Science.gov

Sample records for homogeneous conditions etude

  1. Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions.

    PubMed

    Knott, Brandon C; Molinero, Valeria; Doherty, Michael F; Peters, Baron

    2012-12-05

    Methane hydrates are ice-like inclusion compounds with importance to the oil and natural gas industry, global climate change, and gas transportation and storage. The molecular mechanism by which these compounds form under conditions relevant to industry and nature remains mysterious. To understand the mechanism of methane hydrate nucleation from supersaturated aqueous solutions, we performed simulations at controlled and realistic supersaturation. We found that critical nuclei are extremely large and that homogeneous nucleation rates are extremely low. Our findings suggest that nucleation of methane hydrates under these realistic conditions cannot occur by a homogeneous mechanism.

  2. Homogeneous-Heterogeneous Reactions in Peristaltic Flow with Convective Conditions

    PubMed Central

    Hayat, Tasawar; Tanveer, Anum; Yasmin, Humaira; Alsaedi, Ahmed

    2014-01-01

    This article addresses the effects of homogeneous-heterogeneous reactions in peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical modelling and analysis have been carried out in the presence of Hall current. The channel walls satisfy the more realistic convective conditions. The governing partial differential equations along with long wavelength and low Reynolds number considerations are solved. The results of temperature and heat transfer coefficient are analyzed for various parameters of interest. PMID:25460608

  3. Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Javili, A.; Saeb, S.; Steinmann, P.

    2017-01-01

    In the past decades computational homogenization has proven to be a powerful strategy to compute the overall response of continua. Central to computational homogenization is the Hill-Mandel condition. The Hill-Mandel condition is fulfilled via imposing displacement boundary conditions (DBC), periodic boundary conditions (PBC) or traction boundary conditions (TBC) collectively referred to as canonical boundary conditions. While DBC and PBC are widely implemented, TBC remains poorly understood, with a few exceptions. The main issue with TBC is the singularity of the stiffness matrix due to rigid body motions. The objective of this manuscript is to propose a generic strategy to implement TBC in the context of computational homogenization at finite strains. To eliminate rigid body motions, we introduce the concept of semi-Dirichlet boundary conditions. Semi-Dirichlet boundary conditions are non-homogeneous Dirichlet-type constraints that simultaneously satisfy the Neumann-type conditions. A key feature of the proposed methodology is its applicability for both strain-driven as well as stress-driven homogenization. The performance of the proposed scheme is demonstrated via a series of numerical examples.

  4. Etude theorique et experimentale des evaporateurs de dioxyde de carbone operant dans des conditions de givrage

    NASA Astrophysics Data System (ADS)

    Bendaoud, Adlane Larbi

    Les evaporateurs de refrigeration sont surtout du type tube a ailettes, appeles serpentins, et fonctionnent dans l'une des conditions suivantes: seche, humide ou avec formation de givre. Il a ete demontre que la formation du givre sur la paroi exterieure de l'echangeur engendre une surconsommation energetique a cause des operations de degivrage puisque 15 a 20% seulement de la chaleur produite sert au degivrage tandis que le reste est dissipee dans l'environnement [1]. Avec l'avenement des nouveaux refrigerants, moins nocifs envers l'environnement, l'industrie du froid se trouve penalisee du fait que peu ou pas de composantes mecaniques (compresseur, pompe, echangeur...etc.) adaptees sont disponibles [3]. Il s'agit pour la communaute des frigoristes de combler ce retard technologique en redeveloppant ces composantes mecaniques afin qu'elles soient adaptees aux nouveaux refrigerants. Dans cette optique, et afin de mieux comprendre le comportement thermique des evaporateurs au CO2 fonctionnant dans des conditions seches, qu'un groupe de chercheurs du CanmetENERGIE avaient lance, en 2000, un programme de R & D. Dans le cadre de programme un outil de simulation des evaporateurs au CO2 a ete developpe et un banc d'essai contenant une boucle secondaire de refrigeration utilisant le CO2 comme refrigerant a ete construit. Comme continuite de ce travail de recherche, en 2006 ce meme groupe de recherche a lance un nouveau projet qui consiste a faire une etude theorique et experimentale des evaporateurs au CO2 operants dans des conditions de givrage. Et, c'est exactement dans le cadre de ce projet que se positionne ce travail de these. Ce travail de recherche a ete entrepris pour mieux comprendre le comportement thermique et hydrodynamique des serpentins fonctionnant dans des conditions de givrage, l'effet des circuits de refrigerant ainsi que celui des parametres geometriques et d'operation. Pour cela, un travail theorique supporte par une etude experimentale a ete effectue

  5. Homogenized boundary conditions and resonance effects in Faraday cages

    PubMed Central

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  6. Homogenized boundary conditions and resonance effects in Faraday cages.

    PubMed

    Hewett, D P; Hewitt, I J

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  7. Homogenized boundary conditions and resonance effects in Faraday cages

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.; Hewitt, I. J.

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  8. Some sufficient conditions for the asymptotic stabilizability of three dimensional homogeneous polynomial systems

    NASA Technical Reports Server (NTRS)

    Dayawansa, W. P.; Martin, C. F.

    1989-01-01

    Consideration is given to three-dimensional homogeneous polynomial systems, and some sufficient conditions for their asymptotic stability are derived by using homogeneous feedback. The tests given are geometric in nature.

  9. On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition

    SciTech Connect

    Sharapov, T F

    2014-10-31

    We consider an elliptic operator in a multidimensional domain with frequently changing boundary conditions in the case when the homogenized operator contains the Dirichlet boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain estimates for the rate of convergence. A complete asymptotic expansion is constructed for the resolvent when it acts on sufficiently smooth functions. Bibliography: 41 titles.

  10. On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval

    NASA Technical Reports Server (NTRS)

    Chiavassa, G.; Liandrat, J.

    1996-01-01

    We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.

  11. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: lipid oxidation.

    PubMed

    Let, Mette B; Jacobsen, Charlotte; Sørensen, Ann-Dorit M; Meyer, Anne S

    2007-03-07

    In this study fish oil was incorporated into commercial homogenized milk using different homogenization temperatures and pressures. The main aim was to understand the significance of homogenization temperature and pressure on the oxidative stability of the resulting milks. Increasing homogenization temperature from 50 to 72 degrees C decreased droplet size only slightly, whereas a pressure increase from 5 to 22.5 MPa decreased droplet size significantly. Surprisingly, emulsions having small droplets, and therefore large interfacial area, were less oxidized than emulsions having bigger droplets. Emulsions with similar droplet size distributions, but resulting from different homogenization conditions, had significantly different oxidative stabilities, indicating that properties of significance to oxidation other than droplet size itself were affected by the different treatments. In general, homogenization at 72 degrees C appeared to induce protective effects against oxidation as compared to homogenization at 50 degrees C. The results thus indicated that the actual composition of the oil-water interface is more important than total surface area itself.

  12. MMSE precoding for multiuser MISO downlink transmission with non-homogeneous user SNR conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy HN; Le-Ngoc, Tho

    2014-12-01

    This paper is concerned with linear precoding designs for multiuser downlink transmissions. We consider a multiple-input single-output (MISO) system with multiple single-antenna user equipment (UE) experiencing non-homogeneous average signal-to-noise ratio (SNR) conditions. The first part of this work examines different precoding schemes with perfect channel state information (CSI) and average SNR at the base-station (eNB). We then propose a weighted minimum mean squared error (WMMSE) precoder, which takes advantage of the non-homogeneous SNR conditions. Given in a closed-form solution, the proposed WMMSE precoder outperforms other well-known linear precoders, such as zero-forcing (ZF), regularized ZF (RZF), while achieving a close performance to the locally optimal iterative WMMSE (IWMMSE) precoder, in terms of the achievable network sum-rate. In the second part of this work, we consider the non-homogeneous multiuser system with limited and quantized channel quality indicator (CQI) and channel direction indicator (CDI) feedbacks. Based on the CQI and CDI feedback models proposed for the Long-Term Evolution Advanced standard, we then propose a robust WMMSE precoder in a closed-form solution which takes into account the quantization errors. Simulation shows a significant improvement in the achievable network sum-rate by the proposed robust WMMSE precoder, compared to non-robust linear precoder designs.

  13. Ru-Catalyzed Estragole Isomerization under Homogeneous and Ionic Liquid Biphasic Conditions

    PubMed Central

    2017-01-01

    The isomerization of estragole to trans-anethole is an important reaction and is industrially performed using an excess of NaOH or KOH in ethanol at high temperatures with very low selectivity. Simple Ru-based transition-metal complexes, under homogeneous, ionic liquid (IL)-supported (biphasic) and “solventless” conditions, can be used for this reaction. The selectivity of this reaction is more sensitive to the solvent/support used than the ligands associated with the metal catalyst. Thus, under the optimized reaction conditions, 100% conversion can be achieved in the estragole isomerization, using as little as 4 × 10–3 mol % (40 ppm) of [RuHCl(CO)(PPh3)3] in toluene, reflecting a total turnover number (TON) of 25 000 and turnover frequencies (TOFs) of up to 500 min–1 at 80 °C. Using a dimeric Ru precursor, [RuCl(μ-Cl)(η3:η3-C10H16)]2, in ethanol associated with P(OEt)3, a TON of 10 000 and a TOF of 125 min–1 are obtained with 100% conversion and 99% selectivity. These two Ru catalytic systems can be transposed to biphasic IL systems by using ionic-tagged P-ligands such as 1-(3-(diphenylphosphanyl)propyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide immobilized in 1-(3-hydroxypropyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl) imide with up to 99% selectivity and almost complete estragole conversion. However, the reaction is much slower than that performed under solventless or homogeneous conditions. The use of ionic-tagged ligands significantly reduces the Ru leaching to the organic phase, compared to that in reactions performed under homogeneous conditions, where the catalytic system loses catalytic performance after the second recycling. Detailed kinetic investigations of the reaction catalyzed by [RuHCl(CO)(PPh3)3] indicate that a simplified kinetic model (a monomolecular reversible first-order reaction) is adequate for fitting the homogeneous reaction at 80 °C and under biphasic conditions. However, the kinetics of

  14. Folds and Etudes

    ERIC Educational Resources Information Center

    Bean, Robert

    2007-01-01

    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  15. Mixed boundary conditions for FFT-based homogenization at finite strains

    NASA Astrophysics Data System (ADS)

    Kabel, Matthias; Fliegener, Sascha; Schneider, Matti

    2016-02-01

    In this article we introduce a Lippmann-Schwinger formulation for the unit cell problem of periodic homogenization of elasticity at finite strains incorporating arbitrary mixed boundary conditions. Such problems occur frequently, for instance when validating computational results with tensile tests, where the deformation gradient in loading direction is fixed, as is the stress in the corresponding orthogonal plane. Previous Lippmann-Schwinger formulations involving mixed boundary can only describe tensile tests where the vector of applied force is proportional to a coordinate direction. Utilizing suitable orthogonal projectors we develop a Lippmann-Schwinger framework for arbitrary mixed boundary conditions. The resulting fixed point and Newton-Krylov algorithms preserve the positive characteristics of existing FFT-algorithms. We demonstrate the power of the proposed methods with a series of numerical examples, including continuous fiber reinforced laminates and a complex nonwoven structure of a long fiber reinforced thermoplastic, resulting in a speed-up of some computations by a factor of 1000.

  16. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions

    SciTech Connect

    Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham

    2006-05-15

    This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.

  17. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2016-11-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  18. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  19. A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions

    NASA Astrophysics Data System (ADS)

    Jie, Renlong; Qiao, Jian; Xu, Genjiu; Meng, Yingying

    2016-07-01

    The propagating dynamics of more than one rumor has received a substantial amount of attention in recent years. To investigate the effects of interactions between two rumors under symmetric conditions, we built a model based on an ordinary differential equation system while assuming that each individual's spreading rate after receiving one rumor depends on whether he/she knows the other rumor. In certain cases, two rumors accelerate the spread of each other, while in a portion of the other cases they impede or decelerate the spread of each other. We discuss these effects by dividing the total population into nine groups that correspond to nine states, and we subsequently build the mean-field equations for the two-rumor interaction based on the SIR model in a homogeneous complex network, and we find their numerical solution with varying interaction factors for the rates of spreading and becoming disinterested. The results show that when we change these interaction factors, the density curves of the nine states and their maximum values will change accordingly by a series of rules, which demonstrates the corresponding effects when there is a positive or negative interaction between the two rumors. Our work could establish a foundation for further study of this issue.

  20. Multifrequency radiation diffusion equations for homogeneous, refractive, lossy media and their interface conditions

    SciTech Connect

    Shestakov, Aleksei I.

    2013-06-15

    We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.

  1. Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films.

    PubMed

    Jiménez, Alberto; Fabra, María José; Talens, Pau; Chiralt, Amparo

    2012-06-20

    Edible films based on corn starch, hydroxypropyl methylcellulose (HPMC) and their mixtures were prepared by using two different procedures to homogenize the film forming dispersions (rotor-stator and rotor-stator plus microfluidizer). The influence of both HPMC-starch ratio and the homogenization method on the structural, optical, tensile and barrier properties of the films was analysed. The ageing of the films was also studied by characterizing them after 5 weeks' storage. Starch re-crystallization in newly prepared and stored films was analysed by means of X-ray diffraction. HPMC-corn starch films showed phase separation of polymers, which was enhanced when microfluidization was applied to the film forming dispersion. Nevertheless, HPMC addition inhibited starch re-crystallization during storage, giving rise to more flexible films at the end of the period. Water barrier properties of starch films were hardly affected by the addition of HPMC, although oxygen permeability increased due to its poorer oxygen barrier properties.

  2. Porcine liver decellularization under oscillating pressure conditions: a technical refinement to improve the homogeneity of the decellularization process.

    PubMed

    Struecker, Benjamin; Hillebrandt, Karl Herbert; Voitl, Robert; Butter, Antje; Schmuck, Rosa B; Reutzel-Selke, Anja; Geisel, Dominik; Joehrens, Korinna; Pickerodt, Philipp A; Raschzok, Nathanael; Puhl, Gero; Neuhaus, Peter; Pratschke, Johann; Sauer, Igor M

    2015-03-01

    Decellularization and recellularization of parenchymal organs may facilitate the generation of autologous functional liver organoids by repopulation of decellularized porcine liver matrices with induced liver cells. We present an accelerated (7 h overall perfusion time) and effective protocol for human-scale liver decellularization by pressure-controlled perfusion with 1% Triton X-100 and 1% sodium dodecyl sulfate via the hepatic artery (120 mmHg) and portal vein (60 mmHg). In addition, we analyzed the effect of oscillating pressure conditions on pig liver decellularization (n=19). The proprietary perfusion device used to generate these pressure conditions mimics intra-abdominal conditions during respiration to optimize microperfusion within livers and thus optimize the homogeneity of the decellularization process. The efficiency of perfusion decellularization was analyzed by macroscopic observation, histological staining (hematoxylin and eosin [H&E], Sirius red, and alcian blue), immunohistochemical staining (collagen IV, laminin, and fibronectin), and biochemical assessment (DNA, collagen, and glycosaminoglycans) of decellularized liver matrices. The integrity of the extracellular matrix (ECM) postdecellularization was visualized by corrosion casting and three-dimensional computed tomography scanning. We found that livers perfused under oscillating pressure conditions (P(+)) showed a more homogenous course of decellularization and contained less DNA compared with livers perfused without oscillating pressure conditions (P(-)). Microscopically, livers from the (P(-)) group showed remnant cell clusters, while no cells were found in livers from the (P(+)) group. The grade of disruption of the ECM was higher in livers from the (P(-)) group, although the perfusion rates and pressure did not significantly differ. Immunohistochemical staining revealed that important matrix components were still present after decellularization. Corrosion casting showed an intact

  3. Homogenization of Environmental Condition and Benthic Communities in Restored Streams of the North Carolina Piedmont.

    NASA Astrophysics Data System (ADS)

    Tullos, D. D.; Penrose, D. L.; Jennings, G. D.; Wentworth, T. R.

    2005-05-01

    Stream ecosystems, as described through benthic communities and twenty environmental variables, exhibited decreased variances and reduced ordinal dimensionality in restored streams when compared to associated upstream reaches in this upstream-downstream investigation of stream restoration in the North Carolina Piedmont. Through paired t-tests of the environmental variables and several descriptions of community structure and function, the variance for restored stream reaches was lower than the upstream reaches for 70% of environmental characteristics, for 75% of Functional Feeding and Habitat Groups, and for all of the community descriptions, including the Q statistic, Shannon Index, Simpson Index, EPT taxa richness, and NCBI. Further, Nonmetric Multidimensional Scaling of the sites best expressed the upstream reaches on three axes, while the restored stream reaches required only one axis to effectively describe variation in the benthic communities. These results suggest that simplification of the biota may occur following steam restoration activities, indicating the biological losses associated with early recovery in these streams. While the science of stream restoration has advanced since the early construction and implementation at these sites, the consequential homogenization demonstrated by these biotic and abiotic stream corridor features emphasizes the importance of a concentrated effort to re-establish heterogeneity in restoration designs.

  4. Unraveling the microscopic pathway of homogeneous water crystallization at supercooled conditions from direct simulations

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Palmer, Jeremy; Singh, Rakesh; Debenedetti, Pablo; Car, Roberto

    By means of unbiased classical molecular dynamics simulations, we identify the microscopic pathways of spontaneous homogeneous crystallization in supercooled ST2 water. By introducing a new order parameter, we are able to monitor formation/disruption of locally ordered regions characterized by small ice clusters with intermediate range order. When two of these regions are close each other, they percolate and form a larger ordered region. The process is slow enough to allow for polymorphic selection in favor of cubic ice (Ic). The formation of an ice nucleus requires percolation of many small clusters so that the transformations at the interface of the nucleus do not involve its core, thus guaranteeing the stability of the nucleus. The growth of the crystalline nucleus is fast and involves direct transformation of interfacial liquid molecules as well as percolation of small Ic/Ih clusters. The growth is too fast to allow conversion of Ih into Ic sites, originating the formation of a stacking fault in the final crystal. We recognize Euclidean structures in the oxygen configuration of the second shell in Ic and Ih clusters. This new point of view allows us to explain the source of the ordered stacking fault geometry.

  5. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Brus, D.; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-06-01

    In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm-3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm-3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  6. Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2016-02-01

    Within the first-order Born approximation, the spectrum of light generated by the scattering of a partially coherent wave from a quasi-homogeneous (QH) medium is derived. In particular, the partially coherent incident wave is produced by Young's pinholes. It is shown that the spectrum of the scattered field is identical to the spectrum of incident plane waves if the Fourier transform of the normalized correlation coefficient (NCC) of the scattering potential satisfies a certain scaling law. The scaling law is valid when the medium size is sufficiently small compared with the space between Young' pinholes. Furthermore, comparisons are made between our conditions with the previous results.

  7. Effects of long-term simulated martian conditions on a freeze-dried and homogenized bacterial permafrost community.

    PubMed

    Hansen, Aviaja A; Jensen, Lars L; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W; Lomstein, Bente Aa

    2009-03-01

    Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.

  8. Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions.

    PubMed

    Broseghini, M; D'Incau, M; Gelisio, L; Pugno, N M; Scardi, P

    2017-02-01

    This paper contains data and supporting information of and complementary to the research article entitled "Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments" (Broseghini et al.,) [1]. Calcium fluoride (CaF2) was ground using two jars of different shape (cylindrical and half-moon) installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time). Scanning Electron Microscopy (SEM) images and X-Ray Powder Diffraction data (XRPD) were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008) [2]) analysis of XRPD data required the hypothesis of a bimodal distribution of sizes - respectively ground (fine fraction) and less-to-not ground (coarse fraction) - confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013) [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.

  9. Multiple-pass high-pressure homogenization of milk for the development of pasteurization-like processing conditions.

    PubMed

    Ruiz-Espinosa, H; Amador-Espejo, G G; Barcenas-Pozos, M E; Angulo-Guerrero, J O; Garcia, H S; Welti-Chanes, J

    2013-02-01

    Multiple-pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization-like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1-5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (P < 0·05) on microbial reduction of both spoilage microflora and Staph. aureus in milk. Optimized UHPH processes (five 202-MPa passes; four 232-MPa passes) defined a region where a 5-log(10) reduction of total bacterial count of milk and a baroresistant pathogen are attainable, as a requisite parameter for establishing an alternative method of pasteurization. Multiple-pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization.

  10. Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds.

    PubMed

    Zamora, A; Trujillo, A J; Armaforte, E; Waldron, D S; Kelly, A L

    2012-09-01

    The objective of this study was to investigate the influence of conventional and ultra-high-pressure homogenization on interactions between proteins within drained rennet curds. The effect of fat content of milk (0.0, 1.8, or 3.6%) and homogenization treatment on dissociation of proteins by different chemical agents was thus studied. Increasing the fat content of raw milk increased levels of unbound whey proteins and calcium-bonded caseins in curds; in contrast, hydrophobic interactions and hydrogen bonds were inhibited. Both homogenization treatments triggered the incorporation of unbound whey proteins in the curd, and of caseins through ionic bonds involving calcium salts. Conventional homogenization-pasteurization enhanced interactions between caseins through hydrogen bonds and hydrophobic interactions. In contrast, ultra-high-pressure homogenization impaired hydrogen bonding, led to the incorporation of both whey proteins and caseins through hydrophobic interactions and increased the amount of unbound caseins. Thus, both homogenization treatments provoked changes in the protein interactions within rennet curds; however, the nature of the changes depended on the homogenization conditions.

  11. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.

    PubMed

    Knopf, Daniel Alexander; Lopez, Miguel David

    2009-09-28

    Homogeneous ice nucleation from micrometre-sized aqueous (NH4)2SO4 and aqueous levoglucosan particles is studied employing the optical microscope technique. A new experimental method is introduced that allows us to control the initial water activity of the aqueous droplets. Homogeneous ice freezing temperatures and ice melting temperatures of these aqueous solution droplets, 10 to 80 microm in diameter, are determined. Homogeneous ice nucleation from aqueous (NH4)2SO4 particles 5-39 wt% in concentration and aqueous levoglucosan particles with initial water activities of 0.85-0.99 yield upper limits of the homogeneous ice nucleation rate coefficients of up to 1x10(10) cm(-3) s(-1). The experimentally derived homogeneous ice freezing temperatures and upper limits of the homogeneous ice nucleation rate coefficients are compared with corresponding predictions of the water-activity-based ice nucleation theory [T. Koop, B. P. Luo, A. Tsias and T. Peter, Nature, 2000, 406, 611]. It is found that the water-activity-based ice nucleation theory can capture the experimentally derived ice freezing temperatures and homogeneous ice nucleation rate coefficients of the aqueous (NH4)2SO4 and aqueous levoglucosan particles. However, the level of agreement between experimentally derived and predicted values, in particular for homogeneous ice nucleation rate coefficients, crucially depends on the extrapolation method to obtain water activities at corresponding freezing temperatures. It is suggested that the combination of experimentally derived ice freezing temperatures and homogeneous ice nucleation rate coefficients can serve as a better validation of the water-activity-based ice nucleation theory than when compared to the observation of homogeneous ice freezing temperatures alone. The atmospheric implications with regard to the application of the water-activity-based ice nucleation theory and derivation of maximum ice particle production rates are briefly discussed.

  12. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.

    PubMed

    Weber, Daniela; Davies, Michael J; Grune, Tilman

    2015-08-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples.

  13. Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions

    PubMed Central

    Masuko, Masayuki; Ohuchi, Shohkichi; Sode, Koji; Ohtani, Hiroyuki; Shimadzu, Akira

    2000-01-01

    We characterized the fluorescence resonance energy transfer (FRET) from pyrene (donor) to perylene (acceptor) for nucleic acid assays under homogeneous solution conditions. We used the hybridization between a target 32mer and its complementary two sequential 16mer deoxyribonucleotides whose neighboring terminals were each respectively labeled with a pyrene and a perylene residue. A transfer efficiency of ~100% was attained upon the hybridization when observing perylene fluorescence at 459 nm with 347-nm excitation of a pyrene absorption peak. The Förster distance between two dye residues was 22.3 Å (the orientation factor of 2/3). We could change the distance between the residues by inserting various numbers of nucleotides into the center of the target, thus creating a gap between the dye residues on a hybrid. Assuming that the number of inserted nucleotides is proportional to the distance between the dye residues, the energy transfer efficiency versus number of inserted nucleotides strictly obeyed the Förster theory. The mean inter-nucleotide distance of the single-stranded portion was estimated to be 2.1 Å. Comparison between the fluorescent properties of a pyrene–perylene pair with those of a widely used fluorescein–rhodamine pair showed that the pyrene–perylene FRET is suitable for hybridization assays. PMID:10734211

  14. Efficacy of various pasteurization time-temperature conditions in combination with homogenization on inactivation of Mycobacterium avium subsp. paratuberculosis in milk.

    PubMed

    Grant, Irene R; Williams, Alan G; Rowe, Michael T; Muir, D Donald

    2005-06-01

    The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 10(1) to 10(5) M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P < 0.001 for those in hold and P < 0.05 for those upstream). Where colony counts were obtained, the number of surviving M. avium subsp. paratuberculosis cells was estimated to be 10 to 20 CFU/150 ml, and the reduction in numbers achieved by HTST pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or "miniclump" status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization.

  15. Efficacy of Various Pasteurization Time-Temperature Conditions in Combination with Homogenization on Inactivation of Mycobacterium avium subsp. paratuberculosis in Milk

    PubMed Central

    Grant, Irene R.; Williams, Alan G.; Rowe, Michael T.; Muir, D. Donald

    2005-01-01

    The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 101 to 105 M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P < 0.001 for those in hold and P < 0.05 for those upstream). Where colony counts were obtained, the number of surviving M. avium subsp. paratuberculosis cells was estimated to be 10 to 20 CFU/150 ml, and the reduction in numbers achieved by HTST pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or “miniclump” status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization. PMID:15932977

  16. Etude Exploratoire sur l’Etat de Stress Post-Traumatique dans Deux Unites Operationnelles de l’Armee de Terre (Exploratory Study of the Condition of Post-Traumatic Stress Disorder from Two Operational Units of Ground Forces)

    DTIC Science & Technology

    2006-04-01

    RTO-MP-HFM-134 30 - 1 Etude exploratoire sur l’état de stress post-traumatique dans deux unités opérationnelles de l’armée de terre D ...Leur diagnostic nécessite une démarche active du médecin. L’objectif de l’étude vise à évaluer la fréquence de cette pathologie dans une population...d’inhibition (1). Cette pathologie a fréquemment une évolution chronique. Elle peut être très invalidante. Vallet, D .; Arvers, P. (2006) Etude exploratoire

  17. Regional Homogeneity

    PubMed Central

    Jiang, Lili; Zuo, Xi-Nian

    2015-01-01

    Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies. PMID:26170004

  18. Homogeneity Pursuit

    PubMed Central

    Ke, Tracy; Fan, Jianqing; Wu, Yichao

    2014-01-01

    This paper explores the homogeneity of coefficients in high-dimensional regression, which extends the sparsity concept and is more general and suitable for many applications. Homogeneity arises when regression coefficients corresponding to neighboring geographical regions or a similar cluster of covariates are expected to be approximately the same. Sparsity corresponds to a special case of homogeneity with a large cluster of known atom zero. In this article, we propose a new method called clustering algorithm in regression via data-driven segmentation (CARDS) to explore homogeneity. New mathematics are provided on the gain that can be achieved by exploring homogeneity. Statistical properties of two versions of CARDS are analyzed. In particular, the asymptotic normality of our proposed CARDS estimator is established, which reveals better estimation accuracy for homogeneous parameters than that without homogeneity exploration. When our methods are combined with sparsity exploration, further efficiency can be achieved beyond the exploration of sparsity alone. This provides additional insights into the power of exploring low-dimensional structures in high-dimensional regression: homogeneity and sparsity. Our results also shed lights on the properties of the fussed Lasso. The newly developed method is further illustrated by simulation studies and applications to real data. Supplementary materials for this article are available online. PMID:26085701

  19. Rheology and microstructure of carrot and tomato emulsions as a result of high-pressure homogenization conditions.

    PubMed

    Lopez-Sanchez, Patricia; Svelander, Cecilia; Bialek, Lucy; Schumm, Stephan; Langton, Maud

    2011-01-01

    High-pressure homogenization, as a way to further mechanically disrupt plant cells and cell walls compared to conventional blending, has been applied to thermally treated and comminuted carrot and tomato material in the presence of 5% olive oil. Mixes of both vegetables in a 1:1 ratio were also included. Both the effect of homogenization pressure and the effect of multiple process cycles were studied. The different microstructures generated were linked to different rheological properties analyzed by oscillatory and steady state measurements. The results showed that while carrot tissue requires a high shear input to be disrupted into cells and cell fragments, tomato cells were broken across the cell walls already at moderate shear input, and the nature of the tomato particles changed to amorphous aggregates, probably composed of cell contents and cell wall polymers. All the plant stabilized emulsions generated were stable against creaming under centrifugation. While for tomato a low-pressure multiple cycle and a high-pressure single-cycle process led to comparable microstructures and rheological properties, carrot showed different rheological properties after these treatments linked to differences in particle morphology. Mixes of carrot and tomato showed similar rheological properties after homogenizing in a single or in a split-stream process. Practical Application: Following consumers' demand, the food industry has shown a growing interest in manufacturing products free of gums and stabilizers, which are often perceived as artificial. By tailored processing, fresh plant material could be used to structure food products in a more natural way while increasing their nutritional quality.

  20. Effect of Boundary Conditions on the Axial Compression Buckling of Homogeneous Orthotropic Composite Cylinders in the Long Column Range

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.

    2011-01-01

    Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.

  1. Open system Hf isotope homogenization by a DISPOREP process under amphibolite-facies conditions, an example from the Limpopo Belt (South Africa)

    NASA Astrophysics Data System (ADS)

    Zeh, Armin; Gerdes, Axel

    2013-04-01

    Isotope homogenization in metamorphic rock is a prerequisite for precise isochrone dating. However, whether or not homogenisation occurs during a metamorphic overprint dependent on several parameters and processes, which compete with each other and comprise at least (i) volume diffusion, (ii) dissolution-re-precipitation, (iii) intergranular diffusive or fluid enhanced transport, and (iv) metamorphic mineral reaction(s). Isotope homogenisation is commonly reached in high-grade (granulite-facies) metamorphic rocks, where diffusion is fast, and mineral reactions and dissolution-re-precipitation accompanied or maintained by a melt phase, but it is incomplete in low-grade to amphibolite-facies rocks, in the presence of an aqueous fluid phase. This holds true, in particular, for the Lu-Hf isotope system, which is mainly controlled by accessory zircon, which is very resistant against dissolution in aqueous fluids and has slow diffusivity for Hf, U, Pb. Thus zircon often maintains it primary U-Pb-Hf isotope composition obtained during previous magmatic crystallisation (i.e, magmatic grains in orthogneisses or detrital magmatic grains in paragneisses), even under very high-grade metamorphic conditions >1000° C. However, results of recent isotope studies show, that the U-Pb and Lu-Hf isotope systems of zircon-bearing ortho- and paragneisses can homogenize completely (on hand specimen scale) even under amphibolite facies T - P conditions of

  2. On the Importance of Processing Conditions for the Nutritional Characteristics of Homogenized Composite Meals Intended for Infants

    PubMed Central

    Östman, Elin; Forslund, Anna; Tareke, Eden; Björck, Inger

    2016-01-01

    The nutritional quality of infant food is an important consideration in the effort to prevent a further increase in the rate of childhood obesity. We hypothesized that the canning of composite infant meals would lead to elevated contents of carboxymethyl-lysine (CML) and favor high glycemic and insulinemic responses compared with milder heat treatment conditions. We have compared composite infant pasta Bolognese meals that were either conventionally canned (CANPBol), or prepared by microwave cooking (MWPBol). A meal where the pasta and Bolognese sauce were separate during microwave cooking (MWP_CANBol) was also included. The infant meals were tested at breakfast in healthy adults using white wheat bread (WWB) as reference. A standardized lunch meal was served at 240 min and blood was collected from fasting to 360 min after breakfast. The 2-h glucose response (iAUC) was lower following the test meals than with WWB. The insulin response was lower after the MWP_CANBol (−47%, p = 0.0000) but markedly higher after CANPBol (+40%, p = 0.0019), compared with WWB. A combined measure of the glucose and insulin responses (ISIcomposite) revealed that MWP_CANBol resulted in 94% better insulin sensitivity than CANPBol. Additionally, the separate processing of the meal components in MWP_CANBol resulted in 39% lower CML levels than the CANPBol. It was therefore concluded that intake of commercially canned composite infant meals leads to reduced postprandial insulin sensitivity and increased exposure to oxidative stress promoting agents. PMID:27271662

  3. Benchmarking monthly homogenization algorithms

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  4. ETUDE - European Trade Union Distance Education.

    ERIC Educational Resources Information Center

    Creanor, Linda; Walker, Steve

    2000-01-01

    Describes transnational distance learning activities among European trade union educators carried out as part of the European Trade Union Distance Education (ETUDE) project, supported by the European Commission. Highlights include the context of international trade union distance education; tutor training course; tutors' experiences; and…

  5. Centre National d'Etudes Spatiales

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Centre National d'Etudes Spatiales (CNES) draws up, proposes and conducts France's space policy. Its role is to develop the uses of space, to meet the civilian and military needs of public bodies and of the scientific community, and to foster the development and dissemination of new applications, designed to create wealth and jobs....

  6. Etudes on 1/N

    NASA Astrophysics Data System (ADS)

    Starinets, Andrei Olegovich

    A number of problems in string theory and lattice statistical mechanics is studied using the large N approximation, with N being the dimension of the fundamental representation of the underlying symmetry algebra. As the first problem, the absorption of a minimally coupled massless scalar in the gravitational background created by a stack of near-extremal black three-branes is considered. The low-temperature asymptotic expansion and the high-temperature perturbative expansion are obtained. A field-theoretical calculation of the absorption cross section in the brane's world-volume theory is also performed. As an application, the shear viscosity of a strongly coupled Yang-Mills plasma is computed. In the second problem, we study supergravity solutions with two asymptotically Anti de Sitter regions which are conjectured to describe the renormalization group flow of a four-dimensional field theory from a UV fixed point to an interacting IR fixed point. We show that, in the UV (IR) limit, the two-point function of a minimally-coupled scalar field depends only on the UV (IR) region of the metric, asymptotic to AdS5 thus lending a support to the conjecture. In the third problem, monotonicity and other properties of the canonical c-function in some holographic duals of 4-d quantum field theories are investigated. The canonical c-function and its derivatives are related to the 5-d Green's function of the dual supergravity theory. In the fourth problem, we study solutions of the equations (Δ - λ)φ = 0 and (Δ - λ)2φ = 0 on the covering space C AdSd of the d-dimensional Anti de-Sitter space subject to various boundary conditions, and we analyze their connection to the unitary irreducible representations of SO (d - 1, 2). Finally, as the fifth problem, we compute the phase diagram in the N --> ∞ limit for lattice RPN-1, CPN-1 and QPN-1 σ- models with the quartic action, and more generally for mixed isovector/isotensor models. We show that the N = ∞ limit exhibits

  7. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    SciTech Connect

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; Martz, Jason B.

    2015-10-26

    Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (ΦFO), oxygen molar fraction (χO2) and temperature (T) was determined for three parametric studies. In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the ΦFO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel

  8. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    DOE PAGES

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; ...

    2015-10-26

    Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (ΦFO), oxygen molar fraction (χO2) and temperature (T) was determined for three parametric studies.more » In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the ΦFO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel injection. The final study

  9. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  10. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: oxidation linked to changes in protein composition at the oil-water interface.

    PubMed

    Sørensen, Ann-Dorit M; Baron, Caroline P; Let, Mette B; Brüggemann, Dagmar A; Pedersen, Lise R L; Jacobsen, Charlotte

    2007-03-07

    Fish oil was incorporated into milk under different homogenization temperatures (50 and 72 degrees C) and pressures (5, 15, and 22.5 MPa). Subsequently, the oxidative stability of the milk and changes in the protein composition of the milk fat globule membrane (MFGM) were examined. Results showed that high pressure and high temperature (72 degrees C and 22.5 MPa) resulted in less lipid oxidation, whereas low pressure and low temperature (50 degrees C and 5 MPa) resulted in faster lipid oxidation. Analysis of protein oxidation indicated that especially casein was prone to oxidation. The level of free thiol groups was increased by high temperature (72 degrees C) and with increasing pressure. Furthermore, SDS-PAGE and confocal laser scanning microscopy (CLSM) indicated that high temperature resulted in an increase in beta-lactoglobulin adsorbed at the oil-water interface. This was even more pronounced with higher pressure. Less casein seemed to be present at the oil-water interface with increasing pressure. Overall, the results indicated that a combination of more beta-lactoglobulin and less casein at the oil-water interface gave the most stable emulsions with respect to lipid oxidation.

  11. Dynamics of compact homogeneous universes

    SciTech Connect

    Tanimoto, M.; Koike, T.; Hosoya, A.

    1997-01-01

    A complete description of dynamics of compact locally homogeneous universes is given, which, in particular, includes explicit calculations of Teichm{umlt u}ller deformations and careful counting of dynamical degrees of freedom. We regard each of the universes as a simply connected four-dimensional space{endash}time with identifications by the action of a discrete subgroup of the isometry group. We then reduce the identifications defined by the space{endash}time isometries to ones in a homogeneous section, and find a condition that such spatial identifications must satisfy. This is essential for explicit construction of compact homogeneous universes. Some examples are demonstrated for Bianchi II, VI{sub 0}, VII{sub 0}, and I universal covers. {copyright} {ital 1997 American Institute of Physics.}

  12. Is the Universe homogeneous?

    PubMed

    Maartens, Roy

    2011-12-28

    The standard model of cosmology is based on the existence of homogeneous surfaces as the background arena for structure formation. Homogeneity underpins both general relativistic and modified gravity models and is central to the way in which we interpret observations of the cosmic microwave background (CMB) and the galaxy distribution. However, homogeneity cannot be directly observed in the galaxy distribution or CMB, even with perfect observations, since we observe on the past light cone and not on spatial surfaces. We can directly observe and test for isotropy, but to link this to homogeneity we need to assume the Copernican principle (CP). First, we discuss the link between isotropic observations on the past light cone and isotropic space-time geometry: what observations do we need to be isotropic in order to deduce space-time isotropy? Second, we discuss what we can say with the Copernican assumption. The most powerful result is based on the CMB: the vanishing of the dipole, quadrupole and octupole of the CMB is sufficient to impose homogeneity. Real observations lead to near-isotropy on large scales--does this lead to near-homogeneity? There are important partial results, and we discuss why this remains a difficult open question. Thus, we are currently unable to prove homogeneity of the Universe on large scales, even with the CP. However, we can use observations of the cosmic microwave background, galaxies and clusters to test homogeneity itself.

  13. Theoretical nitric oxide production incidental to autoignition and combustion of several fuels homogeneously dispersed in air under some typical hypersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1974-01-01

    A reaction package of 100 chemical reactions and attendant reaction rate constants defined for the autoignition and combustion of four carbonaceous fuels, CH4, CH3OH, C2H6, and C2H5OH. Definition of the package was made primarily by means of comparison between trial calculations and experimental data for the autoignition of CH4. Autoignition and combustion of each of these four fuels was calculated under three sets of conditions realistic for hypersonic flight applications, for comparison to hydrogen fuel, particularly with respect to formation of nitric oxide. Results show that, for all of the fuels including hydrogen, if NO production is a significant problem, compromise must be made between approaching equilibrium heat release and approaching equilibrium NO concentration.

  14. Homogeneity and Entropy

    NASA Astrophysics Data System (ADS)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  15. Homogeneous Atomic Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.

    2017-03-01

    We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

  16. Benchmarking homogenization algorithms for monthly data

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2012-01-01

    The COST (European Cooperation in Science and Technology) Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  17. Homogeneous, bioluminescent proteasome assays.

    PubMed

    O'Brien, Martha A; Moravec, Richard A; Riss, Terry L; Bulleit, Robert F

    2015-01-01

    Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple "add and read" format enables sensitive and rapid proteasome assays ideal for inhibitor screening.

  18. HOMOGENEOUS NUCLEAR REACTOR

    DOEpatents

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  19. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  20. A non-asymptotic homogenization theory for periodic electromagnetic structures

    PubMed Central

    Tsukerman, Igor; Markel, Vadim A.

    2014-01-01

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions. PMID:25104912

  1. Homogeneous nucleation kinetics

    NASA Technical Reports Server (NTRS)

    Rasmussen, D. H.; Appleby, M. R.; Leedom, G. L.; Babu, S. V.; Naumann, R. J.

    1983-01-01

    Homogeneous nucleation kinetics are rederived in a manner fundamentally similar to the approach of classical nucleation theory with the following modifications and improvements. First, the cluster is a parent phase cluster and does not require energization to the parent state. Second, the thermodynamic potential used to describe phase stability is a continuous function along the pathway of phase decomposition. Third, the kinetics of clustering corresponds directly to the diffusional flux of monomers through the cluster distribution and are formally similar to classical theory with the resulting kinetic equation modified by two terms in the preexponential factor. These terms correct for the influence of a supersaturation dependent clustering within the parent phase and for the influence of an asymmetrical cluster concentration as a function of cluster size at the critical cluster size. Fourth, the supersaturation dependence of the nucleation rate is of the same form as that given by classical nucleation theory. This supersaturation dependence must however be interpreted in terms of a size dependent surface tension. Finally, there are two scaling laws which describe supersaturation to either constant nucleation rate or to the thermodynamically determined physical spinodal.

  2. Universum Inference and Corpus Homogeneity

    NASA Astrophysics Data System (ADS)

    Vogel, Carl; Lynch, Gerard; Janssen, Jerom

    Universum Inference is re-interpreted for assessment of corpus homogeneity in computational stylometry. Recent stylometric research quantifies strength of characterization within dramatic works by assessing the homogeneity of corpora associated with dramatic personas. A methodological advance is suggested to mitigate the potential for the assessment of homogeneity to be achieved by chance. Baseline comparison analysis is constructed for contributions to debates by nonfictional participants: the corpus analyzed consists of transcripts of US Presidential and Vice-Presidential debates from the 2000 election cycle. The corpus is also analyzed in translation to Italian, Spanish and Portuguese. Adding randomized categories makes assessments of homogeneity more conservative.

  3. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.

    PubMed

    Li, Jihua; Wei, Xiaoyi; Wang, Qinghuang; Chen, Jiacui; Chang, Gang; Kong, Lingxue; Su, Junbo; Liu, Yuhuan

    2012-11-06

    Nanocellulose from sugarcane bagasse was isolated by high pressure homogenization in a homogeneous media. Pretreatment with an ionic liquid (1-butyl-3-methylimidazolium chloride ([Bmim]Cl)) was initially involved to dissolve the bagasse cellulose. Subsequently, the homogeneous solution was passed through a high pressure homogenizer without any clogging. The nanocellulose was obtained at 80 MPa for 30 cycles with recovery of 90% under the optimum refining condition. Nanocellulose had been characterized by Fourier transformed infrared spectra, X-ray diffraction, thermogravimetric analysis, rheological measurements and transmission electron microscopy. The results showed that nanocellulose was 10-20 nm in diameter, and presented lower thermal stability and crystallinity than the original cellulose. The developed nanocellulose would be a very versatile renewable material.

  4. Etude du Photochromisme et de la Photorefractivite dans le Poly

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima

    1995-11-01

    Nous avons etudie la possibilite d'utiliser un materiau organique, le poly(vinylcarbazole) comme milieu de stockage optique de masse en temps reel. Ce materiau dope aux photochromes presente un potentiel non negligeable pour l'holographie de volume en temps reel. Plusiers cycles, Ecriture-Lecture-Effacement, ont ete enregistres dans cette matrice polymerique avec une resolution assez elevee. Une etude a ete menee afin d'obtenir la valeur des parametres comme l'epaisseur du film et l'intensite d'ecriture pour un angle d'enregistrement theta_{ acute ecriture} donne qui permettent d'obtenir les meilleures efficacites diffractionelles tout en preservant ce milieu de tout effet de fatigue ou de degradation. Ce polymere devient photorefractif une fois melange avec un bon accepteur de charge, le trinitrofluorenone et un bon chromophore non-lineaire, le disperse orange 25. Nous avons etudie experimentalement la conductivite en obscurite et la photoconductivite de ce materiau. Des simulations numeriques ont ete realisees en se basant sur le modele de Poole-Frenkel. Nous avons aussi etudie l'implantation de faisceaux d'ions d'oxygene d'energie 200 keV pour inscrire dans le PVCz un guide d'onde plan a profil d'indice. Une etude ESCA complete cette partie afin de savoir les modifications induites par implementation ionique a l'interieur du film polymerique.

  5. Locally homogeneous pp-waves

    NASA Astrophysics Data System (ADS)

    Globke, Wolfgang; Leistner, Thomas

    2016-10-01

    We show that every n-dimensional locally homogeneous pp-wave is a plane wave, provided it is indecomposable and its curvature operator, when acting on 2-forms, has rank greater than one. As a consequence we obtain that indecomposable, Ricci-flat locally homogeneous pp-waves are plane waves. This generalises a classical result by Jordan, Ehlers and Kundt in dimension 4. Several examples show that our assumptions on indecomposability and the rank of the curvature are essential.

  6. Operator estimates in homogenization theory

    NASA Astrophysics Data System (ADS)

    Zhikov, V. V.; Pastukhova, S. E.

    2016-06-01

    This paper gives a systematic treatment of two methods for obtaining operator estimates: the shift method and the spectral method. Though substantially different in mathematical technique and physical motivation, these methods produce basically the same results. Besides the classical formulation of the homogenization problem, other formulations of the problem are also considered: homogenization in perforated domains, the case of an unbounded diffusion matrix, non-self-adjoint evolution equations, and higher-order elliptic operators. Bibliography: 62 titles.

