19. Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).

    PubMed

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.

  20. Sex-specific gonadal and gene expression changes throughout development in fathead minnow

    EPA Science Inventory

    Although fathead minnows (Pimephales promelas) are commonly used as a model fish in endocrine disruption studies, none have characterized sex-specific baseline expression of genes involved in sex differentiation during development in this species. Using a sex-linked DNA marker t...

  1. Sex-specific expression of a HOX gene associated with rapid morphological evolution.

    PubMed

    Barmina, Olga; Kopp, Artyom

    2007-11-15

    Animal diversity is shaped by the origin and diversification of new morphological structures. Many examples of evolutionary innovations are provided by male-specific traits involved in mating and sexual selection. The origin of new sex-specific characters requires the evolution of new regulatory interactions between sex-determining genes and genes that control spatial patterning and cell differentiation. Here, we show that sex-specific regulation of the HOX gene Sex combs reduced (Scr) is associated with the origin and evolution of the Drosophila sex comb - a novel and rapidly diversifying male-specific organ. In species that primitively lack sex combs, Scr expression shows little spatial modulation, whereas in species that have sex combs, Scr is upregulated in the presumptive sex comb region and is frequently sexually dimorphic. Phylogenetic analysis shows that sex-specific regulation of Scr has been gained and lost multiple times in Drosophila evolution and correlates with convergent origin of similar sex comb morphologies in several independent lineages. Some of these transitions occurred on microevolutionary timescales, indicating that HOX gene expression can evolve with surprising ease. This is the first example of a sex-specific regulation of a HOX gene contributing to the development and evolution of a secondary sexual trait.

  2. The seirena B Class Floral Homeotic Mutant of California Poppy (Eschscholzia californica) Reveals a Function of the Enigmatic PI Motif in the Formation of Specific Multimeric MADS Domain Protein Complexes[C][W][OA

    PubMed Central

    Lange, Matthias; Orashakova, Svetlana; Lange, Sabrina; Melzer, Rainer; Theißen, Günter; Smyth, David R.; Becker, Annette

    2013-01-01

    The products of B class floral homeotic genes specify petal and stamen identity, and loss of B function results in homeotic conversions of petals into sepals and stamens into carpels. Here, we describe the molecular characterization of seirena-1 (sei-1), a mutant from the basal eudicot California poppy (Eschscholzia californica) that shows homeotic changes characteristic of floral homeotic B class mutants. SEI has been previously described as EScaGLO, one of four B class–related MADS box genes in California poppy. The C terminus of SEI, including the highly conserved PI motif, is truncated in sei-1 proteins. Nevertheless, like the wild-type SEI protein, the sei-1 mutant protein is able to bind CArG-boxes and can form homodimers, heterodimers, and several higher order complexes with other MADS domain proteins. However, unlike the wild type, the mutant protein is not able to mediate higher order complexes consisting of specific B, C, and putative E class related proteins likely involved in specifying stamen identity. Within the PI motif, five highly conserved N-terminal amino acids are specifically required for this interaction. Several families lack this short conserved sequence, including the Brassicaceae, and we propose an evolutionary scenario to explain these functional differences. PMID:23444328

  3. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1

    PubMed Central

    2013-01-01

    Background Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences. PMID:24344927

  4. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    PubMed Central

    Arbeitman, Michelle N.; New, Felicia N.; Fear, Justin M.; Howard, Tiffany S.; Dalton, Justin E.; Graze, Rita M.

    2016-01-01

    Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation. PMID:27172187

  5. Sex determination in annual fishes: Searching for the master sex-determining gene in Austrolebias charrua (Cyprinodontiformes, Rivulidae)

    PubMed Central

    Arezo, María José; Papa, Nicolás; Guttierrez, Verónica; García, Graciela; Berois, Nibia

    2014-01-01

    Evolution of sex determination and differentiation in fishes involves a broad range of sex strategies (hermaphroditism, gonochorism, unisexuality, environmental and genetic sex determination). Annual fishes inhabit temporary ponds that dry out during the dry season when adults die. The embryos exhibit an atypical developmental pattern and remain buried in the bottom mud until the next rainy season. To elucidate genomic factors involved in the sex determination in annual fish, we explored the presence of a candidate sex-specific gene related to the cascade network in Austrolebias charrua. All phylogenetic analyses showed a high posterior probability of occurrence for a clade integrated by nuclear sequences (aprox. 900 bp) from both adults (male and female), with partial cDNA fragments of A. charrua from juveniles (male) and the dsx D. melanogaster gene. The expressed fragment was detected from blastula to adulthood stages showing a sexually dimorphic expression pattern. The isolated cDNA sequence is clearly related to dsx D. melanogaster gene and might be located near the top of the sex determination cascade in this species. PMID:25071401

  6. The evolutionary causes and consequences of sex-biased gene expression.

    PubMed

    Parsch, John; Ellegren, Hans

    2013-02-01

    Females and males often differ extensively in their physical traits. This sexual dimorphism is largely caused by differences in gene expression. Recent advances in genomics, such as RNA sequencing (RNA-seq), have revealed the nature and extent of sex-biased gene expression in diverse species. Here we highlight new findings regarding the causes of sex-biased expression, including sexual antagonism and incomplete dosage compensation. We also discuss how sex-biased expression can accelerate the evolution of sex-linked genes.

  7. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis

    PubMed Central

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism. PMID:26193085

  8. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis.

    PubMed

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism.

  9. The autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects.

    PubMed

    Sawanth, Suresh Kumar; Gopinath, Gajula; Sambrani, Nagraj; Arunkumar, Kallare P

    2016-06-01

    Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices. PMID:27240989

  10. The shared genome is a pervasive constraint on the evolution of sex-biased gene expression.

    PubMed

    Griffin, Robert M; Dean, Rebecca; Grace, Jaime L; Rydén, Patrik; Friberg, Urban

    2013-09-01

    Males and females share most of their genomes, and differences between the sexes can therefore not evolve through sequence divergence in protein coding genes. Sexual dimorphism is instead restricted to occur through sex-specific expression and splicing of gene products. Evolution of sexual dimorphism through these mechanisms should, however, also be constrained when the sexes share the genetic architecture for regulation of gene expression. Despite these obstacles, sexual dimorphism is prevalent in the animal kingdom and commonly evolves rapidly. Here, we ask whether the genetic architecture of gene expression is plastic and easily molded by sex-specific selection, or if sexual dimorphism evolves rapidly despite pervasive genetic constraint. To address this question, we explore the relationship between the intersexual genetic correlation for gene expression (rMF), which captures how independently genes are regulated in the sexes, and the evolution of sex-biased gene expression. Using transcriptome data from Drosophila melanogaster, we find that most genes have a high rMF and that genes currently exposed to sexually antagonistic selection have a higher average rMF than other genes. We further show that genes with a high rMF have less pronounced sex-biased gene expression than genes with a low rMF within D. melanogaster and that the strength of the rMF in D. melanogaster predicts the degree to which the sex bias of a gene's expression has changed between D. melanogaster and six other species in the Drosophila genus. In sum, our results show that a shared genome constrains both short- and long-term evolution of sexual dimorphism.

  11. Sex Biased Gene Expression Profiling of Human Brains at Major Developmental Stages

    PubMed Central

    Shi, Lei; Zhang, Zhe; Su, Bing

    2016-01-01

    There are many differences in brain structure and function between males and females. However, how these differences were manifested during development and maintained through adulthood are still unclear. Here we present a time series analyses of genome-wide transcription profiles of the human brain, and we identified genes showing sex biased expression at major developmental stages (prenatal time, early childhood, puberty time and adulthood). We observed a great number of genes (>2,000 genes) showing between-sex expression divergence at all developmental stages with the greatest number (4,164 genes) at puberty time. However, there are little overlap of sex-biased genes among the major developmental stages, an indication of dynamic expression regulation of the sex-biased genes in the brain during development. Notably, the male biased genes are highly enriched for genes involved in neurological and psychiatric disorders like schizophrenia, bipolar disorder, Alzheimer’s disease and autism, while no such pattern was seen for the female-biased genes, suggesting that the differences in brain disorder susceptibility between males and females are likely rooted from the sex-biased gene expression regulation during brain development. Collectively, these analyses reveal an important role of sex biased genes in brain development and neurodevelopmental disorders. PMID:26880485

  12. Recent gene-capture on the UV sex chromosomes of the moss Ceratodon purpureus

    PubMed Central

    McDaniel, Stuart F.; Neubig, Kurt M.; Payton, Adam C.; Quatrano, Ralph S.; Cove, David J.

    2013-01-01

    Sex chromosomes evolve from ordinary autosomes through the expansion and subsequent degeneration of a region of suppressed recombination that is inherited through one sex. Here we investigate the relative timing of these processes in the UV sex chromosomes of the moss Ceratodon purpureus using molecular population genetic analyses of eight newly discovered sex-linked loci. In this system recombination is suppressed on both the female-transmitted (U) sex chromosome and the male-transmitted (V) chromosome. Genes on both chromosomes therefore should show the deleterious effects of suppressed recombination and sex-limited transmission, while purifying selection should maintain homologs of genes essential for both sexes on both sex chromosomes. Based on analyses of eight sex-linked loci, we show that the non-recombining portions of the U and V-chromosomes expanded in at least two events (~0.6 – 1.3 MYA and ~2.8 – 3.5 MYA), after the divergence of C. purpureus from its dioecious sister species, Trichodon cylindricus and Cheilothela chloropus. Both U and V-linked copies showed reduced nucleotide diversity and limited population structure, compared to autosomal loci, suggesting that the sex chromosomes experienced more recent selective sweeps that the autosomes. Collectively these results highlight the dynamic nature of gene composition and molecular evolution on non-recombining portions of the U and V sex chromosomes. PMID:24094335

  13. Sex-Biased Temporal Gene Expression in Male and Female Floral Buds of Seabuckthorn (Hippophae rhamnoides)

    PubMed Central

    Chawla, Aseem; Stobdan, Tsering; Srivastava, Ravi B.; Jaiswal, Varun; Chauhan, Rajinder S.; Kant, Anil

    2015-01-01

    Seabuckthorn is an economically important dioecious plant in which mechanism of sex determination is unknown. The study was conducted to identify seabuckthorn homologous genes involved in floral development which may have role in sex determination. Forty four putative Genes involved in sex determination (GISD) reported in model plants were shortlisted from literature survey, and twenty nine seabuckthorn homologous sequences were identified from available seabuckthorn genomic resources. Of these, 21 genes were found to differentially express in either male or female flower bud stages. HrCRY2 was significantly expressed in female flower buds only while HrCO had significant expression in male flowers only. Among the three male and female floral development stages (FDS), male stage II had significant expression of most of the GISD. Information on these sex-specific expressed genes will help in elucidating sex determination mechanism in seabuckthorn. PMID:25915052

  14. The evolution of sex-determining mechanisms: lessons from temperature-sensitive mutations in sex determination genes in Caenorhabditis elegans.

    PubMed

    Chandler, C H; Phillips, P C; Janzen, F J

    2009-01-01

    Sexual reproduction is one of the most taxonomically conserved traits, yet sex-determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism's sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature-sensitive mutations in key sex-determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.

  15. Functional reconstruction of trans regulation of the ultrabithorax promoter by the products of two antagonistic genes, trithorax and polycomb

    SciTech Connect

    Chang, Yuh-Long; King, B.O.; Huang, Der-Hwa

    1995-12-01

    This study examined the expression patterns of several transgenes to identify cis-acting sequences that participate in the regulation of Drosophila homeotic genes. The specification of body segments of Drosophila melanogaster requires the activities of at least eight homeotic genes. 88 refs., 9 figs.

  16. Sex determination in 58 bird species and evaluation of CHD gene as a universal molecular marker in bird sexing.

    PubMed

    Vucicevic, Milos; Stevanov-Pavlovic, Marija; Stevanovic, Jevrosima; Bosnjak, Jasna; Gajic, Bojan; Aleksic, Nevenka; Stanimirovic, Zoran

    2013-01-01

    The aim of this research was to test the CHD gene (Chromo Helicase DNA-binding gene) as a universal molecular marker for sexing birds of relatively distant species. The CHD gene corresponds to the aim because of its high degree of conservation and different lengths in Z and W chromosomes due to different intron sizes. DNA was isolated from feathers and the amplification of the CHD gene was performed with the following sets of polymerase chain reaction (PCR) primers: 2550F/2718R and P2/P8. Sex determination was attempted in 284 samples of 58 bird species. It was successful in 50 bird species; in 16 of those (Alopochen aegyptiacus, Ara severus, Aratinga acuticaudata, Bucorvus leadbeateri, Cereopsis novaehollandiae, Columba arquatrix, Corvus corax, C. frugilegus, Cyanoliseus patagonus, Guttera plumifera, Lamprotornis superbus, Milvus milvus, Neophron percnopterus, Ocyphaps lophotes, Podiceps cristatus, and Poicephalus senegalus), it was carried out for the first time using molecular markers and PCR. It is reasonable to assume that extensive research is necessary to define the CHD gene as a universal molecular marker for successful sex determination in all bird species (with exception of ratites). The results of this study may largely contribute to the aim. PMID:22553188

  17. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis).

    PubMed

    Harkess, Alex; Mercati, Francesco; Shan, Hong-Yan; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2015-08-01

    Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis. PMID:25817071

  18. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis).

    PubMed

    Harkess, Alex; Mercati, Francesco; Shan, Hong-Yan; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2015-08-01

    Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis.

  19. Assessment of Gene-by-Sex Interaction Effect on Bone Mineral Density

    PubMed Central

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M.; Amin, Najaf; Evangelou, Evangelos; Li, Guo; Minster, Ryan L.; Carless, Melanie A.; Kammerer, Candace M.; Oei, Ling; Zhou, Yanhua; Alonso, Nerea; Dailiana, Zoe; Eriksson, Joel; García-Giralt, Natalia; Giroux, Sylvie; Husted, Lise Bjerre; Khusainova, Rita I.; Koromila, Theodora; Kung, Annie WaiChee; Lewis, Joshua R.; Masi, Laura; Mencej-Bedrac, Simona; Nogues, Xavier; Patel, Millan S.; Prezelj, Janez; Richards, J Brent; Sham, Pak Chung; Spector, Timothy; Vandenput, Liesbeth; Xiao, Su-Mei; Zheng, Hou-Feng; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Frost, Morten; Goltzman, David; González-Macías, Jesús; Karlsson, Magnus; Khusnutdinova, Elza K.; Kollia, Panagoula; Langdahl, Bente Lomholt; Ljunggren, Östen; Lorentzon, Mattias; Marc, Janja; Mellström, Dan; Ohlsson, Claes; Olmos, José M.; Ralston, Stuart H.; Riancho, José A.; Rousseau, François; Urreizti, Roser; Van Hul, Wim; Zarrabeitia, María T.; Castano-Betancourt, Martha; Demissie, Serkalem; Grundberg, Elin; Herrera, Lizbeth; Kwan, Tony; Medina-Gómez, Carolina; Pastinen, Tomi; Sigurdsson, Gunnar; Thorleifsson, Gudmar; vanMeurs, Joyce B.J.; Blangero, John; Hofman, Albert; Liu, Yongmei; Mitchell, Braxton D.; O’Connell, Jeffrey R.; Oostra, Ben A.; Rotter, Jerome I; Stefansson, Kari; Streeten, Elizabeth A.; Styrkarsdottir, Unnur; Thorsteinsdottir, Unnur; Tylavsky, Frances A.; Uitterlinden, Andre; Cauley, Jane A.; Harris, Tamara B.; Ioannidis, John P.A.; Psaty, Bruce M.; Robbins, John A; Zillikens, M. Carola; vanDuijn, Cornelia M.; Prince, Richard L.; Karasik, David; Rivadeneira, Fernando; Kiel, Douglas P.; Cupples, L. Adrienne; Hsu, Yi-Hsiang

    2012-01-01

    Background Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed eQTL analysis and bioinformatics network analysis. Methods We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS-) and femoral neck (FN-) BMD, in 25,353 individuals from eight cohorts. In a second stage, we followed up the 12 top SNPs (P<1×10−5) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. Results We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 & p-value = 3.0×10−5; female effect = −0.007 & p-value=3.3×10−2) and eleven suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (P<5×10−8) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Conclusion Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found influencing BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08% of the variation in these traits per implicated SNP. PMID:22692763

  20. Identification of internal reference genes for gene expression normalization between the two sexes in dioecious white Campion.

    PubMed

    Zemp, Niklaus; Minder, Aria; Widmer, Alex

    2014-01-01

    Quantitative real time (qRT)-PCR is a precise and efficient method for studying gene expression changes between two states of interest, and is frequently used for validating interesting gene expression patterns in candidate genes initially identified in genome-wide expression analyses, such as RNA-seq experiments. For an adequate normalisation of qRT-PCR data, it is essential to have reference genes available whose expression intensities are constant among the different states of interest. In this study we present and validate a catalogue of traditional and newly identified reference genes that were selected from RNA-seq data from multiple individuals from the dioecious plant Silene latifolia with the aim of studying gene expression differences between the two sexes in both reproductive and vegetative tissues. The catalogue contains more than 15 reference genes with both stable expression intensities and a range of expression intensities in flower buds and leaf tissues. These reference genes were used to normalize expression differences between reproductive and vegetative tissues in eight candidate genes with sex-biased expression. Our results suggest a trend towards a reduced sex-bias in sex-linked gene expression in vegetative tissues. In this study, we report on the systematic identification and validation of internal reference genes for adequate normalization of qRT-PCR-based analyses of gene expression differences between the two sexes in S. latifolia. We also show how RNA-seq data can be used efficiently to identify suitable reference genes in a wide diversity of species.

  1. Is a sex-determining gene(s) necessary for sex-determination in amphibians? Steroid hormones may be the key factor.

    PubMed

    Nakamura, M

    2013-01-01

    Amphibians have 2 genetic sex-determining systems, one with male (XX/XY) and one with female (ZZ/ZW) heterogamety. While the ancestral state of sex-determination is thought to be female heterogamety, male and female heterogametic types were probably once interchangeable. The Japanese frog Rana rugosa has both XX/XY and ZZ/ZW systems within a single species in certain local populations. However, steroid hormones can alter the phenotypic sex epigenetically. In R. rugosa, steroidogenic enzyme expression starts before sex-determination in the indifferent gonad, and these enzymes become active in both male and female tadpoles. Androgens are produced in the indifferent gonad of male tadpoles at high levels, whereas estrogens are synthesized in females. In this regard, the observed enhanced expression of the hormone-metabolizing genes, CYP19 in the female gonad and CYP17 in males, may be crucial for sex-determination. Moreover, with FSH known to increase estrogen synthesis in the vertebrate ovary, observed upregulation of FSH receptor (FSHR) expression in the indifferent gonad of female tadpoles is intriguing. These data suggest that steroid hormones could be crucial for sex-determination in R. rugosa, with the consequence that upregulation of CYP19 and FSHR expression is necessary for female and CYP17 for male sex-determination.

  2. Genes and sex hormones interaction in neurodevelopmental disorders.

    PubMed

    Romano, Emilia; Cosentino, Livia; Laviola, Giovanni; De Filippis, Bianca

    2016-08-01

    The prevalence, age of onset and symptomatology of many neurodevelopmental disorders strongly differ between genders. This review examines sex biases in human neurodevelopmental disorders and in validated animal models. A focus is made on disorders of well-established genetic origin, such as Rett syndrome, CDKL5-associated disorders, Fragile X and Down syndrome. Autism is also addressed, given its paradigmatic role as a sex-biased neurodevelopmental disorder. Reviewed literature confirms that a complex interaction between genetic factors and sex hormones may underlie the differential susceptibility of genders and may impact the severity of symptoms in most of the analyzed neurodevelopmental disorders. Even though further studies addressing the advantages and disadvantages conferred by biological sex in this class of disorders are needed to disentangle the underlying mechanisms, present findings suggest that modulation of sex steroid-related pathways may represent an innovative approach for these diseases. Much effort is now expected to unravel the potential therapeutic efficacy of drugs targeting sex hormones-related signaling pathways in neurodevelopmental disorders of well-established genetic origin.

  3. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution

    PubMed Central

    Wheeler, Bayly S; Anderson, Erika; Frøkjær-Jensen, Christian; Bian, Qian; Jorgensen, Erik; Meyer, Barbara J

    2016-01-01

    Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI: http://dx.doi.org/10.7554/eLife.17365.001 PMID:27572259

  4. Targeted Deletion of Btg1 and Btg2 Results in Homeotic Transformation of the Axial Skeleton.

    PubMed

    Tijchon, Esther; van Ingen Schenau, Dorette; van Opzeeland, Fred; Tirone, Felice; Hoogerbrugge, Peter M; Van Leeuwen, Frank N; Scheijen, Blanca

    2015-01-01

    Btg1 and Btg2 encode highly homologous proteins that are broadly expressed in different cell lineages, and have been implicated in different types of cancer. Btg1 and Btg2 have been shown to modulate the function of different transcriptional regulators, including Hox and Smad transcription factors. In this study, we examined the in vivo role of the mouse Btg1 and Btg2 genes in specifying the regional identity of the axial skeleton. Therefore, we examined the phenotype of Btg1 and Btg2 single knockout mice, as well as novel generated Btg1-/-;Btg2-/- double knockout mice, which were viable, but displayed a non-mendelian inheritance and smaller litter size. We observed both unique and overlapping phenotypes reminiscent of homeotic transformation along the anterior-posterior axis in the single and combined Btg1 and Btg2 knockout animals. Both Btg1-/- and Btg2-/- mice displayed partial posterior transformation of the seventh cervical vertebra, which was more pronounced in Btg1-/-;Btg2-/- mice, demonstrating that Btg1 and Btg2 act in synergy. Loss of Btg2, but not Btg1, was sufficient for complete posterior transformation of the thirteenth thoracic vertebra to the first lumbar vertebra. Moreover, Btg2-/- animals displayed complete posterior transformation of the sixth lumbar vertebra to the first sacral vertebra, which was only partially present at a low frequency in Btg1-/- mice. The Btg1-/-;Btg2-/- animals showed an even stronger phenotype, with L5 to S1 transformation. Together, these data show that both Btg1 and Btg2 are required for normal vertebral patterning of the axial skeleton, but each gene contributes differently in specifying the identity along the anterior-posterior axis of the skeleton.

  5. Targeted Deletion of Btg1 and Btg2 Results in Homeotic Transformation of the Axial Skeleton

    PubMed Central

    van Opzeeland, Fred; Tirone, Felice; Hoogerbrugge, Peter M.; Van Leeuwen, Frank N.; Scheijen, Blanca

    2015-01-01

    Btg1 and Btg2 encode highly homologous proteins that are broadly expressed in different cell lineages, and have been implicated in different types of cancer. Btg1 and Btg2 have been shown to modulate the function of different transcriptional regulators, including Hox and Smad transcription factors. In this study, we examined the in vivo role of the mouse Btg1 and Btg2 genes in specifying the regional identity of the axial skeleton. Therefore, we examined the phenotype of Btg1 and Btg2 single knockout mice, as well as novel generated Btg1-/-;Btg2-/- double knockout mice, which were viable, but displayed a non-mendelian inheritance and smaller litter size. We observed both unique and overlapping phenotypes reminiscent of homeotic transformation along the anterior-posterior axis in the single and combined Btg1 and Btg2 knockout animals. Both Btg1-/- and Btg2-/- mice displayed partial posterior transformation of the seventh cervical vertebra, which was more pronounced in Btg1-/-;Btg2-/- mice, demonstrating that Btg1 and Btg2 act in synergy. Loss of Btg2, but not Btg1, was sufficient for complete posterior transformation of the thirteenth thoracic vertebra to the first lumbar vertebra. Moreover, Btg2-/- animals displayed complete posterior transformation of the sixth lumbar vertebra to the first sacral vertebra, which was only partially present at a low frequency in Btg1-/- mice. The Btg1-/-;Btg2-/- animals showed an even stronger phenotype, with L5 to S1 transformation. Together, these data show that both Btg1 and Btg2 are required for normal vertebral patterning of the axial skeleton, but each gene contributes differently in specifying the identity along the anterior-posterior axis of the skeleton. PMID:26218146

  6. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transformer (tra) is a double-switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and trans...

  7. Influence of sex on gene expression in human corneal epithelial cells

    PubMed Central

    Suzuki, Tomo; Richards, Stephen M.; Liu, Shaohui; Jensen, Roderick V.

    2009-01-01

    Purpose Sex-associated differences have been identified in the anatomy, physiology and pathophysiology of the human cornea. We hypothesize that many of these differences are due to fundamental variations in gene expression. Our objective in this study was to determine whether such differences exist in human corneal epithelial cells both in vivo and in vitro. Methods Human corneal epithelial cells were isolated from the corneoscleral rims of male and female donors. Cells were processed either directly for RNA extraction, or first cultured in phenol red-free keratinocyte serum-free media. The RNA samples were examined for differentially expressed mRNAs by using of CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with GeneSifter.Net software. Results Our results demonstrate that sex significantly influences the expression of over 600 genes in human corneal epithelial cells in vivo. These genes are involved in a broad spectrum of biologic processes, molecular functions and cellular components, such as metabolic processes, DNA replication, cell migration, RNA binding, oxidoreductase activity and nucleoli. We also identified significant, sex-related effects on gene expression in human corneal epithelial cells in vitro. However, with few exceptions (e.g., X- and Y-linked genes), these sex-related differences in gene expression in vitro were typically different than those in vivo. Conclusions Our findings support our hypothesis that sex-related differences exist in the gene expression of human corneal epithelial cells. Variations in gene expression may contribute to sex-related differences in the prevalence of certain corneal diseases. PMID:20011627

  8. Influence of sex and disease severity on gene expression profiles in individuals with idiopathic pulmonary fibrosis

    PubMed Central

    McGee, Sean P; Zhang, Hongmei; Karmaus, Wilfried; Sabo-Attwood, Tara

    2014-01-01

    Epidemiological studies suggest sex-specific trends in the prevalence and mortality of idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) that are distinct for each disease. While the expression of numerous immune and extracellular matrix (ECM) genes in the lung have been well characterized in these diseases, associations elucidating their sex-specific expression patterns by disease type and severity, and the evaluation of hormone-related genes, have not been well studied. Here we performed targeted transcriptional profiling of 48 genes was performed on lung tissue samples from males and females with mild or medium severity IPF or COPD. The genes assessed included those involved in inflammation, ECM remodeling and hormonal processes. Data for 36 lung tissue samples were obtained that were stratified by disease and sex. Expression levels revealed a subset of genes which show differential expression among sexes, disease type, and disease severity. The most significant observations were the increased expression primarily of ECM genes in medium severity IPF (CATHK, COL1A1, COL3, MMP1, MMP7, IL-1RN) compared to mild IPF and COPD. Two genes, CH3L1 and MMP7 showed a tendency of interaction between sex and disease in IPF severity. Surprisingly, there were no significant differences in any of the sex genes measured between the IPF groups; however, ESR1 and AR expression levels were higher and lower, respectively, compared to COPD samples. Overall, this work highlights two genes, CH3L1 and MMP7, that may contribute to gender trends observed for IPF and COPD and are potential targets for future research. PMID:24959312

  9. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages.

    PubMed

    Garcia-Morales, Carla; Nandi, Sunil; Zhao, Debiao; Sauter, Kristin A; Vervelde, Lonneke; McBride, Derek; Sang, Helen M; Clinton, Mike; Hume, David A

    2015-03-01

    We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome-specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN-responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes.

  10. Cell-Autonomous Sex Differences in Gene Expression in Chicken Bone Marrow–Derived Macrophages

    PubMed Central

    Garcia-Morales, Carla; Nandi, Sunil; Zhao, Debiao; Sauter, Kristin A.; Vervelde, Lonneke; McBride, Derek; Sang, Helen M.; Clinton, Mike

    2015-01-01

    We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome–specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN–responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes. PMID:25637020

  11. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context

    PubMed Central

    Geffroy, Benjamin; Guilbaud, Florian; Amilhat, Elsa; Beaulaton, Laurent; Vignon, Matthias; Huchet, Emmanuel; Rives, Jacques; Bobe, Julien; Fostier, Alexis; Guiguen, Yann; Bardonnet, Agnès

    2016-01-01

    Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels. PMID:27658729

  12. Sex-based differences in gene expression in hippocampus following postnatal lead exposure

    SciTech Connect

    Schneider, J.S. Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R.

    2011-10-15

    The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning.Blood lead levels were 26.7 {+-} 2.1 {mu}g/dl and 27.1 {+-} 1.7 {mu}g/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression of a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. - Highlights: > Postnatal lead exposure has a significant effect on hippocampal gene expression patterns. > At least one set of genes was affected in opposite directions in males and females. > Differentially expressed genes were associated with diverse biological pathways.

  13. Disentangling the relationship between sex-biased gene expression and X-linkage.

    PubMed

    Meisel, Richard P; Malone, John H; Clark, Andrew G

    2012-07-01

    X chromosomes are preferentially transmitted through females, which may favor the accumulation of X-linked alleles/genes with female-beneficial effects. Numerous studies have shown that genes with sex-biased expression are under- or over-represented on the X chromosomes of a wide variety of organisms. The patterns, however, vary between different animal species, and the causes of these differences are unresolved. Additionally, genes with sex-biased expression tend to be narrowly expressed in a limited number of tissues, and narrowly expressed genes are also non-randomly X-linked in a taxon-specific manner. It is therefore unclear whether the unique gene content of the X chromosome is the result of selection on genes with sex-biased expression, narrowly expressed genes, or some combination of the two. To address this problem, we measured sex-biased expression in multiple Drosophila species and at different developmental time points. These data were combined with available expression measurements from Drosophila melanogaster and mouse to reconcile the inconsistencies in X-chromosome content among taxa. Our results suggest that most of the differences between Drosophila and mammals are confounded by disparate data collection/analysis approaches as well as the correlation between sex bias and expression breadth. Both the Drosophila and mouse X chromosomes harbor an excess of genes with female-biased expression after controlling for the confounding factors, suggesting that the asymmetrical transmission of the X chromosome favors the accumulation of female-beneficial mutations in X-linked genes. However, some taxon-specific patterns remain, and we provide evidence that these are in part a consequence of constraints imposed by the dosage compensation mechanism in Drosophila.

  14. Morphology, sex steroid level and gene expression analysis in gonadal sex reversal of triploid female (XXX) rainbow trout (Oncorhynchus mykiss).

    PubMed

    Xu, Gefeng; Huang, Tianqing; Jin, Xian; Cui, Cunhe; Li, Depeng; Sun, Cong; Han, Ying; Mu, Zhenbo

    2016-02-01

    In non-mammalian vertebrates, estrogens and expressions of cyp19a1 and foxl2 play critical roles in maintaining ovary differentiation and development, while dmrt1 and sox9 are male-specific genes in testicular differentiation and are highly conserved. In order to deeply understand the morphological change, sex steroids level and molecular mechanism of triploid female gonadal reversal in rainbow trout, we studied the ovary morphology, tendency of estradiol-17β (E2) and testosterone (T) levels and the relative expressions of dmrt1, cyp19a1, sox9 and foxl2 in juvenile and adult fish. Our results demonstrated that the development of triploid female gonads in rainbow trout went through arrested development, oocytes dedifferentiation, ovary reconstruction and sex reversal finally. During early gonadal development (154-334 days post-fertilization), the expressions of foxl2 and cyp19a1 increased linearly, while expressions of dmrt1 and sox9 were extremely suppressed, and E2 level was higher, while T level was lower. During the mid-to-late period of triploid female gonadal development (574-964 days post-fertilization), the expressions of dmrt1 and sox9 remained high and were very close to the quantity of diploid male genes, and T levels were even reaching diploid male plasma concentrations, while expressions of cyp19a1 and foxl2 were decreased, leading to decrease in E2 level. We realized that the development model of rainbow trout triploid female gonads was extremely rare, and the regulatory mechanism was very special. Genes involved in gonadal development and endogenous estrogens are pivotal factors in fish natural sex reversal. PMID:26373423

  15. Morphology, sex steroid level and gene expression analysis in gonadal sex reversal of triploid female (XXX) rainbow trout (Oncorhynchus mykiss).

    PubMed

    Xu, Gefeng; Huang, Tianqing; Jin, Xian; Cui, Cunhe; Li, Depeng; Sun, Cong; Han, Ying; Mu, Zhenbo

    2016-02-01

    In non-mammalian vertebrates, estrogens and expressions of cyp19a1 and foxl2 play critical roles in maintaining ovary differentiation and development, while dmrt1 and sox9 are male-specific genes in testicular differentiation and are highly conserved. In order to deeply understand the morphological change, sex steroids level and molecular mechanism of triploid female gonadal reversal in rainbow trout, we studied the ovary morphology, tendency of estradiol-17β (E2) and testosterone (T) levels and the relative expressions of dmrt1, cyp19a1, sox9 and foxl2 in juvenile and adult fish. Our results demonstrated that the development of triploid female gonads in rainbow trout went through arrested development, oocytes dedifferentiation, ovary reconstruction and sex reversal finally. During early gonadal development (154-334 days post-fertilization), the expressions of foxl2 and cyp19a1 increased linearly, while expressions of dmrt1 and sox9 were extremely suppressed, and E2 level was higher, while T level was lower. During the mid-to-late period of triploid female gonadal development (574-964 days post-fertilization), the expressions of dmrt1 and sox9 remained high and were very close to the quantity of diploid male genes, and T levels were even reaching diploid male plasma concentrations, while expressions of cyp19a1 and foxl2 were decreased, leading to decrease in E2 level. We realized that the development model of rainbow trout triploid female gonads was extremely rare, and the regulatory mechanism was very special. Genes involved in gonadal development and endogenous estrogens are pivotal factors in fish natural sex reversal.

  16. Sex-biased gene flow among elk in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    , Brian K. Hand; , Shanyuan Chen; , N. Anderson; , A. Beja-Pereira; Cross, Paul C.; , M. Ebinger; , H. Edwards; , R.A. Garrott; , M.D. Kardos; Kauffman, Matthew J.; , E.L. Landguth; , A. Middleton; , B. Scurlock; , P.J. White; , P. Zager; , M.K. Schwartz; , G. Luikart

    2014-01-01

    We quantified patterns of population genetic structure to help understand gene flow among elk populations across the Greater Yellowstone Ecosystem. We sequenced 596 base pairs of the mitochondrial control region of 380 elk from eight populations. Analysis revealed high mitochondrial DNA variation within populations, averaging 13.0 haplotypes with high mean gene diversity (0.85). The genetic differentiation among populations for mitochondrial DNA was relatively high (FST = 0.161; P = 0.001) compared to genetic differentiation for nuclear microsatellite data (FST = 0.002; P = 0.332), which suggested relatively low female gene flow among populations. The estimated ratio of male to female gene flow (mm/mf = 46) was among the highest we have seen reported for large mammals. Genetic distance (for mitochondrial DNA pairwise FST) was not significantly correlated with geographic (Euclidean) distance between populations (Mantel’s r = 0.274, P = 0.168). Large mitochondrial DNA genetic distances (e.g., FST > 0.2) between some of the geographically closest populations (<65 km) suggested behavioral factors and/or landscape features might shape female gene flow patterns. Given the strong sex-biased gene flow, future research and conservation efforts should consider the sexes separately when modeling corridors of gene flow or predicting spread of maternally transmitted diseases. The growing availability of genetic data to compare male vs. female gene flow provides many exciting opportunities to explore the magnitude, causes, and implications of sex-biased gene flow likely to occur in many species

  17. Complete dosage compensation and sex-biased gene expression in the moth Manduca sexta.

    PubMed

    Smith, Gilbert; Chen, Yun-Ru; Blissard, Gary W; Briscoe, Adriana D

    2014-03-01

    Sex chromosome dosage compensation balances homogametic sex chromosome expression with autosomal expression in the heterogametic sex, leading to sex chromosome expression parity between the sexes. If compensation is incomplete, this can lead to expression imbalance and sex-biased gene expression. Recent work has uncovered an intriguing and variable pattern of dosage compensation across species that includes a lack of complete dosage compensation in ZW species compared with XY species. This has led to the hypothesis that ZW species do not require complete compensation or that complete compensation would negatively affect their fitness. To date, only one study, a study of the moth Bombyx mori, has discovered evidence for complete dosage compensation in a ZW species. We examined another moth species, Manduca sexta, using high-throughput sequencing to survey gene expression in the head tissue of males and females. We found dosage compensation to be complete in M. sexta with average expression between the Z chromosome in males and females being equal. When genes expressed at very low levels are removed by filtering, we found that average autosome expression was highly similar to average Z expression, suggesting that the majority of genes in M. sexta are completely dosage compensated. Further, this compensation was accompanied by sex-specific gene expression associated with important sexually dimorphic traits. We suggest that complete dosage compensation in ZW species might be more common than previously appreciated and linked to additional selective processes, such as sexual selection. More ZW and lepidopteran species should now be examined in a phylogenetic framework, to understand the evolution of dosage compensation.

  18. Prenatal sex determination in suspicious cases of X-linked recessive diseases by the amelogenin gene

    PubMed Central

    Rahimi, Amir Abbas; Shahhosseiny, Mohammad Hassan; Ahangari, Ghasem; Izadi Mobarakeh, Jalal

    2014-01-01

    Objective(s): To determine the fetal discernment in suspected cases of sex linked recessive disease in the first trimester of pregnancy. Materials and Methods: After collection of 100 Chorionic Villi samples, the DNAs were extracted and baby gender was determined. Meanwhile, after increasing the sensitivity, the system was able to detect the sex of each cell which was obtained by biopsy. Results: Early fetal gender of 100 Chorionic Villi samples were assessed by PCR. After increasing sensitivity of the assay, the sexes in 13 fetuses that were in different cellular stages were detected. Morover, sexes were detected in two unfertilized and one fertilized ovum but without any division. Conclusion: Sex detection of fetus before delivery in the first trimester of pregnancy, will prevent babies with abnormalities being born. It can also be used in detection of recessive sex related diseases in In Vitro Fertilization cases for sex detection and to transfer female fetus to the mother. Our optimized molecular detection system was designed on the basis of amelogenin gene, which can determine the sex in blood, chorionic villi, and single cell in vitro fertilization with high sensitivity and specificity. PMID:24711898

  19. Sexual differentiation in the developing mouse brain: contributions of sex chromosome genes.

    PubMed

    Wolstenholme, J T; Rissman, E F; Bekiranov, S

    2013-03-01

    Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X-chromosome and a unique second sex chromosome creating the following genotypes: XY(*x) , XX, XY(*) , XX(Y) (*) . This Y(*) mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X-chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X-chromosomes. We present data showing, in addition to genes reported to escape X-inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X-chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y(*) model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.

  20. Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish

    USGS Publications Warehouse

    Sharma, Prakash; Tang, Song; Mayer, Gregory D.; Patino, Reynaldo

    2016-01-01

    Thyroid hormone reportedly induces masculinization of genetic females and goitrogen treatment delays testicular differentiation (ovary-to-testis transformation) in genetic males of Zebrafish. This study explored potential molecular mechanisms of these phenomena. Zebrafish were treated with thyroxine (T4, 2 nM), goitrogen [methimazole (MZ), 0.15 mM], MZ (0.15 mM) and T4 (2 nM) (rescue treatment), or reconstituted water (control) from 3 to 33 days postfertilization (dpf) and maintained in control water until 45 dpf. Whole fish were collected during early (25 dpf) and late (45 dpf) testicular differentiation for transcript abundance analysis of selected male (dmrt1, amh, ar) and female (cyp19a1a, esr1, esr2a, esr2b) sex-related genes by quantitative RT-PCR, and fold-changes relative to control values were determined. Additional fish were sampled at 45 dpf for histological assessment of gonadal sex. The T4 and rescue treatments caused male-biased populations, and T4 alone induced precocious puberty in ∼50% of males. Male-biased sex ratios were accompanied by increased expression of amh and ar and reduced expression of cyp19a1a, esr1, esr2a, and esr2b at 25 and 45 dpf and, unexpectedly, reduced expression of dmrt1 at 45 dpf. Goitrogen exposure increased the proportion of individuals with ovaries (per previous studies interpreted as delay in testicular differentiation of genetic males), and at 25 and 45 dpf reduced the expression of amh and ar and increased the expression of esr1 (only at 25 dpf), esr2a, and esr2b. Notably, cyp19a1a transcript was reduced but via non-thyroidal pathways (not restored by rescue treatment). In conclusion, the masculinizing activity of T4 at the population level may be due to its ability to inhibit female and stimulate male sex-related genes in larvae, while the inability of MZ to induce cyp19a1a, which is necessary for ovarian differentiation, may explain why its “feminizing” activity on gonadal

  1. Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish.

    PubMed

    Sharma, Prakash; Tang, Song; Mayer, Gregory D; Patiño, Reynaldo

    2016-09-01

    Thyroid hormone reportedly induces masculinization of genetic females and goitrogen treatment delays testicular differentiation (ovary-to-testis transformation) in genetic males of Zebrafish. This study explored potential molecular mechanisms of these phenomena. Zebrafish were treated with thyroxine (T4, 2nM), goitrogen [methimazole (MZ), 0.15mM], MZ (0.15mM) and T4 (2nM) (rescue treatment), or reconstituted water (control) from 3 to 33days postfertilization (dpf) and maintained in control water until 45dpf. Whole fish were collected during early (25dpf) and late (45dpf) testicular differentiation for transcript abundance analysis of selected male (dmrt1, amh, ar) and female (cyp19a1a, esr1, esr2a, esr2b) sex-related genes by quantitative RT-PCR, and fold-changes relative to control values were determined. Additional fish were sampled at 45dpf for histological assessment of gonadal sex. The T4 and rescue treatments caused male-biased populations, and T4 alone induced precocious puberty in ∼50% of males. Male-biased sex ratios were accompanied by increased expression of amh and ar and reduced expression of cyp19a1a, esr1, esr2a, and esr2b at 25 and 45dpf and, unexpectedly, reduced expression of dmrt1 at 45dpf. Goitrogen exposure increased the proportion of individuals with ovaries (per previous studies interpreted as delay in testicular differentiation of genetic males), and at 25 and 45dpf reduced the expression of amh and ar and increased the expression of esr1 (only at 25dpf), esr2a, and esr2b. Notably, cyp19a1a transcript was reduced but via non-thyroidal pathways (not restored by rescue treatment). In conclusion, the masculinizing activity of T4 at the population level may be due to its ability to inhibit female and stimulate male sex-related genes in larvae, while the inability of MZ to induce cyp19a1a, which is necessary for ovarian differentiation, may explain why its "feminizing" activity on gonadal sex is not permanent. PMID:27255368

  2. The complex set of late transcripts from the Drosophila sex determination gene sex-lethal encodes multiple related polypeptides.

    PubMed Central

    Samuels, M E; Schedl, P; Cline, T W

    1991-01-01

    Sex-lethal (Sxl), a key sex determination gene in Drosophila melanogaster, is known to express a set of three early transcripts arising during early embryogenesis and a set of seven late transcripts occurring from midembryogenesis through adulthood. Among the late transcripts, male-specific mRNAs were distinguished from their female counterparts by the presence of an extra exon interrupting an otherwise long open reading frame (ORF). We have now analyzed the structures of the late Sxl transcripts by cDNA sequencing, Northern (RNA) blotting, primer extension, and RNase protection. The late transcripts appear to use a common 5' end but differ at their 3' ends by the use of alternative polyadenylation sites. Two of these sites lack canonical AATAAA sequences, and their use correlates in females with the presence of a functional germ line, suggesting possible tissue-specific polyadenylation. Besides the presence of the male-specific exon, no additional sex-specific splicing events were detected, although a number of non-sex-specific splicing variants were observed. In females, the various forms of late Sxl transcript potentially encode up to six slightly different polypeptides. All of the protein-coding differences occur outside the previously defined ribonucleoprotein motifs. One class of Sxl mRNAs also includes a second long ORF in the same frame as the first ORF but separated from it by a single ochre codon. The function of this second ORF is unknown. Significant amounts of apparently partially processed Sxl RNAs were observed, consistent with the hypothesis that the regulated Sxl splices occur relatively slowly. Images PMID:1710769

  3. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks.

    PubMed

    Shi, S-q; White, M J; Borsetti, H M; Pendergast, J S; Hida, A; Ciarleglio, C M; de Verteuil, P A; Cadar, A G; Cala, C; McMahon, D G; Shelton, R C; Williams, S M; Johnson, C H

    2016-03-01

    An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders, and confirm a key connection between circadian gene variation and major depression.

  4. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks

    PubMed Central

    Shi, S-q; White, M J; Borsetti, H M; Pendergast, J S; Hida, A; Ciarleglio, C M; de Verteuil, P A; Cadar, A G; Cala, C; McMahon, D G; Shelton, R C; Williams, S M; Johnson, C H

    2016-01-01

    An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders, and confirm a key connection between circadian gene variation and major depression. PMID:26926884

  5. Sexy transgenes: the impact of gene transfer and gene inactivation technologies on the understanding of mammalian sex determination.

