Science.gov

Sample records for homogeneous crystal nucleation

  1. Cirrus crystal nucleation by homogeneous freezing of solution droplets

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Sabin, Robert M.

    1989-01-01

    A numerical model consisting of a system of differential equations is used to study cirrus crystal nucleation in a rising parcel containing a distribution of cloud condensation nuclei. The evolution of the particle population and the thermodynamic variables in the parcel are examined. The results suggest that, if homogeneous freezing is not considered, liquid water should be detected below -40 C. If homogeneous freezing is considered, the rapid growth of ice crystals and vapor depletion prevent water saturation from being reached. It is shown that the likelihood of a droplet being frozen is increased by lower temperatures, larger droplet diameter, or lower solution density.

  2. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    SciTech Connect

    E, J. C.; Wang, L.; Luo, S. N.; Cai, Y.; Wu, H. A.

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{sup −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.

  3. Heterogeneous nucleation or homogeneous nucleation?

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.

    2000-06-01

    The generic heterogeneous effect of foreign particles on three dimensional nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m,x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m,x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m,x)→1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some organic and inorganic crystals. The results are in excellent agreement with the theory.

  4. Effect of the surface-stimulated mode on the kinetics of homogeneous crystal nucleation in droplets.

    PubMed

    Djikaev, Y S

    2008-07-24

    The thermodynamics of surface-stimulated crystal nucleation demonstrates that if at least one of the facets of the crystal is only partially wettable by its melt, then it is thermodynamically more favorable for the nucleus to form with that facet at the droplet surface rather than within the droplet. So far, however, the kinetic aspects of this phenomenon had not been studied at all. In the present paper, a kinetic theory of homogenous crystal nucleation in unary droplets is proposed by taking into account that a crystal nucleus can form not only in the volume-based mode (with all its facets within the droplet) but also in the surface-stimulated one (with one of its facets at the droplet surface). The theory advocates that even in the surface-stimulated mode crystal nuclei initially emerge (as subcritical clusters) homogeneously in the subsurface layer, not "pseudo-heterogeneously" at the surface. A homogeneously emerged subcritical crystal can become a surface-stimulated nucleus due to density and structure fluctuations. This effect contributes to the total rate of crystal nucleation (as the volume-based mode does). An explicit expression for the total per-particle rate of crystal nucleation is derived. Numerical evaluations for water droplets suggest that the surface-stimulated mode can significantly enhance the per-particle rate of crystal nucleation in droplets as large as 10 microm in radius. Possible experimental verification of the proposed theory is discussed.

  5. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.

  6. Imaging the Homogeneous Nucleation During the Melting of Superheated Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Ziren; Wang, Feng; Peng, Yi; Zheng, Zhongyu; Han, Yilong

    2012-10-01

    The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities.

  7. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt.

    PubMed

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim(+)][Cl(-)] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10(10) cm(-3) s(-1) was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores. PMID:26429023

  8. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt.

    PubMed

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim(+)][Cl(-)] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10(10) cm(-3) s(-1) was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  9. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt

    SciTech Connect

    He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim{sup +}][Cl{sup −}] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589–2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10{sup 10} cm{sup −3} s{sup −1} was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  10. Homogeneous nucleation of nitrogen

    NASA Astrophysics Data System (ADS)

    Iland, Kristina; Wedekind, Jan; Wölk, Judith; Strey, Reinhard

    2009-03-01

    We investigated the homogeneous nucleation of nitrogen in a cryogenic expansion chamber [A. Fladerer and R. Strey, J. Chem. Phys. 124, 164710 (2006)]. Gas mixtures of nitrogen and helium as carrier gas were adiabatically expanded and cooled down from an initial temperature of 83 K until nucleation occurred. This onset was detected by constant angle light scattering at nitrogen vapor pressures of 1.3-14.2 kPa and temperatures of 42-54 K. An analytical fit function well describes the experimental onset pressures with an error of ±15%. We estimate the size of the critical nucleus with the Gibbs-Thomson equation yielding critical sizes of about 50 molecules at the lowest and 70 molecules at the highest temperature. In addition, we estimate the nucleation rate and compare it with nucleation theories. The predictions of classical nucleation theory (CNT) are 9 to 19 orders of magnitude below the experimental results and show a stronger temperature dependence. The Reguera-Reiss theory [Phys. Rev. Lett. 93, 165701 (2004)] predicts the correct temperature dependence at low temperatures and decreases the absolute deviation to 7-13 orders of magnitude. We present an empirical correction function to CNT describing our experimental results. These correction parameters are remarkably close to the ones of argon [Iland et al., J. Chem. Phys. 127, 154506 (2007)] and even those of water [J. Wölk and R. Strey, J. Phys. Chem. B 105, 11683 (2001)].

  11. Thermodynamics and kinetics of homogeneous crystal nucleation studied by computer simulation

    NASA Astrophysics Data System (ADS)

    Huitema, H. E. A.; van der Eerden, J. P.; Janssen, J. J. M.; Human, H.

    2000-12-01

    Crystal nucleation is numerically simulated in the Lennard-Jones model. By isobaric cooling and isothermal compression of a liquid, we succeeded in fully crystallizing a large number of systems containing up to 10 000 atoms. We assessed thermodynamic data (density, enthalpy, and chemical potential) of the crystalline as well as the (metastable) liquid phase for considerably larger ranges of pressure and temperature than published so far. Using these data, we were able to confront our simulation results with classical nucleation theories without the need to recognize a critical cluster during the simulations. One of the findings is that in our experiments the steady-state nucleation regime was almost never reached. Careful analysis resulted in an estimate of the time-dependent effects in the nucleation rate, during which the nucleation rate grows from zero to its steady-state value. This way we were able to determine the values of the steady-state nucleation rate, which are consistent with independent estimates for both the preexponential factor and the nucleation barrier. In most previous experimental and simulation studies by other research groups, preexponential factors have been found that are orders of magnitude too large or too small. Our investigations show that an important factor in this discrepancy could be due to an underestimation of time-dependent nucleation effects.

  12. Method for calculating the sizes of nucleation centers upon homogeneous crystallization from a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. D.; Pokyntelytsia, O. A.

    2016-09-01

    An alternative approach to calculating critical sizes l k of nucleation centers and work A k of their formation upon crystallization from a supercooled melt by analyzing the variation in the Gibbs energy during the phase transformation is considered. Unlike the classical variant, it is proposed that the transformation entropy be associated not with melting temperature T L but with temperature T < T L at which the nucleation of crystals occurs. New equations for l k and A k are derived. Based on the results from calculating these quantities for a series of compounds, it is shown that this approach is unbiased and it is possible to eliminate known conflicts in analyzing these parameters in the classical interpretation.

  13. Homogenous Nucleation and Crystal Growth in a Model Liquid from Direct Energy Landscape Sampling Simulation

    NASA Astrophysics Data System (ADS)

    Walter, Nathan; Zhang, Yang

    Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex

  14. Characterizing protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Akella, Sathish V.

    We developed an experimental microfluidic based technique to measure the nucleation rates and successfully applied the technique to measure nucleation rates of lysozyme crystals. The technique involves counting the number of samples which do not have crystals as a function of time. Under the assumption that nucleation is a Poisson process, the fraction of samples with no crystals decays exponentially with the decay constant proportional to nucleation rate and volume of the sample. Since nucleation is a random and rare event, one needs to perform measurements on large number of samples to obtain good statistics. Microfluidics offers the solution of producing large number of samples at minimal material consumption. Hence, we developed a microfluidic method and measured nucleation rates of lysozyme crystals in supersaturated protein drops, each with volume of ˜ 1 nL. Classical Nucleation Theory (CNT) describes the kinetics of nucleation and predicts the functional form of nucleation rate in terms of the thermodynamic quantities involved, such as supersaturation, temperature, etc. We analyzed the measured nucleation rates in the context of CNT and obtained the activation energy and the kinetic pre-factor characterizing the nucleation process. One conclusion is that heterogeneous nucleation dominates crystallization. We report preliminary studies on selective enhancement of nucleation in one of the crystal polymorprhs of lysozyme (spherulite) using amorphous mesoporous bioactive gel-glass te{naomi06, naomi08}, CaO.P 2O5.SiO2 (known as bio-glass) with 2-10 nm pore-size diameter distribution. The pores act as heterogeneous nucleation centers and claimed to enhance the nucleation rates by molecular confinement. The measured kinetic profiles of crystal fraction of spherulites indicate that the crystallization of spherulites may be proceeding via secondary nucleation pathways.

  15. Interplay between the Relaxation of the Glass of Random l/d-Lactide Copolymers and Homogeneous Crystal Nucleation: Evidence for Segregation of Chain Defects.

    PubMed

    Androsch, René; Schick, Christoph

    2016-05-19

    Random l-isomer rich copolymers of poly(lactic acid) containing up to 4% d-isomer co-units have been cooled from the molten state to obtain glasses free of crystals and homogeneous crystal nuclei. The kinetics of enthalpy relaxation and the formation of homogeneous crystal nuclei have then been analyzed using fast scanning chip calorimetry. It has been found that the relaxation of the glass toward the structure/enthalpy of the supercooled liquid state is independent of the presence of d-isomer co-units in the chain. Formation of homogeneous crystal nuclei in the glassy state requires the completion of the relaxation of the glass. However, nucleation is increasingly delayed in the random copolymers with increasing d-isomer chain defect concentration. The data show that the slower formation of homogeneous crystal nuclei in random l/d-lactide copolymers, compared to the homopolymer, is not caused by different chain-segment mobility in the glassy state but by the segregation of chain defects in this early stage of the crystallization process. PMID:27111149

  16. Homogeneous freezing nucleation of stratospheric solution droplets

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Hamill, Patrick

    1991-01-01

    The classical theory of homogeneous nucleation was used to calculate the freezing rate of sulfuric acid solution aerosols under stratospheric conditions. The freezing of stratospheric aerosols would be important for the nucleation of nitric acid trihydrate particles in the Arctic and Antarctic stratospheres. In addition, the rate of heterogeneous chemical reactions on stratospheric aerosols may be very sensitive to their state. The calculations indicate that homogeneous freezing nucleation of pure water ice in the stratospheric solution droplets would occur at temperatures below about 192 K. However, the physical properties of H2SO4 solution at such low temperatures are not well known, and it is possible that sulfuric acid aerosols will freeze out at temperatures ranging from about 180 to 195 K. It is also shown that the temperature at which the aerosols freeze is nearly independent of their size.

  17. Binary homogeneous nucleation of octane isomers

    NASA Astrophysics Data System (ADS)

    Doster, George Jay

    The measurement of the binary homogeneous nucleation of i-octane and n-octane (2,2,4-trimethylpentane) has been performed with a Wilson cloud chamber. This system of octane isomers has been chosen because it exhibits the desirable properties of a nearly ideal system. The octanes are non-polar, do not hydrogen bond, and have a low heat of mixing. The results from this experiment are presented and compared to the binary classical nucleation theory, the diffuse interface theory, and the binary scaled nucleation theory. The data from this experiment includes 3 mixtures of the octane isomers in mole fraction ratios of 1:1, 1:3, and 3:1 along with results from the pure octanes. Nucleation rates from approximately 100 to 50,000 cm3s and nucleation temperatures of 215 K to 260 K are included. This wide range of data is an effort to create a collection of data to which modified or new nucleation theories may be compared.

  18. Effect of gravity wave temperature variations on homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Podglajen, Aurélien; Hertzog, Albert; Legras, Bernard; Plougonven, Riwal

    2015-04-01

    Observations of cirrus clouds in the tropical tropopause layer (TTL) have shown various ice number concentrations (INC) (e.g., Jensen et al. 2013), which has lead to a puzzle regarding their formation. In particular, the frequently observed low numbers of ice crystals seemed hard to reconcile with homogeneous nucleation knowing the ubuquity of gravity waves with vertical velocity of the order of 0.1 m/s. Using artificial time series, Spichtinger and Krämer (2013) have illustrated that the variation of vertical velocity during a nucleation event could terminate it and limit the INC. However, their study was limited to constructed temperature time series. Here, we carry out numerical simulations of homogeneous ice nucleation forced by temperature time series data collected by isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency (30 s), so gravity wave signals are well resolved in the temperature time series. With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentrations (INC) as previously observed in the tropical upper troposphere. The simulations confirm that the dynamical time scale of temperature variations (as seen from observations) can be shorter than the nucleation time scale. They show the existence of two regimes for homogeneous ice nucleation : one limited by the depletion of water vapor by the nucleated ice crystals (those we name vapor events) and one limited by the reincrease of temperature after its initial decrease (temperature events). Low INC may thus be obtained for temperature events when the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result for temperature events is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This

  19. Nucleation of Crystals in Solution

    NASA Astrophysics Data System (ADS)

    Vekilov, Peter G.