  7. Don't homogenize, synchronize.

    PubMed

    Sawhney, M

    2001-01-01

    To be more responsive to customers, companies often break down organizational walls between their units--setting up all manner of cross-business and cross-functional task forces and working groups and promoting a "one-company" culture. But such attempts can backfire terribly by distracting business and functional units and by contaminating their strategies and processes. Fortunately, there's a better way, says the author. Rather than tear down organizational walls, a company can make them permeable to information. It can synchronize all its data on products, filtering the information through linked databases and applications and delivering it in a coordinated, meaningful form to customers. As a result, the organization can present a single, unified face to the customer--one that can change as market conditions warrant--without imposing homogeneity on its people. Such synchronization can lead not just to stronger customer relationships and more sales but also to greater operational efficiency. It allows a company, for example, to avoid the high costs of maintaining many different information systems with redundant data. The decoupling of product control from customer control in a synchronized company reflects a fundamental fact about business: While companies have to focus on creating great products, customers think in terms of the activities they perform and the benefits they seek. For companies, products are ends, but for customers, products are means. The disconnect between how customers think and how companies organize themselves is what leads to inefficiencies and missed opportunities, and that's exactly the problem that synchronization solves. Synchronized companies can get closer to customers, sustain product innovation, and improve operational efficiency--goals that have traditionally been very difficult to achieve simultaneously.

  8. Analysis of homogeneous turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Leonard, A. D.; Hill, J. C.; Mahalingam, S.; Ferziger, J. H.

    1988-01-01

    Full turbulence simulations at low Reynolds numbers were made for the single-step, irreversible, bimolecular reaction between non-premixed reactants in isochoric, decaying homogeneous turbulence. Various initial conditions for the scalar field were used in the simulations to control the initial scalar dissipation length scale, and simulations were also made for temperature-dependent reaction rates and for non-stoichiometric and unequal diffusivity conditions. Joint probability density functions (pdf's), conditional pdf's, and various statistical quantities appearing in the moment equations were computed. Preliminary analysis of the results indicates that compressive strain-rate correlates better than other dynamical quantities with local reaction rate, and the locations of peak reaction rates seem to be insensitive to the scalar field initial conditions.

  9. Etude de l'influence de la temperature et de l'humidite sur les proprietes mecaniques en traction des fibres de chanvre et de coco

    NASA Astrophysics Data System (ADS)

    Ho Thi, Thu Nga

    L'objectif de cette etude fut d'etablir l'effet de l'humidite et de la temperature sur la resistance en traction et le module elastique des fibres de chanvre et de coco. Deux etudes ont ete realisees afin d'atteindre cet objectif. La premiere vise l'absorption de l'humidite dans ces fibres en exposition dans l'air (de 0%RH a 80%RH) ainsi que l'absorption de l'eau dans ces fibres immergees dans l'eau aux differentes temperatures. La deuxieme consiste a mesurer la resistance en traction et le module elastique de ces fibres sous differentes conditions d'humidite et de temperature. En basant sur les resultats experimentaux obtenus, les methodes semi empiriques et de reseaux de neurones ont ete utilisees pour but de predire les proprietes en traction (resistance et module d'elasticite) des fibres de chanvre et de coco sous l'influence de l'humidite et de la temperature.

  10. A Locally-Exact Homogenization Approach for Periodic Heterogeneous Materials

    SciTech Connect

    Drago, Anthony S.; Pindera, Marek-Jerzy

    2008-02-15

    Elements of the homogenization theory are utilized to develop a new micromechanics approach for unit cells of periodic heterogeneous materials based on locally-exact elasticity solutions. Closed-form expressions for the homogenized moduli of unidirectionally-reinforced heterogeneous materials are obtained in terms of Hill's strain concentration matrices valid under arbitrary combined loading, which yield the homogenized Hooke's law. Results for simple unit cells with off-set fibers, which require the use of periodic boundary conditions, are compared with corresponding finite-element results demonstrating excellent correlation.

  11. Stochastic homogenization of a front propagation problem with unbounded velocity

    NASA Astrophysics Data System (ADS)

    Hajej, A.

    2017-04-01

    We study the homogenization of Hamilton-Jacobi equations which arise in front propagation problems in stationary ergodic media. Our results are obtained for fronts moving with possible unbounded velocity. We show, by an example, that the homogenized Hamiltonian, which always exists, may be unbounded. In this context, we show convergence results if we start with a compact initial front. On the other hand, if the media satisfies a finite range of dependence condition, we prove that the effective Hamiltonian is bounded and obtain classical homogenization in this context.

  12. No hypocalcemic action of Stannius corpuscle homogenates in rats.

    PubMed

    Ukawa, K; Sasayama, Y

    1993-04-01

    1. Serum Ca level of goldfish administered with homogenate of the corpuscles of Stannius (CS) taken from 1/3 seawater-acclimated goldfish was significantly lower than that of the control goldfish up to 2 hr after administration. 2. Serum Ca, Mg, Pi, Na and K levels of rats administered with CS homogenates of freshwater eels, 1/3 seawater-acclimated goldfish, or seawater-inhabited wrasse were not statistically different from those of control rats during the 3 hr investigation. 3. It was concluded that in rats, CS homogenates did not decrease the serum mineral levels under the present conditions.

  13. Isotropic homogeneous universe with viscous fluid

    SciTech Connect

    Santos, N.O.; Dias, R.S.; Banerjee, A.

    1985-04-01

    Exact solutions are obtained for the isotropic homogeneous cosmological model with viscous fluid. The fluid has only bulk viscosity and the viscosity coefficient is taken to be a power function of the mass density. The equation of state assumed obeys a linear relation between mass density and pressure. The models satisfying Hawking's energy conditions are discussed. Murphy's model is only a special case of this general set of solutions and it is shown that Murphy's conclusion that the introduciton of bulk viscosity can avoid the occurrence of space-time singularity at finite past is not, in general, valid.

  14. The approach to steady state using homogeneous and Cartesian coordinates.

    PubMed

    Gochberg, D F; Ding, Z

    2013-01-01

    Repeating an arbitrary sequence of RF pulses and magnetic field gradients will eventually lead to a steady-state condition in any magnetic resonance system. While numerical methods can quantify this trajectory, analytic analysis provides significantly more insight and a means for faster calculation. Recently, an analytic analysis using homogeneous coordinates was published. The current work further develops this line of thought and compares the relative merits of using a homogeneous or a Cartesian coordinate system.

  15. Carbon dioxide in the ocean surface: The homogeneous buffer factor

    USGS Publications Warehouse

    Sundquist, E.T.; Plummer, L.N.; Wigley, T.M.L.

    1979-01-01

    The amount of carbon dioxide that can be dissolved in surface seawater depends at least partially on the homogeneous buffer factor, which is a mathematical function of the chemical equilibrium conditions among the various dissolved inorganic species. Because these equilibria are well known, the homogeneous buffer factor is well known. Natural spatial variations depend very systematically on sea surface temperatures, and do not contribute significantly to uncertainties in the present or future carbon dioxide budget. Copyright ?? 1979 AAAS.

  16. Homogeneous Pt-bimetallic Electrocatalysts

    SciTech Connect

    Wang, Chao; Chi, Miaofang; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2011-01-01

    Alloying has shown enormous potential for tailoring the atomic and electronic structures, and improving the performance of catalytic materials. Systematic studies of alloy catalysts are, however, often compromised by inhomogeneous distribution of alloying components. Here we introduce a general approach for the synthesis of monodispersed and highly homogeneous Pt-bimetallic alloy nanocatalysts. Pt{sub 3}M (where M = Fe, Ni, or Co) nanoparticles were prepared by an organic solvothermal method and then supported on high surface area carbon. These catalysts attained a homogeneous distribution of elements, as demonstrated by atomic-scale elemental analysis using scanning transmission electron microscopy. They also exhibited high catalytic activities for the oxygen reduction reaction (ORR), with improvement factors of 2-3 versus conventional Pt/carbon catalysts. The measured ORR catalytic activities for Pt{sub 3}M nanocatalysts validated the volcano curve established on extended surfaces, with Pt{sub 3}Co being the most active alloy.

  17. At tank Low Activity Feed Homogeneity Analysis Verification

    SciTech Connect

    DOUGLAS, J.G.

    2000-09-28

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements.

  18. Planar factors of proper homogeneous Lorentz transformations

    SciTech Connect

    Fahnline, D.E.

    1985-02-01

    This article discusses two constructions factoring proper homogeneous Lorentz transformations H into the product of two planar transformations. A planar transformation is a proper homogeneous Lorentz transformation changing vectors in a two-flat through the origin, called the transformation two-flat, into new vectors in the same two-flat and which leaves unchanged vectors in the orthogonal two-flat, called the pointwise invariant two-flat. The first construction provides two planar factors such that a given timelike vector lies in the transformation two-flat of one and in the pointwise invariant two-flat of the other; it leads to several basic conditions on the trace of H and to necessary and sufficient conditions for H to be planar. The second construction yields explicit formulas for the orthogonal factors of H when they exist and are unique, where two planar transformations are orthogonal if the transformation two-flat of one is the pointwise invariant two-flat of the other.

  19. Homogenization in micro-magneto-mechanics

    NASA Astrophysics Data System (ADS)

    Sridhar, A.; Keip, M.-A.; Miehe, C.

    2016-07-01

    Ferromagnetic materials are characterized by a heterogeneous micro-structure that can be altered by external magnetic and mechanical stimuli. The understanding and the description of the micro-structure evolution is of particular importance for the design and the analysis of smart materials with magneto-mechanical coupling. The macroscopic response of the material results from complex magneto-mechanical interactions occurring on smaller length scales, which are driven by magnetization reorientation and associated magnetic domain wall motions. The aim of this work is to directly base the description of the macroscopic magneto-mechanical material behavior on the micro-magnetic domain evolution. This will be realized by the incorporation of a ferromagnetic phase-field formulation into a macroscopic Boltzmann continuum by the use of computational homogenization. The transition conditions between the two scales are obtained via rigorous exploitation of rate-type and incremental variational principles, which incorporate an extended version of the classical Hill-Mandel macro-homogeneity condition covering the phase field on the micro-scale. An efficient two-scale computational scenario is developed based on an operator splitting scheme that includes a predictor for the magnetization on the micro-scale. Two- and three-dimensional numerical simulations demonstrate the performance of the method. They investigate micro-magnetic domain evolution driven by macroscopic fields as well as the associated overall hysteretic response of ferromagnetic solids.

  20. Survey of Hyperspectral and Multispectral Imaging Technologies (Etude sur les technologies d’imagerie hyperspectrale et multispectrale)

    DTIC Science & Technology

    2007-05-01

    SET-065-P3 Survey of Hyperspectral and Multispectral Imaging Technologies ( Etude sur les technologies d’imagerie hyperspectrale et multispectrale... Etude sur les technologies d’imagerie hyperspectrale et multispectrale) This Report forms part of RTG-33’s activities in assessing...that will guarantee a solid base for the future. The content of this publication has been reproduced directly from material supplied by RTO or the

  1. Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth

    NASA Astrophysics Data System (ADS)

    Duerinckx, Mitia; Gloria, Antoine

    2016-09-01

    We consider the well-trodden ground of the problem of the homogenization of random integral functionals. When the integrand has standard growth conditions, the qualitative theory is well-understood. When it comes to unbounded functionals, that is, when the domain of the integrand is not the whole space and may depend on the space-variable, there is no satisfactory theory. In this contribution we develop a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with convex growth. We first prove that if the integrand is convex and has p-growth from below (with p > d, the dimension), then it admits homogenization regardless of growth conditions from above. This result, that crucially relies on the existence and sublinearity at infinity of correctors, is also new in the periodic case. In the case of nonconvex integrands, we prove that a similar homogenization result holds provided that the nonconvex integrand admits a two-sided estimate by a convex integrand (the domain of which may depend on the space variable) that itself admits homogenization. This result is of interest to the rigorous derivation of rubber elasticity from polymer physics, which involves the stochastic homogenization of such unbounded functionals.

  2. Optimizing homogenization by chaotic unmixing?

    NASA Astrophysics Data System (ADS)

    Weijs, Joost; Bartolo, Denis

    2016-11-01

    A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.

  3. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    SciTech Connect

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  4. 7 CFR 58.623 - Homogenizer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE....623 Homogenizer. Homogenizer shall comply with 3-A Sanitary Standards....

  5. Homogenization and Numerical Methods for Hyperbolic Equations

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo

    1990-01-01

    This dissertation studies three aspects of analysis and numerical methods for partial differential equations with oscillatory solutions. 1. Homogenization theory for certain linear hyperbolic equations is developed. We derive the homogenized convection equations for linear convection problems with rapidly varying velocity in space and time. We find that the oscillatory solutions are very sensitive to the arithmetic properties of certain parameters, such as the corresponding rotation number and the ratio between the components of the mean velocity field in linear convection. We also show that the oscillatory velocity field in two dimensional incompressible flow behaves like shear flows. 2. The homogenization of scalar nonlinear conservation laws in several space variables with oscillatory initial data is also discussed. We prove that the initial oscillations will be eliminated for any positive time when the equations are non-degenerate. This is also true for degenerate equations if there is enough mixing among the initial oscillations in the degenerate direction. Otherwise, the initial oscillation, for which the homogenized equation is obtained, will survive and be propagated. The large-time behavior of conservation laws with several space variables is studied. We show that, under a new nondegenerate condition (the second derivatives of the flux functions are linearly independent in any interval), a piecewise smooth periodic solution with converge strongly to the mean value of initial data. This generalizes Glimm and Lax's result for the one dimensional problem (3). 3. Numerical simulations of the oscillatory solutions are also carried out. We give some error estimate for varepsilon-h resonance ( varepsilon: oscillation wave length, h: numerical step) and prove essential convergence (24) of order alpha < 1 for some numerical schemes. These include upwind schemes and particle methods for linear hyperbolic equations with oscillatory coefficients. A stochastic analysis

  6. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  7. Coherence delay augmented laser beam homogenizer

    DOEpatents

    Rasmussen, P.; Bernhardt, A.

    1993-06-29

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  8. Coherence delay augmented laser beam homogenizer

    DOEpatents

    Rasmussen, Paul; Bernhardt, Anthony

    1993-01-01

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  9. Orthogonality Measurement for Homogenous Projects-Bases

    ERIC Educational Resources Information Center

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  10. Numerical experiments in homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Rogallo, R. S.

    1981-01-01

    The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.

  11. Homogeneous cosmologies as group field theory condensates

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2014-06-01

    We give a general procedure, in the group field theory (GFT) formalism for quantum gravity, for constructing states that describe macroscopic, spatially homogeneous universes. These states are close to coherent (condensate) states used in the description of Bose-Einstein condensates. The condition on such states to be (approximate) solutions to the quantum equations of motion of GFT is used to extract an effective dynamics for homogeneous cosmologies directly from the underlying quantum theory. The resulting description in general gives nonlinear and nonlocal equations for the `condensate wavefunction' which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates. We show the general form of the effective equations for current quantum gravity models, as well as some concrete examples. We identify conditions under which the dynamics becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces the classical Friedmann equation in vacuum with positive spatial curvature. We show how the formalism can be consistently extended from Riemannian signature to Lorentzian signature models, and discuss the addition of matter fields, obtaining the correct coupling of a massless scalar in the Friedmann equation from the most natural extension of the GFT action. We also outline the procedure for extending our condensate states to include cosmological perturbations. Our results form the basis of a general programme for extracting effective cosmological dynamics directly from a microscopic non-perturbative theory of quantum gravity.

  12. Etude de la resistance en fatigue des materiaux bitumineux

    NASA Astrophysics Data System (ADS)

    Touhara, Radouen

    The goal of this research program is to evaluate and characterize the fatigue behaviour of two GB20 hot mix asphalt made with two different bitumen. One of them is made in laboratory with a straight-run PG58-28 bitumen, while the second mix was made in an asphalt plant with a PG64-28 bitumen. Two characterization tests, in homogeneous conditions, done in traction/compression on cylindrical specimens are used in this study. First, a complex modulus test performed in the linear viscoelasticity (LVE) domain is used to characterize the mixes and second, a fatigue test is done to evaluate the mixes performances. The fatigue tests were done in strain controlled at different amplitude. All fatigue tests were performed at 10Hz, but at different temperatures (10, 20 and 30°C) in order to evaluate the effect of the temperature on the fatigue behaviour of those mixes. In this document, the results are presented, and the analysis of the results as a function of the grade of bitumen, the tests’ temperature and the dispersion of the results is performed. Also, the DGCB method is applied to the fatigue results to calculate the rate of damage per cycle followed by a study of the different failure criteria (Nf) to predict the fatigue life of asphalt mixes. Keywords: bituminous materials, fatigue, complex modulus, Damage.

  13. Homogeneous modes of cosmological instantons

    SciTech Connect

    Gratton, Steven; Turok, Neil

    2001-06-15

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or Coleman{endash}De Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe.

  14. Reciprocity theory of homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  15. Central Andean temperature and precipitation measurements and its homogenization

    NASA Astrophysics Data System (ADS)

    Hunziker, Stefan; Gubler, Stefanie

    2015-04-01

    Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.

  16. Toward a homogeneous and efficient batch-tray dryer

    SciTech Connect

    Khattab, N.M.

    1996-06-01

    In batch-tray dryers, with equal loading of trays, a nonhomogeneous drying of the product may result. This will degrade the quality of the dried product, as some of it will be either overdried or underdried. To obtain homogeneous drying, the trays must be loaded in accordance with the condition of the inlet air to each tray, i.e., as the air gets cooler and more saturated with moisture when moving upward, the tray loading should be reduced. The aim of the present work is to develop an analytical method for obtaining the best loading pattern in batch-tray dryers, that guarantees a homogeneous and efficient drying of the product. A mathematical model that describes the mass and heat transfer inside the dryer is proposed. Homogeneous drying is achieved by solving the model under constraints imposed by some proposed control functions, giving as a result the loading of different trays. An algorithm of the calculation procedures is given, and an application to study drying of apricots is demonstrated. In addition, the performance of the dryer, loaded so as to achieve homogeneous drying of the product, was studied under a wide range of inlet air conditions to determine the one that gives maximum productivity of the dryer. The final result of those calculations is to obtain the necessary condition for a product of good quality dried in the most efficient way.

  17. Pyroxene Homogenization and the Isotopic Systematics of Eucrites

    NASA Astrophysics Data System (ADS)

    Nyquist, L. E.; Bogard, D. D.

    1996-01-01

    The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.

  18. Numerical modeling of the acoustic wave propagation across a homogenized rigid microstructure in the time domain

    NASA Astrophysics Data System (ADS)

    Lombard, Bruno; Maurel, Agnès; Marigo, Jean-Jacques

    2017-04-01

    Homogenization of a thin micro-structure yields effective jump conditions that incorporate the geometrical features of the scatterers. These jump conditions apply across a thin but nonzero thickness interface whose interior is disregarded. This paper aims (i) to propose a numerical method able to handle the jump conditions in order to simulate the homogenized problem in the time domain, (ii) to inspect the validity of the homogenized problem when compared to the real one. For this purpose, we adapt the Explicit Simplified Interface Method originally developed for standard jump conditions across a zero-thickness interface. Doing so allows us to handle arbitrary-shaped interfaces on a Cartesian grid with the same efficiency and accuracy of the numerical scheme than those obtained in a homogeneous medium. Numerical experiments are performed to test the properties of the numerical method and to inspect the validity of the homogenization problem.

  19. Etude sur les tendons en materiaux composites et leur application aux ancrages postcontraints

    NASA Astrophysics Data System (ADS)

    Chennouf, Adil

    L'objectif general de la presente these est d'evaluer le comportement a l'arrachement et au fluage d'ancrages injectes constitues de tendons en materiaux composites afin d'etablir des recommandations plus appropriees et realistes pour le dimensionnement et la conception. Quatre types de tendons en materiaux composites, deux a base de fibres d'aramide et deux a base de fibres de carbone, ont ete utilises dans l'etude. Les travaux de recherche de cette these ont porte notamment sur: (I) Une caracterisation physique et mecanique des tendons en materiaux composites utilises dans l'etude. (II) Une etude en laboratoire sur les coulis de scellement. La premiere etape de cette etude a concerne le developpement d'un coulis de scellement performant adapte aux tendons en materiaux composites et a differentes situations d'injection. La seconde etape a traite des essais de caracterisations physique et mecanique du coulis de scellement developpe comparativement a trois coulis de scellement usuels d'un meme rapport E/L de 0,4. (III) Une etude sur des modeles reduits d'ancrages injectes. (IV) Une etude sur des modeles d'ancrages a grande echelle. La synthese de ces etudes a permis d'enoncer les principales conclusions suivantes: (1) Les valeurs moyennes des charges de rupture des tendons en materiaux composites ont ete de 1% a 29% superieures a celles specifiees par les manufacturiers. (2) L'etude sur les coulis de scellement a permis le developpement de coulis de ciment repondant aux criteres fixes, soient une grande stabilite, une bonne fluidite, une legere expansion et de bonnes caracteristiques mecaniques. (3) Les tendons en materiaux composites ont montre des contraintes d'adherence maximum superieures a celles des tendons en acier. (4) Le type de fibre, la configuration et le fini de surface des tendons en materiaux composites gouvernent leur resistance a l'adherence. (5) L'introduction de sable et d'autres ajouts comme les fines de silice et la poudre d'aluminium au coulis

  20. The Homogenization and Optimization of Thermoelectric Composites

    DTIC Science & Technology

    2015-04-17

    AFRL-OSR-VA-TR-2015-0090 The Homogenization and Optimization of Thermoelectric Composites Jiangyu Li UNIVERSITY OF WASHINGTON Final Report 04/17/2015...SUBTITLE The Homogenization and Optimization of Thermoelectric Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0325 5c. PROGRAM ELEMENT...behavior of thermoelectric composites using rigorous homogenization technique in this project. In the last three years, our accomplishment includes: (1

  1. STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR

    DOEpatents

    Busey, H.M.

    1958-06-01

    A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.

  2. Homogeneous catalysts in hypersonic combustion

    SciTech Connect

    Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

    1989-01-01

    Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

  3. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    SciTech Connect

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  4. Singing as a Therapeutic Agent, inThe Etude, 1891-1949.

    PubMed

    Hunter

    1999-01-01

    The Etude music magazine, founded by Theodore Presser, was one of a number of popular music magazines published in the years prior to the establishment of the music therapy profession in 1950. During its publication run from 1883 to 1957, over 100 music therapy related articles appeared, including 13 on the health benefits of singing published between 1891 and 1949. Written by authors with diverse backgrounds, such as the famous Battle Creek, Michigan physician John Harvey Kellogg and Boston music critic Louis C. Elson, the articles contained consistent and adamant support regarding the health benefits of singing. The advantages described were both physical and psychological, and were recommended prophylactically for well persons and therapeutically for ill persons. Although the articles varied in perspective, from philosophical to theoretical to pedagogical, there is a consistent holistic medicine theme that appeared almost ahead of its time and no doubt linked to the push for vocal music education in that era. The importance of The Etude in promulgating ideas that helped shape the early practice of music therapy should not be underestimated. For much of its publication run The Etude was the largest music periodical in print, reaching its peak circulation of 250,000 copies per month in 1924.

  5. Iodothyronine Metabolism in Rat Liver Homogenates

    PubMed Central

    Kaplan, Michael M.; Utiger, Robert D.

    1978-01-01

    To investigate mechanisms of extrathyroidal thyroid hormone metabolism, conversion of thyroxine (T4) to 3,5,3′-triiodothyronine (T3) and degradation of 3,3′,5′-triiodothyronine (rT3) were studied in rat liver homogenates. Both reactions were enzymatic. For conversion of T4 to T3, the Km of T4 was 7.7 μM, and the Vmax was 0.13 pmol T3/min per mg protein. For rT3 degradation, the Km of rT3 was 7.5 nM, and the Vmax was 0.36 pmol rT3/min per mg protein. Production of rT3 or degradation of T4 or T3 was not detected under the conditions employed. rT3 was a potent competitive inhibitor of T4 to T3 conversion with a Ki of 4.5 nM; 3,3′-diiodothyronine was a less potent inhibitor of this reaction. T4 was a competitive inhibitor of rT3 degradation with a Ki of 10.2 μM. Agents which inhibited both reactions included propylthiouracil, which appeared to be an allosteric inhibitor, 2,4-dinitrophenol, and iopanoic acid. Sodium diatrizoate had a weak inhibitory effect. No inhibition was found with α-methylparatyrosine, Fe+2, Fe+3, reduced glutathione, β-hydroxybutyrate, or oleic acid. Fasting resulted in inhibition of T4 to T3 conversion and of rT3 degradation by rat liver homogenates which was reversible after refeeding. Serum T4, T3, and thyrotropin concentrations fell during fasting, with no decrease in serum protein binding as assessed by a T3-charcoal uptake. There was no consistent change in serum rT3 concentrations. Dexamethasone had no effect in vitro. In vivo dexamethasone administration resulted in elevated serum rT3 concentrations after 1 day, and after 5 days, in inhibition of T4 to T3 conversion and rT3 degradation without altering serum T4, T3, or thyrotropin concentrations. Endotoxin treatment had no effect of iodothyronine metabolism in liver homogenates. In kidney homogenates the reaction rates and response to propylthiouracil in vitro were similar to those in liver. No significant T4 to T3 conversion or rT3 production or degradation could be detected

  6. Spatially homogeneous rotating world models.

    NASA Technical Reports Server (NTRS)

    Ozsvath, I.

    1971-01-01

    The mathematical problem encountered when looking for the simplest expanding and rotating model of the universe without the compactness condition for the space sections is formulated. The Lagrangian function is derived for four different rotating universes simultaneously. These models correspond in a certain sense to Godel's (1950) ?symmetric case.'

  7. Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems

    NASA Astrophysics Data System (ADS)

    Hienola, A. I.; Vehkamäki, H.; Riipinen, I.; Kulmala, M.

    2009-03-01

    Binary heterogeneous nucleation of water-succinic/glutaric/malonic/adipic acid on nanometer-sized particles is investigated within the frame of classical heterogeneous nucleation theory. Homogeneous nucleation is also included for comparison. It is found that the nucleation probabilities depend on the contact angle and on the size of the seed particles. New thermodynamical properties, such as saturation vapor pressure, density and surface tension for all the dicarboxylic acid aqueous solutions are included in the calculations. While the new surface tension and density formulations do not bring any significant difference in the computed nucleation rate for homogeneous nucleation for succinic and glutaric acids, the use of the newly derived equations for the vapor pressure decrease the acid concentrations in gas phase by 3 orders of magnitude. According to our calculations, the binary heterogeneous nucleation of succinic acid-water and glutaric acid-water - although it requires a 3-4 orders of magnitude lower vapor concentrations than the homogeneous nucleation - cannot take place under atmospheric conditions. On the other hand binary homogeneous nucleation of adipic acid-water systems might be possible under conditions occuring in upper boundary layer. However, a more detailed characterization of the interaction between the surface and the molecules of the nucleating vapor should be considered in the future.

  8. Benchmarking homogenization algorithms for monthly data

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  9. L'etude de l'InP et du GaP suite a l'implantation ionique de Mn et a un recuit thermique

    NASA Astrophysics Data System (ADS)

    Bucsa, Ioan Gigel

    Cette these est dediee a l'etude des materiaux InMnP et GaMnP fabriques par implantation ionique et recuit thermique. Plus precisement nous avons investigue la possibilite de former par implantation ionique des materiaux homogenes (alliages) de InMnP et GaMnP contenant de 1 a 5 % atomiques de Mn qui seraient en etat ferromagnetique, pour des possibles applications dans la spintronique. Dans un premier chapitre introductif nous donnons les motivations de cette recherche et faisons une revue de la litterature sur ce sujet. Le deuxieme chapitre decrit les principes de l'implantation ionique, qui est la technique utilisee pour la fabrication des echantillons. Les effets de l'energie, fluence et direction du faisceau ionique sur le profil d'implantation et la formation des dommages seront mis en evidence. Aussi dans ce chapitre nous allons trouver des informations sur les substrats utilises pour l'implantation. Les techniques experimentales utilisees pour la caracterisation structurale, chimique et magnetique des echantillons, ainsi que leurs limitations sont presentees dans le troisieme chapitre. Quelques principes theoriques du magnetisme necessaires pour la comprehension des mesures magnetiques se retrouvent dans le chapitre 4. Le cinquieme chapitre est dedie a l'etude de la morphologie et des proprietes magnetiques des substrats utilises pour implantation et le sixieme chapitre, a l'etude des echantillons implantes au Mn sans avoir subi un recuit thermique. Notamment nous allons voir dans ce chapitre que l'implantation de Mn a plus que 1016 ions/cm 2 amorphise la partie implantee du materiau et le Mn implante se dispose en profondeur sur un profil gaussien. De point de vue magnetique les atomes implantes se trouvent dans un etat paramagnetique entre 5 et 300 K ayant le spin 5/2. Dans le chapitre 7 nous presentons les proprietes des echantillons recuits a basses temperatures. Nous allons voir que dans ces echantillons la couche implantee est polycristalline et les

  10. Spatial homogeneity criteria for active media of cataphoresis repetitively pulsed metal vapour lasers

    SciTech Connect

    Chebotarev, Gennady D; Prutsakov, Oleg O; Latush, Evgeny L

    2005-07-31

    The formation of the transverse distribution of the metal vapour concentration in repetitively pulsed lasers is analysed. The criterion for the homogeneity of this distribution is found. The optimal conditions for excitation of the active media of cataphoresis repetitively pulsed metal vapour lasers are determined under which a high degree of both longitudinal and transverse homogeneity is achieved. (active media)

  11. Etude theorique des fluctuations structurales dans les composes organiques a dimensionnalite reduite

    NASA Astrophysics Data System (ADS)

    Dumoulin, Benoit

    Les systemes a dimensionnalite reduite constituent maintenant une branche entiere de la physique de la matiere condensee. Cette derniere s'est developpee rapidement au cours des dernieres annees, avec la decouverte des materiaux organiques qui presentent, justement, des proprietes physiques fortement anisotropes. Cette these presente une etude en trois parties de plusieurs composes organiques qui, bien que tres differents du point de vue de leurs compositions chimiques et de leurs proprietes physiques a haute temperature, subissent tous une instabilite structurale a tres basse temperature. De plus, dans chacun des cas, l'instabilite structurale est precedee d'un important regime fluctuatif a partir duquel les proprietes physiques changent de maniere significative. Notre etude suit un ordre chronologique inverse puisque nous nous attardons en premier lieu au cas de composes recemment decouverts: les composes de la famille des (BCPTTF)2X (X = PF6 , AsF6). Ces derniers sont des isolants magnetiques a la temperature ambiante et subissent une instabilite structurale de type spin-Peierls a une temperature appelee TSP. En particulier, nous nous interessons a l'etude des proprietes physiques de ces systemes dans le regime fluctuatif, qui precede cette instabilite. Notre etude theorique nous permet de comprendre en detail comment ces systemes s'approchent de l'instabilite struturale. Dans la seconde partie de cette these, nous etudions le regime fluctuatif (pre-transitionnel) observe experimentalement dans le compose de (TMTTF)2PF6. Ce compose organique, dont la structure s'apparente aux sels de Bechgaard, subit une instabilite de type spin-Peierls a une temperature T SP = 19K. Bien que ce compose possede la particularite d'etre un bon conducteur a la temperature ambiante, il subit une transition de type Mott-Hubbard a une temperature Trho ≈ 220K et devient alors un isolant magnetique, analogue aux composes de la famille des (BCPTTF)2X. Le regime fluctuatif precedant l

  12. Deforestation homogenizes tropical parasitoid-host networks.

    PubMed

    Laliberté, Etienne; Tylianakis, Jason M

    2010-06-01

    Human activities drive biotic homogenization (loss of regional diversity) of many taxa. However, whether species interaction networks (e.g., food webs) can also become homogenized remains largely unexplored. Using 48 quantitative parasitoid-host networks replicated through space and time across five tropical habitats, we show that deforestation greatly homogenized network structure at a regional level, such that interaction composition became more similar across rice and pasture sites compared with forested habitats. This was not simply caused by altered consumer and resource community composition, but was associated with altered consumer foraging success, such that parasitoids were more likely to locate their hosts in deforested habitats. Furthermore, deforestation indirectly homogenized networks in time through altered mean consumer and prey body size, which decreased in deforested habitats. Similar patterns were obtained with binary networks, suggesting that interaction (link) presence-absence data may be sufficient to detect network homogenization effects. Our results show that tropical agroforestry systems can support regionally diverse parasitoid-host networks, but that removal of canopy cover greatly homogenizes the structure of these networks in space, and to a lesser degree in time. Spatiotemporal homogenization of interaction networks may alter coevolutionary outcomes and reduce ecological resilience at regional scales, but may not necessarily be predictable from community changes observed within individual trophic levels.

  13. Evaluation of experimental parameters for growth of homogeneous solid solutions

    NASA Astrophysics Data System (ADS)

    Scheel, Hans J.; Swendsen, Robert H.

    2001-12-01

    In this paper, we discuss the experimental conditions required to grow large two-component crystals from homogeneous solid solutions. Building on the work of Burton, Prim, and Slichter and that of Van Erk, we are able to establish that the concentration fluctuations for diffusion-limited growth are rather insensitive to hydrodynamic fluctuations. This enables a crystal grower to take advantage of forced convection to optimize growth rates without aggravating the striation problem.

  14. Uniqueness of the differential Mueller matrix of uniform homogeneous media.

    PubMed

    Devlaminck, Vincent; Ossikovski, Razvigor

    2014-06-01

    We show that the differential matrix of a uniform homogeneous medium containing birefringence may not be uniquely determined from its Mueller matrix, resulting in the potential existence of an infinite set of elementary polarization properties parameterized by an integer parameter. The uniqueness depends on the symmetry properties of a special differential matrix derived from the eigenvalue decomposition of the Mueller matrix. The conditions for the uniqueness of the differential matrix are identified, physically discussed, and illustrated in examples from the literature.

  15. Homogeneous cosmological models in Yang's gravitation theory

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Pavelle, R.

    1979-01-01

    We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.

  16. Magnifying absolute instruments for optically homogeneous regions

    SciTech Connect

    Tyc, Tomas

    2011-09-15

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  17. Producing tritium in a homogenous reactor

    DOEpatents

    Cawley, William E.

    1985-01-01

    A method and apparatus are described for the joint production and separation of tritium. Tritium is produced in an aqueous homogenous reactor and heat from the nuclear reaction is used to distill tritium from the lower isotopes of hydrogen.

  18. Model Misspecification: Finite Mixture or Homogeneous?

    PubMed Central

    Tarpey, Thaddeus; Yun, Dong; Petkova, Eva

    2007-01-01

    A common problem in statistical modelling is to distinguish between finite mixture distribution and a homogeneous non-mixture distribution. Finite mixture models are widely used in practice and often mixtures of normal densities are indistinguishable from homogenous non-normal densities. This paper illustrates what happens when the EM algorithm for normal mixtures is applied to a distribution that is a homogeneous non-mixture distribution. In particular, a population-based EM algorithm for finite mixtures is introduced and applied directly to density functions instead of sample data. The population-based EM algorithm is used to find finite mixture approximations to common homogeneous distributions. An example regarding the nature of a placebo response in drug treated depressed subjects is used to illustrate ideas. PMID:18974843

  19. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization.

    PubMed

    Li, Yong; Zhao, Xiuhua; Zu, Yuangang; Zhang, Yin

    2015-07-25

    The aim of this study was to develop an alternative, more bio-available, better tolerated paclitaxel nanosuspension (PTXNS) for intravenous injection in comparison with commercially available Taxol(®) formulation. In this study, PTXNS was prepared by emulsification method through combination of high speed homogenizer and high pressure homogenization, followed by lyophilization process for intravenous administration. The main production parameters including volume ratio of organic phase in water and organic phase (Vo:Vw+o), concentration of PTX, content of PTX and emulsification time (Et), homogenization pressure (HP) and passes (Ps) for high pressure homogenization were optimized and their effects on mean particle size (MPS) and particle size distribution (PSD) of PTXNS were investigated. The characteristics of PTXNS, such as, surface morphology, physical status of paclitaxel (PTX) in PTXNS, redispersibility of PTXNS in purified water, in vitro dissolution study and bioavailability in vivo were all investigated. The PTXNS obtained under optimum conditions had an MPS of 186.8 nm and a zeta potential (ZP) of -6.87 mV. The PTX content in PTXNS was approximately 3.42%. Moreover, the residual amount of chloroform was lower than the International Conference on Harmonization limit (60 ppm) for solvents. The dissolution study indicated PTXNS had merits including effect to fast at the side of raw PTX and sustained-dissolution character compared with Taxol(®) formulation. Moreover, the bioavailability of PTXNS increased 14.38 and 3.51 times respectively compared with raw PTX and Taxol(®) formulation.

  20. Steps Towards a Homogenized Sub-Monthly Temperature Monitoring Tool

    NASA Astrophysics Data System (ADS)

    Rennie, J.; Kunkel, K.

    2015-12-01

    Land surface air temperature products have been essential for monitoring the evolution of the climate system. Before a temperature dataset is included in such reports, it is important that non-climatic influences be removed or changed so the dataset is considered homogenous. These inhomogeneities include changes in station location, instrumentation and observing practices. Very few datasets are free of these influences and therefore require homogenization schemes. While many homogenized products exist on the monthly time scale, few daily products exist, due to the complication of removing break points that are truly inhomogeneous rather than solely by chance (for example, sharp changes due to synoptic conditions). Since there is a high demand for sub-monthly monitoring tools, there is a need to address these issues. The Global Historical Climatology Network - Daily dataset provides a strong foundation of the Earth's climate on the daily scale, and is the official archive of daily data in the United States. While the dataset adheres to a strict set of quality assurance, no daily adjustments are applied. However, this dataset lays the groundwork for other products distributed at NCEI-Asheville, including the climate divisional dataset (nClimDiv), the North American monthly homogenized product (Northam) and the 1981-2010 Normals. Since these downstream products already provide homogenization and base period schemes, it makes sense to combine these datasets to provide a sub-monthly monitoring tool for the United States. Using these datasets already in existence, monthly adjustments are applied to daily data, and then anomalies are created using a base climatology defined by the 1981-2010 Normals. Station data is then aggregated to the state level and then regions defined by the National Climate Assessment. Ranks are then created to provide informational monitoring tools that could be of use for public dissemination. This presentation goes over the product, including

  1. Line segments in homogeneous scalar turbulence

    NASA Astrophysics Data System (ADS)

    Gauding, Michael; Goebbert, Jens Henrik; Hasse, Christian; Peters, Norbert

    2015-09-01

    The local structure of a turbulent scalar field in homogeneous isotropic turbulence is analyzed by direct numerical simulations (DNS) with different Taylor micro-scale based Reynolds numbers between 119 and 529. A novel signal decomposition approach is introduced where the signal of the scalar along a straight line is partitioned into segments based on the local extremal points of the scalar field. These segments are then parameterized by the distance ℓ between adjacent extremal points and the scalar difference Δϕ at the extrema. Both variables are statistical quantities and a joint distribution function of these quantities contains most information to statistically describe the scalar field. It is highlighted that the marginal distribution function of the length becomes independent of Reynolds number when normalized by the mean length ℓm. From a statistical approach, it is further shown that the mean length scales with the Kolmogorov length, which is also confirmed by DNS. For turbulent mixing, the scalar gradient plays a paramount role. Turbulent scalar fields are characterized by cliff-ramp-like structures manifesting the occurrence of localized large scalar gradients. To study turbulent mixing, a segment-based gradient is defined as Δϕ/ℓ. Joint statistics of the length and the segment-based gradient provide novel understanding of cliff-ramp-like structures. Ramp-like structures are unveiled by the asymmetry of the joint distribution function of the segment-based gradient and the length. Cliff-like structures are further analyzed by conditional statistics and it is shown from DNS that the width of cliffs scales with the Kolmogorov length scale.

  2. Homogeneous and heterogenized iridium water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  3. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  4. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    NASA Astrophysics Data System (ADS)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  5. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation

    PubMed Central

    Zografos, K.; Oliveira, M. S. N.

    2016-01-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523

  6. Physical Justification for Negative Remanent Magnetization in Homogeneous Nanoparticles

    PubMed Central

    Gu, Shuo; He, Weidong; Zhang, Ming; Zhuang, Taisen; Jin, Yi; ElBidweihy, Hatem; Mao, Yiwu; Dickerson, James H.; Wagner, Michael J.; Torre, Edward Della; Bennett, Lawrence H.

    2014-01-01

    The phenomenon of negative remanent magnetization (NRM) has been observed experimentally in a number of heterogeneous magnetic systems and has been considered anomalous. The existence of NRM in homogenous magnetic materials is still in debate, mainly due to the lack of compelling support from experimental data and a convincing theoretical explanation for its thermodynamic validation. Here we resolve the long-existing controversy by presenting experimental evidence and physical justification that NRM is real in a prototype homogeneous ferromagnetic nanoparticle, an europium sulfide nanoparticle. We provide novel insights into major and minor hysteresis behavior that illuminate the true nature of the observed inverted hysteresis and validate its thermodynamic permissibility and, for the first time, present counterintuitive magnetic aftereffect behavior that is consistent with the mechanism of magnetization reversal, possessing unique capability to identify NRM. The origin and conditions of NRM are explained quantitatively via a wasp-waist model, in combination of energy calculations. PMID:25183061

  7. Physical justification for negative remanent magnetization in homogeneous nanoparticles.

    PubMed

    Gu, Shuo; He, Weidong; Zhang, Ming; Zhuang, Taisen; Jin, Yi; ElBidweihy, Hatem; Mao, Yiwu; Dickerson, James H; Wagner, Michael J; Della Torre, Edward; Bennett, Lawrence H

    2014-09-03

    The phenomenon of negative remanent magnetization (NRM) has been observed experimentally in a number of heterogeneous magnetic systems and has been considered anomalous. The existence of NRM in homogenous magnetic materials is still in debate, mainly due to the lack of compelling support from experimental data and a convincing theoretical explanation for its thermodynamic validation. Here we resolve the long-existing controversy by presenting experimental evidence and physical justification that NRM is real in a prototype homogeneous ferromagnetic nanoparticle, an europium sulfide nanoparticle. We provide novel insights into major and minor hysteresis behavior that illuminate the true nature of the observed inverted hysteresis and validate its thermodynamic permissibility and, for the first time, present counterintuitive magnetic aftereffect behavior that is consistent with the mechanism of magnetization reversal, possessing unique capability to identify NRM. The origin and conditions of NRM are explained quantitatively via a wasp-waist model, in combination of energy calculations.

  8. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.

    PubMed

    Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N

    2016-07-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.

  9. Contributions a L'etude de Dispositifs D'optique Integree

    NASA Astrophysics Data System (ADS)

    Touam, Tahar

    Cette these contient des contributions a l'etude de deux champs du vaste domaine de l'optique integree. A cet effet, nous avons divise notre travail en deux grandes parties:. Dans une premiere partie, nous traitons le probleme de la realisation d'une nouvelle classe de guides d'onde planaires utilisables dans le domaine de longueur d'onde de l'infrarouge moyen (infrarouge thermique), domaine ou l'apparition anticipee de fibres optiques a pertes extremement faibles rendraient fort interessante l'existence de tels guides d'onde planaires. Dans un premier temps, nous presentons une etude analytique originale d'une structure planaire a profil d'indice gradue, suivie d'une analyse d'un guide canal base sur cette structure. Dans un deuxieme temps, nous decrivons le procede de fabrication par pulverisation atomique d'un guide planaire forme d'arseniure de gallium (AsGa) sur du dioxyde de silicium (SiO_2 ), combinaison de materiau compatible avec l'infrarouge moyen. Finalement, nous presentons une etude de conception d'un reseau de surface destine a coupler la lumiere dans un tel guide, les autres methodes traditionnelles de couplage semblant peu appropriees aux environs de lambda = 10 mum. Dans une deuxieme partie, nous traitons le probleme de la jonction Y en optique integree, jonction qui soufre de pertes tres importantes des que l'angle d'ouverture devient interessant pour le concepteur de circuits integres optiques. L'analyse est basee sur la methode numerique dite BPM (Beam Propagation Method; methode de propagation du faisceau) qui fait l'objet d'un bref rappel. Nous poursuivons avec l'etude et l'optimisation d'une nouvelle jonction Y dont l'essence est l'utilisation du phenomene de diffraction a travers trois fentes de phase. Nous obtenons ainsi une tres bonne jonction, separant proprement le faisceau, a une ouverture de 10 degres. Finalement, nous faisons un rappel d'un profil d'indice dit "ideal" pour guides courbes et nous proposons l'utilisation de tels guides

  10. Analysis of homogeneous/non-homogeneous nanofluid models accounting for nanofluid-surface interactions

    NASA Astrophysics Data System (ADS)

    Ahmad, R.

    2016-07-01

    This article reports an unbiased analysis for the water based rod shaped alumina nanoparticles by considering both the homogeneous and non-homogeneous nanofluid models over the coupled nanofluid-surface interface. The mechanics of the surface are found for both the homogeneous and non-homogeneous models, which were ignored in previous studies. The viscosity and thermal conductivity data are implemented from the international nanofluid property benchmark exercise. All the simulations are being done by using the experimentally verified results. By considering the homogeneous and non-homogeneous models, the precise movement of the alumina nanoparticles over the surface has been observed by solving the corresponding system of differential equations. For the non-homogeneous model, a uniform temperature and nanofluid volume fraction are assumed at the surface, and the flux of the alumina nanoparticle is taken as zero. The assumption of zero nanoparticle flux at the surface makes the non-homogeneous model physically more realistic. The differences of all profiles for both the homogeneous and nonhomogeneous models are insignificant, and this is due to small deviations in the values of the Brownian motion and thermophoresis parameters.