    PubMed

    Vaiman, Daniel

    2003-06-01

    Amongst the various developmental pathways ending in a sound mammal, sex determination presents the peculiarity of a choice between two equally viable options: female or male. Therefore, destroying a 'male-determining gene' or a 'female-determining gene' should generally not be lethal. Genetic sex determination is divided into two consecutive steps: construction of the bipotential gonad, and then sex determination per se. The genes involved in the first step are in fact involved in the development of various body compartments, and their mutation is generally far from innocuous. From transgenic and inactivation studies carried out on the laboratory mouse, a complete picture of the two steps is beginning to emerge, where the gonad itself and the necessary ducts are shown to evolve in a very coordinate way, with well-defined sex-specificities. Compared with testis determination, the ovarian side of the picture is still relatively empty, but this situation can change rapidly as candidate ovarian genes for inactivation studies are beginning to be identified.

  6. Sex-Based Differences in Gene Expression in Hippocampus Following Postnatal Lead Exposure

    PubMed Central

    Schneider, J.S.; Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R.

    2011-01-01

    The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning. Blood lead levels were 26.7 ± 2.1 μg/dl and 27.1 ± 1.7 μg/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. PMID:21864555

  7. Sexually dimorphic expression of the sex chromosome-linked genes cntfa and pdlim3a in the medaka brain.

    PubMed

    Maehiro, Sayaka; Takeuchi, Akio; Yamashita, Junpei; Hiraki, Towako; Kawabata, Yukika; Nakasone, Kiyoshi; Hosono, Kohei; Usami, Takeshi; Paul-Prasanth, Bindhu; Nagahama, Yoshitaka; Oka, Yoshitaka; Okubo, Kataaki

    2014-02-28

    In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3-4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits.

  8. Sex Steroids Regulate Expression of Genes Containing Long Interspersed Elements-1s in Breast Cancer Cells.

    PubMed

    Chaiwongwatanakul, Saichon; Yanatatsaneejit, Pattamawadee; Tongsima, Sissades; Mutirangura, Apiwat; Boonyaratanakornkit, Viroj

    2016-01-01

    Long interspersed elements-1s (LINE-1s) are dispersed all over the human genome. There is evidence that hypomethylation of LINE-1s and levels of sex steroids regulate gene expression leading to cancer development. Here, we compared mRNA levels of genes containing an intragenic LINE-1 in breast cancer cells treated with various sex steroids from Gene Expression Omnibus (GEO), with the gene expression database using chi-square analysis (http://www.ncbi.nlm.nih.gov/geo). We evaluated whether sex steroids influence expression of genes containing an intragenic LINE-1. Three sex steroids at various concentrations, 1 and 10 nM estradiol (E2), 10 nM progesterone (PG) and 10 nM androgen (AN), were assessed. In breast cancer cells treated with 1 or 10 nM E2, a significant percentage of genes containing an intragenic LINE-1 were down-regulated. A highly significant percentage of E2-regulated genes containing an intragenic LINE-1 was down-regulated in cells treated with 1 nM E2 for 3 hours (<3.70E-25; OR=1.91; 95% CI=2.16-1.69). Similarly, high percentages of PG or AN- regulated genes containing an intragenic LINE-1 were also down-regulated in cells treated with 10 nM PG or 10 nM AN for 16 hr (p=9.53E-06; OR=1.65; 95% CI=2.06-1.32 and p=3.81E-14; OR=2.01; 95% CI=2.42-1.67). Interestingly, a significant percentage of AN-regulated genes containing an intragenic LINE-1 was up-regulated in cells treated with 10 nM AN for 16 hr (p=4.03E-02; OR=1.40; 95% CI=1.95-1.01). These findings suggest that intragenic LINE-1s may play roles in sex steroid mediated gene expression in breast cancer cells, which could have significant implications for the development and progression of sex steroid-dependent cancers. PMID:27644652

  9. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    PubMed

    Magnusson, Kalle; Mendes, Antonio M; Windbichler, Nikolai; Papathanos, Philippos-Aris; Nolan, Tony; Dottorini, Tania; Rizzi, Ermanno; Christophides, George K; Crisanti, Andrea

    2011-01-01

    In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  10. Sex Differences in Spatial Ability: The X-Linked Gene Theory.

    ERIC Educational Resources Information Center

    Blatter, Patricia

    1982-01-01

    Among the many theories attempting to explain sex differences in spatial ability, one of the most highly researched is the X-linked recessive gene theory. This is a review of the major research done on that theory and shows the conflicting nature of the results. (Author)

  11. Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein-coding sequence evolution.

    PubMed

    Meisel, Richard P

    2011-06-01

    Genes that are differentially expressed between the sexes (sex-biased genes) are among the fastest evolving genes in animal genomes. The majority of sex-biased expression is attributable to genes that are primarily expressed in sex-limited reproductive tissues, and these reproductive genes are often rapidly evolving because of intra- and intersexual selection pressures. Additionally, studies of multiple taxa have revealed that genes with sex-biased expression are also expressed in a limited number of tissues. This is worth noting because narrowly expressed genes are known to evolve faster than broadly expressed genes. Therefore, it is not clear whether sex-biased genes are rapidly evolving because they have sexually dimorphic expression, because they are expressed in sex-limited reproductive tissues, or because they are narrowly expressed. To determine the extend to which other confounding variables can explain the rapid evolution of sex-biased genes, I analyzed the rates of evolution of sex-biased genes in Drosophila melanogaster and Mus musculus in light of tissue-specific measures of expression. I find that genes with sex-biased expression in somatic tissues shared by both sexes are often evolving faster than non-sex-biased genes, but this is best explained by the narrow expression profiles of sex-biased genes. Sex-biased genes in sex-limited tissues in D. melanogaster, however, evolve faster than other narrowly expressed genes. Therefore, the rapid evolution of sex-biased genes is limited only to those genes primarily expressed in sex-limited reproductive tissues.

  12. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    PubMed

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage.

  13. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    PubMed

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  14. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes

    PubMed Central

    Jiang, Xiaofang; Biedler, James K.; Qi, Yumin; Hall, Andrew Brantley; Tu, Zhijian

    2015-01-01

    Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution. PMID:26078263

  15. The candidate sex-reversing DAX1 gene is autosomal in marsupials: Implications for the evolution of sex determination in mammals

    SciTech Connect

    Pask, A.; Toder, R.; Wilcox, S.A.

    1997-05-01

    The human X-linked DAX1 gene was cloned from the region of the short arm of the human X found in duplicate in sex-reversed X{sub dup}Y females. DAX1 is suggested to be required for ovarian differentiation and to play an important role in mammalian sex determination or differentiation pathways. Its proposed dose-dependent effect on sexual development suggests that DAX1 could represent an evolutionary link with an ancestral sex-determining mechanism that depended on the dosage of an X-linked gene. Furthermore, DAX1 could also represent the putative X-linked switch gene, which independently controls sexual dimorphisms in marsupial mammals in an X-dose-dependent manner. If DAX1 has a present role in marsupial sexual differentiation or had an ancestral role in mammalian sex determination, it would be expected to lie on the marsupial X chromosome, despite the autosomal localization of other human Xp genes. We therefore cloned and mapped the DAX1 gene in the tammar wallaby (Macropus eugenii). DAX1 was located on wallaby chromosome 5p near other human Xp genes, indicating that it was originally autosomal and that it is not involved in X-linked dose-dependent sex determination in an ancestral mammal nor in marsupial sexual differentiation. 28 refs., 4 figs.

  16. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes

    PubMed Central

    Roelofs, Wendell; Glover, Thomas; Tang, Xian-Han; Sreng, Isabelle; Robbins, Paul; Eckenrode, Charles; Löfstedt, Christer; Hansson, Bill S.; Bengtsson, Bengt O.

    1987-01-01

    Inheritance patterns for sex pheromone production in females, pheromone detection on male antennal olfactory receptor cells, and male pheromone behavioral responses were studied in pheromonally distinct populations of European corn borers from New York State. Gas chromatographic analyses of pheromone glands, single sensillum recordings, and flight tunnel behavioral analyses were carried out on progeny from reciprocal crosses, as well as on progeny from subsequent F2 and maternal and paternal backcrosses. The data show that the production of the female pheromone blend primarily is controlled by a single autosomal factor, that pheromone-responding olfactory cells are controlled by another autosomal factor, and that behavioral response to pheromone is controlled by a sex-linked gene. F1 males were found to possess olfactory receptor cells that give spike amplitudes to the two pheromone isomers that are intermediate to those of the high and low amplitude cells of the parent populations. Fifty-five percent of the F1 males tested responded fully to pheromone sources ranging from the hybrid (E)-11-tetradecenyl acetate/(Z)-11-tetradecenyl acetate (E/Z) molar blend of 65:35 to the E/Z molar blend of 3:97 for the Z morph parents, but very few responded to the E/Z molar blend of 99:1 for the E morph parents. Data on the inheritance patterns support speculation that the Z morph is the ancestral and that the E morph is the derived European corn borer population. PMID:16593886

  17. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine.

    PubMed

    Howard, Jeremy T; O'Nan, Audrey T; Maltecca, Christian; Baynes, Ronald E; Ashwell, Melissa S

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  18. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine

    PubMed Central

    Howard, Jeremy T.; O’Nan, Audrey T.; Maltecca, Christian; Baynes, Ronald E.; Ashwell, Melissa S.

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  19. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine.

    PubMed

    Howard, Jeremy T; O'Nan, Audrey T; Maltecca, Christian; Baynes, Ronald E; Ashwell, Melissa S

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  20. Structure and expression of phosphoglucan phosphatase genes of Like Sex Four1 and Like Sex Four2 in barley.

    PubMed

    Ma, Jian; Gao, Shang; Jiang, Qian-Tao; Yang, Qiang; Sun, Min; Wang, Ji-Rui; Qi, Peng-Fei; Liu, Ya-Xi; Li, Wei; Pu, Zhi-En; Lan, Xiu-Jin; Wei, Yu-Ming; Liu, Chunji; Zheng, You-Liang

    2016-06-01

    Phosphoglucan phosphatases (Like-SEX4 1 and 2; LSF1 and LSF2) were reported to play roles in starch metabolism in leaves of Arabidopsis. In this study, we identified and mapped the LSF1 and LSF2 genes in barley (HvLSF1 and HvLSF2), characterized their gene and protein structures, predicted the cis-elements of their promoters, and analysed their expression patterns. HvLSF1 and HvLSF2 were mapped on the long arm of chromosome 1H (1HL) and 5H (5HL), respectively. Our results revealed varied exon-intron structures and conserved exon-intron junctions in both LSF1 and LSF2 from a range of analysed species. Alignment of protein sequences indicated that cTP and CT domains are much less varied than the functional domains (PDZ, DPS and CBM48). LSF2 was mainly expressed in anthers of barley and rice, and in leaf of Arabidopsis. LSF1 was mainly expressed in endosperm of barley and leaf of Arabidopsis and rice. The expression of LSF1 exhibited a diurnal pattern in rice only and that of LSF2 in both rice and Arabidopsis. Of the investigated stresses, only cold stress significantly reduced expression level of LSF1 and LSF2 in barley and LSF2 in Arabidopsis at late stages of the treatments. While heat treatment significantly decreased expression levels of LSF1 at middle stage (4 h) of a treatment in Arabidopsis only. The strong relationships detected between LSF2 and starch excess4 (SEX4), glucan, water dikinases or phosphoglucan, water dikinases were identified and discussed. Taken together, these results provide information of genetic manipulation of LSF1 and LSF2, especially in monocotyledon and further elucidate their regulatory mechanism in plant development.

  1. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes.

    PubMed

    Soh, Y Q Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G; Graves, Tina; Minx, Patrick J; Fulton, Robert S; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L; Rozen, Steve; Hughes, Jennifer F; Owens, Elaine; Womack, James E; Murphy, William J; Cao, Qing; de Jong, Pieter; Warren, Wesley C; Wilson, Richard K; Skaletsky, Helen; Page, David C

    2014-11-01

    We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.

  2. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes

    PubMed Central

    Soh, Y.Q. Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G.; Graves, Tina; Minx, Patrick J.; Fulton, Robert S.; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L.; Rozen, Steve; Hughes, Jennifer F.; Owens, Elaine; Womack, James E.; Murphy, William J.; Cao, Qing; de Jong, Pieter; Warren, Wesley C.; Wilson, Richard K.; Skaletsky, Helen; Page, David C.

    2014-01-01

    Summary We sequenced the MSY (Male-Specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only two percent of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 50 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs, but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism. PMID:25417157

  3. Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes.

    PubMed

    Birchler, James A

    2014-10-01

    Studies of gene expression in aneuploids have often made the assumption that measurements of RNA abundance from the varied chromosome will establish whether there is a dosage effect or compensation. Typical procedures of RNA isolation and use of equal amounts of RNA for quantitative estimates will not measure the total transcriptome size nor the absolute expression levels per cell. Use of internal endogenous standards or averages from unvaried chromosomes for normalizations makes the assumption that there are no global modulations across the genome. However, studies that use controls to test these assumptions reveal that there are in fact often modulations on all chromosomes. The same caveats apply to gene expression studies of sex chromosomes, which also involve changes in dosage of a small portion of the genome. Here, we describe some of the pitfalls of studies of aneuploidy and sex chromosome gene expression and review methods that have been used to avoid them.

  4. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects.

    PubMed

    Geuverink, E; Beukeboom, L W

    2014-01-01

    Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects.

  5. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts

    PubMed Central

    Bermejo-Alvarez, P.; Rizos, D.; Rath, D.; Lonergan, P.; Gutierrez-Adan, A.

    2010-01-01

    Although genetically identical for autosomal Chrs (Chr), male and female preimplantation embryos could display sex-specific transcriptional regulation. To illustrate sex-specific differences at the mRNA level, we compared gene-expression patterns between male and female blastocysts by DNA microarray comparison of nine groups of 60 bovine in vitro-produced blastocysts of each sex. Almost one-third of the transcripts detected showed sexual dimorphism (2,921 transcripts; false-discovery rate, P < 0.05), suggesting that in the absence of hormonal influences, the sex Chrs impose an extensive transcriptional regulation upon autosomal genes. Six genes were analyzed by qPCR in in vivo-derived embryos, which displayed similar sexual dimorphism. Ontology analysis suggested a higher global transcriptional level in females and a more active protein metabolism in males. A gene homolog to an X-linked gene involved in network interactions during spliceosome assembly was found in the Y-Chr. Most of the X-linked-expressed transcripts (88.5%) were up-regulated in females, but most of them (70%) exhibited fold-changes lower than 1.6, suggesting that X-Chr inactivation is partially achieved at the blastocyst stage. Almost half of the transcripts up-regulated in female embryos exhibiting more than 1.6-fold change were present in the X-Chr and eight of them were selected to determine a putative paternal imprinting by gene expression comparison with parthenogenetic embryos. Five (BEX, CAPN6, BEX2, SRPX2, and UBE2A) exhibited a higher expression in females than in parthenotes, suggesting that they are predominantly expressed by the paternal inherited X-Chr and that imprinting may increase the transcriptional skew caused by double X-Chr dosage. PMID:20133684

  6. Sex differences in GABAergic gene expression occur in the anterior cingulate cortex in schizophrenia.

    PubMed

    Bristow, Greg C; Bostrom, John A; Haroutunian, Vahram; Sodhi, Monsheel S

    2015-09-01

    GABAergic dysfunction has been strongly implicated in the pathophysiology of schizophrenia. In this study, we analyzed the expression levels of several GABAergic genes in the anterior cingulate cortex (ACC) of postmortem subjects with schizophrenia (n=21) and a comparison group of individuals without a history of psychiatric illness (n=18). Our analyses revealed a significant sex by diagnosis effect, along with significant differences in GABAergic gene expression based on medication status. Analyses revealed that in male groups, the expression of GABAergic genes was generally lower in schizophrenia cases compared to the controls, with significantly lower expression levels of GABA-Aα5, GABA-Aβ1, and GABA-Aε. In females, the expression of GABAergic genes was higher in the schizophrenia cases, with significantly higher expression of the GABA-Aβ1 and GAD67 genes. Analysis of the effect of medication in the schizophrenia subjects revealed significantly higher expression of GABA-Aα1-3, GABA-Aβ2, GABA-Aγ2, and GAD67 in the medicated group compared to the unmedicated group. These data show that sex differences in the expression of GABAergic genes occur in the ACC in schizophrenia. Therefore, our data support previous findings of GABAergic dysfunction in schizophrenia and emphasize the importance of considering sex in analyses of the pathophysiology of schizophrenia. Sex differences in the GABAergic regulation of ACC function may contribute to the differences observed in the symptoms of male and female patients with schizophrenia. In addition, our findings indicate that antipsychotic medications may alter GABAergic signaling in the ACC, supporting the potential of GABAergic targets for the development of novel antipsychotic medication.

  7. Natural variation of the Y chromosome suppresses sex ratio distortion and modulates testis-specific gene expression in Drosophila simulans.

    PubMed

    Branco, A T; Tao, Y; Hartl, D L; Lemos, B

    2013-07-01

    X-linked sex-ratio distorters that disrupt spermatogenesis can cause a deficiency in functional Y-bearing sperm and a female-biased sex ratio. Y-linked modifiers that restore a normal sex ratio might be abundant and favored when a X-linked distorter is present. Here we investigated natural variation of Y-linked suppressors of sex-ratio in the Winters systems and the ability of these chromosomes to modulate gene expression in Drosophila simulans. Seventy-eight Y chromosomes of worldwide origin were assayed for their resistance to the X-linked sex-ratio distorter gene Dox. Y chromosome diversity caused males to sire ∼63% to ∼98% female progeny. Genome-wide gene expression analysis revealed hundreds of genes differentially expressed between isogenic males with sensitive (high sex ratio) and resistant (low sex ratio) Y chromosomes from the same population. Although the expression of about 75% of all testis-specific genes remained unchanged across Y chromosomes, a subset of post-meiotic genes was upregulated by resistant Y chromosomes. Conversely, a set of accessory gland-specific genes and mitochondrial genes were downregulated in males with resistant Y chromosomes. The D. simulans Y chromosome also modulated gene expression in XXY females in which the Y-linked protein-coding genes are not transcribed. The data suggest that the Y chromosome might exert its regulatory functions through epigenetic mechanisms that do not require the expression of protein-coding genes. The gene network that modulates sex ratio distortion by the Y chromosome is poorly understood, other than that it might include interactions with mitochondria and enriched for genes expressed in post-meiotic stages of spermatogenesis.

  8. Sex-specific splicing of the honeybee doublesex gene reveals 300 million years of evolution at the bottom of the insect sex-determination pathway.

    PubMed

    Cho, Soochin; Huang, Zachary Y; Zhang, Jianzhi

    2007-11-01

    Sex-determination mechanisms vary greatly among taxa. It has been proposed that genetic sex-determination pathways evolve in reverse order from the final step in the pathway to the first step. Consistent with this hypothesis, doublesex (dsx), the most downstream gene in the Drosophila sex-determination cascade that determines most sexual phenotypes also determines sex in other dipterans and the silk moth, while the upstream genes vary among these species. However, it is unknown when dsx was recruited to the sex-determination pathway during insect evolution. Furthermore, sex-specific splicing of dsx, by which dsx determines sex, is different in pattern and mechanism between the moth and the fly, raising an interesting question of how these insects have kept the executor of sex determination while allowing flexibility in the means of execution. To address these questions, here we study the dsx gene of the honeybee Apis mellifera, a member of the most basal lineage of holometabolous insects. We report that honeybee dsx is sex-specifically spliced and that it produces both the fly-type and moth-type splicing forms, indicating that the use of different splicing forms of Dsx in controlling sexual differentiation was present in the common ancestor of holometabolous insects. Our data suggest that in ancestral holometabolous insects the female Dsx form is the default and the male form is generated by suppressing the splicing of the female form. Thus, it is likely that the dsx splicing activator system in flies, where the male form is the default, arose during early dipteran evolution.

  9. Discovery and identification of candidate sex-related genes based on transcriptome sequencing of Russian sturgeon (Acipenser gueldenstaedtii) gonads.

    PubMed

    Chen, Yadong; Xia, Yongtao; Shao, Changwei; Han, Lei; Chen, Xuejie; Yu, Mengjun; Sha, Zhenxia

    2016-07-01

    As the Russian sturgeon (Acipenser gueldenstaedtii) is an important food and is the main source of caviar, it is necessary to discover the genes associated with its sex differentiation. However, the complicated life and maturity cycles of the Russian sturgeon restrict the accurate identification of sex in early development. To generate a first look at specific sex-related genes, we sequenced the transcriptome of gonads in different development stages (1, 2, and 5 yr old stages) with next-generation RNA sequencing. We generated >60 million raw reads, and the filtered reads were assembled into 263,341 contigs, which produced 38,505 unigenes. Genes involved in signal transduction mechanisms were the most abundant, suggesting that development of sturgeon gonads is under control of signal transduction mechanisms. Differentially expressed gene analysis suggests that more genes for protein synthesis, cytochrome c oxidase subunits, and ribosomal proteins were expressed in female gonads than in male. Meanwhile, male gonads expressed more transposable element transposase, reverse transcriptase, and transposase-related genes than female. In total, 342, 782, and 7,845 genes were detected in intersex, male, and female transcriptomes, respectively. The female gonad expressed more genes than the male gonad, and more genes were involved in female gonadal development. Genes (sox9, foxl2) are differentially expressed in different sexes and may be important sex-related genes in Russian sturgeon. Sox9 genes are responsible for the development of male gonads and foxl2 for female gonads.

  10. Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities.

    PubMed

    Freund, Jean-Noël; Duluc, Isabelle; Reimund, Jean-Marie; Gross, Isabelle; Domon-Dell, Claire

    2015-02-01

    The homeoprotein encoded by the intestinal-specific Cdx2 gene is a major regulator of gut development and homeostasis, also involved in colon cancer as well as in intestinal-type metaplasias when it is abnormally expressed outside the gut. At the molecular level, structure/function studies have demonstrated that the Cdx2 protein is a transcription factor containing a conserved homeotic DNA-binding domain made of three alpha helixes arranged in a helix-turn-helix motif, preceded by a transcriptional domain and followed by a regulatory domain. The protein interacts with several thousand sites on the chromatin and widely regulates intestinal functions in stem/progenitor cells as well as in mature differentiated cells. Yet, this transcription factor also acts trough original nontranscriptional mechanisms. Indeed, the identification of novel protein partners of Cdx2 and also of a splicing variant revealed unexpected functions in the control of signaling pathways like the Wnt and NF-κB pathways, in double-strand break DNA repair and in premessenger RNA splicing. These novel functions of Cdx2 must be considered to fully understand the complexity of the role of Cdx2 in the healthy intestine and in diseases.

  11. Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities

    PubMed Central

    Freund, Jean-Noël; Duluc, Isabelle; Reimund, Jean-Marie; Gross, Isabelle; Domon-Dell, Claire

    2015-01-01

    The homeoprotein encoded by the intestinal-specific Cdx2 gene is a major regulator of gut development and homeostasis, also involved in colon cancer as well as in intestinal-type metaplasias when it is abnormally expressed outside the gut. At the molecular level, structure/function studies have demonstrated that the Cdx2 protein is a transcription factor containing a conserved homeotic DNA-binding domain made of three alpha helixes arranged in a helix-turn-helix motif, preceded by a transcriptional domain and followed by a regulatory domain. The protein interacts with several thousand sites on the chromatin and widely regulates intestinal functions in stem/progenitor cells as well as in mature differentiated cells. Yet, this transcription factor also acts trough original nontranscriptional mechanisms. Indeed, the identification of novel protein partners of Cdx2 and also of a splicing variant revealed unexpected functions in the control of signaling pathways like the Wnt and NF-κB pathways, in double-strand break DNA repair and in premessenger RNA splicing. These novel functions of Cdx2 must be considered to fully understand the complexity of the role of Cdx2 in the healthy intestine and in diseases. PMID:25663763

  12. Asymmetric gene flow and constraints on adaptation caused by sex ratio distorters.

    PubMed

    Telschow, A; Engelstädter, J; Yamamura, N; Hammerstein, P; Hurst, G D D

    2006-05-01

    Asymmetric gene flow is generally believed to oppose natural selection and potentially impede adaptation. Whilst the cause of asymmetric gene flow has been seen largely in terms of variation in population density over space, asymmetric gene flow can also result from varying sex ratios across subpopulations with similar population sizes. We model the process of adaptation in a scenario in which two adjacent subpopulations have different sex ratios, associated with different levels of infection with maternally inherited endosymbionts that selectively kill male hosts. Two models are analyzed in detail. First, we consider one host locus with two alleles, each of which possesses a selective advantage in one of the subpopulations. We found that local adaptation can strongly be impeded in the subpopulation with the more female biased population sex ratio. Second, we analyze host alleles that provide resistance against the male-killing (MK) endosymbionts and show that asymmetric gene flow can prevent the spread of such alleles under certain conditions. These results might have important implications for the coevolution of MK bacteria and their hosts.

  13. Sex steroids stimulate leptin gene expression in Atlantic salmon parr hepatocytes in vitro.

    PubMed

    Trombley, Susanne; Rocha, Ana; Schmitz, Monika

    2015-09-15

    In mammals, leptin plays an important role in puberty and reproduction and leptin is regulated by sex steroids. Elevated leptin levels have been associated with sexual maturation in some teleosts such as Atlantic salmon. In the present study, primary cultures of Atlantic salmon hepatocytes were used to investigate the direct effects of different sex steroids on expression of the two salmon leptin-a genes, lepa1 and lepa2. Testosterone (T) stimulated both lepa1 and lepa2 in a dose dependent manner after four days of incubation. The stimulatory effect of T on leptin expression was not prevented by co-incubation with the aromatase inhibitor fadrozole, indicating a direct androgen effect on transcription. The non-aromatizable androgen 11-ketotestosterone (11-KT), which is the main androgen in fish, was generally slightly less potent than T in stimulating lepa1 and lepa2. The strongest stimulatory response was seen for 17β-estradiol (E2). E2 treatment significantly up-regulated lepa1 and lepa2 gene expression at doses of 10nM and 1nM for each gene, respectively. Lepa1, but not lepa2, was stimulated by T and 11-KT in immature male and immature female parr, while E2 stimulated expression of both genes. The sensitivity to sex steroid stimulation differed in maturing males compared to immature. In maturing males, the androgens and E2 stimulated lepa2 but not lepa1, while in immature males, the androgens and E2 stimulated lepa1, but only E2 stimulated lepa2. The differential response of the two leptin paralogues to the sex steroids suggests differences in regulation of the two leptin genes during maturation. Altogether, these results indicate that leptin expression in Atlantic salmon hepatocytes is directly regulated at the transcriptional level by the main teleost androgens and an estrogen, and that the response might depend on the developmental stage of the fish.

  14. Response of candidate sex-determining genes to changes in temperature reveals their involvement in the molecular network underlying temperature-dependent sex determination.

    PubMed

    Shoemaker, Christina M; Queen, Joanna; Crews, David

    2007-11-01

    Gonadogenesis, the process of forming an ovary or a testis from a bipotential gonad, is critical to the development of sexually reproducing adults. Although the molecular pathway underlying vertebrate gonadogenesis is well characterized in organisms exhibiting genotypic sex determination, it is less well understood in vertebrates whose sex is determined by environmental factors. We examine the response of six candidate sex-determining genes to sex-reversing temperature shifts in a species with temperature-dependent sex determination (TSD). For the first time, we report the regulation of FoxL2, Wnt4, Dmrt1, and Mis by temperature, confirming their involvement in the molecular pathway underlying TSD and placing them downstream of the action of temperature. We find evidence that FoxL2 plays an ovarian-specific role in development, whereas Wnt4 appears to be involved in both testis and ovary formation. Dmrt1 expression shows rapid activation in response to a shift to male-producing temperature, whereas Mis up-regulation is delayed. Furthermore, early repression of Mis appears critical to ovarian development. We also investigate Dax1 and Sox9 and reveal that at the level of gene expression, response to temperature is comparatively later in gonadogenesis. By examining the role of these genes in TSD, we can begin to elucidate elements of conservation and divergence between sex-determining mechanisms.

  15. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  16. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975

  17. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite

    PubMed Central

    Mikheyev, Alexander; Tin, Mandy M. Y.; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975

  18. Corticosteroid receptor gene expression is related to sex and social behaviour in a social fish.

    PubMed

    O'Connor, Constance M; Rodela, Tammy M; Mileva, Viktoria R; Balshine, Sigal; Gilmour, Kathleen M

    2013-03-01

    Circulating corticosteroids have been related to social status in a variety of species. However, our understanding of corticosteroid receptor expression and its relationship with sociality is still in its infancy. Knowledge of variation in receptor expression is critical to understand the physiological relevance of differences in circulating corticosteroid concentrations. In this study, we examined corticosteroid receptor gene expression in relation to dominance rank, sex, and social behaviour in the highly social cichlid fish, Neolamprologus pulcher. We examined the relative gene expression of the three known teleost corticosteroid receptors: glucocorticoid receptor 1 (GR1), glucocorticoid receptor 2 (GR2), and the mineralocorticoid receptor (MR) in liver and brain tissue of dominant and subordinate N. pulcher males and females. Phylogenetic analysis revealed the N. pulcher gene originally described as GR2, clustered with other teleost GR1 genes, while the originally-described N. pulcher GR1 gene clustered with the GR2 genes of other teleosts. Therefore we propose a change in the original nomenclature of the N. pulcher GRs: GR1 (formerly GR2) and GR2 (formerly GR1) and adopt this new nomenclature throughout this manuscript. Liver MR transcript levels were higher in males than females, and positively related to submissive behaviour. Liver GR2 (formerly GR1) transcript levels were also higher in males than females. Collectively, the results demonstrate sex differences in corticosteroid receptor abundance, and suggest tissue- and receptor-specific roles for corticosteroid receptors in mediating aspects of social behaviour.

  19. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    PubMed Central

    Landeen, Emily L.; Muirhead, Christina A.; Meiklejohn, Colin D.; Presgraves, Daven C.

    2016-01-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  20. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    PubMed

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  1. Sex-specific gene interactions in the patterning of insect genitalia.

    PubMed

    Aspiras, Ariel C; Smith, Frank W; Angelini, David R

    2011-12-15

    Genitalia play an important role in the life histories of insects, as in other animals. These sexually dimorphic structures evolve rapidly and derive from multiple body segments. Despite the importance of insect genitalia, descriptions of their genetic patterning have been limited to fruit flies. In this study, we report the functions, interactions and regulation of appendage patterning genes (e.g. homothorax, dachshund, and Distal-less) in two insects: the milkweed bug Oncopeltus fasciatus, and the red flour beetle Tribolium castaneum. These species differ in the anatomical complexity of their genitalia. Females of T. castaneum have a terminal ovipositor ending in short styli, while O. fasciatus have a multi-jointed subterminal ovipositor. Male O. fasciatus have a genital capsule consisting of large gonocoxopodites and claspers; T. castaneum males have relatively simple genitalia. The requirement of appendage-patterning genes in males differed between the two species: No defects were observed in T. castaneum male genitalia, and while the male claspers of O. fasciatus were affected by depletion of appendage-patterning genes, the proximal gonocoxopodite was not, suggesting a non-appendicular origin for this structure. Only the styli of the T. castaneum ovipositor were affected by RNAi depletion of appendage-patterning genes (14 genes in all). The posterior Hox genes (abdominal-A and Abdominal-B) were required for proper genital development in O. fasciatus and regulated Distal-less and homothorax similarly in both sexes. Distal-less and dachshund were regulated differently in male and female O. fasciatus. Knockdown of the sex determination gene intersex produced a partial female-to-male transformation of abdominal and genital anatomy and also resulted in abrogation of female-specific regulation of these genes. These results provide developmental genetic support for specific anatomical hypotheses of serial homology. Importantly, these gene functions and interactions

  2. Sex-specific gene interactions in the patterning of insect genitalia.

    PubMed

    Aspiras, Ariel C; Smith, Frank W; Angelini, David R

    2011-12-15

    Genitalia play an important role in the life histories of insects, as in other animals. These sexually dimorphic structures evolve rapidly and derive from multiple body segments. Despite the importance of insect genitalia, descriptions of their genetic patterning have been limited to fruit flies. In this study, we report the functions, interactions and regulation of appendage patterning genes (e.g. homothorax, dachshund, and Distal-less) in two insects: the milkweed bug Oncopeltus fasciatus, and the red flour beetle Tribolium castaneum. These species differ in the anatomical complexity of their genitalia. Females of T. castaneum have a terminal ovipositor ending in short styli, while O. fasciatus have a multi-jointed subterminal ovipositor. Male O. fasciatus have a genital capsule consisting of large gonocoxopodites and claspers; T. castaneum males have relatively simple genitalia. The requirement of appendage-patterning genes in males differed between the two species: No defects were observed in T. castaneum male genitalia, and while the male claspers of O. fasciatus were affected by depletion of appendage-patterning genes, the proximal gonocoxopodite was not, suggesting a non-appendicular origin for this structure. Only the styli of the T. castaneum ovipositor were affected by RNAi depletion of appendage-patterning genes (14 genes in all). The posterior Hox genes (abdominal-A and Abdominal-B) were required for proper genital development in O. fasciatus and regulated Distal-less and homothorax similarly in both sexes. Distal-less and dachshund were regulated differently in male and female O. fasciatus. Knockdown of the sex determination gene intersex produced a partial female-to-male transformation of abdominal and genital anatomy and also resulted in abrogation of female-specific regulation of these genes. These results provide developmental genetic support for specific anatomical hypotheses of serial homology. Importantly, these gene functions and interactions

  3. Isolation of differentially expressed sex genes in garden asparagus using suppression subtractive hybridization.

    PubMed

    Deng, Chuan-liang; Wang, Ning-na; Li, Shu-fen; Dong, Tian-yu; Zhao, Xin-peng; Wang, Shao-jing; Gao, Wu-jun; Lu, Long-dou

    2015-09-01

    Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus. PMID:26038270

  4. Isolation of differentially expressed sex genes in garden asparagus using suppression subtractive hybridization.

    PubMed

    Deng, Chuan-liang; Wang, Ning-na; Li, Shu-fen; Dong, Tian-yu; Zhao, Xin-peng; Wang, Shao-jing; Gao, Wu-jun; Lu, Long-dou

    2015-09-01

    Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus.

  5. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle.

    PubMed

    Schroeder, Anthony L; Metzger, Kelsey J; Miller, Alexandra; Rhen, Turk

    2016-05-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad.

  6. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle.

    PubMed

    Schroeder, Anthony L; Metzger, Kelsey J; Miller, Alexandra; Rhen, Turk

    2016-05-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad. PMID:26936926

  7. Floral evolution in the Annonaceae: hypotheses of homeotic mutations and functional convergence.

    PubMed

    Saunders, Richard M K

    2010-08-01

    The recent publication of hypotheses explaining the homeotic control of floral organ identity together with the availability of increasingly comprehensive and well-resolved molecular phylogenies presents an ideal opportunity for reassessing current knowledge of floral diversity and evolution in the Annonaceae. This review summarizes currently available information on selected aspects of floral structure and function, including: changes in the number of perianth whorls and the number of perianth parts per whorl; the evolution of sympetaly; the diversity and evolution of pollination chambers (with a novel classification of seven main structural forms of floral chamber based on the different arrangement, size and shape of petals); the evolution of perianth glands; floral unisexuality and hypotheses explaining the unexpectedly high frequency of occurrence of androdioecy; the origin and possible function of inner and outer staminodes; the evolution of stamen connective diversity and theca septation; and the origin of 'true' syncarpy and functionally equivalent extragynoecial compita. In each case, current ideas on the origin, evolution and function are discussed. The information presented in this review enables two main conclusions to be drawn. The first is that changes in the homeotic control of floral organ identity may have had a profound impact on floral structure in several disparate lineages in the family. This is most obvious in Fenerivia, in which a centrifugal shift of floral organ identity has occurred, and in Dasymaschalon, in which a reverse (centripetal) shift has occurred. Other genera that have gained or lost entire perianth whorls are likely to have undergone similar homeotic changes. Attention is also drawn to the extensive functional convergence in Annonaceae flowers, with widespread homoplasy in many characters that have previously been emphasized in higher-level classifications.

  8. Evidence for Emergence of Sex-Determining Gene(s) in a Centromeric Region in Vasconcellea parviflora

    PubMed Central

    Iovene, Marina; Yu, Qingyi; Ming, Ray; Jiang, Jiming

    2015-01-01

    Sex chromosomes have been studied in many plant and animal species. However, few species are suitable as models to study the evolutionary histories of sex chromosomes. We previously demonstrated that papaya (Carica papaya) (2n = 2x = 18), a fruit tree in the family Caricaceae, contains recently emerged but cytologically heteromorphic X/Y chromosomes. We have been intrigued by the possible presence and evolution of sex chromosomes in other dioecious Caricaceae species. We selected a set of 22 bacterial artificial chromosome (BAC) clones that are distributed along the papaya X/Y chromosomes. These BACs were mapped to the meiotic pachytene chromosomes of Vasconcellea parviflora (2n = 2x = 18), a species that diverged from papaya ∼27 million years ago. We demonstrate that V. parviflora contains a pair of heteromorphic X/Y chromosomes that are homologous to the papaya X/Y chromosomes. The comparative mapping results revealed that the male-specific regions of the Y chromosomes (MSYs) probably initiated near the centromere of the Y chromosomes in both species. The two MSYs, however, shared only a small chromosomal domain near the centromere in otherwise rearranged chromosomes. The V. parviflora MSY expanded toward the short arm of the chromosome, whereas the papaya MSY expanded in the opposite direction. Most BACs mapped to papaya MSY were not located in V. parviflora MSY, revealing different DNA compositions in the two MSYs. These results suggest that mutation of gene(s) in the centromeric region may have triggered sex chromosome evolution in these plant species. PMID:25480779

  9. The Sex-Determination Genes fruitless and doublesex Specify a Neural Substrate Required for Courtship Song

    PubMed Central

    Rideout, Elizabeth J.; Billeter, Jean-Christophe; Goodwin, Stephen F.

    2007-01-01

    Summary Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1–6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10–13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (FruM), we show a critical requirement for the male isoform of dsx (DsxM), alongside FruM, in the specification of courtship song. Therefore, although FruM expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without DsxM, the determination of a male-specific CNS and thus a full complement of male behaviors are not realized. PMID:17716899

  10. Estimating the sex-specific effects of genes on facial attractiveness and sexual dimorphism.

    PubMed

    Mitchem, Dorian G; Purkey, Alicia M; Grebe, Nicholas M; Carey, Gregory; Garver-Apgar, Christine E; Bates, Timothy C; Arden, Rosalind; Hewitt, John K; Medland, Sarah E; Martin, Nicholas G; Zietsch, Brendan P; Keller, Matthew C

    2014-05-01

    Human facial attractiveness and facial sexual dimorphism (masculinity-femininity) are important facets of mate choice and are hypothesized to honestly advertise genetic quality. However, it is unclear whether genes influencing facial attractiveness and masculinity-femininity have similar, opposing, or independent effects across sex, and the heritability of these phenotypes is poorly characterized. To investigate these issues, we assessed facial attractiveness and facial masculinity-femininity in the largest genetically informative sample (n = 1,580 same- and opposite-sex twin pairs and siblings) to assess these questions to date. The heritability was ~0.50-0.70 for attractiveness and ~0.40-0.50 for facial masculinity-femininity, indicating that, despite ostensible selection on genes influencing these traits, substantial genetic variation persists in both. Importantly, we found evidence for intralocus sexual conflict, whereby alleles that increase masculinity in males have the same effect in females. Additionally, genetic influences on attractiveness were shared across the sexes, suggesting that attractive fathers tend to have attractive daughters and attractive mothers tend to have attractive sons. PMID:24213680

  11. Estimating the Sex-Specific Effects of Genes on Facial Attractiveness and Sexual Dimorphism

    PubMed Central

    Purkey, Alicia M.; Grebe, Nicholas M.; Carey, Gregory; Garver-Apgar, Christine E.; Bates, Timothy C.; Arden, Rosalind; Hewitt, John K.; Medland, Sarah E.; Martin, Nicholas G.; Zietsch, Brendan P.; Keller, Matthew C.

    2014-01-01

    Human facial attractiveness and facial sexual dimorphism (masculinity–femininity) are important facets of mate choice and are hypothesized to honestly advertise genetic quality. However, it is unclear whether genes influencing facial attractiveness and masculinity–femininity have similar, opposing, or independent effects across sex, and the heritability of these phenotypes is poorly characterized. To investigate these issues, we assessed facial attractiveness and facial masculinity–femininity in the largest genetically informative sample (n = 1,580 same- and opposite-sex twin pairs and siblings) to assess these questions to date. The heritability was ~0.50–0.70 for attractiveness and ~0.40–0.50 for facial masculinity– femininity, indicating that, despite ostensible selection on genes influencing these traits, substantial genetic variation persists in both. Importantly, we found evidence for intralocus sexual conflict, whereby alleles that increase masculinity in males have the same effect in females. Additionally, genetic influences on attractiveness were shared across the sexes, suggesting that attractive fathers tend to have attractive daughters and attractive mothers tend to have attractive sons. PMID:24213680

  12. Functional analysis of sex-determination genes by gene silencing with LNA-DNA gapmers in the silkworm, Bombyx mori.

    PubMed

    Sakai, Hiroki; Sakaguchi, Honami; Aoki, Fugaku; Suzuki, Masataka G

    2015-08-01

    The sexual fate of B. mori is determined genetically; ZW, female and ZZ, male. Recently, we successfully identified a strong candidate gene at the top of the sex determination cascade in B. mori. This gene was termed Feminizer (Fem) and revealed to be a source of Fem-piRNA. Further, we found that B. mori doublesex (Bmdsx) splicing was markedly altered to produce the male-type isoform when a Fem-piRNA inhibitor was injected into ZW embryos. Moreover, knockdown of Masculinizer (Masc), a Fem-piRNA target gene, altered to produce the female-type isoform of Bmdsx in male embryos. However, it remains unclear as to whether Masc directly regulates the sex-specific expression of Bmdsx. In previous studies, we determined that the male-specific isoform of the Bombyx homolog of IGF-II mRNA-binding protein (Imp(M)) was involved in the male-specific splicing of Bmdsx. In an attempt to clarify the genetic relationship between Fem, Masc, Imp(M), and Bmdsx, knockdown experiments were performed. Knockdown of Fem shifted into male-type Bmdsx, Imp(M) and Masc in female embryos. Knockdown of Masc led to the production of the female-type Bmdsx and a dramatic reduction in Imp(M) expression in male embryos. Knockdown of Imp(M) shifted Bmdsx splice mode from the male-type into the female-type. Our results suggest that: (1) Fem reduces Masc expression, (2) Masc dramatically induces Imp(M) expression, and (3) Imp(M) shifting Bmdsx splice mode from the female-type into the male-type. Based on these findings, we propose a possible genetic cascade regulating sex determination in B. mori.

  13. Control of Mosquito-Borne Infectious Diseases: Sex and Gene Drive.

    PubMed

    Adelman, Zach N; Tu, Zhijian

    2016-03-01

    Sterile male releases have successfully reduced local populations of the dengue vector, Aedes aegypti, but challenges remain in scale and in separating sexes before release. The recent discovery of the first mosquito male determining factor (M factor) will facilitate our understanding of the genetic programs that initiate sexual development in mosquitoes. Manipulation of the M factor and possible intermediary factors may result in female-to-male conversion or female killing, enabling efficient sex separation and effective reduction of target mosquito populations. Given recent breakthroughs in the development of CRISPR-Cas9 reagents as a source of gene drive, more advanced technologies at driving maleness, the ultimate disease refractory phenotype, become possible and may represent efficient and self-limiting methods to control mosquito populations. PMID:26897660

  14. Control of Mosquito-Borne Infectious Diseases: Sex and Gene Drive.

    PubMed

    Adelman, Zach N; Tu, Zhijian

    2016-03-01

    Sterile male releases have successfully reduced local populations of the dengue vector, Aedes aegypti, but challenges remain in scale and in separating sexes before release. The recent discovery of the first mosquito male determining factor (M factor) will facilitate our understanding of the genetic programs that initiate sexual development in mosquitoes. Manipulation of the M factor and possible intermediary factors may result in female-to-male conversion or female killing, enabling efficient sex separation and effective reduction of target mosquito populations. Given recent breakthroughs in the development of CRISPR-Cas9 reagents as a source of gene drive, more advanced technologies at driving maleness, the ultimate disease refractory phenotype, become possible and may represent efficient and self-limiting methods to control mosquito populations.

  15. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice.

    PubMed

    Ding, Juan; Berryman, Darlene E; Jara, Adam; Kopchick, John J

    2012-08-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  16. Sex-linkage of sexually antagonistic genes is predicted by female, but not male, effects in birds.

    PubMed

    Mank, Judith E; Ellegren, Hans

    2009-06-01

    Evolutionary theory predicts that sexually antagonistic loci will be preferentially sex-linked, and this association can be empirically testes with data on sex-biased gene expression with the assumption that sex-biased gene expression represents the resolution of past sexual antagonism. However, incomplete dosage compensating mechanisms and meiotic sex chromosome inactivation have hampered efforts to connect expression data to theoretical predictions regarding the genomic distribution of sexually antagonistic loci in a variety of animals. Here we use data on the underlying regulatory mechanism that produce expression sex-bias to test the genomic distribution of sexually antagonistic genes in chicken. Using this approach, which is free from problems associated with the lack of dosage compensation in birds, we show that female-detriment genes are significantly overrepresented on the Z chromosome, and female-benefit genes underrepresented. By contrast, male-effect genes show no over- or underrepresentation on the Z chromosome. These data are consistent with a dominant mode of inheritance for sexually antagonistic genes, in which male-benefit coding mutations are more likely to be fixed on the Z due to stronger male-specific selective pressures. After fixation of male-benefit alleles, regulatory changes in females evolve to minimize antagonism by reducing female expression.