    2010-07-01

    Solution crystallization is an essential part of processes in the chemical and pharmaceutical industries and a major step in physiological and pathological phenomena. Crystallization starts with nucleation and control of nucleation is crucial for the control of the number, size, perfection, polymorphism and other characteristics of the crystalline materials. Recently, there have been significant advances in the understanding of the mechanism of nucleation of crystals in solution. The most significant of these is the two-step mechanism of nucleation, according to which the crystalline nucleus appears inside pre-existing metastable clusters of size several hundred nanometers, which consist of dense liquid and are suspended in the solution. While initially proposed for protein crystals, the applicability of this mechanism has been demonstrated for small molecule organic materials, colloids, and biominerals. This mechanism helps to explain several long-standing puzzles of crystal nucleation in solution: nucleation rates which are many orders of magnitude lower than theoretical predictions, nucleation kinetic dependencies with steady or receding parts at increasing supersaturation, the role of heterogeneous substrates for polymorph selection, the significance of the dense protein liquid, and others. More importantly, this mechanism provides powerful tools for control of the nucleation process by varying the solution thermodynamic parameters so that the volume occupied by the dense liquid shrinks or expands.

  20. Metadynamics studies of crystal nucleation

    PubMed Central

    Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662

  1. Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.

    2016-06-01

    Ice nucleation is a critical process for the ice crystal formation in cirrus clouds. The relative contribution of homogeneous nucleation versus heterogeneous nucleation to cirrus formation differs between measurements and predictions from general circulation models. Here we perform large-ensemble simulations of the ice nucleation process using a cloud parcel model driven by observed vertical motions and find that homogeneous nucleation occurs rather infrequently, in agreement with recent measurement findings. When the effect of observed vertical velocity fluctuations on ice nucleation is considered in the Community Atmosphere Model version 5, the relative contribution of homogeneous nucleation to cirrus cloud occurrences decreases to only a few percent. However, homogeneous nucleation still has strong impacts on the cloud radiative forcing. Hence, the importance of homogeneous nucleation for cirrus cloud formation should not be dismissed on the global scale.

  2. Crystallization of Nucleator Nanofibrils in Polypropylene Melt

    NASA Astrophysics Data System (ADS)

    Lipp, J.; Cohen, Y.; Khalfin, R. L.; Shuster, M.; Terry, A. E.

    2007-03-01

    Self-associating molecules act as nucleating agents in polypropylene (PP) in order to increase the crystallization rate and decrease the crystallite size, by forming a fine network of nanofibrils within the polymer melt. The thermodynamic and kinetic basis for formation of this structure is not clear. Current models usually invoke a spinodal decomposition mechanism, as temperature is lowered into an immiscibility gap. This presentation deals with 1,3:2,4-Di(3,4-dimethylbenzylidene)sorbitol [dMdBS] in PP. The kinetics of structure formation was evaluated using small angle x-ray scattering, including synchrotron measurements. The results indicate a crystallization process by means of a nucleation and growth mechanism, which is controlled by the rate of homogeneous nucleation. The thermodynamic temperature of this process, determined for two different dMdBS concentrations from the temperature dependence of the crystallization half-time, agrees with that obtained by group-contribution calculation of the solubility parameters. dMdBS nanofibril formation has a remarkable effect on PP crystallization in melt-spun fibers. Just 0.4% additive at a moderate spin-draw ratio yields a crystalline morphology comprised of parallel chain-folded lamellae, with the lamellar normal highly aligned along the fiber axis.

  3. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    PubMed

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate. PMID:27410458

  4. Nanoindentation. Simulation of defect nucleation in a crystal.

    PubMed

    Gouldstone, A; Van Vliet, K J; Suresh, S

    2001-06-01

    Nanoindentation is the penetration of a surface to nanometre depths using an indenting device. It can be simulated using the Bragg bubble-raft model, in which a close-packed array of soap bubbles corresponds to the equilibrium positions of atoms in a crystalline solid. Here we show that homogeneous defect nucleation occurs within a crystal when its surface roughness is comparable to the radius of the indenter tip, and that the depth of the nucleation site below the surface is proportional to the half-width of the contact. Our results may explain the unusually high local stress required for defect nucleation in nano-indented face-centred cubic crystals.

  5. Sigmoid kinetics of protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Nanev, Christo N.; Tonchev, Vesselin D.

    2015-10-01

    A non-linear differential equation expressing the new phase nucleation rate in the different steps of the process (non-stationary and stationary nucleation and in the plateau region) is derived from basic principles of the nucleation theory. It is shown that one and the same sigmoid (logistic) function describes both nucleation scenarios: the one according to the classical theory, and the other according to the modern two-stage mechanism of protein crystal formation. Comparison to experimental data on both insulin crystal nucleation kinetics and on bovine β-lactoglobulin crystallization indicates a good agreement with the sigmoidal prediction. Experimental data for electrochemical nucleation and glass crystallization obey the same sigmoid time dependence, and suggest universality of this nucleation kinetics law.

  6. Homogeneous nucleation rate measurements in supersaturated water vapor.

    PubMed

    Brus, David; Zdímal, Vladimír; Smolík, Jirí

    2008-11-01

    The rate of homogeneous nucleation in supersaturated vapors of water was studied experimentally using a thermal diffusion cloud chamber. Helium was used as a carrier gas. Our study covers a range of nucleation rates from 3x10(-1) to 3x10(2) cm(-3) s(-1) at four isotherms: 290, 300, 310, and 320 K. The molecular content of critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of nucleation rate of water on saturation ratio were compared with the prediction of the classical theory of homogeneous nucleation, the empirical prediction of Wolk et al. [J. Chem. Phys. 117, 10 (2002)], the scaled model of Hale [Phys. Rev. A 33, 4156 (1986)], and the former nucleation onset data. PMID:19045352

  7. Interpretation of DTA experiments used for crystal nucleation rate determinations

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1991-01-01

    An analysis is presented of two schemes which have been proposed for the determination of the temperature dependence of homogeneous crystal nucleation rates in glasses via DTA measurements. The first method is based upon the postulate that the inverse of the temperature at which the DTA crystallization rate is maximum, will increase monotonically as the number density of nucleated particles increases. The secone method is based on the observation that the intensity at T(p) (peak height) increases as T(p) grows. The validity of both of these methods is assessed for inorganic glasses for two specific crystal growth models.

  8. The dependence of homogeneous nucleation rate on supersaturation.

    PubMed

    Girshick, Steven L

    2014-07-14

    The claim that classical nucleation theory (CNT) correctly predicts the dependence on supersaturation of the steady-state rate of homogeneous nucleation is reexamined in light of recent experimental studies of nucleation of a range of substances, including water, argon, nitrogen, and several 1-alcohols. Based on these studies (which include, for water, a compilation of nine different studies), it is concluded that the dependence of nucleation rate on supersaturation is not correctly predicted by CNT. It is shown that CNT's incorrect prediction of the supersaturation dependence of nucleation rate is due to its incorrect prediction of the Gibbs free energy change associated with formation of small clusters from the monomer vapor, evaluated at the substance's equilibrium vapor pressure, even though that free energy change is itself a function only of temperature. PMID:25028019

  9. Measuring induction times and crystal nucleation rates.

    PubMed

    Brandel, Clément; ter Horst, Joop H

    2015-01-01

    A large variation is observed in induction times measured under equal conditions in 1 ml solutions. Ruling out experimental errors, this variation originates from the nucleation process. The induction time distribution is explained by the stochastic nature of nucleation if the number of nuclei formed is approaching 1 per vial. Accurate heterogeneous crystal nucleation rates were determined from the induction time distributions on a 1 ml scale for racemic diprophylline in two solvents. The difference in nucleation behaviour in the two solvents originates from the energy barrier for nucleation, which is much higher in the solvent in which induction times are much longer. In addition the pre-exponential factor for the crystal nucleation rate in both solvents is rather low compared to predictions using Classical Nucleation Theory. Unfortunately, concentration and surface characteristics of the effective heterogeneous particles are not known which clouds a further molecular interpretation.

  10. Homogeneous nucleation of non-metals and metals

    NASA Astrophysics Data System (ADS)

    Rudek, Markus Martin

    1998-11-01

    Homogeneous nucleation rates as functions of both supersaturation and temperature were measured in an upward thermal diffusion cloud chamber for four n- alkanes, i.e., n-heptane, n-octane, n-nonane, and n- decane, for two n-alcohols, i.e., n-pentanol and n- hexanol, and for m-xylene. Nucleation rates from about 10-4 to 5×100 drops cm-3 s- 1 were obtained in the temperature range, 241 K to 340 K. Their dependences on supersaturation and temperature were compared to predictions of several nucleation theories: Classical Theory, the Internally Consistent Classical Theory, two versions of the Kalikmanov-van Dongen Theory, and the Delale-Meier Theory. Each theory predicted the dependence of the nucleation rate on supersaturation reasonably well, but large temperature dependent correlation factors were needed for quantitative agreement between measured and predicted nucleation rates. However, all substances had a very similar temperature dependence to their multiplicative correction factor. The homogeneous nucleation of supersaturated cesium vapor was investigated in a thermal diffusion cloud chamber operating in both the upward and the downward mode. In the upward operating mode, critical supersaturations were measured in the temperature range, 421K to 554K. In the downward operating mode, it was possible to circumvent experimental difficulties due to phoretic effects which arise at low pressures in measurements in the upward mode. This enabled measurements of critical supersaturations over the temperature range, 289K to 452K. The use of the downward mode enabled the extension of the temperature range of the measurements by 70K towards lower temperatures. This makes cesium the substance whose homogeneous nucleation has been measured, in a thermal diffusion cloud chamber, over the largest range of temperatures, 289K to 554K. These measured critical supersaturations were compared to the predictions of the Internally Consistent version of Classical nucleation Theory and to

  11. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.

    PubMed

    Diemand, Jürg; Angélil, Raymond; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-11-01

    We present results from direct, large-scale molecular dynamics simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones atoms and cover up to 56 million time steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions; only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucleation simulations. The critical bubbles sizes derived with the nucleation theorem agree well with the CNT predictions at all temperatures. Local hot spots reported in the literature are not seen: Regions where a bubble nucleation event will occur are not above the average temperature, and no correlation of temperature fluctuations with subsequent bubble formation is seen.

  12. Comparison of parameterizations for homogeneous and heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Koop, T.; Zobrist, B.

    2009-04-01

    The formation of ice particles from liquid aqueous aerosols is of central importance for the physics and chemistry of high altitude clouds. In this paper, we present new laboratory data on ice nucleation and compare them with two different parameterizations for homogeneous as well as heterogeneous ice nucleation. In particular, we discuss and evaluate the effect of solutes and ice nuclei. One parameterization is the λ-approach which correlates the depression of the freezing temperature of aqueous droplets in comparison to pure water droplets, Tf, with the corresponding depression, Tm, of the equilibrium ice melting point: Tf = λ × Tm. Here, λ is independent of concentration and a constant that is specific for a particular solute or solute/ice nucleus combination. The other approach is water-activity-based ice nucleation theory which describes the effects of solutes on the freezing temperature Tf via their effect on water activity: aw(Tf) = awi(Tf) + aw. Here, awi is the water activity of ice and aw is a constant that depends on the ice nucleus but is independent of the type of solute. We present new data on both homogeneous and heterogeneous ice nucleation with varying types of solutes and ice nuclei. We evaluate and discuss the advantages and limitations of the two approaches for the prediction of ice nucleation in laboratory experiments and atmospheric cloud models.

  13. On the homogenous nucleation and propagation of dislocations under shock compression

    NASA Astrophysics Data System (ADS)

    Zbib, Hussein

    2013-06-01

    In strong shock regimes, homogenous nucleation of dislocation loops is believed to be the dominant mechanism of plastic deformation. We compare threshold stress for homogenous nucleation calculated by continuum elasticity and standards nucleation theory with multiscale dislocation dynamics plasticity (MDDP) predictions for copper single crystals. Several MDDP homogenous nucleation simulations are then carried out to investigate the state of stress and strain behind the wave front. The results show that the stress filed exhibits an elastic overshoot followed by rapid relaxation such that the1D state of strain is transformed into a 3D state of strain due to plastic flow. Based on MDDP results, we develop models for dislocation density evolution, saturated dislocation density, and stress relaxation time at different pressures. Moreover, an extension of high strain rate Orowan equation that accounts for homogenous nucleation is derived. The dependence of strain rate on the peak pressure shows good agreement with Swegle-Grady scaling law. and Mutasem A. Shehadeh, American University of Beirut.

  14. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  15. Homogeneous nucleation rate measurements in supersaturated water vapor II.