  11. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    USGS Publications Warehouse

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  12. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    PubMed

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  13. Method of Mapping Anomalies in Homogenous Material

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.

  14. Computational Homogenization of Defect Driving Forces

    NASA Astrophysics Data System (ADS)

    Ricker, Sarah; Mergheim, Julia; Steinmann, Paul

    Due to the fact that many engineering materials and also biological tissues possess an underlying (heterogeneous) micro-structure it is not sufficient to simulate these materials by pre-assumed overall constitutive assumptions. Therefore, we apply a homogenization scheme, which determines the macroscopic material behavior based on analysis of the underlying micro-structure. In the work at hand focus is put on the extension of the classical computational homogenization scheme towards the homogenization of material forces. Therefore, volume forces have to incorporated which may emerge due to inhomogeneities in the material. With assistance of this material formulation and the equivalence of the J-integral and the material force at a crack tip, studies on the influence of the micro-structure onto the macroscopic crack-propagation are carried out.

  15. Stochastic estimation of organized turbulent structure - Homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Adrian, Ronald J.; Moin, Parviz

    1988-01-01

    A generalization of the conditional-eddy concept is proposed in which the conditional event specifies the local kinematic state in terms of the velocity and the deformation. Results are presented for stochastically estimated conditional eddies given the local kinematics. The equation governing the probability density function of a kinematic state has been derived for constant-property incompressible flow, providing a link between coherent flow structures corresponding to the conditional eddies and the modelling of turbulent transport. The primary contributions to the second-quadrant and fourth-quadrant Reynolds-stress events in homogeneous shear flow are shown to come from flow induced through the 'legs' and close to the 'heads' of upright and inverted 'hairpins', respectively.

  16. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  17. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, N.; Kaya, B.S.; Godt, J.W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.

  18. Critical Casimir forces between homogeneous and chemically striped surfaces.

    PubMed

    Parisen Toldin, Francesco; Tröndle, Matthias; Dietrich, S

    2013-11-01

    Recent experiments have measured the critical Casimir force acting on a colloid immersed in a binary liquid mixture near its continuous demixing phase transition and exposed to a chemically structured substrate. Motivated by these experiments, we study the critical behavior of a system, which belongs to the Ising universality class, for the film geometry with one planar wall chemically striped, such that there is a laterally alternating adsorption preference for the two species of the binary liquid mixture, which is implemented by surface fields. For the opposite wall we employ alternatively a homogeneous adsorption preference or homogeneous Dirichlet boundary conditions, which within a lattice model are realized by open boundary conditions. By means of mean-field theory, Monte Carlo simulations, and finite-size scaling analysis we determine the critical Casimir force acting on the two parallel walls and its corresponding universal scaling function. We show that in the limit of stripe widths small compared with the film thickness, on the striped surface the system effectively realizes Dirichlet boundary conditions, which generically do not hold for actual fluids. Moreover, the critical Casimir force is found to be attractive or repulsive, depending on the width of the stripes of the chemically patterned surface and on the boundary condition applied to the opposing surface.

  19. Hyperelastic bodies under homogeneous Cauchy stress induced by non-homogeneous finite deformations

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Neff, Patrizio

    2017-03-01

    We discuss whether homogeneous Cauchy stress implies homogeneous strain in isotropic nonlinear elasticity. While for linear elasticity the positive answer is clear, we exhibit, through detailed calculations, an example with inhomogeneous continuous deformation but constant Cauchy stress. The example is derived from a non rank-one convex elastic energy.

  20. Effect of high-pressure homogenization on different matrices of food supplements.

    PubMed

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry.

  1. Taxonomic homogenization of woodland plant communities over 70 years.

    PubMed

    Keith, Sally A; Newton, Adrian C; Morecroft, Michael D; Bealey, Clive E; Bullock, James M

    2009-10-07

    Taxonomic homogenization (TH) is the increasing similarity of the species composition of ecological communities over time. Such homogenization represents a form of biodiversity loss and can result from local species turnover. Evidence for TH is limited, reflecting a lack of suitable historical datasets, and previous analyses have generated contrasting conclusions. We present an analysis of woodland patches across a southern English county (Dorset) in which we quantified 70 years of change in the composition of vascular plant communities. We tested the hypotheses that over this time patches decreased in species richness, homogenized, or shifted towards novel communities. Although mean species richness at the patch scale did not change, we found increased similarity in species composition among woodlands over time. We concluded that the woodlands have undergone TH without experiencing declines in local diversity or shifts towards novel communities. Analysis of species characteristics suggested that these changes were not driven by non-native species invasions or climate change, but instead reflected reorganization of the native plant communities in response to eutrophication and increasingly shaded conditions. These analyses provide, to our knowledge, the first direct evidence of TH in the UK and highlight the potential importance of this phenomenon as a contributor to biodiversity loss.

  2. Etude des chaines de spins par les methodes de la theorie quantique des champs

    NASA Astrophysics Data System (ADS)

    Allen, Dave

    Notre etude porte sur la chaine de spins en zigzag avec dimerisation dans le cas des spins 1/2 et 1. L'echelle de spin ordinaire et la chaine en zigzag simple en sont des cas particuliers. Dans la limite continue, ces systemes sont decrits par des modeles Wess-Zumino-Witten couples. Afin de pouvoir calculer les fonctions de correlation, nous exposons differentes equivalences quantiques permettant de simplifier les calculs. Dans le cas de chaines de spin 1/2, nous demontrons l'equivalence avec un modele de type Gross-Neveu, en fonction de fermions de Majorana; ces fermions decrivent alors les excitations elementaires du systeme. Nous exposons une vision classique de ces excitations afin de voir les mecanismes de confinement des spinons. Dans le cas de chaines de spin 1, l'etude est plus complexe. Nous pouvons decrire le systeme a l'aide de modeles sine-Gordon perturbes par de nombreuses interactions. En se limitant aux plus importantes, nous pouvons expliquer le comportement du gap en fonction du couplage interchaine observe numeriquement.

  3. RELIABLE COMPUTATION OF HOMOGENEOUS AZEOTROPES. (R824731)

    EPA Science Inventory

    Abstract

    It is important to determine the existence and composition of homogeneous azeotropes in the analysis of phase behavior and in the synthesis and design of separation systems, from both theoretical and practical standpoints. A new method for reliably locating an...

  4. Homogeneous Catalysis by Transition Metal Compounds.

    ERIC Educational Resources Information Center

    Mawby, Roger

    1988-01-01

    Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…

  5. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  6. HSTEP - Homogeneous Studies of Transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2014-04-01

    This paper presents a summary of the HSTEP project: an effort to calculate the physical properties of the known transiting extrasolar planets using a homogeneous approach. I discuss the motivation for the project, list the 83 planets which have already been studied, run through some important aspects of the methodology, and finish with a synopsis of the results.

  7. Homogeneous Immunoassays: Historical Perspective and Future Promise

    NASA Astrophysics Data System (ADS)

    Ullman, Edwin F.

    1999-06-01

    The founding and growth of Syva Company is examined in the context of its leadership role in the development of homogeneous immunoassays. The simple mix and read protocols of these methods offer advantages in routine analytical and clinical applications. Early homogeneous methods were based on insensitive detection of immunoprecipitation during antigen/antibody binding. The advent of reporter groups in biology provided a means of quantitating immunochemical binding by labeling antibody or antigen and physically separating label incorporated into immune complexes from free label. Although high sensitivity was achieved, quantitative separations were experimentally demanding. Only when it became apparent that reporter groups could provide information, not only about the location of a molecule but also about its microscopic environment, was it possible to design practical non-separation methods. The evolution of early homogenous immunoassays was driven largely by the development of improved detection strategies. The first commercial spin immunoassays, developed by Syva for drug abuse testing during the Vietnam war, were followed by increasingly powerful methods such as immunochemical modulation of enzyme activity, fluorescence, and photo-induced chemiluminescence. Homogeneous methods that quantify analytes at femtomolar concentrations within a few minutes now offer important new opportunities in clinical diagnostics, nucleic acid detection and drug discovery.

  8. Spatial Homogeneity and Redshift--Distance Laws

    NASA Astrophysics Data System (ADS)

    Nicoll, J. F.; Segal, I. E.

    1982-06-01

    Spatial homogeneity in the radial direction of low-redshift galaxies is subjected to Kafka-Schmidt V/Vm tests using well-documented samples. Homogeneity is consistent with the assumption of the Lundmark (quadratic redshift-distance) law, but large deviations from homogeneity are implied by the assumption of the Hubble (linear redshift-distance) law. These deviations are similar to what would be expected on the basis of the Lundmark law. Luminosity functions are obtained for each law by a nonparametric statistically optimal method that removes the observational cutoff bias in complete samples. Although the Hubble law correlation of absolute magnitude with redshift is reduced considerably by elimination of the bias, computer simulations show that its bias-free value is nevertheless at a satistically quite significant level, indicating the self-inconsistency of the law. The corresponding Lundmark law correlations are quite satisfactory satistically. The regression of redshift on magnitude also involves radial spatial homogeneity and, according to R. Soneira, has slope determining the redshift-magnitude exponent independently of the luminosity function. We have, however, rigorously proved the material dependence of the regression on this function and here exemplify our treatment by using the bias-free functions indicated, with results consistent with the foregoing argument.

  9. Reduced-order modelling numerical homogenization.

    PubMed

    Abdulle, A; Bai, Y

    2014-08-06

    A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately 'interpolated' in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.

  10. Coherence delay augmented laser beam homogenizer

    SciTech Connect

    Rasmussen, P.; Bernhardt, A.

    1991-12-31

    It is an object of the present invention to provide an apparatus that can reduce the apparent coherence length of a laser beam so the beam can be used with an inexpensive homogenizer to produce an output beam with a uniform spatial intensity across its entire cross section. It is a further object of the invention to provide an improved homogenizer with a variable aperture size that is simple and easily made. It is still an additional object of the invention to provide an improved liquid filled homogenizer utilizing total internal reflection for improved efficiency. These, and other objects of the invention are realized by using a ``coherence delay line,`` according to the present invention, in series between a laser and a homogenizer. The coherence delay line is an optical ``line`` that comprises two mirrors, one partially reflecting, and one totally reflecting, arranged so that light incident from the laser first strikes the partially reflecting mirror. A portion of the beam passes through, and a portion is reflected back to the totally reflecting mirror.

  11. General Theorems about Homogeneous Ellipsoidal Inclusions

    ERIC Educational Resources Information Center

    Korringa, J.; And Others

    1978-01-01

    Mathematical theorems about the properties of ellipsoids are developed. Included are Poisson's theorem concerning the magnetization of a homogeneous body of ellipsoidal shape, the polarization of a dielectric, the transport of heat or electricity through an ellipsoid, and other problems. (BB)

  12. Refined Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates: A Homogeneous Limit Methodology for Zigzag Function Selection

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; DiSciuva, Marco; Gherlone, marco

    2010-01-01

    The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.

  13. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    PubMed

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000.

  14. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  15. Fabrication of homogeneous titania/MWNT composite materials

    SciTech Connect

    Korbely, Barbara; Nemeth, Zoltan; Reti, Balazs; Seo, Jin Won; Magrez, Arnaud; Forro, Laszlo; Hernadi, Klara

    2011-11-15

    Highlights: {yields} Homogenous titania coverage on MWNT surface in a controllable way. {yields} Various titanium alkoxy precursors are suitable for layer formation. {yields} Acetone and ethanol are the best to promote interaction between MWNT and titania. -- Abstract: MWNT/titania nanocomposites were prepared by an impregnation method and subsequent heat treatment at 400 {sup o}C. Precursor compounds such as titanium (IV) propoxide and titanium (IV) ethoxide were used to cover the surface of CNTs under solution conditions. Electron microscopy and X-ray diffraction techniques were carried out to characterize the as-prepared titania layers.

  16. Elastic waves trapped by a homogeneous anisotropic semicylinder

    SciTech Connect

    Nazarov, S A

    2013-11-30

    It is established that the problem of elastic oscillations of a homogeneous anisotropic semicylinder (console) with traction-free lateral surface (Neumann boundary condition) has no eigenvalues when the console is clamped at one end (Dirichlet boundary condition). If the end is free, under additional requirements of elastic and geometric symmetry, simple sufficient conditions are found for the existence of an eigenvalue embedded in the continuous spectrum and generating a trapped elastic wave, that is, one which decays at infinity at an exponential rate. The results are obtained by generalizing the methods developed for scalar problems, which however require substantial modification for the vector problem in elasticity theory. Examples are given and open questions are stated. Bibliography: 53 titles.

  17. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization

    PubMed Central

    Kwiatkowski, M.; Wurlitzer, M.; Krutilin, A.; Kiani, P.; Nimer, R.; Omidi, M.; Mannaa, A.; Bussmann, T.; Bartkowiak, K.; Kruber, S.; Uschold, S.; Steffen, P.; Lübberstedt, J.; Küpker, N.; Petersen, H.; Knecht, R.; Hansen, N.O.; Zarrine-Afsar, A.; Robertson, W.D.; Miller, R.J.D.; Schlüter, H.

    2016-01-01

    Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Biological significance Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. PMID:26778141

  18. Kinematical uniqueness of homogeneous isotropic LQC

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan; Hanusch, Maximilian

    2017-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space {{{R}}\\text{Bohr}} , as well as for the Fleischhack one {R}\\sqcup {{{R}}\\text{Bohr}} . We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on {{{R}}\\text{Bohr}} is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on {R} in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  19. Detonation in shocked homogeneous high explosives

    SciTech Connect

    Yoo, C.S.; Holmes, N.C.; Souers, P.C.

    1995-11-01

    We have studied shock-induced changes in homogeneous high explosives including nitromethane, tetranitromethane, and single crystals of pentaerythritol tetranitrate (PETN) by using fast time-resolved emission and Raman spectroscopy at a two-stage light-gas gun. The results reveal three distinct steps during which the homogeneous explosives chemically evolve to final detonation products. These are (1) the initiation of shock compressed high explosives after an induction period, (2) thermal explosion of shock-compressed and/or reacting materials, and (3) a decay to a steady-state representing a transition to the detonation of uncompressed high explosives. Based on a gray-body approximation, we have obtained the CJ temperatures: 3800 K for nitromethane, 2950 K for tetranitromethane, and 4100 K for PETN. We compare the data with various thermochemical equilibrium calculations. In this paper we will also show a preliminary result of single-shot time-resolved Raman spectroscopy applied to shock-compressed nitromethane.

  20. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  1. Coherent Eigenmodes in Homogeneous MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    The statistical mechanics of Fourier models of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence is discussed, along with their relevance for dissipative magnetofluids. Although statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation, i.e., we have coherent structure. We use eigenanalysis of the modal covariance matrices in the probability density function to explain this phenomena in terms of `broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We provide examples from 2-D and 3-D magnetohydrodynamic simulations of homogeneous turbulence, and show new results from long-time simulations of MHD turbulence with and without a mean magnetic field

  2. Program Logics for Homogeneous Meta-programming

    NASA Astrophysics Data System (ADS)

    Berger, Martin; Tratt, Laurence

    A meta-program is a program that generates or manipulates another program; in homogeneous meta-programming, a program may generate new parts of, or manipulate, itself. Meta-programming has been used extensively since macros were introduced to Lisp, yet we have little idea how formally to reason about meta-programs. This paper provides the first program logics for homogeneous meta-programming - using a variant of MiniML_e^{square} by Davies and Pfenning as underlying meta-programming language. We show the applicability of our approach by reasoning about example meta-programs from the literature. We also demonstrate that our logics are relatively complete in the sense of Cook, enable the inductive derivation of characteristic formulae, and exactly capture the observational properties induced by the operational semantics.

  3. CUDA Simulation of Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John V.; Shum, Victor; Fu, Terry

    2011-01-01

    We discuss very fast Compute Unified Device Architecture (CUDA) simulations of ideal homogeneous incompressible turbulence based on Fourier models. These models have associated statistical theories that predict that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. Prior numerical simulations have shown that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We review the theoretical basis of this "broken ergodicity" as applied to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence. Our new simulations examine the phenomenon of broken ergodicity through very long time and large grid size runs performed on a state-of-the-art CUDA platform. Results comparing various CUDA hardware configurations and grid sizes are discussed. NS and MHD results are compared.

  4. Recent advances in homogeneous nickel catalysis

    NASA Astrophysics Data System (ADS)

    Tasker, Sarah Z.; Standley, Eric A.; Jamison, Timothy F.

    2014-05-01

    Tremendous advances have been made in nickel catalysis over the past decade. Several key properties of nickel, such as facile oxidative addition and ready access to multiple oxidation states, have allowed the development of a broad range of innovative reactions. In recent years, these properties have been increasingly understood and used to perform transformations long considered exceptionally challenging. Here we discuss some of the most recent and significant developments in homogeneous nickel catalysis, with an emphasis on both synthetic outcome and mechanism.

  5. TESTING HOMOGENEITY WITH GALAXY STAR FORMATION HISTORIES

    SciTech Connect

    Hoyle, Ben; Jimenez, Raul; Tojeiro, Rita; Maartens, Roy; Heavens, Alan; Clarkson, Chris

    2013-01-01

    Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past light cone, while observations take place on the light cone. The star formation history (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked luminous red galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal-area contiguous sky patches and 10 redshift slices (0.2 < z < 0.5), which correspond to 120 blocks of volume {approx}0.04 Gpc{sup 3}. Using the SFH in a time period that samples the history of the universe between look-back times 11.5 and 13.4 Gyr as a proxy for homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is no extra variance at all. At 95% credibility, there is no evidence of deviations larger than 5.8%.

  6. Tits Satake projections of homogeneous special geometries

    NASA Astrophysics Data System (ADS)

    Fré, Pietro; Gargiulo, Floriana; Rosseel, Jan; Rulik, Ksenya; Trigiante, Mario; Van Proeyen, Antoine

    2007-01-01

    We organize the homogeneous special geometries, describing as well the couplings of D = 6, 5, 4 and 3 supergravities with eight supercharges, in a small number of universality classes. This relates manifolds on which similar types of dynamical solutions can exist. The mathematical ingredient is the Tits Satake projection of real simple Lie algebras, which we extend to all solvable Lie algebras occurring in these homogeneous special geometries. Apart from some exotic cases all the other, 'very special', homogeneous manifolds can be grouped into seven universality classes. The organization of these classes, which capture the essential features of their basic dynamics, commutes with the r- and c-map. Different members are distinguished by different choices of the paint group, a notion discovered in the context of cosmic billiard dynamics of non-maximally supersymmetric supergravities. We comment on the usefulness of this organization in universality class both in relation with cosmic billiard dynamics and with configurations of branes and orbifolds defining special geometry backgrounds.

  7. Homogeneous Biosensing Based on Magnetic Particle Labels

    PubMed Central

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  8. Numerical homogenization of the Richards equation for unsaturated water flow through heterogeneous soils

    NASA Astrophysics Data System (ADS)

    Li, Na; Yue, Xingye; Ren, Li

    2016-11-01

    Homogenized equations and the corresponding effective constitutive relations are generally necessary for numerically modeling large-scale unsaturated flow processes in soils. Recently, based on the Kirchhoff transformation and the two-scale convergence theory, a homogenization method for the Richards equation with the Mualem-van Genuchten model has been proposed, with a constant model parameter α relating to the inverse of the air-entry pressure and the soil pore size distribution. The homogenized model is computationally efficient and convenient to use because of its explicit expression. In this study, we generalize this method, allowing α to be a spatially distributed random field and proposing a homogenized Richards equation in the mixed form (θ/h) under the condition that the effective hydraulic conductivity tensor is diagonal. This generalization eliminates the limitation of a constant α in practical applications; the proposed homogenized model is meaningful in most situations because the flow problems are influenced mainly by the diagonal terms of conductivity and the off-diagonal terms are often neglected. Two-dimensional numerical tests are conducted in soil profiles with different degrees of spatial heterogeneity structure to illustrate that the homogenized model can capture the fine-scale flow behaviors on coarse grids effectively. Homogenization for the Richards equation with other two commonly used constitutive relations—the Brooks-Corey model and the Gardner-Russo model—is also illustrated in this study.

  9. Evaluation of a locally homogeneous flow model of spray combustion

    NASA Technical Reports Server (NTRS)

    Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.

    1980-01-01

    A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.

  10. Distributed LQR control for discrete-time homogeneous systems

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhang, Fangfang; Han, Chunyan

    2016-11-01

    This paper investigates the distributed linear quadratic regulation (LQR) controller design method for discrete-time homogeneous scalar systems. Based on the optimal centralised control theory, the existence condition for distributed optimal controller is firstly proposed. It shows that the globally optimal distributed controller is dependent on the structure of the penalty matrix. Such results can be used in consensus problems and used to find under which communication topology (may not be an all-to-all form) the optimal distributed controller exists. When the proposed condition cannot hold, a suboptimal design method with the aid of the decomposition of discrete algebraic Riccati equations and robustness of local controllers is proposed. The computation complexity and communication load for each subsystem are only dependent on the number of its neighbours.

  11. Microphysical Modelling of the 1999-2000 Arctic Winter. 3; Impact of Homogeneous Freezing on PSCs

    NASA Technical Reports Server (NTRS)

    Drdla, K.

    2003-01-01

    Simulations of the 1999-2000 winter have tested the effect on polar stratospheric clouds (PSCs) of the homogeneous freezing of liquid ternary solutions into nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD). Proposed laboratory-derived volume-based and surface-based homogeneous freezing rates have both been examined, including different assumptions about the extrapolation of laboratory measurements to atmospheric conditions. Widespread PSC formation and denitrification are possible in several of the scenarios examined. However, the simulations are all unable to explain the solid-phase PSCs observed early in the 1999-2000 winter, and are unable to reproduce the measured extent of vortex denitrification. These problems can both be attributed to the relatively cold temperatures, more than 5 K below the NAT condensation point, necessary for effective homogeneous freezing. Therefore synoptic-scale homogeneous freezing appears unlikely to be the primary mechanism responsible for solid-phase PSC formation.

  12. Le changement comme tradition dans la recherche et la formation a la recherche en biotechnologie et en peripherie Etude de cas en sciences de la sante, sciences naturelles et genie

    NASA Astrophysics Data System (ADS)

    Bourque, Claude Julie

    Le champ de la recherche scientifique et de la formation a la recherche est traverse depuis quelques dizaines d'annees par plusieurs courants et discours associes au changement, mais peu de travaux empiriques permettent de comprendre ce qui change concretement. C'est la contribution originale de cette these au champ de l'education, plus specifiquement a l'etude sociologique de l'enseignement superieur ou sont concentrees les activites liees a la triade thematique du programme doctoral dans lequel elle a ete produite : recherche, formation et pratique. L'enquete-terrain a ete realisee en 2009 et 2010 aupres de 808 repondants affilies a 60 etablissements au Quebec et a produit un vaste materiau de nature mixte (donnees quantitatives et qualitatives). Un portrait de la nebuleuse biotechnologique qui touche les secteurs des sciences de la sante, des sciences naturelles et du genie a ete realise. Ce domaine concerne des dizaines de disciplines et se revele de nature transdisciplinaire, mais les pratiques n'y sont pas davantage marquees par le changement que celles d'autres domaines connexes. Les dynamiques sociales ont fait l'objet d'analyses comparatives dans quatre contextes: le choix des programmes, des objets et des methodes, le financement, la diffusion et la planification de la carriere. Les resultats indiquent que les echanges entre les agents traditionnellement situes au coeur des activites de recherche dominent ces dynamiques dans tous les contextes etudies. L'etude des representations au fondement des pratiques a revele l'existence de trois ecoles de pensee qui coexistent dans le champ scientifique: academique, pragmatique et economiste. Ces ecoles permettent de categoriser les agents en fonction des zones de fractures qui marquent leurs oppositions tout en identifiant ce qu'ils ont en commun. Les representations et les pratiques liees a la formation temoignent d'un habitus plutot homogene, alors que les contradictions semblent plus souvent ancrees dans des

  13. Overview of ICF program at Centre D{close_quote}Etudes de Limeil-Valenton

    SciTech Connect

    Cel-V Laser Team

    1996-05-01

    The major objectives of the CEA-DAM laser program is to determine the various requirements to achieve thermonuclear fusion in laboratory. We report here recent results obtained at Centre d{close_quote}Etudes de Limeil-Valenton on high density X-Ray implosions, radiative transfer processes, hydrodynamic instabilities and laser-plasma interaction involved in cavity physics. Ignition and a moderate gain appears to be achievable with a laser energy of about 1.5{minus}2 MJ delivered at {lambda}=0, 35 {mu}m with a shaped pulse (duration{approximately}16 ns). The construction of such a laser is realizable and a conceptual design is under preparation. {copyright} {ital 1996 American Institute of Physics.}

  14. Sulfur isotope homogeneity of lunar mare basalts

    NASA Astrophysics Data System (ADS)

    Wing, Boswell A.; Farquhar, James

    2015-12-01

    We present a new set of high precision measurements of relative 33S/32S, 34S/32S, and 36S/32S values in lunar mare basalts. The measurements are referenced to the Vienna-Canyon Diablo Troilite (V-CDT) scale, on which the international reference material, IAEA-S-1, is characterized by δ33S = -0.061‰, δ34S ≡ -0.3‰ and δ36S = -1.27‰. The present dataset confirms that lunar mare basalts are characterized by a remarkable degree of sulfur isotopic homogeneity, with most new and published SF6-based sulfur isotope measurements consistent with a single mass-dependent mean isotopic composition of δ34S = 0.58 ± 0.05‰, Δ33S = 0.008 ± 0.006‰, and Δ36S = 0.2 ± 0.2‰, relative to V-CDT, where the uncertainties are quoted as 99% confidence intervals on the mean. This homogeneity allows identification of a single sample (12022, 281) with an apparent 33S enrichment, possibly reflecting cosmic-ray-induced spallation reactions. It also reveals that some mare basalts have slightly lower δ34S values than the population mean, which is consistent with sulfur loss from a reduced basaltic melt prior to eruption at the lunar surface. Both the sulfur isotope homogeneity of the lunar mare basalts and the predicted sensitivity of sulfur isotopes to vaporization-driven fractionation suggest that less than ≈1-10% of lunar sulfur was lost after a potential moon-forming impact event.

  15. The Chemical Homogeneity of Open Clusters

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2016-01-01

    Determining the level of chemical homogeneity in open clusters is of fundamental importance in the study of the evolution of star-forming clouds and that of the Galactic disk. Yet limiting the initial abundance spread in clusters has been hampered by difficulties in obtaining consistent spectroscopic abundances for different stellar types. Without reference to any specific model of stellar photospheres, a model for a homogeneous cluster is that it forms a one-dimensional sequence, with any differences between members due to variations in stellar mass and observational uncertainties. I present a novel method for investigating the abundance spread in open clusters that tests this one-dimensional hypothesis at the level of observed stellar spectra, rather than constraining homogeneity using derived abundances as is traditionally done. Using high-resolution APOGEE spectra for 49 giants in M67, NGC 6819, and NGC 2420 I demonstrate that these spectra form one-dimensional sequences for each cluster. With detailed forward modeling of the spectra and Approximate Bayesian Computation, I derive strong limits on the initial abundance spread of 15 elements: <0.01 (0.02) {dex} for C and Fe, ≲0.015 (0.03) {dex} for N, O, Mg, Si, and Ni, ≲0.02 (0.03) {dex} for Al, Ca, and Mn, and ≲0.03 (0.05) {dex} for Na, S, K, Ti, and V (at 68% and 95% confidence, respectively). The strong limits on C and O imply that no pollution by massive core-collapse supernovae occurred during star formation in open clusters, which, thus, need to form within ≲6 {Myr}. Further development of this and related techniques will bring the power of differential abundances to stars other than solar twins in large spectroscopic surveys and will help unravel the history of star formation and chemical enrichment in the Milky Way through chemical tagging.

  16. Multifractal spectra in homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Deane, A. E.; Keefe, L. R.

    1988-01-01

    Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.

  17. Homogeneous sphere packings with triclinic symmetry.

    PubMed

    Fischer, W; Koch, E

    2002-11-01

    All homogeneous sphere packings with triclinic symmetry have been derived by studying the characteristic Wyckoff positions P -1 1a and P -1 2i of the two triclinic lattice complexes. These sphere packings belong to 30 different types. Only one type exists that has exclusively triclinic sphere packings and no higher-symmetry ones. The inherent symmetry of part of the sphere packings is triclinic for 18 types. Sphere packings of all but six of the 30 types may be realized as stackings of parallel planar nets.

  18. Heterogeneity versus homogeneity of multiple sclerosis

    PubMed Central

    Sato, Fumitaka; Martinez, Nicholas E; Omura, Seiichi; Tsunoda, Ikuo

    2011-01-01

    The 10th International Congress of Neuroimmunology, including the 10th European School of Neuroimmunology Course, was held by the International Society of Neuroimmunology in Sitges (Barcelona, Spain) on 26–30 October 2010. The conference covered a wide spectrum of issues and challenges in both basic science and clinical aspects of neuroimmunology. Data and ideas were shared through a variety of programs, including review talks and poster sessions. One of the topics of the congress was whether multiple sclerosis is a homogenous or heterogenous disease, clinically and pathologically, throughout its course. PMID:21426254

  19. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  20. Etudes Asymptotiques en Filtrage Non Lineaire Avec Petit Bruit D’Observation (Asymptotic Studies in Nonlinear Time Filtering with Small Observation Noise)

    DTIC Science & Technology

    1990-09-26

    titre de s DOCTEUR DE L’UNIVERSITE DE PROVENCE : SpdcialitM MATHEMATIQUES APPLIQUEES par PAULA M. L. P. MILHEIRO de OLIVEIRA Sujet de la these: ETUDES...PROVENCE Spdcialitd: MATHEMATIQUES APPLIQUEES par PAULA M. L. P. MILHEIRO de OLIVEIRA Sujet dela thse: E~TUDES ASYMPTOTIQUES EN FILTRAGE NON LINEAIRE...At Pk + h2 At p,]f6 2 ± h2 AtP] k CO lk + Ilk Donc C I~k+1 Pk1 (10) 1-iPk + C Cl Suivant un raisonnement par recurrence on trouve l’expression: Ilk_

  1. Si isotope homogeneity of the solar nebula

    SciTech Connect

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric; Jackson, Matthew G.; Barrat, Jean-Alix E-mail: savage@levee.wustl.edu E-mail: moynier@ipgp.fr E-mail: Jean-Alix.Barrat@univ-brest.fr

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  2. On shearing fluids with homogeneous densities

    NASA Astrophysics Data System (ADS)

    Srivastava, D. C.; Srivastava, V. C.; Kumar, Rajesh

    2016-06-01

    In this paper, we study shearing spherically symmetric homogeneous density fluids in comoving coordinates. It is found that the expansion of the four-velocity of a perfect fluid is homogeneous, whereas its shear is generated by an arbitrary function of time M( t), related to the mass function of the distribution. This function is found to bear a functional relationship with density. The field equations are reduced to two coupled first order ordinary differential equations for the metric coefficients g_{11} and g_{22}. We have explored a class of solutions assuming that M is a linear function of the density. This class embodies, as a subcase, the complete class of shear-free solutions. We have discussed the off quoted work of Kustaanheimo (Comment Phys Math XIII:12, 1, 1947) and have noted that it deals with shear-free fluids having anisotropic pressure. It is shown that the anisotropy of the fluid is characterized by an arbitrary function of time. We have discussed some issues of historical priorities and credentials related to shear-free solutions. Recent controversial claims by Mitra (Astrophys Space Sci 333:351, 2011 and Gravit Cosmol 18:17, 2012) have also been addressed. We found that the singularity and the shearing motion of the fluid are closely related. Hence, there is a need for fresh look to the solutions obtained earlier in comoving coordinates.

  3. Modified Homogeneous Data Set of Coronal Intensities

    NASA Astrophysics Data System (ADS)

    Dorotovič, I.; Minarovjech, M.; Lorenc, M.; Rybanský, M.

    2014-07-01

    The Astronomical Institute of the Slovak Academy of Sciences has published the intensities, recalibrated with respect to a common intensity scale, of the 530.3 nm (Fe xiv) green coronal line observed at ground-based stations up to the year 2008. The name of this publication is Homogeneous Data Set (HDS). We have developed a method that allows one to successfully substitute the ground-based observations by satellite observations and, thus, continue with the publication of the HDS. For this purpose, the observations of the Extreme-ultraviolet Imaging Telescope (EIT), onboard the Solar and Heliospheric Observatory (SOHO) satellite, were exploited. Among other data the EIT instrument provides almost daily 28.4 nm (Fe xv) emission-line snapshots of the corona. The Fe xiv and Fe xv data (4051 observation days) taken in the period 1996 - 2008 have been compared and good agreement was found. The method to obtain the individual data for the HDS follows from the correlation analysis described in this article. The resulting data, now under the name of Modified Homogeneous Data Set (MHDS), are identical up to 1996 to those in the HDS. The MHDS can be used further for studies of the coronal solar activity and its cycle. These data are available at http://www.suh.sk.

  4. Microstructure and homogeneity of dental porcelain frits.

    PubMed

    Ban, S; Matsuo, K; Mizutani, N; Iwase, H; Kani, T; Hasegawa, J

    1998-12-01

    The microstructure and homogeneity of three commercial dentin and incisal unfired porcelain frits (one conventional and two ultra-low fusing types, fused-to metal were analyzed by X-ray diffractometry, scanning electron microspectroscopy, and wavelength- and energy dispersive X-ray microspectroscopy. The average contents of tetragonal and cubic leucite for the conventional and one of the ultra-low fusing type frits were 20.1-22.6 wt% and 0-2.6 wt%, respectively, whereas those of another of the ultra-low fusing type frits were about 11.5-11.6 wt% and 2.9-4.6 wt%, respectively. The conventional type frits seemed to be admixtures of three kinds of glass frits. One of the ultra-low fusing type frits seemed to be an admixture of four kinds of glass frits. Another ultra-low fusing frits seemed to be only one kind of glass frit dispersed with small size, less than 1 micron, leucite crystals. There were no remarkable differences in microstructure and homogeneity between dentin and incisal porcelain frits in each brand.

  5. Emergence of Leadership within a Homogeneous Group

    PubMed Central

    Eskridge, Brent E.; Valle, Elizabeth; Schlupp, Ingo

    2015-01-01

    Large scale coordination without dominant, consistent leadership is frequent in nature. How individuals emerge from within the group as leaders, however transitory this position may be, has become an increasingly common question asked. This question is further complicated by the fact that in many of these aggregations, differences between individuals are minor and the group is largely considered to be homogeneous. In the simulations presented here, we investigate the emergence of leadership in the extreme situation in which all individuals are initially identical. Using a mathematical model developed using observations of natural systems, we show that the addition of a simple concept of leadership tendencies which is inspired by observations of natural systems and is affected by experience can produce distinct leaders and followers using a nonlinear feedback loop. Most importantly, our results show that small differences in experience can promote the rapid emergence of stable roles for leaders and followers. Our findings have implications for our understanding of adaptive behaviors in initially homogeneous groups, the role experience can play in shaping leadership tendencies, and the use of self-assessment in adapting behavior and, ultimately, self-role-assignment. PMID:26226381

  6. The Statistical Mechanics of Ideal Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2002-01-01

    Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.

  7. Primary Healthcare Solo Practices: Homogeneous or Heterogeneous?

    PubMed Central

    Beaulieu, Marie-Dominique; Boivin, Antoine; Prud'homme, Alexandre

    2014-01-01

    Introduction. Solo practices have generally been viewed as forming a homogeneous group. However, they may differ on many characteristics. The objective of this paper is to identify different forms of solo practice and to determine the extent to which they are associated with patient experience of care. Methods. Two surveys were carried out in two regions of Quebec in 2010: a telephone survey of 9180 respondents from the general population and a postal survey of 606 primary healthcare (PHC) practices. Data from the two surveys were linked through the respondent's usual source of care. A taxonomy of solo practices was constructed (n = 213), using cluster analysis techniques. Bivariate and multilevel analyses were used to determine the relationship of the taxonomy with patient experience of care. Results. Four models were derived from the taxonomy. Practices in the “resourceful networked” model contrast with those of the “resourceless isolated” model to the extent that the experience of care reported by their patients is more favorable. Conclusion. Solo practice is not a homogeneous group. The four models identified have different organizational features and their patients' experience of care also differs. Some models seem to offer a better organizational potential in the context of current reforms. PMID:24523964

  8. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  9. HYPERLEDA. II. The homogenized HI data

    NASA Astrophysics Data System (ADS)

    Paturel, G.; Theureau, G.; Bottinelli, L.; Gouguenheim, L.; Coudreau-Durand, N.; Hallet, N.; Petit, C.

    2003-12-01

    After a compilation of HI data from 611 references and new observations made in Nançay, we produce a catalog of homogenized HI data for 16781 galaxies. The homogenization is made using the EPIDEMIC method from which all data are progressively converted into the adopted standard. The result is a catalog giving: 1) the logarithm of twice the maximum rotation velocity, log 2V_Msin i, converted to the system of Mathewson et al. (\\cite{Mathewson1996}). This quantity is given without correction for inclination; 2) the HI magnitude, m21, (area of the 21-cm line width expressed in magnitude) converted to the flux system of Theureau et al. (\\cite{Theureau1998}); 3) the HI velocity, V_HI, expressed with the optical definition (i.e., using wavelengths instead frequencies). The typical uncertainties are: 0.04 for log 2V_Msin i, 0.25 mag for m21 and 9 km s-1 for V_HI. Full Tables \\ref{epidemicw}, \\ref{epidemicw2}, \\ref{epidemicf}, \\ref{epidemicf2} and Fig. \\ref{profiles} are available in electronic form at http://www.edpsciences.org. Full Tables \\ref{references}, \\ref{cataf}, \\ref{newdata} and \\ref{notes} are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/57

  10. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  11. Immobilization of Mn(II) via Homogeneous and Heterogeneous Oxidation

    NASA Astrophysics Data System (ADS)

    Kang, N.; Jeong, H. Y.; Park, M.; Kim, K. H.; Lee, S.; Choi, H. J.

    2015-12-01

    This study investigated the immobilization of Mn(II) via homogeneous and heterogeneous oxidation by air. A series of kinetic experiments were performed with stirred batch reactors equipped with air spargers. The reactions were initiated by adding Mn(II) stock solutions to pH-buffered solutions amended with dissolved Fe(II), Fe oxyhydroxides, or Mn oxides. Under experimental conditions, the homogeneous oxidation of Mn(II) itself was minimal over pH 6.5-8.5. However, when dissolved Fe(II) was present, the immobilization of Mn occurred, with the extent becoming greater at higher pH. By Mn-K edge XAS analysis, the Mn removal at pH 6.5 was due to the oxidation of labile Mn(II) into insoluble Mn(III) solids, which was catalyzed by the homogeneous oxidation of Fe(II). On the other hand, Mn(II) at pH 7.0-8.5 remained largely unoxidized; instead, it was immobilized by forming co-precipitates with Fe(III) oxyhydroxides. Goethite, HFO, Mn2O3, and MnO2 were added to mediate the heterogeneous oxidation of Mn(II). In the presence of goethite and HFO, dissolved Mn was initially quickly decreased, and later gradually decreased. In both batches, the initial removal was due to the surface complexation of Mn(II) with Fe oxyhydroxides. On the other hand, the later removal in goethite-amend batches resulted from the formation of co-precipitates with Fe(III) oxyhydroxides, whereas the later removal in HFO-amended batches was due to the heterogeneous oxidation of Mn(II) into Mn(III) solids. When Mn2O3 and MnO2 were used as heterogeneous catalysts, XAS analysis did not provide mechanistic insight into Mn removal. Nonetheless, Mn2O3 was found to immobilize Mn(II) under oxic conditions. Notably, MnO2 was far more effectively immobilize Mn(II) under both oxic and anoxic conditions, pointing to its superior oxidative capability. Acknowledgement: Financial support was provided by "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  12. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  13. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  14. Instability of Homogeneous State in Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Sinkkonen, J.; Kuivalainen, P.; Stubb, T.

    1982-06-01

    The instability of the homogeneous state in a ferromagnetic semiconductor is studied. The electronic part of the free energy is determined using Thomas-Fermi statistical model and the magnetic part is calculated by the molecular field approximation including the RKKY-interaction. The inhomogeneity consists of a small magnetically polarized region with a high electron density surrounded by a less polarized positively charged depletion layer. The inhomogeneous state is found to be stable in a relatively broad temperature range around the Curie temperature at low and intermediate doping densities. The stability range shrinks in an applied magnetic field. At fields exceeding about 3 T or at doping densities larger than 1021 cm-3 the inhomogeneous state is no more stable.

  15. A homogeneous survey of red supergiants

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Dorda, Ricardo; González-Fernández, Carlos; Negueruela, Ignacio

    2015-08-01

    We have carried out a comprehensive homogeneous spectroscopic and photometric study of a sample of a few hundred red supergiants in the Milky Way, the Large Magellanic Cloud and the Small Magellanic Cloud. Our results show that global trends can be derived for many spectroscopic features independently of metallicity. The intensity of atomic Ti lines is directly correlated to spectral type, suggesting a real temperature change in the photospheric temperature. We find that the shape of the spectral energy distribution stops being directly related to surface temperature around mid-K spectral types, and becomes strongly correlated to mass loss. The distribution of spectral types is markedly different for the subset of red supergiants above a given luminosity cut, giving very strong hints of a separate evolutionary phase.

  16. Soliton production with nonlinear homogeneous lines

    DOE PAGES

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; ...

    2015-11-24

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less

  17. Homogeneously dispersed, multimetal oxygen-evolving catalysts

    SciTech Connect

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; Comin, Riccardo; Bajdich, Michal; Garcia-Melchor, Max; Han, Lili; Xu, Jixian; Liu, Min; Zheng, Lirong; F. Pelayo Garcia de Arquer; Dinh, Cao Thang; Fan, Fengjia; Yuan, Mingjian; Yassitepe, Emre; Chen, Ning; Regier, Tom; Liu, Pengfei; Li, Yuhang; De Luna, Phil; Janmohamed, Alyf; Xin, Huolin L.; Yang, Huagui; Vojvodic, Aleksandra; Sargent, Edward H.

    2016-03-24

    Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxy-hydroxide materials with an atomically homogeneous metal distribution. These gelled FeCoW oxy-hydroxide exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Here, the catalyst shows no evidence of degradation following more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between W, Fe and Co in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.

  18. Leith diffusion model for homogeneous anisotropic turbulence

    SciTech Connect

    Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan

    2016-07-19

    Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.

  19. An inhomogeneous model universe behaving homogeneously

    NASA Astrophysics Data System (ADS)

    Khosravi, Sh.; Kourkchi, E.; Mansouri, R.; Akrami, Y.

    2008-05-01

    We present a new model universe based on the junction of FRW to flat Lemaitre Tolman Bondi (LTB) solutions of Einstein equations along our past light cone, bringing structures within the FRW models. The model is assumed globally to be homogeneous, i.e. the cosmological principle is valid. Local inhomogeneities within the past light cone are modeled as a flat LTB, whereas those outside the light cone are assumed to be smoothed out and represented by a FRW model. The model is singularity free, always FRW far from the observer along the past light cone, gives way to a different luminosity distance relation as for the CDM/FRW models, a negative deceleration parameter near the observer, and correct linear and non-linear density contrast. As a whole, the model behaves like a FRW model on the past light cone with a special behavior of the scale factor, Hubble and deceleration parameter, mimicking dark energy.

  20. Leith diffusion model for homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan

    2016-07-19

    Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numericalmore » simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.« less

  1. The homogeneity conjecture for supergravity backgrounds

    NASA Astrophysics Data System (ADS)

    Figueroa-O'Farrill, José Miguel

    2009-06-01

    These notes record three lectures given at the workshop "Higher symmetries in Physics", held at the Universidad Complutense de Madrid in November 2008. In them we explain how to construct a Lie (super)algebra associated to a spin manifold, perhaps with extra geometric data, and a notion of privileged spinors. The typical examples are supersymmetric supergravity backgrounds; although there are more classical instances of this construction. We focus on two results: the geometric constructions of compact real forms of the simple Lie algebras of type B4, F4 and E8 from S7, S8 and S15, respectively; and the construction of the Killing superalgebra of eleven-dimensional supergravity backgrounds. As an application of this latter construction we show that supersymmetric supergravity backgrounds with enough supersymmetry are necessarily locally homogeneous.

  2. Soliton production with nonlinear homogeneous lines

    SciTech Connect

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.

    2015-11-24

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated output voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.

  3. Leith diffusion model for homogeneous anisotropic turbulence

    NASA Astrophysics Data System (ADS)

    Rubinstein, Robert; Clark, Timothy; Kurien, Susan

    2016-11-01

    A new spectral closure model for homogeneous anisotropic turbulence is proposed. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.

  4. Nanodosimetric track structure in homogeneous extended beams.

    PubMed

    Conte, V; Moro, D; Colautti, P; Grosswendt, B

    2015-09-01

    Physical aspects of particle track structure are important in determining the induction of clustered damage in relevant subcellular structures like the DNA and higher-order genomic structures. The direct measurement of track-structure properties of ionising radiation is feasible today by counting the number of ionisations produced inside a small gas volume. In particular, the so-called track-nanodosimeter, installed at the TANDEM-ALPI accelerator complex of LNL, measures ionisation cluster-size distributions in a simulated subcellular structure of dimensions 20 nm, corresponding approximately to the diameter of the chromatin fibre. The target volume is irradiated by pencil beams of primary particles passing at specified impact parameter. To directly relate these measured track-structure data to radiobiological measurements performed in broad homogeneous particle beams, these data can be integrated over the impact parameter. This procedure was successfully applied to 240 MeV carbon ions and compared with Monte Carlo simulations for extended fields.