  17. Homeotic proteins participate in the function of human-DNA replication origins

    PubMed Central

    Marchetti, Laura; Comelli, Laura; D’Innocenzo, Barbara; Puzzi, Luca; Luin, Stefano; Arosio, Daniele; Calvello, Mariantonietta; Mendoza-Maldonado, Ramiro; Peverali, Fiorenzo; Trovato, Fabio; Riva, Silvano; Biamonti, Giuseppe; Abdurashidova, Gulnara; Beltram, Fabio; Falaschi, Arturo

    2010-01-01

    Recent evidence points to homeotic proteins as actors in the crosstalk between development and DNA replication. The present work demonstrates that HOXC13, previously identified as a new member of human DNA replicative complexes, is a stable component of early replicating chromatin in living cells: it displays a slow nuclear dynamics due to its anchoring to the DNA minor groove via the arginine-5 residue of the homeodomain. HOXC13 binds in vivo to the lamin B2 origin in a cell-cycle-dependent manner consistent with origin function; the interaction maps with nucleotide precision within the replicative complex. HOXC13 displays in vitro affinity for other replicative complex proteins; it interacts also in vivo with the same proteins in a cell-cycle-dependent fashion. Chromatin-structure modifying treatments, disturbing origin function, reduce also HOXC13–origin interaction. The described interactions are not restricted to a single origin nor to a single homeotic protein (also HOXC10 binds the lamin B2 origin in vivo). Thus, HOX complexes probably contribute in a general, structure-dependent manner, to origin identification and assembly of replicative complexes thereon, in presence of specific chromatin configurations. PMID:20693533

  18. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster.

    PubMed Central

    Gibson, G; Wemple, M; van Helden, S

    1999-01-01

    Introgression of homeotic mutations into wild-type genetic backgrounds results in a wide variety of phenotypes and implies that major effect modifiers of extreme phenotypes are not uncommon in natural populations of Drosophila. A composite interval mapping procedure was used to demonstrate that one major effect locus accounts for three-quarters of the variance for haltere to wing margin transformation in Ultrabithorax flies, yet has no obvious effect on wild-type development. Several other genetic backgrounds result in enlargement of the haltere significantly beyond the normal range of haploinsufficient phenotypes, suggesting genetic variation in cofactors that mediate homeotic protein function. Introgression of Antennapedia produces lines with heritable phenotypes ranging from almost complete suppression to perfect antennal leg formation, as well as transformations that are restricted to either the distal or proximal portion of the appendage. It is argued that the existence of "potential" variance, which is genetic variation whose effects are not observable in wild-type individuals, is a prerequisite for the uncoupling of genetic from phenotypic divergence. PMID:10049924

  19. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system

    PubMed Central

    Yamato, Katsuyuki T.; Ishizaki, Kimitsune; Fujisawa, Masaki; Okada, Sachiko; Nakayama, Shigeki; Fujishita, Mariko; Bando, Hiroki; Yodoya, Kohei; Hayashi, Kiwako; Bando, Tomoyuki; Hasumi, Akiko; Nishio, Tomohisa; Sakata, Ryoko; Yamamoto, Masayuki; Yamaki, Arata; Kajikawa, Masataka; Yamano, Takashi; Nishide, Taku; Choi, Seung-Hyuk; Shimizu-Ueda, Yuu; Hanajiri, Tsutomu; Sakaida, Megumi; Kono, Kaoru; Takenaka, Mizuki; Yamaoka, Shohei; Kuriyama, Chiaki; Kohzu, Yoshito; Nishida, Hiroyuki; Brennicke, Axel; Shin-i, Tadasu; Kohara, Yuji; Kohchi, Takayuki; Fukuzawa, Hideya; Ohyama, Kanji

    2007-01-01

    Y chromosomes are different from other chromosomes because of a lack of recombination. Until now, complete sequence information of Y chromosomes has been available only for some primates, although considerable information is available for other organisms, e.g., several species of Drosophila. Here, we report the gene organization of the Y chromosome in the dioecious liverwort Marchantia polymorpha and provide a detailed view of a Y chromosome in a haploid organism. On the 10-Mb Y chromosome, 64 genes are identified, 14 of which are detected only in the male genome and are expressed in reproductive organs but not in vegetative thalli, suggesting their participation in male reproductive functions. Another 40 genes on the Y chromosome are expressed in thalli and male sexual organs. At least six of these genes have diverged X-linked counterparts that are in turn expressed in thalli and sexual organs in female plants, suggesting that these X- and Y-linked genes have essential cellular functions. These findings indicate that the Y and X chromosomes share the same ancestral autosome and support the prediction that in a haploid organism essential genes on sex chromosomes are more likely to persist than in a diploid organism. PMID:17395720

  20. Regulation of larval hematopoiesis in Drosophila melanogaster: a role for the multi sex combs gene.

    PubMed Central

    Remillieux-Leschelle, Nathalie; Santamaria, Pedro; Randsholt, Neel B

    2002-01-01

    Drosophila larval hematopoietic organs produce circulating hemocytes that ensure the cellular host defense by recognizing and neutralizing non-self or noxious objects through phagocytosis or encapsulation and melanization. Hematopoietic lineage specification as well as blood cell proliferation and differentiation are tightly controlled. Mutations in genes that regulate lymph gland cell proliferation and hemocyte numbers in the body cavity cause hematopoietic organ overgrowth and hemocyte overproliferation. Occasionally, mutant hemocytes invade self-tissues, behaving like neoplastic malignant cells. Two alleles of the Polycomb group (PcG) gene multi sex combs (mxc) were previously isolated as such lethal malignant blood neoplasm mutations. PcG genes regulate Hox gene expression in vertebrates and invertebrates and participate in mammalian hematopoiesis control. Hence we investigated the need for mxc in Drosophila hematopoietic organs and circulating hemocytes. We show that mxc-induced hematopoietic hyperplasia is cell autonomous and that mxc mainly controls plasmatocyte lineage proliferation and differentiation in lymph glands and circulating hemocytes. Loss of the Toll pathway, which plays a similar role in hematopoiesis, counteracted mxc hemocyte proliferation but not mxc hemocyte differentiation. Several PcG genes tested in trans had no effects on mxc hematopoietic phenotypes, whereas the trithorax group gene brahma is important for normal and mutant hematopoiesis control. We propose that mxc provides one of the regulatory inputs in larval hematopoiesis that control normal rates of plasmatocyte and crystal lineage proliferation as well as normal rates and timing of hemocyte differentiation. PMID:12454071

  1. Environmental Sex Determination in the Branchiopod Crustacean Daphnia magna: Deep Conservation of a Doublesex Gene in the Sex-Determining Pathway

    PubMed Central

    Kato, Yasuhiko; Kobayashi, Kaoru; Watanabe, Hajime; Iguchi, Taisen

    2011-01-01

    Sex-determining mechanisms are diverse among animal lineages and can be broadly divided into two major categories: genetic and environmental. In contrast to genetic sex determination (GSD), little is known about the molecular mechanisms underlying environmental sex determination (ESD). The Doublesex (Dsx) genes play an important role in controlling sexual dimorphism in genetic sex-determining organisms such as nematodes, insects, and vertebrates. Here we report the identification of two Dsx genes from Daphnia magna, a freshwater branchiopod crustacean that parthenogenetically produces males in response to environmental cues. One of these genes, designated DapmaDsx1, is responsible for the male trait development when expressed during environmental sex determination. The domain organization of DapmaDsx1 was similar to that of Dsx from insects, which are thought to be the sister group of branchiopod crustaceans. Intriguingly, the molecular basis for sexually dimorphic expression of DapmaDsx1 is different from that of insects. Rather than being regulated sex-specifically at the level of pre–mRNA splicing in the coding region, DapmaDsx1 exhibits sexually dimorphic differences in the abundance of its transcripts. During embryogenesis, expression of DapmaDsx1 was increased only in males and its transcripts were primarily detected in male-specific structures. Knock-down of DapmaDsx1 in male embryos resulted in the production of female traits including ovarian maturation, whereas ectopic expression of DapmaDsx1 in female embryos resulted in the development of male-like phenotypes. Expression patterns of another D. magna Dsx gene, DapmaDsx2, were similar to those of DapmaDsx1, but silencing and overexpression of this gene did not induce any clear phenotypic changes. These results establish DapmaDsx1 as a key regulator of the male phenotype. Our findings reveal how ESD is implemented by selective expression of a fundamental genetic component that is functionally conserved

  2. Gene silencing and sex determination by programmed DNA elimination in parasitic nematodes.

    PubMed

    Streit, Adrian; Wang, Jianbin; Kang, Yuanyuan; Davis, Richard E

    2016-08-01

    Maintenance of genome integrity is essential. However, programmed DNA elimination removes specific DNA sequences from the genome during development. DNA elimination occurs in unicellular ciliates and diverse metazoa ranging from nematodes to vertebrates. Two distinct groups of nematodes use DNA elimination to silence germline-expressed genes in the soma (ascarids) or for sex determination (Strongyloides spp.). Data suggest that DNA elimination likely evolved independently in these nematodes. Recent studies indicate that differential CENP-A deposition within chromosomes defines which sequences are retained and lost during Ascaris DNA elimination. Additional studies are needed to determine the distribution, functions, and mechanisms of DNA elimination in nematodes. PMID:27315434

  3. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence.

    PubMed

    Jost, Matthias; Taketa, Shin; Mascher, Martin; Himmelbach, Axel; Yuo, Takahisa; Shahinnia, Fahimeh; Rutten, Twan; Druka, Arnis; Schmutzer, Thomas; Steuernagel, Burkhard; Beier, Sebastian; Taudien, Stefan; Scholz, Uwe; Morgante, Michele; Waugh, Robbie; Stein, Nils

    2016-06-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  4. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence1[OPEN

    PubMed Central

    Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele

    2016-01-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  5. Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.

    PubMed

    Merchant-Larios, H; Díaz-Hernández, V; Marmolejo-Valencia, A

    2010-01-01

    In reptiles with temperature-dependent sexual determination, the thermosensitive period (TSP) is the interval in which the sex is defined during gonadal morphogenesis. One-shift experiments in a group of eggs define the onset and the end of the TSP as all and none responses, respectively. Timing for sex-undetermined (UG) and -determined gonads (DG) differs at male- (MPT) or female-producing temperatures (FPT). During the TSP a decreasing number of embryos respond to temperature shifts indicating that in this period embryos with both UG and DG exist. Although most UG correspond to undifferentiated gonads, some embryos extend UG after the onset of histological differentiation. Thus, temperature affects gonadal cells during the process of morphogenesis, but timing of commitment depends on individual embryos. A correlation between gonadal morphogenesis, TSP, and gene expression suggests that determination of the molecular pathways modulated by temperature in epithelial cells (surface epithelium and medullary cords) holds the key for a unifying hypothesis on temperature-dependent sex determination.

  6. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal

    SciTech Connect

    Kwok, C.; Weller, P.A.; Guioli, S.

    1995-11-01

    Campomelic dysplasia (CD) is a skeletal malformation syndrome frequently accompanied by 46,XY sex reversal. A mutation-screening strategy using SSCP was employed to identify mutations in SOX9, the chromosome 17q24 gene responsible for CD and autosomal sex reversal in man. We have screened seven CD patients with no cytologically detectable chromosomal aberrations and two CD patients with chromosome 17 rearrangements for mutations in the entire open reading frame of SOX9. Five different mutations have been identified in six CD patients: two missense mutations in the SOX9 putative DNA binding domain (high mobility group, or HMG, box); three frameshift mutations and a splice-acceptor mutation. An identical frameshift mutation is found in two unrelated 46,XY patients, one exhibiting a male phenotype and the other displaying a female phenotype (XY sex reversal). All mutations found affect a single allele, which is consistent with a dominant mode of inheritance. No mutations were found in the SOX9 open reading frame of two patients with chromosome 17q rearrangements, suggesting that the translocations affect SOX9 expression. These findings are consistent with the hypothesis that CD results from haploinsufficiency of SOX9. 27 refs., 3 figs., 3 tabs.

  7. Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in Drosophila.

    PubMed

    Sun, Lin; Johnson, Adam F; Li, Jilong; Lambdin, Aaron S; Cheng, Jianlin; Birchler, James A

    2013-10-01

    Global analysis of gene expression via RNA sequencing was conducted for trisomics for the left arm of chromosome 2 (2L) and compared with the normal genotype. The predominant response of genes on 2L was dosage compensation in that similar expression occurred in the trisomic compared with the diploid control. However, the male and female trisomic/normal expression ratio distributions for 2L genes differed in that females also showed a strong peak of genes with increased expression and males showed a peak of reduced expression relative to the opposite sex. For genes in other autosomal regions, the predominant response to trisomy was reduced expression to the inverse of the altered chromosomal dosage (2/3), but a minor peak of increased expression in females and further reduced expression in males were also found, illustrating a sexual dimorphism for the response to aneuploidy. Moreover, genes with sex-biased expression as revealed by comparing amounts in normal males and females showed responses of greater magnitude to trisomy 2L, suggesting that the genes involved in dosage-sensitive aneuploid effects also influence sex-biased expression. Each autosomal chromosome arm responded to 2L trisomy similarly, but the ratio distributions for X-linked genes were distinct in both sexes, illustrating an X chromosome-specific response to aneuploidy.

  8. Sex-dependent association of common variants of microcephaly genes with brain structure.

    PubMed

    Rimol, Lars M; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A; Roddey, J Cooper; Kähler, Anna K; Mattingsdal, Morten; Athanasiu, Lavinia; Joyner, Alexander H; Schork, Nicholas J; Halgren, Eric; Sundet, Kjetil; Melle, Ingrid; Dale, Anders M; Andreassen, Ole A

    2010-01-01

    Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637-644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions. PMID:20080800

  9. Sex-dependent association of common variants of microcephaly genes with brain structure.

    PubMed

    Rimol, Lars M; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A; Roddey, J Cooper; Kähler, Anna K; Mattingsdal, Morten; Athanasiu, Lavinia; Joyner, Alexander H; Schork, Nicholas J; Halgren, Eric; Sundet, Kjetil; Melle, Ingrid; Dale, Anders M; Andreassen, Ole A

    2010-01-01

    Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637-644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions.

  10. Sex bias in copy number variation of olfactory receptor gene family depends on ethnicity.

    PubMed

    Shadravan, Farideh

    2013-01-01

    Gender plays a pivotal role in the human genetic identity and is also manifested in many genetic disorders particularly mental retardation. In this study its effect on copy number variation (CNV), known to cause genetic disorders was explored. As the olfactory receptor (OR) repertoire comprises the largest human gene family, it was selected for this study, which was carried out within and between three populations, derived from 150 individuals from the 1000 Genome Project. Analysis of 3872 CNVs detected among 791 OR loci, in which 307 loci showed CNV, revealed the following novel findings: Sex bias in CNV was significantly more prevalent in uncommon than common CNV variants of OR pseudogenes, in which the male genome showed more CNVs; and in one-copy number loss compared to complete deletion of OR pseudogenes; both findings implying a more recent evolutionary role for gender. Sex bias in copy number gain was also detected. Another novel finding was that the observed sex bias was largely dependent on ethnicity and was in general absent in East Asians. Using a CNV public database for sick children (International Standard Cytogenomic Array Consortium) the application of these findings for improving clinical molecular diagnostics is discussed by showing an example of sex bias in CNV among kids with autism. Additional clinical relevance is discussed, as the most polymorphic CNV-enriched OR cluster in the human genome, located on chr 15q11.2, is found near the Prader-Willi syndrome/Angelman syndrome bi-directionally imprinted region associated with two well-known mental retardation syndromes. As olfaction represents the primitive cognition in most mammals, arguably in competition with the development of a larger brain, the extensive retention of OR pseudogenes in females of this study, might point to a parent-of-origin indirect regulatory role for OR pseudogenes in the embryonic development of human brain. Thus any perturbation in the temporal regulation of olfactory

  11. The doublesex proteins of Drosophila melanogaster bind directly to a sex-specific yolk protein gene enhancer.

    PubMed Central

    Burtis, K C; Coschigano, K T; Baker, B S; Wensink, P C

    1991-01-01

    The doublesex (dsx) gene of Drosophila melanogaster encodes both male-specific and female-specific polypeptides, whose synthesis is regulated by alternative sex-specific splicing of the primary dsx transcript. The alternative splicing of the dsx mRNA is the last known step in a cascade of regulatory gene interactions that involves both transcriptional and post-transcriptional mechanisms. Genetic studies have shown that the products of the dsx locus are required for correct somatic sexual differentiation of both sexes, and have suggested that each dsx product functions by repressing expression of terminal differentiation genes specific to the opposite sex. However, these studies have not shown whether the dsx gene products function directly to regulate the expression of target genes, or indirectly through another regulatory gene. We report here that the male- and female-specific DSX proteins, expressed in E.coli, bind directly and specifically in vitro to three DNA sequences located in an enhancer region that regulates female-specific expression of two target genes, the yolk protein genes 1 and 2. This result suggests strongly that dsx is a final regulatory gene in the hierarchy of regulatory genes controlling somatic sexual differentiation. Images PMID:1907913

  12. Prohibitin-2 gene reveals sex-related differences in the salmon louse Caligus rogercresseyi.

    PubMed

    Farlora, Rodolfo; Nuñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2015-06-10

    Prohibitins are evolutionarily conserved proteins present in multiple cellular compartments, and are involved in diverse cellular processes, including steroid hormone transcription and gametogenesis. In the present study, we report for the first time the characterization of the prohibitin-2 (Phb2) gene in the sea lice Caligus rogercresseyi. The CrPhb2 cDNA showed a total length of 1406 bp, which contained a predicted open reading frame (ORF) of 894 base pairs (bp) encoding for 298 amino acids. Multiple sequence alignments of prohibitin proteins from other arthropods revealed a high degree of amino acid sequence conservation. In silico Illumina read counts and RT-qPCR analyses showed a sex-dependent differential expression, with mRNA levels exhibiting a 1.7-fold (RT-qPCR) increase in adult females compared with adult males. A total of nine single nucleotide polymorphisms (SNPs) were identified, three were located in the 5' UTR of the Phb2 messenger and six in the ORF, but no mutations associated with sex were found. These results contribute to expand the present knowledge of the reproduction-related genes in C. rogercresseyi, and may be useful in future experiments aimed at controlling the impacts of sea lice in fish farming. PMID:25813873

  13. Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens).

    PubMed

    Hale, Matthew C; Jackson, James R; Dewoody, J Andrew

    2010-07-01

    Modern pyrosequencing has the potential to uncover many interesting aspects of genome evolution, even in lineages where genomic resources are scarce. In particular, 454 pyrosequencing of nonmodel species has been used to characterize expressed sequence tags, xenobiotics, gene ontologies, and relative levels of gene expression. Herein, we use pyrosequencing to study the evolution of genes expressed in the gonads of a polyploid fish, the lake sturgeon (Acipenser fulvescens). Using 454 pyrosequencing of transcribed genes, we produced more than 125 MB of sequence data from 473,577 high-quality sequencing reads. Sequences that passed stringent quality control thresholds were assembled into 12,791 male contigs and 32,629 female contigs. Average depth of coverage was 4.2 x for the male assembly and 5.5x for the female assembly. Analytical rarefaction indicates that our assemblies include most of the genes expressed in lake sturgeon gonads. Over 86,700 sequencing reads were assigned gene ontologies, many to general housekeeping genes like protein, RNA, and ion binding genes. We searched specifically for sex determining genes and documented significant sex differences in the expression of two genes involved in animal sex determination, DMRT1 and TRA-1. DMRT1 is the master sex determining gene in birds and in medaka (Oryzias latipes) whereas TRA-1 helps direct sexual differentiation in nematodes. We also searched the lake sturgeon assembly for evidence of xenobiotic organisms that may exist as endosymbionts. Our results suggest that exogenous parasites (trematodes) and pathogens (protozoans) apparently have infected lake sturgeon gonads, and the trematodes have horizontally transferred some genes to the lake sturgeon genome.

  14. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina.

    PubMed

    Rhen, T; Metzger, K; Schroeder, A; Woodward, R

    2007-01-01

    Modes of sex determination are quite variable in vertebrates. The developmental decision to form a testis or an ovary can be influenced by one gene, several genes, environmental variables, or a combination of these factors. Nevertheless, certain morphogenetic aspects of sex determination appear to be conserved in amniotes. Here we clone fragments of nine candidate sex-determining genes from the snapping turtle Chelydra serpentina, a species with temperature-dependent sex determination (TSD). We then analyze expression of these genes during the thermosensitive period of gonad development. In particular, we compare gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature. Expression of Dmrt1 and Sox9 mRNA increased gradually at the male-producing temperature, but was suppressed at the female-producing temperature. This finding suggests that Dmrt1 and Sox9 play a role in testis development. In contrast, expression of aromatase, androgen receptor (Ar), and Foxl2 mRNA was constant at the male-producing temperature, but increased several-fold in embryos at the female-producing temperature. Aromatase, Ar, and Foxl2 may therefore play a role in ovary development. In addition, there was a small temperature effect on ER alpha expression with lower mRNA levels found in embryos at the female-producing temperature. Finally, Dax1, Fgf9, and SF-1 were not differentially expressed during the sex-determining period, suggesting these genes are not involved in sex determination in the snapping turtle. Comparison of gene expression profiles among amniotes indicates that Dmrt1 and Sox9 are part of a core testis-determining pathway and that Ar, aromatase, ER alpha, and Foxl2 are part of a core ovary-determining pathway. PMID:18391536

  15. Gametogenesis in the Pacific Oyster Crassostrea gigas: A Microarrays-Based Analysis Identifies Sex and Stage Specific Genes

    PubMed Central

    Dheilly, Nolwenn M.; Lelong, Christophe; Huvet, Arnaud; Kellner, Kristell; Dubos, Marie-Pierre; Riviere, Guillaume; Boudry, Pierre; Favrel, Pascal

    2012-01-01

    Background The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa) is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011) representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. Methodology/Principal Findings Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters. Conclusions

  16. Conflict between feminizing sex ratio distorters and an autosomal masculinizing gene in the terrestrial isopod Armadillidium vulgare Latr.

    PubMed

    Rigaud, T; Juchault, P

    1993-02-01

    Female sex determination in the pill bug Armadillidium vulgare is frequently under the control of feminizing parasitic sex factors (PSF). One of these PSF is an intracytoplasmic Wolbachia-like bacterium (F), while the other (f) is suspected of being an F-bacterial DNA sequence unstably integrated into the host genome. In most wild populations harboring PSF, all individuals are genetic males (ZZ), and female phenotypes occur only due to the presence of PSF which overrides the male determinant carried by the Z chromosome (females are thus ZZ +F or ZZ +f neo-females). Here we report the effects of the conflict between these PSF and a dominant autosomal masculinizing gene (M) on phenotypes. The M gene is able to override the feminizing effect of the f sex factor and, consequently, male sex may be restored. However, M is unable to restore male sex when competing with the F bacteria. It seems that the main effect of M is to delay the expression of F bacteria slightly, inducing intersex phenotypes. Most of these intersexes are functional females, able to transmit the masculinizing gene. The frequency of M and its effects on the sex ratio in wild populations are discussed. PMID:8436273

  17. Conflict between Feminizing Sex Ratio Distorters and an Autosomal Masculinizing Gene in the Terrestrial Isopod Armadillidium Vulgare Latr

    PubMed Central

    Rigaud, T.; Juchault, P.

    1993-01-01

    Female sex determination in the pill bug Armadillidium vulgare is frequently under the control of feminizing parasitic sex factors (PSF). One of these PSF is an intracytoplasmic Wolbachia-like bacterium (F), while the other (f) is suspected of being an F-bacterial DNA sequence unstably integrated into the host genome. In most wild populations harboring PSF, all individuals are genetic males (ZZ), and female phenotypes occur only due to the presence of PSF which overrides the male determinant carried by the Z chromosome (females are thus ZZ +F or ZZ +f neo-females). Here we report the effects of the conflict between these PSF and a dominant autosomal masculinizing gene (M) on phenotypes. The M gene is able to override the feminizing effect of the f sex factor and, consequently, male sex may be restored. However, M is unable to restore male sex when competing with the F bacteria. It seems that the main effect of M is to delay the expression of F bacteria slightly, inducing intersex phenotypes. Most of these intersexes are functional females, able to transmit the masculinizing gene. The frequency of M and its effects on the sex ratio in wild populations are discussed. PMID:8436273

  18. Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Mikami, Akihisa; Uchino, Keiro; Tabuchi, Masashi; Zhang, Feng; Sezutsu, Hideki; Kanzaki, Ryohei

    2015-01-01

    Male moths use species-specific sex pheromones to identify and orientate toward conspecific females. Odorant receptors (ORs) for sex pheromone substances have been identified as sex pheromone receptors in various moth species. However, direct in vivo evidence linking the functional role of these ORs with behavioural responses is lacking. In the silkmoth, Bombyx mori, female moths emit two sex pheromone components, bombykol and bombykal, but only bombykol elicits sexual behaviour in male moths. A sex pheromone receptor BmOR1 is specifically tuned to bombykol and is expressed in specialized olfactory receptor neurons (ORNs) in the pheromone sensitive long sensilla trichodea of male silkmoth antennae. Here, we show that disruption of the BmOR1 gene, mediated by transcription activator-like effector nucleases (TALENs), completely removes ORN sensitivity to bombykol and corresponding pheromone-source searching behaviour in male moths. Furthermore, transgenic rescue of BmOR1 restored normal behavioural responses to bombykol. Our results demonstrate that BmOR1 is required for the physiological and behavioural response to bombykol, demonstrating that it is the receptor that mediates sex pheromone responses in male silkmoths. This study provides the first direct evidence that a member of the sex pheromone receptor family in moth species mediates conspecific sex pheromone information for sexual behaviour. PMID:26047360

  19. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera.

    PubMed

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera. PMID:27171236

  20. Hypospadias and variants in genes related to sex hormone biosynthesis and metabolism.

    PubMed

    Carmichael, S L; Witte, J S; Ma, C; Lammer, E J; Shaw, G M

    2014-01-01

    We examined whether variants in genes related to sex hormone biosynthesis and metabolism were associated with hypospadias in humans. We examined 332 relatively common tag single-nucleotide polymorphisms (tagSNPs) in 20 genes. Analyses included 633 cases (84 mild, 322 moderate, 212 severe and 15 undetermined severity) and 855 population-based non-malformed male controls born in California from 1990 to 2003. We used logistic regression models to estimate odds ratios (OR) and 95% confidence intervals (CI) for each SNP. Several of the 332 studied SNPs had p < 0.01: one in CYP3A4, four in HSD17B3, one in HSD3B1, two in STARD3, 10 in SRD5A2 and seven in STS. In addition, haplotype analyses gave several associations with p < 0.01. For HSD17B3, 14-SNP and 5-SNP blocks had ORs of 1.5 (95% CI 1.1, 2.0, p < 0.001) and 2.8 (95% CI 1.6, 4.8, p < 0.001) respectively. For SRD5A2, 9-SNP, 3-SNP and 8-SNP blocks had ORs of 1.7 (95% CI 1.3, 2.2, p < 0.001), 1.4 (95% CI 1.1, 1.8, p = 0.008) and 1.5 (95% CI 1.2, 1.9, p = 0.002) respectively. Our study indicates that several genes that contribute to sex hormone biosynthesis and metabolism are associated with hypospadias risk.

  1. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera

    PubMed Central

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera. PMID:27171236

  2. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera.

    PubMed

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera.

  3. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal–maternal interface

    PubMed Central

    Buckberry, Sam; Bianco-Miotto, Tina; Bent, Stephen J.; Dekker, Gustaaf A.; Roberts, Claire T.

    2014-01-01

    As males and females share highly similar genomes, the regulation of many sexually dimorphic traits is constrained to occur through sex-biased gene regulation. There is strong evidence that human males and females differ in terms of growth and development in utero and that these divergent growth strategies appear to place males at increased risk when in sub-optimal conditions. Since the placenta is the interface of maternal–fetal exchange throughout pregnancy, these developmental differences are most likely orchestrated by differential placental function. To date, progress in this field has been hampered by a lack of genome-wide information on sex differences in placental gene expression. Therefore, our motivation in this study was to characterize sex-biased gene expression in the human placenta. We obtained gene expression data for >300 non-pathological placenta samples from 11 microarray datasets and applied mapping-based array probe re-annotation and inverse-variance meta-analysis methods which showed that >140 genes (false discovery rate (FDR) <0.05) are differentially expressed between male and female placentae. A majority of these genes (>60%) are autosomal, many of which are involved in high-level regulatory processes such as gene transcription, cell growth and proliferation and hormonal function. Of particular interest, we detected higher female expression from all seven genes in the LHB-CGB cluster, which includes genes involved in placental development, the maintenance of pregnancy and maternal immune tolerance of the conceptus. These results demonstrate that sex-biased gene expression in the normal human placenta occurs across the genome and includes genes that are central to growth, development and the maintenance of pregnancy. PMID:24867328

  4. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.).

    PubMed

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  5. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.)

    PubMed Central

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  6. Evolutionary Strata on the X Chromosomes of the Dioecious Plant Silene latifolia: Evidence From New Sex-Linked Genes

    PubMed Central

    Bergero, Roberta; Forrest, Alan; Kamau, Esther; Charlesworth, Deborah

    2007-01-01

    Despite its recent evolutionary origin, the sex chromosome system of the plant Silene latifolia shows signs of progressive suppression of recombination having created evolutionary strata of different X–Y divergence on sex chromosomes. However, even after 8 years of effort, this result is based on analyses of five sex-linked gene sequences, and the maximum divergence (and thus the age of this plant's sex chromosome system) has remained uncertain. More genes are therefore needed. Here, by segregation analysis of intron size variants (ISVS) and single nucleotide polymorphisms (SNPs), we identify three new Y-linked genes, one being duplicated on the Y chromosome, and test for evolutionary strata. All the new genes have homologs on the X and Y chromosomes. Synonymous divergence estimated between the X and Y homolog pairs is within the range of those already reported. Genetic mapping of the new X-linked loci shows that the map is the same in all three families that have been studied so far and that X–Y divergence increases with genetic distance from the pseudoautosomal region. We can now conclude that the divergence value is saturated, confirming the cessation of X–Y recombination in the evolution of the sex chromosomes at ∼10–20 MYA. PMID:17287532

  7. Prenatal exposure to dexamethasone disturbs sex-determining gene expression and fetal testosterone production in male embryos.

    PubMed

    Yun, Hyo Jung; Lee, Ji-Yeon; Kim, Myoung Hee

    2016-02-26

    Prenatal stress is known to cause intrauterine fetal growth retardation, and is also associated with various long-term effects in the form of metabolic and neurodevelopmental diseases in adults. Many of the diseases associated with prenatal stress exhibit a sex bias. Perturbations and vulnerability to prenatal stress are often more profound in males, but the mechanisms responsible for this relationship are not clear. We have previously shown that administration of the synthetic glucocorticoid, dexamethasone (Dex), at embryonic days 7.5, 8.5, and 9.5, induces embryonic growth restriction in a sex-dependent manner in a mouse model. Here we examined the effect of prenatal exposure to Dex on gonadal development. During male gonadal development, sex-determining genes, such as Sry, Sox9, and other downstream genes, were found to be dysregulated in response to prenatal Dex, whereas the genes for the ovarian pathway were affected to a lesser degree in females. In addition, fetal testosterone concentrations were decreased by prenatal exposure to Dex, in parallel with reduced numbers of 3β-hydroxysteroid dehydrogenase (3β-HSD)-positive cells in the embryonic testis. These results show that prenatal exposure to Dex differentially influences male versus female on the gene expression and hormone production during sex determination. We believe these studies provide valuable insights into possible mechanisms responsible for sex-specific responses to prenatal stress.

  8. Prenatal exposure to dexamethasone disturbs sex-determining gene expression and fetal testosterone production in male embryos.

    PubMed

    Yun, Hyo Jung; Lee, Ji-Yeon; Kim, Myoung Hee

    2016-02-26

    Prenatal stress is known to cause intrauterine fetal growth retardation, and is also associated with various long-term effects in the form of metabolic and neurodevelopmental diseases in adults. Many of the diseases associated with prenatal stress exhibit a sex bias. Perturbations and vulnerability to prenatal stress are often more profound in males, but the mechanisms responsible for this relationship are not clear. We have previously shown that administration of the synthetic glucocorticoid, dexamethasone (Dex), at embryonic days 7.5, 8.5, and 9.5, induces embryonic growth restriction in a sex-dependent manner in a mouse model. Here we examined the effect of prenatal exposure to Dex on gonadal development. During male gonadal development, sex-determining genes, such as Sry, Sox9, and other downstream genes, were found to be dysregulated in response to prenatal Dex, whereas the genes for the ovarian pathway were affected to a lesser degree in females. In addition, fetal testosterone concentrations were decreased by prenatal exposure to Dex, in parallel with reduced numbers of 3β-hydroxysteroid dehydrogenase (3β-HSD)-positive cells in the embryonic testis. These results show that prenatal exposure to Dex differentially influences male versus female on the gene expression and hormone production during sex determination. We believe these studies provide valuable insights into possible mechanisms responsible for sex-specific responses to prenatal stress. PMID:26827828

  9. A Human Homeotic Transformation Resulting from Mutations in PLCB4 and GNAI3 Causes Auriculocondylar Syndrome

    PubMed Central

    Rieder, Mark J.; Green, Glenn E.; Park, Sarah S.; Stamper, Brendan D.; Gordon, Christopher T.; Johnson, Jason M.; Cunniff, Christopher M.; Smith, Joshua D.; Emery, Sarah B.; Lyonnet, Stanislas; Amiel, Jeanne; Holder, Muriel; Heggie, Andrew A.; Bamshad, Michael J.; Nickerson, Deborah A.; Cox, Timothy C.; Hing, Anne V.; Horst, Jeremy A.; Cunningham, Michael L.

    2012-01-01

    Auriculocondylar syndrome (ACS) is a rare, autosomal-dominant craniofacial malformation syndrome characterized by variable micrognathia, temporomandibular joint ankylosis, cleft palate, and a characteristic “question-mark” ear malformation. Careful phenotypic characterization of severely affected probands in our cohort suggested the presence of a mandibular patterning defect resulting in a maxillary phenotype (i.e., homeotic transformation). We used exome sequencing of five probands and identified two novel (exclusive to the patient and/or family studied) missense mutations in PLCB4 and a shared mutation in GNAI3 in two unrelated probands. In confirmatory studies, three additional novel PLCB4 mutations were found in multigenerational ACS pedigrees. All mutations were confirmed by Sanger sequencing, were not present in more than 10,000 control chromosomes, and resulted in amino-acid substitutions located in highly conserved protein domains. Additionally, protein-structure modeling demonstrated that all ACS substitutions disrupt the catalytic sites of PLCB4 and GNAI3. We suggest that PLCB4 and GNAI3 are core signaling molecules of the endothelin-1-distal-less homeobox 5 and 6 (EDN1-DLX5/DLX6) pathway. Functional studies demonstrated a significant reduction in downstream DLX5 and DLX6 expression in ACS cases in assays using cultured osteoblasts from probands and controls. These results support the role of the previously implicated EDN1-DLX5/6 pathway in regulating mandibular specification in other species, which, when disrupted, results in a maxillary phenotype. This work defines the molecular basis of ACS as a homeotic transformation (mandible to maxilla) in humans. PMID:22560091

  10. Large sex differences in chicken behavior and brain gene expression coincide with few differences in promoter DNA-methylation.

    PubMed

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  11. Large Sex Differences in Chicken Behavior and Brain Gene Expression Coincide with Few Differences in Promoter DNA-Methylation

    PubMed Central

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  12. Large sex differences in chicken behavior and brain gene expression coincide with few differences in promoter DNA-methylation.

    PubMed

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation.

  13. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene.

    PubMed

    Knopf, Ronit Rimon; Trebitsh, Tova

    2006-09-01

    Cucumber (Cucumis sativus L.) is a monoecious plant in which female sex expression (gynoecy) is controlled by the Female (F) locus that can be modified by other sex-determining genes as well as by environmental and hormonal factors. As in many other cucurbits, ethylene is the major plant hormone regulating female sex expression. Previously we isolated the Cs-ACS1 (ACS, 1-aminocyclopropane-1-carboxylate synthase) gene that encodes the rate-limiting enzyme in the ethylene biosynthetic pathway. We proposed that Cs-ACS1 is present in a single copy in monoecious (ffMM) plants whereas gynoecious plants (FFMM) contain an additional copy Cs-ACS1G that was mapped to the F locus. To study the origin of Cs-ACS1G, we cloned and analyzed both the gynoecious-specific Cs-ACS1G gene and the non-sex-specific Cs-ACS1 gene. Our results indicate that Cs-ACS1G is the result of a relatively recent gene duplication and recombination, between Cs-ACS1 and a branched-chain amino acid transaminase (BCAT) gene. Taking into consideration that the Cs-ACS1G gene was mapped to the F locus, we propose that this duplication event gave rise to the F locus and to gynoecious cucumber plants. Computer analysis of the 1 kb region upstream of the transcription initiation site revealed several putative cis-acting regulatory elements that can potentially confer the responsiveness of Cs-ACS1G to developmental and hormonal factors and thereby control female sex determination in cucumber. These findings lead us to a model explaining the action of Cs-ACS1 and Cs-ACS1G in cucumber floral sex determination. PMID:16887844

  14. A theoretical model for the regulation of Sex-lethal, a gene that controls sex determination and dosage compensation in Drosophila melanogaster.

    PubMed Central

    Louis, Matthieu; Holm, Liisa; Sánchez, Lucas; Kaufman, Marcelle

    2003-01-01

    Cell fate commitment relies upon making a choice between different developmental pathways and subsequently remembering that choice. Experimental studies have thoroughly investigated this central theme in biology for sex determination. In the somatic cells of Drosophila melanogaster, Sex-lethal (Sxl) is the master regulatory gene that specifies sexual identity. We have developed a theoretical model for the initial sex-specific regulation of Sxl expression. The model is based on the well-documented molecular details of the system and uses a stochastic formulation of transcription. Numerical simulations allow quantitative assessment of the role of different regulatory mechanisms in achieving a robust switch. We establish on a formal basis that the autoregulatory loop involved in the alternative splicing of Sxl primary transcripts generates an all-or-none bistable behavior and constitutes an efficient stabilization and memorization device. The model indicates that production of a small amount of early Sxl proteins leaves the autoregulatory loop in its off state. Numerical simulations of mutant genotypes enable us to reproduce and explain the phenotypic effects of perturbations induced in the dosage of genes whose products participate in the early Sxl promoter activation. PMID:14668388

  15. Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans

    SciTech Connect

    Barton, M.K.; Schedl, T.B.; Kimble, J.

    1987-01-01

    The authors have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3 (gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3 (gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3 (gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3 (gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.

  16. A genetic method for sex identification of raccoons (Procyon lotor) with using the ZFX and ZFY genes.

    PubMed

    Okuyama, Minami W; Shimozuru, Michito; Tsubota, Toshio

    2014-05-01

    A genetic method for sex determination in raccoons was developed based on nucleotide differences of the zinc finger protein genes ZFX and ZFY. Four novel internal primers specific for ZFX or ZFY were designed. PCR amplification using two primer sets followed by agarose gel electrophoresis enabled sex determination. 141-bp and 447-bp bands were in both sex, and 346-bp band was specific only in male with primer set I. 345-bp and 447-bp bands were in both sex, and 141-bp band was specific only in male with primer set II, which could distinguish raccoon's electrophoresis pattern from three native carnivores in Hokkaido. This method will be useful for conservation genetics studies or biological analyses of raccoons.

  17. Evolution: hox genes and the cellared wine principle.

    PubMed

    Gibson, G

    2000-06-15

    Two Drosophila Hox genes involved in segmentation, fushi tarazu and bicoid, appear to have acquired these roles by functional divergence from classical homeotic genes. Recent results indicate how genes with critical functions in development can evolve completely different functions among species.

  18. Gestational nicotine exposure modifies myelin gene expression in the brains of adolescent rats with sex differences.

    PubMed

    Cao, J; Wang, J; Dwyer, J B; Gautier, N M; Wang, S; Leslie, F M; Li, M D

    2013-04-16

    Myelination defects in the central nervous system (CNS) are associated with various psychiatric disorders, including drug addiction. As these disorders are often observed in individuals prenatally exposed to cigarette smoking, we tested the hypothesis that such exposure impairs central myelination in adolescence, an important period of brain development and the peak age of onset of psychiatric disorders. Pregnant Sprague Dawley rats were treated with nicotine (3 mg kg(-1) per day; gestational nicotine (GN)) or gestational saline via osmotic mini pumps from gestational days 4-18. Both male and female offsprings were killed on postnatal day 35 or 36, and three limbic brain regions, the prefrontal cortex (PFC), caudate putamen and nucleus accumbens, were removed for measurement of gene expression and determination of morphological changes using quantitative real-time PCR (qRT-PCR) array, western blotting and immunohistochemical staining. GN altered myelin gene expression at both the mRNA and protein levels, with striking sex differences. Aberrant expression of myelin-related transcription and trophic factors was seen in GN animals, which correlated highly with the alterations in the myelin gene expression. These correlations suggest that these factors contribute to GN-induced alterations in myelin gene expression and also indicate abnormal function of oligodendrocytes (OLGs), the myelin-producing cells in the CNS. It is unlikely that these changes are attributable solely to an alteration in the number of OLGs, as the cell number was changed only in the PFC of GN males. Together, our findings suggest that abnormal brain myelination underlies various psychiatric disorders and drug abuse associated with prenatal exposure to cigarette smoke.

  19. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel).

    PubMed

    Peng, Wei; Zheng, Wenping; Handler, Alfred M; Zhang, Hongyu

    2015-12-01

    Transformer (tra) is a switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and transformer-2 (tra-2) genes were isolated and characterized in Bactrocera dorsalis (Hendel), one of the most destructive agricultural insect pests in many Asian countries. Two male-specific and one female-specific isoforms of B. dorsalis transformer (Bdtra) were identified. The presence of multiple TRA/TRA-2 binding sites in Bdtra suggests that the TRA/TRA-2 proteins are splicing regulators promoting and maintaining, epigenetically, female sex determination by a tra positive feedback loop in XX individuals during development. The expression patterns of female-specific Bdtra transcripts during early embryogenesis shows that a peak appears at 15 h after egg laying. Using dsRNA to knock-down Bdtra expression in the embryo and adult stages, we showed that sexual formation is determined early in the embryo stage and that parental RNAi does not lead to the production of all male progeny as in Tribolium castaneum. RNAi results from adult abdominal dsRNA injections show that Bdtra has a positive influence on female yolk protein gene (Bdyp1) expression and fecundity.

  20. Sexually Dimorphic Body Color Is Regulated by Sex-Specific Expression of Yellow Gene in Ponerine Ant, Diacamma Sp

    PubMed Central

    Miyazaki, Satoshi; Okada, Yasukazu; Miyakawa, Hitoshi; Tokuda, Gaku; Cornette, Richard; Koshikawa, Shigeyuki; Maekawa, Kiyoto; Miura, Toru

    2014-01-01

    Most hymenopteran species exhibit conspicuous sexual dimorphism due to ecological differences between the sexes. As hymenopteran genomes, under the haplodiploid genetic system, exhibit quantitative differences between sexes while remaining qualitatively identical, sexual phenotypes are assumed to be expressed through sex-specific gene usage. In the present study, the molecular basis for expression of sexual dimorphism in a queenless ant, Diacamma sp., which exhibits a distinct color dimorphism, was examined. Worker females of the species appear bluish-black, while winged males exhibit a yellowish-brown body color. Initially, observations of the pigmentation processes during pupal development revealed that black pigmentation was present in female pupae but not in males, suggesting that sex-specific melanin synthesis was responsible for the observed color dimorphism. Therefore, five orthologs of the genes involved in the insect melanin synthesis (yellow, ebony, tan, pale and dopa decarboxylase) were subcloned and their spatiotemporal expression patterns were examined using real-time quantitative RT-PCR. Of the genes examined, yellow, which plays a role in black melanin synthesis in insects, was expressed at higher levels in females than in males throughout the entire body during the pupal stage. RNA interference of yellow was then carried out in order to determine the gene function, and produced females with a more yellowish, brighter body color similar to that of males. It was concluded that transcriptional regulation of yellow was responsible for the sexual color dimorphism observed in this species. PMID:24667821

  1. Effects of ploidy and sex-locus genotype on gene expression patterns in the fire ant Solenopsis invicta

    PubMed Central

    Nipitwattanaphon, Mingkwan; Wang, John; Ross, Kenneth G.; Riba-Grognuz, Oksana; Wurm, Yannick; Khurewathanakul, Chitsanu; Keller, Laurent

    2014-01-01

    Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development. PMID:25355475

  2. Studies on metatherian sex chromosomes. I. Inheritance and inactivation of sex-linked allelic genes determining glucose-6-phosphate dehydrogenase variation in kangaroos.