    PubMed

    Brus, David; Zdímal, Vladimír; Uchtmann, Hermann

    2009-08-21

    The homogeneous nucleation of water was studied experimentally in this work using a thermal diffusion cloud chamber; droplets were counted by the photomultiplier method and helium was used as a carrier gas. The nucleation rates range from 3x10(-2) to 3x10(1) cm(-3) s(-1) and six isotherms from 295 to 320 K with step of 5 K are measured. The experimental setup and obtained data are mutually compared to our previous publication [Brus et al., J. Chem. Phys. 129, 174501 (2008)], where the droplets were counted using digital photography and image processing. The molecular content of the critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of the nucleation rate of water on the saturation ratio were compared with previously published data of others, several theoretical predictions, and the former nucleation onset data. The aim of the present investigation was to show for the first time that nucleation results can be quantitatively reproduced with two different experimental setups operated in different ways. PMID:19708751

  16. Challenges in molecular simulation of homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Brukhno, Andrey V.; Anwar, Jamshed; Davidchack, Ruslan; Handel, Richard

    2008-12-01

    We address the problem of recognition and growth of ice nuclei in simulation of supercooled bulk water. Bond orientation order parameters based on the spherical harmonics analysis are shown to be ineffective when applied to ice nucleation. Here we present an alternative method which robustly differentiates between hexagonal and cubic ice forms. The method is based on accumulation of the maximum projection of bond orientations onto a set of predetermined vectors, where different terms can contribute with opposite signs with the result that the irrelevant or incompatible molecular arrangements are damped out. We also introduce an effective cluster size by assigning a quality weight to each molecule in an ice-like cluster. We employ our cluster analysis in Monte Carlo simulation of homogeneous ice formation. Replica-exchange umbrella sampling is used for biasing the growth of the largest cluster and calculating the associated free energy barrier. Our results suggest that the ice formation can be seen as a two-stage process. Initially, short tetrahedrally arranged threads and rings are present; these become correlated and form a diffuse ice-genic network. Later, hydrogen bond arrangements within the amorphous ice-like structure gradually settle down and simultaneously 'tune-up' nearby water molecules. As a result, a well-shaped ice core emerges and spreads throughout the system. The process is very slow and diverse owing to the rough energetic landscape and sluggish molecular motion in supercooled water, while large configurational fluctuations are needed for crystallization to occur. In the small systems studied so far the highly cooperative molecular rearrangements eventually lead to a relatively fast percolation of the forming ice structure through the periodic boundaries, which inevitably affects the simulation results.

  17. Nanoindentation. Simulation of defect nucleation in a crystal.

    PubMed

    Gouldstone, A; Van Vliet, K J; Suresh, S

    2001-06-01

    Nanoindentation is the penetration of a surface to nanometre depths using an indenting device. It can be simulated using the Bragg bubble-raft model, in which a close-packed array of soap bubbles corresponds to the equilibrium positions of atoms in a crystalline solid. Here we show that homogeneous defect nucleation occurs within a crystal when its surface roughness is comparable to the radius of the indenter tip, and that the depth of the nucleation site below the surface is proportional to the half-width of the contact. Our results may explain the unusually high local stress required for defect nucleation in nano-indented face-centred cubic crystals. PMID:11395759

  18. A compact setup to study homogeneous nucleation and condensation

    NASA Astrophysics Data System (ADS)

    Karlsson, Mattias; Alxneit, Ivo; Rütten, Frederik; Wuillemin, Daniel; Tschudi, Hans Rudolf

    2007-03-01

    An experiment is presented to study homogeneous nucleation and the subsequent droplet growth at high temperatures and high pressures in a compact setup that does not use moving parts. Nucleation and condensation are induced in an adiabatic, stationary expansion of the vapor and an inert carrier gas through a Laval nozzle. The adiabatic expansion is driven against atmospheric pressure by pressurized inert gas its mass flow carefully controlled. This allows us to avoid large pumps or vacuum storage tanks. Because we eventually want to study the homogeneous nucleation and condensation of zinc, the use of carefully chosen materials is required that can withstand pressures of up to 106 Pa resulting from mass flow rates of up to 600 lN min-1 and temperatures up to 1200 K in the presence of highly corrosive zinc vapor. To observe the formation of droplets a laser beam propagates along the axis of the nozzle and the light scattered by the droplets is detected perpendicularly to the nozzle axis. An ICCD camera allows to record the scattered light through fused silica windows in the diverging part of the nozzle spatially resolved and to detect nucleation and condensation coherently in a single exposure. For the data analysis, a model is needed to describe the isentropic core part of the flow along the nozzle axis. The model must incorporate the laws of fluid dynamics, the nucleation and condensation process, and has to predict the size distribution of the particles created (PSD) at every position along the nozzle axis. Assuming Rayleigh scattering, the intensity of the scattered light can then be calculated from the second moment of the PSD.

  19. A compact setup to study homogeneous nucleation and condensation.

    PubMed

    Karlsson, Mattias; Alxneit, Ivo; Rütten, Frederik; Wuillemin, Daniel; Tschudi, Hans Rudolf

    2007-03-01

    An experiment is presented to study homogeneous nucleation and the subsequent droplet growth at high temperatures and high pressures in a compact setup that does not use moving parts. Nucleation and condensation are induced in an adiabatic, stationary expansion of the vapor and an inert carrier gas through a Laval nozzle. The adiabatic expansion is driven against atmospheric pressure by pressurized inert gas its mass flow carefully controlled. This allows us to avoid large pumps or vacuum storage tanks. Because we eventually want to study the homogeneous nucleation and condensation of zinc, the use of carefully chosen materials is required that can withstand pressures of up to 10(6) Pa resulting from mass flow rates of up to 600 l(N) min(-1) and temperatures up to 1200 K in the presence of highly corrosive zinc vapor. To observe the formation of droplets a laser beam propagates along the axis of the nozzle and the light scattered by the droplets is detected perpendicularly to the nozzle axis. An ICCD camera allows to record the scattered light through fused silica windows in the diverging part of the nozzle spatially resolved and to detect nucleation and condensation coherently in a single exposure. For the data analysis, a model is needed to describe the isentropic core part of the flow along the nozzle axis. The model must incorporate the laws of fluid dynamics, the nucleation and condensation process, and has to predict the size distribution of the particles created (PSD) at every position along the nozzle axis. Assuming Rayleigh scattering, the intensity of the scattered light can then be calculated from the second moment of the PSD.

  20. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  1. Cluster Mechanism of Homogeneous Crystallization (Computer Study)

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2008-12-01

    A molecular dynamics (MD) study of homogeneous crystallization of liquid rubidium is conducted with an inter-particle pair potential. The equilibrium crystallization temperature of the models was 313 K. Models consisted of 500, 998, and 1968 particles in a basic cube. The main investigation method was as follows: to detect (along the MD run) the atoms with Voronoi polyhedrons (VP) of 0608 type (“0608-atoms,” as in a bcc crystal) and to detect the bound groups of 0608-atoms (“0608-clusters”) that could play the role of the seeds in crystallization. Full crystallization was observed only at temperatures lower than 185 K with the creation of a predominant bcc crystal. The crystallization mechanism of Rb models differs drastically from the mechanism adopted in classical nucleation theory. It consists of the growth of the total number of 0608-atoms on cooling and the formation of 0608-clusters, analogous to the case of coagulation of solute for a supersaturated two-component solution. At the first stage of the process the clusters have a very loose structure (something like medusa or octopus with many tentacles) and include inside atoms with other Voronoi polyhedron types. The dimensions of clusters quickly increase and approach those of the basic cube. 0608-atoms play the leading role in the crystallization process and activate the transition of the atoms involved in the 0608-coordination. The fast growth of the maximum cluster begins after it attains a critical size (about 150 0608-atoms). The fluctuations of cluster sizes are very important in the creation of a 0608-cluster of critical (threshold) size. These fluctuations are especially large in the interval from 180 K to 185 K.

  2. Homogeneous ice nucleation at moderate supercooling from molecular simulation.

    PubMed

    Sanz, E; Vega, C; Espinosa, J R; Caballero-Bernal, R; Abascal, J L F; Valeriani, C

    2013-10-01

    Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation rate for temperatures ranging between 15 and 35 K below melting. We use the TIP4P/2005 and the TIP4P/ice water models. Both give similar results when compared at the same temperature difference with the model's melting temperature. The size of the critical cluster varies from ∼8000 molecules (radius = 4 nm) at 15 K below melting to ∼600 molecules (radius = 1.7 nm) at 35 K below melting. We use Classical Nucleation Theory (CNT) to estimate the ice-water interfacial free energy and the nucleation free-energy barrier. We obtain an interfacial free energy of 29(3) mN/m from an extrapolation of our results to the melting temperature. This value is in good agreement both with experimental measurements and with previous estimates from computer simulations of TIP4P-like models. Moreover, we obtain estimates of the nucleation rate from simulations of the critical cluster at the barrier top. The values we get for both models agree within statistical error with experimental measurements. At temperatures higher than 20 K below melting, we get nucleation rates slower than the appearance of a critical cluster in all water of the hydrosphere during the age of the universe. Therefore, our simulations predict that water freezing above this temperature must necessarily be heterogeneous.

  3. Condensation of water vapor in rarefaction waves. I - Homogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.

    1976-01-01

    A detailed theoretical investigation has been made of the condensation of water vapor/carrier gas mixtures in the nonstationary rarefaction wave generated in a shock tube. It is assumed that condensation takes place by homogeneous nucleation. The equations of motion together with the nucleation rate and the droplet growth equations were solved numerically by the method of characteristics and Lax's method of implicit artificial viscosity. It is found that, for the case considered, the condensation wave formed by the collapse of the metastable nonequilibrium state is followed by a shock wave generated by the intersection of characteristics of the same family. The expansion is practically isentropic up to the onset of condensation. The condensation front accelerates in the x,t plane. The results of the computations for a chosen case of water vapor/nitrogen mixture are presented by plotting variations of pressure, nucleation rate, number density of critical clusters, and condensate mass-fraction along three particle paths. Some consideration is given to homogeneous condensation experiments conducted in a shock tube. Although a direct comparison of the present theoretical work and these experiments is not possible, several worthwhile interpretative features have resulted nevertheless.

  4. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”

    PubMed Central

    2015-01-01

    We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit TH by cooling micrometer-sized droplets (microdroplets) evaporatively at 103–104 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water’s diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 106–107 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed “fragile-to-strong” transition anomaly in water. PMID:26207172

  5. Nucleation and structural growth of cluster crystals

    NASA Astrophysics Data System (ADS)

    Leitold, Christian; Dellago, Christoph

    2016-08-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds.

  6. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  7. Homogeneous Dislocation Nucleation - role of geometrical parameters and interatomic potentials

    NASA Astrophysics Data System (ADS)

    Garg, Akanksha; Hasan, Asad; Maloney, Craig

    2014-03-01

    We perform atomistic simulations of dislocation nucleation in defect free crystals in 2D and 3D during indentation with circular (2D) or spherical (3D) indenters of radius R. We study realistic interatomic potentials such as embedded atom method (EAM) potentials for Al in addition to simple pair-wise interactions such as linear springs. The dislocation embryo is localized along a line (or plane in 3D) of atoms with a lateral extent, ξ, at some depth, D, below the surface. For all potentials, in 2D, the scaled critical - load, Fc / R , and contact length, Cc / R , decrease to R independent values in the limit of large R. However, despite the R independence of Fc / R and Cc / R , ξ / R and D / R display non-trivial scaling with R. Although both the interaction potential and the orientation of lattice affect the prefactors in the scaling relations (e.g. crystal with springs is much harder than EAM Aluminum), all the scaling laws are robust. Furthermore, we show that, despite the excellent prediction for the relation between F and C, Hertzian contact theory fails to correctly predict the strain underneath the indenter. This observation gives us hope that local nucleation criteria based on appropriate local strain may capture the nontrivial scaling laws. NSF-CMMI-1100245.

  8. Visualizing dislocation nucleation by indenting colloidal crystals.

    PubMed

    Schall, Peter; Cohen, Itai; Weitz, David A; Spaepen, Frans

    2006-03-16

    The formation of dislocations is central to our understanding of yield, work hardening, fracture, and fatigue of crystalline materials. While dislocations have been studied extensively in conventional materials, recent results have shown that colloidal crystals offer a potential model system for visualizing their structure and dynamics directly in real space. Although thermal fluctuations are thought to play a critical role in the nucleation of these defects, it is difficult to observe them directly. Nano-indentation, during which a small tip deforms a crystalline film, is a common tool for introducing dislocations into a small volume that is initially defect-free. Here, we show that an analogue of nano-indentation performed on a colloidal crystal provides direct images of defect formation in real time and on the single particle level, allowing us to probe the effects of thermal fluctuations. We implement a new method to determine the strain tensor of a distorted crystal lattice and we measure the critical dislocation loop size and the rate of dislocation nucleation directly. Using continuum models, we elucidate the relation between thermal fluctuations and the applied strain that governs defect nucleation. Moreover, we estimate that although bond energies between particles are about fifty times larger in atomic systems, the difference in attempt frequencies makes the effects of thermal fluctuations remarkably similar, so that our results are also relevant for atomic crystals.

  9. Measurements of homogeneous nucleation in normal-alkanes

    NASA Astrophysics Data System (ADS)

    Kraack, H.; Sirota, E. B.; Deutsch, M.

    2000-04-01

    The homogeneous nucleation of normal-alkanes with carbon numbers 15⩽n⩽60 is studied by scanning calorimetry, using the droplet technique. Pure, nonemulsified samples show near-zero undercoolings below the melting point, Tm, except for both ends of the n-range, where undercoolings ΔT of up to 2 °C are observed. The emulsions have much larger undercoolings. The relative undercoolings show three regimes: A fast decreasing one, up to n=17, an anomalously low constant one, ΔT/Tm≈0.04, for 17⩽n⩽30, and a gradually increasing one for 32⩽n⩽60. A value of ΔT/Tm≈0.086 is reached at n=60. The connections of these results with the bulk rotator phases and the recently discovered surface freezing effect are discussed. Strong intrinsic interrelations among these are indicated.