  5. A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions--Part II: calculation of radiolytic yields under different conditions of LET, pH, and temperature.

    PubMed

    Plante, Ianik

    2011-08-01

    The importance of the radiolysis of water in the initial events following irradiation of biological systems has motivated considerable theoretical and experimental work in the field of radiation chemistry of water and aqueous systems. These studies include Monte-Carlo simulations of the radiation track structure and of the non-homogeneous chemical stage, which have been successfully used to calculate the yields of radiolytic species (H(·), (·)OH, H(2), H(2)O(2), e (aq) (-) , …). Most techniques used for the simulation of the non-homogeneous chemical stage such as the independent reaction time (IRT) technique and diffusion kinetics methods do not calculate the time evolution of the positions of the radiolytic species. This is a major limitation to their extension to the simulation of the irradiation of radiobiological systems. Step-by-step (SBS) simulation programs provide such information, but they are very demanding in term of computer power and storage capacity. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry simulations. In the first of a series of two papers, the SBS method has been reviewed in details and the implementation of a SBS code has been discussed. In this second paper, the results of several studies are presented: (1) the time evolution of the radiolytic yields from the formation of the radiation track to 10(-6) s; (2) the effect of pH on yields (pH ~ 0.4-7.0); (3) the effect of proton energy (and LET) on yields (300 MeV-0.1 MeV), and iv) the effect of the ion type ((1)H(+), (4)He(2+), (12)C(6+)) on yields. Nonbiological applications, i.e., the study of the temperature on the yields (about 25-300°C) and the simulation of the time evolution of G(Fe(3+)) in the Fricke dosimeter are also discussed.

  6. Homogenization of global radiosonde humidity data

    NASA Astrophysics Data System (ADS)

    Blaschek, Michael; Haimberger, Leopold

    2016-04-01

    The global radiosonde network is an important source of upper-air measurements and is strongly connected to reanalysis efforts of the 20th century. However, measurements are strongly affected by changes in the observing system and require a homogenization before they can be considered useful in climate studies. In particular humidity measurements are known to show spurious trends and biases induced by many sources, e.g. reporting practices or freezing of the sensor. We propose to detect and correct these biases in an automated way, as has been done with temperature and winds. We detect breakpoints in dew point depression (DPD) time series by employing a standard normal homogeneity test (SNHT) on DPD-departures from ERA-Interim. In a next step, we calculate quantile departures between the latter and the earlier part near the breakpoints of the time series, going back in time. These departures adjust the earlier distribution of DPD to the latter distribution, called quantile matching, thus removing for example a non climatic shift. We employ this approach to the existing radiosonde network. In a first step to verify our approach we compare our results with ERA-Interim data and brightness temperatures of humidity-sensitive channels of microwave measuring radiometers (SSMIS) onboard DMSP F16. The results show that some of the biases can be detected and corrected in an automated way, however large biases that impact the distribution of DPD values originating from known reporting practices (e.g. 30 DPD on US stations) remain. These biases can be removed but not corrected. The comparison of brightness temperatures from satellite and radiosondes proofs to be difficult as large differences result from for example representative errors.

  7. Estimation of homogeneous nucleation flux via a kinetic model

    NASA Technical Reports Server (NTRS)

    Wilcox, C. F.; Bauer, S. H.

    1991-01-01

    The proposed kinetic model for condensation under homogeneous conditions, and the onset of unidirectional cluster growth in supersaturated gases, does not suffer from the conceptual flaws that characterize classical nucleation theory. When a full set of simultaneous rate equation is solved, a characteristic time emerges, for each cluster size, at which the production rate, and its rate of conversion to the next size (n + 1) are equal. Procedures for estimating the essential parameters are proposed; condensation fluxes J(kin) exp ss are evaluated. Since there are practical limits to the cluster size that can be incorporated in the set of simultaneous first-order differential equations, a code was developed for computing an approximate J(th) exp ss based on estimates of a 'constrained equilibrium' distribution, and identification of its minimum.

  8. Structure of ferrofluid nanofilms in homogeneous magnetic fields.

    PubMed

    Jordanovic, Jelena; Klapp, Sabine H L

    2009-02-01

    We report molecular dynamics simulations results for model ferrofluid films subject to an external, homogeneous magnetic field directed parallel or perpendicular to the film surfaces. The interactions between the magnetic nanoparticles are modeled via the Stockmayer potential. In a previous study [J. Jordanovic and S. H. L. Klapp, Phys. Rev. Lett. 101, 038302 (2008)] we have shown that an external field can control the number and internal structure of the layers characterizing the fluid films, in qualitative agreement with experiments. Here we explore the dependence of the layering effects on thermodynamic conditions, and we analyze the results from an energetic (microscopic and macroscopic) perspective. As a special case we investigate a monolayer to bilayer transition induced via a perpendicular field.

  9. Structure of ferrofluid nanofilms in homogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Jordanovic, Jelena; Klapp, Sabine H. L.

    2009-02-01

    We report molecular dynamics simulations results for model ferrofluid films subject to an external, homogeneous magnetic field directed parallel or perpendicular to the film surfaces. The interactions between the magnetic nanoparticles are modeled via the Stockmayer potential. In a previous study [J. Jordanovic and S. H. L. Klapp, Phys. Rev. Lett. 101, 038302 (2008)] we have shown that an external field can control the number and internal structure of the layers characterizing the fluid films, in qualitative agreement with experiments. Here we explore the dependence of the layering effects on thermodynamic conditions, and we analyze the results from an energetic (microscopic and macroscopic) perspective. As a special case we investigate a monolayer to bilayer transition induced via a perpendicular field.

  10. Willis elastodynamic homogenization theory revisited for periodic media

    NASA Astrophysics Data System (ADS)

    Nassar, H.; He, Q.-C.; Auffray, N.

    2015-04-01

    The theory of elastodynamic homogenization initiated by J.R. Willis is revisited for periodically inhomogeneous media through a careful scrutiny of the main aspects of that theory in the 3D continuum context and by applying it to the thorough treatment of a simple 1D discrete periodic system. The Bloch theorem appears to be central to appropriately defining and interpreting effective fields. Based on some physical arguments, three necessary conditions are derived for the transition from the microscopic description to the macroscopic description of periodic media. The parameters involved in the Willis effective constitutive relation are expressed in terms of two localization tensors and specified with the help of the corresponding Green function in the spirit of micromechanics. These results are illustrated and discussed for the 1D discrete periodic system considered. In particular, inspired by Brillouin's study, the dependency of the effective constitutive parameters on the frequency is physically interpreted in terms of oscillation modes of the underlying microstructure.

  11. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  12. Stress waves in transversely isotropic media: The homogeneous problem

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.

  13. Homogenization of a Cauchy continuum towards a micromorphic continuum

    NASA Astrophysics Data System (ADS)

    Hütter, Geralf

    2017-02-01

    The micromorphic theory of Eringen and Mindlin, including special cases like strain gradient theory or Cosserat theory, is widely used to model size effects and localization phenomena. The heuristic construction of such theories based on thermodynamic considerations is well-established. However, the identification of corresponding constitutive laws and of the large number of respective constitutive parameters limits the practical application of such theories. In the present contribution, a closed procedure for the homogenization of a Cauchy continuum at the microscale towards a fully micromorphic continuum is derived including explicit definitions of all involved generalized macroscopic stress and deformation measures. The boundary value problem to be solved on the microscale is formulated either for using static or kinematic boundary conditions. The procedure is demonstrated with an example.

  14. Analogues of the Helmholtz resonator in homogenization theory

    SciTech Connect

    Gadyl'shin, R R

    2002-12-31

    Perturbed two-dimensional boundary-value problems are considered for Helmholtz's equation with Dirichlet and Neumann boundary conditions on a family of arcs obtained from the boundary of a bounded domain {omega} by cutting out a large number of small holes distributed almost periodically and close to one another. Relations between the sizes of the openings and of the boundary ensuring that the solution of the perturbed problem converges to the solutions of the Dirichlet or the Neumann problem in {omega} and outside {omega}-bar are established. In the case when {omega} is a disc, the holes are periodically distributed and the homogenized problems are Dirichlet problems, asymptotic formulae with respect to a small parameter {epsilon} (characterizing the sizes of the openings and the distance between them) are constructed for the poles with small imaginary parts of the analytic continuation of the solution of the perturbed problem and their resonance behaviour is demonstrated.

  15. Effects of sample homogenization on solid phase sediment toxicity

    SciTech Connect

    Anderson, B.S.; Hunt, J.W.; Newman, J.W.; Tjeerdema, R.S.; Fairey, W.R.; Stephenson, M.D.; Puckett, H.M.; Taberski, K.M.

    1995-12-31

    Sediment toxicity is typically assessed using homogenized surficial sediment samples. It has been recognized that homogenization alters sediment integrity and may result in changes in chemical bioavailability through oxidation-reduction or other chemical processes. In this study, intact (unhomogenized) sediment cores were taken from a Van Veen grab sampler and tested concurrently with sediment homogenate from the same sample in order to investigate the effect of homogenization on toxicity. Two different solid-phase toxicity test protocols were used for these comparisons. Results of amphipod exposures to samples from San Francisco Bay indicated minimal difference between intact and homogenized samples. Mean amphipod survival in intact cores relative to homogenates was similar at two contaminated sites. Mean survival was 34 and 33% in intact and homogenized samples, respectively, at Castro Cove. Mean survival was 41% and 57%, respectively, in intact and homogenized samples from Islais Creek. Studies using the sea urchin development protocol, modified for testing at the sediment/water interface, indicated considerably more toxicity in intact samples relative to homogenized samples from San Diego Bay. Measures of metal flux into the overlying water demonstrated greater flux of metals from the intact samples. Zinc flux was five times greater, and copper flux was twice as great in some intact samples relative to homogenates. Future experiments will compare flux of metals and organic compounds in intact and homogenized sediments to further evaluate the efficacy of using intact cores for solid phase toxicity assessment.

  16. Stability of vitamin C in frozen raw fruit and vegetable homogenates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retention of vitamin C in homogenized raw fruits and vegetables stored under laboratory conditions prior to analysis was investigated. Raw collard greens, clementines, and potatoes were chosen, to be representative of food matrices to be sampled in USDA’s National Food and Nutrient Analysis Program...

  17. [Chemiluminescence spectroscopic analysis of homogeneous charge compression ignition combustion processes].

    PubMed

    Liu, Hai-feng; Yao, Ming-fa; Jin, Chao; Zhang, Peng; Li, Zhe-ming; Zheng, Zun-qing

    2010-10-01

    To study the combustion reaction kinetics of homogeneous charge compression ignition (HCCI) under different port injection strategies and intake temperature conditions, the tests were carried out on a modified single-cylinder optical engine using chemiluminescence spectroscopic analysis. The experimental conditions are keeping the fuel mass constant; fueling the n-heptane; controlling speed at 600 r x min(-1) and inlet pressure at 0.1 MPa; controlling inlet temperature at 95 degrees C and 125 degrees C, respectively. The results of chemiluminescence spectrum show that the chemiluminescence is quite faint during low temperature heat release (LTHR), and these bands spectrum originates from formaldehyde (CH2O) chemiluminescence. During the phase of later LTHR-negative temperature coefficient (NTC)-early high temperature heat release (HTHR), these bands spectrum also originates from formaldehyde (CH2O) chemiluminescence. The CO--O* continuum is strong during HTHR, and radicals such as OH, HCO, CH and CH2O appear superimposed on this CO--O* continuum. After the HTHR, the chemiluminescence intensity is quite faint. In comparison to the start of injection (SOI) of -30 degrees ATDC, the chemiluminescence intensity is higher under the SOI = -300 degrees ATDC condition due to the more intense emissions of CO--O* continuum. And more radicals of HCO and OH are formed, which also indicates a more intense combustion reaction. Similarly, more intense CO--O* continuum and more radicals of HCO and OH are emitted under higher intake temperature case.

  18. On the decay of homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  19. Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media.

    PubMed

    Arteaga, Oriol

    2013-04-01

    In general the transmission of polarized light through a homogeneous depolarizing sample has motion-reversal symmetry because the response remains the same for light traveling in the opposite direction. As a consequence, the optical properties of a sample, characterized by the differential Mueller matrix, must be invariant upon motion reversal. This Letter shows that the 16 parameters of the differential Mueller matrix must therefore obey six conditions to satisfy this symmetry. This limits the number of independent parameters to 10. The 10 elementary optical properties of a depolarizing homogeneous medium are defined and discussed.

  20. Simulation and modeling of homogeneous, compressed turbulence

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.

    1985-01-01

    Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.

  1. Convective mixing in homogeneous porous media flow

    NASA Astrophysics Data System (ADS)

    Ching, Jia-Hau; Chen, Peilong; Tsai, Peichun Amy

    2017-01-01

    Inspired by the flow processes in the technology of carbon dioxide (CO2) storage in saline formations, we modeled a homogeneous porous media flow in a Hele-Shaw cell to investigate density-driven convection due to dissolution. We used an analogy of the fluid system to mimic the diffusion and subsequent convection when CO2 dissolves in brine, which generates a heavier solution. By varying the permeability, we examined the onset of convection, the falling dynamics, the wavelengths of fingers, and the rate of dissolution, for the Rayleigh number Ra (a dimensionless forcing term which is the ratio of buoyancy to diffusivity) in the range of 2.0 ×104≤Ra≤8.26 ×105 . Our results reveal that the effect of permeability influences significantly the initial convective speed, as well as the later coarsening dynamics of the heavier fingering plumes. However, the total dissolved mass, characterized by a nondimensional Nusselt number Nu, has an insignificant dependence on Ra. This implies that the total dissolution rate of CO2 is nearly constant in high Ra geological porous structures.

  2. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    PubMed

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A.

  3. Converter film technology for homogeneous white light

    NASA Astrophysics Data System (ADS)

    Jordan, Rafael C.; Bauer, Jörg; Oppermann, Hermann

    2007-09-01

    An important issue for white ultra high power LEDs is the generation of a homogeneous light with high efficiency and a good color rendering index. Different from hot light sources LEDs do not emit the whole range of visible wavelengths. Only a certain wavelength with a limited full width at half maximum is emitted. Therefore a combination of wavelengths must be used to satisfy the human eye for white light. The CIE chromaticity diagram (Fig. 1) shows, that several combinations of wavelengths let the brain realize white light. Already the combination of two wavelengths (e.g. cyan and red or blue and yellow) let us think, that the source is white, if this wavelengths hit our receptors. This is completely different, if the light is illuminating an object. The reflection spectra of this object, which is crucial for our color feeling about this object, can not be stimulated in the whole range. For example a red stop sign, which is absorbing all wavelength excepting red, will absorb the blue and yellow light from our "white" light source and due to the missing red, the sign seems to be dark grey or black.

  4. Davydov's solitons in a homogeneous nucleotide chain

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor D.

    Charge transfer in homogeneous nucleotide chains is modeled on the basis of Holstein Hamiltonian. The path length of Davydov solitons in these chains is being studied. It is shown that in a dispersionless case, when the soliton velocity V is small, the path length grows exponentially as V decreases. In this case, the state of a moving soliton is quasisteady. In the presence of dispersion determined by the dependenceΩ2 =Ω 02 + V 02κ2, the path length in the region 0 < V < V0 is equal to infinity. In this case, the phonon environment follows the charge motion. In the region V > V0, the soliton motion is accompanied by emission of phonons which leads to a finite path length of a soliton. The latter tends to infinity as V → V0 + 0 and V → ∞. The presence of dissipation leads to a finite soliton path length. An equilibrium velocity of soliton in an external electric field is calculated. It is shown that there is a maximum intensity of an electric field at which a steady motion of a soliton is possible. The soliton mobility is calculated for the stable or ohmic brunch.

  5. Magnetic field homogeneity for neutron EDM experiment

    NASA Astrophysics Data System (ADS)

    Anderson, Melissa

    2016-09-01

    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  6. Homogeneously dispersed, multimetal oxygen-evolving catalysts

    DOE PAGES

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; ...

    2016-03-24

    Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxy-hydroxide materials with an atomically homogeneous metal distribution. These gelled FeCoW oxy-hydroxide exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Here, the catalyst shows no evidence of degradation following more than 500 hours of operation. X-ray absorption and computationalmore » studies reveal a synergistic interplay between W, Fe and Co in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.« less

  7. Etude paleomagnetique des sediments holocenes de la Fosse du Mackenzie, mer de Beaufort

    NASA Astrophysics Data System (ADS)

    Barris, Elissa

    Les etudes paleomagnetiques a haute resolution sont d'importance en magnetostratigraphie et geomagnetisme, particulierement dans l'Arctique en raison de l'inaccessibilite et des faibles vitesses de sedimentation dans plusieurs secteurs. Deux carottes sedimentaires representant l'Holocene recent ont ete recoltees dans la Fosse du Mackenzie, une region avec des vitesses de sedimentation relativement elevees. Une carotte boite et un Calypso square core ont ete preleves a deux sites (690 et 680). Les proprietes physiques et magnetiques et la granulometrie ont ete mesurees, ainsi que les aimantations remanentes naturelle, anhysteretique, isothermale et isothermale saturee (NRM, ARM, IRM et SIRM). L'hysteresis magnetique indique une forte concentration de magnetite de type pseudo-single domain, un porteur ideal de remanence, alors que les mesures de la susceptibilite magnetique suggerent une concentration uniforme. Les valeurs de deviation angulaire maximale (MAD) et du champ median destructif (MDF) indiquent des donnees de direction d'excellente qualite et une coercivite typique de la magnetite, respectivement. Finalement, dans la carotte 690 et la partie intermediaire de la 680, l'inclinaison vane autour des valeurs d'un dipole axial geocentrique (GAD) pour la latitude des sites, renforcant la fiabilite du signal paleomagnetique. Finalement, des proxies de la paleointensite relative ont ete construits pour les carottes 690 et 680 en normalisant la NRM par l'IRM et l'ARM, respectivement. Vingt-et-une coquilles de pelecypodes reparties dans les deux carottes ont ete recoltees pour construire un modele d'âge au radiocarbone a chaque si te, une tâche necessaire pour la mise en contexte d'un enregistrement paleomagnetique, mais souvent difficile dans l'Arctique. En utilisant ces modeles d'âge, les enregistrements paleomagnetiques ont ete compares avec d'autres provenant du bas-Arctique et des moyennes latitudes, soulignant leur potentiel pour des etudes

  8. Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces

    NASA Astrophysics Data System (ADS)

    Maciejewski, Andrzej J.; Szumiński, Wojciech; Przybylska, Maria

    2017-02-01

    We formulate the necessary conditions for the integrability of a certain family of Hamiltonian systems defined in the constant curvature two-dimensional spaces. Proposed form of potential can be considered as a counterpart of a homogeneous potential in flat spaces. Thanks to this property Hamilton equations admit, in a general case, a particular solution. Using this solution we derive necessary integrability conditions investigating differential Galois group of variational equations.

  9. Homogeneous piecewise polynomial Lyapunov function for robust stability of uncertain piecewise linear system

    SciTech Connect

    BenAbdallah, Abdallah; Hammami, Mohamed Ali; Kallel, Jalel

    2009-03-05

    In this paper we present some sufficient conditions for the robust stability and stabilization of time invariant uncertain piecewise linear system using homogenous piecewise polynomial Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities which can be numerically solved. An application of the obtained result is given. It consists in resolving the stabilization of piecewise uncertain linear control systems by using a state piecewise linear feedback.

  10. Advances in the homogenization of daily climate surface data in Switzerland

    NASA Astrophysics Data System (ADS)

    Füllemann, C.; Begert, M.; Croci-Maspoli, M.

    2010-09-01

    It is often the extremes of weather and climate which have the greatest impact on society. In this respect temporal high-resolution and long-term climate data series are a unique source for e.g. variability and trend analyses, extreme value analysis or analyses of extreme climate indices. Consequentially that these analyses require high demands on the data quality for accurate conclusions on climate change. This can be achieved by homogenization of the corresponding data. It is the intention of MeteoSwiss to fulfill these requirements for their available long-term climate surface data in Switzerland by i) systematically preserve historical climate data in respect to national and international guidelines, ii) ensure efficient and extensive quality control and iii) homogenize long-term data series of the most important climate variables on monthly and daily time scales. In the framework of the COST Action ES0601 "Advances in homogenization methods of climate series: an integrated approach (HOME)", which dedicates a main focus on the comparison and development of daily homogenization methods, we present results of the comparison from different daily homogenization procedures using long-term series. Currently only a few statistical methods exist to help homogenize daily climate data. We will focus on three different daily homogenization methods and will present results of extreme temperature values during the period 1864 until 2009 for several Swiss surface stations. One aspect will be the exposure of the three methods to different weather conditions such as sunny calm days or days influenced by the foehn in spring. It is important to see how the methods deal with physical impacts (radiation, wind).

  11. High-frequency homogenization for travelling waves in periodic media

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  12. High-frequency homogenization for travelling waves in periodic media.

    PubMed

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and [Formula: see text] where Λ=(λ1λ2…λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  13. Homogeneity of lithium distribution in cylinder-type Li-ion batteries.

    PubMed

    Senyshyn, A; Mühlbauer, M J; Dolotko, O; Hofmann, M; Ehrenberg, H

    2015-12-18

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm(3) has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode.

  14. Homogeneity of lithium distribution in cylinder-type Li-ion batteries

    PubMed Central

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.

    2015-01-01

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode. PMID:26681110

  15. Homogeneity of lithium distribution in cylinder-type Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.

    2015-12-01

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode.

  16. The role of exotic species in homogenizing the North American flora.

    PubMed

    Qian, Hong; Ricklefs, Robert E

    2006-12-01

    Exotic species have begun to homogenize the global biota, yet few data are available to assess the extent of this process or factors that constrain its advance at global or continental scales. We evaluate homogenization of vascular plants across America north of Mexico by comparing similarity in the complete native and exotic floras between states and provinces of the USA and Canada. Compared with native species, exotic plants are distributed haphazardly among areas but spread more widely, producing differentiation of floras among neighbouring areas but homogenization at greater distance. The number of exotic species is more closely associated with the size of the human population than with ecological conditions, as in the case of native species, and their distributions are less influenced by climate than those of native species.

  17. Synthesis of cyclic sulfites from epoxides and sulfur dioxide with silica-immobilized homogeneous catalysts.

    PubMed

    Takenaka, Yasumasa; Kiyosu, Takahiro; Mori, Goro; Choi, Jun-Chul; Fukaya, Norihisa; Sakakura, Toshiyasu; Yasuda, Hiroyuki

    2012-01-09

    Quaternary ammonium- and amino-functionalized silica catalysts have been prepared for the selective synthesis of cyclic sulfites from epoxides and sulfur dioxide, demonstrating the effects of immobilizing the homogeneous catalysts on silica. The cycloaddition of sulfur dioxide to various epoxides was conducted under solvent-free conditions at 100 °C. The quaternary ammonium- and amino-functionalized silica catalysts produced cyclic sulfites in high yields (79-96 %) that are comparable to those produced by the homogeneous catalysts. The functionalized silica catalysts could be separated from the product solution by filtration, thereby avoiding the catalytic decomposition of the cyclic sulfite products upon distillation of the product solution. Heterogenization of a homogeneous catalyst by immobilization can, therefore, improve the efficiency of the purification of crude reaction products. Despite a decrease in catalytic activity after each recycling step, the heterogeneous pyridine-functionalized silica catalyst provided high yields after as many as five recycling processes.

  18. Systeme complet d'interferometrie radar: Etude de cas

    NASA Astrophysics Data System (ADS)

    Vincent, Frederic

    2002-09-01

    La recherche realisee a porte sur la mise au point de plusieurs ameliorations dans la chaine de traitement interferometrique necessaire pour pouvoir appliquer l'interferometrie radar (InROS) a des problemes d'interets majeurs au Quebec. Ainsi, la mesure de la deformation du sol et la creation de modeles numeriques d'altitude (MNA) par InROS en zone de coherences variables ont ete explorees au cours de cette recherche. Les faibles taux de deformation et les petites dimensions spatiales des zones affectees, les rapides variations des conditions climatiques et la presence de vegetation dense sont les principaux facteurs responsables de l'echec de l'InROS pour la mesure des deformations de glissements de terrain au Quebec. L'InROS s'est par contre averee etre un outil puissant pour le suivi des mouvements de glace sur les cours d'eau nordiques pour la securite des populations riveraines et pour la navigation fluviale. Une methode de fusion de MNA InROS de differentes configurations de prises de vue d'images en fonction des caracteristiques locales de pente et de coherence a ete developpee afin d'ameliorer la qualite des MNA InROS en zone de fortes variations de coherence. Finalement, une methode de correction des effets atmospheriques qui affectent les interferogrammes, basee sur l'acquisition simultanee de donnees GPS et de donnees radar, a aussi ete developpee au cours de cette recherche.

  19. High-temperature viscoelastic creep constitutive equations for polymer composites: Homogenization theory and experiments

    SciTech Connect

    Skontorp, A.; Wang, S.S.; Shibuya, Y.

    1994-12-31

    In this paper, a homogenization theory is developed to determine high-temperature effective viscoelastic constitutive equations for fiber-reinforced polymer composites. The homogenization theory approximates the microstructure of a fiber composite, and determine simultaneously effective macroscopic constitutive properties of the composite and the associated microscopic strain and stress in the heterogeneous material. The time-temperature dependent homogenization theory requires that the viscoelastic constituent properties of the matrix phase at elevated temperatures, the governing equations for the composites, and the boundary conditions of the problem be Laplace transformed to a conjugate problem. The homogenized effective properties in the transformed domain are determined, using a two-scale asymptotic expansion of field variables and an averaging procedure. Field solutions in the unit cell are determined from basic and first-order governing equations with the aid of a boundary integral method (BIM). Effective viscoelastic constitutive properties of the composite at elevated temperatures are determined by an inverse transformation, as are the microscopic stress and deformation in the composite. Using this method, interactions among fibers and between the fibers and the matrix can be evaluated explicitly, resulting in accurate solutions for composites with high-volume fraction of reinforcing fibers. Examples are given for the case of a carbon-fiber reinforced thermoplastic polyamide composite in an elevated temperature environment. The homogenization predictions are in good agreement with experimental data available for the composite.

  20. A novel approach to computational homogenization and its application to fully coupled two-scale thermomechanics

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Robert; Božić, Marko; Kaliske, Michael

    2016-11-01

    The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE^2 method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.

  1. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    SciTech Connect

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  2. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGES

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  3. Exploring an approximation for the homogeneous freezing temperature of water droplets

    NASA Astrophysics Data System (ADS)

    O, Kuan-Ting; Wood, Robert

    2016-06-01

    In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived from the Boltzmann distribution function and explored as an approximation for homogeneous freezing temperature of water droplets. Without including the information of the applied cooling rate γcooling and the number of observed droplets Ntotal_droplets in the calculation, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size V and water activity aw of aqueous drops observed in a wide range of experimental studies for droplet diameter > 10 µm and aw > 0.85, suggesting the effect of γcooling and Ntotal_droplets may be secondary compared to the effect of V and aw on homogeneous freezing temperatures in these size and water activity ranges under realistic atmospheric conditions. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may be partly explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that the simplicity of this approximation makes it potentially useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.

  4. Climate Data Homogenization Using Edge Detection Algorithms

    NASA Astrophysics Data System (ADS)

    Hammann, A. C.; Rennermalm, A. K.

    2015-12-01

    The problem of climate data homogenization has predominantly been addressed by testing the likelihood of one or more breaks inserted into a given time series and modeling the mean to be stationary in between the breaks. We recast the same problem in a slightly different form: that of detecting step-like changes in noisy data, and observe that this problem has spawned a large number of approaches to its solution as the "edge detection" problem in image processing. With respect to climate data, we ask the question: How can we optimally separate step-like from smoothly-varying low-frequency signals? We study the hypothesis that the edge-detection approach makes better use of all information contained in the time series than the "traditional" approach (e.g. Caussinus and Mestre, 2004), which we base on several observations. 1) The traditional formulation of the problem reduces the available information from the outset to that contained in the test statistic. 2) The criterion of local steepness of the low-frequency variability, while at least hypothetically useful, is ignored. 3) The practice of using monthly data corresponds, mathematically, to applying a moving average filter (to reduce noise) and subsequent subsampling of the result; this subsampling reduces the amount of available information beyond what is necessary for noise reduction. Most importantly, the tradeoff between noise reduction (better with filters with wide support in the time domain) and localization of detected changes (better with filters with narrow support) is expressed in the well-known uncertainty principle and can be addressed optimally within a time-frequency framework. Unsurprisingly, a large number of edge-detection algorithms have been proposed that make use of wavelet decompositions and similar techniques. We are developing this framework in part to be applied to a particular set of climate data from Greenland; we will present results from this application as well as from tests with

  5. Homogeneity of passively ventilated waste tanks

    SciTech Connect

    Huckaby, J.L.; Jensen, L.; Cromar, R.D.; Hayes, J.C.

    1997-07-01

    Gases and vapors in the high-level radioactive waste underground storage tanks at the Hanford Site are being characterized to help resolve waste storage safety issues and estimate air emissions. Characterization is accomplished by collecting and analyzing air samples from the headspaces of the tanks. Samples are generally collected from a single central location within the headspace, and it is assumed that they are representative of the entire headspace. The validity of this assumption appears to be very good for most tanks, because thermally induced convection currents within the headspaces mix constituents continuously. In the coolest waste tanks, however, thermally induced convection may be suppressed for several months of each year because of the seasonal soil temperature cycle. To determine whether composition does vary significantly with location in a cool tank, the headspaces of three waste tanks have been sampled at different horizontal and vertical locations during that part of the year when thermally induced convection is minimized. This report describes the bases for tank selection and the sampling and analytical methods used, then analyzes and discusses the results. Headspace composition data from two risers at three elevations in Tanks 241-B-103, TY-103, and U-112 have been analyzed by standard analysis of variance (ANOVA) methods, which indicate that these tank headspaces are essentially homogeneous. No stratification of denser vapors (e.g., carbon tetrachloride, dodecane) or lighter gases (e.g., ammonia, hydrogen) was detected in any of the three tanks. A qualitative examination of all tentatively identified organic vapors in SUMMA{trademark} and TST samples supported this conclusion.

  6. Cluster Mechanism of Homogeneous Crystallization (Computer Study)

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2008-12-01

    A molecular dynamics (MD) study of homogeneous crystallization of liquid rubidium is conducted with an inter-particle pair potential. The equilibrium crystallization temperature of the models was 313 K. Models consisted of 500, 998, and 1968 particles in a basic cube. The main investigation method was as follows: to detect (along the MD run) the atoms with Voronoi polyhedrons (VP) of 0608 type (“0608-atoms,” as in a bcc crystal) and to detect the bound groups of 0608-atoms (“0608-clusters”) that could play the role of the seeds in crystallization. Full crystallization was observed only at temperatures lower than 185 K with the creation of a predominant bcc crystal. The crystallization mechanism of Rb models differs drastically from the mechanism adopted in classical nucleation theory. It consists of the growth of the total number of 0608-atoms on cooling and the formation of 0608-clusters, analogous to the case of coagulation of solute for a supersaturated two-component solution. At the first stage of the process the clusters have a very loose structure (something like medusa or octopus with many tentacles) and include inside atoms with other Voronoi polyhedron types. The dimensions of clusters quickly increase and approach those of the basic cube. 0608-atoms play the leading role in the crystallization process and activate the transition of the atoms involved in the 0608-coordination. The fast growth of the maximum cluster begins after it attains a critical size (about 150 0608-atoms). The fluctuations of cluster sizes are very important in the creation of a 0608-cluster of critical (threshold) size. These fluctuations are especially large in the interval from 180 K to 185 K.

  7. Effects of an oscillating magnetic field on homogeneous ferrofluid turbulence.

    PubMed

    Schumacher, Kristopher R; Riley, James J; Finlayson, Bruce A

    2010-01-01

    This paper presents the results from direct numerical simulations of homogeneous ferrofluid turbulence with a spatially uniform, applied oscillating magnetic field. Due to the strong coupling that exists between the magnetic field and the ferrofluid, we find that the oscillating field can affect the characteristics of the turbulent flow. The magnetic field does work on the turbulent flow and typically leads to an increased rate of energy loss via two dissipation modes specific to ferrofluids. However, under certain conditions this magnetic work results in injection, or a forcing, of turbulent kinetic energy into the flow. For the cases considered here, there is no mean shear and the mean components of velocity, vorticity, and particle spin rate are all zero. Thus, the effects shown are entirely due to the interactions between the turbulent fluctuations of the ferrofluid and the magnetic field. In addition to the effects of the oscillation frequency, we also investigate the effects of the choice of magnetization equation. The calculations focus on the approximate centerline conditions of the relatively low Reynolds number turbulent ferrofluid pipe flow experiments described previously [K. R. Schumacher, Phys. Rev. E 67, 026308 (2003)].

  8. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.; Tamura, H.

    1978-01-01

    Measurements were conducted on an evaporating spray in a stagnant environment. The spray was formed using an air-atomizing injector to yield a Sauter mean diameter of the order of 30 microns. The region where evaporation occurred extended approximately 1 m from the injector for the test conditions. Profiles of mean velocity, temperature, composition, and drop size distribution, as well as velocity fluctuations and Reynolds stress, were measured. The results are compared with a locally homogeneous two-phase flow model which implies no velocity difference and thermodynamic equilibrium between the phases. The flow was represented by a k-epsilon-g turbulence model employing a clipped Gaussian probability density function for mixture fraction fluctuations. The model provides a good representation of earlier single-phase jet measurements, but generally overestimates the rate of development of the spray. Using the model predictions to represent conditions along the centerline of the spray, drop life-history calculations were conducted which indicate that these discrepancies are due to slip and loss of thermodynamic equilibrium between the phases.

  9. Mechanized syringe homogenization of human and animal tissues.

    PubMed

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  10. Gastrointestinal lymphomas: the French experience of the Groupe D'etude des Lymphomes Digestifs (GELD).

    PubMed

    Ruskoné-Fourmestraux, A

    2000-01-01

    Since 1983, the French Groupe d'Etude des Lymphomes Digestifs (GELD), under the aegis of the Fondation Française de Cancérologie Digestive, has aimed to identify the different prognostic groups of the primary digestive-tract lymphomas (PDTL) and their optimal treatment. Successive multicenter studies were conducted and 91 PDTL were evaluated. A marked improvement in their prognosis was obtained by a strategy including precise histologic typing and clinical staging followed by a therapeutic approach combining initial surgical resection, whenever possible or reasonable, followed by chemotherapy adapted to the grade of malignancy and resectability of the lymphoma. The multivariate analysis indicated that the factors for good prognosis were age (< 65 yrs), gastric localisation, stage IE and radical or even incomplete surgery. However, Helicobacter pylori eradication should be the first treatment in stage IE low-grade gastric mucosa-associated lymphoid tissue (MALT) tumors. The long-term results of such medical treatment are evaluated together with the management and the place of surgery in these localised tumors. However, owing to the limited number of patients, a large international co-operative trial is needed to confirm the findings. Thirty-one cases of multiple lymphomatous polyposis were also collected and confirmed to be a distinct entity among PDTL and the gastrointestinal counterpart of the mantle-cell-zone lymphomas. High-dose radio-chemotherapy supported by auto-transplantation improved their prognosis.

  11. Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain.

    PubMed

    Broman, K W; Weber, J L

    1999-12-01

    Using genotypes from nearly 8,000 short tandem-repeat polymorphisms typed in eight of the reference families from the Centre d'Etude du Polymorphisme Humain (CEPH), we identified numerous long chromosomal segments of marker homozygosity in many CEPH individuals. These segments are likely to represent autozygosity, the result of the mating of related individuals. Confidence that the complete segment is homozygous is gained only with markers of high density. The longest segment in the eight families spanned 77 cM and included 118 homozygous markers. All individuals in family 884 showed at least one segment of homozygosity: the father and mother were homozygous in 8 and 10 segments with an average length of 13 and 16 cM, respectively, and covering a total of 105 and 160 cM, respectively. The progeny in family 884 were homozygous over 5-16 segments with average length 11 cM. The progeny in family 102 were homozygous over 4-12 segments with average length 19 cM. Of the 100 individuals in the other six families, 1 had especially long homozygous segments, and 19 had short but significant homozygous segments. Our results indicate that long homozygous segments are common in humans and that these segments could have a substantial impact on gene mapping and health.

  12. Etude vibroacoustique d'un systeme coque-plancher-cavite avec application a un fuselage simplifie

    NASA Astrophysics Data System (ADS)

    Missaoui, Jemai

    L'objectif de ce travail est de developper des modeles semi-analytiques pour etudier le comportement structural, acoustique et vibro-acoustique d'un systeme coque-plancher-cavite. La connection entre la coque et le plancher est assuree en utilisant le concept de rigidite artificielle. Ce concept de modelisation flexible facilite le choix des fonctions de decomposition du mouvement de chaque sous-structure. Les resultats issus de cette etude vont permettre la comprehension des phenomenes physiques de base rencontres dans une structure d'avion. Une approche integro-modale est developpee pour calculer les caracteristiques modales acoustiques. Elle utilise une discretisation de la cavite irreguliere en sous-cavites acoustiques dont les bases de developpement sont connues a priori. Cette approche, a caractere physique, presente l'avantage d'etre efficace et precise. La validite de celle-ci a ete demontree en utilisant des resultats disponibles dans la litterature. Un modele vibro-acoustique est developpe dans un but d'analyser et de comprendre les effets structuraux et acoustiques du plancher dans la configuration. La validite des resultats, en termes de resonance et de fonction de transfert, est verifiee a l'aide des mesures experimentales realisees au laboratoire.

  13. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.

    PubMed

    Fusaro, Maxime B; Chagnault, Vincent; Postel, Denis

    2015-05-29

    Chemistry development of renewable resources is a real challenge. Carbohydrates from biomass are complex and their use as substitutes for fossil materials remains difficult (European involvement on the incorporation of 20% raw material of plant origin in 2020). Most of the time, the transformation of these polyhydroxylated structures are carried out in acidic conditions. Recent reviews on this subject describe homogeneous catalytic transformations of pentoses, specifically toward furfural, and also the transformation of biomass-derived sugars in heterogeneous conditions. To complete these informations, the objective of this review is to give an overview of the structural variety described during the treatment of two monosaccharides (D-Fructose and D-xylose) in acidic conditions in homogeneous phases. The reaction mechanisms being not always determined with certainty, we will also provide a brief state of the art regarding this.

  14. The Raychaudhuri equation in homogeneous cosmologies

    SciTech Connect

    Albareti, F.D.; Cembranos, J.A.R.; Cruz-Dombriz, A. de la; Dobado, A. E-mail: cembra@fis.ucm.es E-mail: dobado@fis.ucm.es

    2014-03-01

    In this work we address the issue of studying the conditions required to guarantee the Focusing Theorem for both null and timelike geodesic congruences by using the Raychaudhuri equation. In particular we study the case of Friedmann-Robertson-Walker as well as more general Bianchi Type I spacetimes. The fulfillment of the Focusing Theorem is mandatory in small scales since it accounts for the attractive character of gravity. However, the Focusing Theorem is not satisfied at cosmological scales due to the measured negative deceleration parameter. The study of the conditions needed for congruences convergence is not only relevant at the fundamental level but also to derive the viability conditions to be imposed on extended theories of gravity describing the different expansion regimes of the universe. We illustrate this idea for f(R) gravity theories.

  15. Propagation of the light generated by quasi-homogeneous sources through quasi-homogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chen, Yan-Ru; Zhao, Qi; Zhou, Mu-Chun; Xu, Shi-Xue

    2010-01-01

    The spectral density of the quasi-homogeneous (QH) light has been known when it scatters on QH media or propagates in free space. The case that QH sources are surrounded by QH media is proposed in this paper. Under the paraxial approximation, the spectral density of the QH light propagating through QH media is derived. A modified scaling law for the propagation of the QH light through QH media is also obtained. This law also holds true in the far field beyond the paraxial approximation.

  16. Influence of Homogenization on the Mechanical Properties and Microstructure of the U-10Mo Alloy

    SciTech Connect

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2014-04-01

    In Phase 1 of this study, the mechanical properties of as-cast, depleted uranium alloyed with 10 weight percent molybdenum alloy (U-10Mo) samples were evaluated by high temperature compression testing. Compression testing was conducted at three strain rates over a temperature range of 400 to 800°C. The results indicated that with increasing test temperature, the material flow stress decreases and the material becomes more sensitive to strain rate. In addition, above the eutectoid transformation temperature (~ 550°C), the drop in material flow stress is prominent and shows a strain-softening behavior, especially at lower strain rates. In the second part of this research, we studied the effect that homogenization heat treatment had on the high temperature mechanical properties and microstructure of the cast U-10Mo alloy. Various homogenization times and temperatures were studied ranging between 800 and 1000°C for 4 to 48 hours. Based on the microstructural response in this homogenization study, a heat treatment cycle of 800°C for 24 hours and another at 1000°C for 16 hours were selected as the times at temperature to achieve a fully homogenized sample. Samples from these conditions were then compression tested at a variety of temperatures ranging from 500 to 800°C. The microstructure of these samples were compared to the as-cast samples and to a baseline sample homogenized at 1000°C for 16 hours. The results indicate that below the eutectoid temperature (~ 550°C) all three samples showed strain hardening and followed similar trends. Above the eutectoid temperature, the yield strength of the material decreased linearly. For the as-cast sample and the sample homogenized at 800°C for 24 hours, the n-values were negative, whereas for the samples homogenized at 1000°C for 16 hours the material exhibited a perfectly plastic behavior. The as-cast sample, heat treated at 800°C for 24 hours, showed significant lamellar structure transformation that seems to have

  17. Feeding premature infants banked human milk homogenized by ultrasonic treatment.

    PubMed

    Rayol, M R; Martinez, F E; Jorge, S M; Gonçalves, A L; Desai, I D

    1993-12-01

    Premature neonates fed ultrasonically homogenized human milk had better weight gain and triceps skin-fold thickness than did a control group given untreated human milk (p < 0.01) and also had lower fat loss during tube feeding (p < 0.01). Ultrasonic homogenization of human milk appears to minimize loss of fat and thus allows better growth of premature infants.

  18. Pi overlapping ring systems contained in a homogeneous assay: a novel homogeneous assay for antigens

    NASA Astrophysics Data System (ADS)

    Kidwell, David A.

    1993-05-01

    A novel immunoassay, Pi overlapping ring systems contained in a homogeneous assay (PORSCHA), is described. This assay relies upon the change in fluorescent spectral properties that pyrene and its derivatives show with varying concentration. Because antibodies and other biomolecules can bind two molecules simultaneously, they can change the local concentration of the molecules that they bind. This concentration change may be detected spectrally as a change in the fluorescence emission wavelength of an appropriately labeled biomolecule. Several tests of PORSCHA have been performed which demonstrate this principle. For example: with streptavidin as the binding biomolecule and a biotin labeled pyrene derivative, the production of the excimer emitting at 470 nm is observed. Without the streptavidin present, only the monomer emitting at 378 and 390 nm is observed. The ratio of monomer to excimer provides the concentration of unlabeled biotin in the sample. Approximately 1 ng/mL of biotin may be detected with this system using a 50 (mu) l sample (2 X 10-16 moles biotin). The principles behind PORSCHA, the results with the streptavidin/biotin system are discussed and extensions of the PORSCHA concept to antibodies as the binding partner and DNA in homogeneous assays are suggested.

  19. Sensitivity of liquid clouds to homogenous freezing parameterizations.

    PubMed

    Herbert, Ross J; Murray, Benjamin J; Dobbie, Steven J; Koop, Thomas

    2015-03-16

    Water droplets in some clouds can supercool to temperatures where homogeneous ice nucleation becomes the dominant freezing mechanism. In many cloud resolving and mesoscale models, it is assumed that homogeneous ice nucleation in water droplets only occurs below some threshold temperature typically set at -40°C. However, laboratory measurements show that there is a finite rate of nucleation at warmer temperatures. In this study we use a parcel model with detailed microphysics to show that cloud properties can be sensitive to homogeneous ice nucleation as warm as -30°C. Thus, homogeneous ice nucleation may be more important for cloud development, precipitation rates, and key cloud radiative parameters than is often assumed. Furthermore, we show that cloud development is particularly sensitive to the temperature dependence of the nucleation rate. In order to better constrain the parameterization of homogeneous ice nucleation laboratory measurements are needed at both high (>-35°C) and low (<-38°C) temperatures.

  20. Fibrations and globalizations of compact homogeneous CR-manifolds

    NASA Astrophysics Data System (ADS)

    Gilligan, B.; Huckleberry, Alan T.

    2009-06-01

    Fibration methods which were previously used for complex homogeneous spaces and CR-homogeneous spaces of special types [1]-[4] are developed in a general framework. These include the \\mathfrak{g}-anticanonical fibration in the CR-setting, which reduces certain considerations to the compact projective algebraic case, where a Borel-Remmert type splitting theorem is proved. This leads to a reduction to spaces homogeneous under actions of compact Lie groups. General globalization theorems are proved which enable one to regard a homogeneous CR-manifold as an orbit of a real Lie group in a complex homogeneous space of a complex Lie group. In the special case of CR-codimension at most two, precise classification results are proved and are applied to show that in most cases there exists such a globalization.