    PubMed

    Johnston, P G; Sharman, G B

    1975-12-01

    Wallaroos (Macropus robustus robustus), which have the G6PD-F electrophoretic phenotype, crossed with euros (M.r.erubescens), of G6PD-S phenotype, produced F1 animals which had only the maternal G6PD type regardless of the direction of the cross. When F1 hybrids were backcrossed to wallaroos or euros, backcross progeny of either perental phenotype resulted. Sex-linked inheritance of allelic G6PD genes is shown to occur in wallaroos, euros and red kangaroos (M. rufus). Dose compensation for X chromosomes at the G6PD locus in kangaroow is achieved by inactivation of the allele of male parental origin.

  3. Expression analysis of sex-determining pathway genes during development in male and female Atlantic salmon (Salmo salar).

    PubMed

    Lubieniecki, Krzysztof P; Botwright, Natasha A; Taylor, Richard S; Evans, Brad S; Cook, Mathew T; Davidson, William S

    2015-12-01

    We studied the expression of 28 genes that are involved in vertebrate sex-determination or sex-differentiation pathways, in male and female Atlantic salmon (Salmo salar) in 11 stages of development from fertilization to after first feeding. Gene expression was measured in half-sibs that shared the same dam. The sire of family 1 was a sex-reversed female (i.e., genetically female but phenotypically male), and so the progeny of this family are all female. The sire of family 2 was a true male, and so the offspring were 50% male and 50% female. Gene expression levels were compared among three groups: 20 female offspring of the cross between a regular female and the sex-reversed female (family 1, first group), ∼ 10 females from the cross between a regular female and a regular male (family 2, second group) and ∼ 10 males from this same family (family 2, third group). Statistically significant differences in expression levels between males and the two groups of females were observed for two genes, gsdf and amh/mis, in the last four developmental stages examined. SdY, the sex-determining gene in rainbow trout, appeared to be expressed in males from 58 days postfertilization (dpf). Starting at 83 dpf, ovarian aromatase, cyp19a, expression appeared to be greater in both groups of females compared with males, but this difference was not statistically significant. The time course of expression suggests that sdY may be involved in the upregulation of gsdf and amh/mis and the subsequent repression of cyp19a in males via the effect of amh/mis.

  4. Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity.

    PubMed

    Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F

    2016-01-01

    Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms.

  5. Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    PubMed Central

    Albre, Jérôme; Liénard, Marjorie A.; Sirey, Tamara M.; Schmidt, Silvia; Tooman, Leah K.; Carraher, Colm; Greenwood, David R.; Löfstedt, Christer; Newcomb, Richard D.

    2012-01-01

    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in

  6. Calbindin Knockout Alters Sex-Specific Regulation of Behavior and Gene Expression in Amygdala and Prefrontal Cortex.

    PubMed

    Harris, Erin P; Abel, Jean M; Tejada, Lucia D; Rissman, Emilie F

    2016-05-01

    Calbindin-D(28K) (Calb1), a high-affinity calcium buffer/sensor, shows abundant expression in neurons and has been associated with a number of neurobehavioral diseases, many of which are sexually dimorphic in incidence. Behavioral and physiological end points are affected by experimental manipulations of calbindin levels, including disruption of spatial learning, hippocampal long-term potentiation, and circadian rhythms. In this study, we investigated novel aspects of calbindin function on social behavior, anxiety-like behavior, and fear conditioning in adult mice of both sexes by comparing wild-type to littermate Calb1 KO mice. Because Calb1 mRNA and protein are sexually dimorphic in some areas of the brain, we hypothesized that sex differences in behavioral responses of these behaviors would be eliminated or revealed in Calb1 KO mice. We also examined gene expression in the amygdala and prefrontal cortex, two areas of the brain intimately connected with limbic system control of the behaviors tested, in response to sex and genotype. Our results demonstrate that fear memory and social behavior are altered in male knockout mice, and Calb1 KO mice of both sexes show less anxiety. Moreover, gene expression studies of the amygdala and prefrontal cortex revealed several significant genotype and sex effects in genes related to brain-derived neurotrophic factor signaling, hormone receptors, histone deacetylases, and γ-aminobutyric acid signaling. Our findings are the first to directly link calbindin with affective and social behaviors in rodents; moreover, the results suggest that sex differences in calbindin protein influence behavior.

  7. Familial 46,XY sex reversal without campomelic dysplasia caused by a deletion upstream of the SOX9 gene

    PubMed Central

    Layman, Lawrence C.; Ullmann, Reinhard; Shen, Yiping; Ha, Kyungsoo; Rehman, Khurram; Looney, Stephen; McDonough, Paul G.; Kim, Hyung-Goo; Carr, Bruce R.

    2014-01-01

    Background 46,XY sex reversal is a rare disorder and familial cases are even more rare. The purpose of the present study was to determine the molecular basis for a family with three affected siblings who had 46,XY sex reversal. Methods DNA was extracted from three females with 46,XY sex reversal, two normal sisters, and both unaffected parents. All protein coding exons of the SRY and NR5A1 genes were subjected to PCR-based DNA sequencing. In addition, array comparative genomic hybridization was performed on DNA from all seven family members. A deletion was confirmed using quantitative polymerase chain reaction. Expression of SOX9 gene was quantified using reverse transcriptase polymerase chain reaction. Results A 349kb heterozygous deletion located 353kb upstream of the SOX9 gene on the long arm of chromosome 17 was discovered in the father and three affected siblings, but not in the mother. The expression of SOX9 was significantly decreased in the affected siblings. Two of three affected sisters had gonadoblastomas. Conclusion This is the first report of 46,XY sex reversal in three siblings who have a paternally inherited deletion upstream of SOX9 associated with reduced SOX9 mRNA expression. PMID:24907458

  8. Identification and Characterization of Sex-Associated Loci in Sockeye Salmon Using Genotyping-by-Sequencing and Comparison with a Sex-Determining Assay Based on the sdY Gene.

    PubMed

    Larson, Wesley A; McKinney, Garrett J; Seeb, James E; Seeb, Lisa W

    2016-11-01

    Loci that can be used to screen for sex in salmon can provide important information for study of both wild and cultured populations. Here, we tested for associations between sex and genotypes at thousands of loci available from a genotyping-by-sequencing (GBS) dataset to discover sex-associated loci in sockeye salmon (Oncorhynchus nerka). We discovered 7 sex-associated loci, developed high-throughput assays for 2 loci, and tested the utility of these 2 assays in 8 collections of sockeye salmon sampled throughout North America. We also screened an existing assay based on the master sex-determining gene in salmon (sdY) in these collections. The ability of GBS-derived loci to assign fish to their phenotypic sex varied substantially among collections suggesting that recombination between the loci that we discovered and the sex-determining gene has occurred. Assignment accuracy to phenotypic sex was much higher with the sdY assay but was still less than 100%. Alignment of sequences from GBS-derived loci to draft genomes for 2 salmonids provided strong evidence that many of these loci are found on chromosomes orthologous to the known sex chromosome in sockeye salmon. Our study is the first to describe the approximate location of the sex-determining region in sockeye salmon and indicates that sdY is also the master sex-determining gene in this species. However, discordances between sdY genotypes and phenotypic sex and the variable performance of GBS-derived loci warrant more research. PMID:27417855

  9. Identification and Characterization of Sex-Associated Loci in Sockeye Salmon Using Genotyping-by-Sequencing and Comparison with a Sex-Determining Assay Based on the sdY Gene.

    PubMed

    Larson, Wesley A; McKinney, Garrett J; Seeb, James E; Seeb, Lisa W

    2016-11-01

    Loci that can be used to screen for sex in salmon can provide important information for study of both wild and cultured populations. Here, we tested for associations between sex and genotypes at thousands of loci available from a genotyping-by-sequencing (GBS) dataset to discover sex-associated loci in sockeye salmon (Oncorhynchus nerka). We discovered 7 sex-associated loci, developed high-throughput assays for 2 loci, and tested the utility of these 2 assays in 8 collections of sockeye salmon sampled throughout North America. We also screened an existing assay based on the master sex-determining gene in salmon (sdY) in these collections. The ability of GBS-derived loci to assign fish to their phenotypic sex varied substantially among collections suggesting that recombination between the loci that we discovered and the sex-determining gene has occurred. Assignment accuracy to phenotypic sex was much higher with the sdY assay but was still less than 100%. Alignment of sequences from GBS-derived loci to draft genomes for 2 salmonids provided strong evidence that many of these loci are found on chromosomes orthologous to the known sex chromosome in sockeye salmon. Our study is the first to describe the approximate location of the sex-determining region in sockeye salmon and indicates that sdY is also the master sex-determining gene in this species. However, discordances between sdY genotypes and phenotypic sex and the variable performance of GBS-derived loci warrant more research.

  10. Mating Type Gene Homologues and Putative Sex Pheromone-Sensing Pathway in Arbuscular Mycorrhizal Fungi, a Presumably Asexual Plant Root Symbiont

    PubMed Central

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle. PMID:24260466

  11. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    PubMed

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  12. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticus.

    PubMed

    D'Cotta, H; Fostier, A; Guiguen, Y; Govoroun, M; Baroiller, J F

    2001-11-01

    In the tilapia, Oreochromis niloticus, sex is determined by genetic factors (XX/XY) but temperature can also influence the gonadal sex differentiation. Elevated temperatures of 35 degrees C can generate functional male phenotypes if applied before and during sexual differentiation. The genes and mechanisms by which temperature acts on the cascade leading to sex differentiation have been investigated. Two strategies have been followed: 1) Search for novel genes by differential display, and 2) Expression studies of candidate genes. Genetically all-female and all-male progenies were reared at 27 degrees C (natural temperature) and at 35 degrees C (masculinizing treatment) and gonads dissected. Using differential display, we isolated a 300 bp cDNA (MM20C) from temperature-masculinized females. Virtual northern analysis revealed a 1.2 kb transcript in 35 degrees C treated females and males, but hardly any expression in natural females (27 degrees C). Semi-quantitative RT-PCR established a several-fold increase in MM20C expression in 35 degrees C masculinized fry. Elevated expression was observed in natural males (27 degrees C) with higher levels detected in those reared at 35 degrees C. Furthermore, we have analyzed as a candidate gene the P450 11beta-hydroxylase, an important androgen steroidogenic enzyme. Low levels of expression were found in natural males. This coincides with low concentrations of 11 ketotestosterone in the gonads before and during gonadal sex differentiation. Higher expression levels of 11beta-hydroxylase were detected in male gonads at 35 degrees C but levels in phenotypic males were similar to those found for natural females. Previous results reported that expression of aromatase is repressed by masculinizing treatments. Our study demonstrated that masculinizing-temperature can also stimulate the expression of other gene(s).

  13. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae.

    PubMed

    Short, Dylan P G; Gurung, Suraj; Hu, Xiaoping; Inderbitzin, Patrik; Subbarao, Krishna V

    2014-01-01

    Verticillium dahliae is a cosmopolitan, soilborne fungus that causes a significant wilt disease on a wide variety of plant hosts including economically important crops, ornamentals, and timber species. Clonal expansion through asexual reproduction plays a vital role in recurring plant epidemics caused by this pathogen. The recent discovery of recombination between clonal lineages and preliminary investigations of the meiotic gene inventory of V. dahliae suggest that cryptic sex appears to be rare in this species. Here we expanded on previous findings on the sexual nature of V. dahliae. Only 1% of isolates in a global collection of 1120 phytopathogenic V. dahliae isolates contained the MAT1-1 idiomorph, whereas 99% contained MAT1-2. Nine unique multilocus microsatellite types comprised isolates of both mating types, eight of which were collected from the same substrate at the same time. Orthologs of 88 previously characterized sex-related genes from fungal model systems in the Ascoymycota were identified in the genome of V. dahliae, out of 93 genes investigated. Results of RT-PCR experiments using both mating types revealed that 10 arbitrarily chosen sex-related genes, including MAT1-1-1 and MAT1-2-1, were constitutively expressed in V. dahliae cultures grown under laboratory conditions. Ratios of non-synonymous (amino-acid altering) to synonymous (silent) substitutions in V. dahliae MAT1-1-1 and MAT1-2-1 sequences were indistinguishable from the ratios observed in the MAT genes of sexual fungi in the Pezizomycotina. Patterns consistent with strong purifying selection were also observed in 18 other arbitrarily chosen V. dahliae sex-related genes, relative to the patterns in orthologs from fungi with known sexual stages. This study builds upon recent findings from other laboratories and mounts further evidence for an ancestral or cryptic sexual stage in V. dahliae.

  14. Sex- and tissue-specific profiles of chemosensory gene expression in a herbivorous gall-inducing fly (Diptera: Cecidomyiidae)

    PubMed Central

    2014-01-01

    Background The chemical senses of insects mediate behaviors that are closely linked to survival and reproduction. The order Diptera contains two model organisms, the vinegar fly Drosophila melanogaster and the mosquito Anopheles gambiae, whose chemosensory genes have been extensively studied. Representing a third dipteran lineage with an interesting phylogenetic position, and being ecologically distinct by feeding on plants, the Hessian fly (Mayetiola destructor Say, Diptera: Cecidomyiidae) genome sequence has recently become available. Among plant-feeding insects, the Hessian fly is unusual in ‘reprogramming’ the plant to create a superior food and in being the target of plant resistance genes, a feature shared by plant pathogens. Chemoreception is essential for reproductive success, including detection of sex pheromone and plant-produced chemicals by males and females, respectively. Results We identified genes encoding 122 odorant receptors (OR), 28 gustatory receptors (GR), 39 ionotropic receptors (IR), 32 odorant binding proteins, and 7 sensory neuron membrane proteins in the Hessian fly genome. We then mapped Illumina-sequenced transcriptome reads to the genome to explore gene expression in male and female antennae and terminal abdominal segments. Our results reveal that a large number of chemosensory genes have up-regulated expression in the antennae, and the expression is in many cases sex-specific. Sex-specific expression is particularly evident among the Or genes, consistent with the sex-divergent olfactory-mediated behaviors of the adults. In addition, the large number of Ors in the genome but the reduced set of Grs and divergent Irs suggest that the short-lived adults rely more on long-range olfaction than on short-range gustation. We also report up-regulated expression of some genes from all chemosensory gene families in the terminal segments of the abdomen, which play important roles in reproduction. Conclusions We show that a large number of the

  15. Chronic Stress Induces Sex-Specific Alterations in Methylation and Expression of Corticotropin-Releasing Factor Gene in the Rat

    PubMed Central

    Sterrenburg, Linda; Gaszner, Balázs; Boerrigter, Jeroen; Santbergen, Lennart; Bramini, Mattia; Elliott, Evan; Chen, Alon; Peeters, Bernard W. M. M.; Roubos, Eric W.; Kozicz, Tamás

    2011-01-01

    Background Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. Methods Male and female rats were exposed to chronic variable mild stress (CVMS) after which immediate early gene products, corticotropin-releasing factor (CRF) mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN), oval (BSTov) and fusiform (BSTfu) parts of the bed nucleus of the stria terminalis, and central amygdala (CeA). Results CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. Conclusions The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression. PMID:22132228

  16. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri

    PubMed Central

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  17. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri.

    PubMed

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui; Zhang, Ya-Nan

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  18. Homologies and homeotic transformation of the theropod ‘semilunate' carpal

    PubMed Central

    Xu, Xing; Han, Fenglu; Zhao, Qi

    2014-01-01

    The homology of the ‘semilunate' carpal, an important structure linking non-avian and avian dinosaurs, has been controversial. Here we describe the morphology of some theropod wrists, demonstrating that the ‘semilunate' carpal is not formed by the same carpal elements in all theropods possessing this feature and that the involvement of the lateralmost distal carpal in forming the ‘semilunate' carpal of birds is an inheritance from their non-avian theropod ancestors. Optimization of relevant morphological features indicates that these features evolved in an incremental way and the ‘semilunate' structure underwent a lateral shift in position during theropod evolution, possibly as a result of selection for foldable wings in birds and their close theropod relatives. We propose that homeotic transformation was involved in the evolution of the ‘semilunate' carpal. In combination with developmental data on avian wing digits, this suggests that homeosis played a significant role in theropod hand evolution in general. PMID:25116378

  19. Expression profile of the sex determination gene doublesex in a gynandromorph of bumblebee, Bombus ignitus

    NASA Astrophysics Data System (ADS)

    Ugajin, Atsushi; Matsuo, Koshiro; Kubo, Ryohei; Sasaki, Tetsuhiko; Ono, Masato

    2016-04-01

    Gynandromorphy that has both male and female features is known in many insect orders, including Hymenoptera. In most cases, however, only external morphology and behavioral aspects have been studied. We found a gynandromorph of bumblebee, Bombus ignitus, that showed almost bilateral distribution of external sexual traits, with male characters observed on the left side and female characters on the right side. This individual never exhibited sexual behavior toward new queens. The dissection of the head part showed that it had bilaterally dimorphic labial glands, only the left of which was well developed and synthesized male-specific pheromone components. In contrast, the gynandromorph possessed an ovipositor and a pair of ovaries in the abdominal part, suggesting that it had a uniformly female reproductive system. Furthermore, we characterized several internal organs of the gynandromorph by a molecular biological approach. The expression analyses of a sex determination gene, doublesex, in the brain, the fat bodies, the hindgut, and the ovaries of the gynandromorph revealed a male-type expression pattern exclusively in the left brain hemisphere and consistent female-type expression in other tissues. These findings clearly indicate the sexual discordance between external traits and internal organs in the gynandromorph. The results of genetic analyses using microsatellite markers suggested that this individual consisted of both genetically male- and female-type tissues.

  20. Expression profile of the sex determination gene doublesex in a gynandromorph of bumblebee, Bombus ignitus.

    PubMed

    Ugajin, Atsushi; Matsuo, Koshiro; Kubo, Ryohei; Sasaki, Tetsuhiko; Ono, Masato

    2016-04-01

    Gynandromorphy that has both male and female features is known in many insect orders, including Hymenoptera. In most cases, however, only external morphology and behavioral aspects have been studied. We found a gynandromorph of bumblebee, Bombus ignitus, that showed almost bilateral distribution of external sexual traits, with male characters observed on the left side and female characters on the right side. This individual never exhibited sexual behavior toward new queens. The dissection of the head part showed that it had bilaterally dimorphic labial glands, only the left of which was well developed and synthesized male-specific pheromone components. In contrast, the gynandromorph possessed an ovipositor and a pair of ovaries in the abdominal part, suggesting that it had a uniformly female reproductive system. Furthermore, we characterized several internal organs of the gynandromorph by a molecular biological approach. The expression analyses of a sex determination gene, doublesex, in the brain, the fat bodies, the hindgut, and the ovaries of the gynandromorph revealed a male-type expression pattern exclusively in the left brain hemisphere and consistent female-type expression in other tissues. These findings clearly indicate the sexual discordance between external traits and internal organs in the gynandromorph. The results of genetic analyses using microsatellite markers suggested that this individual consisted of both genetically male- and female-type tissues.

  1. Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination.

    PubMed

    Shirak, Andrey; Seroussi, Eyal; Cnaani, Avner; Howe, Aimee E; Domokhovsky, Raisa; Zilberman, Noam; Kocher, Thomas D; Hulata, Gideon; Ron, Micha

    2006-11-01

    Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17. PMID:16951079

  2. Sex, Drugs, and Rock ‘N’ Roll: Hypothesizing Common Mesolimbic Activation as a Function of Reward Gene Polymorphisms

    PubMed Central

    Blum, Kenneth; Werner, Tonia; Carnes, Stefanie; Carnes, Patrick; Bowirrat, Abdalla; Giordano, John; Marlene-Oscar-Berman; Gold, Mark

    2014-01-01

    The nucleus accumbens, a site within the ventral striatum, plays a prominent role in mediating the reinforcing effects of drugs of abuse, food, sex, and other addictions. Indeed, it is generally believed that this structure mandates motivated behaviors such as eating, drinking, and sexual activity, which are elicited by natural rewards and other strong incentive stimuli. This article focuses on sex addiction, but we hypothesize that there is a common underlying mechanism of action for the powerful effects that all addictions have on human motivation. That is, biological drives may have common molecular genetic antecedents, which if impaired, lead to aberrant behaviors. Based on abundant scientific support, we further hypothesize that dopaminergic genes, and possibly other candidate neurotransmitter-related gene polymorphisms, affect both hedonic and anhedonic behavioral outcomes. Genotyping studies already have linked gene polymorphic associations with alcohol and drug addictions and obesity, and we anticipate that future genotyping studies of sex addicts will provide evidence for polymorphic associations with specific clustering of sexual typologies based on clinical instrument assessments. We recommend that scientists and clinicians embark on research coupling the use of neuroimaging tools with dopaminergic agonistic agents to target specific gene polymorphisms systematically for normalizing hyper- or hypo-sexual behaviors. PMID:22641964

  3. Sex-related gene expression profiles in the adrenal cortex in the mature rat: Microarray analysis with emphasis on genes involved in steroidogenesis

    PubMed Central

    TREJTER, MARCIN; HOCHOL, ANNA; TYCZEWSKA, MARIANNA; ZIOLKOWSKA, AGNIESZKA; JOPEK, KAROL; SZYSZKA, MARTA; MALENDOWICZ, LUDWIK K; RUCINSKI, MARCIN

    2015-01-01

    Notable sex-related differences exist in mammalian adrenal cortex structure and function. In adult rats, the adrenal weight and the average volume of zona fasciculata cells of females are larger and secrete greater amounts of corticosterone than those of males. The molecular bases of these sex-related differences are poorly understood. In this study, to explore the molecular background of these differences, we defined zone- and sex-specific transcripts in adult male and female (estrous cycle phase) rats. Twelve-week-old rats of both genders were used and samples were taken from the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) zones. Transcriptome identification was carried out using the Affymetrix® Rat Gene 1.1 ST Array. The microarray data were compared by fold change with significance according to moderated t-statistics. Subsequently, we performed functional annotation clustering using the Gene Ontology (GO) and Database for Annotation, Visualization and Integrated Discovery (DAVID). In the first step, we explored differentially expressed transcripts in the adrenal ZG and ZF/R. The number of differentially expressed transcripts was notably higher in the female than in the male rats (702 vs. 571). The differentially expressed genes which were significantly enriched included genes involved in steroid hormone metabolism, and their expression levels in the ZF/R of adult female rats were significantly higher compared with those in the male rats. In the female ZF/R, when compared with that of the males, prevailing numbers of genes linked to cell fraction, oxidation/reduction processes, response to nutrients and to extracellular stimuli or steroid hormone stimuli were downregulated. The microarray data for key genes involved directly in steroidogenesis were confirmed by qPCR. Thus, when compared with that of the males, in the female ZF/R, higher expression levels of genes involved directly in steroid hormone synthesis were accompanied by lower

  4. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    PubMed

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves. PMID:26358957

  5. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    PubMed

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves.

  6. The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species

    PubMed Central

    Seney, Marianne L.; Chang, Lun-Ching; Oh, Hyunjung; Wang, Xingbin; Tseng, George C.; Lewis, David A.; Sibille, Etienne

    2013-01-01

    Although circulating hormones and inhibitory gamma-aminobutyric acid (GABA)-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD) and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls), we show that the previously reported down-regulation in MDD of somatostatin (SST), a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; two frontal cortex regions) and expression quantitative trait loci mapping (N = 170 subjects), we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67) and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model [Four Core Genotypes (FCG) mice], in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group), we show that genetic sex (i.e., X/Y-chromosome) influences both gene expression (lower Sst, Gad67, Gad65 in XY mice) and anxiety-like behaviors (higher in XY mice). This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females). Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role of male-like factors (XY genetic sex) on

  7. Y-chromosomal diversity in Haiti and Jamaica: contrasting levels of sex-biased gene flow.

    PubMed

    Simms, Tanya M; Wright, Marisil R; Hernandez, Michelle; Perez, Omar A; Ramirez, Evelyn C; Martinez, Emanuel; Herrera, Rene J

    2012-08-01

    Although previous studies have characterized the genetic structure of populations from Haiti and Jamaica using classical and autosomal STR polymorphisms, the patrilineal influences that are present in these countries have yet to be explored. To address this lacuna, the current study aims to investigate, for the first time, the potential impact of different ancestral sources, unique colonial histories, and distinct family structures on the paternal profile of both groups. According to previous reports examining populations from the Americas, island-specific demographic histories can greatly impact population structure, including various patterns of sex-biased gene flow. Also, given the contrasting autosomal profiles provided in our earlier study (Simms et al.: Am J Phys Anthropol 142 (2010) 49-66), we hypothesize that the degree and directionality of gene flow from Europeans, Africans, Amerindians, and East Asians are dissimilar in the two countries. To test this premise, 177 high-resolution Y-chromosome binary markers and 17 Y-STR loci were typed in Haiti (n = 123) and Jamaica (n = 159) and subsequently utilized for phylogenetic comparisons to available reference collections encompassing Africa, Europe, Asia (East and South), and the New World. Our results reveal that both studied populations exhibit a predominantly South-Saharan paternal component, with haplogroups A1b-V152, A3-M32, B2-M182, E1a-M33, E1b1a-M2, E2b-M98, and R1b2-V88 comprising 77.2% and 66.7% of the Haitian and Jamaican paternal gene pools, respectively. Yet, European derived chromosomes (i.e., haplogroups G2a*-P15, I-M258, R1b1b-M269, and T-M184) were detected at commensurate levels in Haiti (20.3%) and Jamaica (18.9%), whereas Y-haplogroups indicative of Chinese [O-M175 (3.8%)] and Indian [H-M69 (0.6%) and L-M20 (0.6%)] ancestry were restricted to Jamaica. PMID:22576450

  8. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    PubMed Central

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map. PMID:26742857

  9. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    NASA Astrophysics Data System (ADS)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  10. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis

    PubMed Central

    Duan, Mingyue; Xiong, Jinfeng; Lu, Dandan; Wang, Guoxiu; Ai, Hui

    2016-01-01

    Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50–100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification and functional

  11. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family.

    PubMed Central

    Barnes, T M; Hodgkin, J

    1996-01-01

    The Caenorhabditis elegans sex determination gene tra-3 is required for the correct sexual development of the soma and germ line in hermaphrodites, while being fully dispensable in males. Genetic analysis of tra-3 has suggested that its product may act as a potentiator of another sex determination gene, tra-2. Molecular analysis reported here reveals that the predicted tra-3 gene product is a member of the calpain family of calcium-regulated cytosolic proteases, though it lacks the calcium binding regulatory domain. Calpains are regulatory processing proteases, exhibiting marked substrate specificity, and mutations in the p94 isoform underlie the human hereditary condition limb-girdle muscular dystrophy type 2A. The molecular identity of TRA-3 is consistent with previous genetic analysis which suggested that tra-3 plays a very selective modulatory role and is required in very small amounts. Based on these observations and new genetic data, we suggest a refinement of the position of tra-3 within the sex determination cascade and discuss possible mechanisms of action for the TRA-3 protein. PMID:8887539

  12. The Drosophila Myc gene, diminutive, is a positive regulator of the Sex-lethal establishment promoter, Sxl-Pe

    PubMed Central

    Kappes, Gretchen; Deshpande, Girish; Mulvey, Brett B.; Horabin, Jamila I.; Schedl, Paul

    2011-01-01

    The binary switch gene Sex-lethal (Sxl) controls sexual identity in Drosophila. When activated, Sxl imposes female identity, whereas male identity ensues by default when the gene is off. The decision to activate Sxl is controlled by an X chromosome counting system that regulates the Sxl establishment promoter, Sxl-Pe. The counting system depends upon the twofold difference in the gene dose of a series of X-linked transcription factors or numerators. Because of this difference in dose, early female embryos express twice the amount of these transcription factors, and the cumulative action of these transcription factors turns on Sxl-Pe. Here we show that the Drosophila Myc gene diminutive is an X-linked numerator. PMID:21220321

  13. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  14. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions.

    PubMed

    Bartlett, Madelaine; Thompson, Beth; Brabazon, Holly; Del Gizzi, Robert; Zhang, Thompson; Whipple, Clinton

    2016-06-01

    Protein-protein interactions (PPIs) have widely acknowledged roles in the regulation of development, but few studies have addressed the timing and mechanism of shifting PPIs over evolutionary history. The B-class MADS-box transcription factors, PISTILLATA (PI) and APETALA3 (AP3) are key regulators of floral development. PI-like (PI(L)) and AP3-like (AP3(L)) proteins from a number of plants, including Arabidopsis thaliana (Arabidopsis) and the grass Zea mays (maize), bind DNA as obligate heterodimers. However, a PI(L) protein from the grass relative Joinvillea can bind DNA as a homodimer. To ascertain whether Joinvillea PI(L) homodimerization is an anomaly or indicative of broader trends, we characterized PI(L) dimerization across the Poales and uncovered unexpected evolutionary lability. Both obligate B-class heterodimerization and PI(L) homodimerization have evolved multiple times in the order, by distinct molecular mechanisms. For example, obligate B-class heterodimerization in maize evolved very recently from PI(L) homodimerization. A single amino acid change, fixed during domestication, is sufficient to toggle one maize PI(L) protein between homodimerization and obligate heterodimerization. We detected a signature of positive selection acting on residues preferentially clustered in predicted sites of contact between MADS-box monomers and dimers, and in motifs that mediate MADS PPI specificity in Arabidopsis. Changing one positively selected residue can alter PI(L) dimerization activity. Furthermore, ectopic expression of a Joinvillea PI(L) homodimer in Arabidopsis can homeotically transform sepals into petals. Our results provide a window into the evolutionary remodeling of PPIs, and show that novel interactions have the potential to alter plant form in a context-dependent manner. PMID:26908583

  15. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein–Protein Interactions

    PubMed Central

    Bartlett, Madelaine; Thompson, Beth; Brabazon, Holly; Del Gizzi, Robert; Zhang, Thompson; Whipple, Clinton

    2016-01-01

    Protein–protein interactions (PPIs) have widely acknowledged roles in the regulation of development, but few studies have addressed the timing and mechanism of shifting PPIs over evolutionary history. The B-class MADS-box transcription factors, PISTILLATA (PI) and APETALA3 (AP3) are key regulators of floral development. PI-like (PIL) and AP3-like (AP3L) proteins from a number of plants, including Arabidopsis thaliana (Arabidopsis) and the grass Zea mays (maize), bind DNA as obligate heterodimers. However, a PIL protein from the grass relative Joinvillea can bind DNA as a homodimer. To ascertain whether Joinvillea PIL homodimerization is an anomaly or indicative of broader trends, we characterized PIL dimerization across the Poales and uncovered unexpected evolutionary lability. Both obligate B-class heterodimerization and PIL homodimerization have evolved multiple times in the order, by distinct molecular mechanisms. For example, obligate B-class heterodimerization in maize evolved very recently from PIL homodimerization. A single amino acid change, fixed during domestication, is sufficient to toggle one maize PIL protein between homodimerization and obligate heterodimerization. We detected a signature of positive selection acting on residues preferentially clustered in predicted sites of contact between MADS-box monomers and dimers, and in motifs that mediate MADS PPI specificity in Arabidopsis. Changing one positively selected residue can alter PIL dimerization activity. Furthermore, ectopic expression of a Joinvillea PIL homodimer in Arabidopsis can homeotically transform sepals into petals. Our results provide a window into the evolutionary remodeling of PPIs, and show that novel interactions have the potential to alter plant form in a context-dependent manner. PMID:26908583

  16. Sex and strategy use matters for pattern separation, adult neurogenesis, and immediate early gene expression in the hippocampus.

    PubMed

    Yagi, Shunya; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-01-01

    Adult neurogenesis in the dentate gyrus (DG) plays a crucial role for pattern separation, and there are sex differences in the regulation of neurogenesis. Although sex differences, favoring males, in spatial navigation have been reported, it is not known whether there are sex differences in pattern separation. The current study was designed to determine whether there are sex differences in the ability for separating similar or distinct patterns, learning strategy choice, adult neurogenesis, and immediate early gene (IEG) expression in the DG in response to pattern separation training. Male and female Sprague-Dawley rats received a single injection of the DNA synthesis marker, bromodeoxyuridine (BrdU), and were tested for the ability of separating spatial patterns in a spatial pattern separation version of delayed nonmatching to place task using the eight-arm radial arm maze. Twenty-seven days following BrdU injection, rats received a probe trial to determine whether they were idiothetic or spatial strategy users. We found that male spatial strategy users outperformed female spatial strategy users only when separating similar, but not distinct, patterns. Furthermore, male spatial strategy users had greater neurogenesis in response to pattern separation training than all other groups. Interestingly, neurogenesis was positively correlated with performance on similar pattern trials during pattern separation in female spatial strategy users but negatively correlated with performance in male idiothetic strategy users. These results suggest that the survival of new neurons may play an important positive role for pattern separation of similar patterns in females. Furthermore, we found sex and strategy differences in IEG expression in the CA1 and CA3 regions in response to pattern separation. These findings emphasize the importance of studying biological sex on hippocampal function and neural plasticity.

  17. New developmental evidence supports a homeotic frameshift of digit identity in the evolution of the bird wing

    PubMed Central

    2014-01-01

    Background The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. Results We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Conclusion Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an

  18. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cleveland, Beth M; Weber, Gregory M

    2015-05-15

    Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.

  19. Analyzing the Coordinated Gene Network Underlying Temperature-Dependent Sex Determination in Reptiles

    PubMed Central

    Shoemaker, Christina M.; Crews, David

    2009-01-01

    Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are a relatively new area of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research. PMID:19022389

  20. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus.

    PubMed

    Wang, Dan-Dan; Zhang, Gui-Rong; Wei, Kai-Jian; Ji, Wei; Gardner, Jonathan P A; Yang, Rui-Bin; Chen, Kun-Ci

    2015-12-01

    Channa argus is one of the most commercially important fish species in China. Studies show that males of C. argus grow faster than females at the same age. In order to explore the sex differentiation mechanism of C. argus, we isolated the full length of the sex-related gene Foxl2 cDNA and analysed its expression patterns during gonadal sex differentiation. Alignment of known Foxl2 amino acid sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. Quantitative RT-PCR revealed that Foxl2 is predominantly expressed in brain, pituitary, gill and ovary, with its highest level in ovary but low levels in testis and other tissues, reflecting a potential role for Foxl2 in the brain-pituitary-gonad axis in C. argus. Our ontogenetic stage data showed that C. argus Foxl2 expression was significantly upregulated from 1 to 11 days posthatching (dph) and that the initiation of expression preceded the first anatomical ovarian differentiation (27 dph), suggesting that Foxl2 might play a potential role in early gonadal sex differentiation in C. argus. In addition, the Foxl2 protein was primarily located in granulosa cells surrounding the oocytes of mature C. argus, implying that Foxl2 may have a basic function in granulosa cell differentiation and the maintenance of oocytes. PMID:26159319

  1. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus.

    PubMed

    Wang, Dan-Dan; Zhang, Gui-Rong; Wei, Kai-Jian; Ji, Wei; Gardner, Jonathan P A; Yang, Rui-Bin; Chen, Kun-Ci

    2015-12-01

    Channa argus is one of the most commercially important fish species in China. Studies show that males of C. argus grow faster than females at the same age. In order to explore the sex differentiation mechanism of C. argus, we isolated the full length of the sex-related gene Foxl2 cDNA and analysed its expression patterns during gonadal sex differentiation. Alignment of known Foxl2 amino acid sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. Quantitative RT-PCR revealed that Foxl2 is predominantly expressed in brain, pituitary, gill and ovary, with its highest level in ovary but low levels in testis and other tissues, reflecting a potential role for Foxl2 in the brain-pituitary-gonad axis in C. argus. Our ontogenetic stage data showed that C. argus Foxl2 expression was significantly upregulated from 1 to 11 days posthatching (dph) and that the initiation of expression preceded the first anatomical ovarian differentiation (27 dph), suggesting that Foxl2 might play a potential role in early gonadal sex differentiation in C. argus. In addition, the Foxl2 protein was primarily located in granulosa cells surrounding the oocytes of mature C. argus, implying that Foxl2 may have a basic function in granulosa cell differentiation and the maintenance of oocytes.

  2. Sex- and tissue-specific functions of Drosophila doublesex transcription factor target genes.

    PubMed

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C; Hempel, Leonie U; Pavlou, Hania J; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan K; Smith, Harold E; Przytycka, Teresa M; Goodwin, Stephen F; Van Doren, Mark; Oliver, Brian

    2014-12-22

    Primary sex-determination "switches" evolve rapidly, but Doublesex (DSX)-related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSX(F) and DSX(M)), but little is known about how dsx controls sexual development, whether DSX(F) and DSX(M) bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSX(F) and DSX(M) bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression.

  3. RNAi-Mediated Gene Silencing in a Gonad Organ Culture to Study Sex Determination Mechanisms in Sea Turtle

    PubMed Central

    Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Milton, Sarah L.; Moreno-Mendoza, Norma; Díaz-Hernández, Verónica; García-Gasca, Alejandra

    2013-01-01

    The autosomal Sry-related gene, Sox9, encodes a transcription factor, which performs an important role in testis differentiation in mammals. In several reptiles, Sox9 is differentially expressed in gonads, showing a significant upregulation during the thermo-sensitive period (TSP) at the male-promoting temperature, consistent with the idea that SOX9 plays a central role in the male pathway. However, in spite of numerous studies, it remains unclear how SOX9 functions during this event. In the present work, we developed an RNAi-based method for silencing Sox9 in an in vitro gonad culture system for the sea turtle, Lepidochelys olivacea. Gonads were dissected as soon as the embryos entered the TSP and were maintained in organ culture. Transfection of siRNA resulted in the decrease of both Sox9 mRNA and protein. Furthermore, we found coordinated expression patterns for Sox9 and the anti-Müllerian hormone gene, Amh, suggesting that SOX9 could directly or indirectly regulate Amh expression, as it occurs in mammals. These results demonstrate an in vitro method to knockdown endogenous genes in gonads from a sea turtle, which represents a novel approach to investigate the roles of important genes involved in sex determination or differentiation pathways in species with temperature-dependent sex determination. PMID:24705165

  4. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects.

    PubMed

    Osoegawa, Kazutoyo; Iovannisci, David M; Lin, Bin; Parodi, Christina; Schultz, Kathleen; Shaw, Gary M; Lammer, Edward J

    2014-02-01

    Congenital heart defects (CHDs) are common malformations, affecting four to eight per 1,000 total births. Conotruncal defects are an important pathogenetic subset of CHDs, comprising nearly 20% of the total. Although both environmental and genetic factors are known to contribute to the occurrence of conotruncal defects, the causes remain unknown for most. To identify novel candidate genes/loci, we used array comparative genomic hybridization to detect chromosomal microdeletions/duplications. From a population base of 974,579 total births born during 1999-2004, we screened 389 California infants born with tetralogy of Fallot or d-transposition of the great arteries. We found that 1.7% (5/288) of males with a conotruncal defect had sex chromosome aneuploidy, a sevenfold increased frequency (relative risk = 7.0; 95% confidence interval 2.9-16.9). We identified eight chromosomal microdeletions/duplications for conotruncal defects. From these duplications and deletions, we found five high priority candidate genes (GATA4, CRKL, BMPR1A, SNAI2, and ZFHX4). This is the initial report that sex chromosome aneuploidy is associated with conotruncal defects among boys. These chromosomal microduplications/deletions provide evidence that GATA4, SNAI2, and CRKL are highly dosage sensitive genes involved in outflow tract development. Genome wide screening for copy number variation can be productive for identifying novel genes/loci contributing to non-syndromic common malformations.

  5. Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution.

    PubMed

    Waters, Paul D; Delbridge, Margaret L; Deakin, Janine E; El-Mogharbel, Nisrine; Kirby, Patrick J; Carvalho-Silva, Denise R; Graves, Jennifer A Marshall

    2005-01-01

    Mammalian sex chromosomes evolved from an ancient autosomal pair. Mapping of human X- and Y-borne genes in distantly related mammals and non-mammalian vertebrates has proved valuable to help deduce the evolution of this unique part of the genome. The platypus, a monotreme mammal distantly related to eutherians and marsupials, has an extraordinary sex chromosome system comprising five X and five Y chromosomes that form a translocation chain at male meiosis. The largest X chromosome (X1), which lies at one end of the chain, has considerable homology to the human X. Using comparative mapping and the emerging chicken database, we demonstrate that part of the therian X chromosome, previously thought to be conserved across all mammals, was lost from the platypus X1 to an autosome. This region included genes flanking the XIST locus, and also genes with Y-linked homologues that are important to male reproduction in therians. Since these genes lie on the X in marsupials and eutherians, and also on the homologous region of chicken chromosome 4, this represents a loss from the monotreme X rather than an additional evolutionary stratum of the human X. PMID:15973504

  6. Sumoylated PPARα mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice

    PubMed Central

    Leuenberger, Nicolas; Pradervand, Sylvain; Wahli, Walter

    2009-01-01

    As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARα has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARα ligand. Using the steroid oxysterol 7α-hydroxylase cytochrome P450 7b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARα-dependent repression. Initial sumoylation of the ligand-binding domain of PPARα triggered the interaction of PPARα with GA-binding protein α (GABPα) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease. PMID:19729835

  7. Genetic drift in antagonistic genes leads to divergence in sex-specific fitness between experimental populations of Drosophila melanogaster.

    PubMed

    Hesketh, Jack; Fowler, Kevin; Reuter, Max

    2013-05-01

    Males and females differ in their reproductive roles and as a consequence are often under diverging selection pressures on shared phenotypic traits. Theory predicts that divergent selection can favor the invasion of sexually antagonistic alleles, which increase the fitness of one sex at the detriment of the other. Sexual antagonism can be subsequently resolved through the evolution of sex-specific gene expression, allowing the sexes to diverge phenotypically. Although sexual dimorphism is very common, recent evidence also shows that antagonistic genetic variation continues to segregate in populations of many organisms. Here we present empirical data on the interaction between sexual antagonism and genetic drift in populations that have independently evolved under standardized conditions. We demonstrate that small experimental populations of Drosophila melanogaster have diverged in male and female fitness, with some populations showing high male, but low female fitness while other populations show the reverse pattern. The between-population patterns are consistent with the differentiation in reproductive fitness being driven by genetic drift in sexually antagonistic alleles. We discuss the implications of our results with respect to the maintenance of antagonistic variation in subdivided populations and consider the wider implications of drift in fitness-related genes.

  8. Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the W chromosome.

    PubMed

    Wright, Alison E; Harrison, Peter W; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2014-11-01

    We used a comparative approach spanning three species and 90 million years to study the evolutionary history of the avian sex chromosomes. Using whole transcriptomes, we assembled the largest cross-species dataset of W-linked coding content to date. Our results show that recombination suppression in large portions of the avian sex chromosomes has evolved independently, and that long-term sex chromosome divergence is consistent with repeated and independent inversions spreading progressively to restrict recombination. In contrast, over short-term periods we observe heterogeneous and locus-specific divergence. We also uncover four instances of gene conversion between both highly diverged and recently evolved gametologs, suggesting a complex mosaic of recombination suppression across the sex chromosomes. Lastly, evidence from 16 gametologs reveal that the W chromosome is evolving with a significant contribution of purifying selection, consistent with previous findings that W-linked genes play an important role in encoding sex-specific fitness.

  9. Sex chromosome evolution: platypus gene mapping suggests that part of the human X chromosome was originally autosomal.

    PubMed Central

    Watson, J M; Spencer, J A; Riggs, A D; Graves, J A

    1991-01-01

    To investigate the evolution of the mammalian sex chromosomes, we have compared the gene content of the X chromosomes in the mammalian groups most distantly related to man (marsupials and monotremes). Previous work established that genes on the long arm of the human X chromosome are conserved on the X chromosomes in all mammals, revealing that this region was part of an ancient mammalian X chromosome. However, we now report that several genes located on the short arm of the human X chromosome are absent from the platypus X chromosome, as well as from the marsupial X chromosome. Because monotremes and marsupials diverged independently from eutherian mammals, this finding implies that the whole human X short arm region is a relatively recent addition to the X chromosome in eutherian mammals. Images PMID:1763040

  10. A comparison of early floral ontogeny in wild-type and floral homeotic mutant phenotypes of Primula.

    PubMed

    Webster, Margaret A; Gilmartin, Philip A M

    2003-04-01

    Primula flowers are heteromorphic with individual plants producing either pin-form or thrum-form flowers. We have used scanning electron microscopy to observe early development of wild-type flowers of primrose (Primula vulgaris), cowslip (P. veris), and the polyanthus hybrid (P. x tommasinii x P. vulgaris). Floral ontogeny in Primula is different from that observed in the well-studied models Antirrhinum majus and Arabidopsis thaliana and our studies reveal morphological landmark events that define the sequence of early floral development in Primula into specific stages. Pin-form and thrum-form flowers are indistinguishable during early development with differentiation of the two floral morphs occurring beyond the differentiation of floral organs. Early ontogeny of flowers with homeotic mutant phenotypes was also studied to determine the timing of developmental reprogramming in these mutants. Phenotypes studied included Hose in Hose and Jack in the Green that develop petaloid sepals and leafy sepals, respectively, and Jackanapes plants that carry both these dominant mutations. Recessive double and semi- double flowers that produce additional whorls of petals and/or stamens in place of carpels were also studied. We describe a previously undocumented recessive Primula mutant phenotype, sepaloid, that produces sepals in place of petals and stamens, and a new non-homeotic, dominant mutant phenotype Split Perianth, in which sepals and petals fail to fuse to form the typical calyx and corolla structures. The molecular basis of these mutant phenotypes in relation to the ABC model is discussed.