  10. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    PubMed

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  11. In situ FT-IR study on the homogeneous nucleation of nanoparticles of titanium oxides from highly supersaturated vapor

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shinnosuke; Kimura, Yuki; Yamazaki, Tomoya

    2016-09-01

    The formation of nanoparticles of titanium oxides by homogeneous nucleation from highly supersaturated vapors was investigated by in situ Fourier transform IR spectroscopy and by observation of the resulting nanoparticles by transmission electron microscopy (TEM). Titanium metal was thermally evaporated in a specially designed chamber under a gaseous atmosphere of oxygen and argon. Nanoparticles nucleated and subsequently grew as they flew freely through the oxidizing gas atmosphere. Nascent nanoparticles of titanium oxides showed a broad IR absorption band at 10-20 μm. Subsequently, the cooled nanoparticles showed a sharp crystalline anatase feature at 12.8 μm. TEM observations showed the formation of spherical anatase nanoparticles. The IR spectral evolution showed that the titanium oxides nucleated as metastable liquid droplets, and that crystallization proceeded through secondary nucleation from the supercooled liquid droplets. This suggests that history of the titanium oxide nanoparticles, such as the temperature and oxidation that they experience after nucleation, determines their polymorphic form.

  12. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    NASA Astrophysics Data System (ADS)

    Marcolli, C.

    2013-06-01

    Heterogeneous ice nucleation is an important mechanism for the glaciation of mixed phase clouds and may also be relevant for cloud formation and dehydration at the cirrus cloud level. It is thought to proceed through different mechanisms, namely contact, condensation, immersion and deposition nucleation. Supposedly, deposition nucleation is the only pathway which does not involve liquid water but occurs by direct water vapor deposition on a surface. This study challenges this classical view by putting forward the hypothesis that what is called deposition nucleation is in fact homogeneous or immersion nucleation occurring in pores and cavities that may form between aggregated primary particles and fill with water at relative humidity RHw < 100% because of the inverse Kelvin effect. Evidence for this hypothesis of pore condensation and freezing (PCF) originates from a number of only loosely connected scientific areas. The prime example for PCF is ice nucleation in clay minerals and mineral dusts, for which the data base is best. Studies on freezing in confinement carried out on mesoporous silica materials such as SBA-15, SBA-16, MCM-41, zeolites and KIT have shown that homogeneous ice nucleation occurs abruptly at T=230-235 K in pores with diameters (D) of 3.5-4 nm or larger but only gradually at T=210-230 K in pores with D=2.5-3.5 nm. Melting temperatures in pores are depressed by an amount that can be described by the Gibbs-Thomson equation. Water adsorption isotherms of MCM-41 show that pores with D=3.5-4 nm fill with water at RHw = 56-60% in accordance with an inverse Kelvin effect. Water in such pores should freeze homogeneously for T < 235 K even before relative humidity with respect to ice (RHi) reaches ice saturation. Ice crystal growth by water vapor deposition from the gas phase is therefore expected to set in as soon as RHw > 100%. Pores with D > 7.5 nm fill with water at RHi > 100% for T < 235 K and are likely to freeze homogeneously as soon as they are

  13. Molecular simulation of crystal nucleation in n-octane melts

    NASA Astrophysics Data System (ADS)

    Yi, Peng; Rutledge, Gregory C.

    2009-10-01

    Homogeneous nucleation of the crystal phase in n-octane melts was studied by molecular simulation with a realistic, united-atom model for n-octane. The structure of the crystal phase and the melting point of n-octane were determined through molecular dynamics simulation and found to agree with experimental results. Molecular dynamics simulations were performed to observe the nucleation events at constant pressure and constant temperature corresponding to about 20% supercooling. Umbrella sampling Monte Carlo simulations were used to calculate the nucleation free energy for three temperatures, ranging from 8% to 20% supercooling, and to reveal details of the critical nucleus for the first time. The cylindrical nucleus model was found to provide a better quantitative description of the critical nucleus than the spherical nucleus model. The interfacial free energies of the cylinder model were calculated from the simulation data. As the temperature increased, the interfacial free energy of the side surface remained relatively unchanged, at 7-8 mJ/m2, whereas the interfacial free energy of the end surface decreased significantly from 5.4 mJ/m2 to about 3 mJ/m2. These results, and the methods employed, provide valuable and quantitative information regarding the rate-limiting step during the solidification of chain molecules, with ramifications for both short alkanes and polymers.

  14. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Sumida, John

    2000-01-01

    One of the most powerful and versatile methods for studying molecules in solution is fluorescence. Crystallization typically takes place in a concentrated solution environment, whereas fluorescence typically has an upper concentration limit of approximately 1 x 10(exp -5)M, thus intrinsic fluorescence cannot be employed, but a fluorescent probe must be added to a sub population of the molecules. However the fluorescent species cannot interfere with the self-assembly process. This can be achieved with macromolecules, where fluorescent probes can be covalently attached to a sub population of molecules that are subsequently used to track the system as a whole. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process of tetragonal lysozyme crystal nucleation, using covalent fluorescent derivatives which crystallize in the characteristic P432121 space group. FRET studies are being carried out between cascade blue (CB-lys, donor, Ex 376 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex 425 nm, Em 520 nm) asp101 derivatives. The estimated R0 for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approximately 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 43 helix. The short CB-lys lifetime (approximately 5 ns), coupled with the large average distances between the molecules ((sup 3) 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Addition of LY-lys to CB-lys results in the appearance of a second, shorter lifetime (approximately 0.2 ns). Results from these and other ongoing studies will be discussed in conjunction with a model for how tetragonal lysozyme crystals nucleate and grow, and the relevance of that model to microgravity protein crystal growth

  15. Homogeneous nucleation rate measurements and the properties of critical clusters

    SciTech Connect

    Wyslouzil, Barbara E.; Strey, Reinhard; Wölk, Judith; Wilemski, Gerald; Kim, Yoojeong

    2009-10-06

    By combining a range of experimental techniques, quantitative nucleation rate measurements can now be made over {approx} 20 orders of magnitude. These rates can be used to directly test the predictions of nucleation theories or scaling laws. They can also provide direct information regarding the properties of the critical clusters - the first fragments of the new phase that are in unstable equilibrium with the supersaturated mother phase. This paper reviews recent progress in the field of vapor phase nucleation with a special focus on integrating the results from supersonic nozzle and nucleation pulse chamber studies.

  16. Do protein crystals nucleate within dense liquid clusters?

    SciTech Connect

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  17. Flow-Induced Crystallization and Nucleation in Isotactic Polypropylenes

    NASA Astrophysics Data System (ADS)

    Milner, Scott

    2015-03-01

    Flow-induced crystallization (FIC) occurs when a brief interval of strong flow precedes a temperature quench; many more nuclei form, resulting in a much more fine-grained solid morphology and better material properties. Common industrial polymer processing (injection molding) depends on FIC, which has been the subject of many experimental studies, most commonly on isotactic polypropylene (iPP). The prevailing hypothesis is that FIC results from flow aligning chains in the melt, increasing the melt free energy with respect to the crystal, hence acting like undercooling. Here, I combine experimental results for FIC and homogeneous nucleation with theoretical estimates for critical nuclei, to assess the prevailing hypothesis. Current best information supports the view that chain stretching (not just alignment) is necessary and sufficient to explain the observed increase in nucleation rate. Important puzzles remain: 1) shear applied at temperatures well above the equilibrium melting temperature Tm = 187 C is effective for FIC, and 2) a sheared sample may be held for hours above Tm, and still crystallize faster when quenched.

  18. High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus

    NASA Astrophysics Data System (ADS)

    Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul V.; Alexander, M. Joan; Podglajen, Aurélien; Hertzog, Albert; Woods, Sarah; Lawson, R. Paul; Kim, Ji-Eun; Schoeberl, Mark R.

    2016-06-01

    The impact of high-frequency gravity waves on homogeneous-freezing ice nucleation in cold cirrus clouds is examined using parcel model simulations driven by superpressure balloon measurements of temperature variability experienced by air parcels in the tropical tropopause region. We find that the primary influence of high-frequency waves is to generate rapid cooling events that drive production of numerous ice crystals. Quenching of ice nucleation events by temperature tendency reversal in the highest-frequency waves does occasionally produce low ice concentrations, but the overall impact of high-frequency waves is to increase the occurrence of high ice concentrations. The simulated ice concentrations are considerably higher than indicated by in situ measurements of cirrus in the tropical tropopause region. One-dimensional simulations suggest that although sedimentation reduces mean ice concentrations, a discrepancy of about a factor of 3 with observed ice concentrations remains. Reconciliation of numerical simulations with the observed ice concentrations will require inclusion of physical processes such as heterogeneous nucleation and entrainment.

  19. New metastable form of ice and its role in the homogeneous crystallization of water

    NASA Astrophysics Data System (ADS)

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2014-07-01

    The homogeneous crystallization of water at low temperature is believed to occur through the direct nucleation of cubic (Ic) and hexagonal (Ih) ices. Here, we provide evidence from molecular simulations that the nucleation of ice proceeds through the formation of a new metastable phase, which we name Ice 0. We find that Ice 0 is structurally similar to the supercooled liquid, and that on growth it gradually converts into a stacking of Ice Ic and Ih. We suggest that this mechanism provides a thermodynamic explanation for the location and pressure dependence of the homogeneous nucleation temperature, and that Ice 0 controls the homogeneous nucleation of low-pressure ices, acting as a precursor to crystallization in accordance with Ostwald’s step rule of phases. Our findings show that metastable crystalline phases of water may play roles that have been largely overlooked.

  20. New metastable form of ice and its role in the homogeneous crystallization of water.

    PubMed

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2014-07-01

    The homogeneous crystallization of water at low temperature is believed to occur through the direct nucleation of cubic (Ic) and hexagonal (Ih) ices. Here, we provide evidence from molecular simulations that the nucleation of ice proceeds through the formation of a new metastable phase, which we name Ice 0. We find that Ice 0 is structurally similar to the supercooled liquid, and that on growth it gradually converts into a stacking of Ice Ic and Ih. We suggest that this mechanism provides a thermodynamic explanation for the location and pressure dependence of the homogeneous nucleation temperature, and that Ice 0 controls the homogeneous nucleation of low-pressure ices, acting as a precursor to crystallization in accordance with Ostwald's step rule of phases. Our findings show that metastable crystalline phases of water may play roles that have been largely overlooked.

  1. New metastable form of ice and its role in the homogeneous crystallization of water.

    PubMed

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2014-07-01

    The homogeneous crystallization of water at low temperature is believed to occur through the direct nucleation of cubic (Ic) and hexagonal (Ih) ices. Here, we provide evidence from molecular simulations that the nucleation of ice proceeds through the formation of a new metastable phase, which we name Ice 0. We find that Ice 0 is structurally similar to the supercooled liquid, and that on growth it gradually converts into a stacking of Ice Ic and Ih. We suggest that this mechanism provides a thermodynamic explanation for the location and pressure dependence of the homogeneous nucleation temperature, and that Ice 0 controls the homogeneous nucleation of low-pressure ices, acting as a precursor to crystallization in accordance with Ostwald's step rule of phases. Our findings show that metastable crystalline phases of water may play roles that have been largely overlooked. PMID:24836734

  2. Do protein crystals nucleate within dense liquid clusters?

    PubMed Central

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10−3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation. PMID:26144225

  3. Do protein crystals nucleate within dense liquid clusters?

    PubMed

    Maes, Dominique; Vorontsova, Maria A; Potenza, Marco A C; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G

    2015-07-01

    Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10(-3) of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.

  4. Homogeneous nucleation rates from the piston-expansion tube using a digital camera

    NASA Astrophysics Data System (ADS)

    Peters, Franz; Graßmann, Arne

    2000-08-01

    Homogeneous nucleation rates of n-pentanol in nitrogen are obtained from a piston-expansion tube (pex-tube) involving the nucleation pulse method which generates a limited number of nuclei that grow into droplets. The detection of the droplets is achieved by a new counting method developed on the basis of a CCD camera in combination with a laser light sheet. Nucleation rates between 104 and 109cm-3 s-1 are covered for the nucleation temperature 260 K. The rates are plotted as isotherms versus supersaturation. An influence of the initial expansion temperature on the nucleation rate is identified. Literature data from other expansion experiments agree with our finding.

  5. Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling.

    PubMed

    Reinhardt, Aleks; Doye, Jonathan P K

    2013-09-01

    We present a partial free energy profile for the homogeneous nucleation of ice using an all-atom model of water at low supercooling, at which ice growth dynamics are reasonably accessible to simulation. We demonstrate that the free energy profile is well described by classical nucleation theory, and that the nucleation barrier is entropic in origin. We also estimate to first order the temperature dependence of the interfacial free energy.