  1. Bounded Correctors in Almost Periodic Homogenization

    NASA Astrophysics Data System (ADS)

    Armstrong, Scott; Gloria, Antoine; Kuusi, Tuomo

    2016-10-01

    We show that certain linear elliptic equations (and systems) in divergence form with almost periodic coefficients have bounded, almost periodic correctors. This is proved under a new condition we introduce which quantifies the almost periodic assumption and includes (but is not restricted to) the class of smooth, quasiperiodic coefficient fields which satisfy a Diophantine-type condition previously considered by Kozlov (Mat Sb (N.S), 107(149):199-217, 1978). The proof is based on a quantitative ergodic theorem for almost periodic functions combined with the new regularity theory recently introduced by Armstrong and Shen (Pure Appl Math, 2016) for equations with almost periodic coefficients. This yields control on spatial averages of the gradient of the corrector, which is converted into estimates on the size of the corrector itself via a multiscale Poincaré-type inequality.

  2. Turbulent Diffusion in Non-Homogeneous Environments

    NASA Astrophysics Data System (ADS)

    Diez, M.; Redondo, J. M.; Mahjoub, O. B.; Sekula, E.

    2012-04-01

    Many experimental studies have been devoted to the understanding of non-homogeneous turbulent dynamics. Activity in this area intensified when the basic Kolmogorov self-similar theory was extended to two-dimensional or quasi 2D turbulent flows such as those appearing in the environment, that seem to control mixing [1,2]. The statistical description and the dynamics of these geophysical flows depend strongly on the distribution of long lived organized (coherent) structures. These flows show a complex topology, but may be subdivided in terms of strongly elliptical domains (high vorticity regions), strong hyperbolic domains (deformation cells with high energy condensations) and the background turbulent field of moderate elliptic and hyperbolic characteristics. It is of fundamental importance to investigate the different influence of these topological diverse regions. Relevant geometrical information of different areas is also given by the maximum fractal dimension, which is related to the energy spectrum of the flow. Using all the available information it is possible to investigate the spatial variability of the horizontal eddy diffusivity K(x,y). This information would be very important when trying to model numerically the behaviour in time of the oil spills [3,4] There is a strong dependence of horizontal eddy diffusivities with the Wave Reynolds number as well as with the wind stress measured as the friction velocity from wind profiles measured at the coastline. Natural sea surface oily slicks of diverse origin (plankton, algae or natural emissions and seeps of oil) form complicated structures in the sea surface due to the effects of both multiscale turbulence and Langmuir circulation. It is then possible to use the topological and scaling analysis to discriminate the different physical sea surface processes. We can relate higher orden moments of the Lagrangian velocity to effective diffusivity in spite of the need to calibrate the different regions determining the

  3. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    NASA Technical Reports Server (NTRS)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  4. Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size

    NASA Astrophysics Data System (ADS)

    Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas

    2014-05-01

    The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume

  5. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    De Pietro, Massimo; van Hinsberg, Michel A. T.; Biferale, Luca; Clercx, Herman J. H.; Perlekar, Prasad; Toschi, Federico

    2015-05-01

    We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η , that maximizes the clustering of the particles.

  6. Homogeneous Liquid Phase Transfer of Graphene Oxide into Epoxy Resins.

    PubMed

    Amirova, Lyaysan; Surnova, Albina; Balkaev, Dinar; Musin, Delus; Amirov, Rustem; Dimiev, Ayrat M

    2017-04-05

    The quality of polymer composite materials depends on the distribution of the filler in the polymer matrix. Due to the presence of the oxygen functional groups, graphene oxide (GO) has a strong affinity to epoxy resins, providing potential opportunity for the uniform distribution of GO sheets in the matrix. Another advantage of GO over its nonoxidized counterpart is its ability to exfoliate to single-atomic-layer sheets in water and in some organic solvents. However, these advantages of GO have not yet been fully realized due to the lack of the methods efficiently introducing GO into the epoxy resin. Here we develop a novel homogeneous liquid phase transfer method that affords uniform distribution, and fully exfoliated condition of GO in the polymer matrix. The most pronounced alteration of properties of the cured composites is registered at the 0.10%-0.15% GO content. Addition of as little as 0.10% GO leads to the increase of the Young's modulus by 48%. Moreover, we demonstrate successful introduction of GO into the epoxy matrix containing an active diluent-modifier; this opens new venues for fabrication of improved GO-epoxy-modifier composites with a broad range of predesigned properties. The experiments done on reproducing the two literature methods, using alternative GO introduction techniques, lead to either decrease or insignificant increase of the Young's modulus of the resulting GO-epoxy composites.

  7. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Mehresh, Parag; Schuh, David; Kieser, Andrew J.; Hergart, Carl-Anders; Hardy, William L.; Rodman, Anthony; Liechty, Michael P.

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  8. Biotic homogenization can decrease landscape-scale forest multifunctionality

    PubMed Central

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952

  9. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    PubMed

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.

  10. Modeling of homogeneous charge compression ignition (HCCI) of methane

    SciTech Connect

    Smith, J.R.; Aceves, S.M.; Westbrook, C.; Pitz, W.

    1997-05-01

    The operation of piston engines on a compression ignition cycle using a lean, homogeneous charge has many potential attractive features. These include the potential for extremely low NO{sub x} and particulate emissions while maintaining high thermal efficiency and not requiring the expensive high pressure injection system of the typical modem diesel engine. Using the HCT chemical kinetics code to simulate autoignition of methane-air mixtures, we have explored the ignition timing, burn duration, NO{sub x} production, indicated efficiency and power output of an engine with a compression ratio of 15:1 at 1200 and 2400 rpm. HCT was modified to include the effects of heat transfer. This study used a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by varying the intake equivalence ratio and varying the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both heat and combustion product species. It is accomplished by varying the timing of the exhaust valve closure. Inlet manifold temperature was held constant at 330 Kelvins. Results show that there is a narrow range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NO{sub x} levels below 100 ppm.

  11. Degeneracy allows for both apparent homogeneity and diversification in populations

    PubMed Central

    Whitacre, James M.; Atamas, Sergei P.

    2013-01-01

    Trait diversity – the substrate for natural selection – is necessary for adaptation through selection, particularly in populations faced with environmental changes that diminish population fitness. In habitats that remain unchanged for many generations, stabilizing selection maximizes exploitation of resources by reducing trait diversity to a narrow optimal range. One might expect that such ostensibly homogeneous populations would have a reduced potential for heritable adaptive responses when faced with fitness-reducing environmental changes. However, field studies have documented populations that, even after long periods of evolutionary stasis, can still rapidly evolve in response to changed environmental conditions. We argue that degeneracy, the ability of diverse population elements to function similarly, can satisfy both the current need to maximize fitness and the future need for diversity. Degenerate ensembles appear functionally redundant in certain environmental contexts and functionally diverse in others. We propose that genetic variation not contributing to the observed range of phenotypes in a current population, also known as cryptic genetic variation (CGV), is a specific case of degeneracy. We argue that CGV, which gradually accumulates in static populations in stable environments, reveals hidden trait differences when environments change. By allowing CGV accumulation, static populations prepare themselves for future rapid adaptations to environmental novelty. A greater appreciation of degeneracy’s role in resolving the inherent tension between current stabilizing selection and future directional selection has implications in conservation biology and may be applied in social and technological systems to maximize current performance while strengthening the potential for future changes. PMID:22910487

  12. Pattern and process of biotic homogenization in the New Pangaea.

    PubMed

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  13. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  14. Hydrogen storage materials and method of making by dry homogenation

    DOEpatents

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  15. Unconditional Haar bases for Lebesgue spaces on spaces of homogeneous type

    NASA Astrophysics Data System (ADS)

    Aimar, Hugo; Gorosito, Osvaldo

    2000-12-01

    We show that spaces of homogeneous type are adequate structures on which the unbalanced wavelet of Girabardi and Sweldens, can be constructed with an additional geometric control for the size of the nested partitions, given by the underlying quasi-distance. Moreover, we show that if a non- degeneracy condition is satisfied, we can still apply the Calderon-Zygmund theory in order to get the characterization of Lp spaces.

  16. The single-zone numerical model of homogeneous charge compression ignition engine performance

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Itkis, E. M.; Kuzmin, V. N.; Shumskiy, S. N.

    2017-02-01

    The single-zone model of methane-air mixture combustion in the Homogeneous Charge Compression Ignition engine was developed. First modeling efforts resulted in the selection of the detailed kinetic reaction mechanism, most appropriate for the conditions of the HCCI process. Then, the model was completed so as to simulate the performance of the four-stroke engine and was coupled by physically reasonable adjusting functions. Validation of calculations against experimental data showed acceptable agreement.

  17. Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics

    NASA Astrophysics Data System (ADS)

    Mattiucci, Nadia; D'Aguanno, Giuseppe; Akozbek, Neset; Scalora, Michael; Bloemer, Mark J.

    2010-04-01

    Classical theory of crystals states that a medium to be considered homogeneous must satisfy the following requirements (a) the dimension of the elementary cell must be much smaller than the incident wavelength; (b) the sample must contain a large number of elementary cells, i.e. it must be macroscopic with respect to wavelength. Under these conditions, macroscopic quantities can be introduced in order to describe the optical response of the medium. We analytically demonstrate that for a symmetric elementary cell those requirements can be relaxed, and it is possible to assign a permittivity and a permeability to a composite structure, even if the metamaterial cannot be considered homogeneous under the requirements stated above. However, the effective permittivity and permeability in some cases may give rise to unphysical, effective behaviors inside the medium, notwithstanding the fact that they satisfy requirements like being Kramers-Kronig pairs, for example, and are consistent with all the linear properties outside the structure (i.e. reflection, transmission, and absorption at all frequencies). In some situations the medium is assigned a magnetic response even though the medium is not magnetically active. In particular, we demonstrate that the homogenization procedure can lead to a medium that locally violates the second principle of thermodynamics. We also show that, in the non-homogeneous regime, it is not possible to describe the nonlinear behavior of the structure using an effective parameters approach, despite the possibility to assign an effective linear refractive index.

  18. The effect of high pressure homogenization on the activity of a commercial β-galactosidase.

    PubMed

    Tribst, Alline A L; Augusto, Pedro E D; Cristianini, Marcelo

    2012-11-01

    High pressure homogenization (HPH) has been proposed as a promising method for changing the activity and stability of enzymes. Therefore, this research studied the activity of β-galactosidase before and after HPH. The enzyme solution at pH values of 6.4, 7.0, and 8.0 was processed at pressures of up to 150 MPa, and the effects of HPH were determined from the residual enzyme activity measured at 5, 30, and 45 °C immediately after homogenization and after 1 day of refrigerated storage. The results indicated that at neutral pH the enzyme remained active at 30 °C (optimum temperature) even after homogenization at pressures of up to 150 MPa. On the contrary, when the β-galactosidase was homogenized at pH 6.4 and 8.0, a gradual loss of activity was observed, reaching a minimum activity (around 30 %) after HPH at 150 MPa and pH 8.0. After storage, only β-galactosidase that underwent HPH at pH 7.0 retained similar activity to the native sample. Thus, HPH did not affect the activity and stability of β-galactosidase only when the process was carried out at neutral pH; for the other conditions, HPH resulted in partial inactivation of the enzyme. Considering the use of β-galactosidase to produce low lactose milk, it was concluded that HPH can be applied with no deleterious effects on enzyme activity.

  19. A homogeneous immunoassay for cyclic nucleotides based on chemiluminescence energy transfer.

    PubMed Central

    Campbell, A K; Patel, A

    1983-01-01

    A chemiluminescent derivative of cyclic AMP, aminobutylethylisoluminol succinyl cyclic AMP (ABEI-scAMP), was synthesized in order to develop a homogeneous immunoassay based on non-radiative energy transfer. ABEI-scAMP was chemiluminescent (5.1 X 10(18) luminescent counts X mol-1 at pH 13), pure (greater than 95%) stable and immunologically active. A conventional immunoassay was established using ABEI-scAMP and a solid-phase anti-(cyclic AMP) immunoglobulin G which could detect cyclic AMP at least down to 25fmol. A homogeneous immunoassay for cyclic AMP was established by measuring the shift in wavelength from 460 to 525nm which occurred when ABEI-scAMP was bound to fluorescein-labelled anti-(cyclic AMP) immunoglobulin G. The assay was at least as sensitive as the conventional radioimmunoassay using cyclic [3H]AMP and could measure cyclic AMP over the range 1-1000nM. The homogeneous chemiluminescent energy transfer assay was also able to quantify the association and dissociation of antibody-antigen complexes. Chemiluminescence energy transfer occurred between fluorescein-labelled antibodies and several other ABEI-labelled antigens (Mr values 314-150000) including progesterone, cyclic GMP, complement component C9 and immunoglobulin G. The results provide a homogeneous immunoassay capable of measuring free cyclic AMP under conditions likely to exist inside cells. PMID:6316935

  20. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling.

    PubMed

    Nebbak, Amira; Willcox, Alexandra C; Bitam, Idir; Raoult, Didier; Parola, Philippe; Almeras, Lionel

    2016-12-01

    The rapid spread of vector-borne diseases demands the development of an innovative strategy for arthropod monitoring. The emergence of MALDI-TOF MS as a rapid, low-cost, and accurate tool for arthropod identification is revolutionizing medical entomology. However, as MS spectra from an arthropod can vary according to the body part selected, the sample homogenization method used and the mode and duration of sample storage, standardization of protocols is indispensable prior to the creation and sharing of an MS reference spectra database. In the present study, manual grinding of Anopheles gambiae Giles and Aedes albopictus mosquitoes at the adult and larval (L3) developmental stages was compared to automated homogenization. Settings for each homogenizer were optimized, and glass powder was found to be the best sample disruptor based on its ability to create reproducible and intense MS spectra. In addition, the suitability of common arthropod storage conditions for further MALDI-TOF MS analysis was kinetically evaluated. The conditions that best preserved samples for accurate species identification by MALDI-TOF MS were freezing at -20°C or in liquid nitrogen for up to 6 months. The optimized conditions were objectified based on the reproducibility and stability of species-specific MS profiles. The automation and standardization of mosquito sample preparation methods for MALDI-TOF MS analyses will popularize the use of this innovative tool for the rapid identification of arthropods with medical interest.

  1. Dynamic homogenization of viscoelastic phononic metasolids

    NASA Astrophysics Data System (ADS)

    Pichard, Hélène; Torrent, Daniel

    2016-12-01

    The effects of dissipation in metamaterials is a sensitive issue and, although experiments show that they are more than relevant, their theoretical study and modeling has received less attention. In this work, we study the effects of viscosity on the dissipation of elastic metamaterials. It is found that these metasolids present effective constitutive parameters that are in general complex, in contrast with common elastic materials where the mass density is a real valued scalar quantity and dissipation enters only through the stiffness tensor. It is also found that, while in the low frequency limit the dissipation is higher as the viscoelastic coefficient is also higher, near a resonance of the metamaterial this condition does not hold, since the imaginary part of the constitutive parameters is higher as the viscosity is smaller. Finally, the effects of viscosity are studied on the non-local properties of the effective parameters, and it is found that this property is attenuated with dissipation although still has to be considered.

  2. Tritium Technology Program TTP-1-3089 TPBAR Homogenized Composition

    SciTech Connect

    Love, Edward F.

    2014-10-12

    Homogenized TPBAR number densities contained herein have been derived for unclassified core physics calculations. The use of this information may not provide accurate, conservative or representative results and must be evaluated for applicability to the specific problem.

  3. The structure of the vorticity field in homogeneous turbulent flows

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moin, Parviz

    1987-01-01

    The structures of the vorticity fields in several homogeneous irrotational straining flows and a homogeneous turbulent shear flow were examined using a database generated by direct numerical simulation of the unsteady Navier-Stokes equations. In all cases, strong evidence was found for the presence of coherent vortical structures. The initially isotropic vorticity fields were rapidly affected by imposed mean strain and the rotational component of mean shear and developed accordingly. In the homogeneous turbulent shear-flow cases, the roll-up of mean vorticity into characteristic hairpin vortices was clearly observed, supporting the view that hairpin vortices are an important vortical structure in all turbulent shear flows; the absence of mean shear in the homogeneous irrotational straining flows precludes the presence of hairpin-like vortices.

  4. HOMOGENEOUS CATALYTIC OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENTS

    EPA Science Inventory

    Homogeneous Catalytic Oxidations of Hydrocarbons in Alternative Solvent Systems

    Michael A. Gonzalez* and Thomas M. Becker, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, ...

  5. An approximation for homogeneous freezing temperature of water droplets

    NASA Astrophysics Data System (ADS)

    O, K.-T.; Wood, R.

    2015-11-01

    In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived and proposed as a new approximation for homogeneous freezing temperature of water droplets. Without consideration of time dependence and stochastic nature of the ice nucleation process, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size and water activity of aqueous drops observed in a wide range of experimental studies. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may largely be explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that this approximation is useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.

  6. Ring-diffusion mediated homogeneous melting in the superheating regime

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Li, Mo

    2008-04-01

    Homogeneous melting in the superheating regime is investigated by using molecular dynamics simulation of a Lennard-Jones model system. We show that the commonly observed catastrophic melting at the superheating limit is caused by fast heating rate. By keeping the system isothermally at temperatures below the superheating limit, we observe intense self-diffusion motions as the precursor of melting. The highly correlated atomic motions are related to the self-diffusion loops or rings. Two types of loops are observed, closed loop and open loop, where the latter is directly related to the homogeneous nucleation of the liquid phase. Homogeneous melting occurs when the number density of diffusion loops reaches a critical value. Our results suggest that homogeneous melting in the superheating regime is a first-order thermodynamic phase transition triggered by the self-diffusion loops when the kinetic constraint imposed by heating rate is lessened.

  7. A Wald test with enhanced selectivity properties in homogeneous environments

    NASA Astrophysics Data System (ADS)

    Liu, Weijian; Xie, Wenchong; Wang, Yongliang

    2013-12-01

    A Wald test with enhanced selectivity capabilities is proposed in homogeneous environments. At the design stage, we assume that the cell under test contains a noise-like interferer in addition to colored noise and possible signal of interest. We show that the Wald test is equivalent to a recently proposed Rao test. We also observe that this Rao/Wald test possesses constant false alarm rate property in homogeneous environments.

  8. Matrix-dependent multigrid-homogenization for diffusion problems

    SciTech Connect

    Knapek, S.

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  9. Temperature lowering program for homogeneous doping in flux growth

    NASA Astrophysics Data System (ADS)

    Qiwei, Wang; Shouquan, Jia

    1989-10-01

    Based on the mass conservation law and the Burton-Prim-Slichter equation, the temperature program for homogeneous doping in flux growth by slow cooling was derived. The effect of various factors, such as initial supersaturation, solution volume, growth kinetic coefficient and degree of mixing in the solution on growth rate, crystal size and temperature program is discussed in detail. Theoretical analysis shows that there is a critical crystal size above which homogeneous doping is impossible.

  10. Spatial homogeneity of benthic macrofaunal biodiversity across small spatial scales.

    PubMed

    Barnes, R S K

    2016-12-01

    Spatial heterogeneity of biodiversity has been extensively researched, but its spatial homogeneity is virtually unstudied. An intertidal seagrass system at Knysna (South Africa) known to display spatially homogeneous macrobenthic species density at scales ≥0.0275 m(2) was re-investigated at four smaller spatial grains (0.0015 m(2) - 0.0095 m(2)) via a lattice of 8 × 8 stations within a 0.2 ha area. The aim was to investigate the null hypothesis that spatial homogeneity of species density is not a fixed emergent assemblage property but breaks down at small spatial grains within given spatial extents. Although assemblage abundance was significantly heterogeneous at all spatial grains investigated, both species density and functional-group density were significantly homogeneous across those same scales; observed densities not departing from those expected on the basis of independent assortment. Spatial homogeneity is therefore an emergent assemblage property within given spatial extents at Knysna and probably at equivalent sites elsewhere. Equivalent species density in South Africa, Australia and the UK at spatial grains <0.03 m(2), however, is a scale-related sampling artefact, as may be temporal homogeneity of species density at Knysna over a 3 year period, but close similarity in shape of their species occupancy distributions remains unexplained.

  11. Caracterisation des etats de surface par teledetection infrarouge thermique multispectrale: Contribution a l'etude des conditions de viabilite hivernale

    NASA Astrophysics Data System (ADS)

    Chagnon, Frederic

    La mesure de temperature d'une surface et de son emissivite thermique constitue encore de nos jours, un defi de taille. D'un point de vue microclimatique, la temperature significative d'une surface est celle qui reflete l'etat des echanges energetiques qui y ont lieu. La radiometrie infrarouge thermique permet de lire la temperature de l'interface air-sol pour une couche infiniment petite de la surface (de l'ordre de quelques microns). Dans le cadre d'un systeme d'aide aux decisions en viabilite hivernale, nous avons defini un prototype de station de mesures mobiles. Cette station permet de determiner, avec precision, la temperature radiative de la surface de la chaussee ainsi que de determiner, avec un taux de succes de plus de 65 %, l'etat de cette meme surface. Par la conception de ce prototype, nous avons aborde le principe physique de la mesure de temperature de surface par radiometrie multispectrale infrarouge thermique. Ce travail aura permis d'evaluer une approche standard de mesure a bande spectrale unique (de 8 a 14 mum). Dans la correction de la temperature radiative de surface, nous avons considere trois methodes distinctes. La premiere methode utilisee est celle de l'algorithme TES (Gillespie et al., 1998). Cet algorithme etablit le spectre d'emissivite, puis calcule une temperature de surface corrigee, en tenant compte de la reflexion du rayonnement thermique incident a la surface. La seconde methode consideree est l'indice TISI (Li et al., 1999) qui consiste en un indice d'emissivite relatif independant de la temperature de la surface et qui tient compte du rayonnement incident a la surface. La troisieme methode est un indice de temperature relative (ITR) qui correspond au contraste normalise des temperatures radiatives de surface. L'identification du type de surface a montre un taux de succes de 54,8 % pour les resultats de l'indice ITR, de 51,9 % pour les resultats de l'indice TISI et de 67,3 % pour les resultats de l'algorithme TES. Quant a la valeur de temperature corrigee, une verification prealable ayant permis de determiner la precision du TES a 0,5 °C, nous avons determine la precision relative des deux autres methodes par rapport a celle du TES. Pour les deux methodes TISI et ITR, la correction de temperature radiative a donne un ecart moyen similaire de l'ordre de --1,2 °C, avec une etendue d'ecart allant de ---0,5 a --2,2 °C. L'experience realisee a permis de presenter un prototype operationnel de mesure de la temperature de surface permettant en meme temps la caracterisation de la surface mesuree. L'extraction de ces deux types d'informations a partir d'une meme serie de mesures est une innovation. La banque d'emissivite spectrale mesuree sur le terrain est aussi une contribution de ce projet. Teledetection -- Infrarouge thermique -- Temperature de surface -- Neige -- Glace -- Meteorologie routiere

  12. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter.

    PubMed

    Li, Zhen-Xing; Xue, Wei; Guan, Bing-Tao; Shi, Fu-Bo; Shi, Zhang-Jie; Jiang, Hong; Yan, Chun-Hua

    2013-02-07

    Translation of homogeneous catalysis into heterogeneous catalysis is a promising solution to green and sustainable development in chemical industry. For this purpose, noble metal nanoparticles represent a new frontier in catalytic transformations. Many challenges remain for researchers to transform noble metal nanoparticles of heterogeneous catalytic active sites into ionic species of homogeneous catalytic active sites. We report here a successful design on translating homogeneous gold catalysis into a heterogeneous system with a clear understanding of the catalytic pathway. This study initiates a novel concept to immobilize a homogeneous catalyst based on electron transfer between supporting base and supported nanoparticles. Meanwhile, on the basis of theoretical calculation, it has deepened the understanding of the interactions between noble metal nanoparticles and the catalyst support.

  13. Numerical simulations of non-homogeneous viscoelastic turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Housiadas, Kostas; Beris, Antony

    2004-11-01

    The effect of the polymer mixing in turbulent channel flow is studied through numerical simulations, using a spectral technique. In particular, we simulate injection of polymeric material through a slit very close to the wall and parallel to it in pre-established Newtonian turbulent flow. The governing equations consist of the mass conservation, the modified Navier-Stokes equation (in order to take into account the polymer extra-stress), the evolution equation for the conformation tensor and an advection-diffusion equation for the polymer concentration. The injection process is simulated by dividing the computational domain in three different regions: (a) the entrance region where the polymer is introduced (b) the developing region where the polymer is allowed to convect freely interacting/modifying the turbulent flow and (c) the recovering region where we use a reacting sink to force the removal of the polymer from the solvent in order to re-establish the inlet conditions. A fully spectral method is used in order to solve the set of governing equations similar to that developed for homogenous viscoelastic turbulent DNS (Housiadas & Beris, Phys. Fluids, 15, (2003)). Although a significantly improved numerical algorithm has been successfully used before (Housiadas & Beris, to appear in J. Non-Newt. Fluid Mech. (2004)) a further improved version of that algorithm is presented in this work. The new algorithm has enabled us to extend the simulations for much wider range of viscoelasticity parameter values as well as for many viscoelastic models like the FENE-P, Giesekus, Oldroyd-B and the modified Giesekus/FENE-P model. Results for illustrative sets of parameter values are going to be presented.

  14. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    SciTech Connect

    Stanger, Keith James

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  15. String-like cooperative motion in homogeneous melting.

    PubMed

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  16. Size and spatial homogeneity of SiGe quantum dots in amorphous silica matrix

    SciTech Connect

    Buljan, Maja; Pinto, Sara R. C.; Rolo, Anabela G.; Levichev, Sergey; Gomes, Maria J. M.; Kashtiban, Reza J.; Bangert, Ursel; Chahboun, Adil; Holy, Vaclav

    2009-10-15

    In this paper, we present a study of structural properties of SiGe quantum dots formed in amorphous silica matrix by magnetron sputtering technique. We investigate deposition conditions leading to the formation of dense and uniformly sized quantum dots, distributed homogeneously in the matrix. X-ray and Raman spectroscopy were used to estimate the Si content. A detailed analysis based on grazing incidence small angle x-ray scattering revealed the influence of the deposition conditions on quantum dot sizes, size distributions, spatial arrangement, and concentration of quantum dots in the matrix, as well as the Si:Ge content.

  17. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax

    NASA Astrophysics Data System (ADS)

    Asmawati, Mustapha, Wan Aida Wan; Yusop, Salma Mohamad; Maskat, Mohamad Yusof; Shamsuddin, Ahmad Fuad

    2014-09-01

    This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

  18. Land-use intensification causes multitrophic homogenization of grassland communities

    NASA Astrophysics Data System (ADS)

    Gossner, Martin M.; Lewinsohn, Thomas M.; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C.; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C.; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J.; Purschke, Oliver; Schall, Peter; Socher, Stephanie A.; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N.; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W.; Allan, Eric

    2016-12-01

    Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity

  19. Land-use intensification causes multitrophic homogenization of grassland communities.

    PubMed

    Gossner, Martin M; Lewinsohn, Thomas M; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J; Purschke, Oliver; Schall, Peter; Socher, Stephanie A; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W; Allan, Eric

    2016-12-08

    Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity

  20. Etude des proprietes electroniques des etats fondamentaux aux facteurs de remplissage entiers dans la bicouche de graphene

    NASA Astrophysics Data System (ADS)

    Lemonde, Marc-Antoine

    Dans ce document, on etudie les proprietes electroniques d'un systeme compose de deux couches de graphene separees par un dielectrique en presence d'un fort champ magnetique perpendiculaire. L'epaisseur du dielectrique est choisie de facon a pouvoir negliger le transfert de charges par effet tunnel. Ce type de systeme est etudie par quelques groupes de recherche dans le principal but de predire et comprendre la formation de condensat de Bose-Einstein d'excitons dont les composants sont des fermions relativistes sans masse [1] [2] [3]. Nous nous interessons a l'effet de l'interaction electron-electron sur les etats fondamentaux de ce systeme et 'a leurs excitations collectives a facteur de remplissage entier. Plus precisement, nous etudions les diagrammes de phase de cette bicouche de graphene sans terme tunnel dans le niveau de Landau n = 0 pour les facteurs de remplissage nu = 1 et nu = 2 dans la limite ou la temperature tend vers zero. Lors de cette etude, nous appuyons les predictions faites par Allan H. MacDonald et Yogesh N. Joglekar a propos de la formation d'un condensat de Bose-Einstein d'excitons pour differentes zones des diagrammes de phase. Nous etudions aussi la relation de dispersion des excitations collectives soutenues par les etats fondamentaux et leur effet sur le systeme. Finalement, nous nous interessons a la conductivite du systeme. Nous demontrons alors les regles de selection pour l'absorption inter-niveaux de Landaux et nous etudions l'effet des modes collectifs sur l'absorption .intrarniveau de Landau, Ce dernier phenomene ressort directement de la forme particuliere du reseau atomique du graphene et nous proposons dans ce document une toute premiere etude de ce concept. Mots-cles : graphene, gaz d'electrons bidimensionnel, effets Hall quantiques, proprietes electroniques, modes collectifs

  1. Homogenization of a mathematical model for cavitation in thin film flow

    NASA Astrophysics Data System (ADS)

    Tsandzana, Afonso Fernando

    2017-01-01

    This paper is a contribution to mathematical modeling of thin film flow between two surfaces which are in relative motion. In particular such flows are important in lubrication theory. For many shapes of the surfaces and boundary conditions the pressure in the fluid will be so low that the continuous fluid film ruptures and air bubbles are formed. This phenomenon is known as cavitation and have a huge impact on the hydrodynamic performance. We derive a mathematical model of thin film flow between two close surfaces which takes into account cavitation, surface roughness and pressure dependent density. Moreover, we use two-scale convergence to homogenize the model. In addition, we compute the coefficients of the homogenized equation for a simple class of functions that describe the film thickness.

  2. Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows

    NASA Technical Reports Server (NTRS)

    Bardino, J.; Ferziger, J. H.; Reynolds, W. C.

    1983-01-01

    The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.

  3. Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion

    NASA Astrophysics Data System (ADS)

    Jahedi, Mohammad; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Zheng, Shijian; Xiong, Ting; Knezevic, Marko

    2017-03-01

    With electron backscatter diffraction and transmission electron microscopy, we study the rate of grain refinement and the uniformity in the evolution of microstructure in commercial purity Cu samples during high-pressure double torsion (HPDT). We aim to identify the processing conditions that would produce a microstructure that is both refined and uniform across the sample in grain size, texture, and intra-granular misorientation with minimal energy input. Two processing variables, pressure and number of turns, are probed. To provide a reference for HPDT, the investigation is also carried out using the standard high-pressure torsion (HPT) technique. For both processes, grain sizes decrease with the number of turns and applied pressure. Under pressure of 600 MPa and 4 torsional turns, HPDT provided a more homogeneous grain structure than HPT. Likewise, we also demonstrate that for the same processing condition, HPDT again produces the more homogeneous grain structure. It is found that a more homogeneous grain structure is achieved after doubling number of turns than doubling the pressure amount to 1.2 GPa. However, the rate of grain refinement substantially increases with doubling the pressure. Considering these results, the HPDT process, compared to HPT, takes better advantage of the role that high pressure plays in shear strain-induced grain refinement and homogenizing the microstructure. Last, analysis of the applied work finds that the least amount of work required for achieving fine and homogeneous microstructure occurs when the applied pressure is maximized and number of turns is minimized.

  4. Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion

    NASA Astrophysics Data System (ADS)

    Jahedi, Mohammad; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Zheng, Shijian; Xiong, Ting; Knezevic, Marko

    2017-01-01

    With electron backscatter diffraction and transmission electron microscopy, we study the rate of grain refinement and the uniformity in the evolution of microstructure in commercial purity Cu samples during high-pressure double torsion (HPDT). We aim to identify the processing conditions that would produce a microstructure that is both refined and uniform across the sample in grain size, texture, and intra-granular misorientation with minimal energy input. Two processing variables, pressure and number of turns, are probed. To provide a reference for HPDT, the investigation is also carried out using the standard high-pressure torsion (HPT) technique. For both processes, grain sizes decrease with the number of turns and applied pressure. Under pressure of 600 MPa and 4 torsional turns, HPDT provided a more homogeneous grain structure than HPT. Likewise, we also demonstrate that for the same processing condition, HPDT again produces the more homogeneous grain structure. It is found that a more homogeneous grain structure is achieved after doubling number of turns than doubling the pressure amount to 1.2 GPa. However, the rate of grain refinement substantially increases with doubling the pressure. Considering these results, the HPDT process, compared to HPT, takes better advantage of the role that high pressure plays in shear strain-induced grain refinement and homogenizing the microstructure. Last, analysis of the applied work finds that the least amount of work required for achieving fine and homogeneous microstructure occurs when the applied pressure is maximized and number of turns is minimized.

  5. Context homogeneity facilitates both distractor inhibition and target enhancement.

    PubMed

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2013-05-06

    Homogeneous contexts were shown to result in prioritized processing of embedded targets compared to heterogeneous contexts (Duncan & Humphreys, 1989). The present experiment used behavioral and ERP measures to examine whether context homogeneity affects both enhancing relevant information and inhibiting irrelevant in contexts of varying homogeneity. Targets and distractors were presented laterally or on the vertical midline which allowed disentangling target- and distractor-related activity in the lateralized ERP (Hickey, diLollo, & McDonald, 2009). In homogeneous contexts, targets elicited an NT component from 150 ms on and a PD component from 200 ms on, showing early attention deployment at target locations and active suppression of distractors. In heterogeneous contexts, an NT component was also found from 150 ms on and PD was found from 250 ms on, suggesting delayed suppression of the distractor. Before 250 ms, distractors in heterogeneous contexts elicited a contralateral negativity, indicating attentional capture of the distractor prior to active suppression. In sum the present results suggest that top-down control of attention is more pronounced in homogeneous than in heterogeneous contexts.

  6. An enthalpy landscape view of homogeneous melting in crystals.

    PubMed

    Nieves, Alex M; Sinno, Talid

    2011-08-21

    A detailed analysis of homogeneous melting in crystalline materials modeled by empirical interatomic potentials is presented using the theory of inherent structures. We show that the homogeneous melting of a perfect, infinite crystalline material can be inferred directly from the growth exponent of the inherent structure density-of-states distribution expressed as a function of formation enthalpy. Interestingly, this growth is already established by the presence of very few homogeneously nucleated point defects in the form of Frenkel pairs. This finding supports the notion that homogeneous melting is appropriately defined in terms of a one-phase theory and does not require detailed consideration of the liquid phase. We then apply this framework to the study of applied hydrostatic compression on homogeneous melting and show that the inherent structure analysis used here is able to capture the correct pressure-dependence for two crystalline materials, namely silicon and aluminum. The coupling between the melting temperature and applied pressure arises through the distribution of formation volumes for the various inherent structures.

  7. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  8. Cell structure imaging with bright and homogeneous nanometric light source.

    PubMed

    Fukuta, Masahiro; Ono, Atsushi; Nawa, Yasunori; Inami, Wataru; Shen, Lin; Kawata, Yoshimasa; Terekawa, Susumu

    2017-04-01

    Label-free optical nano-imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label-free macrophage receptor with collagenous structure-expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal-to-noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR.

  9. A tree-based model for homogeneous groupings of multinomials.

    PubMed

    Yang, Tae Young

    2005-11-30

    The motivation of this paper is to provide a tree-based method for grouping multinomial data according to their classification probability vectors. We produce an initial tree by binary recursive partitioning whereby multinomials are successively split into two subsets and the splits are determined by maximizing the likelihood function. If the number of multinomials k is too large, we propose to order the multinomials, and then build the initial tree based on a dramatically smaller number k-1 of possible splits. The tree is then pruned from the bottom up. The pruning process involves a sequence of hypothesis tests of a single homogeneous group against the alternative that there are two distinct, internally homogeneous groups. As pruning criteria, the Bayesian information criterion and the Wilcoxon rank-sum test are proposed. The tree-based model is illustrated on genetic sequence data. Homogeneous groupings of genetic sequences present new opportunities to understand and align these sequences.

  10. Scaling of Lyapunov Exponents in Homogeneous, Isotropic DNS

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Nicholas; Malaya, Nicholas; Moser, Robert

    2013-11-01

    Lyapunov exponents measure the rate of separation of initially infinitesimally close trajectories in a chaotic system. Using the exponents, we are able to probe the chaotic nature of homogeneous isotropic turbulence and study the instabilities of the chaotic field. The exponents are measured by calculating the instantaneous growth rate of a linear disturbance, evolved with the linearized Navier-Stokes equation, at each time step. In this talk, we examine these exponents in the context of homogeneous isotropic turbulence with two goals: 1) to investigate the scaling of the exponents with respect to the parameters of forced homogeneous isotropic turbulence, and 2) to characterize the instabilities that lead to chaos in turbulence. Specifically, we explore the scaling of the Lyapunov exponents with respect to the Reynolds number and with respect to the ratio of the integral length scale and the computational domain size.

  11. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  12. Computational homogenization of diffusion in three-phase mesoscale concrete

    NASA Astrophysics Data System (ADS)

    Nilenius, Filip; Larsson, Fredrik; Lundgren, Karin; Runesson, Kenneth

    2014-08-01

    A three dimensional (3D) mesoscale model of concrete is presented and employed for computational homogenization in the context of mass diffusion. The mesoscale constituents of cement paste, aggregates and interfacial transition zone (ITZ) are contained within a statistical volume element (SVE) on which homogenization is carried out. The model implementation accounts for ITZ anisotropy thereby the diffusivity tensor depends on the normal of the aggregate surface. The homogenized response is compared between 3D and 2D SVEs to study the influence of the third spatial dimension, and for varying mesoscale compositions to study the influence of aggregate content on concrete diffusivity. The computational results show that the effective diffusivity of 3D SVEs is about 40 % greater than 2D SVEs when ITZ is excluded for the SVE, and 17 % when ITZ is included. The results are in agreement with the upper Hashin-Shtrikman bound when ITZ is excluded, and close to the Taylor assumption when ITZ is included.

  13. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    DOEpatents

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  14. Homogeneity of material and optical properties in HEM grown sapphire

    NASA Astrophysics Data System (ADS)

    Stout, M.; Hibbard, D.

    2015-09-01

    Sapphire crystal boules, approximately 34 cm in diameter and 22 cm tall, grown by the Heat Exchanger Method (HEM) are currently being sliced, ground and polished for use as window substrates in a variety of aerospace applications. As the need for larger volumes of higher quality material increases, it is necessary to evaluate and understand the homogeneity of optical and material properties within sapphire boules to ensure the needs of the industry can be met. The optical homogeneity throughout the full useable thickness of a representative sapphire boule was evaluated by measuring the transmitted wavefront error of multiple thin slices. This approach allowed the creation of a full-volume three-dimensional homogeneity map. Additionally, the uniformity of other critical characteristics of the material was evaluated at multiple locations within a boule. Specific properties investigated were equibiaxial flexural strength, index of refraction, Knoop hardness, coefficient of thermal expansion and modulus of elasticity. The results of those evaluations will be reported.

  15. Defining least community as a homogeneous group in complex networks

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Ma, Ding

    2015-06-01

    This paper introduces a new concept of least community that is as homogeneous as a random graph, and develops a new community detection algorithm from the perspective of homogeneity or heterogeneity. Based on this concept, we adopt head/tail breaks-a newly developed classification scheme for data with a heavy-tailed distribution-and rely on edge betweenness given its heavy-tailed distribution to iteratively partition a network into many heterogeneous and homogeneous communities. Surprisingly, the derived communities for any self-organized and/or self-evolved large networks demonstrate very striking power laws, implying that there are far more small communities than large ones. This notion of far more small things than large ones constitutes a new fundamental way of thinking for community detection.

  16. A Comparison of the Developmental Impact of Homogeneous and Heterogeneous Housing Conditions on Freshmen.

    ERIC Educational Resources Information Center

    Cade, Sharon M.

    1979-01-01

    Examines changes in students' sense of autonomy and in their ability to manage their emotions, as described by Chickering's vectors, in relation to residence hall environments. Results neither support nor refute the all-freshman hall. Participants moved developmentally along the Autonomy Scale. Freshman women increased their scores on the Impulse…

  17. Roles of Clonal Integration in both Heterogeneous and Homogeneous Habitats

    PubMed Central

    Zhang, Haijie; Liu, Fenghong; Wang, Renqing; Liu, Jian

    2016-01-01

    Many studies have shown that clonal integration can promote the performance of clonal plants in heterogeneous habitats, but the roles of clonal integration in both heterogeneous and homogeneous habitats were rarely studied simultaneously. Ramet pairs of Alternanthera philoxeroides (Mart.) Griseb were placed in two habitats either heterogeneous or homogeneous in soil nutrient availability, with stolon connections left intact or severed. Total biomass, total length of stolons, and number of new ramets of distal (relatively young) ramets located in low-nutrient environments were significantly greater when the distal ramets were connected to than when they were disconnected from proximal (relatively old) ramets located in high-nutrient environments. Total length of stolons of proximal ramets growing in low-nutrient environments was significantly higher when the proximal ramets were connected to than when they were disconnected from the distal ramets growing in high-nutrient environments, but stolon connection did not affect total biomass or number of new ramets of the proximal ramets. Stolon severing also did not affect the growth of the whole ramet pairs in heterogeneous environments. In homogeneous high-nutrient environments stolon severing promoted the growth of the proximal ramets and the ramet pairs, but in homogeneous low-nutrient environments it did not affect the growth of the proximal or distal ramets. Hence, for A. philoxeroides, clonal fragmentation appears to be more advantageous than clonal integration in resource-rich homogeneous habitats, and clonal integration becomes beneficial in heterogeneous habitats. Our study contributes to revealing roles of clonal integration in both heterogeneous and homogeneous habitats and expansion patterns of invasive clonal plants such as A. philoxeroides in multifarious habitats. PMID:27200026

  18. Delineating relative homogeneous G+C domains in DNA sequences.

    PubMed

    Li, W

    2001-10-03

    The concept of homogeneity of G+C content is always relative and subjective. This point is emphasized and quantified in this paper using a simple example of one sequence segmented into two subsequences. Whether the sequence is homogeneous or not can be answered by whether the two-subsequence model describes the DNA sequence better than the one-sequence model. There are at least three equivalent ways of looking at the 1-to-2 segmentation: Jensen-Shannon divergence measure, log likelihood ratio test, and model selection using Bayesian information criterion. Once a criterion is chosen, a DNA sequence can be recursively segmented into multiple domains. We use one subjective criterion called segmentation strength based on the Bayesian information criterion. Whether or not a sequence is homogeneous and how many domains it has depend on this criterion. We compare six different genome sequences (yeast S. cerevisiae chromosome III and IV, bacterium M. pneumoniae, human major histocompatibility complex sequence, longest contigs in human chromosome 21 and 22) by recursive segmentations at different strength criteria. Results by recursive segmentation confirm that yeast chromosome IV is more homogeneous than yeast chromosome III, human chromosome 21 is more homogeneous than human chromosome 22, and bacterial genomes may not be homogeneous due to short segments with distinct base compositions. The recursive segmentation also provides a quantitative criterion for identifying isochores in human sequences. Some features of our recursive segmentation, such as the possibility of delineating domain borders accurately, are superior to those of the moving-window approach commonly used in such analyses.

  19. Homogeneous Open Quantum Random Walks on a Lattice

    NASA Astrophysics Data System (ADS)

    Carbone, Raffaella; Pautrat, Yan

    2015-09-01

    We study open quantum random walks (OQRWs) for which the underlying graph is a lattice, and the generators of the walk are homogeneous in space. Using the results recently obtained in Carbone and Pautrat (Ann Henri Poincaré, 2015), we study the quantum trajectory associated with the OQRW, which is described by a position process and a state process. We obtain a central limit theorem and a large deviation principle for the position process. We study in detail the case of homogeneous OQRWs on the lattice , with internal space.

  20. Homogeneous illusion device exhibiting transformed and shifted scattering effect

    NASA Astrophysics Data System (ADS)

    Mei, Jin-Shuo; Wu, Qun; Zhang, Kuang; He, Xun-Jun; Wang, Yue

    2016-06-01

    Based on the theory of transformation optics, a type of homogeneous illusion device exhibiting transformed and shifted scattering effect is proposed in this paper. The constitutive parameters of the proposed device are derived, and full-wave simulations are performed to validate the electromagnetic properties of transformed and shifted scattering effect. The simulation results show that the proposed device not only can visually shift the image of target in two dimensions, but also can visually transform the shape of target. It is expected that such homogeneous illusion device could possess potential applications in military camouflage and other field of electromagnetic engineering.

  1. Homogenization of spatially dispersive 1D fractal metamaterials

    NASA Astrophysics Data System (ADS)

    Moeini, Samaneh

    2016-04-01

    A layered uniaxial dielectric structure is considered. The layers in the structure are distributed according to a one-dimensional fractal set. The resulting fractal metamaterial is homogenized with an original source-driven homogenization approach which is suitable for both numerical and analytical calculations. Due to the fact that the considered metamaterial is nonmagnetic, the only effective parameter which needs to be calculated is the effective permittivity dyadic e(ω, k). The effective permittivity is obtained analytically (by using a transfer matrix approach) and numerically (by using a Finite-Difference Time-Domain solver).

  2. Quaternionic-like manifolds and homogeneous twistor spaces.

    PubMed

    Pantilie, Radu

    2016-12-01

    Motivated by the quaternionic geometry corresponding to the homogeneous complex manifolds endowed with (holomorphically) embedded spheres, we introduce and initiate the study of the 'quaternionic-like manifolds'. These contain, as particular subclasses, the CR quaternionic and the ρ-quaternionic manifolds. Moreover, the notion of 'heaven space' finds its adequate level of generality in this setting: (essentially) any real analytic quaternionic-like manifold admits a (germ) unique heaven space, which is a ρ-quaternionic manifold. We, also, give a natural construction of homogeneous complex manifolds endowed with embedded spheres, thus, emphasizing the abundance of the quaternionic-like manifolds.