  11. Investigation of mutations in the SRY, SOX9, and DAX1 genes in sex reversal patients from the Sichuan region of China.

    PubMed

    Chen, L; Ding, X P; Wei, X; Li, L X

    2014-01-01

    We investigated the molecular genetic mechanism of sex reversal by exploring the relationship between mutations in the sex-determining genes SRY, SOX9, and DAX1 with genetic sex reversal disease. Mutations in the three key genes were detected by polymerase chain reaction (PCR) and sequencing after karyotype analysis. The mutations detected were then aligned with a random sample of 100 normal sequences and the NCBI sequence database in order to confirm any new mutations. Furthermore, the copy number of SOX9 was measured by fluorescence quantitative PCR. Seven of the 10 male sex reversal patients (46, XX) contained an excess copy of the SRY gene, while one of the eight female sex reversal patients (46, XY) was lacking the SRY gene. Additionally, a new mutation (T-A, Asp24Lys) was detected in one female sex reversal patient (46, XY). No other mutation was detected in the analysis of SOX9 and DAX1, with the exception of an insertion mutation (c.35377791insG) found in the testicular-specific enhancer (TESCO) sequences in an SRY-positive female sex reversal patient (46, XY). Eight of the 18 sex reversal cases (44.4%) showed obvious connections with SRY gene translocations, mutations, or deletions, which was significantly higher than that reported previously (33.3%), indicating a need to further expand the range of sample collection. Overall, these results indicated that the main mechanism of sex reversal are not associated with mutations in the coding regions of SOX9 and DAX1 or copy number variations of SOX9, which is consistent with results of previous studies. PMID:24668626

  12. Molecular cloning, characterization, and sexually dimorphic expression of five major sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria).

    PubMed

    Smith, Elizabeth K; Guzmán, José M; Luckenbach, J Adam

    2013-06-01

    Regardless of how sex is determined, the gonadal genes expressed downstream that regulate sex differentiation are relatively conserved among vertebrates. The goal of this study was to clone and characterize five key sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria). Complete mRNA sequences of foxl2, cyp19a1a, dmrt1, sox9a and amh were cloned, sequenced, and phylogenetically analyzed. The sablefish mRNA sequences exhibited the characteristic domains of each gene. The deduced amino sequences were highly conserved in some cases, such as Foxl2, whereas others, such as Amh, exhibited lower homology to corresponding sequences in other vertebrates. Using quantitative PCRs developed for each gene, we found that foxl2 and cyp19a1a mRNA levels were significantly elevated in juvenile sablefish ovaries compared to testes, whereas dmrt1, sox9a and amh mRNA levels were significantly elevated in testes relative to ovaries. These patterns were upheld in our tissue distribution analyses of adult fish, but overall four of the genes, foxl2, cyp19a1a, dmrt1 and amh, were robust markers of sex in sablefish. This study provides important molecular tools for ongoing work related to sex control in sablefish and exploration of the earliest period of molecular sex differentiation and its regulation. PMID:23507626

  13. Subchronic effects of cadmium on the gonads, expressions of steroid hormones and sex-related genes in tilapia Oreochromis niloticus.

    PubMed

    Luo, Yongju; Shan, Dan; Zhong, Huan; Zhou, Yi; Chen, Wenzhi; Cao, Jinling; Guo, Zhongbao; Xiao, Jun; He, Fulin; Huang, Yifan; Li, Jian; Huang, Heming; Xu, Pao

    2015-12-01

    Cadmium (Cd) is one of the most toxic heavy metals in aquatic ecosystem which affects fish health and aquaculture. In the present study, we examined the bioaccumulation of Cd in the gonads of tilapia via dissolved and dietary routes. We evaluated the subchronic effects of Cd on the histology of gonads, steroid hormone levels and sex-related gene expressions in tilapia. In addition, we also studied maternal transfer of Cd. Our results indicated that Cd was accumulated significantly in both ovary and testis from both exposure routes. Histopathological analysis showed that Cd induced ovary and testis injuries. Estradiol levels were significantly increased in dissolved Cd exposed female fish. In addition, the Cd exposure displayed different effects on gene expressions in gonads. In females, the estrogen receptor (ERα) was stimulated in dissolved Cd-exposed fish at 70.32 and 143.78 μg/L for 30 days and in fish at 143.78 μg/L for 60 days. Vitellogenin expression was significantly down-regulated in the ovary of dissolved Cd-exposed fish. In testis, GR expression was elevated after 60 days of dissolved Cd and dietary exposure. Furthermore, Cd level was significantly higher in the eggs than that in the fry. Our results demonstrated that both dissolved and dietary Cd exposures affected gonad development by altering steroid hormone levels and sex-related gene expressions in tilapia. PMID:26471182

  14. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    PubMed Central

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development. PMID:25985063

  15. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes. PMID:24817326

  16. Gene conversion and DNA sequence polymorphism in the sex-determination gene fog-2 and its paralog ftr-1 in Caenorhabditis elegans.

    PubMed

    Rane, Hallie S; Smith, Jessica M; Bergthorsson, Ulfar; Katju, Vaishali

    2010-07-01

    Gene conversion, a form of concerted evolution, bears enormous potential to shape the trajectory of sequence and functional divergence of gene paralogs subsequent to duplication events. fog-2, a sex-determination gene unique to Caenorhabditis elegans and implicated in the origin of hermaphroditism in this species, resulted from the duplication of ftr-1, an upstream gene of unknown function. Synonymous sequence divergence in regions of fog-2 and ftr-1 (excluding recent gene conversion tracts) suggests that the duplication occurred 46 million generations ago. Gene conversion between fog-2 and ftr-1 was previously discovered in experimental fog-2 knockout lines of C. elegans, whereby hermaphroditism was restored in mutant obligately outcrossing male-female populations. We analyzed DNA-sequence variation in fog-2 and ftr-1 within 40 isolates of C. elegans from diverse geographic locations in order to evaluate the contribution of gene conversion to genetic variation in the two gene paralogs. The analysis shows that gene conversion contributes significantly to DNA-sequence diversity in fog-2 and ftr-1 (22% and 34%, respectively) and may have the potential to alter sexual phenotypes in natural populations. A radical amino acid change in a conserved region of the F-box domain of fog-2 was found in natural isolates of C. elegans with significantly lower fecundity. We hypothesize that the lowered fecundity is due to reduced masculinization and less sperm production and that amino acid replacement substitutions and gene conversion in fog-2 may contribute significantly to variation in the degree of inbreeding and outcrossing in natural populations.

  17. Multiple Δ11-desaturase genes selectively used for sex pheromone biosynthesis are conserved in Ostrinia moth genomes.

    PubMed

    Fujii, Takeshi; Yasukochi, Yuji; Rong, Yu; Matsuo, Takashi; Ishikawa, Yukio

    2015-06-01

    Regulation of the expression of fatty acyl-CoA desaturases, which introduce a double bond into the fatty acid moiety of the substrate, is crucial for the production of species-specific sex pheromones in moths. In Ostrinia moths, two distinct Δ11-desaturases and a Δ14-desaturase are known to be selectively used in the biosynthesis of sex pheromones. Of the two Δ11-desaturases, one identified from Ostrinia nubilalis and Ostrinia scapulalis, Z/EΔ11, forms the Z and E isomers of a double bond at position 11, whereas the other identified from Ostrinia latipennis, LATPG1(=EΔ11), exclusively forms an E double bond at position 11. Since the retroposon(ezi)-fused, non-functional Δ11-desaturase gene, ezi-Δ11α, in the genomes of O. nubilalis and O. furnacalis was previously suggested to be an orthologue of latpg1, we here explored Z/EΔ11 orthologues in the genome of O. latipennis. We newly identified two Δ11-desaturase genes, latpg2 and latpg3, which were orthologous to ezi-Δ11β and Z/EΔ11, respectively. We found that an ezi-like element was integrated in intron 1 of latpg1, and confirmed that only latpg1 was expressed in the pheromone gland of O. latipennis. Thus, at least three Δ11-desaturase genes are present in the genome of O. latipennis, and latpg1 is selectively transcribed in the pheromone gland of this moth. The non-functionality of ezi-inserted desaturase genes in O. nubilalis and O. furnacalis may not be a direct consequence of the insertion of an ezi- or ezi-like element into the gene.

  18. Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard predatory mite Metaseiulus occidentalis (Chelicerata: Arachnida: Acari: Phytoseiidae).

    PubMed

    Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y

    2015-01-01

    Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods. PMID:25077523

  19. Does polyandry control population sex ratio via regulation of a selfish gene?

    PubMed Central

    Price, Tom A. R.; Bretman, Amanda; Gradilla, Ana C.; Reger, Julia; Taylor, Michelle L.; Giraldo-Perez, Paulina; Campbell, Amy; Hurst, Gregory D. D.; Wedell, Nina

    2014-01-01

    The extent of female multiple mating (polyandry) can strongly impact on the intensity of sexual selection, sexual conflict, and the evolution of cooperation and sociality. More subtly, polyandry may protect populations against intragenomic conflicts that result from the invasion of deleterious selfish genetic elements (SGEs). SGEs commonly impair sperm production, and so are likely to be unsuccessful in sperm competition, potentially reducing their transmission in polyandrous populations. Here, we test this prediction in nature. We demonstrate a heritable latitudinal cline in the degree of polyandry in the fruitfly Drosophila pseudoobscura across the USA, with northern population females remating more frequently in both the field and the laboratory. High remating was associated with low frequency of a sex-ratio-distorting meiotic driver in natural populations. In the laboratory, polyandry directly controls the frequency of the driver by undermining its transmission. Hence we suggest that the cline in polyandry represents an important contributor to the cline in sex ratio in nature. Furthermore, as the meiotic driver causes sex ratio bias, variation in polyandry may ultimately determine population sex ratio across the USA, a dramatic impact of female mating decisions. As SGEs are ubiquitous it is likely that the reduction of intragenomic conflict by polyandry is widespread. PMID:24695427

  20. Sex-Specific Association of Depression and a Haplotype in Leukotriene A4 Hydrolase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depression is genetically determined and inflammation has been implicated. Women are twice as likely to develop depression as men. Whether genetic variants involved in inflammation play a role in the sex difference in depression is unclear. We examined the association, separately in men and women, ...

  1. Transcriptome Sequencing and Comparative Analysis of Ovary and Testis Identifies Potential Key Sex-Related Genes and Pathways in Scallop Patinopecten yessoensis.

    PubMed

    Li, Yangping; Zhang, Lingling; Sun, Yan; Ma, Xiaoli; Wang, Jing; Li, Ruojiao; Zhang, Meiwei; Wang, Shi; Hu, Xiaoli; Bao, Zhenmin

    2016-08-01

    Bivalve mollusks have fascinatingly diverse modes of reproduction. However, research investigating sex determination and reproductive regulation in this group of animals is still in its infancy. In this study, transcriptomes of three ovaries and three testes of Yesso scallop were sequenced and analyzed. Transcriptome comparison revealed that 4394 genes were significantly different between ovaries and testes, of which 1973 were ovary-biased (upregulated in the ovaries) and 2421 were testis-biased. Crucial sex-determining genes that were previously reported in vertebrates and putatively present in bivalves, namely FOXL2, DMRT, SOXH, and SOXE, were investigated. The genes all possessed conserved functional domains and were detected in the gonads. Except for PySOXE, the other three genes were significantly differentially expressed between the ovaries and testes. PyFOXL2 was ovary-biased, and PyDMRT and PySOXH were testis-biased, suggesting that these three genes are likely to be key candidates for scallop sex determination/differentiation. Furthermore, GO and KEGG enrichment analyses were conducted for both ovary- and testis-biased genes. Interestingly, both neurotransmitter transporters and GABAergic synapse genes were overrepresented in the ovary-biased genes, suggesting that neurotransmitters, such as GABA and glycine, are likely to participate in scallop ovary development. Our study will assist in better understanding of the molecular mechanisms underlying bivalve sex determination and reproductive regulation. PMID:27234819

  2. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex.

    PubMed

    Mina, Theresia H; Räikkönen, Katri; Riley, Simon C; Norman, Jane E; Reynolds, Rebecca M

    2015-09-01

    Maternal emotional distress symptoms, including life satisfaction, anxiety and depressed mood, are worse in Severely Obese (SO) than lean pregnancy and may alter placental genes regulating fetal glucocorticoid exposure and placental growth. We hypothesised that the associations between increased maternal distress symptoms and changes in placental gene expression including IGF2 and genes regulating fetal glucocorticoid exposure are more pronounced in SO pregnancy. We also considered whether there were sex-specific effects. Placental mRNA levels of 11β-HSDs, NR3C1-α, NR3C2, ABC transporters, mTOR and the IGF2 family were measured in term placental samples from 43 lean (BMI≤25kg/m(2)) and 50 SO (BMI≥40kg/m(2)) women, in whom distress symptoms were prospectively evaluated during pregnancy. The mRNA levels of genes with a similar role in regulating fetal glucocorticoid exposure were strongly inter-correlated. Increased maternal distress symptoms associated with increased NR3C2 and IGF2 isoform 1(IGF2-1) in both lean and SO group (p≤0.05). Increased distress was associated with higher ABCB1 and ABCG2 mRNA levels in SO but lower ABCB1 and higher 11β-HSD1 mRNA levels in lean (p≤0.05) suggesting a protective adaptive response in SO placentas. Increased maternal distress associated with reduced mRNA levels of ABCB1, ABCG2, 11β-HSD2, NR3C1-α and IGF2-1 in placentas of female but not male offspring. The observed sex differences in placental responses suggest greater vulnerability of female fetuses to maternal distress with potentially greater fetal glucocorticoid exposure and excess IGF2. Further studies are needed to replicate these findings and to test whether this translates to potentially greater negative outcomes of maternal distress in female offspring in early childhood.

  3. Novel Protein Genes in Animal mtDNA: A New Sex Determination System in Freshwater Mussels (Bivalvia: Unionoida)?

    PubMed Central

    Breton, Sophie; Stewart, Donald T.; Shepardson, Sally; Trdan, Richard J.; Bogan, Arthur E.; Chapman, Eric G.; Ruminas, Andrew J.; Piontkivska, Helen; Hoeh, Walter R.

    2011-01-01

    Mitochondrial (mt) function depends critically on optimal interactions between components encoded by mt and nuclear DNAs. mitochondrial DNA (mtDNA) inheritance (SMI) is thought to have evolved in animal species to maintain mito-nuclear complementarity by preventing the spread of selfish mt elements thus typically rendering mtDNA heteroplasmy evolutionarily ephemeral. Here, we show that mtDNA intraorganismal heteroplasmy can have deterministic underpinnings and persist for hundreds of millions of years. We demonstrate that the only exception to SMI in the animal kingdom, that is, the doubly uniparental mtDNA inheritance system in bivalves, with its three-way interactions among egg mt-, sperm mt- and nucleus-encoded gene products, is tightly associated with the maintenance of separate male and female sexes (dioecy) in freshwater mussels. Specifically, this mother-through-daughter and father-through-son mtDNA inheritance system, containing highly differentiated mt genomes, is found in all dioecious freshwater mussel species. Conversely, all hermaphroditic species lack the paternally transmitted mtDNA (=possess SMI) and have heterogeneous macromutations in the recently discovered, novel protein-coding gene (F-orf) in their maternally transmitted mt genomes. Using immunoelectron microscopy, we have localized the F-open reading frame (ORF) protein, likely involved in specifying separate sexes, in mitochondria and in the nucleus. Our results support the hypothesis that proteins coded by the highly divergent maternally and paternally transmitted mt genomes could be directly involved in sex determination in freshwater mussels. Concomitantly, our study demonstrates novel features for animal mt genomes: the existence of additional, lineage-specific, mtDNA-encoded proteins with functional significance and the involvement of mtDNA-encoded proteins in extra-mt functions. Our results open new avenues for the identification, characterization, and functional analyses of ORFs in the

  4. Prenatal Stress, Fearfulness, and the Epigenome: Exploratory Analysis of Sex Differences in DNA Methylation of the Glucocorticoid Receptor Gene.

    PubMed

    Ostlund, Brendan D; Conradt, Elisabeth; Crowell, Sheila E; Tyrka, Audrey R; Marsit, Carmen J; Lester, Barry M

    2016-01-01

    Exposure to stress in utero is a risk factor for the development of problem behavior in the offspring, though precise pathways are unknown. We examined whether DNA methylation of the glucocorticoid receptor gene, NR3C1, was associated with experiences of stress by an expectant mother and fearfulness in her infant. Mothers reported on prenatal stress and infant temperament when infants were 5 months old (n = 68). Buccal cells for methylation analysis were collected from each infant. Prenatal stress was not related to infant fearfulness or NR3C1 methylation in the sample as a whole. Exploratory sex-specific analysis revealed a trend-level association between prenatal stress and increased methylation of NR3C1 exon 1F for female, but not male, infants. In addition, increased methylation was significantly associated with greater fearfulness for females. Results suggest an experience-dependent pathway to fearfulness for female infants via epigenetic modification of the glucocorticoid receptor gene. Future studies should examine prenatal stress in a comprehensive fashion while considering sex differences in epigenetic processes underlying infant temperament. PMID:27462209

  5. Prenatal Stress, Fearfulness, and the Epigenome: Exploratory Analysis of Sex Differences in DNA Methylation of the Glucocorticoid Receptor Gene

    PubMed Central

    Ostlund, Brendan D.; Conradt, Elisabeth; Crowell, Sheila E.; Tyrka, Audrey R.; Marsit, Carmen J.; Lester, Barry M.

    2016-01-01

    Exposure to stress in utero is a risk factor for the development of problem behavior in the offspring, though precise pathways are unknown. We examined whether DNA methylation of the glucocorticoid receptor gene, NR3C1, was associated with experiences of stress by an expectant mother and fearfulness in her infant. Mothers reported on prenatal stress and infant temperament when infants were 5 months old (n = 68). Buccal cells for methylation analysis were collected from each infant. Prenatal stress was not related to infant fearfulness or NR3C1 methylation in the sample as a whole. Exploratory sex-specific analysis revealed a trend-level association between prenatal stress and increased methylation of NR3C1 exon 1F for female, but not male, infants. In addition, increased methylation was significantly associated with greater fearfulness for females. Results suggest an experience-dependent pathway to fearfulness for female infants via epigenetic modification of the glucocorticoid receptor gene. Future studies should examine prenatal stress in a comprehensive fashion while considering sex differences in epigenetic processes underlying infant temperament. PMID:27462209

  6. Molecular cloning of the sex-related gene PSI in Bemisia tabaci and its alternative splicing properties.

    PubMed

    Liu, Yating; Xie, Wen; Yang, Xin; Guo, Litao; Wang, Shaoli; Wu, Qingjun; Yang, Zezhong; Zhou, Xuguo; Zhang, Youjun

    2016-04-15

    The P-element somatic inhibitor (PSI) is gene known to regulate the transcription of doublesex (dsx) when transformer (tra) is absent in Bombyx mori. In this study, we identified and characterized a PSI homolog in Bemisia tabaci (BtPSI). BtPSI cDNA had a total length of 5700 bp and contained a predicted open reading frame (ORF) of 2208 nucleotides encoding for 735 amino acids. Multiple sequence alignments of the common regions of PSI proteins from B. tabaci and five other insect species revealed a high degree of sequence conservation. BtPSI is expressed in all stages of B. tabaci development, and expression did not significantly differ between female and male adult. A total of 92 BtPSI isoforms (78 in female and 22 in male) were identified, and a marker indicating the female-specific form was found. These results increase the understanding of genes that may determine sex in B. tabaci and provide a foundation for research on the sex determination mechanism in this insect.

  7. Switching on sex: transcriptional regulation of the testis-determining gene Sry

    PubMed Central

    Larney, Christian; Bailey, Timothy L.; Koopman, Peter

    2014-01-01

    Mammalian sex determination hinges on the development of ovaries or testes, with testis fate being triggered by the expression of the transcription factor sex-determining region Y (Sry). Reduced or delayed Sry expression impairs testis development, highlighting the importance of its accurate spatiotemporal regulation and implying a potential role for SRY dysregulation in human intersex disorders. Several epigenetic modifiers, transcription factors and kinases are implicated in regulating Sry transcription, but it remains unclear whether or how this farrago of factors acts co-ordinately. Here we review our current understanding of Sry regulation and provide a model that assembles all known regulators into three modules, each converging on a single transcription factor that binds to the Sry promoter. We also discuss potential future avenues for discovering the cis-elements and trans-factors required for Sry regulation. PMID:24866114

  8. Sex-biased gene flow in spectacled eiders (Anatidae): Inferences from molecular markers with contrasting modes of inheritance

    USGS Publications Warehouse

    Scribner, K.T.; Petersen, M.R.; Fields, R.L.; Talbot, S.L.; Pearce, J.M.; Chesser, R.K.

    2001-01-01

    Genetic markers that differ in mode of inheritance and rate of evolution (a sex-linked Z-specific microsatellite locus, five biparentally inherited microsatellite loci, and maternally inherited mitochondrial [mtDNA] sequences) were used to evaluate the degree of spatial genetic structuring at macro- and microgeographic scales, among breeding regions and local nesting populations within each region, respectively, for a migratory sea duck species, the spectacled eider (Somateria fisheri). Disjunct and declining breeding populations coupled with sex-specific differences in seasonal migratory patterns and life history provide a series of hypotheses regarding rates and directionality of gene flow among breeding populations from the Indigirka River Delta, Russia, and the North Slope and Yukon-Kuskokwim Delta, Alaska. The degree of differentiation in mtDNA haplotype frequency among breeding regions and populations within regions was high (??CT = 0.189, P 0.05; biparentally inherited microsatellites: mean ?? = 0.001, P > 0.05) than was observed for mtDNA. Using models explicitly designed for uniparental and biparentally inherited genes, estimates of spatial divergence based on nuclear and mtDNA data together with elements of the species' breeding ecology were used to estimate effective population size and degree of male and female gene flow. Differences in the magnitude and spatial patterns of gene correlations for maternally inherited and nuclear genes revealed that females exhibit greater natal philopatry than do males. Estimates of generational female and male rates of gene flow among breeding regions differed markedly (3.67 ?? 10-4 and 1.28 ?? 10-2, respectively). Effective population size for mtDNA was estimated to be at least three times lower than that for biparental genes (30,671 and 101,528, respectively). Large disparities in population sizes among breeding areas greatly reduces the proportion of total genetic variance captured by dispersal, which may accelerate

  9. Sex differences in social interaction in rats: role of the immediate-early gene zif268.

    PubMed

    Stack, Ashley; Carrier, Nicole; Dietz, David; Hollis, Fiona; Sorenson, Jamie; Kabbaj, Mohamed

    2010-01-01

    Given both the high prevalence of anxiety disorders in women and the fact that little is known about the mechanisms of gender differences in anxiety, our primary aim in this study was to investigate the neurobiological mechanisms underlying sex differences in social anxiety-like behavior in rats. Through the use of zif268 antisense oligodeoxynucleotides (zif ASO), we induced a temporary downregulation of zif268 expression in the medial prefrontal cortex of male and female rats and found that zif268 ASO male rats show more social anxiety-like behaviors when compared with control male rats in the social interaction test. In fact, zif268 ASO males displayed social anxiety-like behaviors, which were similar to control females, thus downregulation of zif268 expression in the mPFC of male rats eliminated sex differences previously found in the social anxiety-like behavior tests. Interestingly, zif268 ASO in female rats had no effect on their social interaction. Our novel findings have led us to ascertain that sexually dimorphic zif268 expression in the mPFC is a key molecular factor in mediating sex-specific anxiety-like behavior in the social interaction test.

  10. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    SciTech Connect

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological

  11. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism

    PubMed Central

    2010-01-01

    Background Evolution of unisexual flowers entails one of the most extreme changes in plant development. Cultivated spinach, Spinacia oleracea L., is uniquely suited for the study of unisexual flower development as it is dioecious and it achieves unisexually by the absence of organ development, rather than by organ abortion or suppression. Male staminate flowers lack fourth whorl primordia and female pistillate flowers lack third whorl primordia. Based on theoretical considerations, early inflorescence or floral organ identity genes would likely be directly involved in sex-determination in those species in which organ initiation rather than organ maturation is regulated. In this study, we tested the hypothesis that sexual dimorphism occurs through the regulation of B class floral organ gene expression by experimentally knocking down gene expression by viral induced gene silencing. Results Suppression of B class genes in spinach resulted in the expected homeotic transformation of stamens into carpels but also affected the number of perianth parts and the presence of fourth whorl. Phenotypically normal female flowers developed on SpPI-silenced male plants. Suppression of the spinach C class floral organ identity gene, SpAG, resulted in loss of reproductive organ identity, and indeterminate flowers, but did not result in additional sex-specific characteristics or structures. Analysis of the genomic sequences of both SpAP3 and SpPI did not reveal any allelic differences between males and females. Conclusion Sexual dimorphism in spinach is not the result of homeotic transformation of established organs, but rather is the result of differential initiation and development of the third and fourth whorl primordia. SpAG is inferred to have organ identity and meristem termination functions similar to other angiosperm C class genes. In contrast, while SpPI and SpAP3 resemble other angiosperms in their essential functions in establishing stamen identity, they also appear to have

  12. Implications of Sex Hormone Receptor Gene Expression in the Predominance of Hepatocellular Carcinoma in Males: Role of Natural Products.

    PubMed

    Ahmed, Hanaa H; Shousha, Wafaa Gh; Shalby, Aziza B; El-Mezayen, Hatem A; Ismaiel, Nora N; Mahmoud, Nadia S

    2015-01-01

    The present study was planned to investigate the role of sex hormone receptor gene expression in the pathogenesis of hepatocellular carcinoma (HCC). Adult male Wistar rats were divided into seven groups. Group (1) was negative control. Groups (2), (5), (6), and (7) were orally administered with N-nitrosodiethylamine for the induction of HCC, then group (2) was left untreated, group (5) was orally treated with curcumin, group (6) was orally treated with carvacrol, and group (7) was intraperitoneally injected with doxorubicin, whereas groups (3) and (4) were orally administered only curcumin and carvacrol, respectively. The HCC group showed significant upregulation in the androgen receptor (AR) and the estrogen receptor-alpha (ERα) gene expression levels in the liver tissue. On the contrary, HCC groups treated with either curcumin or carvacrol showed significant downregulation in AR and ERα gene expression levels in the liver tissue. In conclusion, the obtained data highlight that both AR and ERα but not estrogen receptor-beta (ERβ) gene expression may contribute to the male prevalence of HCC induced in male rats. Interestingly, both curcumin and carvacrol were found to have a promising potency in alleviating the male predominating HCC.

  13. Novel Insights into 46,XY Disorders of Sex Development due to NR5A1 Gene Mutation.

    PubMed

    Werner, Ralf; Mönig, Isabel; August, Julia; Freiberg, Clemens; Lünstedt, Ralf; Reiz, Benedikt; Wünsch, Lutz; Holterhus, Paul-Martin; Kulle, Alexandra; Döhnert, Ulla; Wudy, Stefan A; Richter-Unruh, Annette; Thorns, Christoph; Hiort, Olaf

    2015-01-01

    The differential diagnosis of 46,XY disorders of sex development (DSD) is based on the distinction between forms of gonadal dysgenesis and disorders of androgen biosynthesis and action. However, clinical and endocrine evaluations are often not conclusive. Here, we describe an adolescent female with hirsutism and hyperandrogenization at puberty. Her karyotype was 46,XY, and clinical investigation demonstrated clitoromegaly, but no uterine remnants were detected. Histology of the gonads revealed a testicular structure with a Sertoli-cell-only pattern. Endocrine evaluation showed hypergonadotropic hypogonadism, and the Sertoli cell markers inhibin B and anti-Müllerian hormone were also low. Several molecular genetic studies were initiated. While analyses of the androgen receptor gene, the SRD5A2 gene and HSD17B3 gene were uninformative, a novel p.L230R mutation was found in the NR5A1 gene. A mutant construct proved a severe dysfunction of this variant in functional analysis after recreation and transfection into HeLa cells. We conclude that the NR5A1 p.L230R mutation most likely leads to a spatial and time-dependent Leydig cell and Sertoli cell dysfunction during development not causing the classical gonadal dysgenesis phenotype. This case demonstrates that the current classification should be updated to encompass the overlapping phenotypes of some genetic conditions within 46,XY DSD. PMID:26681172

  14. Novel Insights into 46,XY Disorders of Sex Development due to NR5A1 Gene Mutation.

    PubMed

    Werner, Ralf; Mönig, Isabel; August, Julia; Freiberg, Clemens; Lünstedt, Ralf; Reiz, Benedikt; Wünsch, Lutz; Holterhus, Paul-Martin; Kulle, Alexandra; Döhnert, Ulla; Wudy, Stefan A; Richter-Unruh, Annette; Thorns, Christoph; Hiort, Olaf

    2015-01-01

    The differential diagnosis of 46,XY disorders of sex development (DSD) is based on the distinction between forms of gonadal dysgenesis and disorders of androgen biosynthesis and action. However, clinical and endocrine evaluations are often not conclusive. Here, we describe an adolescent female with hirsutism and hyperandrogenization at puberty. Her karyotype was 46,XY, and clinical investigation demonstrated clitoromegaly, but no uterine remnants were detected. Histology of the gonads revealed a testicular structure with a Sertoli-cell-only pattern. Endocrine evaluation showed hypergonadotropic hypogonadism, and the Sertoli cell markers inhibin B and anti-Müllerian hormone were also low. Several molecular genetic studies were initiated. While analyses of the androgen receptor gene, the SRD5A2 gene and HSD17B3 gene were uninformative, a novel p.L230R mutation was found in the NR5A1 gene. A mutant construct proved a severe dysfunction of this variant in functional analysis after recreation and transfection into HeLa cells. We conclude that the NR5A1 p.L230R mutation most likely leads to a spatial and time-dependent Leydig cell and Sertoli cell dysfunction during development not causing the classical gonadal dysgenesis phenotype. This case demonstrates that the current classification should be updated to encompass the overlapping phenotypes of some genetic conditions within 46,XY DSD.

  15. The sex-linked fidget mutation abolishes Brn4/Pou3f4 gene expression in the embryonic inner ear.

    PubMed

    Phippard, D; Boyd, Y; Reed, V; Fisher, G; Masson, W K; Evans, E P; Saunders, J C; Crenshaw, E B

    2000-01-01

    We have demonstrated that the phenotype of the mouse mutant sex-linked fidget ( slf ) is caused by developmental malformations of the inner ear that result in hearing loss and vestibular dysfunction. Recently, pilot mapping experiments suggested that the mouse Brn4 / Pou3f4 gene co-segregated with the slf locus on the mouse X chromosome. These mapping data, in conjunction with the observation that the vertical head-shaking phenotype of slf mutants is identical to that observed in mice with a targeted deletion of the Brn4 gene, suggested that slf is a mutant allele of the Brn4 gene. In this paper, we have identified the nature of the slf mutation, and demonstrated that it is an X chromosomal inversion with one breakpoint close to Brn4. This inversion selectively eliminates the expression of the Brn4 gene in the developing inner ear, but not the neural tube. Finally, these results demonstrate that the slf mutation is a good mouse model for the most prevalent form of X-linked congenital deafness in man, which is associated with mutations in the human Brn4 ortholog, POU3F4.

  16. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis.

    PubMed

    Ramesh, Marilee A; Malik, Shehre-Banoo; Logsdon, John M

    2005-01-26

    Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.

  17. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae)

    PubMed Central

    Gotoh, Hiroki; Ishiguro, Mai; Nishikawa, Hideto; Morita, Shinichi; Okada, Kensuke; Miyatake, Takahisa; Yaginuma, Toshinobu; Niimi, Teruyuki

    2016-01-01

    Various types of weapon traits found in insect order Coleoptera are known as outstanding examples of sexually selected exaggerated characters. It is known that the sex determination gene doublesex (dsx) plays a significant role in sex-specific expression of weapon traits in various beetles belonging to the superfamily Scarabaeoidea. Although sex-specific weapon traits have evolved independently in various Coleopteran groups, developmental mechanisms of sex-specific expression have not been studied outside of the Scarabaeoidea. In order to test the hypothesis that dsx-dependent sex-specific expression of weapon traits is a general mechanism among the Coleoptera, we have characterized the dsx in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Tenebrionidea, Tenebirionidae). By using molecular cloning, we identified five splicing variants of Gnatocerus cornutus dsx (Gcdsx), which are predicted to code four different isoforms. We found one male-specific variant (GcDsx-M), two female-specific variants (GcDsx-FL and GcDsx-FS) and two non-sex-specific variants (correspond to a single isoform, GcDsx-C). Knockdown of all Dsx isoforms resulted in intersex phenotype both in male and female. Also, knockdown of all female-specific isoforms transformed females to intersex phenotype, while did not affect male phenotype. Our results clearly illustrate the important function of Gcdsx in determining sex-specific trait expression in both sexes. PMID:27404087

  18. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae).

    PubMed

    Gotoh, Hiroki; Ishiguro, Mai; Nishikawa, Hideto; Morita, Shinichi; Okada, Kensuke; Miyatake, Takahisa; Yaginuma, Toshinobu; Niimi, Teruyuki

    2016-01-01

    Various types of weapon traits found in insect order Coleoptera are known as outstanding examples of sexually selected exaggerated characters. It is known that the sex determination gene doublesex (dsx) plays a significant role in sex-specific expression of weapon traits in various beetles belonging to the superfamily Scarabaeoidea. Although sex-specific weapon traits have evolved independently in various Coleopteran groups, developmental mechanisms of sex-specific expression have not been studied outside of the Scarabaeoidea. In order to test the hypothesis that dsx-dependent sex-specific expression of weapon traits is a general mechanism among the Coleoptera, we have characterized the dsx in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Tenebrionidea, Tenebirionidae). By using molecular cloning, we identified five splicing variants of Gnatocerus cornutus dsx (Gcdsx), which are predicted to code four different isoforms. We found one male-specific variant (GcDsx-M), two female-specific variants (GcDsx-FL and GcDsx-FS) and two non-sex-specific variants (correspond to a single isoform, GcDsx-C). Knockdown of all Dsx isoforms resulted in intersex phenotype both in male and female. Also, knockdown of all female-specific isoforms transformed females to intersex phenotype, while did not affect male phenotype. Our results clearly illustrate the important function of Gcdsx in determining sex-specific trait expression in both sexes. PMID:27404087

  19. Sex differential in methylation patterns of selected genes in Singapore Chinese.

    PubMed

    Sarter, Barbara; Long, Tiffany I; Tsong, Wan H; Koh, Woon-Puay; Yu, Mimi C; Laird, Peter W

    2005-08-01

    To date there have been few reports of a gender difference in methylation levels of genes. When examining the methylation levels of four autosomal genes (ESR1, MTHFR, CALCA and MGMT) in the white blood cells of a random sample of Singapore Chinese Health Study cohort participants (n = 291), we encountered an unexpected gender differential. Using MethyLight technology, we calculated a gene-specific percentage of methylated reference (PMR) value, which quantified the relative level of gene methylation for each study subject (134 males and 157 females). Two summary methylation indices were constructed by assigning gene-specific rank scores. We then used ANCOVA to compare logarithmically transformed individual PMR values and summary methylation indices by age and gender simultaneously. Adjustment was made for plasma homocysteine. For ESR1, for which a large proportion of subjects were negative for methylation, we also used polytomous regression to compare methylation across age and gender. Increasing age and the male gender independently predicted increasing PMR values for CALCA and MGMT. For the MTHFR gene, male gender was associated with higher PMR values (P = 0.002), while age was not (P = 0.75). Neither age nor gender had any statistically significant influence on the PMR values for ESR1 (P = 0.13 and 0.96, respectively). Our data suggest that gender is at least as strong a predictor of methylation level in the four genes under study as age, with males showing higher PMRs.

  20. Allelic variant in the anti-Müllerian hormone gene leads to autosomal and temperature-dependent sex reversal in a selected Nile tilapia line.

    PubMed

    Wessels, Stephan; Sharifi, Reza Ahmad; Luehmann, Liane Magdalena; Rueangsri, Sawichaya; Krause, Ina; Pach, Sabrina; Hoerstgen-Schwark, Gabriele; Knorr, Christoph

    2014-01-01

    Owing to the demand for sustainable sex-control protocols in aquaculture, research in tilapia sex determination is gaining momentum. The mutual influence of environmental and genetic factors hampers disentangling the complex sex determination mechanism in Nile tilapia (Oreochromis niloticus). Previous linkage analyses have demonstrated quantitative trait loci for the phenotypic sex on linkage groups 1, 3, and 23. Quantitative trait loci for temperature-dependent sex reversal similarly reside on linkage group 23. The anti-Müllerian hormone gene (amh), located in this genomic region, is important for sexual fate in higher vertebrates, and shows sexually dimorphic expression in Nile tilapia. Therefore this study aimed at detecting allelic variants and marker-sex associations in the amh gene. Sequencing identified six allelic variants. A significant effect on the phenotypic sex for SNP ss831884014 (p<0.0017) was found by stepwise logistic regression. The remaining variants were not significantly associated. Functional annotation of SNP ss831884014 revealed a non-synonymous amino acid substitution in the amh protein. Consequently, a fluorescence resonance energy transfer (FRET) based genotyping assay was developed and validated with a representative sample of fish. A logistic linear model confirmed a highly significant effect of the treatment and genotype on the phenotypic sex, but not for the interaction term (treatment: p<0.0001; genotype: p<0.0025). An additive genetic model proved a linear allele substitution effect of 12% in individuals from controls and groups treated at high temperature, respectively. Moreover, the effect of the genotype on the male proportion was significantly higher in groups treated at high temperature, giving 31% more males on average of the three genotypes. In addition, the groups treated at high temperature showed a positive dominance deviation (+11.4% males). In summary, marker-assisted selection for amh variant ss831884014 seems to be

  1. Allelic Variant in the Anti-Müllerian Hormone Gene Leads to Autosomal and Temperature-Dependent Sex Reversal in a Selected Nile Tilapia Line

    PubMed Central

    Wessels, Stephan; Sharifi, Reza Ahmad; Luehmann, Liane Magdalena; Rueangsri, Sawichaya; Krause, Ina; Pach, Sabrina; Hoerstgen-Schwark, Gabriele; Knorr, Christoph

    2014-01-01

    Owing to the demand for sustainable sex-control protocols in aquaculture, research in tilapia sex determination is gaining momentum. The mutual influence of environmental and genetic factors hampers disentangling the complex sex determination mechanism in Nile tilapia (Oreochromis niloticus). Previous linkage analyses have demonstrated quantitative trait loci for the phenotypic sex on linkage groups 1, 3, and 23. Quantitative trait loci for temperature-dependent sex reversal similarly reside on linkage group 23. The anti-Müllerian hormone gene (amh), located in this genomic region, is important for sexual fate in higher vertebrates, and shows sexually dimorphic expression in Nile tilapia. Therefore this study aimed at detecting allelic variants and marker-sex associations in the amh gene. Sequencing identified six allelic variants. A significant effect on the phenotypic sex for SNP ss831884014 (p<0.0017) was found by stepwise logistic regression. The remaining variants were not significantly associated. Functional annotation of SNP ss831884014 revealed a non-synonymous amino acid substitution in the amh protein. Consequently, a fluorescence resonance energy transfer (FRET) based genotyping assay was developed and validated with a representative sample of fish. A logistic linear model confirmed a highly significant effect of the treatment and genotype on the phenotypic sex, but not for the interaction term (treatment: p<0.0001; genotype: p<0.0025). An additive genetic model proved a linear allele substitution effect of 12% in individuals from controls and groups treated at high temperature, respectively. Moreover, the effect of the genotype on the male proportion was significantly higher in groups treated at high temperature, giving 31% more males on average of the three genotypes. In addition, the groups treated at high temperature showed a positive dominance deviation (+11.4% males). In summary, marker-assisted selection for amh variant ss831884014 seems to be

  2. Interleukin-12B gene polymorphism frequencies in Egyptians and sex-related susceptibility to hepatitis C infection.

    PubMed

    Youssef, Samar Samir; Abd El Aal, Asmaa Mostafa; Nasr, Amal Soliman; el Zanaty, Taher; Seif, Sameh Mohamed

    2013-08-01

    Hepatitis C virus (HCV) infection is a major health problem worldwide. Egypt is the country with the highest HCV infection epidemic in the world. Interleukin (IL)-12 is a cytokine that has been shown to have a potent role as an antiviral cytokine. IL-12 is a heterodimer of the polypeptides p35 and p40. IL-12 B, the gene encoding IL-12 p40, is polymorphic, and a functional single-nucleotide polymorphism (SNP) of the 3'-untranslated region at position rs3212227 was associated with apparent resistance to HCV. The genotype distribution of this polymorphism differs by race. This study is sought to identify the genotype distribution of the IL-12 SNP rs3212227 polymorphism in Egyptians and to assess its role in susceptibility to chronic HCV infection alone or in a sex-dependent way. The study included 238 subjects: 100 healthy controls and 138 patients with HCV infection. The IL-12 SNP rs3212227 was genotyped by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). Results showed a genotype frequency of 46%, 39%, and 15% for AA, AC, and CC IL-12 genotypes, respectively. No significant result (P=0.5) was shown in the differential distribution of the IL-12 SNP genotypes between controls and patients with HCV infection. Nonetheless, this difference in the IL-12 genotype distribution was significant (0.005) when it was stratified according to sex; moreover, the C allele distribution in men and women differed with a statistically high significance (P=0.0001) in controls versus HCV patients. In conclusion, the IL-12 SNP rs3212227 polymorphism confers a susceptibility to HCV infection in a sex-dependent way in Egyptians.

  3. Remodeling of Kv4.3 potassium channel gene expression under the control of sex hormones.

    PubMed

    Song, M; Helguera, G; Eghbali, M; Zhu, N; Zarei, M M; Olcese, R; Toro, L; Stefani, E

    2001-08-24

    Kv4.3 channels are important molecular components of transient K(+) currents (Ito currents) in brain and heart. They are involved in setting the frequency of neuronal firing and heart pacing. Altered Kv4.3 channel expression has been demonstrated under pathological conditions like heart failure indicating their critical role in heart function. Thyroid hormone studies suggest that their expression in the heart may be hormonally regulated. To explore the possibility that sex hormones control Kv4.3 expression, we investigated whether its expression changes in the pregnant uterus. This organ represents a unique model to study Ito currents, because it possesses this type of K(+) current and undergoes dramatic changes in function and excitability during pregnancy. We cloned Kv4.3 channel from myometrium and found that its protein and transcript expression is greatly diminished during pregnancy. Experiments in ovariectomized rats demonstrate that estrogen is one mechanism responsible for the dramatic reduction in Kv4.3 expression and function prior to parturition. Furthermore, the reduction of plasma membrane Kv4.3 protein is accompanied by a perinuclear localization suggesting that cell trafficking is also controlled by sex hormones. Thus, estrogen remodels the expression of Kv4.3 in myometrium by directly diminishing its transcription and, indirectly, by altering Kv4.3 delivery to the plasma membrane. PMID:11427525

  4. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution

    PubMed Central

    Murtagh, Veronica J.; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L.; Kuroki, Yoko; Boore, Jeffrey L.; Toyoda, Atsushi; Jordan, Kristen S.; Pask, Andrew J.; Renfree, Marilyn B.; Fujiyama, Asao; Graves, Jennifer A. Marshall; Waters, Paul D.

    2012-01-01

    We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis–brain expressed genes on the X. PMID:22128133

  5. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis.

    PubMed

    Malik, Shehre-Banoo; Pightling, Arthur W; Stefaniak, Lauren M; Schurko, Andrew M; Logsdon, John M

    2008-01-01

    Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery. PMID:18663385

  6. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis.

    PubMed

    Malik, Shehre-Banoo; Pightling, Arthur W; Stefaniak, Lauren M; Schurko, Andrew M; Logsdon, John M

    2008-01-01

    Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.

  7. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    PubMed

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-01

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence.

  8. Hydronephrosis in the mouse: the effects of the short-ear gene, sex and ureteral vascular system.

    PubMed

    Wallace, M E

    1976-09-01

    The short-ear gene in the mouse, se, affects a number of soft tissues; skeletal effects result in reduced body cavities. A high incidence of hydronephrosis in short-ear genotypes has been ascribed to pressure on the lower ureter resulting from crowding of organs in the body cavity. This study concerns the ureteral vascular system as observed in 861 autopsies of mice of varying age, of the three short-ear genotypes, drawn from ten stocks. Incidence and expression of hydronephrosis is greater in short-ear males than in females, and the ratio between the two varies from one stock to another. This study seeks an explanation. Short-ear genotypes have an abnormally high incidence of unusual ureteral veins, hydronephrosis being strongly associated with the more posterior ones. Ureteraonadal and iliac veins. The spermatic vein's more posterior position, compared with the ovarian, is strongly correlated with the sex difference in posterior ureteral venation and thus with the sex difference in incidence of hydronephrosis. Stocks are compared according to the amount of selection for fitness of short-ear genotypes; there is a reduced incidence of hydronephrosis with selection, accompanied by fewer posterior ureteral veins. Age also affects hydronephrosis; its expression increases slightly with age, and the male sese progeny of young mothers appear to be particularly prone to hydronephrosis. Three skeletal mutants segregate; of these fidget, fi, causes a type of hydronephrosis differing somewhat from that caused by se.