  6. Homogeneous nucleation rates of n-pentanol in nitrogen measured in a piston-expansion tube

    NASA Astrophysics Data System (ADS)

    Graßmann, A.; Peters, F.

    2000-10-01

    Homogeneous nucleation rates of n-pentanol in nitrogen are presented. They are obtained from a piston-expansion tube (pex-tube) involving the nucleation pulse method which generates a limited number of nuclei that grow into droplets. The detection of the droplets is achieved by a new counting method developed on the basis of a CCD camera in combination with a laser light sheet. Nucleation rates between 104 and 109cm-3 s-1 are covered for three nucleation temperatures 250, 260, and 270 K. The rates are plotted as isotherms vs supersaturation. Influence of the initial expansion temperature and the nucleation pressure on the nucleation rate is identified. Comparison with results available in literature and classical nucleation theory (CNT) is provided.

  7. Determining whether metals nucleate homogeneously on graphite: A case study with copper

    DOE PAGES

    Appy, David; Lei, Huaping; Han, Yong; Wang, Cai -Zhuang; Tringides, Michael C.; Shao, Dahai; Kwolek, Emma J.; Evans, J. W.; Thiel, P. A.

    2014-11-05

    In this study, we observe that Cu clusters grow on surface terraces of graphite as a result of physical vapor deposition in ultrahigh vacuum. We show that the observation is incompatible with a variety of models incorporating homogeneous nucleation and calculations of atomic-scale energetics. An alternative explanation, ion-mediated heterogeneous nucleation, is proposed and validated, both with theory and experiment. This serves as a case study in identifying when and whether the simple, common observation of metal clusters on carbon-rich surfaces can be interpreted in terms of homogeneous nucleation. We describe a general approach for making system-specific and laboratory-specific predictions.

  8. Nucleation of crystals that are mixed composites of all three polymorphs in the Gaussian core model.

    PubMed

    Mithen, J P; Callison, A J; Sear, R P

    2015-06-14

    We present results of computer simulations of homogeneous crystal nucleation in the Gaussian core model. In our simulations, we study the competition between the body-centered-cubic (bcc), face-centered-cubic (fcc), and hexagonal-close-packed crystal phases. We find that the crystal nuclei that form from the metastable fluid phase are typically "mixed"; they do not consist of a single crystal polymorph. Furthermore, when the fcc phase is stable or fcc and bcc phases are equally stable, this mixed nature is found to persist far beyond the size at the top of the nucleation barrier, that is, far into what would be considered the growth (rather than nucleation) regime. In this region, the polymorph that forms is therefore selected long after nucleation. This has implications. When nucleation is slow, it will be the rate-limiting step for crystallization. Then, the step that determines the time scale for crystallisation is different from the step that controls which polymorph forms. This means that they can be independently controlled. Also between nucleation and polymorph selection, there is a growing phase that is clearly crystalline not fluid, but this phase cannot be assigned to any one polymorph.

  9. Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Miloshevich, Larry M.

    1993-01-01

    This study investigates ice nucleation mechanisms in cold lenticular wave clouds, a cloud type characterized by quasi-steady-state air motions and microphysical properties. It is concluded that homogeneous ice nucleation is responsible for the ice production in these clouds at temperatures below about -33 C. The lack of ice nucleation observed above -33 C indicates a dearth of ice-forming nuclei, and hence heterogeneous ice nucleation, in these clouds. Aircraft measurements in the temperature range -31 to -41 C show the following complement of simultaneous and abrupt changes in cloud properties that indicate a transition from the liquid phase to ice: disappearance of liquid water; decrease in relative humidity from near water saturation to ice saturation; increase in mean particle size; change in particle concentration; and change in temperature due to the release of latent heat. A numerical model of cloud particle growth and homogeneous ice nucleation is used to aid in interpretation of our in situ measurements. The abrupt changes in observed cloud properties compare favorably, both qualitatively and quantitatively, with results from the homogeneous ice nucleation model. It is shown that the homogeneous ice nucleation rates from the measurements are consistent with the temperature-dependent rates employed by the model (within a factor of 100, corresponding to about 1 C in temperature) in the temperature range -35 deg to -38 C. Given the theoretical basis of the modeled rates, it may be reasonable to apply them throughout the -30 to -50 C temperature range considered by the theory.

  10. Homogeneous condensation - Freezing nucleation rate measurements for small water droplets in an expansion cloud chamber

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.; Anderson, R. J.; Kassner, J. L., Jr.

    1981-01-01

    Experimental data on ice nucleation, presented in an earlier paper, are analyzed to yield information about the homogeneous nucleation rate of ice from supercooled liquid and the heights of energy barriers to that nucleation. The experiment consisted of using an expansion cloud chamber to nucleate from the vapor a cloud of supercooled pure water drops and the observation of the fraction of drops which subsequently froze. The analysis employed standard classical homogeneous nucleation theory. The data are used to extract the first experimental measurement (albeit indirect) of the activation energy for the transfer of a water molecule across the liquid-ice interface at temperatures near -40 C. The results provide further evidence that the local liquid structure becomes more icelike as the temperature is lowered.

  11. Universal scaling laws for homogeneous dislocation nucleation during nano-indentation

    NASA Astrophysics Data System (ADS)

    Garg, Akanksha; Maloney, Craig E.

    2016-10-01

    We perform atomistic simulations to study the mechanism of homogeneous dislocation nucleation in two dimensional (2D) hexagonal crystals during nanoindentation with a circular indenter of radius R. We study both a realistic embedded atom method (EAM) potential for Al in addition to simple pair-wise potentials: Lennard-Jones, Morse, and Hookean springs. The nucleation process is governed by the vanishing of the energy associated with a single energy eigenmode. The critical eigenmode, or dislocation embryo, is found to be localized along a line (or plane in 3D) of atoms with a lateral extent, ξ, at some depth, Y*, below the surface. For all interatomic potentials, the scaled critical load, Fc / R, and scaled critical contact length, Cc / R, decrease to R-independent values in the limit of large R. However, ξ / R and Y* / R display non-trivial scaling with R despite the R independence of Fc / R and Cc / R. We show that although both the interaction potential and the orientation of the lattice affect the prefactors in the scaling relations, all the scaling laws are robust. Furthermore, we show that a stability criterion proposed by Van Vliet et al. based on the minimum eigenvalue, Λ, of the local acoustic tensor predicts the location, orientation, and polarization of the dislocation embryo with a high degree of accuracy for all potentials and crystallographic orientations. However, we also show that, for all crystallographic orientations and interaction potentials, Λ erroneously indicates instability before the true instability occurs.

  12. Atomistic simulation of the homogeneous nucleation and of the growth of N2 crystallites.

    PubMed

    Leyssale, Jean-Marc; Delhommelle, Jerome; Millot, Claude

    2005-03-01

    We report on a computer simulation study of the early stages of the crystallization of molecular nitrogen. First, we study how homogeneous nucleation takes place in supercooled liquid N(2) for a moderate degree of supercooling. Using the umbrella sampling technique, we determine the free energy barrier of formation for a critical nucleus of N(2). We show that, in accord with Ostwald's rule of stages, the structure of the critical nucleus is predominantly that of a metastable polymorph (alpha-N(2) for the state point investigated). We then monitor the evolution of several critical nuclei through a series of unbiased molecular dynamics trajectories. The growth of N(2) crystallites is accompanied by a structural evolution toward the stable polymorph beta-N(2). The microscopic mechanism underlying this evolution qualitatively differs from that reported previously. We do not observe any dissolution or reorganization of the alpha-like core of the nucleus. On the contrary, we show that alpha-like and beta-like blocks coexist in postcritical nuclei. We relate the structural evolution to a greater adsorption rate of beta-like molecules on the surface and show that this transition actually starts well within the precritical regime. We also carefully investigate the effect of the system size on the height of the free energy barrier of nucleation and on the structure and size of the critical nucleus. PMID:15836335

  13. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  14. Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n-alkanes

    NASA Astrophysics Data System (ADS)

    Rudek, Markus M.; Fisk, Jeffery A.; Chakarov, Vasil M.; Katz, Joseph L.

    1996-09-01

    Homogeneous nucleation rates as functions of both supersaturation and temperature were measured in an upward thermal diffusion cloud chamber for four n-alkanes: n-heptane, n-octane, n-nonane, and n-decane. Nucleation rates from about 10-4 to 5×100 drops cm-3 s-1 were obtained in the temperature range, 241 to 330 K. Their dependences on supersaturation and temperature were compared to predictions of several nucleation theories: the internally consistent Classical theory, two versions of the Kalikmanov-van Dongen theory, and the Delale-Meier theory. Each theory predicted the dependence of the nucleation rate on supersaturation reasonably well. However, large temperature dependent correction factors were needed for quantitative agreement between measured and predicted nucleation rates. A plot of the ratio of measured to predicted nucleation rates vs reduced temperature shows that all n-alkanes investigated can be represented to within a factor of ten by a single, best fit line.

  15. Nucleation and Growth of Discotic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Wang, Xuezhen; Zhang, Lecheng; Shinde, Abhijeet; Liquid Crystals of Nanoplates in Microgravity Team

    2015-03-01

    We investigate the nucleation and growth of liquid crystals of plate-shaped charged zirconium phosphate (ZrP) monolayers with various sizes, temperature and salt concentrations. The smaller the platelets size, or the higher the temperature, or the higher the salt concentration (from 0 to 0.6M), the faster the Isotropic-Nematic (I-N) separation took place. We established the I-N transition phase diagram of charged platelets in the temperature verse volume fraction plane, and discovered that N phase can be melted by increasing temperature, and coexistent samples are more sensitive to polydispersity at higher temperature and higher concentrations. We also found that salt concentration in the ZrP suspensions contributed to the formation of an apparently twisted phase. This work is supported by NSF (DMR-1006870) and NASA (NASA-NNX13AQ60G). X.Z. Wang acknowledges support from the Mary Kay O'Connor Process Safety Center (MKOPSC) at Texas A&M University.

  16. Molecular dynamics simulations of polymer crystallization in highly supercooled melt: Primary nucleation and cold crystallization

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi

    2010-07-01

    Molecular mechanisms of crystallization at large supercooling and structure of supercooled melt are investigated in our polyethylenelike polymer through molecular dynamics simulations. Three representative crystallization processes are here considered: (1) isothermal homogeneous nucleation in the melt, (2) crystallization by rapid cooling of the melt, and (3) cold crystallization during slow heating of an amorphous state. Molecular level structures of the melt and the emerging crystallites are characterized by the use of the specific parameters, the effective segment length Lp and the radius of gyration Rg of the molecules, together with the overall crystallinity χc. In quasiequilibrium melt of moderate supercooling, the chains have random-coil conformations. However, the temperature dependence of the averaged Lp in the melt is found to show quite unexpected transition around the bulk melting temperature. At larger supercooling of 330 K, the homogeneous nucleation takes place after an induction period of about 4 ns. Characteristic conformational changes are here described by multimodal distributions of Rg, the main components of which correspond to relaxed random-coil chains in the melt and once-folded chains in the crystallites; the former chains transform continuously into the latter, having similar chain extension Rg. Rapid cooling of the melt is found to give poorly crystallized states having fringed-micellar organization. The effective segment length Lp shows considerably faster increase than Rg, resulting in peculiar conformational frustration. Nearly amorphous samples obtained by very rapid cooling show pronounced cold crystallization by slow heating over the glass transition temperature, where crystallites of random orientations form a granular texture due to steric collisions of the growing lamellae. The generated crystal texture is only metastable and readily reorganizes by annealing at high temperatures, where the chains are found to make large

  17. Effects of shear flow on phase nucleation and crystallization

    NASA Astrophysics Data System (ADS)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  18. Chamber Design For Slow Nucleation Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee

    1995-01-01

    Multiple-chamber dialysis apparatus grows protein crystals on Earth or in microgravity with minimum of intervention by technician. Use of multiple chambers provides gradation of nucleation and growth rates.

  19. Kinetics of crystal nucleation and growth in Pd(40)Ni(40)P(20) glass

    NASA Technical Reports Server (NTRS)

    Drehman, A. J.; Greer, A. L.

    1984-01-01

    Samples of Pd(40)Ni(40)P(20) glass, produced by cooling the melt at 1 or 800 K/s, are heated in a differential scanning calorimeter to determine the crystallization kinetics. Optical microscopy shows that eutectic crystallization proceeds both by growth from the surface of the samples and by the growth of spherical regions around preexisting nuclei in the interior. A modified Kissinger (1957) analysis is used to obtain the activation energy for crystal growth (3.49 eV). The steady state homogeneous nucleation frequency at 590 K is about 10 million/cu m per sec. This is estimated to be the maximum nucleation frequency: it is too low to account for the observed population of quenched-in nuclei, which are therefore presumed to be heterogeneous. The major practical obstacle to glass formation in this system is heterogeneous nucleation.

  20. Theory of homogeneous nucleation - A chemical kinetic view

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Qiu, H.