  3. Lagrangian and Eulerian statistics in homogeneous, anisotropic flows

    NASA Astrophysics Data System (ADS)

    Iyer, Kartik; Bonaccorso, Fabio; Toschi, Federico; Biferale, Luca

    2016-11-01

    We report results from highly resolved direct numerical simulations of anisotropic homogeneous flows using up to 20483 collocations points. We examine a turbulent Kolmogorov flow with randomly correlated phases in order to recover space homogeneity on average. We present Eulerian and Lagrangian measurements concerning the universality of isotropic and anisotropic contributions using a systematic decomposition based on the eigenfunctions of the SO (3) group of rotations in three dimensions. Additionally, we discuss absolute dispersion statistics of particles in flows subjected to different large-scale anisotropies. ERC ADG NewTURB 2013.

  4. The Largest Fragment of a Homogeneous Fragmentation Process

    NASA Astrophysics Data System (ADS)

    Kyprianou, Andreas; Lane, Francis; Mörters, Peter

    2017-03-01

    We show that in homogeneous fragmentation processes the largest fragment at time t has size e^{-t Φ '(overline{p})}t^{-3/2 (log Φ )'(overline{p})+o(1)}, where Φ is the Lévy exponent of the fragmentation process, and overline{p} is the unique solution of the equation (log Φ )'(bar{p})=1/1+bar{p}. We argue that this result is in line with predictions arising from the classification of homogeneous fragmentation processes as logarithmically correlated random fields.

  5. Quantitative Homogeneity and In-Contact Particles of High Temperature Reactors (htr) Compacts Determination via X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Lecomte, G.; Tisseur, D.; Létang, J. M.; Banchet, J.; Vitali, M. P.

    2008-02-01

    In AREVA Nuclear Power's High Temperature Reactor (HTR) design called ANTARES, fuel consists of compacts composed of few thousands millimetric quasi-spherical particles dispersed in a graphite matrix. Compact homogeneity, defined as the homogeneous particles spatial distribution in the matrix, as well as the possibility of obtaining particles in contact, need to be assessed since they condition the thermo-mechanical behavior of the nuclear fuel under irradiation. In this paper, image and data processing algorithms are developed to do so, based on X-Ray tomographic images.

  6. Vinyl Acetate Synthesis on Homogeneous and Heterogeneous Pd-Based Catalysts: A Theoretical Analysis on the Reaction Mechanisms#

    NASA Astrophysics Data System (ADS)

    Plata, José J.; García-Mota, Mónica; Braga, Ataualpa A. C.; López, Núria; Maseras, Feliu

    2009-09-01

    Vinyl acetate can be synthetized by both homogeneous and heterogeneous processes involving Pd atoms as reaction centers. We have determined the reaction mechanisms by means of density functional theory applied to molecular models for the homogeneous catalyst and to slabs that model the most active heterogeneous ensemble to unravel the similarities and differences in the reaction networks under these different conditions. We find that although the reaction network is similar, the rate determining step is different. Thus, direct extrapolations from organometallic chemistry to gas-phase heterogeneous catalysis should be handled with care.

  7. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    PubMed

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  8. Construction of homogeneous loading functions for elastoplastic damage models for concrete

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Jie

    2014-03-01

    Over the past 2 decades, tight restriction has been imposed on strength criteria of concrete by the combination of plasticity and damage in one theory. The present study aims at constructing plastic/damage loading functions for elastoplastic damage models for concrete that can perform more satisfactorily in 3D stress states. Numerous strength criteria of concrete are reorganized according to their simplest representations as Cartesian, cylindrical, mixed cylindrical-Cartesian, and other forms, and the homogeneity of loading functions discussed. It is found that under certain supplementary conditions from physical meanings, an unambiguous definition of the cohesion in a strength criterion, which is demanded in an elastoplastic damage model, is usually available in an explicit or implicit form, and in each case the loading function is still homogeneous. To apply and validate the presented theory, we construct the respective homogeneous damage and plastic loading functions and implant them into some widely used elastoplastic damage models for concrete, and their performances in triaxial compression prove to have improved significantly.

  9. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    SciTech Connect

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage. Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.

  10. Homogenization of carbonate-bearing microinclusions in diamond at P- T parameters of the upper mantle

    NASA Astrophysics Data System (ADS)

    Ragozin, A. L.; Palyanov, Yu. N.; Zedgenizov, D. A.; Kalinin, A. A.; Shatsky, V. S.

    2016-10-01

    The staged high-pressure annealing of natural cubic diamonds with numerous melt microinclusions from the Internatsional'naya kimberlite pipe was studied experimentally. The results mainly show that the carbonate phases, the daughter phases in partially crystallized microinclusions in diamonds, may undergo phase transformations under the mantle P- T conditions. Most likely, partial melting and further dissolution of dolomite in the carbonate-silicate melt (homogenization of inclusions) occur in inclusions. The experimental data on the staged high-pressure annealing of diamonds with melt microinclusions allow us to estimate the temperature of their homogenization as 1400-1500°C. Thus, cubic diamonds from the Internatsional'naya pipe could have been formed under quite high temperatures corresponding to the lithosphere/asthenosphere boundary. However, it should be noted that the effect of selective capture of inclusions with partial loss of volatiles in relation to the composition of the crystallization medium is not excluded during the growth. This may increase the temperature of their homogenization significantly between 1400 and 1500°C.

  11. Projected changes in rainfall and temperature over homogeneous regions of India

    NASA Astrophysics Data System (ADS)

    Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara

    2016-11-01

    The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.

  12. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    DOE PAGES

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more » Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less

  13. Hysteresis Effects and Strain-Induced Homogeneity Effects in Base Metal Thermocouples

    NASA Astrophysics Data System (ADS)

    Pavlasek, P.; Elliott, C. J.; Pearce, J. V.; Duris, S.; Palencar, R.; Koval, M.; Machin, G.

    2015-03-01

    Thermocouples are used in a wide variety of industrial applications in which they play an important role for temperature control and monitoring. Wire inhomogeneity and hysteresis effects are major sources of uncertainty in thermocouple measurements. To efficiently mitigate these effects, it is first necessary to explore the impact of strain-induced inhomogeneities and hysteresis, and their contribution to the uncertainty. This article investigates homogeneity and hysteresis effects in Types N and K mineral-insulated metal-sheathed (MIMS) thermocouples. Homogeneity of thermocouple wires is known to change when mechanical strain is experienced by the thermoelements. To test this influence, bends of increasingly small radii, typical in industrial applications, were made to a number of thermocouples with different sheath diameters. The change in homogeneity was determined through controlled immersion of the thermocouple into an isothermal liquid oil bath at and was found to be very small at for Type K thermocouples, with no measureable change in Type N thermocouples found. An experiment to determine the hysteresis effect in thermocouples was performed on swaged, MIMS Type N and Type K thermocouples, in the temperature range from to . The hysteresis measurements presented simulate the conditions that thermocouples may be exposed to in industrial applications through continuous cycling over 136 h. During this exposure, a characteristic drift from the reference function has been observed but no considerable difference between the heating and cooling measurements was measureable. The measured differences were within the measurement uncertainties; therefore, no hysteresis was observed.

  14. Matrix algorithms for solving (in)homogeneous bound state equations.

    PubMed

    Blank, M; Krassnigg, A

    2011-07-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe-Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe-Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems.

  15. Class Management and Homogeneous Grouping in Kindergarten Literacy Instruction

    ERIC Educational Resources Information Center

    Hong, Guanglei; Pelletier, Janette; Hong, Yihua; Corter, Carl

    2010-01-01

    The purpose of this study is two-fold. Firstly the authors examine, given the amount of time allocated to literacy instruction, whether homogeneous grouping helps improve class manageability over the kindergarten year and whether individual students' externalizing problem behaviors will decrease in tandem. Secondly, they investigate whether the…

  16. Stability of rehydrated Mycoplasma gallisepticum vaccine homogeneity over time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper vaccine application is required to maximize the results of the vaccination, with maintenance of a homogenous solution is critical to obtain uniform results. This study was designed to analyze the need for continued mixing of a Mycoplasma gallisepticum vaccine solution in order to maintain a ...

  17. Isotopic homogeneity of iron in the early solar nebula.

    PubMed

    Zhu, X K; Guo, Y; O'Nions, R K; Young, E D; Ash, R D

    2001-07-19

    The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

  18. On Euler's Theorem for Homogeneous Functions and Proofs Thereof.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1982-01-01

    Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)

  19. HOMOGENEOUS AIR OXIDATION OF HYDROCARBONS UTILIZING MN AND CO CATALYSTS

    EPA Science Inventory

    Homogeneous Air Oxidation of Hydrocarbons Utilizing Mn and Co Catalysts

    Thomas M. Becker and Michael A. Gonzalez*, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, Mail Sto...

  20. Homogeneity of Moral Judgment?--Apprentices Solving Business Conflicts.

    ERIC Educational Resources Information Center

    Beck, Klaus; Heinrichs, Karin; Minnameier, Gerhard; Parche-Kawik, Kirsten

    1999-01-01

    Presents results on the status of moral development of apprentices in the business context within different types of situations. States that the results seem to support the hypothesis of "moral segmentation," contrary to Kohlberg's theory of homogeneity, and indicate that individual patterns of moral judgment are to a large extent…

  1. Generalized Euler identity for subdifferentials of homogeneous functions and applications

    NASA Astrophysics Data System (ADS)

    Yang, Fuchun; Wei, Zhou

    2008-01-01

    In this paper, we mainly consider subdifferentials and basic subdifferentials of homogeneous functions defined on real Banach space and Asplund space respectively, and obtain the generalized Euler identity. As applications, we consider constrained optimization problems and several geometric properties of Banach space.

  2. The IUE data base: Homogenizing the IUE object nomenclature

    NASA Technical Reports Server (NTRS)

    Barylak, Michael; Wamsteker, Willem; Schmitz, Marion

    1988-01-01

    The IUE project started to homogenize the object nomenclature in the IUE data base. Due to the absence of an official IAU nomenclature hierarchy and in view of the increasing confusion in IUE (and, in general, astronomical) object identifications, the IUE project adopted its own nomenclature hierarchy. The scheme and problems encountered in establishing it are described.

  3. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  4. Homogeneity of Moral Judgment? Apprentices Solving Business Conflicts.

    ERIC Educational Resources Information Center

    Beck, Klaus; Heinrichs, Karin; Minnameier, Gerhard; Parche-Kawik, Kirsten

    In an ongoing longitudinal study that started in 1994, the moral development of business apprentices is being studied. The focal point of this project is a critical analysis of L. Kohlberg's thesis of homogeneity, according to which people should judge every moral issue from the point of view of their "modal" stage (the most frequently…

  5. Noncommutative anisotropic oscillator in a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Nath, D.; Roy, P.

    2017-02-01

    We study anisotropic oscillator in the presence of a homogeneous magnetic field and other related systems in the noncommutative plane. Energy values as function of the noncommutative parameter θ and the magnetic field B have been obtained. Some features of the spectrum, for example, formation of energy bands etc. have been examined. The effect of anisotropy on the energy levels has also been discussed.

  6. Homogeneous thin film lens on LiNbO3

    NASA Astrophysics Data System (ADS)

    Jiang, Pisu; Laybourn, Peter J. R.; Righini, Giancarlo C.

    1991-02-01

    Problems in the fabrication of homogeneous integ ited lenses on lithium niobate were investigated. TIPE and double proton exchange waveguide . abrication methods were compared and various masking systems tested. Mode matching between a v w index single mode DMPE waveguide and a high index multi mode PE waveguide was optimized.

  7. A Comparison of Homogeneous and Heterogeneous Anxiety Management Training.

    ERIC Educational Resources Information Center

    Deffenbacher, Jerry L.; And Others

    1980-01-01

    For test anxious subjects, both forms of anxiety management training (AMT) significantly reduced test anxiety compared with controls. For speech anxious subjects, both forms of AMT reduced speech anxiety; however, heterogeneous AMT lowered it more than homogeneous AMT. (Author/BEF)

  8. Political homogeneity can nurture threats to research validity.

    PubMed

    Chambers, John R; Schlenker, Barry R

    2015-01-01

    Political homogeneity within a scientific field nurtures threats to the validity of many research conclusions by allowing ideologically compatible values to influence interpretations, by minimizing skepticism, and by creating premature consensus. Although validity threats can crop in any research, the usual corrective activities in science are more likely to be minimized and delayed.

  9. Homogenization of periodic elastic composites and locally resonant sonic materials

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Sia; Willis, John R.; Srivastava, Ankit; Amirkhizi, Alireza V.

    2011-03-01

    A method for homogenization of an elastic composite with periodic microstructure is presented, focusing on the Floquet-type elastic waves. The resulting homogenized frequency-dependent elasticity and mass density then automatically satisfy the overall conservation laws and by necessity produce the exact dispersion relations. It is also shown that the dispersion relations and the associated field quantities can be accurately calculated using a mixed variational approach, based on the microstructure of the associated unit cell. The method is used to calculate the dynamic effective parameters for a layered composite by using both the exact solution and the results of the mixed variational formulation. The exact and approximate results are shown to be in close agreement, which makes it possible to use the approximate method for the proposed type of homogenization in cases where an exact solution does not exist. The homogenized frequency-dependent effective parameters give rise to the concept of dynamic Ashby charts that can be used to illustrate the effect of the microstructural architecture on the dynamic properties of a composite. In particular, the charts vividly display how this effective stiffness and density vary with frequency and may attain negative values within certain frequency ranges which can be changed as desired using the microarchitecture while keeping the volume fraction of the unit cell’s constituents constant.

  10. Segmenting Demographically Homogeneous Radio Audiences: An Exploratory Investigation.

    ERIC Educational Resources Information Center

    Planchon, John M.

    The possibility that the benefits sought by radio listeners could be used to further define demographically homogeneous audiences for marketing purposes was investigated by surveying a segment of college undergraduate listeners. Twenty-five interviews were conducted to determine where, why, what time of day, and to what station an individual…

  11. Kinetics of homogeneous nucleation in many component systems

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.

    1974-01-01

    Reiss's classical treatment of the kinetics of homogeneous nucleation in a system containing two chemical components is extended to many-component systems. The formulation is analogous to the pseudo-stationary state theory of chemical reaction rates with the free energy as a function of the composition of the embryo taking the place of the potential energy as a function of interatomic distances.

  12. Kinetics of homogeneous nucleation on many-component systems

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.

    1974-01-01

    Reiss's (1950) classical treatment of the kinetics of homogeneous nucleation in a system containing two chemical components is extended to many-component systems. The formulation is analogous to the pseudostationary-state theory of chemical reaction rates, with the free energy as a function of the composition of the embryo taking the place of the potential energy as a function of interatomic distances.

  13. Distribution-enhanced homogenization framework and model for heterogeneous elasto-plastic problems

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman; Luscher, D. J.; Bronkhorst, Curt; Ghosh, Somnath

    2015-12-01

    Multi-scale computational models offer tractable means to simulate sufficiently large spatial domains comprised of heterogeneous materials by resolving material behavior at different scales and communicating across these scales. Within the framework of computational multi-scale analyses, hierarchical models enable unidirectional transfer of information from lower to higher scales, usually in the form of effective material properties. Determining explicit forms for the macroscale constitutive relations for complex microstructures and nonlinear processes generally requires numerical homogenization of the microscopic response. Conventional low-order homogenization uses results of simulations of representative microstructural domains to construct appropriate expressions for effective macroscale constitutive parameters written as a function of the microstructural characterization. This paper proposes an alternative novel approach, introduced as the distribution-enhanced homogenization framework or DEHF, in which the macroscale constitutive relations are formulated in a series expansion based on the microscale constitutive relations and moments of arbitrary order of the microscale field variables. The framework does not make any a priori assumption on the macroscale constitutive behavior being represented by a homogeneous effective medium theory. Instead, the evolution of macroscale variables is governed by the moments of microscale distributions of evolving field variables. This approach demonstrates excellent accuracy in representing the microscale fields through their distributions. An approximate characterization of the microscale heterogeneity is accounted for explicitly in the macroscale constitutive behavior. Increasing the order of this approximation results in increased fidelity of the macroscale approximation of the microscale constitutive behavior. By including higher-order moments of the microscale fields in the macroscale problem, micromechanical analyses do

  14. Homogenization of regional river dynamics by dams and global biodiversity implications.

    PubMed

    Poff, N Leroy; Olden, Julian D; Merritt, David M; Pepin, David M

    2007-04-03

    Global biodiversity in river and riparian ecosystems is generated and maintained by geographic variation in stream processes and fluvial disturbance regimes, which largely reflect regional differences in climate and geology. Extensive construction of dams by humans has greatly dampened the seasonal and interannual streamflow variability of rivers, thereby altering natural dynamics in ecologically important flows on continental to global scales. The cumulative effects of modification to regional-scale environmental templates caused by dams is largely unexplored but of critical conservation importance. Here, we use 186 long-term streamflow records on intermediate-sized rivers across the continental United States to show that dams have homogenized the flow regimes on third- through seventh-order rivers in 16 historically distinctive hydrologic regions over the course of the 20th century. This regional homogenization occurs chiefly through modification of the magnitude and timing of ecologically critical high and low flows. For 317 undammed reference rivers, no evidence for homogenization was found, despite documented changes in regional precipitation over this period. With an estimated average density of one dam every 48 km of third- through seventh-order river channel in the United States, dams arguably have a continental scale effect of homogenizing regionally distinct environmental templates, thereby creating conditions that favor the spread of cosmopolitan, nonindigenous species at the expense of locally adapted native biota. Quantitative analyses such as ours provide the basis for conservation and management actions aimed at restoring and maintaining native biodiversity and ecosystem function and resilience for regionally distinct ecosystems at continental to global scales.

  15. Biotic homogenization of three insect groups due to urbanization.

    PubMed

    Knop, Eva

    2016-01-01

    Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity.

  16. Homogeneity of the geochemical reference material BRP-1 (paraná basin basalt) and assessment of minimum mass

    USGS Publications Warehouse

    Cotta, Aloisio J. B.; Enzweiler, Jacinta; Wilson, Stephen A.; Perez, Carlos A.; Nardy, Antonio J. R.; Larizzatti, Joao H.

    2007-01-01

    Reference materials (RM) are required for quantitative analyses and their successful use is associated with the degree of homogeneity, and the traceability and confidence limits of the values established by characterisation. During the production of a RM, the chemical characterisation can only commence after it has been demonstrated that the material has the required level of homogeneity. Here we describe the preparation of BRP-1, a proposed geochemical reference material, and the results of the tests to evaluate its degree of homogeneity between and within bottles. BRP-1 is the first of two geochemical RM being produced by Brazilian institutions in collaboration with the United States Geological Survey (USGS) and the International Association of Geoanalysts (IAG). Two test portions of twenty bottles of BRP-1 were analysed by wavelength dispersive-XRF spectrometry and major, minor and eighteen trace elements were determined. The results show that for most of the investigated elements, the units of BRP-1 were homogeneous at conditions approximately three times more rigorous than those strived for by the test of “sufficient homogeneity”. Furthermore, the within bottle homogeneity of BRP-1 was evaluated using small beam (1 mm2) synchrotron radiation XRF spectrometry and, for comparison, the USGS reference materials BCR-2 and GSP-2 were also evaluated. From our data, it has been possible to assign representative minimum masses for some major constituents (1 mg) and for some trace elements (1-13 mg), except Zr in GSP-2, for which test portions of 74 mg are recommended.

  17. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability

    PubMed Central

    You, Wen-Hua; Han, Cui-Min; Liu, Chun-Hua; Yu, Dan

    2016-01-01

    Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections either severed or kept intact. Under heterogeneous water availability, compared with ramets in homogeneous habitats, clonal integration significantly promoted the growth and photosynthetic performance of water-stressed apical ramets, whereas it only increased the photosynthetic performance but did not affect the growth of water-stressed basal ramets. Moreover, clonal integration markedly increased the root/shoot ratios of ramets grown in habitats with high water supply but decreased it under low water availability. Under homogeneous water availability, stolon connection (clonal integration) did not influence the growth, photosynthetic performance and biomass allocation of water-stressed ramets, but it significantly promoted the growth of well-watered ramets in both apical and basal sections. These findings deepen our understanding of the bidirectional and differentiated (mainly acropetal) clonal integration of A. philoxeroides, suggesting that the invasive plant A. philoxeroides can benefit from clonal integration in both heterogeneous and homogeneous habitats. PMID:27416868

  18. Radiation pattern of plasmonic nano-antennas in a homogeneous medium.

    PubMed

    Sugita, Takafumi; Yanazawa, Kaori; Maeda, Satoshi; Hofmann, Holger F; Kadoya, Yutaka

    2014-06-02

    Radiation patterns from plasmonic nano-antennas formed on a glass substrate were investigated using index-matching oils. It was confirmed that the pattern from single nano-antennas for various cases of index-mismatching between the substrate and the oil is explained well by the patterns of infinitesimal electric dipoles. We found that for an angular resolution of 2°, the index mismatch must be smaller than 0.001 to realize isotropic radiation. By using the appropriate condition, the radiation patterns of nano Yagi-Uda antennas in a quasi-homogeneous medium were obtained experimentally.

  19. 3D Effects on Minority Carrier Recombination in Homogeneous Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Storgårds, J.; Väinölä, H.; Yli-Koski, M.; Sinkkonen, J.

    Calculation of three-dimensional recombination effects in homogeneous silicon wafers is performed. The current continuity equation for minority carriers with surface recombination boundary conditions is solved in cylindrical coordinates. The two most important three-dimensional recombination effects are discussed. Lateral diffusion of minority carriers gives rise to a characteristic decay inversely proportional to time. Shell surface recombination should be taken into account when measuring within the minority carrier diffusion length from the wafer edge. The discrepancy between the one-dimensional and the three-dimensional models is discussed.

  20. An improved classical mapping method for homogeneous electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-08-14

    We introduce a modified classical mapping method to predict the exchange-correlation free energy and the structure of homogeneous electron gases (HEG) at finite temperature. With the classical map temperature parameterized on the basis of the quantum Monte Carlo simulation data for the correlation energy and exact results at high and low temperature limits, the new theoretical procedure greatly improves the classical mapping method for correlating the energetic properties HEG over a broad range of thermodynamic conditions. Improvement can also be identified in predicting the long-range components of the spin-averaged pair correlation functions.

  1. Measure Valued Solutions to the Spatially Homogeneous Boltzmann Equation Without Angular Cutoff

    NASA Astrophysics Data System (ADS)

    Morimoto, Yoshinori; Wang, Shuaikun; Yang, Tong

    2016-12-01

    A uniform approach is introduced to study the existence of measure valued solutions to the homogeneous Boltzmann equation for both hard potential with finite energy, and soft potential with finite or infinite energy, by using Toscani metric. Under the non-angular cutoff assumption on the cross-section, the solutions obtained are shown to be in the Schwartz space in the velocity variable as long as the initial data is not a single Dirac mass without any extra moment condition for hard potential, and with the boundedness on moments of any order for soft potential.

  2. Nonlinear first order PDEs reducible to autonomous form polynomially homogeneous in the derivatives

    NASA Astrophysics Data System (ADS)

    Gorgone, Matteo; Oliveri, Francesco

    2017-03-01

    It is proved a theorem providing necessary and sufficient conditions enabling one to map a nonlinear system of first order partial differential equations, polynomial in the derivatives, to an equivalent autonomous first order system polynomially homogeneous in the derivatives. The result is intimately related to the symmetry properties of the source system, and the proof, involving the use of the canonical variables associated to the admitted Lie point symmetries, is constructive. First order Monge-Ampère systems, either with constant coefficients or with coefficients depending on the field variables, where the theorem can be successfully applied, are considered.

  3. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOEpatents

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  4. A criterion for assessing homogeneity distribution in hyperspectral images. Part 2: application of homogeneity indices to solid pharmaceutical dosage forms.

    PubMed

    Rosas, Juan G; Blanco, Marcelo

    2012-11-01

    This article is the second of a series of two articles detailing the application of mixing index to assess homogeneity distribution in oral pharmaceutical solid dosage forms by image analysis. Chemical imaging (CI) is an emerging technique integrating conventional imaging and spectroscopic techniques with a view to obtaining spatial and spectral information from a sample. Near infrared chemical imaging (NIR-CI) has proved an excellent analytical tool for extracting high-quality information from sample surfaces. The primary objective of this second part was to demonstrate that the approach developed in the first part could be successfully applied to near infrared hyperspectral images of oral pharmaceutical solid dosage forms such as coated, uncoated and effervescent tablets, as well as to powder blends. To this end, we assessed a new criterion for establishing mixing homogeneity by using four different methods based on a three-dimensional (M×N×λ) data array of hyperspectral images (spectral standard deviations and correlation coefficients) or a two-dimensional (M×N) data array (concentration maps and binary images). The four methods were used applying macropixel analysis to the Poole (M(P)) and homogeneity (H%(Poole)) indices. Both indices proved useful for assessing the degree of homogeneity of pharmaceutical samples. The results testify that the proposed approach can be effectively used in the pharmaceutical industry, in the finished products (e.g., tablets) and in mixing unit operations for example, as a process analytical technology tool for the blending monitoring (see part 1).

  5. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-05-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.

  6. La structure de l'eau liquide: Une etude thermique par spectroscopie infrarouge

    NASA Astrophysics Data System (ADS)

    Larouche, Pascal

    Le probleme de la structure de l'eau liquide est important car l'eau est le liquide le plus present sur Terre, et complexe, la quete d'un modele precis pour decrire comment fonctionne ce liquide ayant debute des la fin du dix-neuvieme siecle. Cette etude aborde ce probleme en etudiant l'effet de l'augmentation de la temperature sur H2O et D 2O purs a l'aide de la spectroscopie infrarouge. L'intervalle de temperatures scrute est 29--93.1°C. Les spectres enregistres sont des spectres MIR-ATR entre 650 et 6000 cm-1 . L'analyse par facteurs de ces donnees permet de montrer que deux et seulement deux facteurs principaux sont necessaires pour decomposer tous les spectres experimentaux. Ces resultats sont confirmes grace a l'analyse par facteurs de spectres de la region FIR. Par la suite, la transformation en spectres de la partie reelle n et imaginaire k de l'indice de refraction permet de combiner les donnees des regions MIR et FIR. Une fois ce calcul termine, les spectres de transmission complets de H 2O et D2O entre 25 et 90°C sont connus. Ils sont ensuite utilises pour calculer par extrapolation le spectre des especes constituant l'eau liquide, puis leur abondance en fonction de la temperature. L'extrapolation de ces abondances montre que les especes correspondent a des temperatures limites de --18 et 122°C. Par la suite, la decomposition gaussienne des spectres d'especes met en evidence la riche structure de ces objets et permet de demontrer que l'apparent deplacement du massif d'absorption OH (OD) est produit par une variation de l'intensite des bandes et non pas de leur deplacement. L'examen attentif des spectres des especes prouve qu'il n'y a pas de OH libres crees par l'augmentation de la temperature: meme a 93.1°C, chaque molecule possede quatre liens-H. Ces conclusions sont de plus confirmees par une analyse thermodynamique du passage des molecules de la phase solide a la phase gazeuse. Pour diversifier la nature des resultats experimentaux utilises, des

  7. Etude par spectroscopie de Coulomb de points quantiques lateraux individuels et couples

    NASA Astrophysics Data System (ADS)

    Pioro-Ladriere, Michel

    Des points quantiques contenant un nombre discret et variable d'electrons sont formes dans un gaz bi-dimensionnel d'electrons a l'aide de grilles metalliques. Le transport electrique, le blocage de spin et la detection de charge sont employes comme outils spectroscopiques permettant de sonder les proprietes de ces nanostructures. Ces techniques permettent aussi de controler exactement le nombres d'electrons confines dans des points quantiques individuels et couples en utilisant un patron de grille judicieux. Une technique de refroidissement en tension est developpee afin de minimiser les effets parasites du bruit telegraphique. Ce type de bruit de charge deteriore la stabilite des nanostructures laterales par l'activation d'un minuscule courant de fuite entre les grilles et le gaz bi-dimensionnel. Un modele expliquant le role du refroidissement en tension sur le courant de fuite est presente. L'activation du courant de fuite est confirmee par detection de charge. Les effets des interactions entre les electrons pieges dans un point quantique sont ensuite etudies dans un regime ou il est possible de comparer les resulats experimentaux avec ceux obtenus par diagonalisation exacte. L'etude demontre que la phase associee au facteur de remplissage nu = 2 est instable au-dessus d'un nombre critique d'electrons. Cette instabilite est confirmee experimentalement par blocage de spin. On demontre aussi l'existence d'etats correles dans le regime des renversements de spin, associe au passage de la phase nu = 2 a nu = 1. Les etats correles sont identifies par spectroscopie en transport non lineaire. Cette caracterisation du diagramme de phase de points individuels permet de coupler deux points quantiques configures a nu = 2. Pour ce regime, la nanostructure se comporte comme un systeme a deux niveaux pouvant contenir entre un et quatre electrons de valence et ce, meme si le nombre total d'electrons est plus eleve. Les degres de liberte de charge et de spin des deux points

  8. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    SciTech Connect

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia

    2012-08-15

    Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that estimated using the

  9. A homogenization approach for characterization of the fluid-solid coupling parameters in Biot's equations for acoustic poroelastic materials

    NASA Astrophysics Data System (ADS)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2015-09-01

    In this paper, a homogenization method is proposed to obtain the parameters of Biot's poroelastic theory from a multiscale perspective. It is assumed that the behavior of a macroscopic material point can be captured through the response of a microscopic Representative Volume Element (RVE) consisting of both a solid skeleton and a gaseous fluid. The macroscopic governing equations are assumed to be Biot's poroelastic equations and the RVE is governed by the conservation of linear momentum and the adopted linear constitutive laws under the isothermal condition. With boundary conditions relying on the macroscopic solid displacement and fluid pressure, the homogenized solid stress and fluid displacement are obtained based on energy consistency. This homogenization framework offers an approach to obtain Biot's parameters directly through the response of the RVE in the regime of Darcy's flow where the pressure gradient is dominating. A numerical experiment is performed in the form of a sound absorption test on a porous material with an idealized partially open microstructure that is described by Biot's equations where the parameters are obtained through the proposed homogenization approach. The result is evaluated by comparison with Direct Numerical Simulations (DNS), showing a superior performance of this approach compared to an alternative semi-phenomenological model for estimating Biot's parameters of the studied porous material.

  10. The effects of temperature on nitrous oxide and oxygen mixture homogeneity and stability

    PubMed Central

    2010-01-01

    Background For many long standing practices, the rationale for them is often lost as time passes. This is the situation with respect to the storage and handling of equimolar 50% nitrous oxide and 50% oxygen volume/volume (v/v) mixtures. Methods A review was undertaken of existing literature to examine the developmental history of nitrous oxide and oxygen mixtures for anesthesia and analgesia and to ascertain if sufficient bibliographic data was available to support the position that the contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage and if justification could be found for the standard instructions given for handling before use. Results After ranking and removing duplicates, a total of fifteen articles were identified by the various search strategies and formed the basis of this literature review. Several studies were identified that confirmed that 50%/50% v/v mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The effect of temperature on the change of phase of the nitrous oxide in this mixture was further examined by several authors. These studies demonstrated that although it is possible to cause condensation and phase separation by cooling the cylinder, by allowing the cylinder to rewarm to room temperature for at least 48 hours, preferably in a horizontal orientation, and inverting it three times before use, the cylinder consistently delivered the proper proportions of the component gases as a homogenous mixture. Conclusions The contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The standard instructions given for handling before are justified based on previously conducted studies

  11. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Leonard, Andy D.; Hill, James C.

    1992-01-01

    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  12. Interferometric homogeneity test using adaptive frequency comb illumination.

    PubMed

    Mantel, Klaus; Schwider, Johannes

    2013-03-20

    The homogeneity test of glass plates in a Fizeau interferometer requires the measurement of the glass sample in reflected as well as in transmitted light. For the measurement in transmitted light, the sample has to be inserted into the ray path of a Fizeau or Twyman-Green interferometer, which leads to a nested cavity setup. To separate the interference signals from the different cavities, we illuminate a Fizeau interferometer with an adaptive frequency comb. In this way, rigid glass plates can be measured, and linear variations in the homogeneity can also be detected. The adaptive frequency comb is provided by a variable Fabry-Perot filter under broadband illumination from a superluminescence diode. Compared to approaches using a two-beam interferometer as a filter for the broadband light source, the visibility of the fringe system is considerably higher.

  13. Canonical distributions on Riemannian homogeneous k-symmetric spaces

    NASA Astrophysics Data System (ADS)

    Balashchenko, Vitaly V.

    2015-01-01

    It is known that distributions generated by almost product structures are applicable, in particular, to some problems in the theory of Monge-Ampère equations. In this paper, we characterize canonical distributions defined by canonical almost product structures on Riemannian homogeneous k-symmetric spaces in the sense of types AF (anti-foliation), F (foliation), TGF (totally geodesic foliation). Algebraic criteria for all these types on k-symmetric spaces of orders k = 4, 5, 6 were obtained. Note that canonical distributions on homogeneous k-symmetric spaces are closely related to special canonical almost complex structures and f-structures, which were recently applied by I. Khemar to studying elliptic integrable systems.

  14. Self-formed waterfall plunge pools in homogeneous rock

    NASA Astrophysics Data System (ADS)

    Scheingross, Joel S.; Lo, Daniel Y.; Lamb, Michael P.

    2017-01-01

    Waterfalls are ubiquitous, and their upstream propagation can set the pace of landscape evolution, yet no experimental studies have examined waterfall plunge pool erosion in homogeneous rock. We performed laboratory experiments, using synthetic foam as a bedrock simulant, to produce self-formed waterfall plunge pools via particle impact abrasion. Plunge pool vertical incision exceeded lateral erosion by approximately tenfold until pools deepened to the point that the supplied sediment could not be evacuated and deposition armored the pool bedrock floor. Lateral erosion of plunge pool sidewalls continued after sediment deposition, but primarily at the downstream pool wall, which might lead to undermining of the plunge pool lip, sediment evacuation, and continued vertical pool floor incision in natural streams. Undercutting of the upstream pool wall was absent, and our results suggest that vertical drilling of successive plunge pools is a more efficient waterfall retreat mechanism than the classic model of headwall undercutting and collapse in homogeneous rock.

  15. Physical librations and possible homogeneity of natural moons from astrometry

    NASA Astrophysics Data System (ADS)

    Lainey, Valery; Cooper, Nicholas; Murray, Carl; Noyelles, Benoît; Pasewladt, Andreas; Robert, Vincent; Rosenblatt, Pascal; Thuillot, William

    2016-10-01

    Astrometry is the discipline that aims to provide positions of celestial objects in space with the highest accuracy. Thanks to recent space missions like Mars Express and Cassini, astrometric measurements of moons have allowed the probing of the gravity environment of their systems with unprecedented resolution. Here we focus on the possible determination of physical librations on the rotation of the moons, by modelling their effects on the moons' orbits. Assuming a homogeneous density, a theoretical expectation of the main libration can be computed and compared with possible observed values obtained indirectly from the orbit. In this work, we obtain for Phobos a physical libration of 1.04 +/- 0.02 degrees, in agreement with a homogeneous interior. The case of some of the inner moons of Saturn will be addressed, also.

  16. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    NASA Astrophysics Data System (ADS)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  17. Parametric Dependence Of Two-Plasmon Decay In Homogeneous Plasma

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, D.

    2010-07-01

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to improve our understanding of the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The scaling of the amplitudes of the participating waves with laser and plasma parameters is investigated. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development of two plasmon decay is researched and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

  18. Apparatus for unilateral generation of a homogeneous magnetic field

    DOEpatents

    Fukushima, E.; Rath, A.R.; Roeder, S.B.W.

    1984-05-01

    An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coils in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.

  19. Apparatus for unilateral generation of a homogeneous magnetic field

    DOEpatents

    Fukushima, Eiichi; Rath, Alan R.; Roeder, Stephen B. W.

    1988-01-01

    An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coil in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.

  20. Using homogenization, sonication and thermo-sonication to inactivate fungi

    PubMed Central

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2016-01-01

    Ultrasound (US), Thermo-sonication (TS) and High Pressure Homogenization (HPH) were studied as tools to inactivate the spores of Penicillium spp. and Mucor spp. inoculated in distilled water. For US, the power ranged from 40% to 100%, pulse from 2 to 10 s, and duration of the treatment from 2 to 10 min. TS was performed combining US (40–80% of power, for 8 min and pulse of 2 s) with a thermal treatment (50, 55 and 60°C at 4, 8 and 12 min). Homogenization was done at 30–150 MPa for 1, 2 and 3 times. Power was the most important factors to determine the antifungal effect of US and TS towards the conidia of Penicillium spp.; on the other hand, in US treatments Mucor spp. was also affected by pulse and time. HPH exerted a significant antifungal effect only if the highest pressures were applied for 2–3 times. PMID:27375964

  1. Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems

    NASA Astrophysics Data System (ADS)

    Niyonzima, I.; Geuzaine, C.; Schöps, S.

    2016-12-01

    This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton-Raphson scheme. The resolution of many mesoscale problems per Gauß point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauß point.

  2. The local geometry of compact homogeneous Lorentz spaces

    NASA Astrophysics Data System (ADS)

    Günther, Felix

    2015-03-01

    In 1995, S. Adams and G. Stuck as well as A. Zeghib independently provided a classification of non-compact Lie groups which can act isometrically and locally effectively on compact Lorentzian manifolds. In the case that the corresponding Lie algebra contains a direct summand isomorphic to the two-dimensional special linear algebra or to a twisted Heisenberg algebra, Zeghib also described the geometric structure of the manifolds. Using these results, we investigate the local geometry of compact homogeneous Lorentz spaces whose isometry groups have non-compact connected components. It turns out that they all are reductive. We investigate the isotropy representation and curvatures. In particular, we obtain that any Ricci-flat compact homogeneous Lorentz space is flat or has compact isometry group.

  3. Stochastic homogenization of interfaces moving with changing sign velocity

    NASA Astrophysics Data System (ADS)

    Ciomaga, Adina; Souganidis, Panagiotis E.; Tran, Hung V.

    2015-02-01

    We are interested in the averaging behavior of interfaces moving in stationary ergodic environments with oscillatory normal velocity which changes sign. The problem can be reformulated as the homogenization of a Hamilton-Jacobi equation with a positively homogeneous of degree one non-coercive Hamiltonian. The periodic setting was studied earlier by Cardaliaguet, Lions and Souganidis (2009) [16]. Here we concentrate in the random media and show that the solutions of the oscillatory Hamilton-Jacobi equation converge in L∞-weak ⋆ to a linear combination of the initial datum and the solutions of several initial value problems with deterministic effective Hamiltonian(s), determined by the properties of the random media.

  4. An epidemic model to evaluate the homogeneous mixing assumption

    NASA Astrophysics Data System (ADS)

    Turnes, P. P.; Monteiro, L. H. A.

    2014-11-01

    Many epidemic models are written in terms of ordinary differential equations (ODE). This approach relies on the homogeneous mixing assumption; that is, the topological structure of the contact network established by the individuals of the host population is not relevant to predict the spread of a pathogen in this population. Here, we propose an epidemic model based on ODE to study the propagation of contagious diseases conferring no immunity. The state variables of this model are the percentages of susceptible individuals, infectious individuals and empty space. We show that this dynamical system can experience transcritical and Hopf bifurcations. Then, we employ this model to evaluate the validity of the homogeneous mixing assumption by using real data related to the transmission of gonorrhea, hepatitis C virus, human immunodeficiency virus, and obesity.

  5. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  6. Inhomogeneous and homogeneous linewidths in Er 3+-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Bigot, L.; Jurdyc, A.-M.; Jacquier, B.; Adam, J.-L.

    2003-10-01

    The erbium 4I 13/2- 4I 15/2 transition around 1.5 μm is of prim interest for telecommunications and depends on the erbium ions surrounding. In glasses, the broadening of a transition comes from two contributions: inhomogeneous (due to the disorder) and homogeneous (due to the electron phonon interaction) broadening. Resonant Fluorescence Line Narrowing (RFLN) is a useful tool to separate this two parameters. We will show in this paper that the 4I 13/2- 4I 15/2 transition in chalcogenide glass (GeGaSSb) presents a strong homogeneous character and a smaller inhomogeneous contribution compared to aluminosilicate and fluoride glasses. Consequences on gain saturation will also be discussed.

  7. Some variance reduction methods for numerical stochastic homogenization.

    PubMed

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here.

  8. Antioxidant effects of calcium antagonists in rat brain homogenates.

    PubMed

    Yao, K; Ina, Y; Nagashima, K; Ohmori, K; Ohno, T

    2000-06-01

    We studied the antioxidant activities of calcium antagonists against autoxidation in rat brain homogenates. The homogenates were incubated for 30 min at 37 degrees C with or without a calcium antagonist and subsequently assayed for lipid peroxide content. Percent inhibition of the lipid peroxidation was used as an index of the antioxidant effect. Dihydropyridine calcium antagonists exhibited concentration-dependent (3-300 micromol/l) inhibitory effects against lipid peroxidation. The relative order of antioxidant potency and associated IC50 values (micromol/l) of the calcium antagonists for inhibition of the lipid peroxidation were as follows: nifedipine (51.5)>barnidipine (58.6)>benidipine (71.2)>nicardipine (129.3)>amlodipine (135.5)>nilvadipine (167.3)>nitrendipine (252.1)> diltiazem (>300)=verapamil (>300). These results suggest that some dihydropyridine calcium antagonists show antioxidant properties. The antioxidant effects of the calcium antagonists may contribute to their pharmacological actions.

  9. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk.

  10. Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Randriamiarisoa, Hariliva; Sanak, Joseph; Couvert, Pierre; Flamant, Cyrille

    2005-01-01

    Urban aerosol microphysical and optical properties were investigated over the Paris area coupling, for the first time, with dedicated airborne in situ instruments (nephelometer and particle sizers) and active remote sensor (lidar) as well as ground-based in situ instrumentation. The experiment, covering two representative pollution events, was conducted in the framework of the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program. Pollution plumes were observed under local northerly and southerly synoptic wind conditions on 19 and 31 July 2000, respectively. The 19 July (31 July) event was characterized by north-northwesterly (westerly) advection of polluted (clean) air masses originating from Great Britain (the Atlantic Ocean). The aerosol number size distribution appeared to be composed mainly of two modes in the planetary boundary layer (accumulation and nucleation) and three modes in the surface layer (accumulation, nucleation, and coarse). The characteristics of the size distribution (modal radii and geometric dispersion) were remarkably similar on both days and very coherent with the aerosol optical parameters retrieved from lidar and nephelometer measurements. The city of Paris mainly produces aerosols in the nucleation mode (modal radius of ˜0.03 μm) that have little influence on the aerosol optical properties in the visible spectral range. The latter are largely dominated by the scattering properties of aerosols in the accumulation mode (modal radius of ˜0.12 μm). When the incoming air mass is already polluted (clear), the aerosol in the accumulation mode is shown to be essentially hydrophobic (hydrophilic) in the outgoing air mass.

  11. Homogenization of soil properties map by Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Garrido, Alberto; Villeta, Maria; Tarquis, Ana Maria

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, becoming very important to implement agriculture risk management policies by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has gained importance in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. To establish index influence area is necessary to have a secondary information that show us homogeneous climatic and soil areas, which inside of each homogeneous classes, index measurements on crops of interest are going to be similar, and in this way reduce basis risk. But it is necessary an efficient method to accomplish this aim, to get homogeneous areas that not depends on only in expert criteria and that could be widely used, for this reason this study asses two conventional agricultural and geographic methods (control and climatic maps) based in expert criteria, and one classical statistical method of multi-factorial analysis (factorial map), all of them to homogenize soil and climatic characteristics. Resulting maps were validated by agricultural and spatial analysis, obtaining very good results in statistical method (Factorial map) that proves to be an efficient and accuracy method that could be used for similar porpoises.

  12. A critique of homogeneous freezing measurements of aqueous sulfuric acid

    NASA Astrophysics Data System (ADS)

    Alofs, Darryl J.; Vandike, John L.

    2000-08-01

    Two laboratory measurements of homogeneous freezing of aqueous sulfuric acid particles are critiqued: The first by Bertram et al., 1996, J. Phys. Chem., vol. 100, pp. 2376-2383: the second by Koop et al., 1998, J. Phys. Chem. A, vol. 102, pp. 8924-8931. Calculations for a proposed experimental artifact are inconclusive for Bertram et al. A proposed artifact for Koop et al. is shown to be insignificant.

  13. Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-10-14

    A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.

  14. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    SciTech Connect

    Hales, J. D.; Tonks, M. R.; Chockalingam, K.; Perez, D. M.; Novascone, S. R.; Spencer, B. W.; Williamson, R. L.

    2015-03-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed. This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.

  15. High load operation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Liechty, Michael P.; Hardy, William L.; Rodman, Anthony; Hergart, Carl-Anders

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  16. Generating and controlling homogeneous air turbulence using random jet arrays

    NASA Astrophysics Data System (ADS)

    Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo

    2016-12-01

    The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.

  17. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  18. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    NASA Astrophysics Data System (ADS)

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-01

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  19. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-05

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  20. Ventilation Homogeneity Improves with Growth Early in Life

    PubMed Central

    Chakr, Valentina C.; Llapur, Conrado J.; Sarria, Edgar E.; Mattiello, Rita; Kisling, Jeffrey; Tiller, Christina; Kimmel, Risa; Poindexter, Brenda; Tepper, Robert S.