  9. Comparative Analysis of Transcriptomes among Bombyx mori Strains and Sexes Reveals the Genes Regulating Melanic Morph and the Related Phenotypes

    PubMed Central

    He, Songzhen; Tong, Xiaoling; Lu, Kunpeng; Lu, Yaru; Luo, Jiangwen; Yang, Wenhao; Chen, Min; Han, Min-jin; Hu, Hai; Lu, Cheng; Dai, Fangyin

    2016-01-01

    As a source of insect polymorphism, melanism plays an important role in ecological adaption and usually endows advantageous phenotypic-effects on insects. However, due to the mechanistic diversity, there are knowledge gaps in the molecular mechanisms underlying melanism and the related phenotypes. In silk moths, a recessive melanic mutant (sex-controlled melanism, sml) strain exhibits extended adult longevity. We took a transcriptome approach to perform a comparative analysis between this sml strain and a wild-type strain (Dazao). Our analysis resulted in the identification of 59 unique differentially expressed genes in the melanic mutant. Two key genes (laccase2 and yellow) involved in melanin formation were significantly up-regulated in melanic individuals. The laccase2 B-type isoform (BGIBMGA006746) was found to likely participate in the silkworm cuticular melanism process at late pupal stage. Moreover, we discovered 22 cuticular protein encoding genes with the possible function in melanin transport and/or maintenance. Based on our findings, we presume that the longer survival of the melanic sml male moths might be associated with the enhanced antioxidant defense systems and a reduction in the insulin/IGF-1 signaling pathway (IIS). These findings will facilitate the understanding of the molecular basis underlying melanism and the derived phenotypic-effects. PMID:27153103

  10. Comparative Analysis of Transcriptomes among Bombyx mori Strains and Sexes Reveals the Genes Regulating Melanic Morph and the Related Phenotypes.

    PubMed

    He, Songzhen; Tong, Xiaoling; Lu, Kunpeng; Lu, Yaru; Luo, Jiangwen; Yang, Wenhao; Chen, Min; Han, Min-Jin; Hu, Hai; Lu, Cheng; Dai, Fangyin

    2016-01-01

    As a source of insect polymorphism, melanism plays an important role in ecological adaption and usually endows advantageous phenotypic-effects on insects. However, due to the mechanistic diversity, there are knowledge gaps in the molecular mechanisms underlying melanism and the related phenotypes. In silk moths, a recessive melanic mutant (sex-controlled melanism, sml) strain exhibits extended adult longevity. We took a transcriptome approach to perform a comparative analysis between this sml strain and a wild-type strain (Dazao). Our analysis resulted in the identification of 59 unique differentially expressed genes in the melanic mutant. Two key genes (laccase2 and yellow) involved in melanin formation were significantly up-regulated in melanic individuals. The laccase2 B-type isoform (BGIBMGA006746) was found to likely participate in the silkworm cuticular melanism process at late pupal stage. Moreover, we discovered 22 cuticular protein encoding genes with the possible function in melanin transport and/or maintenance. Based on our findings, we presume that the longer survival of the melanic sml male moths might be associated with the enhanced antioxidant defense systems and a reduction in the insulin/IGF-1 signaling pathway (IIS). These findings will facilitate the understanding of the molecular basis underlying melanism and the derived phenotypic-effects. PMID:27153103

  11. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent.

    PubMed

    Gesing, Adam; Wang, Feiya; List, Edward O; Berryman, Darlene E; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2015-01-01

    Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling. PMID:24550353

  12. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D

    PubMed Central

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Kaselytė, Greta; Okockytė, Vaiva; Žukauskaitė, Justina; Žvingila, Donatas; Rančelis, Vytautas

    2015-01-01

    Background and Aims Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. Methods The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9–F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. Key Results Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. Conclusions The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based

  13. Divergent Expression Regulation of Gonad Development Genes in Medaka Shows Incomplete Conservation of the Downstream Regulatory Network of Vertebrate Sex Determination

    PubMed Central

    Herpin, Amaury; Adolfi, Mateus C.; Nicol, Barbara; Hinzmann, Maria; Schmidt, Cornelia; Klughammer, Johanna; Engel, Mareen; Tanaka, Minoru; Guiguen, Yann; Schartl, Manfred

    2013-01-01

    Genetic control of male or female gonad development displays between different groups of organisms a remarkable diversity of “master sex-determining genes” at the top of the genetic hierarchies, whereas downstream components surprisingly appear to be evolutionarily more conserved. Without much further studies, conservation of sequence has been equalized to conservation of function. We have used the medaka fish to investigate the generality of this paradigm. In medaka, the master male sex-determining gene is dmrt1bY, a highly conserved downstream regulator of sex determination in vertebrates. To understand its function in orchestrating the complex gene regulatory network, we have identified targets genes and regulated pathways of Dmrt1bY. Monitoring gene expression and interactions by transgenic fluorescent reporter fish lines, in vivo tissue-chromatin immunoprecipitation and in vitro gene regulation assays revealed concordance but also major discrepancies between mammals and medaka, notably amongst spatial, temporal expression patterns and regulations of the canonical Hedgehog and R-spondin/Wnt/Follistatin signaling pathways. Examination of Foxl2 protein distribution in the medaka ovary defined a new subpopulation of theca cells, where ovarian-type aromatase transcriptional regulation appears to be independent of Foxl2. In summary, these data show that the regulation of the downstream regulatory network of sex determination is less conserved than previously thought. PMID:23883523

  14. An X-linked body color gene of the frog Rana rugosa and its application to the molecular analysis of gonadal sex differentiation.

    PubMed

    Miura, I; Kitamoto, H; Koizumi, Y; Ogata, M; Sasaki, K

    2011-01-01

    We identified a sex-linked, recessive body color gene, presently designated w (whitish-yellow), in the frog Rana rugosa from the Iwakuni population in Western Japan. This is the first time a sex-linked body color gene was found in amphibians so far. In this population of R. rugosa, males are the heterogametic sex, but the sex chromosomes are still homomorphic. When heterozygous males (Ww), which were produced by crossing a whitish-yellow female (ww) found in the field and a wild-type male (WW) of the same population, were backcrossed to the homozygous whitish-yellow female (ww), the resultant male offspring were all wild-type, whereas the females were all whitish-yellow. This result definitely indicates that w is recessive and X-linked, and its wild-type allele W is located on the Y chromosome. Using this strain (X(w)X(w) female and X(w)Y(W) male), we found that expression of Dmrt1 and Rspo1, which are involved in testicular and ovarian differentiation in vertebrates, was higher in males and females, respectively, prior to the onset of the sexually dimorphic expression of Cyp17 and Cyp19, which are involved in biosynthesis of sex steroids and are critical markers of gonadal sex differentiation.

  15. Expression of sex and reproduction-related genes in Marsupenaeus japonicus.

    PubMed

    Callaghan, Tamera R; Degnan, Bernard M; Sellars, Melony J

    2010-11-01

    Expressed sequence tags (ESTs) were identified from reciprocal suppression subtractive hybridization cDNA libraries from Marsupenaeus japonicus (Kuruma shrimp) female and male gonads. The expression profiles of 24 of these ESTs were determined in female and male gonads and developing postlarvae by real-time quantitative reverse transcription-polymerase chain reaction. When expression was determined in gonads, six of the ESTs were expressed in ovaries only, and five of the ESTs were expressed in testes only. When expression was determined in whole individuals during postlarval development, expression of the ESTs was low and inconsistent until stage PL110 (110 days since metamorphosis from mysis stage to the first postlarval stage). At PL110, seven of the ESTs were detected in females only, and seven ESTs were detected in males only. Sex-specific expression at this developmental stage indicates that these ESTs act as important gonadal development markers and may have a role in gametogenesis. PMID:20091331

  16. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber.

    PubMed Central

    Trebitsh, T; Staub, J E; O'Neill, S D

    1997-01-01

    Sex determination in cucumber (Cucumis sativus L.) is controlled largely by three genes: F, m, and a. The F and m loci interact to produce monoecious (M_f_) or gynoecious (M_f_) sex phenotypes. Ethylene and factors that induce ethylene biosynthesis, such as 1-aminocyclopropane-1-carboxylate (ACC) and auxin, also enhance female sex expression. A genomic sequence (CS-ACS1) encoding ACC synthase was amplified from genomic DNA by a polymerase chain reaction using degenerate oligonucleotide primers. Expression of CS-ACS1 is induced by auxin, but not by ACC, in wounded and intact shoot apices. Southern blo hybridization analysis of near-isogenic gynoecious (MMFF) and monoecious (MMff) lines derived from divers genetic backgrounds revealed the existence of an additional ACC synthase (CS-ACS1G) genomic sequence in the gynoecious lines. Sex phenotype analysis of a segregating F2 population detected a 100% correlation between the CS-ACS1G marker and the presence of the F locus. The CS-ACS1G gene is located in linkage group B coincident with the F locus, and in the population tested there was no recombination between the CS-ACS1G gene and the F locus. Collectively, these data suggest that CS-ACS1G is closely linked to the F locus and may play a pivotal role in the determination of sex in cucumber flowers. PMID:9085580

  17. Reassessing morphological homologies in the early-divergent angiosperm Fenerivia (annonaceae) based on floral vascular anatomy: significance for interpreting putative homeotic mutations.

    PubMed

    Xue, Bine; Saunders, Richard M K

    2013-01-01

    Fenerivia species (Annonaceae) are characterized by a prominent flange immediately below the perianth, which has been interpreted as synapomorphic for the genus. The homology of this flange is controversial: previous studies of Fenerivia heteropetala (an aberrant species, with 12 perianth parts in three whorls) have suggested that the flange may represent a vestigial calyx resulting from a disruption to the homeotic control of organ identity during floral development. Comparative data on floral vasculature in Fenerivia capuronii are presented to elucidate the homology of the flange in other Fenerivia species (which possess nine perianth parts in three whorls, typical of most Annonaceae). The flange in F. capuronii differs from that in F. heteropetala as it is unvascularized. It is nevertheless suggested that the flange is likely to be homologous, and that a homeotic mutation in the F. heteropetala lineage resulted in the formation of a vestigial but vascularized calyx that fused with the otherwise unvascularized flange.

  18. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    PubMed

    van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important

  19. Further investigations of the relation between polymorphisms in sex steroid related genes and autistic-like traits.

    PubMed

    Zettergren, Anna; Karlsson, Sara; Hovey, Daniel; Jonsson, Lina; Melke, Jonas; Anckarsäter, Henrik; Lichtenstein, Paul; Lundström, Sebastian; Westberg, Lars

    2016-06-01

    Autism spectrum disorders (ASDs) are more prevalent in boys than in girls, indicating that high levels of testosterone during early development may be a risk factor. Evidence for this hypothesis comes from studies showing associations between fetal testosterone levels, as well as indirect measures of prenatal androgenization, and ASDs and autistic-like traits (ALTs). In a recent study we reported associations between ALTs and single nucleotide polymorphisms (SNPs) in the genes encoding estrogen receptor 1 (ESR1), steroid-5-alpha-reductase, type 2 (SRD5A2) and sex hormone-binding globulin (SHBG) in a subset (n=1771) from the Child and Adolescent Twin Study in Sweden (CATSS). The aim of the present study was to try to replicate these findings in an additional, larger, sample of individuals from the CATSS (n=10,654), as well as to analyze additional SNPs of functional importance in SHBG and SRD5A2. No associations between the previously associated SNPs in the genes ESR1 and SRD5A2 and ALTs could be seen in the large replication sample. Still, our results show that two non-linked SNPs (rs6259 and rs9901675) at the SHBG gene locus might be of importance for language impairment problems in boys. The results of the present study do not point toward a major role for the investigated SNPs in the genes ESR1 and SRD5A2 in ALTs, but a possible influence of genetic variation in SHBG, especially for language impairment problems in boys, cannot be ruled out.

  20. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sex determination system of Lepidoptera is comprised of heterogametic females (ZW) and homogametic males (ZZ), where voltinism (Volt) and the male pheromone response traits (Resp) are controlled by genes housed on the Z-chromosome. Volt and Resp determine traits that lead to ecotype differentia...

  1. Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?

    PubMed

    Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Bernard, Pascal; Lim, Shu Ly; Ryan, Janelle; Rosenkranz, Ruben; Borodina, Tatiana; Dohm, Juliane C; Himmelbauer, Heinz; Harley, Vincent R; Grützner, Frank

    2012-01-01

    The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function. Here, we report the identification and characterization of the mediator complex protein gametologs on platypus Y5 (Crspy). We also identified the X-chromosomal copy which unexpectedly maps to X1 (Crspx). Sequence comparison shows extensive divergence between the X and Y copy, but we found no significant positive selection on either gametolog. Expression analysis shows widespread expression of Crspx. Crspy is expressed exclusively in males with particularly strong expression in testis and kidney. Reporter gene assays to investigate whether Crspx/y can act on the recently discovered mouse Sox9 testis-specific enhancer element did reveal a modest effect together with mouse Sox9 + Sf1, but showed overall no significant upregulation of the reporter gene. This is the first report of a differentiated functional male-specific gene on platypus Y chromosomes, providing new insights into sex chromosome evolution and a candidate gene for male-specific function in monotremes.

  2. Sex-biased gene flow in African Americans but not in American Caucasians.

    PubMed

    Gonçalves, V F; Prosdocimi, F; Santos, L S; Ortega, J M; Pena, S D J

    2007-01-01

    We have previously shown evidence of strong sex-biased genetic blending in the founding and ongoing history of the Brazilian population, with the African and Amerindian contribution being highest from maternal lineages (as measured by mitochondrial DNA) and the European contribution foremost from paternal lineages (estimated from Y-chromosome haplogroups). The same phenomenon has been observed in several other Latin American countries, suggesting that it might constitute a universal characteristic of the Iberian colonization of the Americas. However, it has also recently been detected in the Black population of the United States. We thus wondered if the same could be observed in American Caucasians. To answer that question, we retrieved 1387 hypervariable I Caucasian mitochondrial DNA sequences from the FBI population database and established their haplogroups and continental geographical sources. In sharp contrast with the situation of the Caucasian population of Latin American countries, only 3.1% of the American Caucasian sequences had African and/or Amerindian origin. To explain this discrepancy we propose that the finding of elevated genomic contributions from European males and Amerindian or African females depends not only on the occurrence of directional mating, but also on the "racial" categorization of the children born from these relations. In this respect, social practices in Latin America and in the United States diverge considerably; in the former socially significant "races" are normally designated according to physical appearance, while in the latter descent appears to be the most important factor. PMID:17573655

  3. Autosomal localization of the amelogenin gene in monotremes and marsupials: implications for mammalian sex chromosome evolution.

    PubMed

    Watson, J M; Spencer, J A; Graves, J A; Snead, M L; Lau, E C

    1992-11-01

    We have determined by Southern blot analysis that DNA sequences homologous to the AMG gene probe are present in the genomes of both marsupial and monotreme mammals, although adult monotremes lack teeth. In situ hybridization and Southern analysis of cell hybrids demonstrate that AMG homologues are located on autosomes. In the Tammar Wallaby, AMG homologues are located on chromosomes 5q and 1q and in the Platypus, on chromosomes 1 and 2. The autosomal location of the AMG homologues provides additional support for the hypothesis that an autosomal region equivalent to the human Xp was translocated to the X chromosome in the Eutheria after the divergence of the marsupials 150 million years ago. The region containing the AMG gene is therefore likely to have been added 80-150 million years ago to a pseudoautosomal region shared by the ancestral eutherian X and Y chromosome; the X and Y alleles must have begun diverging after this date.

  4. Identification of honeybee antennal proteins/genes expressed in a sex- and/or caste selective manner.

    PubMed

    Kamikouchi, Azusa; Morioka, Mizue; Kubo, Takeo

    2004-01-01

    We identified three candidate proteins/genes involved in caste and/or sex-specific olfactory processing in the honeybee Apis mellifera L., that are differentially expressed between the antennae of the worker, queen, and drone honeybees using SDS-polyacrylamide gel electrophoresis or the differential display method. A protein was identified, termed D-AP1, that was expressed preferentially in drone antennae when compared to those of workers. cDNA cloning revealed that D-AP1 is homologous to carboxylesterases. Enzymatic carboxylesterase activity in the drone antennae was higher than in the workers, suggesting its dominant function in the drone antennae. In contrast, two proteins encoded by genes termed W-AP1 and Amwat were expressed preferentially in worker antennae when compared to those of queens. W-AP1 is homologous to insect chemosensory protein, and Amwat encodes a novel secretory protein. W-AP1 is expressed selectively in worker antennae, while Amwat is expressed both in the antennae and legs of the workers. These findings suggest that these proteins are involved in the antennal function characteristic to drone or worker honeybees.

  5. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative).

    PubMed

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-01-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1. PMID:26423656

  6. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative).

    PubMed

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-01-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1.

  7. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative)

    PubMed Central

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-01-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1. PMID:26423656

  8. Temperature related fertility selection on body size and the sex-ratio gene arrangement in Drosophila pseudoobscura.

    PubMed

    Gebhardt, M D; Anderson, W W

    1993-08-01

    We measured temperature-dependent fertility selection on body size in Drosophila pseudoobscura in the laboratory. One hundred single females of each of the three karyotypes involving the 'sex-ratio' (SR) and the standard (ST) gene arrangement on the sex chromosome laid eggs at either 18 or 24 degrees C. The experiment addressed the following hypotheses: (a) Fertility selection on body size is weaker at the higher temperature, explaining in part why genetically smaller flies appear to evolve in populations at warmer localities. (b) Homokaryotypic SR females are less fecund than homokaryotypic ST females, possibly mediated by the effect of body size on fertility, explaining the low frequencies of SR despite its strong advantage due to meiotic drive. The data were also expected to shed light on a mechanism for the evolution of plasticity of body size through fertility selection in environments with an unpredictable temperature regime. Hypothesis (a) was clearly refuted because phenotypically larger ST females had an even larger fertility surplus at the higher temperature and, more importantly, the genetic correlation between fertility and body size disappeared at the lower temperature. As to (b), we found that temperature affects fertility directly and indirectly through body size such that ST and SR females were about equally fecund at both temperatures, although different in size and size-adjusted fertility. We observed heterosis for both size and fertility, which might stabilize the polymorphism in nature. The reaction norms of body size to the temperature difference were steeper for ST females than for SR females, implying that fertility selection could change phenotypic plasticity of body size in a population. Selection on body size depended not only on the temperature, but also on the karyotypes, suggesting that models of phenotype evolution using purely phenotypic fitness functions may often be inadequate.

  9. DNA methylation of the allergy regulatory gene interferon gamma varies by age, sex, and tissue type in asthmatics

    PubMed Central

    2014-01-01

    Background Asthma is associated with allergic sensitization in about half of all cases, and asthma phenotypes can vary by age and sex. DNA methylation in the promoter of the allergy regulatory gene interferon gamma (IFNγ) has been linked to the maintenance of allergic immune function in human cell and mouse models. We hypothesized that IFNγ promoter methylation at two well-studied, key cytosine phosphate guanine (CpG) sites (-186 and -54), may differ by age, sex, and airway versus systemic tissue in a cohort of 74 allergic asthmatics. Results After sampling buccal cells, a surrogate for airway epithelial cells, and CD4+ lymphocytes, we found that CD4+ lymphocyte methylation was significantly higher in children compared to adults at both CpG sites (P <0.01). Buccal cell methylation was significantly higher in children at CpG -186 (P = 0.03) but not CpG -54 (P = 0.66). Methylation was higher in males compared to females at both CpG sites in CD4+ lymphocytes (-186: P <0.01, -54: P = 0.02) but not buccal cells (-186: P = 0.14, -54: P = 0.60). In addition, methylation was lower in CD4+ lymphocytes compared to buccal cells (P <0.01) and neighboring CpG sites were strongly correlated in CD4+ lymphocytes (r = 0.84, P <0.01) and weakly correlated in buccal cells (r = 0.24, P = 0.04). At CpG -186, there was significant correlation between CD4+ lymphocytes and buccal cells (r = 0.24, P = 0.04) but not at CpG -54 (r = -0.03, P = 0.78). Conclusions These findings highlight significant age, sex, and tissue-related differences in IFNγ promoter methylation that further our understanding of methylation in the allergic asthma pathway and in the application of biomarkers in clinical research. PMID:24891923

  10. Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans

    PubMed Central

    Dao, David T.; Mahon, Pamela Belmonte; Cai, Xiang; Kovacsics, Colleen E.; Blackwell, Robert A.; Arad, Michal; Shi, Jianxin; Zandi, Peter P.; O’Donnell, Patricio; Knowles, James A.; Weissman, Myrna M.; Coryell, William; Scheftner, William A.; Lawson, William B.; Levinson, Douglas F.; Thompson, Scott M.; Potash, James B.; Gould, Todd D.

    2010-01-01

    Background Recent genome-wide association studies have associated polymorphisms in the gene CACNA1C, which codes for Cav1.2, with a bipolar disorder and depression diagnosis. Methods The behaviors of wild type and Cacna1c heterozygous mice of both sexes were evaluated in a number of tests. Based upon sex differences in our mouse data, we assessed a gene x sex interaction for diagnosis of mood disorders in human subjects. Data from the NIMH-BP Consortium and the GenRED Consortium were examined utilizing a combined dataset that included 2,021 mood disorder cases (1,223 females) and 1,840 controls (837 females). Results In both male and female mice, Cacna1c haploinsufficiency is associated with lower exploratory behavior, decreased response to amphetamine, and antidepressant-like behavior in the forced swim and tail suspension tests. Female, but not male, heterozygous mice displayed decreased risk-taking behavior or increased anxiety in multiple tests, greater attenuation of amphetamine-induced hyperlocomotion, decreased development of learned helplessness, and a decreased acoustic startle response indicating a sex-specific role of Cacna1c. In humans, sex-specific genetic association was seen for two intronic single nucleotide polymorphisms (SNPs), rs2370419 and rs2470411, in CACNA1C, with effects in females (OR=1.64, 1.32), but not in males (OR=0.82, 0.86). The interactions by sex were significant after correction for testing 190 SNPs (P=1.4 x 10−4, 2.1 x 10−4; Pcorrected=0.03, 0.04), and were consistent across two large data sets. Conclusions Our preclinical results support a role for CACNA1C in mood disorder pathophysiology, and the combination of human genetic and preclinical data support an interaction between sex and genotype. PMID:20723887

  11. Sexual selection and maintenance of sex: evidence from comparisons of rates of genomic accumulation of mutations and divergence of sex-related genes in sexual and hermaphroditic species of Caenorhabditis.

    PubMed

    Artieri, Carlo G; Haerty, Wilfried; Gupta, Bhagwati P; Singh, Rama S

    2008-05-01

    Several hypotheses have been proposed to explain the persistence of dioecy despite the reproductive advantages conferred to hermaphrodites, including greater efficiency at purging deleterious mutations in the former. Dioecy can benefit from both mutation purging and accelerated evolution by bringing together beneficial mutations in the same individual via recombination and shuffling of genotypes. In addition, mathematical treatment has shown that sexual selection is also capable of mitigating the cost of maintaining separate sexes by increasing the overall fitness of sexual populations, and genomic comparisons have shown that sexual selection can lead to accelerated evolution. Here, we examine the advantages of dioecy versus hermaphroditism by comparing the rate of evolution in sex-related genes and the rate of accumulation of deleterious mutations using a large number of orthologs (11,493) in the dioecious Caenorhabditis remanei and the hermaphroditic Caenorhabditis briggsae. We have used this data set to estimate the deleterious mutation rate per generation, U, in both species and find that although it is significantly higher in hermaphrodites, both species are at least 2 orders of magnitude lower than the value required to explain the persistence of sex by efficiency at purging deleterious mutations alone. We also find that genes expressed in sperm are evolving rapidly in both species; however, they show a greater increase in their rate of evolution relative to genes expressed in other tissues in C. remanei, suggesting stronger sexual selection pressure acting on these genes in dioecious species. Interestingly, the persistence of a signal of rapid evolution of sperm genes in C. briggsae suggests a recent evolutionary origin of hermaphrodism in this lineage. Our results provide empirical evidence of increased sexual selection pressure in dioecious animals, supporting the possibility that sexual selection may play an important role in the maintenance of sexual

  12. Association of Egg Mass and Egg Sex: Gene Expression Analysis from Maternal RNA in the Germinal Disc Region of Layer Hens (Gallus gallus).

    PubMed

    Aslam, Muhammad Aamir; Schokker, Dirkjan; Groothuis, Ton G G; de Wit, Agnes A C; Smits, Mari A; Woelders, Henri

    2015-06-01

    Female birds have been shown to manipulate offspring sex ratio. However, mechanisms of sex ratio bias are not well understood. Reduced feed availability and change in body condition can affect the mass of eggs in birds that could lead to a skew in sex ratio. We employed feed restriction in laying chickens (Gallus gallus) to induce a decrease in body condition and egg mass using 45 chicken hens in treatment and control groups. Feed restriction led to an overall decline of egg mass. In the second period of treatment (Days 9-18) with more severe feed restriction and a steeper decline of egg mass, the sex ratio per hen (proportion of male eggs) had a significant negative association with mean egg mass per hen. Based on this association, two groups of hens were selected from feed restriction group, that is, hens producing male bias with low egg mass and hens producing female bias with high egg mass with overall sex ratios of 0.71 and 0.44 respectively. Genomewide transcriptome analysis on the germinal disks of F1 preovulatory follicles collected at the time of occurrence of meiosis-I was performed. We did not find significantly differentially expressed genes in these two groups of hens. However, gene set enrichment analysis showed that a number of cellular processes related to cell cycle progression, mitotic/meiotic apparatus, and chromosomal movement were enriched in female-biased hens or high mean egg mass as compared with male-biased hens or low mean egg mass. The differentially expressed gene sets may be involved in meiotic drive regulating sex ratio in the chicken.

  13. HIV-1 Negative Female Sex Workers Sustain High Cervical IFNε, Low Immune Activation and Low Expression of HIV-1 Required Host Genes

    PubMed Central

    Abdulhaqq, Shaheed A.; Zorrilla, Carmen; Kang, Guobin; Yin, Xiangfan; Tamayo, Vivian; Seaton, Kelly E.; Joseph, Jocelin; Garced, Sheyla; Tomaras, Georgia D.; Linn, Kristin A.; Foulkes, Andrea S.; Azzoni, Livio; VerMilyea, Matthew; Coutifaris, Christos; Kossenkov, Andrew V.; Showe, Louise; Kraiselburd, Edmundo N.; Li, Qingsheng; Montaner, Luis J.

    2015-01-01

    Sex workers within high HIV endemic areas are often a target population where anti-HIV prophylactic strategies are tested. We hypothesize that in women with high levels of genital exposure to semen changes in cervicovaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity, immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers [FSW] (n=50), as compared to control women [CG] (n=32). FSW had low to absent HIV-1 specific immune responses with significantly lower CD38 expression on circulating CD4+ or CD8+ T-Cells (both: p<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSW also had increased levels of Interferon-ε gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSW was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervicovaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in absence of HIV-specific responses. PMID:26555708

  14. Identification of regions interacting with ovo{sup D} mutations: Potential new genes involved in germline sex determination or differentiation in Drosophila melanogaster

    SciTech Connect

    Pauli, D.; Oliver, B.; Mahowald, A.P.

    1995-02-01

    Only a few Drosophila melanogaster germline sex determination genes are known, and there have been no systematic screens to identify new genes involved in this important biological process. The ovarian phenotypes produced by females mutant for dominant alleles of the ovo gene are modified in flies with altered doses of other loci involved in germline sex determination in Drosophila (Sex-lethal{sup +}, snas fille{sup +} and ovarian tumor{sup +}). This observation constitutes the basis for a screen to identify additional genes required for proper establishment of germline sexual identity. We tested 300 deletions, which together cover {approximately}58% of the euchromatic portion of the genome, for genetic interactions with ovo{sup D}. Hemizygosity for more than a dozen small regions show interactions that either partially suppress or enhance the ovarian phenotypes of females mutant for one or more of the three dominant ovo mutations. These regions probably contain genes whose products act in developmental heirarchies that include ovo{sup +} protein. 40 refs, 7 figs., 5 tabs.

  15. Polymorphism of the CTNNB1 and FOXL2 Genes is not Associated with Canine XX Testicular/Ovotesticular Disorder of Sex Development.

    PubMed

    Salamon, Sylwia; Nowacka-Woszuk, Joanna; Switonski, Marek

    2015-01-01

    78,XX testicular or ovotesticular disorder of sex development (DSD) is the most common sex anomaly in dogs, but its molecular background remains unknown. It was hypothesized that the causative mutation may reside in canine chromosome 23 (CFA23), where two genes playing a pivotal role in ovarian development (CTNNB1 and FOXL2) are located. The aim of our study was to search for polymorphism in both candidate genes in 15 DSD dogs (78,XX and a lack of the SRYgene) and 29 normal females. Altogether, 7 novel polymorphic variants were identified: 5 SNPs in CTNNB1 and 2 indels in the FOXL2 gene. The distribution of the identified variants was similar in the DSD and control dogs. Therefore, we concluded that the conducted research did not prove an association between these polymorphisms and canine testicular or ovotesticular XX DSD.

  16. Sex differences in cyclosporine pharmacokinetics and ABCB1 gene expression in mononuclear blood cells in African American and Caucasian renal transplant recipients.

    PubMed

    Tornatore, Kathleen M; Brazeau, Daniel; Dole, Kiran; Danison, Ryan; Wilding, Gregory; Leca, Nicolae; Gundroo, Aijaz; Gillis, Kathryn; Zack, Julia; DiFrancesco, Robin; Venuto, Rocco C

    2013-10-01

    Cyclosporine exhibits pharmacokinetic and pharmacodynamic variability in renal transplant recipients (RTR) attributed to P-glycoprotein (P-gp), an ABCB1 efflux transporter that influences bioavailability and intracellular distribution. Data on race and sex influences on P-gp in RTR are lacking. We investigated sex and race influences on cyclosporine pharmacokinetics and ABCB1 gene expression in peripheral blood mononuclear cells (PBMC). Fifty-four female and male African American and Caucasian stable RTR receiving cyclosporine and mycophenolic acid completed a 12-hour study. ABCB1 gene expression was assessed in PBMCs pre-dose and 4 hours after cyclosporine. Statistical analysis used mixed effects models on transformed, normalized ABCB1 expression and cyclosporine pharmacokinetics. Sex and race differences were observed for the dose-normalized area under the concentration curve (AUC0-12 /Dose) [P = .0004], apparent clearance [P = .0004] and clearance/body mass index (CL/BMI) [P = .027] with slowest clearance and greatest drug exposure in females. Sex and race differences were found pre-dose and 4 hours for ABCB1 [P < .0001] with females having less expression than males. ABCB1 differences were observed between pre-dose and 4 hours [P = .0009]. Female RTR had slower cyclosporine clearance and lower ABCB1 gene expression in PBMC suggesting reduced efflux activity and greater intracellular drug exposure.

  17. Disentangling the effect of genes, the environment and chance on sex ratio variation in a wild bird population.

    PubMed

    Postma, Erik; Heinrich, Franziska; Koller, Ursina; Sardell, Rebecca J; Reid, Jane M; Arcese, Peter; Keller, Lukas F

    2011-10-01

    Sex ratio theory proposes that the equal sex ratio typically observed in birds and mammals is the result of natural selection. However, in species with chromosomal sex determination, the same 1 : 1 sex ratio is expected under random Mendelian segregation. Here, we present an analysis of 14 years of sex ratio data for a population of song sparrows (Melospiza melodia) on Mandarte Island, at the nestling stage and at independence from parental care. We test for the presence of variance in sex ratio over and above the binomial variance expected under Mendelian segregation, and thereby quantify the potential for selection to shape sex ratio. Furthermore, if sex ratio variation is to be shaped by selection, we expect some of this extra-binomial variation to have a genetic basis. Despite ample statistical power, we find no evidence for the existence of either genetic or environmentally induced variation in sex ratio, in the nest or at independence. Instead, the sex ratio variation observed matches that expected under random Mendelian segregation. Using one of the best datasets of its kind, we conclude that female song sparrows do not, and perhaps cannot, adjust the sex of their offspring. We discuss the implications of this finding and make suggestions for future research.

  18. Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns.

    PubMed

    Lema, S C; Sanders, K E; Walti, K A

    2015-02-01

    Nonapeptide hormones of the vasopressin/oxytocin family regulate social behaviours. In mammals and birds, variation in behaviour also is linked to expression patterns of the V1a-type receptor and the oxytocin/mesotocin receptor in the brain. Genome duplications, however, expand the diversity of nonapeptide receptors in actinopterygian fishes, and two distinct V1a-type receptors (v1a1 and v1a2) for vasotocin, as well as at least two V2-type receptors (v2a and v2b), have been identified in these taxa. The present study investigates how aggression connected to social status relates to the abundance patterns of gene transcripts encoding four vasotocin receptors, an isotocin receptor (itr), pro-vasotocin (proVT) and pro-isotocin (proIT) in the brain of the pupfish Cyprinodon nevadensis amargosae. Sexually-mature pupfish were maintained in mixed-sex social groups and assessed for individual variation in aggressive behaviours. Males in these groups behaved more aggressively than females, and larger fish exhibited higher aggression relative to smaller fish of the same sex. Hypothalamic proVT transcript abundance was elevated in dominant males compared to subordinate males, and correlated positively with individual variation in aggression in both social classes. Transcripts encoding vasotocin receptor v1a1 were at higher levels in the telencephalon and hypothalamus of socially subordinate males than dominant males. Dominant males exhibited elevated hypothalamic v1a2 receptor transcript abundance relative to subordinate males and females, and telencephalic v1a2 mRNA abundance in dominant males was also associated positively with individual aggressiveness. Transcripts in the telencephalon encoding itr were elevated in females relative to males, and both telencephalic proIT and hypothalamic itr transcript abundance varied with female social status. Taken together, these data link hypothalamic proVT expression to aggression and implicate forebrain expression of the V1a

  19. Analysis of the sequence and gene products of the transfer region of the F sex factor.

    PubMed Central

    Frost, L S; Ippen-Ihler, K; Skurray, R A

    1994-01-01

    Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems. PMID:7915817

  20. Inter- and intraspecies phylogenetic analyses reveal extensive X-Y gene conversion in the evolution of gametologous sequences of human sex chromosomes.

    PubMed

    Trombetta, Beniamino; Sellitto, Daniele; Scozzari, Rosaria; Cruciani, Fulvio

    2014-08-01

    It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X-Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X-Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human-chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X-Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X-Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X-Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought.

  1. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis.

    PubMed

    Kroemer, Jeremy A; Coates, Brad S; Nusawardani, Tyasning; Rider, S Dean; Fraser, Lisa M; Hellmich, Richard L

    2011-07-01

    Males are homogametic (ZZ) and females are heterogametic (WZ) with respect to the sex chromosomes in many species of butterflies and moths (insect order Lepidoptera). Genes on the Z chromosome influence traits involved in larval development, environmental adaptation, and reproductive isolation. To facilitate the investigation of these traits across Lepidoptera, we developed 43 degenerate primer pairs to PCR amplify orthologs of 43 Bombyx mori Z chromosome-linked genes. Of the 34 orthologs that amplified by PCR in Ostrinia nubilalis, 6 co-segregated with the Z chromosome anchor markers kettin (ket) and lactate dehydrogenase (ldh), and produced a consensus genetic linkage map of ~89 cM in combination with 5 AFLP markers. The O. nubilalis and B. mori Z chromosomes are comparatively co-linear, although potential gene inversions alter terminal gene orders and a translocation event disrupted synteny at one chromosome end. Compared to B. mori orthologs, O. nubilalis Z chromosome-linked genes showed conservation of tissue-specific and growth-stage-specific expression, although some genes exhibited species-specific expression across developmental stages or tissues. The O. nubilalis Z chromosome linkage map provides new tools for isolating quantitative trait loci (QTL) involved in sex-linked traits that drive speciation and it exposes genome rearrangements as a possible mechanism for differential gene regulation in Lepidoptera.

  2. Gene drive through a landscape: Reaction-diffusion models of population suppression and elimination by a sex ratio distorter.

    PubMed

    Beaghton, Andrea; Beaghton, Pantelis John; Burt, Austin

    2016-04-01

    Some genes or gene complexes are transmitted from parents to offspring at a greater-than-Mendelian rate, and can spread and persist in populations even if they cause some harm to the individuals carrying them. Such genes may be useful for controlling populations or species that are harmful. Driving-Y chromosomes may be particularly potent in this regard, as they produce a male-biased sex ratio that, if sufficiently extreme, can lead to population elimination. To better understand the potential of such genes to spread over a landscape, we have developed a series of reaction-diffusion models of a driving-Y chromosome in 1-D and radially-symmetric 2-D unbounded domains. The wild-type system at carrying capacity is found to be unstable to the introduction of driving-Y males for all models investigated. Numerical solutions exhibit travelling wave pulses and fronts, and analytical and semi-analytical solutions for the asymptotic wave speed under bounded initial conditions are derived. The driving-Y male invades the wild-type equilibrium state at the front of the wave and completely replaces the wild-type males, leaving behind, at the tail of the wave, a reduced- or zero-population state of females and driving-Y males only. In our simplest model of a population with one life stage and density-dependent mortality, wave speed depends on the strength of drive and the diffusion rate of Y-drive males, and is independent of the population dynamic consequences (suppression or elimination). Incorporating an immobile juvenile stage of fixed duration into the model reduces wave speed approximately in proportion to the relative time spent as a juvenile. If females mate just once in their life, storing sperm for subsequent reproduction, then wave speed depends on the movement of mated females as well as Y-drive males, and may be faster or slower than in the multiple-mating model, depending on the relative duration of juvenile and adult life stages. Numerical solutions are shown for

  3. Gene drive through a landscape: Reaction-diffusion models of population suppression and elimination by a sex ratio distorter.

    PubMed

    Beaghton, Andrea; Beaghton, Pantelis John; Burt, Austin

    2016-04-01

    Some genes or gene complexes are transmitted from parents to offspring at a greater-than-Mendelian rate, and can spread and persist in populations even if they cause some harm to the individuals carrying them. Such genes may be useful for controlling populations or species that are harmful. Driving-Y chromosomes may be particularly potent in this regard, as they produce a male-biased sex ratio that, if sufficiently extreme, can lead to population elimination. To better understand the potential of such genes to spread over a landscape, we have developed a series of reaction-diffusion models of a driving-Y chromosome in 1-D and radially-symmetric 2-D unbounded domains. The wild-type system at carrying capacity is found to be unstable to the introduction of driving-Y males for all models investigated. Numerical solutions exhibit travelling wave pulses and fronts, and analytical and semi-analytical solutions for the asymptotic wave speed under bounded initial conditions are derived. The driving-Y male invades the wild-type equilibrium state at the front of the wave and completely replaces the wild-type males, leaving behind, at the tail of the wave, a reduced- or zero-population state of females and driving-Y males only. In our simplest model of a population with one life stage and density-dependent mortality, wave speed depends on the strength of drive and the diffusion rate of Y-drive males, and is independent of the population dynamic consequences (suppression or elimination). Incorporating an immobile juvenile stage of fixed duration into the model reduces wave speed approximately in proportion to the relative time spent as a juvenile. If females mate just once in their life, storing sperm for subsequent reproduction, then wave speed depends on the movement of mated females as well as Y-drive males, and may be faster or slower than in the multiple-mating model, depending on the relative duration of juvenile and adult life stages. Numerical solutions are shown for

  4. Transcriptomic Analysis of Endangered Chinese Salamander: Identification of Immune, Sex and Reproduction-Related Genes and Genetic Markers

    PubMed Central

    Che, Rongbo; Sun, Yuena; Wang, Rixin; Xu, Tianjun

    2014-01-01

    Background The Chinese salamander (Hynobius chinensis), an endangered amphibian species of salamander endemic to China, has attracted much attention because of its value of studying paleontology evolutionary history and decreasing population size. Despite increasing interest in the Hynobius chinensis genome, genomic resources for the species are still very limited. A comprehensive transcriptome of Hynobius chinensis, which will provide a resource for genome annotation, candidate genes identification and molecular marker development should be generated to supplement it. Principal Findings We performed a de novo assembly of Hynobius chinensis transcriptome by Illumina sequencing. A total of 148,510 nonredundant unigenes with an average length of approximately 580 bp were obtained. In all, 60,388 (40.66%) unigenes showed homologous matches in at least one database and 33,537 (22.58%) unigenes were annotated by all four databases. In total, 41,553 unigenes were categorized into 62 sub-categories by BLAST2GO search, and 19,468 transcripts were assigned to 140 KEGG pathways. A large number of unigenes involved in immune system, local adaptation, reproduction and sex determination were identified, as well as 31,982 simple sequence repeats (SSRs) and 460,923 putative single nucleotide polymorphisms (SNPs). Conclusion This dataset represents the first transcriptome analysis of the Chinese salamander (Hynobius chinensis), an endangered species, to be also the first time of hynobiidae. The transcriptome will provide valuable resource for further research in discovery of new genes, protection of population, adaptive evolution and survey of various pathways, as well as development of molecule markers in Chinese salamander; and reference information for closely related species. PMID:24498226

  5. The role of the sex-determining region Y gene in the etiology of 46,XX maleness

    SciTech Connect

    Fechner, P.Y.; Marcantonio, S.M.; Jaswaney, V.; Stetten, G.; Migeon, C.J.; Smith, K.D.; Berkovitz, G.D. ); Goodfellow, P.N. ); Amrhein, J.A. ); Bard, P.A. ); Lee, P.A. ); Reid, C. ); Tsalikian, E. ); Urban, M.D. )

    1993-03-01

    The condition of 46,XX maleness is characterized by testicular development in subjects who have two X chromosomes but who lack a normal Y chromosome. Several etiologies have been proposed to explain 46,XX maleness: (1) translocation of the testis-determining factor from the Y to the X chromosome, (2) mutation in an autosomal or X chromosome gene which permits testicular determination in the absence of TDF, and (3) undetected mosaicism with a Y-bearing cell line. The authors evaluated 10 affected subjects who were ascertained for different reasons and who had several distinct phenotypes. Six subjects had inherited sequences from the short arm of the Y chromosome including the sex-determining region Y gene (SRY). Five of the subjects were pubertal at the time of evaluation and had a phenotype similar to that of Klinefelter syndrome with evidence of Sertoli cell and Leydig cell dysfunction. One subject had evidence from Southern blot analysis and in situ hybridization for the presence of an intact Y chromosome in approximately 1% of cells. Three subjects lacked Y sequences by Southern blot analysis and by polymerase chain reaction amplification of SRY. These subjects were ascertained in the newborn period because of congenital anomalies. One had multiple anomalies including cardiac abnormalities; one had cardiac anomalies alone; and one had ambiguous genitalia. The data confirm the genetic heterogeneity of 46,XX maleness, in which some subjects have SRY while other subjects lack it. In addition, there is phenotypic heterogeneity among subjects who lack SRY suggesting that there is also genetic heterogeneity within this subgroup. 43 refs., 3 figs., 4 tabs.

  6. Transcriptomic Analysis for Different Sex Types of Ricinus communis L. during Development from Apical Buds to Inflorescences by Digital Gene Expression Profiling.

    PubMed

    Tan, Meilian; Xue, Jianfeng; Wang, Lei; Huang, Jiaxiang; Fu, Chunling; Yan, Xingchu

    2015-01-01

    The castor plant (Ricinus communis L.) is a versatile industrial oilseed crop with a diversity of sex patterns, its hybrid breeding for improving yield and high purity is still hampered by genetic instability of female and poor knowledge of sex expression mechanisms. To obtain some hints involved in sex expression and provide the basis for further insight into the molecular mechanisms of castor plant sex determination, we performed DGE analysis to investigate differences between the transcriptomes of apices and racemes derived from female (JXBM0705P) and monoecious (JXBM0705M) lines. A total of 18 DGE libraries were constructed from the apices and racemes of a wild monoecious line and its isogenic female derivative at three stages of apex development, in triplicate. Approximately 5.7 million clean tags per library were generated and mapped to the reference castor genome. Transcriptomic analysis showed that identical dynamic changes of gene expression were indicated in monoecious and female apical bud during its development from vegetation to reproduction, with more genes expressed at the raceme formation and infant raceme stages compare to the early leaf bud stage. More than 3000 of differentially expressed genes (DEGs) were detected in Ricinus apices at three developmental stages between two different sex types. A number of DEGs involved in hormone response and biosynthesis, such as auxin response and transport, transcription factors, signal transduction, histone demethylation/methylation, programmed cell death, and pollination, putatively associated with sex expression and reproduction were discovered, and the selected DEGs showed consistent expression between qRT-PCR validation and the DGE patterns. Most of those DEGs were suppressed at the early leaf stage in buds of the mutant, but then activated at the following transition stage (5-7-leaf stage) of buds in the mutant, and ultimately, the number of up-regulated DEGs was equal to that of down-regulation in the

  7. Transcriptomic Analysis for Different Sex Types of Ricinus communis L. during Development from Apical Buds to Inflorescences by Digital Gene Expression Profiling

    PubMed Central

    Tan, Meilian; Xue, Jianfeng; Wang, Lei; Huang, Jiaxiang; Fu, Chunling; Yan, Xingchu

    2016-01-01

    The castor plant (Ricinus communis L.) is a versatile industrial oilseed crop with a diversity of sex patterns, its hybrid breeding for improving yield and high purity is still hampered by genetic instability of female and poor knowledge of sex expression mechanisms. To obtain some hints involved in sex expression and provide the basis for further insight into the molecular mechanisms of castor plant sex determination, we performed DGE analysis to investigate differences between the transcriptomes of apices and racemes derived from female (JXBM0705P) and monoecious (JXBM0705M) lines. A total of 18 DGE libraries were constructed from the apices and racemes of a wild monoecious line and its isogenic female derivative at three stages of apex development, in triplicate. Approximately 5.7 million clean tags per library were generated and mapped to the reference castor genome. Transcriptomic analysis showed that identical dynamic changes of gene expression were indicated in monoecious and female apical bud during its development from vegetation to reproduction, with more genes expressed at the raceme formation and infant raceme stages compare to the early leaf bud stage. More than 3000 of differentially expressed genes (DEGs) were detected in Ricinus apices at three developmental stages between two different sex types. A number of DEGs involved in hormone response and biosynthesis, such as auxin response and transport, transcription factors, signal transduction, histone demethylation/methylation, programmed cell death, and pollination, putatively associated with sex expression and reproduction were discovered, and the selected DEGs showed consistent expression between qRT-PCR validation and the DGE patterns. Most of those DEGs were suppressed at the early leaf stage in buds of the mutant, but then activated at the following transition stage (5-7-leaf stage) of buds in the mutant, and ultimately, the number of up-regulated DEGs was equal to that of down-regulation in the

  8. Molecular characterization and expression profile of three Fem-1 genes in Eriocheir sinensis provide a new insight into crab sex-determining mechanism.