    1986-01-01

    A simple function with two undetermined parameters has been used in place of the Thomson-Gibbs relation to relate the activation energy of the vaporization reaction to cluster size. The parameters are iterated to assume optimum values in numerical computation so experimental data may be correlated. Calculations show this approach closely predicts and correlates available data for water, benzene, and ethanol. The nucleation formulism is redeveloped with an emphasis on the chemical kinetic view. Surface tension of the liquid and free energy of droplet formation are not used in its derivation.

  1. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    -association process is a function of the protein concentration relative to the saturation concentration, and observing it in dilute solution (conc. less than or equal to 10(exp -5)M) requires that the experiments be performed under low solubility conditions, i.e., low temperatures and high salt concentrations. Data from preliminary steady state FRET studies with N-terminal bound pyrene acetic acid (PAA-lys, donor, Ex 340 nm, Em 376 nm) and asp101 LY-lys as an acceptor showed a consistent trend of decreasing donor fluorescence intensity with increasing total protein concentration. The FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding C(sub sat) values are 0.471 and 0.362 mg/ml (approx. 3.3 and approx. 2.5 x 10(exp -5)M respectively). The donor fluorescence decrease is more pronounced at7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations as reflected in the lower solubility. Results from these and other ongoing studies will be discussed in conjunction with an emerging model for how tetragonal lysozyme crystals nucleate and the relevance of that model to other proteins.

  2. Thermodynamics of heterogeneous crystal nucleation in contact and immersion modes.

    PubMed

    Djikaev, Y S; Ruckenstein, E

    2008-11-20

    One of the most intriguing problems of heterogeneous crystal nucleation in droplets is its strong enhancement in the contact mode (when the foreign particle is presumably in some kind of contact with the droplet surface) compared to the immersion mode (particle immersed in the droplet). Heterogeneous centers can have different nucleation thresholds when they act in contact or immersion modes. The underlying physical reasons for this enhancement have remained largely unclear. In this paper we present a model for the thermodynamic enhancement of heterogeneous crystal nucleation in the contact mode compared to the immersion one. To determine if and how the surface of a liquid droplet can thermodynamically stimulate its heterogeneous crystallization, we examine crystal nucleation in the immersion and contact modes by deriving and comparing with each other the reversible works of formation of crystal nuclei in these cases. The line tension of a three-phase contact gives rise to additional terms in the formation free energy of a crystal cluster and affects its Wulff (equilibrium) shape. As an illustration, the proposed model is applied to the heterogeneous nucleation of hexagonal ice crystals on generic macroscopic foreign particles in water droplets at T = 253 K. Our results show that the droplet surface does thermodynamically favor the contact mode over the immersion one. Surprisingly, the numerical evaluations suggest that the line tension contribution (from the contact of three water phases (vapor-liquid-crystal)) to this enhancement may be of the same order of magnitude as or even larger than the surface tension contribution.

  3. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    PubMed

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  4. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    PubMed Central

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  5. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  6. Communication: A dynamical theory of homogeneous nucleation for colloids and macromolecules.

    PubMed

    Lutsko, James F

    2011-10-28

    Homogeneous nucleation is formulated within the context of fluctuating hydrodynamics. It is shown that for a colloidal system in the strong damping limit the most likely path for nucleation can be determined by gradient descent in density space governed by a nontrivial metric. This is illustrated by application to low-density/high-density liquid transition of globular proteins in solution where it is shown that nucleation process involves two stages: the formation of an extended region with enhanced density followed by the formation of a cluster within this region.

  7. The effect of nucleation and crystal growth on isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gaetani, G. A.; Liu, C.; Hu, P.; Cohen, A. L.

    2011-12-01

    A set of "free-drift" experiments is conducted to precipitate aragonites from seawater at controlled temperature (25-55oC) and CO2 degassing rate in the lab. These experiments help to calibrate a coupled degassing-nucleation-crystal growth model, which not only can reproduce measured pH and alkalinity over the course of the experiments, but also predict crystal size within a factor of two of the measured values, the activation energy of the precipitation reaction constant to be 24.3±1.3 kJ/mol, the surface energy of aragonite crystals that is consistent with estimation by atomistic simulation and crystal morphology. Forward simulation of our precipitation experiments using calibrated parameters reveal the supersaturation of seawater arrives at a critical value (~13-50 in our experiment) before nucleation initiates and when the concentration of the total dissolved inorganic carbon (DIC) reduces to that of Ca. This result cannot be explained by classical nucleation theory (CNT), but is consistent with recently proposed "two-step" nucleation model, implying solution chemistry determines when the nucleation starts but the surface properties of crystal (surface energy and crystal morphology) determine the size of the crystal. It also requires not only carbonate ions but all other DIC species within a sphere of a-few-micron radius actively participate into the nucleation process. This model is then used as a framework to understand oxygen and Mg isotope fractionation between carbonates and fluid. Our results suggest nucleation and crystal growth will affect isotope fractionation at different levels depending on experimental conditions. A quantitative analysis using our model can help reconcile the isotope fractionation factors determined by various experimental approaches.

  8. Bubble evolution and properties in homogeneous nucleation simulations.

    PubMed

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime. PMID:25615216

  9. Bubble evolution and properties in homogeneous nucleation simulations.

    PubMed

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

  10. Homogeneous SPC/E water nucleation in large molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2015-08-01

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ˜ 4 ṡ 106 molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ˜ 1019 cm-3 s-1, helping close the gap between experimentally measured rates ˜ 1017 cm-3 s-1. We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ˜ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

  11. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilow, Peter G.

    1998-01-01

    Our work under this grant has significantly contributed to the goals of the NASA supported protein crystallization program. We have achieved the main objectives of the proposed work, as outlined in the original proposal: (1) We have provided important insight into protein nucleation and crystal growth mechanisms to facilitate a rational approach to protein crystallization; (2) We have delineated the factors that currently limit the x-ray diffraction resolution of protein crystals, and their correlation to crystallization conditions; (3) We have developed novel technologies to study and monitor protein crystal nucleation and growth processes, in order to increase the reproducibility and yield of protein crystallization. We have published 17 papers in peer-reviewed scientific journals and books and made more than 15 invited and 9 contributed presentations of our results at international and national scientific meetings.

  12. Nucleation and crystal growth in laser patterned lines in glasses

    NASA Astrophysics Data System (ADS)

    Komatsu, Takayuki; Honma, Tsuyoshi

    2016-07-01

    Laser-induced crystallization is a new method for the design and control of the crystallization of glasses and opens a new door in the study of nucleation and crystal growth in glasses. Nonlinear optical Sm-doped -BaB2O4 (-BBO) crystal lines were patterned by continuous wave Yb:YVO4 fiber laser (wavelength 1080 nm) in 8Sm2O3-42BaO-50B2O3 glass as an example, and nucleation and crystal growth behaviors in the laser-patterned bending and crossing lines were examined. It was confirmed that the growth of c-axis oriented -BBO crystals follows along the laser scanning direction even if laser scanning direction changes. The model of self-organized homo-epitaxial crystal growth was demonstrated for the orientation of -BBO crystals at the crossing point of two lines, in which the first crystal line at the crossing point acts as nucleation site for the second crystal line. This study proposes a new crystal growth technology.

  13. Pathways to self-organization: Crystallization via nucleation and growth.

    PubMed

    Jungblut, S; Dellago, C

    2016-08-01

    Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In this article, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mechanism. PMID:27498980

  14. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature.

    PubMed

    Sellberg, J A; Huang, C; McQueen, T A; Loh, N D; Laksmono, H; Schlesinger, D; Sierra, R G; Nordlund, D; Hampton, C Y; Starodub, D; DePonte, D P; Beye, M; Chen, C; Martin, A V; Barty, A; Wikfeldt, K T; Weiss, T M; Caronna, C; Feldkamp, J; Skinner, L B; Seibert, M M; Messerschmidt, M; Williams, G J; Boutet, S; Pettersson, L G M; Bogan, M J; Nilsson, A

    2014-06-19

    Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best

  15. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature

    NASA Astrophysics Data System (ADS)

    Sellberg, J. A.; Huang, C.; McQueen, T. A.; Loh, N. D.; Laksmono, H.; Schlesinger, D.; Sierra, R. G.; Nordlund, D.; Hampton, C. Y.; Starodub, D.; Deponte, D. P.; Beye, M.; Chen, C.; Martin, A. V.; Barty, A.; Wikfeldt, K. T.; Weiss, T. M.; Caronna, C.; Feldkamp, J.; Skinner, L. B.; Seibert, M. M.; Messerschmidt, M.; Williams, G. J.; Boutet, S.; Pettersson, L. G. M.; Bogan, M. J.; Nilsson, A.

    2014-06-01

    Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1,2,3 ). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the `no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe

  16. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature.

    PubMed

    Sellberg, J A; Huang, C; McQueen, T A; Loh, N D; Laksmono, H; Schlesinger, D; Sierra, R G; Nordlund, D; Hampton, C Y; Starodub, D; DePonte, D P; Beye, M; Chen, C; Martin, A V; Barty, A; Wikfeldt, K T; Weiss, T M; Caronna, C; Feldkamp, J; Skinner, L B; Seibert, M M; Messerschmidt, M; Williams, G J; Boutet, S; Pettersson, L G M; Bogan, M J; Nilsson, A

    2014-06-19

    Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best

  17. Twin nucleation and migration in FeCr single crystals

    SciTech Connect

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin; Maier, Hans J.; Chumlyakov, Y.

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.

  18. Self Nucleation and Crystallization of Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cebe, Peggy

    Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semi-crystalline polymer with uses ranging from textiles to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments, and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures close to the observed peak melting temperature of 223 C. Using conventional DSC, PVA was heated at a rate of 10 C/min to various self-nucleation temperatures, Ts, within its melting range, briefly annealed, cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon self nucleation temperature. At low values of Ts, below 227 C, PVA only partially melts; residual crystal anneals while new, less perfect crystals form during cooling. Between 228 C and 234 C, PVA was found to crystallize exclusively by self-nucleation. For Ts above 235 C the PVA melts completely. Fast scanning chip-based calorimetry was used to heat and cool at 2000 K/s, to prevent degradation. Results of self nucleation experiments using fast scanning and conventional DSC will be compared. NSF DMR-1206010.

  19. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Doye, Jonathan P. K.

    2012-02-01

    We simulate the homogeneous nucleation of ice from supercooled liquid water at 220 K in the isobaric-isothermal ensemble using the MW monatomic water potential. Monte Carlo simulations using umbrella sampling are performed in order to determine the nucleation free energy barrier. We find the Gibbs energy profile to be relatively consistent with that predicted by classical nucleation theory; the free energy barrier to nucleation was determined to be ˜18 kBT and the critical nucleus comprised ˜85 ice particles. Growth from the supercooled liquid gives clusters that are predominantly cubic, whilst starting with a pre-formed subcritical nucleus of cubic or hexagonal ice results in the growth of predominantly that phase of ice only.

  20. Electron diffraction data on nucleation and growth of an hcp phase in homogeneous (Ar) and heterogeneous (Ar-Kr) clusters

    NASA Astrophysics Data System (ADS)

    Danylchenko, O. G.; Kovalenko, S. I.; Konotop, O. P.; Samovarov, V. N.

    2014-12-01

    The nucleation and growth of the hcp phase in homogeneous (Ar) and heterogeneous (Ar-Kr) clusters formed in adiabatically expanding supersonic jets of the inert gases are studied by electron diffraction. The average size of the clusters ranges from 2 × 103 to 1 × 105 atoms/cluster. A threshold size of the clusters is found at which an hcp phase forms along with the fcc structure. The relative amount of the hcp phase in the single crystal clusters increases with their size. The relative volume of the hcp phase in the heterogeneous clusters exceeds that in homogeneous clusters of the same size. A correlation is established between the relative volume of the hcp phase in the clusters and the number of "defect" planes contained in the fcc matrix from which hcp phase nucleates. It is found that in very large (δ ≥ 150 Å) polycrystalline aggregations the fraction of the hcp phase reaches a maximum and does not increase as the clusters become larger. A mechanism is proposed for the nucleation and growth of the hcp phase in inert gas clusters.

  1. Surface or internal nucleation and crystallization of glass-ceramics

    NASA Astrophysics Data System (ADS)

    Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.

    2013-07-01

    Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.

  2. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.

    PubMed

    Knopf, Daniel Alexander; Lopez, Miguel David

    2009-09-28

    Homogeneous ice nucleation from micrometre-sized aqueous (NH4)2SO4 and aqueous levoglucosan particles is studied employing the optical microscope technique. A new experimental method is introduced that allows us to control the initial water activity of the aqueous droplets. Homogeneous ice freezing temperatures and ice melting temperatures of these aqueous solution droplets, 10 to 80 microm in diameter, are determined. Homogeneous ice nucleation from aqueous (NH4)2SO4 particles 5-39 wt% in concentration and aqueous levoglucosan particles with initial water activities of 0.85-0.99 yield upper limits of the homogeneous ice nucleation rate coefficients of up to 1x10(10) cm(-3) s(-1). The experimentally derived homogeneous ice freezing temperatures and upper limits of the homogeneous ice nucleation rate coefficients are compared with corresponding predictions of the water-activity-based ice nucleation theory [T. Koop, B. P. Luo, A. Tsias and T. Peter, Nature, 2000, 406, 611]. It is found that the water-activity-based ice nucleation theory can capture the experimentally derived ice freezing temperatures and homogeneous ice nucleation rate coefficients of the aqueous (NH4)2SO4 and aqueous levoglucosan particles. However, the level of agreement between experimentally derived and predicted values, in particular for homogeneous ice nucleation rate coefficients, crucially depends on the extrapolation method to obtain water activities at corresponding freezing temperatures. It is suggested that the combination of experimentally derived ice freezing temperatures and homogeneous ice nucleation rate coefficients can serve as a better validation of the water-activity-based ice nucleation theory than when compared to the observation of homogeneous ice freezing temperatures alone. The atmospheric implications with regard to the application of the water-activity-based ice nucleation theory and derivation of maximum ice particle production rates are briefly discussed.