    2011-01-01

    Some studies have suggested that lung clearance index (LCI) is age-independent among healthy subjects early in life, which implies that ventilation distribution does not vary with growth. However, other studies of older children and adolescents suggest that ventilation becomes more homogenous with somatic growth. We describe a new technique to obtain multiple breath washout (MBWO) in sedated infants and toddlers using slow augmented inflation breaths that yields an assessment of LCI and the slope of phase III, which is another index of ventilation inhomogeneity. We evaluated whether ventilation becomes more homogenous with increasing age early in life, and whether infants with chronic lung disease of infancy (CLDI) have increased ventilation inhomogeneity relative to full term controls. Fullterm controls (N = 28) and CLDI (N = 22) subjects between 3 and 28 months corrected-age were evaluated. LCI decreased with increasing age; however, there was no significant difference between the two groups (9.3 vs. 9.5; p = 0.56). Phase III slopes adjusted for expired volume (SND) increased with increasing breath number during the washout and decreased with increasing age. There was no significant difference in SND between fullterm and CLDI subjects (211 vs. 218; P = 0.77). Our findings indicate that ventilation becomes more homogenous with lung growth and maturation early in life; however, there is no evidence that ventilation inhomogeneity is a significant component of the pulmonary pathophysiology of CLDI. PMID:21901860

  1. Identification of Homogeneous and Heterogeneous Variables in Pooled Cohort Studies

    PubMed Central

    Cheng, Xin; Lu, Wenbin; Liu, Mengling

    2016-01-01

    Summary Pooled analyses integrate data from multiple studies and achieve a larger sample size for enhanced statistical power. When heterogeneity exists in variables’ effects on the outcome across studies, the simple pooling strategy fails to present a fair and complete picture of the effects of heterogeneous variables. Thus, it is important to investigate the homogeneous and heterogeneous structure of variables in pooled studies. In this paper, we consider the pooled cohort studies with time-to-event outcomes and propose a penalized Cox partial likelihood approach with adaptively weighted composite penalties on variables’ homogeneous and heterogeneous effects. We show that our method can characterize the variables as having heterogeneous, homogeneous, or null effects, and estimate non-zero effects. The results are readily extended to high-dimensional applications where the number of parameters is larger than the sample size. The proposed selection and estimation procedure can be implemented using the iterative shooting algorithm. We conduct extensive numerical studies to evaluate the performance of our proposed method and demonstrate it using a pooled analysis of gene expression in patients with ovarian cancer. PMID:25732747

  2. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  3. Critical assessment of Reynolds stress turbulence models using homogeneous flows

    NASA Technical Reports Server (NTRS)

    Shabbir, Aamir; Shih, Tsan-Hsing

    1992-01-01

    In modeling the rapid part of the pressure correlation term in the Reynolds stress transport equations, extensive use has been made of its exact properties which were first suggested by Rotta. These, for example, have been employed in obtaining the widely used Launder, Reece and Rodi (LRR) model. Some recent proposals have dropped one of these properties to obtain new models. We demonstrate, by computing some simple homogeneous flows, that doing so does not lead to any significant improvements over the LRR model and it is not the right direction in improving the performance of existing models. The reason for this, in our opinion, is that violation of one of the exact properties can not bring in any new physics into the model. We compute thirteen homogeneous flows using LRR (with a recalibrated rapid term constant), IP and SSG models. The flows computed include the flow through axisymmetric contraction; axisymmetric expansion; distortion by plane strain; and homogeneous shear flows with and without rotation. Results show that for most general representation for a model linear in the anisotropic tensor, performs either better or as good as the other two models of the same level.

  4. Critical assessment of Reynolds stress turbulence models using homogeneous flows

    NASA Astrophysics Data System (ADS)

    Shabbir, Aamir; Shih, Tsan-Hsing

    1992-12-01

    In modeling the rapid part of the pressure correlation term in the Reynolds stress transport equations, extensive use has been made of its exact properties which were first suggested by Rotta. These, for example, have been employed in obtaining the widely used Launder, Reece and Rodi (LRR) model. Some recent proposals have dropped one of these properties to obtain new models. We demonstrate, by computing some simple homogeneous flows, that doing so does not lead to any significant improvements over the LRR model and it is not the right direction in improving the performance of existing models. The reason for this, in our opinion, is that violation of one of the exact properties can not bring in any new physics into the model. We compute thirteen homogeneous flows using LRR (with a recalibrated rapid term constant), IP and SSG models. The flows computed include the flow through axisymmetric contraction; axisymmetric expansion; distortion by plane strain; and homogeneous shear flows with and without rotation. Results show that for most general representation for a model linear in the anisotropic tensor, performs either better or as good as the other two models of the same level.

  5. Tissue homogeneity requires inhibition of unequal gene silencing during development

    PubMed Central

    Le, Hai H.; Looney, Monika; Strauss, Benjamin; Bloodgood, Michael

    2016-01-01

    Multicellular organisms can generate and maintain homogenous populations of cells that make up individual tissues. However, cellular processes that can disrupt homogeneity and how organisms overcome such disruption are unknown. We found that ∼100-fold differences in expression from a repetitive DNA transgene can occur between intestinal cells in Caenorhabditis elegans. These differences are caused by gene silencing in some cells and are actively suppressed by parental and zygotic factors such as the conserved exonuclease ERI-1. If unsuppressed, silencing can spread between some cells in embryos but can be repeat specific and independent of other homologous loci within each cell. Silencing can persist through DNA replication and nuclear divisions, disrupting uniform gene expression in developed animals. Analysis at single-cell resolution suggests that differences between cells arise during early cell divisions upon unequal segregation of an initiator of silencing. Our results suggest that organisms with high repetitive DNA content, which include humans, could use similar developmental mechanisms to achieve and maintain tissue homogeneity. PMID:27458132

  6. Unified double- and single-sided homogeneous Green's function representations.

    PubMed

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  7. Contribution of the live-vertebrate trade toward taxonomic homogenization.

    PubMed

    Romagosa, Christina M; Guyer, Craig; Wooten, Michael C

    2009-08-01

    The process of taxonomic homogenization occurs through two mechanisms, extinctions and introductions, and leads to a reduction of global biodiversity. We used available U.S. trade data as a proxy for global trade in live vertebrates to assess the contribution of trade to the process of taxonomic homogenization. Data included all available U.S. importation and exportation records, estimation of extinction risk, and reports of establishment outside the native range for species within six vertebrate groups. Based on Monte Carlo sampling, the number of species traded, established outside of the native range, and threatened with extinction was not randomly distributed among vertebrate families. Twenty-eight percent of vertebrate families that were traded preferentially were also established or threatened with extinction, an unusually high percentage compared with the 7% of families that were not traded preferentially but that became established or threatened with extinction. The importance of trade in homogenization of vertebrates suggests that additional efforts should be made to prevent introductions and extinctions through this medium.

  8. Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization

    NASA Astrophysics Data System (ADS)

    Goda, Ibrahim; Assidi, Mohamed; Ganghoffer, Jean-François

    2013-12-01

    The determination of the effective mechanical moduli of textiles from mechanical measurements is usually difficult due to their discrete architecture, which makes micromechanical analyses a relevant alternative to access those properties. Micropolar continuum models describing the effective mechanical behavior of woven fabric monolayers are constructed from the homogenization of an identified repetitive pattern of the textile within a representative unit cell. The interwoven yarns within the textile are represented as a network of trusses connected by nodes at their crossover points. These trusses have extensional and bending rigidities to allow for yarn stretching and flexion, and a transverse shear deformation is additionally considered. Interactions between yarns at the crossover points are captured by beam segments connecting the nodes. The woven fabric is modeled after homogenization as an anisotropic planar continuum with two preferred material directions in the mean plane of the textile. Based on the developed methodology, the effective mechanical properties of plain weave and twill are evaluated, including their bending moduli and characteristic flexural lengths. A satisfactory agreement is obtained between the effective moduli obtained by homogenization and numerical values obtained by finite element simulations performed over periodic unit cells.

  9. Flow within and above heterogeneous and homogeneous canopies

    NASA Astrophysics Data System (ADS)

    Hamed, Ali M.; Sadowski, Matthew J.; Chamorro, Leonardo P.

    2016-11-01

    The flow development above and within homogeneous and heterogeneous canopies was studied using planar and stereo PIV in a refractive-index-matching open channel. The homogeneous model is constituted of elements of height h arranged in staggered configuration; whereas the heterogeneous canopy consisted of elements of two heights h1 = h + 1/3 h and h2 = h - 1/3 h alternated every two rows. Both canopies had the same roughness density, element geometry, and mean height. The flow was studied under three submergences H/h = 2, 3, 4, where H denotes the flow depth. Turbulence statistics complemented with quadrant analysis and proper orthogonal decomposition reveal richer flow dynamics induced by height heterogeneity. Topography-induced spatially-periodic mean flows are observed for the heterogeneous canopy. In contrast to the homogeneous case, non-vanishing vertical velocity is maintained across the entire length of the heterogeneous canopy with increased levels at lower submergence depths. The results indicate that heterogeneous canopies exhibit greater vertical turbulent exchange at the canopy interface, suggesting a potential for greater scalar exchange and greater impact on channel hydraulic resistance.

  10. Multicomponent homogeneous alloys and method for making same

    DOEpatents

    Dutta, Partha S.; Miller, Thomas R.

    2003-09-02

    The present application discloses a method for preparing a homogeneous ternary or quaternary alloy from a quaternary melt. The method includes providing a family of phase diagrams for the quaternary melt which shows (i) composition/temperature data, (ii) tie lines connecting equilibrium liquid and solid compositions, and (iii) isotherms representing boundaries of a miscibility gap. Based on the family of phase diagrams, a quaternary melt composition and an alloy growth temperature is selected. A quaternary melt having the selected quaternary melt composition is provided and a ternary or quaternary alloy is grown from the quaternary melt at the selected alloy growth temperature. A method for making homogeneous ternary or quaternary alloy from a ternary or quaternary melt is also disclosed, as are homogeneous quaternary single-crystal alloys which are substantially free from crystal defects and which have the formula A.sub.x B.sub.1-x C.sub.y D.sub.1-y, x and y being the same or different and in the range of 0.001 to 0.999.

  11. Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models.

    PubMed

    Vercher, Ana; Giner, Eugenio; Arango, Camila; Tarancón, José E; Fuenmayor, F Javier

    2014-04-01

    Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin-Tsai equations are applied to estimate elastic constants from typical constituent properties, not all crystal dimensions yield a model that satisfy thermodynamic restrictions. We provide the ranges of platelet dimensions that lead to positive definite stiffness matrices. On the other hand, a finite element model of a mineralized collagen fibril unit cell under periodic boundary conditions is analyzed. By applying six canonical load cases, homogenized stiffness matrices are numerically calculated. Results show a monoclinic behavior of the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also considered where crystals rotate in adjacent layers of a lamella. The stiffness matrix of each layer is calculated applying Lekhnitskii transformations, and a new finite element model under periodic boundary conditions is analyzed to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell of lamellar bone. Results are compared with the rule-of-mixtures showing in general good agreement.

  12. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  13. Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy.

    PubMed

    Hooper, K E A; Lee, H K H; Newman, M J; Meroni, S; Baker, J; Watson, T M; Tsoi, W C

    2017-02-15

    The key challenges for perovskite solar cells include their poor stability and film homogeneity. Studying the degradation and homogeneity of perovskite layers within device structures can be challenging but critical to the understanding of stability and effect of processing in real life conditions. We show that Raman spectroscopy (RS) is a unique and powerful method (simple and fast) to probe the degradation of the perovskite film within the device structure and image perovskite formation. We demonstrate that RS can be used to directly probe chemical (PbI2) and physical (dihydrated phase) degradation of a perovskite film, and estimate the relative amount of the degradation species formed, mapping its distribution with ∼1 μm spatial resolution. This has been applied to mapping a large area perovskite module to characterise the efficacy of PbI2 to perovskite conversion. We also use RS to study the degradation species and kinetics under diverse accelerated degradation conditions (temperature and humidity) in situ. These capabilities are difficult to achieve with other methods, presenting RS as an important tool to gain understanding of the degradation and effect of processing on perovskite-based photovoltaic devices.

  14. Effect of gravity wave temperature variations on homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Podglajen, Aurélien; Hertzog, Albert; Legras, Bernard; Plougonven, Riwal

    2015-04-01

    Observations of cirrus clouds in the tropical tropopause layer (TTL) have shown various ice number concentrations (INC) (e.g., Jensen et al. 2013), which has lead to a puzzle regarding their formation. In particular, the frequently observed low numbers of ice crystals seemed hard to reconcile with homogeneous nucleation knowing the ubuquity of gravity waves with vertical velocity of the order of 0.1 m/s. Using artificial time series, Spichtinger and Krämer (2013) have illustrated that the variation of vertical velocity during a nucleation event could terminate it and limit the INC. However, their study was limited to constructed temperature time series. Here, we carry out numerical simulations of homogeneous ice nucleation forced by temperature time series data collected by isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency (30 s), so gravity wave signals are well resolved in the temperature time series. With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentrations (INC) as previously observed in the tropical upper troposphere. The simulations confirm that the dynamical time scale of temperature variations (as seen from observations) can be shorter than the nucleation time scale. They show the existence of two regimes for homogeneous ice nucleation : one limited by the depletion of water vapor by the nucleated ice crystals (those we name vapor events) and one limited by the reincrease of temperature after its initial decrease (temperature events). Low INC may thus be obtained for temperature events when the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result for temperature events is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This

  15. Effective boundary condition at a rough surface starting from a slip condition

    NASA Astrophysics Data System (ADS)

    Dalibard, Anne-Laure; Gérard-Varet, David

    We consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength ɛ. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit ɛ=0 is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in Basson and Gérard-Varet (2008) [6] and Gerard-Varet and Masmoudi (2010) [13], in which the special case of a Dirichlet condition at the rough boundary was examined.

  16. Ultra-high pressure homogenization-induced changes in skim milk: impact on acid coagulation properties.

    PubMed

    Serra, Mar; Trujillo, Antonio J; Jaramillo, Pamela D; Guamis, Buenaventura; Ferragut, Victoria

    2008-02-01

    The effects of ultra-high pressure homogenization (UHPH) on skim milk yogurt making properties were investigated. UHPH-treated milk was compared with conventionally homogenised (15 MPa) heat-treated skim milk (90 degrees C for 90 s), and to skim milk treated under the same thermal conditions but fortified with 3% skim milk powder. Results of the present study showed that UHPH is capable of reducing skim milk particle size which leads to the formation of finer dispersions than those obtained by conventional homogenisation combined with heat treatment. In addition, results involving coagulation properties and yogurt characteristics reflected that, when increasing UHPH pressure conditions some parameters such as density of the gel, aggregation rate and water retention are improved.

  17. A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector

    NASA Astrophysics Data System (ADS)

    Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.

    2016-09-01

    In this study, the homogenous relaxation model (HRM) for CO2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates.

  18. Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure

    NASA Astrophysics Data System (ADS)

    Ma, Juan; Sahraee, Shahab; Wriggers, Peter; De Lorenzis, Laura

    2015-05-01

    In this work, stochastic homogenization analysis of heterogeneous materials is addressed in the context of elasticity under finite deformations. The randomness of the morphology and of the material properties of the constituents as well as the correlation among these random properties are fully accounted for, and random effective quantities such as tangent tensor, first Piola-Kirchhoff stress, and strain energy along with their numerical characteristics are tackled under different boundary conditions by a multiscale finite element strategy combined with the Montecarlo method. The size of the representative volume element (RVE) with randomly distributed particles for different particle volume fractions is first identified by a numerical convergence scheme. Then, different types of displacement-controlled boundary conditions are applied to the RVE while fully considering the uncertainty in the microstructure. The influence of different random cases including correlation on the random effective quantities is finally analyzed.

  19. Stability analysis of discrete-time switched systems: a switched homogeneous Lyapunov function method

    NASA Astrophysics Data System (ADS)

    Liu, Xingwen; Zhao, Xudong

    2016-02-01

    This paper addresses the stability issue of discrete-time switched systems with guaranteed dwell-time. The approach of switched homogeneous Lyapunov function of higher order is formally proposed. By means of this approach, a necessary and sufficient condition is established to check the exponential stability of the considered system. With the observation that switching signal is actually arbitrary if the dwell time is one sample time, a necessary and sufficient condition is also presented to verify the exponential stability of switched systems under arbitrary switching signals. Using the augmented argument, a necessary and sufficient exponential stability criterion is given for discrete-time switched systems with delays. A numerical example is provided to show the advantages of the theoretical results.

  20. P-V-T-X Evolution of Olivine-hosted Melt Inclusions and Implications for Interpretation of Homogenization Experiments

    NASA Astrophysics Data System (ADS)

    Schiavi, F.; Provost, A.; Schiano, P.; Cluzel, N.

    2015-12-01

    Olivine-hosted melt inclusions (MIs) provide unique insights into physico-chemical conditions of magma at depth. MIs are often rehomogenized in laboratory to bring them back (or close) to the original state. At homogenization temperature (Th), the last bubble disappears and MI becomes a homogeneous liquid phase. However, during 1-atm experiments in heating stages, homogenization is usually achieved at Th higher than expected entrapment T and systematic increase of Th with time is observed. This reveals occurrence of physico-chemical processes that irreversibly lower internal pressure (Pint) (relative to entrapment P) during magma ascent and laboratory treatments. We combined theoretical modeling with experimental observations on H2O-poor and H2O-rich basaltic MIs in order to: a) identify the reversible (olivine elastic deformation and olivine dissolution-crystallization on MI walls) and irreversible (water loss from MIs and olivine plastic deformation) processes responsible for evolution of MI volume, Pint and composition upon heating, and b) examine how these processes affect the results of typical homogenization experiments. Due to Pint drop caused by olivine elastic deformation, performing experiments at 1 atm prevents achievement of homogenization at Th equal to entrapment T. Predicted increase of Th ranges from some to tens of degrees depending on entrapment conditions, melt composition and volatile contents. Presence of a gas bubble must be considered for the correct prediction of P-volume evolution. In H2O-rich MIs, faster increase of Th with time shown by small MIs is consistent with increase of Th mainly driven by water loss. In H2O-poor MIs, occurrence of olivine elastoplastic deformation is mainly responsible for the increase of Th with time. Distance from MI wall to olivine rim is a critical parameter to take into account, as short distances enhance depressurization related with both elastoplastic deformation and water loss and contribute to increase Th.

  1. A comparison of homogeneous equilibrium and relaxation model for CO2 expansion inside the two-phase ejector

    NASA Astrophysics Data System (ADS)

    Palacz, M.; Haida, M.; Smolka, J.; Nowak, A. J.; Hafner, A.

    2016-09-01

    In this study, the comparison of the accuracy of the homogeneous equilibrium model (HEM) and homogeneous relaxation model (HRM) is presented. Both models were applied to simulate the CO2 expansion inside the two-phase ejectors. Moreover, the mentioned models were implemented in the robust and efficient computational tool ejectorPL. That tool guarantees the fully automated computational process and the repeatable computations for the various ejector shapes and operating conditions. The simulated motive nozzle mass flow rates were compared to the experimentally measured mass flow rates. That comparison was made for both, HEM and HRM. The results showed the unsatisfying fidelity of the HEM for the operating regimes far from the carbon dioxide critical point. On the other hand, the HRM accuracy for such conditions was slightly higher. The approach presented in this paper, showed the limitation of applicability of both two-phase models for the expansion phenomena inside the ejectors.

  2. Distribution of energy of solutions of the wave equation on singular spaces of constant curvature and on a homogeneous tree

    NASA Astrophysics Data System (ADS)

    Tsvetkova, A. V.

    2016-10-01

    In the paper, the Cauchy problem for the wave equation on singular spaces of constant curvature and on an infinite homogeneous tree is studied. Two singular spaces are considered: the first one consists of a three-dimensional Euclidean space to which a ray is glued, and the other is formed by two three-dimensional Euclidean spaces joined by a segment. The solution of the Cauchy problem for the wave equation on these objects is described and the behavior of the energy of a wave as time tends to infinity is studied. The Cauchy problem for the wave equation on an infinite homogeneous tree is also considered, where the matching conditions for the Laplace operator at the vertices are chosen in the form generalizing the Kirchhoff conditions. The spectrum of such an operator is found, and the solution of the Cauchy problem for the wave equation is described. The behavior of wave energy as time tends to infinity is also studied.

  3. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  4. New developments on the homogenization of Canadian daily temperature data

    NASA Astrophysics Data System (ADS)

    Vincent, Lucie A.; Wang, Xiaolan L.

    2010-05-01

    Long-term and homogenized surface air temperature datasets had been prepared for the analysis of climate trends in Canada (Vincent and Gullett 1999). Non-climatic steps due to instruments relocation/changes and changes in observing procedures were identified in the annual mean of the daily maximum and minimum temperatures using a technique based on regression models (Vincent 1998). Monthly adjustments were derived from the regression models and daily adjustments were obtained from an interpolation procedure using the monthly adjustments (Vincent et al. 2002). Recently, new statistical tests have been developed to improve the power of detecting changepoints in climatological data time series. The penalized maximal t (PMT) test (Wang et al. 2007) and the penalized maximal F (PMF) test (Wang 2008b) were developed to take into account the position of each changepoint in order to minimize the effect of unequal and small sample size. A software package RHtestsV3 (Wang and Feng 2009) has also been developed to implement these tests to homogenize climate data series. A recursive procedure was developed to estimate the annual cycle, linear trend, and lag-1 autocorrelation of the base series in tandem, so that the effect of lag-1 autocorrelation is accounted for in the tests. A Quantile Matching (QM) algorithm (Wang 2009) was also developed for adjusting Gaussian daily data so that the empirical distributions of all segments of the detrended series match each other. The RHtestsV3 package was used to prepare a second generation of homogenized temperatures in Canada. Both the PMT test and the PMF test were applied to detect shifts in monthly mean temperature series. Reference series was used in conducting a PMT test. Whenever possible, the main causes of the shifts were retrieved through historical evidence such as the station inspection reports. Finally, the QM algorithm was used to adjust the daily temperature series for the artificial shifts identified from the respective

  5. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol.

    PubMed

    Alberico, E; Nielsen, M

    2015-04-21

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.

  6. Biologic lung volume reduction therapy for advanced homogeneous emphysema.

    PubMed

    Refaely, Y; Dransfield, M; Kramer, M R; Gotfried, M; Leeds, W; McLennan, G; Tewari, S; Krasna, M; Criner, G J

    2010-07-01

    This report summarises phase 2 trial results of biologic lung volume reduction (BioLVR) for treatment of advanced homogeneous emphysema. BioLVR therapy was administered bronchoscopically to 25 patients with homogeneous emphysema in an open-labelled study. Eight patients received low dose (LD) treatment with 10 mL per site at eight subsegments; 17 received high dose (HD) treatment with 20 mL per site at eight subsegments. Safety was assessed in terms of medical complications during 6-month follow-up. Efficacy was assessed in terms of change from baseline in gas trapping, spirometry, diffusing capacity, exercise capacity, dyspnoea and health-related quality of life. There were no deaths or serious medical complications during the study. A statistically significant reduction in gas trapping was observed at 3-month follow-up among HD patients, but not LD patients. At 6 months, changes from baseline in forced expiratory volume in 1 s (-8.0+/-13.93% versus +13.8+/-20.26%), forced vital capacity (-3.9+/-9.41% versus +9.0+/-13.01%), residual volume/total lung capacity ratio (-1.4+/-13.82% versus -5.4+/-12.14%), dyspnoea scores (-0.4+/-1.27 versus -0.8+/-0.73 units) and St George's Respiratory Questionnaire total domain scores (-4.9+/-8.3 U versus -12.2+/-12.38 units) were better with HD than with LD therapy. BioLVR therapy with 20 mL per site at eight subsegmental sites may be a safe and effective therapy in patients with advanced homogeneous emphysema.

  7. High-temperature study of defects and homogeneity in glass

    NASA Astrophysics Data System (ADS)

    Yoon, Chang Hyun

    Glass frit has many useful applications in the glass and ceramic industries. Several attempts were made in this study to understand the origin of problems that generally occur when using glass frit. The effect of water/glass interactions on the rheology of glass suspension and the final properties of glass and glaze were studied. The dissolution of refractory inclusions and its influence on the bubble evolution, glass structure, and homogeneity of the resulting melt were also studied. The effects of long-term interaction of water with various frit suspensions were considered. The change in suspension rheology is associated with the ion concentration of the frit suspension, which strongly depends on the frit composition, additives, and solid content of frit suspension. Physical property and compositional variations resulted from dealkalization reactions between the frit particles and water. New investigative techniques for continuous monitoring and quantitative analysis of the dissolution of refractory inclusions in glass have been developed utilizing high-temperature microscopy with computer image analysis. The dissolution rates of refractory oxides in glass frit were measured utilizing hot-stage microscopy in the temperature range from 1050°C to 1400°C. The effects of dissolution on the structure of the final glass, were monitored by infrared spectroscopy. Homogenization of the resulting melts was studied using a Christiansen filter. It was found that melting temperature and time strongly influence the dissolution of refractory batch materials and subsequent homogenization rates, leading to large differences in final structures for glass melts and glazes which have not attained equilibrium.

  8. Tidal spin down rates of homogeneous triaxial viscoelastic bodies

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Kueter-Young, Andrea; Frouard, Julien; Ragozzine, Darin

    2016-12-01

    We use numerical simulations to measure the sensitivity of the tidal spin-down rate of a homogeneous triaxial ellipsoid to its axis ratios by comparing the drift rate in orbital semimajor axis to that of a spherical body with the same mass, volume and simulated rheology. We use a mass-spring model approximating a viscoelastic body spinning around its shortest body axis, with spin aligned with orbital spin axis, and in circular orbit about a point mass. The torque or drift rate can be estimated from that predicted for a sphere with equivalent volume if multiplied by 0.5 (1 + b^4/a^4)(b/a)^{-4/3} (c/a)^{-α _c} where b/a and c/a are the body axis ratios and index αc ≈ 1.05 is consistent with the random lattice mass-spring model simulations but αc = 4/3 suggested by scaling estimates. A homogeneous body with axis ratios 0.5 and 0.8, like Haumea, has orbital semimajor axis drift rate about twice as fast as a spherical body with the same mass, volume and material properties. A simulation approximating a mostly rocky body but with 20 per cent of its mass as ice concentrated at its ends has a drift rate 10 times faster than the equivalent homogeneous rocky sphere. However, this increase in drift rate is not enough to allow Haumea's satellite, Hi'iaka, to have tidally drifted away from Haumea to its current orbital semimajor axis.

  9. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II)

    USGS Publications Warehouse

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Marvin-DiPasquale, Mark C.

    2013-01-01

    Production of elemental mercury, Hg(0), via Hg(II) reduction is an important pathway that should be considered when studying Hg fate in environment. We conducted a kinetic study of abiotic homogeneous and surface-catalyzed Hg(0) production by Fe(II) under dark anoxic conditions. Hg(0) production rate, from initial 50 pM Hg(II) concentration, increased with increasing pH (5.5–8.1) and aqueous Fe(II) concentration (0.1–1 mM). The homogeneous rate was best described by the expression, rhom = khom [FeOH+] [Hg(OH)2]; khom = 7.19 × 10+3 L (mol min)−1. Compared to the homogeneous case, goethite (α-FeOOH) and hematite (α-Fe2O3) increased and γ-alumina (γ-Al2O3) decreased the Hg(0) production rate. Heterogeneous Hg(0) production rates were well described by a model incorporating equilibrium Fe(II) adsorption, rate-limited Hg(II) reduction by dissolved and adsorbed Fe(II), and rate-limited Hg(II) adsorption. Equilibrium Fe(II) adsorption was described using a surface complexation model calibrated with previously published experimental data. The Hg(0) production rate was well described by the expression rhet = khet [>SOFe(II)] [Hg(OH)2], where >SOFe(II) is the total adsorbed Fe(II) concentration; khet values were 5.36 × 10+3, 4.69 × 10+3, and 1.08 × 10+2 L (mol min)−1 for hematite, goethite, and γ-alumina, respectively. Hg(0) production coupled to reduction by Fe(II) may be an important process to consider in ecosystem Hg studies.

  10. Accelerated ketoprofen release from polymeric matrices: importance of the homogeneity/heterogeneity of excipient distribution.

    PubMed

    Gue, E; Willart, J F; Muschert, S; Danede, F; Delcourt, E; Descamps, M; Siepmann, J

    2013-11-30

    Polymeric matrices loaded with 10-50% ketoprofen were prepared by hot-melt extrusion or spray-drying. Eudragit E, PVP, PVPVA and HPMC were studied as matrix formers. Binary "drug-Eudragit E" as well as ternary "drug-Eudragit E-PVP", "drug-Eudragit E-PVPVA" and "drug-Eudragit E-HPMC" combinations were investigated and characterized by optical macro/microscopy, SEM, particle size measurements, mDSC, X-ray diffraction and in vitro drug release studies in 0.1 M HCl. In all cases ketoprofen release was much faster compared to a commercially available product and the dissolution of the drug powder (as received). Super-saturated solutions were obtained, which were stable during at least 2 h. Importantly, not only the composition of the systems, but also their inner structure potentially significantly affected the resulting ketoprofen release kinetics: For instance, spray-drying ternary ketoprofen:Eudragit E:HPMC combinations led to a more homogenous HPMC distribution within the systems than hot-melt extrusion, as revealed by mDSC and X-ray diffraction. This more homogenous HPMC distribution resulted in more pronounced hindrance for water and drug diffusion and, thus, slower drug release from spray-dried powder compared to hot-melt extrudates of identical composition. This "homogeneity/heterogeneity effect" even overcompensated the "system size effect": the surface exposed to the release medium was much larger in the case of the spray-dried powder. All formulations were stable during storage at ambient conditions in open vials.

  11. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    DOE PAGES

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; ...

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimummore » is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.« less

  12. Homogeneous immunosubtraction integrated with sample preparation is enabled by a microfluidic format

    PubMed Central

    Apori, Akwasi A.; Herr, Amy E.

    2011-01-01

    Immunosubtraction is a powerful and resource-intensive laboratory medicine assay that reports both protein mobility and binding specificity. To expedite and automate this electrophoretic assay, we report on advances to the electrophoretic immunosubtraction assay by introducing a homogeneous, not heterogeneous, format with integrated sample preparation. To accomplish homogeneous immunosubtraction, a step-decrease in separation matrix pore-size at the head of a polyacrylamide gel electrophoresis (PAGE) separation channel enables ‘subtraction’ of target analyte when capture antibody is present (as the large immune-complex is excluded from PAGE), but no subtraction when capture antibody is absent. Inclusion of sample preparation functionality via small pore size polyacrylamide membranes is also key to automated operation (i.e., sample enrichment, fluorescence sample labeling, and mixing of sample with free capture antibody). Homogenous sample preparation and assay operation allows on-the-fly, integrated subtraction of one to multiple protein targets and reuse of each device. Optimization of the assay is detailed which allowed for ~95% subtraction of target with 20% non-specific extraction of large species at the optimal antibody-antigen ratio, providing conditions needed for selective target identification. We demonstrate the assay on putative markers of injury and inflammation in cerebrospinal fluid (CSF), an emerging area of diagnostics research, by rapidly reporting protein mobility and binding specificity within the sample matrix. We simultaneously detect S100B and C-reactive protein, suspected biomarkers for traumatic brain injury (TBI), in ~2 min. Lastly, we demonstrate S100B detection (65 nM) in raw human CSF with a lower limit of detection of ~3.25 nM, within the clinically relevant concentration range for detecting TBI in CSF. Beyond the novel CSF assay introduced here, a fully automated immunosubtraction assay would impact a spectrum of routine but labor

  13. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    SciTech Connect

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.

  14. Are geological media homogeneous or heterogeneous for neutron investigations?

    PubMed

    Woźnicka, U; Drozdowicz, K; Gabańska, B; Krynicka, E; Igielski, A

    2003-01-01

    The thermal neutron absorption cross section of a heterogeneous material is lower than that of the corresponding homogeneous one which contains the same components. When rock materials are investigated the sample usually contains grains which create heterogeneity. The heterogeneity effect depends on the mass contribution of highly and low-absorbing centers, on the ratio of their absorption cross sections, and on their sizes. An influence of the granulation of silicon and diabase samples on the absorption cross section measured with Czubek's method has been experimentally investigated. A 20% underestimation of the absorption cross section has been observed for diabase grains of sizes from 6.3 to 12.8 mm.

  15. Homogeneous and heterogeneous chemistry along air parcel trajectories

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.

    1990-01-01

    The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.

  16. Homogeneity of Danish environmental and clinical isolates of Shewanella algae.

    PubMed

    Vogel, B F; Holt, H M; Gerner-Smidt, P; Bundvad, A; Sogaard, P; Gram, L

    2000-01-01

    Danish isolates of Shewanella algae constituted by whole-cell protein profiling a very homogeneous group, and no clear distinction was seen between strains from the marine environment and strains of clinical origin. Although variation between all strains was observed by ribotyping and random amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection.

  17. Nonlinear fast sausage waves in homogeneous magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, Badma B.; Ruderman, Michael S.

    2015-12-01

    > We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.

  18. Open questions about homogeneous fluid dynamos: the VKS experiment

    NASA Astrophysics Data System (ADS)

    Marie, L.; Petrelis, F.; Bourgoin, M.; Burguete, J.; Chiffaudel, A.; Daviaud, F.; Fauve, S.; Odier, P.; Pinton, J.-F.

    2002-06-01

    We consider several problems that arise in the context of homogeneous fluid dynamos such as the effect of turbulence on the dynamo threshold, the saturation level of the generated magnetic field above the threshold and its dynamics. We compare some of our predictions with the recent experimental results of the Karlsruhe and Riga experiments. Finally, we present the VKS experiment that we have designed to answer some of the remaining open questions. We study, in particular, the response of a turbulent flow to an external magnetic field. Fig. 5, Refs. 42.

  19. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  20. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  1. Determining the alpha dynamo parameter in incompressible homogeneous magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; Lantz, S. R.

    1983-01-01

    Alpha, an important parameter in dynamo theory, is proportional to either the kinetic, current, magnetic, or velocity helicity of the fluctuating magnetic field and fluctuating velocity field. The particular helicity to which alpha is proportional depends on the assumptions used in deriving the first order smoothed equations that describe the alpha effect. In two cases, when alpha is proportional to either the magnetic helicity or velocity helicity, alpha is determined experimentally from two point measurements of the fluctuating fields in incompressible, homogeneous turbulence having arbitrary symmetry. For the other two possibilities, alpha is determined if the turbulence is isotropic.

  2. Time Evolution of Modeled Reynolds Stresses in Planar Homogeneous Flows

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Gatski, T. B.

    1997-01-01

    The analytic expression of the time evolution of the Reynolds stress anisotropy tensor in all planar homogeneous flows is obtained by exact integration of the modeled differential Reynolds stress equations. The procedure is based on results of tensor representation theory, is applicable for general pressure-strain correlation tensors, and can account for any additional turbulence anisotropy effects included in the closure. An explicit solution of the resulting system of scalar ordinary differential equations is obtained for the case of a linear pressure-strain correlation tensor. The properties of this solution are discussed, and the dynamic behavior of the Reynolds stresses is studied, including limit cycles and sensitivity to initial anisotropies.

  3. Homogeneous Charge Compression Ignition Free Piston Linear Alternator

    SciTech Connect

    Janson Wu; Nicholas Paradiso; Peter Van Blarigan; Scott Goldsborough

    1998-11-01

    An experimental and theoretical investigation of a homogeneous charge compression ignition (HCCI) free piston powered linear alternator has been conducted to determine if improvements can be made in the thermal and conversion efficiencies of modern electrical generator systems. Performance of a free piston engine was investigated using a rapid compression expansion machine and a full cycle thermodynamic model. Linear alternator performance was investigated with a computer model. In addition linear alternator testing and permanent magnet characterization hardware were developed. The development of the two-stroke cycle scavenging process has begun.

  4. Rapidly rotating Bose-Einstein condensates in homogeneous traps

    SciTech Connect

    Correggi, M.; Rindler-Daller, T.; Yngvason, J.

    2007-10-15

    We extend the results of a previous paper on the Gross-Pitaevskii description of rotating Bose-Einstein condensates in two-dimensional traps to confining potentials of the form V(r)=r{sup s}, 2homogeneous potentials is also discussed.

  5. Transport equation for plasmas in a stationary-homogeneous turbulence

    SciTech Connect

    Wang, Shaojie

    2016-02-15

    For a plasma in a stationary homogeneous turbulence, the Fokker-Planck equation is derived from the nonlinear Vlasov equation by introducing the entropy principle. The ensemble average in evaluating the kinetic diffusion tensor, whose symmetry has been proved, can be computed in a straightforward way when the fluctuating particle trajectories are provided. As an application, it has been shown that a mean parallel electric filed can drive a particle flux through the Stokes-Einstein relation, independent of the details of the fluctuations.

  6. Homogeneous polymer blend microparticles with a tunable refractive index

    SciTech Connect

    Barnes, M.D.; Kung, C.; Lermer, N.; Fukui, K.; Sumpter, B.G.; Noid, D.W.; Otaigbe, J.U.

    1999-02-01

    We show that homogeneous polymer blend microparticles can be prepared {ital in situ} from droplets of dilute solution of codissolved polymers. Provided that the droplet of solution is small enough ({lt}10 {mu}m) , solvent evaporation is rapid enough to inhibit phase separation. Thus the polymers that are being mixed need not be miscible, which greatly enhances the applicability of the technique. From analysis of two-dimensional Fraunhofer diffraction (angular scattering) patterns, we show that both the real and the imaginary parts of the refractive index can be tuned by adjustment of the relative weight fractions of polymers in solution. {copyright} {ital 1999} {ital Optical Society of America}

  7. Homogeneous precipitation synthesis and electrical properties of scandia stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Zhang, Yawen; Liao, Chunsheng; Yan, Chunhua

    2001-12-01

    Homogeneous precipitation employing urea was utilized to prepare ultrafine and weakly-agglomerated 8 mol% scandia-stabilized zirconia (8ScSZ) powders. Their crystal structure, particle and electrical properties were investigated by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, thermo-gravimetry and differential thermal analysis, BET surface area analysis, and impedance spectroscopy, respectively. 8ScSZ polycrystals in a pure cubic phase were obtained after sintering at a low temperature of 600 °C. Elevating sintering temperature can increase the oxide ion conductivity, especially the grain boundary conductivity.

  8. Uniform boundary regularity in almost-periodic homogenization

    NASA Astrophysics Data System (ADS)

    Zhuge, Jinping

    2017-01-01

    In the present paper, we generalize the theory of quantitative homogenization for second-order elliptic systems with rapidly oscillating coefficients in APW2 (Rd), which is the space of almost-periodic functions in the sense of H. Weyl. We obtain the large scale uniform boundary Lipschitz estimate, for both Dirichlet and Neumann problems in C 1 , α domains. We also obtain large scale uniform boundary Hölder estimates in C 1 , α domains and L2 Rellich estimates in Lipschitz domains.

  9. Homogeneous-heterogeneous reaction effects in peristalsis through curved geometry

    SciTech Connect

    Hayat, Tasawar; Tanveer, Anum Alsaadi, Fuad; Alotaibi, Naif D.

    2015-06-15

    This paper looks at the influence of homogeneous-heterogeneous reactions on the peristaltic transport of non-Newtonian fluid in a curved channel with wall properties. Constitutive relations for thermodynamic third grade material are utilized in the problem development. An electrically conducting fluid in the presence of radial applied magnetic field is considered. The governing flow equations are developed in the presence of viscous heating. Mathematical computations are simplified employing long wavelength and low Reynolds number considerations. The solutions for velocity, temperature, concentration and heat transfer coefficient are obtained and examined. The features of sundry parameters are analyzed by plotting graphs.

  10. Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents

    NASA Astrophysics Data System (ADS)

    Wang, Linzhu; Yang, Shufeng; Li, Jingshe; Zhang, Shuo; Ju, Jiantao

    2017-02-01

    To investigate the effect of Mg addition on the refinement and homogenized distribution of inclusions, deoxidized experiments with different amounts of aluminum and magnesium addition were carried out at 1873 K (1600 °C) under the condition of no fluid flow. The size distribution of three-dimensional inclusions obtained by applying the modified Schwartz-Saltykov transformation from the observed planar size distribution, and degree of homogeneity in inclusion dispersion quantified by measuring the inter-surface distance of inclusions, were studied as a function of the amount of Mg addition and holding time. The nucleation and growth of inclusions based on homogeneous nucleation theory and Ostwald ripening were discussed with the consideration of supersaturation degree and interfacial energy between molten steel and inclusions. The average attractive force acted on inclusions in experimental steels was estimated according to Paunov's theory. The results showed that in addition to increasing the Mg addition, increasing the oxygen activity at an early stage of deoxidation and lowering the dissolved oxygen content are conductive to the increase of nucleation rate as well as to the refinement of inclusions Moreover, it was found that the degree of homogeneity in inclusion dispersion decreases with an increase of the attractive force acted on inclusions, which is largely dependent on the inclusion composition and volume fraction of inclusions.

  11. Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents

    NASA Astrophysics Data System (ADS)

    Wang, Linzhu; Yang, Shufeng; Li, Jingshe; Zhang, Shuo; Ju, Jiantao

    2017-04-01

    To investigate the effect of Mg addition on the refinement and homogenized distribution of inclusions, deoxidized experiments with different amounts of aluminum and magnesium addition were carried out at 1873 K (1600 °C) under the condition of no fluid flow. The size distribution of three-dimensional inclusions obtained by applying the modified Schwartz-Saltykov transformation from the observed planar size distribution, and degree of homogeneity in inclusion dispersion quantified by measuring the inter-surface distance of inclusions, were studied as a function of the amount of Mg addition and holding time. The nucleation and growth of inclusions based on homogeneous nucleation theory and Ostwald ripening were discussed with the consideration of supersaturation degree and interfacial energy between molten steel and inclusions. The average attractive force acted on inclusions in experimental steels was estimated according to Paunov's theory. The results showed that in addition to increasing the Mg addition, increasing the oxygen activity at an early stage of deoxidation and lowering the dissolved oxygen content are conductive to the increase of nucleation rate as well as to the refinement of inclusions Moreover, it was found that the degree of homogeneity in inclusion dispersion decreases with an increase of the attractive force acted on inclusions, which is largely dependent on the inclusion composition and volume fraction of inclusions.

  12. Etude des phenomenes dynamiques ultrarapides et des caracteristiques impulsionnelles d'emission terahertz du supraconducteur YBCO

    NASA Astrophysics Data System (ADS)

    Savard, Stephane

    Les premieres etudes d'antennes a base de supraconducteurs a haute temperature critique emettant une impulsion electromagnetique dont le contenu en frequence se situe dans le domaine terahertz remontent a 1996. Une antenne supraconductrice est formee d'un micro-pont d'une couche mince supraconductrice sur lequel un courant continu est applique. Un faisceau laser dans le visible est focalise sur le micro-pont et place le supraconducteur dans un etat hors-equilibre ou des paires sont brisees. Grace a la relaxation des quasiparticules en surplus et eventuellement de la reformation des paires supraconductrices, nous pouvons etudier la nature de la supraconductivite. L'analyse de la cinetique temporelle du champ electromagnetique emis par une telle antenne terahertz supraconductrice s'est averee utile pour decrire qualitativement les caracteristiques de celle-ci en fonction des parametres d'operation tels que le courant applique, la temperature et la puissance d'excitation. La comprehension de l'etat hors-equilibre est la cle pour comprendre le fonctionnement des antennes terahertz supraconductrices a haute temperature critique. Dans le but de comprendre ultimement cet etat hors-equilibre, nous avions besoin d'une methode et d'un modele pour extraire de facon plus systematique les proprietes intrinseques du materiau qui compose l'antenne terahertz a partir des caracteristiques d'emission de celle-ci. Nous avons developpe une procedure pour calibrer le spectrometre dans le domaine temporel en utilisant des antennes terahertz de GaAs bombarde aux protons H+ comme emetteur et detecteur. Une fois le montage calibre, nous y avons insere une antenne emettrice dipolaire de YBa 2Cu3O7-delta . Un modele avec des fonctions exponentielles de montee et de descente du signal est utilise pour lisser le spectre du champ electromagnetique de l'antenne de YBa 2Cu3O7-delta, ce qui nous permet d'extraire les proprietes intrinseques de ce dernier. Pour confirmer la validite du modele

  13. A study on beam homogeneity for a Siemens Primus linac.

    PubMed

    Cutanda Henriquez, F; Vargas-Castrillón, S T

    2007-06-01

    Asymmetric offset fields are an important tool for radiotherapy and their suitability for treatment should be assessed. Dose homogeneity for highly asymmetric fields has been studied for a Siemens PRIMUS clinical linear accelerator. Profiles and absolute dose have been measured in fields with two jaws at maximal position (20 cm) and the other two at maximal overtravel (10 cm), corresponding to 10 cm x 10 cm fields with extreme offset. Measured profiles have a marked decreasing gradient towards the beam edge, making these fields unsuitable for treatments. The flattening filter radius is smaller than the primary collimator aperture, and this creates beam inhomogeneities that affect large fields in areas far from the collimator axis, and asymmetric fields with large offset. The results presented assess the effect that the design of the primary collimator and flattening filter assembly has on beam homogeneity. This can have clinical consequences for treatments involving fields that include these inhomogeneous areas. Comparison with calculations from a treatment planning system, Philips Pinnacle v6.3, which computes under the hypotheses of a uniformly flattened beam, results in severe discrepancies.

  14. Micromechanics and homogenization of inelastic composite materials with growing cracks

    NASA Astrophysics Data System (ADS)

    Costanzo, Francesco; Boyd, James G.; Allen, David H.

    1996-03-01

    A homogenization scheme is employed to derive the effective constitutive equations of an elastoplastic composite system with growing damage. The homogenization procedure followed herein is based on the thermodynamics of dissipative media. It is shown that when damage consists of sharps microcracks the macroscopic constitutive behavior is that of a so-called generalized standard material. The latter is a general dissipative medium whose constitutive equations are completely characterized by a single scalar convex potential function of the chosen state variables and whose evolution is completely characterized by a single convex dissipation potential function of the thermodynamic forces conjugate to the chosen internal state variables. The analysis presented is valid under the assumption that the evolution of the representative volume element at hand is unique and stable. The results of the theoretical analysis are then employed for formulating an approximate method for practically deriving the macroscopic constitutive equations. Computer software development for the application of said method is currently ongoing. A simple example of the numerical results obtained so far is presented.