    PubMed

    Song, Chengwen; Cui, Zhaoxia; Hui, Min; Liu, Yuan; Li, Yingdong

    2015-11-01

    The FEM-1 protein of Caenorhabditis elegans plays a crucial role in the nematode sex-determination pathway. Here, we reported the characterization of three members of Fem-1 gene family in Eriocheir sinensis (designated EsFem-1a, EsFem-1b, and EsFem-1c), which were homologs of the nematode FEM-1 protein. The amino acid sequences of EsFem-1a, EsFem-1b, and EsFem-1c contained eight, nine, and eight ankyrin repeats, respectively. None of the ankyrin repeats had its own specific signature, and the evolution of ankyrin repeat was not completely independent. The predicted three-dimensional structure of EsFem-1 proteins exhibited highly similar superhelical conformation, especially the N-terminal six contiguous ankyrin repeats, which provided a binding surface for the protein-protein interaction. Phylogenetic tree based on the amino acid sequences revealed that EsFem-1a, EsFem-1b, and EsFem-1c were divided into three obvious separated clades. EsFem-1 genes were highly expressed in fertilized egg, 2-4 cell and blastula stage comparing with larval stage (P<0.01), which suggested they might be maternal genes. They also showed a certain degree of sexually dimorphic expression in some tissues. Notably, the highest expression of EsFem-1a was in the hepatopancreas, with EsFem-1b in testes and EsFem-1c in muscle (P<0.05), which indicated their potential role in a broad array of tissues. In addition, the genes initially involved in sex differentiation were not limited to those specifically expressed in the developing gonad. Taken together, these results suggested that EsFem-1 might function in crab early sex determination and late gonad development. The identification of Fem-1 gene family in E. sinensis provides a new insight into crab sex-determination mechanism.

  9. Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet

    PubMed Central

    Tost, Jörg; Karimi, Mohsen; Mayeur, Sylvain; Lesage, Jean; Boudadi, Elsa; Gross, Marie-Sylvie; Taurelle, Julien; Vigé, Alexandre; Breton, Christophe; Reusens, Brigitte; Remacle, Claude; Vieau, Didier; Ekström, Tomas J.; Jais, Jean-Philippe; Junien, Claudine

    2010-01-01

    Background Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. Methods and Findings We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. Conclusions A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions

  10. Hox genes and study of Hox genes in crustacean

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Chen, Zhijuan; Xu, Mingyu; Lin, Shengguo; Wang, Lu

    2004-12-01

    Homeobox genes have been discovered in many species. These genes are known to play a major role in specifying regional identity along the anterior-posterior axis of animals from a wide range of phyla. The products of the homeotic genes are a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in metazoans. Crustacean, presenting a variety of body plans not encountered in any other class or phylum of the Metazoa, has been shown to possess a single set of homologous Hox genes like insect. The ancestral crustacean Hox gene complex comprised ten genes: eight homologous to the hometic Hox genes and two related to nonhomeotic genes presented within the insect Hox complexes. The crustacean in particular exhibits an abundant diversity segment specialization and tagmosis. This morphological diversity relates to the Hox genes. In crustacean body plan, different Hox genes control different segments and tagmosis.

  11. Discovery of a disused desaturase gene from the pheromone gland of the moth Ascotis selenaria, which secretes an epoxyalkenyl sex pheromone.

    PubMed

    Fujii, Takeshi; Suzuki, Masataka G; Katsuma, Susumu; Ito, Katsuhiko; Rong, Yu; Matsumoto, Shogo; Ando, Tetsu; Ishikawa, Yukio

    2013-11-29

    Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.

  12. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    SciTech Connect

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni; Lu, Yuan-Fu; Cheng, Xing-Guo; Liu, Jie

    2014-10-15

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels.

  13. Sex Differences in Ethanol’s Anxiolytic Effect and Chronic Ethanol Withdrawal Severity in Mice With a Null Mutation of the 5α-Reductase Type 1 Gene

    PubMed Central

    Tanchuck-Nipper, Michelle A.; Ford, Matthew M.; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K.; Finn, Deborah A.

    2015-01-01

    Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol’s effect on total entries versus wildtype (WT) mice and significantly decreased ethanol’s anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids. PMID:25355320

  14. Detecting Sex-Biased Gene Flow in African-Americans through the Analysis of Intra- and Inter-Population Variation at Mitochondrial DNA and Y- Chromosome Microsatellites

    PubMed Central

    Battaggia, C; Anagnostou, P; Bosch, I; Brisighelli, F; Destro-Bisol, G; Capocasa, M

    2012-01-01

    This study reports on variations at the mitochondrial DNA (mtDNA) hypervariable region 1 (HVR-1) and at seven Y-chromosome microsatellites in an African-American population sample from Chicago, IL, USA. Our results support the hypothesis that the population studied had undergone a European male-biased gene flow. We show that comparisons of intra-and inter-population diversity parameters between African-Americans, Europeans and Africans may help detect sex-biased gene flow, providing a complement to quantitative methods to estimate genetic admixture. PMID:24052726

  15. gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia.

    PubMed

    Jiang, Dong-Neng; Yang, Hui-Hui; Li, Ming-Hui; Shi, Hong-Juan; Zhang, Xian-Bo; Wang, De-Shou

    2016-06-01

    Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc.

  16. ASSOCIATION OF AN ALTERNATE FORM OF THE HOMEOTIC GENE HOXB1 WITH CASES OF FAMILIAL AUTISM SPECTRUM DISORDER. (R824758)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Sox9 gene regulation and the loss of the XY/XX sex-determining mechanism in the mole vole Ellobius lutescens.

    PubMed

    Bagheri-Fam, Stefan; Sreenivasan, Rajini; Bernard, Pascal; Knower, Kevin C; Sekido, Ryohei; Lovell-Badge, Robin; Just, Walter; Harley, Vincent R

    2012-01-01

    In most mammals, the Y chromosomal Sry gene initiates testis formation within the bipotential gonad, resulting in male development. SRY is a transcription factor and together with SF1 it directly up-regulates the expression of the pivotal sex-determining gene Sox9 via a 1.3-kb cis-regulatory element (TESCO) which contains an evolutionarily conserved region (ECR) of 180 bp. Remarkably, several rodent species appear to determine sex in the absence of Sry and a Y chromosome, including the mole voles Ellobius lutescens and Ellobius tancrei, whereas Ellobius fuscocapillus of the same genus retained Sry. The sex-determining mechanisms in the Sry-negative species remain elusive. We have cloned and sequenced 1.1 kb of E. lutescens TESCO which shares 75% sequence identity with mouse TESCO indicating that testicular Sox9 expression in E. lutescens might still be regulated via TESCO. We have also cloned and sequenced the ECRs of E. tancrei and E. fuscocapillus. While the three Ellobius ECRs are highly similar (94-97% sequence identity), they all display a 14-bp deletion (Δ14) removing a highly conserved SOX/TCF site. Introducing Δ14 into mouse TESCO increased both basal activity and SF1-mediated activation of TESCO in HEK293T cells. We propose a model whereby Δ14 may have triggered up-regulation of Sox9 in XX gonads leading to destabilization of the XY/XX sex-determining mechanism in Ellobius. E. lutescens/E. tancrei and E. fuscocapillus could have independently stabilized their sex determination mechanisms by Sry-independent and Sry-dependent approaches, respectively. PMID:22215485

  18. Sex moderates the effects of the Sorl1 gene rs2070045 polymorphism on cognitive impairment and disruption of the cingulum integrity in healthy elderly.

    PubMed

    Liang, Ying; Li, He; Lv, Chenlong; Shu, Ni; Chen, Kewei; Li, Xin; Zhang, Junying; Hu, Liangping; Zhang, Zhanjun

    2015-05-01

    The SORL1 rs2070045 polymorphism was reported to be associated with SorLA expression in the brain and the risk of late-onset Alzheimer's disease (AD). However, the influence of this polymorphism on cognitive functioning is likely to be moderated by sex. This study aimed to examine the sex moderation on the effects of rs2070045 on neuropsychological performance and the cingulum integrity in Chinese Han population. In this study, 780 non-demented older adults completed a battery of neuropsychological scales. Diffusion tensor images (DTI) of 126 subjects were acquired. We adopted the atlas-based segmentation strategy for calculating the DTI indices of the bilateral cingulum and cingulum hippocampal part for each subject. We used a multivariate analysis of variance (MANOVA) to compare the cognitive performance and DTI differences between the rs2070045 genotype. Controlling for age, education, and the APOE ɛ4 status, the influence of sex on the effects of the rs2070045 polymorphism on executive function was observed. We also found an interaction between sex and the rs2070045 polymorphism on the white matter (WM) microstructure of the left cingulum hippocampal part. Furthermore, the mean diffusivity and axial diffusivity of the tract were associated with Trail Making Test performance in T/T men. These results hint that sex moderates the association between the rs2070045 polymorphism and executive function, as well as the WM integrity of the left cingulum hippocampal part. Our findings underscore the importance of considering the influence of sex when examining the candidate genes for cognitive abilities and AD.

  19. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water.

    PubMed

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. PMID:25759245

  20. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water1

    PubMed Central

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-01-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50–1000 µg/ L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic’s possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. PMID:25759245

  1. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water.

    PubMed

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females.

  2. Sex determination in amphibians.

    PubMed

    Nakamura, Masahisa

    2009-05-01

    The heterogametic sex is male in all mammals, whereas it is female in almost all birds. By contrast, there are two heterogametic types (XX/XY and ZZ/ZW) for genetic sex determination in amphibians. Though the original heterogametic sex was female in amphibians, the two heterogametic types were probably interchangeable, suggesting that sex chromosomes evolved several times in this lineage. Indeed, the frog Rana rugosa has the XX/XY and ZZ/ZW sex-determining systems within a single species, depending on the local population in Japan. The XY and ZW geographic forms with differentiated sex chromosomes probably have a common origin as undifferentiated sex chromosomes resulted from the hybridization between the primary populations of West Japan and Kanto forms. It is clear that the sex chromosomes are still undergoing evolution in this species group. Regardless of the presence of a sex-determining gene in amphibians, the gonadal sex of some species can be changed by sex steroids. Namely, sex steroids can induce the sex reversal, with estrogens inducing the male-to-female sex reversal, whereas androgens have the opposite effect. In R. rugosa, gonadal activity of CYP19 (P450 aromatase) is correlated with the feminization of gonads. Of particular interest is that high levels of CYP19 expression are observed in indifferent gonads at time before sex determination. Increases in the expression of CYP19 in female gonads and CYP17 (P450 17alpha-hydroxylase/C17-20 lyase) in male gonads suggest that the former plays an important role in phenotypic female determination, whereas the latter is needed for male determination. Thus, steroids could be the key factor for sex determination in R. rugosa. In addition to the role of sex steroids in gonadal sex determination in this species, Foxl2 and Sox3 are capable of promoting CYP19 expression. Since both the genes are autosomal, another factor up-regulating CYP19 expression must be recruited. The factor, which may be located on the X or W

  3. Effects of perinatal exposure to low-dose cadmium on thyroid hormone-related and sex hormone receptor gene expressions in brain of offspring.

    PubMed

    Ishitobi, Hiromi; Mori, Kohki; Yoshida, Katsumi; Watanabe, Chiho

    2007-07-01

    Perinatal cadmium (Cd) exposure has been shown to alter behaviors and reduce learning ability of offspring. A few studies have shown that Cd reduced serum thyroid hormones (THs), which are important for brain development during the perinatal period. Brain specific genes, neurogranin (RC3) and myelin basic protein (BMP), are known to be regulated by TH through TH receptors (TR). It has been suggested that RC3 may play roles in memory and learning. In addition, Cd has been suggested to have estrogen-like activity. To evaluate the effects of perinatal low-dose exposure to Cd on thyroid hormone-related gene (RC3, TR-beta1, MBP, RAR-beta) and sex hormone receptor gene (ER-alpha, ER-beta and PgR) expressions in the brain and on behaviors of offspring, mice were administered with 10ppm Cd (from gestational day 1 to postnatal day 10) and/or 0.025% methimazole (MMI; anti-thyroid drug) (from gestational day 12 to postnatal day 10) in drinking water. Also, 0.1% MMI was administered as a positive control (high MMI group). RC3 mRNA expression was reduced in the female brain of combined exposure and high MMI groups and was negatively correlated with the activity in the open-field. ER-alpha, ER-beta and PgR mRNA expressions were decreased in male and female Cd, and female Cd+MMI groups, respectively; among these changes the reduced expression of PgR was opposite to estrogenic action. These results suggested that perinatal exposure to Cd disrupted the gene expressions of sex hormone receptors, which could not be considered to be a result of estrogenic action. Our study indicates that alteration in the gene expressions of RC3 and sex hormone receptors in the brain induced by perinatal Cd and MMI exposure might be one mechanism of developmental toxicity of Cd. PMID:17408746

  4. Sex-linked recessive

    MedlinePlus

    ... through families through one of the X or Y chromosomes. X and Y are sex chromosomes. Dominant inheritance ... that X chromosome will cause the disease. The Y chromosome is the other half of the XY gene ...

  5. A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers

    PubMed Central

    Gerchen, Jörn F.; Reichert, Samuel J.; Röhr, Johannes T.; Dieterich, Christoph; Kloas, Werner

    2016-01-01

    Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species. PMID:27232626

  6. A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers.

    PubMed

    Gerchen, Jörn F; Reichert, Samuel J; Röhr, Johannes T; Dieterich, Christoph; Kloas, Werner; Stöck, Matthias

    2016-01-01

    Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species. PMID:27232626

  7. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum.

    PubMed

    Cai, Pengfei; Liu, Shuai; Piao, Xianyu; Hou, Nan; Gobert, Geoffrey N; McManus, Donald P; Chen, Qijun

    2016-04-01

    Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions. PMID:27128440

  8. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum

    PubMed Central

    Piao, Xianyu; Hou, Nan; Gobert, Geoffrey N.; McManus, Donald P.; Chen, Qijun

    2016-01-01

    Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions. PMID:27128440

  9. Multivariate expression analysis of the gene network underlying sexual development in turtle embryos with temperature-dependent and genotypic sex determination.

    PubMed

    Valenzuela, N

    2010-01-01

    Sexual development has long been the target of study and despite great advances in our understanding of the composition and regulation of the gene network underlying gonadogenesis, our knowledge remains incomplete. Of particular interest is the relative role that the environment and the genome play in directing gonadal formation, especially the effect of environmental temperature in directing this process in vertebrates. Comparative analyses in closely related taxa with contrasting sex-determining mechanisms should help fill this gap. Here I present a multivariate study of the regulation of the gene network underlying sexual development in turtles with temperature-dependent (TSD; Chrysemys picta) and genotypic sex determination (GSD; Apalone mutica). I combine novel data on SOX9 and DMRT1 from these species with contrasting sex-determining mechanisms for the first time with previously reported data on DAX1, SF-1 (NR5A1), WT1, and aromatase (CYP19A1) from these same taxa. Comparative expression analyses of SOX9 and DMRT1 from these and other species indicate additional elements whose expression has diverged among TSD taxa, further supporting the notion that significant evolutionary changes have accrued in the regulation of the TSD gene network in reptiles. A non-parametric MANOVA revealed that temperature had a significant effect in multivariate gene expression in C. picta that varied during embryonic development, whereas the covariation of gene expression in A. mutica was insensitive to temperature. A phenotypic trajectory analysis (PTA) of gene expression comparing both species directly indicated that the relative covariation in gene expression varied between temperatures in C. picta. Furthermore, the 25 degrees C trajectory of C. picta differed from that of A. mutica in the magnitude of gene expression change. Additional analyses revealed a stronger covariation in gene expression and a more interconnected regulatory network in A. mutica, consistent with the

  10. Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila

    PubMed Central

    Bousquet, François; Nojima, Tetsuya; Houot, Benjamin; Chauvel, Isabelle; Chaudy, Sylvie; Dupas, Stéphane; Yamamoto, Daisuke; Ferveur, Jean-François

    2012-01-01

    Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts—all of which yielded the same desaturase protein—and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species. PMID:22114190

  11. Phenotype, Sex of Rearing, Gender Re-Assignment, and Response to Medical Treatment in Extended Family Members with a Novel Mutation in the SRD5A2 Gene.

    PubMed

    Deeb, Asma; Al Suwaidi, Hana; Ibukunoluwa, Fakunle; Attia, Salima

    2016-06-01

    Deficiency of steroid 5-alpha reductase-2 (5ARD2) is an inborn error of metabolism causing a disorder of sexual differentiation. It is caused by a mutation in the SRD5A2 gene in which various mutation types have been reported. Affected individuals have a broad spectrum of presentation ranging from normal female-appearing genitalia, cliteromegaly, microphallus, hypospadias, to completely male-appearing genitalia. We report an extended Emirati family with 11 affected members. The family displayed various phenotypes on presentation leading to different sex of rearing. Some family members were reassigned gender at various stages of life. The index case was born with severe undervirilization with bilaterally palpable gonads and was raised as male from birth. He had a 46,XY karyotype and a high testosterone/dihydrotestosterone ratio. Genetic investigation revealed a novel homozygous deletion of exon 2 of the SRD5A2 gene. Both parents were found to be carriers for the gene deletion. The patient had masculinizing surgery and a course of topical dihydrotestosterone. No beneficial effect of the hormone application was noted over 3 months and the treatment was discontinued. The findings on this kindred indicate that deletion of exon 2 in the SRD5A2 gene causes various degrees of genital ambiguity leading to different sex of rearing in affected family members. Gender reassignment may be done at various ages even in conservative communities like the Gulf region.

  12. Expression profiling of the sex-related gene Dmrt1 in adults of the Lusitanian toadfish Halobatrachus didactylus (Bloch and Schneider, 1801).

    PubMed

    Ubeda-Manzanaro, María; Merlo, Manuel A; Ortiz-Delgado, Juan B; Rebordinos, Laureana; Sarasquete, Carmen

    2014-02-10

    Doublesex and mab-3 related transcription factor 1 (Dmrt1) gene is a widely conserved gene involved in sex determination and differentiation across phyla. To gain insights on Dmrt1 implication for fish gonad cell differentiation and gametogenesis development, its mRNA was isolated from testis and ovary from the Lusitanian toadfish (Halobatrachus didactylus). The cDNA from Dmrt1 was synthesized and cloned, whereas its quantitative and qualitative gene expression, as well as its protein immunolocalization, were analyzed. A main product of 1.38 kb, which encodes a protein of 295 aa, was reported, but other minority Dmrt1 products were also identified by RACE-PCR. This gene is predominantly expressed in testis (about 20 times more than in other organs or tissues), specially in spermatogonia, spermatocytes and spermatids, as well as in somatic Sertoli cells, indicating that Dmrt1 plays an important role in spermatogenesis. Although Dmrt1 transcripts also seem to be involved in oogenesis development, and it cannot be excluded that toadfish Dmrt1 could be functionally involved in other processes not related to sex. PMID:24275345

  13. Sex determination of forensic samples by polymerase chain reaction of the amelogenin gene and analysis by capillary electrophoresis with polymer matrix.

    PubMed

    Pouchkarev, V P; Shved, E F; Novikov, P I

    1998-01-01

    The aim of this study was to validate an application of GenePrint Sex Determination System based on amplification of a section of the X-Y homologous gene amelogenin followed by capillary electrophoresis (CE) separation of polymerase chain reaction (PCR) products for gender testing of forensic DNA. It was found that subnanogram quantities of male and female DNA were correctly detected by this system. Experiments were performed to investigate the possibility of quantitating the X-Y chromosome-specific PCR products to disclose sex-mixed DNA samples. It was found that observed electrophoretic profiles correctly reflected an X-Y chromosome proportion of the DNA sample which was introduced into the PCR mix. The tested amelogenin PCR-CE system was successfully used for gender testing of a wide range of biological evidence including sex-mixed DNA samples from rape cases. These results demonstrate that the tested amelogenin PCR-CE system is a useful tool for gender determination of forensic DNA.

  14. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1.

    PubMed

    Lopes, Alexandra M; Aston, Kenneth I; Thompson, Emma; Carvalho, Filipa; Gonçalves, João; Huang, Ni; Matthiesen, Rune; Noordam, Michiel J; Quintela, Inés; Ramu, Avinash; Seabra, Catarina; Wilfert, Amy B; Dai, Juncheng; Downie, Jonathan M; Fernandes, Susana; Guo, Xuejiang; Sha, Jiahao; Amorim, António; Barros, Alberto; Carracedo, Angel; Hu, Zhibin; Hurles, Matthew E; Moskovtsev, Sergey; Ober, Carole; Paduch, Darius A; Schiffman, Joshua D; Schlegel, Peter N; Sousa, Mário; Carrell, Douglas T; Conrad, Donald F

    2013-03-01

    Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man's risk of disease by 10% (OR 1.10 [1.04-1.16], p<2 × 10(-3)), rare X-linked CNVs by 29%, (OR 1.29 [1.11-1.50], p<1 × 10(-3)), and rare Y-linked duplications by 88% (OR 1.88 [1.13-3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2 × 10(-5)). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes. PMID:23555275

  15. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression.

    PubMed

    Ferris, Jacqueline; Mahboubi, Kiana; MacLusky, Neil; King, W Allan; Favetta, Laura A

    2016-01-01

    Alterations in the oocyte's environment can negatively affect embryo development. Oocyte quality, which can determine embryonic viability, is easily perturbed, thus factors affecting normal oocyte maturation are a concern. Bisphenol A (BPA) is an endocrine disrupting chemical that elicits a variety of reproductive effects. BPA has previously been found to disrupt meiosis, however the embryonic effects in mammals are not well documented. Here, bovine oocytes were matured in vitro with and without BPA treatment. Resulting embryos exhibited decreased embryonic development rates, increased apoptosis, and a skewed sex ratio. Gene expression in blastocysts was not altered, whereas treatment with 15ng/mL BPA resulted in increased expression of several of the genes studies, however this increase was largely due to a vehicle effect. BPA exposure during oocyte maturation in vitro can therefore, in a dose-dependent way, decrease oocyte and embryo quality and developmental potential and affect gene expression of developmentally important transcripts.

  16. Molecular characterization of the gene feminizer in the stingless bee Melipona interrupta (Hymenoptera: Apidae) reveals association to sex and caste development.

    PubMed

    Brito, Diana V; Silva, Carlos Gustavo N; Hasselmann, Martin; Viana, Luciana S; Astolfi-Filho, Spartaco; Carvalho-Zilse, Gislene A

    2015-11-01

    In highly eusocial insects, development of reproductive traits are regulated not only by sex determination pathway, but it also depends on caste fate. The molecular basis of both mechanisms in stingless bees and possible interaction with each other is still obscure. Here, we investigate sex determination in Melipona interrupta, focusing on characterization and expression analysis of the feminizer gene (Mi-fem), and its association to a major component of caste determination, the juvenile hormone (JH). We present evidence that Mi-fem mRNA is sex-specifically spliced in which only the female splice variant encodes the full length protein, following the same principle known for other bee species. We quantified Mi-fem expression among developmental stages, sexes and castes. Mi-fem expression varies considerably throughout development, with higher expression levels in embryos. Also, fem levels in pupae and newly emerged adults were significantly higher in queens than workers and males. Finally, we ectopically applied JH in cocoon spinning larvae, which correspond to the time window where queen/worker phenotypes diverge. We observed a significantly increase in Mi-fem expression compared to control groups. Since up to 100% of females turn into queens when treated with JH (while control groups are composed mainly of workers), we propose that fem might act to regulate queens' development. Our findings provide support for the conserved regulatory function of fem in Melipona bees and demonstrate a significant correlation between key elements of sex and caste determination pathways, opening the avenue to further investigate the molecular basis of these complex traits.

  17. Molecular characterization of the gene feminizer in the stingless bee Melipona interrupta (Hymenoptera: Apidae) reveals association to sex and caste development.

    PubMed

    Brito, Diana V; Silva, Carlos Gustavo N; Hasselmann, Martin; Viana, Luciana S; Astolfi-Filho, Spartaco; Carvalho-Zilse, Gislene A

    2015-11-01

    In highly eusocial insects, development of reproductive traits are regulated not only by sex determination pathway, but it also depends on caste fate. The molecular basis of both mechanisms in stingless bees and possible interaction with each other is still obscure. Here, we investigate sex determination in Melipona interrupta, focusing on characterization and expression analysis of the feminizer gene (Mi-fem), and its association to a major component of caste determination, the juvenile hormone (JH). We present evidence that Mi-fem mRNA is sex-specifically spliced in which only the female splice variant encodes the full length protein, following the same principle known for other bee species. We quantified Mi-fem expression among developmental stages, sexes and castes. Mi-fem expression varies considerably throughout development, with higher expression levels in embryos. Also, fem levels in pupae and newly emerged adults were significantly higher in queens than workers and males. Finally, we ectopically applied JH in cocoon spinning larvae, which correspond to the time window where queen/worker phenotypes diverge. We observed a significantly increase in Mi-fem expression compared to control groups. Since up to 100% of females turn into queens when treated with JH (while control groups are composed mainly of workers), we propose that fem might act to regulate queens' development. Our findings provide support for the conserved regulatory function of fem in Melipona bees and demonstrate a significant correlation between key elements of sex and caste determination pathways, opening the avenue to further investigate the molecular basis of these complex traits. PMID:26393998

  18. Independent associations of polymorphisms in vitamin D binding protein (GC) and vitamin D receptor (VDR) genes with obesity and plasma 25OHD3 levels demonstrate sex dimorphism.

    PubMed

    Almesri, Norah; Das, Nagalla S; Ali, Muhallab E; Gumaa, Khalid; Giha, Hayder Ahmed

    2016-04-01

    We investigated a possible association between polymorphisms in vitamin D binding protein (GC) and vitamin D receptor (VDR) genes and obesity in Bahraini adults. For this purpose, 406 subjects with varying body mass indexes (BMIs) were selected. Plasma levels of 25-hydroxyvitamin D3 (25OHD3) were measured by chemiluminescence immunoassay. Six single nucleotide polymorphisms, 2 in the VDR gene (rs731236 TC and rs12721377 AG) and 4 in the GC gene (rs2282679 AC, rs4588 CA, rs7041 GT, and rs2298849 TC), were genotyped by real-time polymerase chain reaction. We found that the rs7041 minor allele (G) and rare genotype (GG) were associated with higher BMI (p = 0.007 and p = 0.012, respectively), but they did not influence 25OHD3 levels. However, the minor alleles of rs2282679 (A) and rs4588 (C) were associated with low 25OHD3 plasma levels (p = 0.039 and p = 0.021, respectively), but not with BMI. Having categorized the subjects based on their sex, we found that (i) rs7041 GG associated with high BMI in females (p = 0.003), (ii) rs4588 CC associated with high BMI in females (p = 0.034) and low 25OHD3 levels in males (p = 0.009), and (iii) rs12721377 AA associated with low 25OHD3 levels in females (p = 0.039). Notably, none of the common haplotypes (6 in the GC gene and 3 in the VDR gene) were associated with BMI. Therefore, polymorphisms in the GC (rs2282679, rs4588, rs7041) and VDR (rs12721377) genes were independently associated with obesity and 25OHD3 levels with a clear sex dimorphism.

  19. Identification of androgenic gland microRNA and their target genes to discover sex-related microRNA in the oriental river prawn, Macrobrachium nipponense.

    PubMed

    Jin, S B; Fu, H T; Jiang, S F; Xiong, Y W; Qiao, H; Zhang, W Y; Gong, Y S; Wu, Y

    2015-01-01

    The oriental river prawn, Macrobrachium nipponense, is an important aquaculture species in China. The androgenic gland produces hormones that play crucial roles in the differentiation of crustaceans to the male sex. MicroRNA (miRNA) post-transcriptionally regulates many protein-coding genes, influencing important biological and metabolic processes. However, currently, there is no published data identifying miRNA in M. nipponense. In this study, we identified novel miRNA in the androgenic gland of M. nipponense. Using the high-throughput Illumina Solexa system, 1077 miRNA were identified from small RNA libraries by aligning with the de novo androgenic gland transcriptome of M. nipponense (obtained from RNA-Seq) and the sequences in the miRBase21 database. A total of 8,248, 76,011, and 78,307 target genes were predicted in the EST and SRA sequences provided in the NCBI database, and the androgenic gland transcriptome of M. nipponense, respectively. Some potential sex-related miRNA were identified based on the function of the predicted target genes. The results of our study provide new information regarding the miRNA expression in M. nipponense, which could be the basis for further genetic studies on decapod crustaceans. PMID:26782487

  20. High Gestational Folic Acid Supplementation Alters Expression of Imprinted and Candidate Autism Susceptibility Genes in a sex-Specific Manner in Mouse Offspring.

    PubMed

    Barua, Subit; Kuizon, Salomon; Brown, W Ted; Junaid, Mohammed A

    2016-02-01

    Maternal nutrients play critical roles in modulating epigenetic events and exert long-term influences on the progeny's health. Folic acid (FA) supplementation during pregnancy has decreased the incidence of neural tube defects in newborns, but the influence of high doses of maternal FA supplementation on infants' brain development is unclear. The present study was aimed at investigating the effects of a high dose of gestational FA on the expression of genes in the cerebral hemispheres (CHs) of 1-day-old pups. One week prior to mating and throughout the entire period of gestation, female C57BL/6J mice were fed a diet, containing FA at either 2 mg/kg (control diet (CD)) or 20 mg/kg (high maternal folic acid (HMFA)). At postnatal day 1, pups from different dams were sacrificed and CH tissues were collected. Quantitative RT-PCR and Western blot analysis confirmed sex-specific alterations in the expression of several genes that modulate various cellular functions (P < 0.05) in pups from the HMFA group. Genomic DNA methylation analysis showed no difference in the level of overall methylation in pups from the HMFA group. These findings demonstrate that HMFA supplementation alters offsprings' CH gene expression in a sex-specific manner. These changes may influence infants' brain development. PMID:26547318

  1. Similar but not the same: insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee Apis florea.

    PubMed

    Biewer, M; Lechner, S; Hasselmann, M

    2016-01-01

    Studying the fate of duplicated genes provides informative insight into the evolutionary plasticity of biological pathways to which they belong. In the paralogous sex-determining genes complementary sex determiner (csd) and feminizer (fem) of honey bee species (genus Apis), only heterozygous csd initiates female development. Here, the full-length coding sequences of the genes csd and fem of the phylogenetically basal dwarf honey bee Apis florea are characterized. Compared with other Apis species, remarkable evolutionary changes in the formation and localization of a protein-interacting (coiled-coil) motif and in the amino acids coding for the csd characteristic hypervariable region (HVR) are observed. Furthermore, functionally different csd alleles were isolated as genomic fragments from a random population sample. In the predicted potential specifying domain (PSD), a high ratio of πN/πS=1.6 indicated positive selection, whereas signs of balancing selection, commonly found in other Apis species, are missing. Low nucleotide diversity on synonymous and genome-wide, non-coding sites as well as site frequency analyses indicated a strong impact of genetic drift in A. florea, likely linked to its biology. Along the evolutionary trajectory of ~30 million years of csd evolution, episodic diversifying selection seems to have acted differently among distinct Apis branches. Consistently low amino-acid differences within the PSD among pairs of functional heterozygous csd alleles indicate that the HVR is the most important region for determining allele specificity. We propose that in the early history of the lineage-specific fem duplication giving rise to csd in Apis, A. florea csd stands as a remarkable example for the plasticity of initial sex-determining signals. PMID:26153222

  2. Identification of differentially expressed genes in sexed pig embryos during post-hatching development in primiparous sows exposed to differing intermittent suckling and breeding strategies.

    PubMed

    Tsoi, Stephen; Blanes, Milena; Chen, Tai Yuan; Langendijk, Pieter; Athorn, Rebecca; Foxcroft, George; Dyck, Michael

    2016-09-01

    The aim of commercial pig breeding programs is to maximize the number of pigs produced per sow per year. Given that sows exhibit an estrus during lactation is a potential means of increasing productivity of a pig breeding herd without reducing in lactation length, conventionally, weaning of piglets at a relatively young age is often related to post-weaning piglet performance which compromises piglet welfare. Therefore, intermittent suckling (IS) is a management technique in which lactating sows are separated from their piglets for a fixed period of the days and allowing sows to continue nursing piglets while exhibiting estrus and being breed during lactation, thereby promoting both piglet well-being and sow reproductive performance [1]. For this study, primiparous sows (PP) were exposed to 28 day (D28) lactation with intermittent suckling (IS) during the final week prior to weaning. The sows detected to be in estrus during lactation were either bred at this first estrus (FE) during lactation (IS21FE), or were "skipped" and bred at their second estrus which occurred after final weaning at D28 (IS21SE). Despite the benefits of IS, the effects of the maternal physiology related to breeding during lactation on embryonic transcriptome are largely unknown. Recent advances in the ability to assess embryonic gene expression in both sexes have made these analyses possible. Here, we describe the experimental procedures of two color microarray analyses and annotation of differentially expressed (DE) genes in detail corresponding to data deposited at NCBI in the Gene Expression Omnibus under accession number GSE53576 and GSE73020 for day 9 embryos (D9E) and day 30 embryos (D30E) respectively. Although only a few DE genes were discovered between IS21FE and IS21SE in both sexes from D9E or D30E, the raw data are still valuable for future use to understand the gene expression profiling from two different developmental stages. PMID:27331000

  3. Early Stress Causes Sex-Specific, Life-Long Changes in Behaviour, Levels of Gonadal Hormones, and Gene Expression in Chickens

    PubMed Central

    Elfwing, Magnus; Nätt, Daniel; Goerlich-Jansson, Vivian C.; Persson, Mia; Hjelm, Jonas; Jensen, Per

    2015-01-01

    Early stress can have long-lasting phenotypic effects. Previous research shows that male and female chickens differ in many behavioural aspects, and respond differently to chronic stress. The present experiment aimed to broadly characterize long-term sex differences in responses to brief events of stress experienced during the first weeks of life. Chicks from a commercial egg-laying hybrid were exposed to stress by inducing periods of social isolation during their first three weeks of life, followed by a broad behavioural, physiological and genomic characterization throughout life. Early stressed males, but not females, where more anxious in an open field-test, stayed shorter in tonic immobility and tended to have delayed sexual maturity, as shown by a tendency for lower levels of testosterone compared to controls. While early stressed females did not differ from non-stressed in fear and sexual maturation, they were more socially dominant than controls. The differential gene expression profile in hypothalamus was significantly correlated from 28 to 213 days of age in males, but not in females. In conclusion, early stress had a more pronounced long-term effect on male than on female chickens, as evidenced by behavioral, endocrine and genomic responses. This may either be attributed to inherent sex differences due to evolutionary causes, or possibly to different stress related selection pressures on the two sexes during commercial chicken breeding. PMID:25978318

  4. Early stress causes sex-specific, life-long changes in behaviour, levels of gonadal hormones, and gene expression in chickens.

    PubMed

    Elfwing, Magnus; Nätt, Daniel; Goerlich-Jansson, Vivian C; Persson, Mia; Hjelm, Jonas; Jensen, Per

    2015-01-01

    Early stress can have long-lasting phenotypic effects. Previous research shows that male and female chickens differ in many behavioural aspects, and respond differently to chronic stress. The present experiment aimed to broadly characterize long-term sex differences in responses to brief events of stress experienced during the first weeks of life. Chicks from a commercial egg-laying hybrid were exposed to stress by inducing periods of social isolation during their first three weeks of life, followed by a broad behavioural, physiological and genomic characterization throughout life. Early stressed males, but not females, where more anxious in an open field-test, stayed shorter in tonic immobility and tended to have delayed sexual maturity, as shown by a tendency for lower levels of testosterone compared to controls. While early stressed females did not differ from non-stressed in fear and sexual maturation, they were more socially dominant than controls. The differential gene expression profile in hypothalamus was significantly correlated from 28 to 213 days of age in males, but not in females. In conclusion, early stress had a more pronounced long-term effect on male than on female chickens, as evidenced by behavioral, endocrine and genomic responses. This may either be attributed to inherent sex differences due to evolutionary causes, or possibly to different stress related selection pressures on the two sexes during commercial chicken breeding.

  5. Adrenal-kidney-gonad complex measurements may not predict gonad-specific changes in gene expression patterns during temperature-dependent sex determination in the red-eared slider turtle (Trachemys scripta elegans).

    PubMed

    Ramsey, Mary; Crews, David

    2007-08-01

    Many turtles, including the red-eared slider turtle (Trachemys scripta elegans) have temperature-dependent sex determination in which gonadal sex is determined by temperature during the middle third of incubation. The gonad develops as part of a heterogenous tissue complex that comprises the developing adrenal, kidney, and gonad (AKG complex). Owing to the difficulty in excising the gonad from the adjacent tissues, the AKG complex is often used as tissue source in assays examining gene expression in the developing gonad. However, the gonad is a relatively small component of the AKG, and gene expression in the adrenal-kidney (AK) compartment may interfere with the detection of gonad-specific changes in gene expression, particularly during early key phases of gonadal development and sex determination. In this study, we examine transcript levels as measured by quantitative real-time polymerase chain reaction for five genes important in slider turtle sex determination and differentiation (AR, ERalpha, ERbeta, aromatase, and Sf1) in AKG, AK, and isolated gonad tissues. In all cases, gonad-specific gene expression patterns were attenuated in AKG versus gonad tissue. All five genes were expressed in the AK in addition to the gonad at all stages/temperatures. Inclusion of the AK compartment masked important changes in gonadal gene expression. In addition, AK and gonad expression patterns are not additive, and gonadal gene expression cannot be predicted from intact AKG measurements.

  6. Cloning and analysis of the sfrB (sex factor repression) gene of Escherichia coli K-12.

    PubMed Central

    Rehemtulla, A; Kadam, S K; Sanderson, K E

    1986-01-01

    The sfrB gene of Escherichia coli K-12 and the rfaH gene of Salmonella typhimurium LT2 are homologous, controlling expression of the tra operon of F and the rfa genes for lipopolysaccharide synthesis. We have determined a restriction map of the 19-kilobase ColE1 plasmid pLC14-28 which carries the sfrB gene of E. coli. After partial Sau3A digestion of pLC14-28, we cloned a 2.5-kilobase DNA fragment into the BamHI site of pBR322 to form pKZ17. pKZ17 complemented mutants of the sfrB gene of E. coli and the rfaH gene of S. typhimurium for defects of both the F tra operon and the rfa genes. pKZ17 in minicells determines an 18-kilodalton protein not determined by pBR322. A Tn5 insertion into the sfrB gene causes loss of complementing activity and loss of the 18-kilodalton protein in minicells, indicating that this protein is the sfrB gene product. These data indicate that the sfrB gene product is a regulatory element, since the single gene product elicits the expression of genes for many products for F expression and lipopolysaccharide synthesis. Images PMID:3009418

  7. Ecdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles.

    PubMed

    Planelló, Rosario; Herrero, Óscar; Gómez-Sande, Pablo; Ozáez, Irene; Cobo, Fernando; Servia, María J

    2015-01-01

    Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during the different phases of C. riparius fourth larval instar, according to the development of genital and thoracic imaginal discs. Real-Time PCR was used to analyze: EcR and usp, two genes encoding the two dimerizing partners of the functional ecdysone receptor; E74, an early response gene induced by ecdysteroids; vg (vitellogenin), an effector gene; hsp70 and hsc70, two heat-shock genes involved in the correct folding of the ecdysone receptor; and rpL13, as a part of the ribosomal machinery. Our results show for the first time stage and sex-dependent variations in ecdysone-responsive genes, specially during the late larval stage of C. riparius. The induction in the expression of EcR and usp during the VII-VIII phase of the fourth instar is concomitant with a coordinated response in the activity of the other genes analyzed, suggesting the moment where larvae prepare for pupation. This work is particularly relevant given that most of the analyzed genes have been proposed previously in this species as sensitive biomarkers for the toxicological evaluation of aquatic ecosystems. Identifying the natural regulation of these molecular endpoints throughout the Chironomus development will contribute to a more in-depth and accurate evaluation of the disrupting effects of EDCs in ecotoxicological studies.

  8. Ecdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles

    PubMed Central

    Gómez-Sande, Pablo; Ozáez, Irene; Cobo, Fernando; Servia, María J.

    2015-01-01

    Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during the different phases of C. riparius fourth larval instar, according to the development of genital and thoracic imaginal discs. Real-Time PCR was used to analyze: EcR and usp, two genes encoding the two dimerizing partners of the functional ecdysone receptor; E74, an early response gene induced by ecdysteroids; vg (vitellogenin), an effector gene; hsp70 and hsc70, two heat-shock genes involved in the correct folding of the ecdysone receptor; and rpL13, as a part of the ribosomal machinery. Our results show for the first time stage and sex-dependent variations in ecdysone-responsive genes, specially during the late larval stage of C. riparius. The induction in the expression of EcR and usp during the VII-VIII phase of the fourth instar is concomitant with a coordinated response in the activity of the other genes analyzed, suggesting the moment where larvae prepare for pupation. This work is particularly relevant given that most of the analyzed genes have been proposed previously in this species as sensitive biomarkers for the toxicological evaluation of aquatic ecosystems. Identifying the natural regulation of these molecular endpoints throughout the Chironomus development will contribute to a more in-depth and accurate evaluation of the disrupting effects of EDCs in ecotoxicological studies. PMID:26448051

  9. Ecdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles.

    PubMed

    Planelló, Rosario; Herrero, Óscar; Gómez-Sande, Pablo; Ozáez, Irene; Cobo, Fernando; Servia, María J

    2015-01-01

    Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during the different phases of C. riparius fourth larval instar, according to the development of genital and thoracic imaginal discs. Real-Time PCR was used to analyze: EcR and usp, two genes encoding the two dimerizing partners of the functional ecdysone receptor; E74, an early response gene induced by ecdysteroids; vg (vitellogenin), an effector gene; hsp70 and hsc70, two heat-shock genes involved in the correct folding of the ecdysone receptor; and rpL13, as a part of the ribosomal machinery. Our results show for the first time stage and sex-dependent variations in ecdysone-responsive genes, specially during the late larval stage of C. riparius. The induction in the expression of EcR and usp during the VII-VIII phase of the fourth instar is concomitant with a coordinated response in the activity of the other genes analyzed, suggesting the moment where larvae prepare for pupation. This work is particularly relevant given that most of the analyzed genes have been proposed previously in this species as sensitive biomarkers for the toxicological evaluation of aquatic ecosystems. Identifying the natural regulation of these molecular endpoints throughout the Chironomus development will contribute to a more in-depth and accurate evaluation of the disrupting effects of EDCs in ecotoxicological studies. PMID:26448051

  10. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation.

    PubMed

    Reyhanian Caspillo, Nasim; Volkova, Kristina; Hallgren, Stefan; Olsson, Per-Erik; Porsch-Hällström, Inger

    2014-08-01

    The synthetic estrogen 17α-ethinyl estradiol (EE2) disturbs reproduction and causes gonadal malformation in fish. Effects on the transcription of genes involved in gonad development and function that could serve as sensitive biomarkers of reproductive effects in the field is, however, not well known. We have studied mRNA expression in testes and liver of adult zebrafish (Danio rerio) males treated with 0, 5 or 25 ng/L EE2for 14 days. qPCR analysis showed that the mRNA expression of four genes linked to zebrafish male sex determination and differentiation, Anti-Mullerian Hormone, Double sex and mab-related protein, Sry-related HMG box-9a and Nuclear receptor subfamily 5 group number 1b were significantly decreased by 25 ng/L, but not 5 ng/L EE2 compared with the levels in untreated fish. The decreased transcription was correlated with a previously shown spawning failure in these males (Reyhanian et al., 2011. Aquat Toxicol 105, 41-48), suggesting that decreased mRNA expression of genes regulating male sexual function could be involved in the functional sterility. The mRNA level of Cytochrome P-45019a, involved in female reproductive development, was unaffected by hormone treatment. The transcription of the female-specific Vitellogenin was significantly induced in testes. While testicular Androgen Receptor and the Estrogen Receptor-alpha mRNA levels were unchanged, Estrogen receptor-beta was significantly decreased by 25 ng/L EE2. Hepatic Estrogen Receptor-alpha mRNA was significantly increased by both exposure concentrations, while Estrogen Receptor-beta transcription was unaltered. The decreased transcription of male-predominant genes supports a demasculinization of testes by EE2 and might reflect reproductive disturbances in the environment. PMID:24747828

  11. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome.