  3. Environmental Scanning Electron Microscopy of Ice Crystal Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    Amaral, M.; Miller, A. L.; Magee, N. B.

    2012-12-01

    Ice crystal nucleation and growth are dual processes that can be studied uniquely through Environmental Scanning Electron Microscopy (ESEM). By utilizing differential pumping systems and a Peltier element to vary the vapor pressure and to achieve temperatures below the freezing point, respectively, it is possible to obtain supersaturated conditions relative to ice in the sample chamber of an Environmental Scanning Electron Microscope. Ice crystals were nucleated on a variety of atmospherically relevant substrates and grown in a pure water vapor environment in the chamber of a FEI-Quanta 200 ESEM. To initiate ice crystal nucleation, the Peltier element was set at a temperature between -10°C and -25°C, while the chamber water vapor pressure was adjusted to just below the frost point. Ice crystal nucleation and growth was then controlled by careful adjustments of chamber pressure and temperature, where high-magnification images of hexagonal ice crystals were acquired at nanoscale resolution. These images display prominent mesoscopic surface topography including linear strands, crevasses, islands, and steps. The surface features are seen to be ubiquitously present at all observed temperatures, at many supersaturated and subsaturated conditions, and on all crystal facets. Additionally, a pre-growth "shadow" resembling a dark spot sometimes appeared on areas of the sample stage immediately preceding ice crystal nucleation and growth. The observations represent the most highly magnified images of ice surfaces yet reported and significantly expand the range of ambient conditions where the features are conspicuous. New knowledge of the presence and characteristics of these features could transform the fundamental understanding of ice crystal growth kinetics and its physical parameterization in the context of atmospheric and cryospheric science. To the extent these observations are applicable to atmospheric ice, the results suggest that the radiative representation of ice

  4. Atomistic simulations of dislocation nucleation in single crystals and grain boundaries

    NASA Astrophysics Data System (ADS)

    Tschopp, Mark A., Jr.

    The objective of this research is to use atomistic simulations to investigate dislocation nucleation from grain boundaries in face-centered cubic aluminum and copper. This research primarily focuses on asymmetric tilt grain boundaries and has three main components. First, this research uses molecular statics simulations of the structure and energy of these faceted, dissociated grain boundary structures to show that Sigma3 asymmetric boundaries can be decomposed into the structural units of the Sigma3 symmetric tilt grain boundaries, i.e., the coherent and incoherent twin boundaries. Moreover, the energy for all Sigma3 asymmetric boundaries is predicted with only the energies of the Sigma3 symmetric boundaries and the inclination angle. Understanding the structure of these boundaries provides insight into dislocation nucleation from these boundaries. Further work into the structure and energy of other low order Sigma asymmetric boundaries and the spatial distribution of free volume within the grain boundaries also provides insight into dislocation nucleation mechanisms. Second, this research uses molecular dynamics deformation simulations with uniaxial tension applied perpendicular to these boundaries to show that the dislocation nucleation mechanisms in asymmetric boundaries are highly dependent on the faceted, dissociated structure. Grain boundary dislocation sources can act as perfect sources/sinks for dislocations or may violate this premise by increasing the dislocation content of the boundary during nucleation. Furthermore, simulations under uniaxial tension and uniaxial compression show that nucleation of the second partial dislocation in copper exhibits tension-compression asymmetry. Third, this research explores the development of models that incorporate the resolved stress components on the slip system of dislocation nucleation to predict the atomic stress required for dislocation nucleation from single crystals and grain boundaries. Single crystal

  5. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.

    PubMed

    Ickes, Luisa; Welti, André; Hoose, Corinna; Lohmann, Ulrike

    2015-02-28

    The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any CNT-based parameterization of homogeneous ice formation is less well-constrained than desired for modeling applications. Different approaches to estimate the thermodynamic and kinetic parameters of CNT are reviewed in this paper and the sensitivity of the calculated nucleation rate to the choice of parameters is investigated. We show that nucleation rates are very sensitive to this choice. The sensitivity is governed by one parameter - the interfacial tension between ice and water, which determines the energetic barrier of the nucleation process. The calculated nucleation rate can differ by more than 25 orders of magnitude depending on the choice of parameterization for this parameter. The second most important parameter is the activation energy of the nucleation process. It can lead to a variation of 16 orders of magnitude. By estimating the nucleation rate from a collection of droplet freezing experiments from the literature, the dependence of these two parameters on temperature is narrowed down. It can be seen that the temperature behavior of these two parameters assumed in the literature does not match with the predicted nucleation rates from the fit in most cases. Moreover a comparison of all possible combinations of theoretical parameterizations of the dominant two free parameters shows that one combination fits the fitted nucleation rates best, which is a description of the interfacial tension coming from a molecular model [Reinhardt and Doye, J. Chem. Phys., 2013, 139, 096102] in combination with the activation energy derived from self-diffusion measurements [Zobrist

  6. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.

    PubMed

    Ickes, Luisa; Welti, André; Hoose, Corinna; Lohmann, Ulrike

    2015-02-28

    The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any CNT-based parameterization of homogeneous ice formation is less well-constrained than desired for modeling applications. Different approaches to estimate the thermodynamic and kinetic parameters of CNT are reviewed in this paper and the sensitivity of the calculated nucleation rate to the choice of parameters is investigated. We show that nucleation rates are very sensitive to this choice. The sensitivity is governed by one parameter - the interfacial tension between ice and water, which determines the energetic barrier of the nucleation process. The calculated nucleation rate can differ by more than 25 orders of magnitude depending on the choice of parameterization for this parameter. The second most important parameter is the activation energy of the nucleation process. It can lead to a variation of 16 orders of magnitude. By estimating the nucleation rate from a collection of droplet freezing experiments from the literature, the dependence of these two parameters on temperature is narrowed down. It can be seen that the temperature behavior of these two parameters assumed in the literature does not match with the predicted nucleation rates from the fit in most cases. Moreover a comparison of all possible combinations of theoretical parameterizations of the dominant two free parameters shows that one combination fits the fitted nucleation rates best, which is a description of the interfacial tension coming from a molecular model [Reinhardt and Doye, J. Chem. Phys., 2013, 139, 096102] in combination with the activation energy derived from self-diffusion measurements [Zobrist

  7. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    1999-01-01

    The following list summarizes the most important results that have been consistently reported for glass forming melts in microgravity: (1) Glass formation is enhanced for melts prepared in space; (2) Glasses prepared in microgravity are more chemically homogeneous and contain fewer and smaller chemically heterogeneous regions than identical glasses prepared on earth; (3) Heterogeneities that are deliberately introduced such as Pt particles are more uniformly distributed in a glass melted in space than in a glass melted on earth; (4) Glasses prepared in microgravity are more resistant to crystallization and have a higher mechanical strength and threshold energy for radiation damage; and (5) Glasses crystallized in space have a different microstructure, finer grains more uniformly distributed, than equivalent samples crystallized on earth. The preceding results are not only scientifically interesting, but they have considerable practical implications. These results suggest that the microgravity environment is advantageous for developing new and improved glasses and glass-ceramics that are difficult to prepare on earth. However, there is no suitable explanation at this time for why a glass melted in microgravity will be more chemically homogeneous and more resistant to crystallization than a glass melted on earth. A fundamental investigation of melt homogenization, nucleation, and crystal growth processes in glass forming melts in microgravity is important to understanding these consistently observed, but yet unexplained results. This is the objective of the present research. A lithium disilicate (Li2O.2SiO2) glass will be used for this investigation, since it is a well studied system, and the relevant thermodynamic and kinetic parameters for nucleation and crystal growth at 1-g are available. The results from this research are expected to improve our present understanding of the fundamental mechanism of nucleation and crystal growth in melts and liquids, and to lead

  8. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  9. Direct Calculation of the Rate of Homogeneous Ice Nucleation for a Molecular Model of Water

    NASA Astrophysics Data System (ADS)

    Haji-Akbari, Amir; Debenedetti, Pablo

    Ice formation is ubiquitous in nature, with important consequences in many systems and environments. However, its intrinsic kinetics and mechanism are difficult to discern with experiments. Molecular simulations of ice nucleation are also challenging due to sluggish structural relaxation and the large nucleation barriers, and direct calculations of homogeneous nucleation rates have only been achieved for mW, a monoatomic coarse-grained model of water. For the more realistic molecular models, only indirect estimates have been obtained by assuming the validity of classical nucleation theory. Here, we use a coarse-grained variant of a path sampling approach known as forward-flux sampling to perform the first direct calculation of the homogeneous nucleation rate for TIP4P/Ice, which is the most accurate water model for studying ice polymorphs. By using a novel topological order parameter, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice polymorphs. In this competition, cubic ice wins as its growth leads to more compact crystallites

  10. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-08-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments.

  11. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    2003-01-01

    This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one1 of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on earth (1g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials. The classical theories for nucleation and crystal growth for a glass or melt do not contain any parameter that is directly dependent upon the g-value, so it is not readily apparent why glasses prepared in microgravity should be

  12. Sizes and spatial relationships of crystals in granitic plutons: Exploring the crystallization gaps, heterogeneous nucleation, and mechanical clustering of crystals

    NASA Astrophysics Data System (ADS)

    Špillar, V.; Dolejš, D.

    2012-04-01

    Quantitative measurements on magmatic textures provide an important insight into nucleation and growth rates as well as mechanical effects such as crystal settling and melt extraction in magma reservoirs. Crystal size distribution (CSD) measurements and spatial analysis are routinely applied to dilute volcanic suspensions but comparable data on holocrystalline multiphase plutonic rocks are uncommon. We present quantitative description of CSDs and spatial relationships for all rock-forming minerals from an intrusive suite of the Fichtelgebirge/Smrčiny granite batholith in central Europe. This composite body represents two spatially unrelated chambers, consisting of peraluminous biotite, two-mica, and tourmaline-muscovite granites, crystallized as texturally diverse batches covering equigranular, serial porphyritic, and hiatal porphyritic fine- to coarse-grained types. All granite samples exhibit straight to concave-up CSDs in the natural log of population density vs. crystal size projection. Straight CSDs were only found in fine-grained biotite-rich granites representing early crystallizing roof facies of the batholith. For all other samples, the slope decreases from -65 to nearly 0 mm-1 as grain size increases. The curvature can result from superposition of two quasilinear segments. It cannot be produced by two separate crystallization events because the population of larger grains is about 10 times more abundant by volume than the fine one. Instead, we propose that the concave-up CSDs developed in situ, with enhanced nucleation and/or reduced growth rates during the final stage of solidification. Spatial analysis and measurements of contact relationships reveal significant clustering of crystals except near the roof of the batholith. The clustering index decreases to 0.6 for the smallest crystals (random = 1), Ripley's Ľ-function reaches 0.8 mm, and the clusters are mineral sensitive: pairs of like phases appear to be more clustered than the unlike pairs. The

  13. Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity

    SciTech Connect

    Easter, R.C. ); Peters, L.K. . Dept. of Chemical Engineering)

    1993-01-01

    This report discusses binary homogeneous nucleation involving H[sub 2]SO[sub 4] and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H[sub 2]SO[sub 4] vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H[sub 2]SO[sub 4]/H[sub 2]O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H[sub 2]SO[sub 4] vapor. Furthermore, the vapor pressure of H[sub 2]SO[sub 4] is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H[sub 2]SO[sub 4] vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.

  14. Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity

    SciTech Connect

    Easter, R.C.; Peters, L.K.

    1993-01-01

    This report discusses binary homogeneous nucleation involving H{sub 2}SO{sub 4} and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H{sub 2}SO{sub 4} vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H{sub 2}SO{sub 4}/H{sub 2}O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H{sub 2}SO{sub 4} vapor. Furthermore, the vapor pressure of H{sub 2}SO{sub 4} is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H{sub 2}SO{sub 4} vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.