  15. Craniospinal Irradiation With Spinal IMRT to Improve Target Homogeneity

    SciTech Connect

    Panandiker, Atmaram Pai; Ning, Holly; Likhacheva, Anna; Ullman, Karen; Arora, Barbara; Ondos, John C.; Karimpour, Shervin; Packer, Roger; Miller, Robert; Citrin, Deborah . E-mail: citrind@mail.nih.gov

    2007-08-01

    Purpose: To report a new technique for the spinal component of craniospinal irradiation (CSI) in the supine position, to describe a verification procedure for this method, and to compare this technique with conventional plans. Methods and Materials: Twelve patients were treated between 1998 and 2006 with CSI using a novel technique. Sixteen children were treated with a conventional field arrangement. All patients were followed for outcomes and toxicity. CSI was delivered using a posteroanterior (PA) intensity-modulated radiation therapy (IMRT) spinal field matched to conventional, opposed lateral cranial fields. Treatment plans were generated for each patient using the IMRT technique and a standard PA field technique. The resulting dosimetry was compared to determine target homogeneity, maximum dose to normal tissues, and total monitor units delivered. Results: Evaluation of the spinal IMRT technique compared with a standard PA technique reveals a 7% reduction in the target volume receiving {>=}110% of the prescribed dose and an 8% increase in the target volume receiving {>=}95% of the prescribed dose. Although target homogeneity was improved, the maximum dose delivered in the paraspinal muscles was increased by approximately 8.5% with spinal IMRT compared to the PA technique. Follow-up evaluations revealed no unexpected toxicity associated with the IMRT technique. Conclusions: A new technique of spine IMRT is presented in combination with a quality assurance method. This method improves target dose uniformity compared to the conventional CSI technique. Longer follow-up will be required to determine any benefit with regard to toxicity and disease control.

  16. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants.

    PubMed

    Zhang, Yang; Shu, Jinian; Zhang, Yuanxun; Yang, Bo

    2013-09-01

    The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10-dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.

  17. Highly sensitive homogenous chemiluminescence immunoassay using gold nanoparticles as label

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Cui, Xiang; Liu, Wei; Li, Baoxin

    2014-10-01

    Homogeneous immunoassay is becoming more and more attractive for modern medical diagnosis because it is superior to heterogeneous immunoassay in sample and reagent consumption, analysis time, portability and disposability. Herein, a universal platform for homogeneous immunoassay, using human immunoglobulin G (IgG) as a model analyte, has been developed. This assay relies upon the catalytic activity of gold nanoparticles (AuNPs) on luminol-AgNO3 chemiluminescence (CL) reaction. The immunoreaction of antigen and antibody can induce the aggregation of antibody-functionalized AuNPs, and after aggregation the catalytic activity of AuNPs on luminol-AgNO3 CL reaction is greatly enhanced. Without any separation steps, a CL signal is generated upon addition of a trigger solution, and the CL intensity is directly correlated to the quantity of IgG. The detection limit of IgG was estimated to be as low as 3 pg/mL, and the sensitivity was better than that of the reported AuNPs-based CL immunoassay for IgG.

  18. Exploring the Kibble-Zurek mechanism with homogeneous Bose gases

    NASA Astrophysics Data System (ADS)

    Beugnon, Jérôme; Navon, Nir

    2017-01-01

    Out-of-equilibrium phenomena are a subject of considerable interest in many fields of physics. Ultracold quantum gases, which are extremely clean, well-isolated and highly controllable systems, offer ideal platforms to investigate this topic. The recent progress in tailoring trapping potentials now allows the experimental production of homogeneous samples in custom geometries, which is a key advance for studies of the emergence of coherence in interacting quantum systems. Here we review recent experiments in which temperature quenches have been performed across the Bose-Einstein condensation phase transition in an annular geometry and in homogeneous 3D and quasi-2D gases. Combined, these experiments comprehensively explore and validate the Kibble-Zurek (KZ) scenario through complementary measurements of correlation functions and density of topological defects. They allow the measurement of KZ scaling laws, the direct confirmation of the ‘freeze-out’ hypothesis that underlies the KZ theory, and the extraction of critical exponents of the Bose-Einstein condensation transition.

  19. Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates

    NASA Astrophysics Data System (ADS)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2016-10-01

    We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.

  20. Enthalpy recovery in glassy materials: heterogeneous versus homogenous models.

    PubMed

    Mazinani, Shobeir K S; Richert, Ranko

    2012-05-07

    Models of enthalpy relaxations of glasses are the basis for understanding physical aging, scanning calorimetry, and other phenomena that involve non-equilibrium and non-linear dynamics. We compare models in terms of the nature of the relaxation dynamics, heterogeneous versus homogeneous, with focus on the Kovacs-Aklonis-Hutchinson-Ramos (KAHR) and the Tool-Narayanaswamy-Moynihan (TNM) approaches. Of particular interest is identifying the situations for which experimental data are capable of discriminating the heterogeneous from the homogeneous scenario. The ad hoc assumption of a single fictive temperature, T(f), is common to many models, including KAHR and TNM. It is shown that only for such single-T(f) models, enthalpy relaxation of a glass is a two-point correlation function in reduced time, implying that experimental results are not decisive regarding the underlying nature of the dynamics of enthalpy relaxation. We also find that the restriction of the common TNM model to a Kohlrausch-Williams-Watts type relaxation pattern limits the applicability of this approach, as the particular choice regarding the distribution of relaxation times is a more critical factor compared with isothermal relaxation experiments. As a result, significant improvements in fitting calorimetry data can be achieved with subtle adjustments in the underlying relaxation time distribution.

  1. Data Homogenization of the NOAA Long-Term Ozonesonde Records

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Cullis, P.; Sterling, C. W.; Jordan, A. F.; Hall, E. G.; Petropavlovskikh, I. V.; Oltmans, S. J.; Mcconville, G.

    2015-12-01

    The NOAA long term balloon-borne ozonesonde sites at Boulder, Colorado; Hilo, Hawaii; and South Pole Station, Antarctica have measured weekly ozone profiles for more than 3 decades. The ozonesonde consists of an electrochemical concentration cell (ECC) sensor interfaced with a weather radiosonde which transmits high resolution ozone and meteorological data during ascent from the surface to 30-35 km altitude. During this 30 year time period there have been several model changes in the commercially available ECC ozonesondes and radiosondes as well as three adjustments in the ozone sensor solution composition at NOAA. These changes were aimed at optimizing the ozonesonde performance. Organized intercomparison campaigns conducted at the environmental simulation facility at the Research Centre Juelich, Germany and international field site testing have been the primary process for assessing new designs, instruments, or sensor solution changes and developing standard operating procedures. NOAA has also performed in-house laboratory tests and launched 28 dual ozonesondes at various sites since 1994 to provide further comparison data to determine the optimum homogenized data set. The final homogenization effort involved reviewing and editing several thousand individual ozonesonde profiles followed by applying the optimum correction algorithms for changes in type of sensor solution composition. The results of improved data sets will be shown with long term trends and uncertainties at various altitude levels.

  2. Deduction of Einstein equation from homogeneity of Riemann spacetime

    NASA Astrophysics Data System (ADS)

    Ni, Jun

    2012-03-01

    The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).

  3. Cluster-cell calculation using the method of generalized homogenization

    SciTech Connect

    Laletin, N.I.; Boyarinov, V.F.

    1988-05-01

    The generalized-homogenization method (GHM), used for solving the neutron transfer equation, was applied to calculating the neutron distribution in the cluster cell with a series of cylindrical cells with cylindrically coaxial zones. Single-group calculations of the technological channel of the cell of an RBMK reactor were performed using GHM. The technological channel was understood to be the reactor channel, comprised of the zirconium rod, the water or steam-water mixture, the uranium dioxide fuel element, and the zirconium tube, together with the adjacent graphite layer. Calculations were performed for channels with no internal sources and with unit incoming current at the external boundary as well as for channels with internal sources and zero current at the external boundary. The PRAKTINETs program was used to calculate the symmetric neutron distributions in the microcell and in channels with homogenized annular zones. The ORAR-TsM program was used to calculate the antisymmetric distribution in the microcell. The accuracy of the calculations were compared for the two channel versions.

  4. Array imaging of localized objects in homogeneous and heterogeneous media

    NASA Astrophysics Data System (ADS)

    Chai, Anwei; Moscoso, Miguel; Papanicolaou, George

    2016-10-01

    We present a comprehensive study of the resolution and stability properties of sparse promoting optimization theories applied to narrow band array imaging of localized scatterers. We consider homogeneous and heterogeneous media, and multiple and single scattering situations. When the media is homogeneous with strong multiple scattering between scatterers, we give a non-iterative formulation to find the locations and reflectivities of the scatterers from a nonlinear inverse problem in two steps, using either single or multiple illuminations. We further introduce an approach that uses the top singular vectors of the response matrix as optimal illuminations, which improves the robustness of sparse promoting optimization with respect to additive noise. When multiple scattering is negligible, the optimization problem becomes linear and can be reduced to a hybrid-{{\\ell }}1 method when optimal illuminations are used. When the media is random, and the interaction with the unknown inhomogeneities can be primarily modeled by wavefront distortions, we address the statistical stability of these methods. We analyze the fluctuations of the images obtained with the hybrid-{{\\ell }}1 method, and we show that it is stable with respect to different realizations of the random medium provided the imaging array is large enough. We compare the performance of the hybrid-{{\\ell }}1 method in random media to the widely used Kirchhoff migration and the multiple signal classification methods.

  5. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    PubMed

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate.

  6. Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.

    1998-01-01

    A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.

  7. Comparison of parameterizations for homogeneous and heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Koop, T.; Zobrist, B.

    2009-04-01

    The formation of ice particles from liquid aqueous aerosols is of central importance for the physics and chemistry of high altitude clouds. In this paper, we present new laboratory data on ice nucleation and compare them with two different parameterizations for homogeneous as well as heterogeneous ice nucleation. In particular, we discuss and evaluate the effect of solutes and ice nuclei. One parameterization is the λ-approach which correlates the depression of the freezing temperature of aqueous droplets in comparison to pure water droplets, Tf, with the corresponding depression, Tm, of the equilibrium ice melting point: Tf = λ × Tm. Here, λ is independent of concentration and a constant that is specific for a particular solute or solute/ice nucleus combination. The other approach is water-activity-based ice nucleation theory which describes the effects of solutes on the freezing temperature Tf via their effect on water activity: aw(Tf) = awi(Tf) + aw. Here, awi is the water activity of ice and aw is a constant that depends on the ice nucleus but is independent of the type of solute. We present new data on both homogeneous and heterogeneous ice nucleation with varying types of solutes and ice nuclei. We evaluate and discuss the advantages and limitations of the two approaches for the prediction of ice nucleation in laboratory experiments and atmospheric cloud models.

  8. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-03

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement.

  9. Homogeneity of GAFCHROMIC EBT2 film among different lot numbers.

    PubMed

    Mizuno, Hirokazu; Takahashi, Yutaka; Tanaka, Atsushi; Hirayama, Takamitsu; Yamaguchi, Tsuyoshi; Katou, Hiroaki; Takahara, Keiko; Okamoto, Yoshiaki; Teshima, Teruki

    2012-07-05

    EBT2 film is widely used for quality assurance in radiation therapy. The purpose of this study was to investigate the homogeneity of EBT2 film among various lots, and the dose dependence of heterogeneity. EBT2 film was positioned in the center of a flatbed scanner and scanned in transmission mode at 75 dpi. Homogeneity was investigated by evaluating gray value and net optical density (netOD) with the red color channel. The dose dependence of heterogeneity in a single sheet from five lots was investigated at 0.5, 2, and 3 Gy. Maximum coefficient of variation as evaluated by netOD in a single film was 3.0% in one lot, but no higher than 0.5% in other lots. Dose dependence of heterogeneity was observed on evaluation by gray value but not on evaluation by netOD. These results suggest that EBT2 should be examined in each lot number before clinical use, and that the dose calibration curve should be constructed using netOD.

  10. A new framework for simulating forced homogeneous buoyant turbulent flows

    NASA Astrophysics Data System (ADS)

    Carroll, Phares L.; Blanquart, Guillaume

    2015-06-01

    This work proposes a new simulation methodology to study variable density turbulent buoyant flows. The mathematical framework, referred to as homogeneous buoyant turbulence, relies on a triply periodic domain and incorporates numerical forcing methods commonly used in simulation studies of homogeneous, isotropic flows. In order to separate the effects due to buoyancy from those due to large-scale gradients, the linear scalar forcing technique is used to maintain the scalar variance at a constant value. Two sources of kinetic energy production are considered in the momentum equation, namely shear via an isotropic forcing term and buoyancy via the gravity term. The simulation framework is designed such that the four dimensionless parameters of importance in buoyant mixing, namely the Reynolds, Richardson, Atwood, and Schmidt numbers, can be independently varied and controlled. The framework is used to interrogate fully non-buoyant, fully buoyant, and partially buoyant turbulent flows. The results show that the statistics of the scalar fields (mixture fraction and density) are not influenced by the energy production mechanism (shear vs. buoyancy). On the other hand, the velocity field exhibits anisotropy, namely a larger variance in the direction of gravity which is associated with a statistical dependence of the velocity component on the local fluid density.

  11. Temperature Trends over Germany from Homogenized Radiosonde Data.

    NASA Astrophysics Data System (ADS)

    Steinbrecht, W.; Pattantyús Ábráham, M.

    2015-12-01

    We present homogenization procedure and results for Germany's historical radiosonde records, dating back to the 1950s. Our manual homogenization makes use of the different RS networks existing in East and West-Germany from the 1950s until 1990. The largest temperature adjustments, up to 2.5K, are applied to Freiberg sondes used in the East in the 1950s and 1960s. Adjustments for Graw H50 and M60 sondes, used in the West from the 1950s to the late 1980s, and for RKZ sondes, used in the East in the 1970s and 1980s, are also significant, 0.3 to 0.5K. Small differences between Vaisala RS80 and RS92 sondes used throughout Germany since 1990 and 2005, respectively, were not corrected for at levels from the ground to 300 hPa. Comparison of the homogenized data with other radiosonde datasets, RICH (Haimberger et al., 2012) and HadAT2 (McCarthy et al., 2008), and with Microwave Sounding Unit satellite data (Mears and Wentz, 2009), shows generally good agreement. HadAT2 data exhibit a few suspicious spikes in the 1970s and 1980s, and some suspicious offsets up to 1K after 1995. Compared to RICH, our homogenized data show slightly different temperatures in the 1960s and 1970s. We find that the troposphere over Germany has been warming by 0.25 ± 0.1K per decade since the early 1960s, slightly more than reported in other studies (Hartmann et al., 2013). The stratosphere has been cooling, with the trend increasing from almost no change near 230hPa (the tropopause) to -0.5 ± 0.2K per decade near 50hPa. Trends from the homogenized data are more positive by about 0.1K per decade compared to the original data, both in troposphere and stratosphere. References: Haimberger, L., C. Tavolato, and S. Sperka, 2012. J. Climate, 25, 8108-8131, doi:10.1175/ JCLI-D-11-00668.1. Hartmann, D., et al., 2013: Observations: Atmosphere and surface in IPCC AR5, Climate Change 2013: The Physical Science Basis. [Available at http://www.ipcc.ch/report/ar5/wg1/.] McCarthy, M., et al., 2008. J. Climate

  12. Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay

    SciTech Connect

    Harding, S. F.; Richmond, M. C.; Romero-Gomez, P.; Serkowski, J. A.

    2016-12-01

    Observations of the flow conditions in the forebay of a hydroelectric power station indicate significant regions of non-homogeneous velocities near the intakes and shoreline. The effect of these non-homogeneous regions on the velocity measurement of an acoustic Doppler current profiler (ADCP) is investigated. By using a numerical model of an ADCP operating in a velocity field calculated using computational fluid dynamics (CFD), the errors due to the spatial variation of the flow velocity are identified. The numerical model of the ADCP is referred to herein as a Virtual ADCP (VADCP). Two scenarios are modeled in the numerical analyses presented. Firstly the measurement error of the VADCP is calculated for a single instrument adjacent to the short converging intake of the powerhouse. Secondly, the flow discharge through the forebay is estimated from a transect of VADCP instruments at dif- ferent distances from the powerhouse. The influence of instrument location and orientation are investigated for both cases. A velocity error of over up to 94% of the reference velocity is calculated for a VADCP modeled adjacent to an operating intake. Qualitative agreement is observed between the calculated VADCP velocities and reference velocities by an offset of one intake height upstream of the powerhouse.

  13. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion?

    PubMed

    Qian, Feng; Huang, Jun; Zhu, Qing; Haddadin, Raja; Gawel, John; Garmise, Robert; Hussain, Munir

    2010-08-16

    For an amorphous drug-polymer solid dispersion, a distinctive single T(g) intermediate of the two T(g) values of the two components has been widely considered as an indication of the mixing uniformity, which is critical for the stability of the amorphous drug against crystallization. In this study, two batches of amorphous solid dispersions consisting of BMS-A, a poorly water-soluble drug, and PVP-VA, were made by a twin-screw hot-melt extruder using different processing conditions. Both batches displayed an identical distinctive single T(g) that is consistent with the prediction of Fox equation assuming homogeneous mixing of the two components. Neither DSC nor PXRD detected any drug crystallinity in either batch. However, the two batches exhibited different physical stability against crystallization over time. The application of a Raman mapping method showed that the drug distributed over a much wider concentration range in the less stable solid dispersion. It is therefore experimentally demonstrated that, in the characterization of amorphous solid dispersions, a distinctive single T(g) may not always be a reliable indicator of homogeneity and optimal stability, and more examinations and new techniques may be required other than conventional studies.

  14. Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach

    NASA Astrophysics Data System (ADS)

    Durán-Lobato, Matilde; Enguix-González, Alicia; Fernández-Arévalo, Mercedes; Martín-Banderas, Lucía

    2013-02-01

    Lipid nanoparticles (LNPs) are a promising carrier for all administration routes due to their safety, small size, and high loading of lipophilic compounds. Among the LNP production techniques, the easy scale-up, lack of organic solvents, and short production times of the high-pressure homogenization technique (HPH) make this method stand out. In this study, a statistical analysis was applied to the production of LNP by HPH. Spherical LNPs with mean size ranging from 65 nm to 11.623 μm, negative zeta potential under -30 mV, and smooth surface were produced. Manageable equations based on commonly used parameters in the pharmaceutical field were obtained. The lipid to emulsifier ratio ( R L/S) was proved to statistically explain the influence of oil phase and surfactant concentration on final nanoparticles size. Besides, the homogenization pressure was found to ultimately determine LNP size for a given R L/S, while the number of passes applied mainly determined polydispersion. α-Tocopherol was used as a model drug to illustrate release properties of LNP as a function of particle size, which was optimized by the regression models. This study is intended as a first step to optimize production conditions prior to LNP production at both laboratory and industrial scale from an eminently practical approach, based on parameters extensively used in formulation.

  15. The 6.5 kV clustered insulated gate bipolar transistor in homogeneous base technology

    NASA Astrophysics Data System (ADS)

    Luther-King, N.; Sweet, M.; Spulber, O.; Vershinin, K.; Ngw, C. K.; Bose, S. C.; De Souza, M. M.; Sankara Narayanan, E. M.

    2001-01-01

    The aim of this paper is to evaluate the performance of a new power semiconductor device called the clustered insulated gate bipolar transistor (CIGBT) in the homogeneous base (HB) technology for high power applications. The CIGBT belongs to a new family of MOS controlled power devices with thyristor mode of operation in the on-state and current saturation characteristics even at high gate biases. The saturation characteristics are achieved through a unique 'self-clamping' phenomenon at a predetermined anode voltage. This inherent feature enables a wide FBSOA and low loss during switching. Our detailed analysis of the CIGBT using a 2-D mixed device-circuit simulation tool indicates that 525 μm of lightly doped silicon is adequate to block 6.5 kV in the HB technology. The thin substrate improves the trade-off between conduction and switching losses even further. With an on-state voltage drop as low as 2 V at 30 A cm -2 and 3.1 V at 100 A cm -2 the device is able to turn off under inductive switching conditions at a 3 kV line voltage, with significantly low energy losses in comparison to an optimised homogeneous base insulated gate bipolar transistor (HB-IGBT). Further, the device shows good short circuit withstand capability and its positive temperature coefficient of the forward voltage drop eases parallel integration.

  16. 3'-phosphoadenylylsulfate:galactosylceramide 3'-sulfotransferase. An optimized assay in homogenates of developing brain.

    PubMed

    Burkart, T; Siegrist, H P; Herschkowitz, N N; Wiesmann, U N

    1977-08-11

    An optimized in vitro assay of 3'-phosphoadenylysulfate:galactosylceramide 3'-sulfotransferase (EC 2.8.2.11, galactosylceramide sulfotransferase, formerly known as galactocerebroside sulfotransferase) activity is presented, that can be used in crude homogenate of brain tissue of various developmental stages. The enzyme activity is determined by measuring the [35S]sulfatides formed by the enzymic transfer of [35S]sulfate from 3'-phosphoadenoside 5'-phospho [35S]sulfate to galactosylceramides. The sulfatide formation at 30 degrees C is linear up to 30 min and up to a protein concentration of 1 mg per 0.5 ml assay volume. The presence of 0.4% Triton X-100 and 50 micrometer exogenous bovine cerebrosides are optimal for enzyme activity. The pH optimum of the reaction is at pH 6.5 using 0.1 M imidazole buffer. The enzyme reaction is stimulated by NaCl, KCl, MgCl2, CaCl2, MnCl2, ATP and inhibited by ADP. The developmental enzyme activity pattern of mouse brain is the same, if derived from homogenates and microsomes, respectively, under our assay conditions.

  17. Drivers of observed biotic homogenization in pine barrens of central Wisconsin.

    PubMed

    Li, Daijiang; Waller, Donald

    2015-04-01

    Fire suppression throughout the 20th century greatly altered plant communities in fire-dominated systems across North America. Our ability to assess these effects over the long-term, however, is handicapped by the paucity of baseline data. Here, we used detailed baseline data from the 1950s to track changes in the over- and understory composition of pine-barrens vegetation growing on sandy, glacial lake-bed sediments in central Wisconsin. We expected fire suppression to favor succession to closed-canopy conditions, leading to decreases in shade-intolerant and fire-adapted species and consequent reductions in alpha and gamma diversity. We also expected beta diversity to decline due to increases in shade-tolerant, fire-sensitive, and exotic species. In fact, fire suppression has greatly altered the structure and composition of these pine-barrens communities over the past 54 years. Woody, wind-pollinated, and shade-tolerant species all increased in richness and abundance, as expected, with succession following fire suppression. Contrary to expectations, local and regional species richness increased by 12% and 26%, respectively, while Shannon beta diversity declined 24.1%. Increases in canopy coverage and number of native species appear to have driven this biotic homogenization. In contrast, increases in exotic species in our study did not promote biotic homogenization, reflecting their relative rarity across sites. Our findings highlight the key role fire plays in shaping the assembly of these pine-barrens communities.

  18. ISHHC XIII International Symposium on the Relations betweenHomogeneous and Heterogeneous Catalysis

    SciTech Connect

    Somorjai , G.A.

    2007-06-11

    The International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC) has a long and distinguished history. Since 1974, in Brussels, this event has been held in Lyon, France (1977), Groeningen, The Netherlands (1981); Asilomar, California (1983); Novosibirsk, Russia (1986); Pisa, Italy (1989); Tokyo, Japan (1992); Balatonfuered, Hungary (1995); Southampton, United Kingdom (1999); Lyon, France (2001); Evanston, Illinois (2001) and Florence, Italy (2005). The aim of this international conference in Berkeley is to bring together practitioners in the three fields of catalysis, heterogeneous, homogeneous and enzyme, which utilize mostly nanosize particles. Recent advances in instrumentation, synthesis and reaction studies permit the nanoscale characterization of the catalyst systems, often for the same reaction, under similar experimental conditions. It is hoped that this circumstance will permit the development of correlations of these three different fields of catalysis on the molecular level. To further this goal we aim to uncover and focus on common concepts that emerge from nanoscale studies of structures and dynamics of the three types of catalysts. Another area of focus that will be addressed is the impact on and correlation of nanosciences with catalysis. There is information on the electronic and atomic structures of nanoparticles and their dynamics that should have importance in catalyst design and catalytic activity and selectivity.

  19. Demarcation of homogeneous structural domains within a rock mass based on joint orientation and trace length

    NASA Astrophysics Data System (ADS)

    Song, Shengyuan; Wang, Qing; Chen, Jianping; Cao, Chen; Li, Yanyan; Zhou, Xin

    2015-11-01

    This paper presents a new method for determining the structural domain boundaries within the rock mass. This new method is based on a statistical comparison of data from pairs of sample regions. The stereonet is divided into 100 windows with approximately equal areas. The poles of joints occurring in each corresponding window on the two projection plots of the regions being compared are then merged and arranged in ascending order with respect to their trace lengths. Finally, the Wald-Wolfowitz runs test is used to identify the homogeneity of structural populations by analyzing the joint sequence. Based on a significance level of 0.01, the homogeneity of structural populations collected from four adjacent adits at the Songta dam site is determined using the proposed method. The results show that the boundaries of structural domain change with the sizes of the sampling domains being compared. The initial sampling domains should be selected according to the engineering geological conditions of the studied area. In addition, the clear advantage of the proposed method is that both joint orientation and trace length are considered.

  20. SEM-EBSD based Realistic Modeling and Crystallographic Homogenization FE Analyses of LDH Formability Tests

    SciTech Connect

    Kuramae, Hiroyuki; Nakamachi, Eiji; Ngoc Tam, Nguyen; Nakamura, Yasunori; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-05-17

    Homogenization algorithm is introduced to the elastic/crystalline viscoplastic finite element (FE) procedure to develop multi-scale analysis code to predict the formability of sheet metal in macro scale, and simultaneously the crystal texture and hardening evolutions in micro scale. The isotropic and kinematical hardening lows are employed in the crystalline plasticity constitutive equation. For the multi-scale structure, two scales are considered. One is a microscopic polycrystal structure and the other a macroscopic elastic plastic continuum. We measure crystal morphologies by using the scanning electron microscope (SEM) with electron back scattered diffraction (EBSD), and define a three dimensional representative volume element (RVE) of micro ploycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. Since nonlinear multi-scale FE analysis requires large computation time, development of parallel computing technique is needed. To realize the parallel analysis on PC cluster system, the dynamic explicit FE formulations are employed. Applying the domain partitioning technique to FE mesh of macro continuum, homogenized stresses based on micro crystal structures are computed in parallel without solving simultaneous linear equation. The parallel FEM code is applied to simulate the limit dome height (LDH) test problem and hemispherical cup deep drawing problem of aluminum alloy AL6022, mild steel DQSK, high strength steel HSLA, and dual phase steel DP600 sheet metals. The localized distribution of thickness strain and the texture evolution are obtained.

  1. State and solubility of cadmium as related to xenotic inorganic phases generated homogeneously in soils

    SciTech Connect

    Walker, W.J.

    1985-01-01

    The state and solubility of cadmium in waste-treated soils was investigated. Three sets of experiments were designed to elucidate solid phase control of soil solution cadmium. First, the soil solution composition of two soils amended with either sludge or metal contaminated mulch was examined to determine the presence of anions capable of precipitating or co-precipitating cadmium. Results indicated that no known pure solid phases of cadmium developed but that high concentrations of phosphate, sulfate and carbonate apparently influenced cadmium solubility. Secondly, three soils were amended with 10 ug of cadmium as cadmium acetate/g of soil. Three different levels of glycerophosphate, cysteine and acetate were added to the soils and incubated at constant temperature and water content in order to release phosphate, sulfate and alkalinity under conditions conducive for homogeneous precipitation. Another set of treatments was prepared in the same fashion with an additional amendment of calcium carbonate to raise soil pH's to 7.0. In the presence of sulfate, cadmium solubility increased with no apparent solid phase formation. The addition of calcium carbonate shifted solid phase control to either calcium carbonate or calcium sulfate. The generation of alkalinity by acetate addition produced solid phase calcium carbonate which in turn controlled cadmium solubility through chemisorption of cadmium on calcite surfaces. In the presence of monobasic calcium phosphate, cadmium was interfacially adsorbed. In the presence of dibasic calcium phosphate, however, cadmium was homogeneously precipitated in the host crystal suggesting possible solid solution.

  2. Diffusion in Homogeneous and in Inhomogeneous Media: A New Unified Approach.

    PubMed

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2016-11-08

    We propose a new method to calculate the diffusion coefficient within molecular dynamics simulations for either homogeneous or inhomogeneous fluids. We formulate such method by solving analytically the Smoluchowski equation for a linear potential of mean force within a thin layer with absorbing boundary conditions. The bulk, or homogeneous, fluid diffusion emerges as a particular case in this approach. We apply this method to bulk liquid water at atmospheric pressure and different temperatures using the SPC/E water force field. We show that our method gives results as accurate as the traditional Einstein-Smoluchowski method, avoiding the fitting procedure required in the traditional method. We also apply this method for molten sodium chloride showing its applicability for multicomponent systems. The water vapor-liquid interface is studied as an example of an inhomogeneous system. We calculate all the components of the diffusion tensor at the interface. We observe the same anisotropy between the perpendicular and the parallel components at the interface as it has been noted in the literature. We also calculate the perpendicular self-diffusion coefficient of methane near the calcite surface showing that this coefficient is much lower than the parallel diffusion coefficients. We believe that this new unified approach is a very promising technique for both bulk and confined media.

  3. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface.

    PubMed

    Toldin, Francesco Parisen; Tröndle, Matthias; Dietrich, S

    2015-06-03

    Recent experimental realizations of the critical Casimir effect have been implemented by monitoring colloidal particles immersed in a binary liquid mixture near demixing and exposed to a chemically structured substrate. In particular, critical Casimir forces have been measured for surfaces consisting of stripes with periodically alternating adsorption preferences, forming chemical steps between them. Motivated by these experiments, we analyze the contribution of such chemical steps to the critical Casimir force for the film geometry and within the Ising universality class. By means of Monte Carlo simulations, mean-field theory and finite-size scaling analysis we determine the universal scaling function associated with the contribution to the critical Casimir force due to individual, isolated chemical steps facing a surface with homogeneous adsorption preference or with Dirichlet boundary condition. In line with previous findings, these results allow one to compute the critical Casimir force for the film geometry and in the presence of arbitrarily shaped, but wide stripes. In this latter limit the force decomposes into a sum of the contributions due to the two homogeneous parts of the surface and due to the chemical steps between the stripes. We assess this decomposition by comparing the resulting sum with actual simulation data for the critical Casimir force in the presence of a chemically striped substrate.

  4. Antibodies to betaISigma2 spectrin identify in-homogeneities in the erythrocyte membrane skeleton.

    PubMed

    Pradhan, Deepti; Tseng, Kenneth; Cianci, Carol D; Morrow, Jon S

    2004-01-01

    The cortical cytoskeleton of the mammalian red cell, composed of spectrin, actin, protein 4.1, adducin, and protein 4.9, is generally regarded as a homogeneous structure that maintains the integrity of the membrane and the lateral disposition of integral membrane proteins. The major component of this structure is a hetero-oligomer of alphaI and betaISigma1 spectrin. In other tissues, most notably muscle and brain, a transcript of the betaI spectrin gene is generated by alternative exon utilization, yielding a protein that has the COOH-terminal 19 residues of betaISigma1 spectrin replaced by 210 novel residues to generate betaISigma2 spectrin. This new transcript contains a pleckstrin homology (PH) domain and may even exist under some conditions in a homopolymeric form. Using antibodies specific for the COOH-terminal domains of either betaISigma1 or betaISigma2 spectrin, we find that contrary to previous understandings, mature human erythrocytes contain a subpopulation of spectrin that is immunoreactive with antibodies to the betaISigma2 isoform, and that this spectrin is distributed into distinct plasma membrane patches. These results suggest that the native mammalian erythrocyte membrane skeleton, rather than being homogeneous, contains discrete submicron-scale microdomains that differ in both their composition and dispersion across the cell surface. The precise nature and role of these putative microdomains is under active investigation.

  5. Separation and determination of homogenous fatty alcohol ethoxylates by liquid chromatography with mulitstage mass spectrometry.

    PubMed

    Zembrzuska, Joanna; Budnik, Irena; Lukaszewski, Zenon

    2014-07-01

    Alcohol ethoxylates (AEs) are a significant component of a stream of surfactants directed to the aquatic environment. The aim of this work was the investigation of the dependence of the analytical signals of homogeneous AE homologues on liquid chromatography with tandem mass spectrometry conditions, as well as the separation of AEs from the water matrix and, on this basis, the development of an analytical procedure suitable for the determination of AEs in environmental samples. Homogeneous homologues containing dodecyl moiety and 2-9 oxyethylene subunits were investigated. The analytical signals of the investigated homologues were optimized in terms of concentration of ammonium acetate in the mobile phase (optimum 5 mM) and a column temperature (optimum 35°C) of the liquid chromatography with tandem mass spectrometry system. A separation of AEs from the water matrix by liquid-liquid extraction (ethyl acetate, chloroform) or solid-phase extraction (C18 , styrene divinylbenzene, H-RX) was investigated. In a model investigation, the best recoveries (>90%) were obtained with a styrene divinylbenzene cartridge eluted with a 1:1 mixture of chloroform and methanol. However, much worse recoveries were obtained from the river water sample. Better results were obtained for liquid-liquid extraction with ethyl acetate. Recoveries of 62-80% were obtained for homologues having 4-9 oxyethylene subunits, at the lowest spike.

  6. A Class of Homogeneous Scalar Tensor Cosmologies with a Radiation Fluid

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho S.

    We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar tensor theories. The solutions belong to Bianchi type VIh cosmologies. Explicit examples of nonsingular homogeneous scalar tensor cosmologies are also given.

  7. A general strategy for the synthesis of homogeneous hyaluronan conjugates and their biological applications.

    PubMed

    Fu, Xuan; Shang, Wenjing; Wang, Shuaishuai; Liu, Yunpeng; Qu, Jingyao; Chen, Xi; Wang, Peng George; Fang, Junqiang

    2017-03-13

    Here, we developed a general strategy for synthesizing homogeneous HA conjugates, and generated homogeneous HA-pNP, HA-biotin, and HA-oroxylin conjugates to investigate the relationships between HA chain length and its diverse biological functions.

  8. Mechanical Behavior of Homogeneous and Composite Random Fiber Networks

    NASA Astrophysics Data System (ADS)

    Shahsavari, Ali

    systems with large multiscale heterogeneity, which controls their mechanical behavior. This pronounced heterogeneity leads to a pronounced size and boundary condition effects on their mechanical behavior. To emphasize the source of the size effect, the network heterogeneity is characterized by analyzing the geometry of the network (density distribution), the strain field and the strain energy distribution. It is shown that the heterogeneity of the mechanical fields depends not only on the network topology, but also on the ratio between the bending and axial stiffness of fibers. In this study, the size effect is quantified and the minimum model size needed to eliminate the size effect for a given set of system parameters, is determined. The results are also used for the selection of the size of representative volume elements useful for multiscale models of fiber networks such as the sequential approach. The elastic response of composite random fiber networks in which two types of fibers are used, is studied. This analysis is performed by adding stiff fibers to a relatively softer base while considering two cases: cross-linked and non-cross-linked added fibers. The linear elastic modulus of the network is determined in terms of the system parameters, including the density of added fibers. The results are compared to the case of adding stiff fibers to a homogeneous continuum base. It is shown that there is a threshold of added fiber density, above which the axial stiffens of the base filaments controls the mechanics. In this regime, the elastic response of the composites that have network bases mimics the behavior of those with continuum bases. The results presented in this thesis are relevant for many biological and engineering fibrous materials, including connective tissue, the cellular cytoskeleton, special clothing, consumer products, filters, and dampers. It is shown that the overall behavior of the material is very sensitive to several system parameters (power law

  9. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    DTIC Science & Technology

    2013-07-01

    homogeneous dielectric barrier discharge ( DBD ) in dry air by using a simple DBD device. So far, we have tried to apply the homogeneous DBD to an...specific input energy region. In this work, we investigated the effect of gas pressure (from 0.1 MPa to 0.2 MPa) on the ozone yield by homogeneous DBD . The...homogeneous DBD decreased with increasing the gas pressure. 1. Introduction The dielectric barrier discharge ( DBD ) is composed of many filamentary micro

  10. The Homogeneity of the Potsdam Solar Radiation Data

    NASA Astrophysics Data System (ADS)

    Behrens, K.

    2009-04-01

    At Meteorological Station in Potsdam (Germany) the measurement of sunshine duration started already in 1983. Later on, in 1937 the registration of global, diffuse and direct solar radiation was begun with pyranometers and a pyrheliometer. Since 1983 sunshine duration has been measured with the same method, the Campbell-Stokes sunshine recorder, at the same site, while the measurements of solar radiation changed as well as in equipment, measurement methods and location. Furthermore, it was firstly necessary to supplement some missing data within the time series and secondly, it was desirable to extend the series of global radiation by regression with the sunshine duration backward to 1893. Because solar radiation, especially global radiation, is one of the most important quantities for climate research, it is necessary to investigate the homogeneity of these time series. At first the history was studied and as much as possible information about all parameters, which could influence the data, were gathered. In a second step these metadata were reviewed critically followed by a discussion about the potential effects of local factors on the homogeneity of the data. In a first step of data rehabilitation the so-called engineering correction (data levelling to WRR and SI units) were made followed by the supplementation of gaps. Finally, for every month and the year the so generated time series of measured data (1937/2008) and the complete series, prolonged by regression and measurements (1893/2008), were tested on homogeneity with the following distribution-free tests: WILCOXON (U) test, MANN-KENDALL test and progressive analysis were used for the examination of the stability of the mean and the dispersion, while with the Wald-Wolfowitz test the first order autocorrelation was checked. These non-parametric test were used, because frequently radiation data do not fulfil the assumption of a GAUSSian or normal distribution. The investigations showed, that discontinuities

  11. Lorentzian condition in holographic cosmology

    NASA Astrophysics Data System (ADS)

    Hertog, Thomas; Monten, Ruben; Vreys, Yannick

    2017-01-01

    We derive a sufficient set of conditions on the Euclidean boundary theory in dS/CFT for it to predict classical, Lorentzian bulk evolution at large spatial volumes. Our derivation makes use of a canonical transformation to express the bulk wave function at large volume in terms of the sources of the dual partition function. This enables a sharper formulation of dS/CFT. The conditions under which the boundary theory predicts classical bulk evolution are stronger than the criteria usually employed in quantum cosmology. We illustrate this in a homogeneous isotropic minisuperspace model of gravity coupled to a scalar field in which we identify the ensemble of classical histories explicitly.

  12. A Wash-Free Homogeneous Colorimetric Immunoassay Method

    PubMed Central

    Liu, Huiqiao; Rong, Pengfei; Jia, Hongwei; Yang, Jie; Dong, Bo; Dong, Qiong; Yang, Cejun; Hu, Pengzhi; Wang, Wei; Liu, Haitao; Liu, Dingbin

    2016-01-01

    Rapid and convenient biosensing platforms could be beneficial to timely diagnosis and treatment of diseases in virtually any care settings. Sandwich immunoassays, the most commonly used methods for protein detection, often rely on expensive tags such as enzyme and tedious wash and incubation procedures operated by skilled labor. In this report, we revolutionized traditional sandwich immunoassays by providing a wash-free homogeneous colorimetric immunoassay method without requirement of any separation steps. The proposed strategy was realized by controlling the growth of gold nanoparticles (AuNPs) to mediate the interparticle spacing in the protein-AuNP oligomers. We have demonstrated the successful in vitro detection of cancer biomarker in serum samples from patients with high clinical sensitivity and specificity. PMID:26722373

  13. Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating

    PubMed Central

    Mitchell-Thomas, R. C.; Quevedo-Teruel, O.; Sambles, J. R.; Hibbins, A. P.

    2016-01-01

    The field of transformation optics owes a lot of its fame to the concept of cloaking. While some experimental progress has been made towards free-space cloaking in three dimensions, the material properties required are inherently extremely difficult to achieve. The approximations that then have to be made to allow fabrication produce unsatisfactory device performance. In contrast, when surface wave systems are the focus, it has been shown that a route distinct from those used to design free-space cloaks can be taken. This results in very simple solutions that take advantage of the ability to incorporate surface curvature. Here, we provide a demonstration in the microwave regime of cloaking a bump in a surface. The distortion of the shape of the surface wave fronts due to the curvature is corrected with a suitable refractive index profile. The surface wave cloak is fabricated from a metallic backed homogeneous dielectric waveguide of varying thickness, and exhibits omnidirectional operation. PMID:27492929

  14. Origin of magnetocapacitance in chemically homogeneous and inhomogeneous ferrites.

    PubMed

    Mondal, R A; Murty, B S; Murthy, V R K

    2015-01-28

    The present work mainly focuses on the magnetodielectric (MD) effect in polycrystalline Ni0.9-yCuyZn0.1Fe1.98O3.97 (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrite synthesized by a solid-state reaction method. Sintered samples showed the formation of CuO-rich grain boundary segregation for y≥ 0.2. The appearance of segregation made the present material chemically inhomogeneous and electrically heterogeneous. A negative MD response was observed in homogeneous ferrite for y = 0 and 0.1 due to lattice distortion (an intrinsic effect), whereas a positive MD response occurs in chemically inhomogeneous segregated ferrite (y≥ 0.2) due the collective effects of Maxwell-Wagner (MW) polarization with intrinsic magnetoresistance (an extrinsic effect).

  15. Optical propagation through a homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Truman, C. Randall; Lee, Moon J.

    1988-01-01

    Effects of organized turbulent structures on the propagation of an optical beam in a homogeneous shear flow were studied. A passive-scalar field in a computed turbulent shear flow is used to represent index-of-refraction fluctuations, and phase errors induced in a coherent optical beam by turbulent fluctuations are computed. The organized vortical structures produce a scalar distribution with elongated regions of intense fluctuations which have an inclination with respect to the mean flow similar to that of the characteristic hairpin eddies. It is found that r.m.s. phase error is minimized by propagating approximately normal to the inclined vortical structures. Two-point correlations of vorticity and scalar fluctuation suggest that the regions of intense scalar fluctuation are produced primarily by the hairpin eddies.

  16. A spiral vortex model of homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Higgins, Keith; Ooi, Andrew; Chong, Min

    2002-11-01

    The Lundgren-Townsend model of turbulent fine scales has been successful in predicting some of the properties of homogeneous isotropic turbulence. Lundgren obtained these results by averaging over an ensemble of nearly axisymmetric, unsteady, stretched spiral vortices. These vortical structures are represented in the model by a large-time asymptotic solution of the Navier-Stokes equations. Extending on the work of Pullin & Saffman [Phys. Fluids 8, 3072 (1996)], we calculate the energy spectrum and longitudinal velocity structure functions for a specific realisation of the Lundgren-Townsend model. Here the members of our ensemble are time-evolving spiral vortex structures resulting from the merging of stretched Burgers vortex tubes. The merging is computed numerically following the method of Buntine & Pullin [JFM 205, 263 (1989)]. We present results for a range of vortex Reynolds numbers.

  17. Investigation of subgrid models in homogeneous incompressible turbulence

    NASA Astrophysics Data System (ADS)

    Teissedre, C.

    1987-08-01

    A data base of simulated homogeneous, incompressible turbulence in an anisotropic regime was derived using a direct simulation code on a parallel processing computer. The simulated distributions were used to validate subgrid models of the turbulent viscosity and similitude type (analogy between the near field of the cut-off and the subgrid field). The first type of model accounts for the evolution of turbulent kinetic energy well, while the second type, although it better represents the exact value of stress in the subgrid, seems to present a defect of nondissipation. Tests of a model of perturbation of nonlinear terms were performed in an isotropic situation with large structures. The results show the same kind of nondissipative behavior as for the similitude model.

  18. Generalized quantum gravity condensates for homogeneous geometries and cosmology

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Pranzetti, Daniele; Ryan, James P.; Sindoni, Lorenzo

    2015-12-01

    We construct a generalized class of quantum gravity condensate states that allows the description of continuum homogeneous quantum geometries within the full theory. They are based on similar ideas already applied to extract effective cosmological dynamics from the group field theory formalism, and thus also from loop quantum gravity. However, they represent an improvement over the simplest condensates used in the literature, in that they are defined by an infinite superposition of graph-based states encoding in a precise way the topology of the spatial manifold. The construction is based on the definition of refinement operators on spin network states, written in a second quantized language. The construction also lends itself easily to application to the case of spherically symmetric quantum geometries.

  19. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    NASA Astrophysics Data System (ADS)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  20. Quasi-monochromatic measurements of homogeneous arc plasmas.

    NASA Technical Reports Server (NTRS)

    Klein, L.

    1973-01-01

    The refined diagnostic information obtainable by high-order spectrometry is illustrated by the results of quantitative measurements of a few rotational lines of OH in the ultraviolet spectrum of water-vapor plasmas generated in a wall-stabilized arc. Because of the high spectral and spatial resolution achieved in end-on measurements, the emission and also the absorption coefficients pertaining to homogeneous arc regions were obtained directly from measured line spectra - although the absorption was not measured explicitly - leading to the occupation of the upper and the lower state for the transition. The gas temperature was determined from the halfwidth of the Doppler-broadened rotational lines. The measured resolving power of the spectrometer was of the order of 400,000 in these measurements.