    PubMed

    Plummer, J T; Evgrafov, O V; Bergman, M Y; Friez, M; Haiman, C A; Levitt, P; Aldinger, K A

    2013-10-22

    Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C 'low activity' allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5' promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C 'low activity' allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.

  12. Disruptions of sensorimotor gating, cytokines, glycemia, monoamines, and genes in both sexes of rats reared in social isolation can be ameliorated by oral chronic quetiapine administration.

    PubMed

    Ko, Chih-Yuan; Liu, Yia-Ping

    2016-01-01

    The pathogenesis of schizophrenia in patients with metabolic abnormalities remains unclear. Our previous study demonstrated that isolation rearing (IR) induced longitudinal concomitant changes of pro-inflammatory cytokine (pro-CK) levels and metabolic abnormalities with a developmental origin. However, the general consensus, believes that these abnormalities are caused by antipsychotic treatment in schizophrenic patients. The IR paradigm presents with face, construct, and predictive validity for schizophrenia. Therefore, we employed IR rats of both sexes to examine whether chronic quetiapine (QTP, a second-generation antipsychotic medication) treatment induces disruptions of metabolism (body weight, blood pressure, and the glycemic and lipid profiles) or cytokines [interleukin (IL)-1 beta, IL-6, IL-10, interferon-gamma, and tumor necrosis factor (TNF)-alpha], and further, whether it reverses deficits of behaviors [locomotor activity and prepulse inhibition (PPI)] and the expression of monoamines (dopamine and serotonin) and related genes (Htr1a, Htr2a, Htr3a, Drd1a, and Gabbr2). IR induced higher levels of pro-CK, dysglycemia, blood pressure, locomotor activity, and impaired PPI, simultaneously destabilizing cortico-striatal monoamines and relevant genes in both sexes, while QTP demonstrated dose-dependent reversal of these changes, suggesting that QTP might reduce the pro-CKs to regulate these abnormalities. Our data implied that antipsychotics may not be the solitary factor causing metabolic problems in schizophrenia and suggested that inflammatory changes may play a vital role in the developmental pathophysiology of schizophrenia and related metabolic abnormalities.

  13. Combined Leydig cell and Sertoli cell dysfunction in 46,XX males lacking the sex determining region Y gene

    SciTech Connect

    Turner, B.; Vordermark, J.S.; Fechner, P.Y.

    1995-07-03

    We have evaluated 3 individuals with a rare form of 46,XX sex reversal. All of them had ambiguous external genitalia and mixed wolffian and muellerian structures, indicating both Leydig cell and Sertoli cell dysfunction, similar to that of patients with true hermaphroditism. However, gonadal tissue was not ovotesticular but testicular with varying degrees of dysgenesis. SRY sequences were absent in genomic DNA from peripheral leukocytes in all 3 subjects. Y centromere sequences were also absent, indicating that testis development did not occur because of a low level mosaicism of Y-bearing cells. The subjects in this report demonstrate that there is a continuum in the extent of the testis determination in SRY-negative 46,XX sex reversal, ranging from nearly normal to minimal testicular development. 20 refs.

  14. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation.

    PubMed

    Hammes, A; Guo, J K; Lutsch, G; Leheste, J R; Landrock, D; Ziegler, U; Gubler, M C; Schedl, A

    2001-08-10

    Alternative splicing of Wt1 results in the insertion or omission of the three amino acids KTS between zinc fingers 3 and 4. In vitro experiments suggest distinct molecular functions for + and -KTS isoforms. We have generated mouse strains in which specific isoforms have been removed. Heterozygous mice with a reduction of +KTS levels develop glomerulosclerosis and represent a model for Frasier syndrome. Homozygous mutants of both strains die after birth due to kidney defects. Strikingly, mice lacking +KTS isoforms show a complete XY sex reversal due to a dramatic reduction of Sry expression levels. Our data demonstrate distinct functions for the two splice variants and place the +KTS variants as important regulators for Sry in the sex determination pathway. PMID:11509181

  15. Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test.

    PubMed

    Muth-Köhne, Elke; Westphal-Settele, Kathi; Brückner, Jasmin; Konradi, Sabine; Schiller, Viktoria; Schäfers, Christoph; Teigeler, Matthias; Fenske, Martina

    2016-07-01

    The Fish Sexual Development Test (FSDT) is a non-reproductive test to assess adverse effects of endocrine disrupting chemicals. With the present study it was intended to evaluate whether gene expression endpoints would serve as predictive markers of endocrine disruption in a FSDT. For proof-of-concept, a FSDT according to the OECD TG 234 was conducted with the non-steroidal aromatase inhibitor fadrozole (test concentrations: 10μg/L, 32μg/L, 100μg/L) using zebrafish (Danio rerio). Gene expression analyses using quantitative RT-PCR were included at 48h, 96h, 28days and 63days post fertilization (hpf, dpf). The selection of genes aimed at finding molecular endpoints which could be directly linked to the adverse apical effects of aromatase inhibition. The most prominent effects of fadrozole exposure on the sexual development of zebrafish were a complete sex ratio shift towards males and an acceleration of gonad maturation already at low fadrozole concentrations (10μg/L). Due to the specific inhibition of the aromatase enzyme (Cyp19) by fadrozole and thus, the conversion of C19-androgens to C18-estrogens, the steroid hormone balance controlling the sex ratio of zebrafish was altered. The resulting key event is the regulation of directly estrogen-responsive genes. Subsequently, gene expression of vitellogenin 1 (vtg1) and of the aromatase cyp19a1b isoform (cyp19a1b), were down-regulated upon fadrozole treatment compared to controls. For example, mRNA levels of vtg1 were down-regulated compared to the controls as early as 48 hpf and 96 hpf. Further regulated genes cumulated in pathways suggested to be controlled by endocrine mechanisms, like the steroid and terpenoid synthesis pathway (e.g. mevalonate (diphospho) decarboxylase (mvd), lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase; lss), methylsterol monooxygenase 1 (sc4mol)) and in lipid transport/metabolic processes (steroidogenic acute regulatory protein (star), apolipoprotein Eb (apoEb)). Taken together

  16. Hox genes, evo-devo, and the case of the ftz gene.

    PubMed

    Pick, Leslie

    2016-06-01

    The discovery of the broad conservation of embryonic regulatory genes across animal phyla, launched by the cloning of homeotic genes in the 1980s, was a founding event in the field of evolutionary developmental biology (evo-devo). While it had long been known that fundamental cellular processes, commonly referred to as housekeeping functions, are shared by animals and plants across the planet-processes such as the storage of information in genomic DNA, transcription, translation and the machinery for these processes, universal codon usage, and metabolic enzymes-Hox genes were different: mutations in these genes caused "bizarre" homeotic transformations of insect body parts that were certainly interesting but were expected to be idiosyncratic. The isolation of the genes responsible for these bizarre phenotypes turned out to be highly conserved Hox genes that play roles in embryonic patterning throughout Metazoa. How Hox genes have changed to promote the development of diverse body plans remains a central issue of the field of evo-devo today. For this Memorial article series, I review events around the discovery of the broad evolutionary conservation of Hox genes and the impact of this discovery on the field of developmental biology. I highlight studies carried out in Walter Gehring's lab and by former lab members that have continued to push the field forward, raising new questions and forging new approaches to understand the evolution of developmental mechanisms.

  17. Hox genes, evo-devo, and the case of the ftz gene.

    PubMed

    Pick, Leslie

    2016-06-01

    The discovery of the broad conservation of embryonic regulatory genes across animal phyla, launched by the cloning of homeotic genes in the 1980s, was a founding event in the field of evolutionary developmental biology (evo-devo). While it had long been known that fundamental cellular processes, commonly referred to as housekeeping functions, are shared by animals and plants across the planet-processes such as the storage of information in genomic DNA, transcription, translation and the machinery for these processes, universal codon usage, and metabolic enzymes-Hox genes were different: mutations in these genes caused "bizarre" homeotic transformations of insect body parts that were certainly interesting but were expected to be idiosyncratic. The isolation of the genes responsible for these bizarre phenotypes turned out to be highly conserved Hox genes that play roles in embryonic patterning throughout Metazoa. How Hox genes have changed to promote the development of diverse body plans remains a central issue of the field of evo-devo today. For this Memorial article series, I review events around the discovery of the broad evolutionary conservation of Hox genes and the impact of this discovery on the field of developmental biology. I highlight studies carried out in Walter Gehring's lab and by former lab members that have continued to push the field forward, raising new questions and forging new approaches to understand the evolution of developmental mechanisms. PMID:26596987

  18. Sex Films

    ERIC Educational Resources Information Center

    Francoeur, Robert T.

    1977-01-01

    Describes a new concept in sex education, the sexual attitudes reassessment workshop. This workshop satiates, saturates, desensitizes, and demythologizes sex. It bypasses the intellect and forces people to deal with feeling and attitudes. (Author/AM)

  19. Improved detection of disease-associated variation by sex-specific characterization and prediction of genes required for fertility.

    PubMed

    Ho, N R Y; Huang, N; Conrad, D F

    2015-11-01

    Despite its great potential, high-throughput functional genomic data are rarely integrated and applied to characterizing the genomic basis of fertility. We obtained and reprocessed over 30 functional genomics datasets from human and mouse germ cells to perform genome-wide prediction of genes underlying various reproductive phenotypes in both species. Genes involved in male fertility are easier to predict than their female analogs. Of the multiple genomic data types examined, protein-protein interactions are by far the most informative for gene prediction, followed by gene expression, and then epigenetic marks. As an application of our predictions, we show that copy number variants (CNVs) disrupting predicted fertility genes are more strongly associated with gonadal dysfunction in male and female case-control cohorts when compared to all gene-disrupting CNVs (OR = 1.64, p < 1.64 × 10(-8) vs. OR = 1.25, p < 4 × 10(-6)). Using gender-specific fertility gene annotations further increased the observed associations (OR = 2.31, p < 2.2 × 10(-16)). We provide our gene predictions as a resource with this article.

  20. Improved detection of disease-associated variation by sex-specific characterization and prediction of genes required for fertility

    PubMed Central

    Ho, Nicholas Rui Yuan; Huang, Ni; Conrad, Donald F.

    2016-01-01

    Despite its great potential, high-throughput functional genomic data is rarely integrated and applied to characterizing the genomic basis of fertility. We obtained and reprocessed over 30 functional genomics datasets from human and mouse germ cells to perform genomewide prediction of genes underlying various reproductive phenotypes in both species. Genes involved in male fertility are easier to predict than their female analogs. Of the multiple genomic data types examined, protein-protein interactions are by far the most informative for gene prediction, followed by gene expression, and then epigenetic marks. As an application of our predictions, we show that CNVs disrupting predicted fertility genes are more strongly associated with gonadal dysfunction in male and female case-control cohorts when compared to all gene-disrupting CNVs (OR=1.64, p< 1.64 × 10−8 versus OR=1.25, p < 4 × 10−6). Using gender-specific fertility gene annotations further increased the observed associations (OR = 2.31, p< 2.2 × 10−16). We provide our gene predictions as a resource with this paper. PMID:26473511

  1. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

    PubMed Central

    2011-01-01

    Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org), provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species. PMID:21649883

  2. Genomic architecture of asthma differs by sex.

    PubMed

    Mersha, Tesfaye B; Martin, Lisa J; Biagini Myers, Jocelyn M; Kovacic, Melinda Butsch; He, Hua; Lindsey, Mark; Sivaprasad, Umasundari; Chen, Weiguo; Khurana Hershey, Gurjit K

    2015-07-01

    Asthma comprised of highly heterogeneous subphenotypes resulting from complex interplay between genetic and environmental stimuli. While much focus has been placed on extrinsic environmental stimuli, intrinsic environment such as sex can interact with genes to influence asthma risk. However, few studies have examined sex-specific genetic effects. The overall objective of this study was to evaluate if sex-based differences exist in genomic associations with asthma. We tested 411 asthmatics and 297 controls for presence of interactions and sex-stratified effects in 51 genes using both SNP and gene expression data. Logistic regression was used to test for association. Over half (55%) of the genetic variants identified in sex-specific analyses were not identified in the sex-combined analysis. Further, sex-stratified genetic analyses identified associations with significantly higher median effect sizes than sex-combined analysis for girls (p-value=6.5E-15) and for boys (p-value=1.0E-7). When gene expression data were analyzed to identify genes that were differentially expressed in asthma versus non-asthma, nearly one third (31%) of the probes identified in the sex-specific analyses were not identified in the sex-combined analysis. Both genetic and gene expression data suggest that the biologic underpinnings for asthma may differ by sex. Failure to recognize sex interactions in asthma greatly decreases the ability to detect significant genomic variation and may result in significant misrepresentation of genes and pathways important in asthma in different environments.

  3. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  4. Joint Effects of Smoking and Gene Variants Involved in Sex Steroid Metabolism on Hot Flashes in Late Reproductive-Age Women

    PubMed Central

    Freeman, Ellen W.; Sammel, Mary D.; Queen, Kaila; Lin, Hui; Rebbeck, Timothy R.

    2012-01-01

    Background: Although smoking has a known association with hot flashes, the factors distinguishing smokers at greatest risk for menopausal symptoms have not been well delineated. Recent evidence supports a relationship between menopausal symptoms and variants in several genes encoding enzymes that metabolize substrates such as sex steriods, xenobiotics, and catechols. It is currently not known whether the impact of smoking on hot flashes is modified by the presence of such variants. Objective: The objective of the study was to investigate the relationship between smoking and hot flash occurrence as a function of genetic variation in sex steroid-metabolizing enzymes. Methods: A cross-sectional analysis of data from the Penn Ovarian Aging study, an ongoing population-based cohort of late reproductive-aged women, was performed. Smoking behavior was characterized. Single-nucleotide polymorphisms in five genes were investigated: COMT Val158Met (rs4680), CYP1A2*1F (rs762551), CYP1B1*4 (Asn452Ser, rs1800440), CYP1B1*3 (Leu432Val, rs1056836), and CYP3A4*1B (rs2740574). Results: Compared with nonsmokers, European-American COMT Val158Met double-variant carriers who smoked had increased odds of hot flashes [adjusted odds ratio (AOR) 6.15, 95% confidence interval (CI) 1.32–28.78)]; European-American COMT Val158Met double-variant carriers who smoked heavily had more frequent moderate or severe hot flashes than nonsmokers (AOR 13.7, 95% CI 1.2–154.9). European-American CYP 1B1*3 double-variant carriers who smoked described more frequent moderate or severe hot flashes than nonsmoking (AOR 20.6, 95% CI 1.64–257.93) and never-smoking (AOR 20.59, 95% CI 1.39–304.68) carriers, respectively. African-American single-variant CYP 1A2 carriers who smoked were more likely to report hot flashes than the nonsmoking carriers (AOR 6.16, 95% CI 1.11–33.91). Conclusion: This is the first report demonstrating the effects of smoking within the strata of gene variants involved in sex

  5. A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.

    PubMed

    Yu, Lifeng; Patibanda, Varun; Smith, Harley M S

    2009-02-01

    Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events. PMID:19082619

  6. A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.

    PubMed

    Yu, Lifeng; Patibanda, Varun; Smith, Harley M S

    2009-02-01

    Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events.

  7. Mutations in exons of the CYP17-II gene affect sex steroid concentration in male Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun

    2012-03-01

    As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.

  8. Reliable and robust molecular sexing of the hen harrier (Circus cyaneus) using PCR-RFLP analysis of the CHD 1 gene.

    PubMed

    Henderson, Anique; Lee, Christine Michelle; Mistry, Vanisha; Thomas, Martin Derek; Iyengar, Arati

    2013-03-01

    The hen harrier (Circus cyaneus) is a bird of prey that is persecuted in the United Kingdom, and there is a need for a DNA-based individual identification and sexing system for the use in forensic investigations. This study reports a new set of PCR primers for the chromo-helicase-DNA-binding protein 1 gene, which allows sexing using PCR-RFLP. Instead of exonic primers that amplify across a large intron, this set consists of a primer within the intron, enabling reduction in amplicon sizes from 356 to 212 bp and 565 to 219 bp in W and Z chromosomes. DNA degradation and dilution experiments demonstrate that this set is significantly more robust than one that amplifies across the intron, and sequencing of the intronic primer-binding region across several individuals shows that it is highly conserved. While our objective is to incorporate this primer set into an STR-based individualization kit, it may in the meantime prove useful in forensic or conservation studies.

  9. DNA isolation from teeth by organic extraction and identification of sex of the individual by analyzing the AMEL gene marker using PCR

    PubMed Central

    Praveen Kumar, Subramanian Thangaraj; Aswath, Nalini

    2016-01-01

    Background: To identify the sex of the deceased individual from dental hard tissue such as enamel and dentine. Objective: To isolate the DNA from dental hard tissue (enamel and dentin) from teeth extracted for prophylactic purpose, to assess the quality and purity of DNA and to identify the sex using polymerized chain reactor (PCR). Materials and Methods: DNA was extracted following phenol/chloroform (organic) extraction from 20 male and 20 female teeth. The samples that contain the amelogenin gene (amel) were amplified by PCR. The products of the PCR were run on agarose gel with ethidium bromide staining on gel documentation system. Results: The results on the gel showed the presence of X-specific bands at 212 bp and Y-specific bands at 218 bp. Males were distinguished from females by the presence of two bands whereas female samples showed only one, that is, X-specific band on the gel. The gender from the known samples was determined with complete accuracy, and the results were analyzed statistically by the Chi-square test. Conclusion: In our study, the PCR-based method showed 100% specificity and sensitivity. PMID:27051218

  10. Effects of atrazine on CYP19 gene expression and aromatase activity in testes and on plasma sex steroid concentrations of male African clawed frogs (Xenopus laevis).

    PubMed

    Hecker, Markus; Park, June-Woo; Murphy, Margaret B; Jones, Paul D; Solomon, Keith R; Van Der Kraak, Glen; Carr, James A; Smith, Ernest E; du Preez, Louis; Kendall, Ronald J; Giesy, John P

    2005-08-01

    Some investigators have suggested that the triazine herbicide atrazine can cause demasculinization of male amphibians via upregulation of the enzyme aromatase. Male adult African clawed frogs (Xenopus laevis) were exposed to three nominal concentrations of atrazine (1, 25, or 250 microg atrazine/l) for 36 days, and testicular aromatase activity and CYP19 gene expression, as well as concentrations of the plasma sex steroids testosterone (T) and 17beta-estradiol (E2), and gonad size (GSI) were measured. There were no effects on any of the parameters measured, with the exception of plasma T concentrations. Plasma T concentrations in X. laevis exposed to the greatest concentration of atrazine were significantly less (p = 0.034) than those in untreated frogs. Both CYP19 gene expression and aromatase activities were low regardless of treatment, and neither parameter correlated with the other. We conclude that aromatase enzyme activity and gene expression were at basal levels in X. laevis from all treatments, and that the tested concentrations of atrazine did not interfere with steroidogenesis through an aromatase-mediated mechanism of action.

  11. The MADS Box Gene FBP2 Is Required for SEPALLATA Function in Petunia

    PubMed Central

    Ferrario, Silvia; Immink, Richard G. H.; Shchennikova, Anna; Busscher-Lange, Jacqueline; Angenent, Gerco C.

    2003-01-01

    The ABC model, which was accepted for almost a decade as a paradigm for flower development in angiosperms, has been subjected recently to a significant modification with the introduction of the new class of E-function genes. This function is required for the proper action of the B- and C-class homeotic proteins and is provided in Arabidopsis by the SEPALLATA1/2/3 MADS box transcription factors. A triple mutant in these partially redundant genes displays homeotic conversion of petals, stamens, and carpels into sepaloid organs and loss of determinacy in the center of the flower. A similar phenotype was obtained by cosuppression of the MADS box gene FBP2 in petunia. Here, we provide evidence that this phenotype is caused by the downregulation of both FBP2 and the paralog FBP5. Functional complementation of the sepallata mutant by FBP2 and our finding that the FBP2 protein forms multimeric complexes with other floral homeotic MADS box proteins indicate that FBP2 represents the same E function as SEP3 in Arabidopsis. PMID:12671087

  12. Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic-pituitary-gonadal (HPG) axis of zebrafish.

    PubMed

    Liu, Chunsheng; Yu, Liqin; Deng, Jun; Lam, Paul K S; Wu, Rudolf S S; Zhou, Bingsheng

    2009-06-28

    Fluorotelomer alcohols (FTOHs) have shown estrogenic activity in vitro and in vivo, but the mechanism of this activity is not known. In this study, 18-week-old zebrafish (Danio rerio) were exposed to 0, 0.03, 0.3 and 3.0mg/l 1H,1H,2H,2H-perfluorooctan-1-ol (6:2 FTOH) for 7 days, and the effects on plasma sex hormone levels were measured followed by use of real-time PCR to examine selected gene expression in hypothalamic-pituitary-gonadal (HPG) axis and liver. Exposure to 6:2 FTOH significantly increased plasma estradiol (E2) and testosterone (T) levels in both males and females. Furthermore, the ratio of T/E2 was reduced in females while increased in males. In females, the increase of E2 was accompanied by up-regulated hepatic estrogenic receptor alpha (ERalpha) and vitellogenin (VTG1 and VTG3) expression. In males, the elevation of the T level is consistent with the up-regulation of cytochrome P450 c17alpha-hydroxylase, 17, 20-lase (CYP17) and the down-regulation of cytochrome P450 aromatase A (CYP19A). The present study demonstrated that waterborne exposure to 6:2 FTOH alter plasma sex hormone levels and the ratio of T/E2, as well as the transcriptional profiles of some genes in the HPG axis and liver. The results suggested that FTOHs may disturb fish reproduction through endocrine disrupted activity.

  13. General, negative feedback mechanism for regulation of Trithorax-like gene expression in vivo: new roles for GAGA factor in flies.

    PubMed

    Bernués, Jordi; Piñeyro, David; Kosoy, Ana

    2007-01-01

    Expression of every gene is first regulated at the transcriptional level. While some genes show acute and discrete periods of expression others show a rather steady expression level throughout development. An example of the latter is Trithorax-like (Trl) a member of the Trithorax group that encodes GAGA factor in Drosophila. Among other functions, GAGA factor has been described to stimulate transcription of several genes, including some homeotic genes. Here we show that GAGA factor is continuously down-regulating the expression of its own promoter using a negative feedback mechanism in vivo. Like its expression, repression by GAGA factor is ubiquitous, prevents its accumulation, and takes place throughout development. Experimental alteration of GAGA factor dosage results in several unexpected phenotypes, not related to alteration of homeotic gene expression, but rather to functions that take place later during development and affect different morphogenetic processes. The results suggest that GAGA factor is essential during development, even after homeotic gene expression is established, and indicate the existence of an upper limit for GAGA factor dosage that should not be exceeded.

  14. EFFECTS OF STORAGE, RNA EXTRACTION, GENECHIP TYPE, AND DONOR SEX ON GENE EXPRESSION PROFILING OF HUMAN WHOLE BLOOD

    EPA Science Inventory

    Background: Gene expression profiling of whole blood may be useful for monitoring toxicological exposure and for diagnosis and monitoring of various diseases. Several methods are available that can be used to transport, store, and extract RNA from whole blood, but it is not clear...

  15. Alterations Associated with Androgen Receptor Gene Activation in Salivary Duct Carcinoma (SDC) of Both Sexes: Potential Therapeutic Ramifications

    PubMed Central

    Mitani, Yoshitsugu; Rao, Pulivarthi H.; Maity, Sankar N.; Lee, Yu-Chen; Ferrarotto, Renata; Post, Julian C.; Licitra, Lisa; Lippman, Scott M.; Kies, Merrill S.; Weber, Randal S.; Caulin, Carlos; Lin, Sue-Hwa; El-Naggar, Adel K.

    2014-01-01

    Purpose To investigate the molecular events associated with the activation of androgen receptor (AR) as a potential therapeutic target in patients with salivary duct carcinoma (SDC). Experimental Design Comprehensive molecular and expression analysis of the AR gene in 35 tumor specimens (20 males and 15 females) and cell lines derived from SDC using Western blotting and RT-PCR, FISH analysis, and DNA sequencing were conducted. In vitro and in vivo animal studies were also performed. Results AR expression was detected in 70% of the tumors and was mainly nuclear and homogenous in both male and female SDCs, although variable cytoplasmic and/or nuclear localization was also found. We report the identification of Ligand-independent AR splice variants, mutations and extra AR gene copy in primary untreated SDC tumors. In contrast to prostate cancer, no AR gene amplification was observed. In vitro knockdown of AR in a female derived SDC cell line revealed marked growth inhibition in culture and in vivo androgen independent tumor growth. Conclusions Our study provides new detailed information on the molecular and structural alterations associated with AR gene activation in SDC and shed more light on the putative functional role of AR in SDC cells. Based on these data, we propose that patients with SDC (male and female) can be stratified for hormone-based therapy in future clinical trials. PMID:25316813

  16. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of a single injection of 17-estradiol (E2), testosterone (T), or 5a-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, TGF-beta superfamily signaling cascade, and estrogen receptors were determ...

  17. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver.

    PubMed

    Zawada, Ilona; Masternak, Michal M; List, Edward O; Stout, Michael B; Berryman, Darlene E; Lewinski, Andrzej; Kopchick, John J; Bartke, Andrzej; Karbownik-Lewinska, Malgorzata; Gesing, Adam

    2015-03-01

    Mitochondrial biogenesis is an essential process for cell viability. Mice with disruption of the growth hormone receptor (GHR) gene (Ghr gene) in the liver (LiGHRKO), in contrast to long-lived mice with global deletion of the Ghr gene (GHRKO), are characterized by lack of improved insulin sensitivity and severe hepatic steatosis. Tissue-specific disruption of the GHR in liver results in a mouse model with dramatically altered GH/IGF1 axis. We have previously shown increased levels of key regulators of mitochondrial biogenesis in insulin-sensitive GHRKO mice. The aim of the present study is to assess, using real-time PCR, the gene expression of key regulators of mitochondrial biogenesis (Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2) and a marker of mitochondrial activity (CoxIV) in brains, kidneys and livers of male and female LiGHRKO and wild-type (WT) mice. There were significant differences between males and females. In the brain, expression of Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2 was lower in pooled females compared to pooled males. In the kidneys, expression of Ampk and Sirt1 was also lower in female mice. In the liver, no differences between males and females were observed. Sexual dimorphism may play an important role in regulating the biogenesis of mitochondria. PMID:25855408

  18. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression.

    PubMed

    Óvilo, Cristina; González-Bulnes, Antonio; Benítez, Rita; Ayuso, Miriam; Barbero, Alicia; Pérez-Solana, Maria L; Barragán, Carmen; Astiz, Susana; Fernández, Almudena; López-Bote, Clemente

    2014-02-01

    Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P <0·01), but brain growth was spared. The plasma concentration of TAG was lower in the restricted newborns than in the control newborns of both the sexes (P <0·01), while the concentration of cortisol was higher in females born to the restricted sows (P <0·04), reflecting a situation of metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P <0·01 and P <0·04, respectively) was observed in females born to the restricted sows, but no effect was observed in the males. The expression of HSD11B1 gene was down-regulated in the restricted animals (P <0·05), suggesting an adaptive mechanism for reducing the harmful effects of elevated concentrations of cortisol. At 4 and 7 months of age, the restricted females were heavier and fatter than the controls (P< 0·01). Maternal feed restriction induces asymmetrical growth retardation and metabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids.

  19. The mechanism of sex determination in vertebrates-are sex steroids the key-factor?

    PubMed

    Nakamura, Masahisa

    2010-08-01

    In many vertebrate species, sex is determined at fertilization of zygotes by sex chromosome composition, knows as genotypic sex determination (GSD). But in some species-fish, amphibians and reptiles-sex is determined by environmental factors; in particular by temperature-dependent sex determination (TSD). However, little is known about the mechanisms involved in TSD and GSD. How does TSD differ from GSD? As is well known, genes that activated downstream of sex-determining genes are conserved throughout all classes of vertebrates. What is the main factor that determines sex, then? Sex steroids can reverse sex of several species of vertebrate; estrogens induce the male-to-female sex-reversal, whereas androgens do the female-to-male sex-reversal. For such sex-reversal, a functioning sex-determining gene is not required. However, in R. rugosa CYP19 (P450 aromatase) is expressed at high levels in indifferent gonads before phenotypic sex determination, and the gene is also active in the bipotential gonad of females before sex determination. Thus, we may predict that an unknown factor, a common transcription factor locates on the X and/or W chromosome, intervenes directly or indirectly in the transcriptional up-regulation of the CYP19 gene for feminization in species of vertebrates with both TSD and GSD. Similarly, an unknown factor on the Z and/or Y chromosome probably intervenes directly or indirectly in the regulation of androgen biosynthesis for masculinization. In both cases, a sex-determining gene is not always necessary for sex determination. Taken together, sex steroids may be the key-factor for sex determination in some species of vertebrates.

  20. Dimerization of doublesex is mediated by a cryptic ubiquitin-associated domain fold: implications for sex-specific gene regulation.

    PubMed

    Bayrer, James R; Zhang, Wei; Weiss, Michael A

    2005-09-23

    Male- and female-specific isoforms of the Doublesex (DSX) transcription factor regulate somatic sexual differentiation in Drosophila. The isoforms (DSX(M) and DSX(F)) share an N-terminal DNA binding domain (the DM motif), broadly conserved among metazoan sex-determining pathways. DM-DNA recognition is enhanced by a C-terminal dimerization domain. The crystal structure of this domain, determined at a resolution of 1.6 A, reveals a novel dimeric arrangement of ubiquitin-associated (UBA) folds. Although this alpha-helical motif is well characterized in pathways of DNA repair and subcellular trafficking, to our knowledge this is its first report in a transcription factor. Dimerization is mediated by a non-canonical hydrophobic interface extrinsic to the putative ubiquitin binding surface. Key side chains at this interface, identified by alanine scanning mutagenesis, are conserved among DSX homologs. The mechanism of dimerization is thus unrelated to the low affinity domain swapping observed among ubiquitin-associated CUE domains. The unexpected observation of a ubiquitin-associated fold in DSX extends the repertoire of alpha-helical dimerization elements in transcription factors. The possibility that the ubiquitination machinery participates in the regulation of sexual dimorphism is discussed. PMID:16049008

  1. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc)

    PubMed Central

    Sinclair, Donald A. R.; Syrzycka, Monika; Macauley, Matthew S.; Rastgardani, Tara; Komljenovic, Ivana; Vocadlo, David J.; Brock, Hugh W.; Honda, Barry M.

    2009-01-01

    O-linked N-acetylglucosamine transferase (OGT) reversibly modifies serine and threonine residues of many intracellular proteins with a single β-O-linked N-acetylglucosamine residue (O-GlcNAc), and has been implicated in insulin signaling, neurodegenerative disease, cellular stress response, and other important processes in mammals. OGT also glycosylates RNA polymerase II and various transcription factors, which suggests that it might be directly involved in transcriptional regulation. We report here that the Drosophila OGT is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Furthermore, major sites of O-GlcNAc modification on polytene chromosomes correspond to PcG protein binding sites. Our results thus suggest a direct role for O-linked glycosylation by OGT in PcG-mediated epigenetic gene silencing, which is important in developmental regulation, stem cell maintenance, genomic imprinting, and cancer. In addition, we observe rescue of sxc lethality by a human Ogt cDNA transgene; thus Drosophila may provide an ideal model to study important functional roles of OGT in mammals. PMID:19666537

  2. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc).

    PubMed

    Sinclair, Donald A R; Syrzycka, Monika; Macauley, Matthew S; Rastgardani, Tara; Komljenovic, Ivana; Vocadlo, David J; Brock, Hugh W; Honda, Barry M

    2009-08-11

    O-linked N-acetylglucosamine transferase (OGT) reversibly modifies serine and threonine residues of many intracellular proteins with a single beta-O-linked N-acetylglucosamine residue (O-GlcNAc), and has been implicated in insulin signaling, neurodegenerative disease, cellular stress response, and other important processes in mammals. OGT also glycosylates RNA polymerase II and various transcription factors, which suggests that it might be directly involved in transcriptional regulation. We report here that the Drosophila OGT is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Furthermore, major sites of O-GlcNAc modification on polytene chromosomes correspond to PcG protein binding sites. Our results thus suggest a direct role for O-linked glycosylation by OGT in PcG-mediated epigenetic gene silencing, which is important in developmental regulation, stem cell maintenance, genomic imprinting, and cancer. In addition, we observe rescue of sxc lethality by a human Ogt cDNA transgene; thus Drosophila may provide an ideal model to study important functional roles of OGT in mammals. PMID:19666537

  3. Characterization of a sex-influenced modifier of gene expression and suppressor of position-effect variegation in Drosophila.

    PubMed

    Bhadra, U; Birchler, J A

    1996-03-20

    Modifier of white (Mow), a dominant transacting gene, has been identified through a mutagenic screen for second-site loci that alter the level of expression of the white eye color locus. Mow reduces the expression of white in most developmental stages, but enhances its expression in the pupal stage, the time at which the major contribution to the adult phenotype is made. Tests with an Alcohol dehydrogenase promoter-white reporter and a series of white truncation constructs have shown that Mow fails to affect the reporter; cis-regulatory mutations of white also show no response, suggesting a requirement for white regulatory domains for interaction with Mow. A quantitative analysis of steady-state transcript levels reveals that the white mRNA level decreases in the presence of one dose of Mow in larvae and adults, but the reduction is greater in females than males. Two other functionally related genes, brown and scarlet, also exhibit a similar sexually dimorphic alteration in expression, mediated by Mow. In the mid-pupal stage, by contrast, the level of white and brown mRNA is increased by Mow. In addition, Mow acts as a weak suppressor of position effect variegation (PEV). These observations suggest a connection between dosage modulation of gene expression and suppression of position-effect variegation. PMID:8676863

  4. Sex-biased transcriptome evolution in Drosophila.

    PubMed

    Assis, Raquel; Zhou, Qi; Bachtrog, Doris

    2012-01-01

    Sex-biased genes are thought to drive phenotypic differences between males and females. The recent availability of high-throughput gene expression data for many related species has led to a burst of investigations into the genomic and evolutionary properties of sex-biased genes. In Drosophila, a number of studies have found that X chromosomes are deficient in male-biased genes (demasculinized) and enriched for female-biased genes (feminized) and that male-biased genes evolve faster than female-biased genes. However, studies have yielded vastly different conclusions regarding the numbers of sex-biased genes and forces shaping their evolution. Here, we use RNA-seq data from multiple tissues of Drosophila melanogaster and D. pseudoobscura, a species with a recently evolved X chromosome, to explore the evolution of sex-biased genes in Drosophila. First, we compare several independent metrics for classifying sex-biased genes and find that the overlap of genes identified by different metrics is small, particularly for female-biased genes. Second, we investigate genome-wide expression patterns and uncover evidence of demasculinization and feminization of both ancestral and new X chromosomes, demonstrating that gene content on sex chromosomes evolves rapidly. Third, we examine the evolutionary rates of sex-biased genes and show that male-biased genes evolve much faster than female-biased genes, which evolve at similar rates to unbiased genes. Analysis of gene expression among tissues reveals that this trend may be partially due to pleiotropic effects of female-biased genes, which limits their evolutionary potential. Thus, our findings illustrate the importance of accurately identifying sex-biased genes and provide insight into their evolutionary dynamics in Drosophila.

  5. Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system.

    PubMed

    Ong, Zhi Yi; Wanasuria, Ayumi F; Lin, Mark Z P; Hiscock, Jennifer; Muhlhausler, Beverly S

    2013-06-01

    Studies examining the impact of chronic palatable food intake on the mesolimbic reward system have been conducted almost exclusively in males. This study aimed to determine the effects of chronic intake of a palatable cafeteria diet and subsequent abstinence on fat mass, food intake and key gene expression of the mesolimbic reward system in both males and females. Albino Wistar rats were fed for 8 weeks on standard chow (Control, n=5 males, 5 females) or cafeteria diet (CD; n=16 males, 16 females). The cafeteria diet was then removed from a subset of CD rats for 72 h (CD-Withdrawal group, CD-W). The nucleus accumbens (NAc) was isolated and mRNA expression of tyrosine hydroxylase (TH), dopamine active transporter (DAT), D1 and D2 dopamine receptors, and μ-opioid receptor determined by qRT-PCR. Chronic cafeteria diet intake increased fat mass in all CD rats but body weight and chow intake were reduced during the period of cafeteria diet abstinence. TH mRNA was reduced in male CD and CD-W rats, but increased in female CD and CD-W rats. D1 mRNA was reduced in CD and CD-W females, but increased in CD males, compared to Controls. μ-opioid receptor expression was reduced in CD and CD-W males but not females. These data highlight the importance of investigating sex differences in the neurobiological response to palatable food intake and the need for future studies in this area to include both sexes.

  6. Homozygous Mutation of the FGFR1 Gene Associated with Congenital Heart Disease and 46,XY Disorder of Sex Development.

    PubMed

    Mazen, Inas; Amin, Heba; Kamel, Alaa; El Ruby, Mona; Bignon-Topalovic, Joelle; Bashamboo, Anu; McElreavey, Ken

    2016-01-01

    Congenital heart diseases (CHDs) are the most common cause of all birth defects and account for nearly 25% of all major congenital anomalies leading to mortality in the first year of life. Extracardiac anomalies including urogenital aberrations are present in ∼30% of all cases. Here, we present a rare case of a 46,XY patient with CHD associated with ambiguous genitalia consisting of a clitoris-like phallus and a bifid scrotum. Exome sequencing revealed novel homozygous mutations in the FGFR1 and STARD3 genes that may be associated with the phenotype. PMID:27055092

  7. Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats

    PubMed Central

    Allen, Patricia J.; DeBold, Joseph F.; Rios, Maribel; Kanarek, Robin B.

    2015-01-01

    Creatine is an antioxidant, neuromodulator and key regulator of energy metabolism shown to improve depressive symptoms in humans and animals, especially in females. To better understand the pharmacological effects of creatine, we examined its influence on depression-related hippocampal gene expression and behaviors in the presence and absence of sex steroids. Sham-operated and gonadectomized male and female rats were fed chow alone or chow blended with either 2% or 4% w/w creatine monohydrate for five weeks before forced swim, open field, and wire suspension tests, or seven weeks total. Before supplementation, males were chronically implanted with an empty or a testosterone-filled (T) capsule (10-mm surface release), and females were administered progesterone (P, 250 μg), estradiol benzoate (EB, 2.5 μg), EB+P, or sesame oil vehicle weekly. Relative to non-supplemented shams, all hippocampal plasticity-related mRNAs measured, including brain-derived neurotrophic factor (BDNF), tyrosine kinase B, doublecortin, calretinin, and calbindin, were downregulated in sham males given 4% creatine, and BDNF, doublecortin, and calbindin mRNAs were downregulated in sham females given 4% creatine. In contrast, combined 4% creatine + T in castrates prevented downregulation of BDNF, doublecortin, and calretinin mRNAs. Similarly, combined 4% creatine + EB+P in ovariectomized females attenuated downregulation of BDNF and calbindin mRNA levels. Moderate antidepressant and anxiolytic-like behaviors were observed in EB+P-treated ovariectomized females fed creatine, with similar trends in T-treated castrates fed creatine. Altogether, these data show that chronic, high-dose creatine has opposing effects on neuroplasticity-related genes and depressive behavior in intact and gonadectomized male and female rats. The dose and schedule of creatine used negatively impacted hippocampal neuronal integrity in otherwise healthy brains, possibly through negative compensatory changes in energy

  8. Safe sex.

    PubMed

    Mukherjee, G; Ghosh, T K

    1994-01-01

    The main objectives of health care for people with AIDS are to help them adjust to changing sexual status and to provide them with information on safe sex. Sections consider the risks of various types of sexual activity and safe sex education. With regard to the risk of transmitting or contracting HIV, sexual activities may be high risk, medium risk, low risk, or no risk. High-risk activities include unprotected anal or vaginal intercourse, oral-anal sexual contact, sharing sex toys, and traumatic sexual activity. Medium-risk activities include anal and vaginal intercourse using a latex condom with or without spermicide, and sex using a vaginal diaphragm or contraceptive vaginal sponge. Oral sex on a woman or oral sex on a man without ejaculation into the mouth are low-risk activities. Mutual masturbation, erotic touching, caressing and massage, kissing and non-genital licking pose no risk of infection. All general practitioners and family physicians should teach about safe sex. Prevention messages may be conveyed through individual and social counseling as well as with printed media and other forms of mass media. Messages should definitely reach prostitutes and brothel owners, as well as pre-pubertal children and older youths. PMID:8207282

  9. Safe sex.

    PubMed

    Mukherjee, G; Ghosh, T K

    1994-01-01

    The main objectives of health care for people with AIDS are to help them adjust to changing sexual status and to provide them with information on safe sex. Sections consider the risks of various types of sexual activity and safe sex education. With regard to the risk of transmitting or contracting HIV, sexual activities may be high risk, medium risk, low risk, or no risk. High-risk activities include unprotected anal or vaginal intercourse, oral-anal sexual contact, sharing sex toys, and traumatic sexual activity. Medium-risk activities include anal and vaginal intercourse using a latex condom with or without spermicide, and sex using a vaginal diaphragm or contraceptive vaginal sponge. Oral sex on a woman or oral sex on a man without ejaculation into the mouth are low-risk activities. Mutual masturbation, erotic touching, caressing and massage, kissing and non-genital licking pose no risk of infection. All general practitioners and family physicians should teach about safe sex. Prevention messages may be conveyed through individual and social counseling as well as with printed media and other forms of mass media. Messages should definitely reach prostitutes and brothel owners, as well as pre-pubertal children and older youths.

  10. RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes

    PubMed Central

    2011-01-01

    Background PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system. Results Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, SWS2B and RH2-2, accounted for >85% of all visual-opsin transcripts in the eye, excluding RH1. This relative abundance (RA) value dropped to about 65% in adults, as LWS-A180 expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed LWS-S180 upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' SWS2-LWS gene cluster is negatively correlated with distance from a candidate locus control region (LCR). Conclusions Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. LWS upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving LWS upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the SWS2-LWS gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the

  11. Two novel mutations in the NR5A1 gene as a cause of disorders of sex development in a Pakistani cohort of 46,XY patients.

    PubMed

    Hussain, S; Amar, A; Najeeb, M N; Khaliq, S

    2016-06-01

    NR5A1 plays a central role in gonadal development and regulation by transcriptional regulation of key modulators involved in steroidogenesis. Mutations in human NR5A1 are frequently associated with 46,XY disorders of sex development (DSD). We analysed a Pakistani cohort of patients with 46,XY DSD, presenting with variable degrees of gonadal dysgenesis, for NR5A1 mutations. The study identified three mutations (p.Tyr03X, p.Glu07X and p.Gln299HisfsX386), of which two are novel, in these patients with 46,XY DSD. The mutations, p.Tyr03X and novel p.Glu07X, are located in the coding region of the gene, corresponding to DNA-binding domain of the predicted protein. In silico analysis for the novel homozygous p.Gln299HisfsX386 mutation in ligand-binding domain of NR5A1 revealed subtle changes in overall tertiary conformation which is predicted to affect the normal physiology of this mutant protein. This study reveals two novel mutations with altered NR5A1 protein in twenty patients with 46,XY DSD, highlighting the critical role of NR5A1 protein in gonadal development and differentiation. In conclusion, the current and previous studies suggest that the NR5A1 mutations are present in around 8-15% of patients with 46,XY DSD presenting with gonadal dysgenesis. For the clinical utility of NR5A1 gene mutations, more comprehensive studies with large 46,XY DSD patient series in different populations are suggested.

  12. Abnormalities of sex differentiation.

    PubMed

    Nawata, H; Takayanagi, R; Yanase, T; Ikuyama, S; Okabe, T

    1996-01-01

    Sex differentiation is determined by a cascade of events proceeding from chromosomal sex to the completion of sexual maturation at puberty. Many factors involved in this cascade have been identified. Here we focus on DAX-1, androgen receptor and cytochrome P450c17, and discuss their functions in sex differentiation. We analyzed the DAX-1 genes of two unrelated Japanese patients with congenital adrenal hypoplasia and hypogonadotropic hypogonadism using PCR amplification of genomic DNA and complete exonic sequencing, and established that congenital adrenal hypoplasia and hypogonadotropic hypogonadism result from not only inherited but also de novo mutation in the DAX-1 gene. Androgen insensitivity syndrome (AIS) is a good model to clarify the relationship between the structure and function of androgen receptor, the androgen receptor gene mutation and clinical phenotype. We analyzed 15 cases of AIS and demonstrate the structural and functional relationships of the androgen receptor. We have sequenced the CYP17 (P450c17) g