  15. Inducing crystallization of poly(3-hexylthiophene) nanowires by well-defined nucleation sites

    NASA Astrophysics Data System (ADS)

    Acevedo-Cartagena, Daniel; Zhang, Yue; Trabanino, Elvira; Briseno, Alejandro; Hayward, Ryan; Alejandro Briseno Collaboration; Ryan Hayward Team

    2014-03-01

    Solution crystallization of conjugated polymers promises a facile way to fabricate nano-scale structures with desirable properties for improving organic-based electronic devices. The addition of well-defined nucleation sites to a supersaturated solution can induce crystallization and allow for control over structural features. We identified conditions when homogenous nucleation of a model semicrystalline polymer, poly(3-hexylthiophene), P3HT, is suppressed, allowing for controlled crystallization into nanowires upon addition of well-defined nucleation sites. The hysteresis window between crystallization and melting temperatures of P3HT nanowires is tuned using concentration, molecular weight of the polymer, and solvent quality. We show that in this manner short P3HT nanowires (``seeds'') can be extended, though obtaining well controlled extension into linear structure remains an open challenge. In a similar fashion, graphene or graphite coated substrates were found to be excellent nucleating agents for growth of nanowire films. Northeast Alliance for Graduate Education and the Professoriate (NEAGEP), National Science Foundation Graduate Research Fellowship.

  16. Examination of surface nucleation during the growth of long alkane crystals by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Bourque, Alexander; Rutledge, Gregory

    2015-03-01

    Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation using a validated united atom model. By quenching below the melting temperature of C50 (370 K), propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface was observed. By tracking the location of the midpoint in the orientational order parameter profile between the crystal and melt, crystal growth rates between 0.015-0.040 m/s were observed, for quench depths of 10 to 70 K below the melting point. In this work, surface nucleation is identified with the formation of 2D clusters of crystalline sites within layers parallel to the propagating growth front, by analogy to the formation of 3D clusters in primary, homogeneous nucleation. These surface nucleation events were tracked over several layers and numerous simulations, and a mean first passage time analysis was employed to estimate critical nucleus sizes, induction times and rates for surface nucleation. Based on new insights provided by the detailed molecular trajectories obtained from simulation, the classical theory proposed by Lauritzen and Hoffman is re-examined.

  17. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  18. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  19. Screening of nucleation conditions using levitated drops for protein crystallization.

    PubMed

    Santesson, Sabina; Cedergren-Zeppezauer, Eila S; Johansson, Thomas; Laurell, Thomas; Nilsson, Johan; Nilsson, Staffan

    2003-04-01

    The growth of suitable protein crystals is an essential step in the structure determination of a protein by X-ray crystallography. At present, crystals are mostly grown using trial-and-error procedures, and protocols that rapidly screen for the crystal nucleation step are rare. Presented here is an approach to minimize the consumption of precious protein material while searching for the nucleation conditions. Acoustically levitated drops of known protein concentration (0.25-1.5-microL volumes) are injected with crystallizing agents using piezoelectric flow-through dispensers (ejecting 50-100-pL droplets at 1-9000 droplets/s). A restricted number of crystallizing agents representing three classes are used: poly(ethylene glycol), salts, and the viscous alcohol 2-methyl 2,4-pentanediol. From a digitized picture of the levitated drop volume, calculations are performed giving the concentrations of all components in the drop at any time during a "precipitation experiment". Supersaturation is the prerequisite for crystal nucleation, and protein precipitation indicates high supersaturation. A light source illuminates the levitated drop, and protein precipitation is monitored using right-angle light scattering. On the basis of these intensity measurements and the volume determination, precipitation diagrams for each crystallizing agent are constructed that give the protein/crystallizing agent concentration boundaries between the minimum and the maximum detectable protein precipitation. Guided by the concentration values obtained from such plots, when approaching the supersaturation region, separate crystallization drops are mixed and allowed to equilibrate under paraffin oil. At conditions in which microcrystals can be observed, the nucleation tendency of the macromolecule is confirmed. Optimization of crystallization conditions can then follow. Proteins tested include alcohol dehydrogenase and D-serine dehydratase. Alcohol dehydrogenase, known to crystallize easily, was

  20. Nucleation kinetics of urea succinic acid -ferroelectric single crystal

    NASA Astrophysics Data System (ADS)

    Dhivya, R.; Vizhi, R. Ezhil; Babu, D. Rajan

    2015-06-01

    Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.

  1. Homogeneous nucleation and droplet growth in nitrogen. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dotson, E. H.

    1983-01-01

    A one dimensional computer model of the homogeneous nucleation process and growth of condensate for nitrogen flows over airfoils is developed to predict the onset of condensation and thus to be able to take advantage of as much of Reynolds capability of cryogenic tunnels as possible. Homogeneous nucleation data were taken using a DFVLR CAST-10 airfoil in the 0.3-Meter Transonic Cryogenic Tunnel and are used to evaluate the classical liquid droplet theory and several proposed corrections to it. For predicting liquid nitrogen condensation effects, use of the arbitrary Tolman constant of 0.25 x 250 billionth m or the Reiss or Kikuchi correction agrees with the CAST-10 data. Because no solid nitrogen condensation were found experimentally during the CAST-10 experiments, earlier nozzle data are used to evaluate corrections to the classical liquid droplet theory in the lower temperature regime. A theoretical expression for the surface tension of solid nitrogen is developed.

  2. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions

    PubMed

    Koop; Luo; Tsias; Peter

    2000-08-10

    The unique properties of water in the supercooled (metastable) state are not fully understood. In particular, the effects of solutes and mechanical pressure on the kinetics of the liquid-to-solid phase transition of supercooled water and aqueous solutions to ice have remained unresolved. Here we show from experimental data that the homogeneous nucleation of ice from supercooled aqueous solutions is independent of the nature of the solute, but depends only on the water activity of the solution--that is, the ratio between the water vapour pressures of the solution and of pure water under the same conditions. In addition, we show that the presence of solutes and the application of pressure have a very similar effect on ice nucleation. We present a thermodynamic theory for homogeneous ice nucleation, which expresses the nucleation rate coefficient as a function of water activity and pressure. Recent observations from clouds containing ice are in good agreement with our theory and our results should help to overcome one of the main weaknesses of numerical models of the atmosphere, the formulation of cloud processes.

  3. Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2014-07-01

    In cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have studied a preactivation mechanism that markedly enhances the particles' heterogeneous ice nucleation ability. First cloud expansion experiments were performed at a high temperature (267-244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the preactivated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and from 4 to 20%, respectively. Preactivation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  4. Crystal nucleation and glass formation in metallic alloy melts

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.

  5. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (˜0.9 J {m}^{-2}) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (1033 - 34 s-1 m-3) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  6. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    PubMed

    Cai, Y; Wu, H A; Luo, S N

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  7. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    PubMed

    Cai, Y; Wu, H A; Luo, S N

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence. PMID:24908018

  8. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    SciTech Connect

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  9. Crystal nucleation in glass-forming alloy and pure metal melts under containerless and vibrationless conditions

    NASA Technical Reports Server (NTRS)

    Spaepen, F.; Turnbull, D.

    1982-01-01

    The undercooling behavior of large spheroids of Pd40Ni40P40 was investigated. By surface etching, supporting the specimens on a fused silica substrate, and successive heating and cooling, crystallization can be eliminated, presumable due to the removal of surface heterogeneities. By this method samples up to 3.2g with a 0.53 mm minor diameter, were made entirely glassy, except for some superficial crystals comprising less than 0.5% of the volume. These experiments show that a cooling rate of approximately 1 K/sec is adequate to avoid copious homogeneous nucleation in the alloy, and that by eliminating or reducing the effectiveness of heterogeneous nucleation sites, it is possible to form bulk samples of this metallic glass with virtually unlimited dimensions.

  10. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  11. Production of organic micro-crystals by using templated crystallization as nucleation trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirokuni; Takiyama, Hiroshi

    2013-06-01

    Fine monomodal crystalline particles are required in many fields such as pharmaceuticals and fine chemicals. In this study, the effect of template at the air/solution interface on the nucleation phenomenon was investigated. And the relationship between the nucleation time and the time at which the template interfaces were introduced into the supersaturated solution became clear, and the nucleation phenomenon of templated crystallization was also investigated. If the time of nucleation can be controlled by using template effects, monomodal crystalline particles can also be produced. The glycine- water-L-leucine (template compound) system was used. The air bubble insertion experiments and nucleation and growth experiments at re-created air/solution interface were carried out. As a result, the nucleation time after the template interface was introduced into the supersaturated solution was important for controlling size distribution. The formation of new template interface into the supersaturated solution acted as the nucleation trigger which induced controlled nucleation. By using this nucleation trigger, monomodal crystalline particles were obtained at the air/solution interface. By collecting crystalline particles immediately after nucleation was induced by nucleation trigger, submicron-order particles were obtained.

  12. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  13. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  14. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    NASA Astrophysics Data System (ADS)

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-02-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.

  15. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals.

    PubMed

    Govada, Lata; Leese, Hannah S; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S P; Chayen, Naomi E

    2016-02-04

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.

  16. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    PubMed Central

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-01-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions. PMID:26843366

  17. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses

    NASA Astrophysics Data System (ADS)

    Thieme, Katrin; Avramov, Isak; Rüssel, Christian

    2016-05-01

    The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects.

  18. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses

    PubMed Central

    Thieme, Katrin; Avramov, Isak; Rüssel, Christian

    2016-01-01

    The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects. PMID:27150844

  19. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses.

    PubMed

    Thieme, Katrin; Avramov, Isak; Rüssel, Christian

    2016-01-01

    The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects. PMID:27150844

  20. Intermolecular interactions, nucleation, and thermodynamics of crystallization of hemoglobin C.

    PubMed Central

    Vekilov, Peter G; Feeling-Taylor, Angela R; Petsev, Dimiter N; Galkin, Oleg; Nagel, Ronald L; Hirsch, Rhoda Elison

    2002-01-01

    The mutated hemoglobin HbC (beta 6 Glu-->Lys), in the oxygenated (R) liganded state, forms crystals inside red blood cells of patients with CC and SC diseases. Static and dynamic light scattering characterization of the interactions between the R-state (CO) HbC, HbA, and HbS molecules in low-ionic-strength solutions showed that electrostatics is unimportant and that the interactions are dominated by the specific binding of solutions' ions to the proteins. Microscopic observations and determinations of the nucleation statistics showed that the crystals of HbC nucleate and grow by the attachment of native molecules from the solution and that concurrent amorphous phases, spherulites, and microfibers are not building blocks for the crystal. Using a novel miniaturized light-scintillation technique, we quantified a strong retrograde solubility dependence on temperature. Thermodynamic analyses of HbC crystallization yielded a high positive enthalpy of 155 kJ mol(-1), i.e., the specific interactions favor HbC molecules in the solute state. Then, HbC crystallization is only possible because of the huge entropy gain of 610 J mol(-1) K(-1), likely stemming from the release of up to 10 water molecules per protein intermolecular contact-hydrophobic interaction. Thus, the higher crystallization propensity of R-state HbC is attributable to increased hydrophobicity resulting from the conformational changes that accompany the HbC beta 6 mutation. PMID:12124294

  1. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-08-25

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature.

  2. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    PubMed Central

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  3. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-08-25

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  4. A simple apparatus for controlling nucleation and size in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Gernert, Kim M.; Smith, Robert; Carter, Daniel C.

    1988-01-01

    A simple device is described for controlling vapor equilibrium in macromolecular crystallization as applied to the protein crystal growth technique commonly referred to as the 'hanging drop' method. Crystal growth experiments with hen egg white lysozyme have demonstrated control of the nucleation rate. Nucleation rate and final crystal size have been found to be highly dependent upon the rate at which critical supersaturation is approached. Slower approaches show a marked decrease in the nucleation rate and an increase in crystal size.

  5. Method and apparatus for nucleating the crystallization of undercooled materials

    DOEpatents

    Benson, David K.; Barret, Peter F.

    1989-01-01

    A method of storing and controlling a release of latent heat of transition of a phase-change material is disclosed. The method comprises trapping a crystallite of the material between two solid objects and retaining it there under high pressure by applying a force to press the two solid objects tightly together. A crystallite of the material is exposed to a quantity of the material that is in a supercooled condition to nucleate the crystallization of the supercooled material.

  6. Crystallization of isoelectrically homogeneous cholera toxin

    SciTech Connect

    Spangler, B.D.; Westbrook, E.M. )

    1989-02-07

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-{angstrom} resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits.

  7. Characterization of crystal growth using a spiral nucleation model

    NASA Astrophysics Data System (ADS)

    Martins, P. M.; Rocha, F.

    2007-08-01

    Classical concepts of two-dimensional nucleation and spiral growth are used together with recent findings on the dynamics of dislocation spirals to derive a new crystal growth model. Initial growth nuclei result from the organization of adsorbed molecules in spirals around surface dislocations. The energetic barrier for the activation of the spiral nuclei is considerably lower than the admitted by classical two dimensional nucleation models. Stable nuclei evolve into bigger growth hillocks in supersaturated media through the incorporation of adsorbed units into their steps. The displacement velocity of steps during solution and vapour growth is calculated by different kinetic approaches, taking into consideration the distinct role of surface diffusion in each process, and avoiding known limitations of conventional theories. A generalized expression is obtained relating the crystal growth rate with main variables such as supersaturation, temperature, crystal size, surface topology and interfacial properties. At the end of the paper, the crystallization kinetics of sucrose measured at 40 °C is interpreted in the light of the new perspectives resulting from the proposed model. The application example illustrates how to estimate interfacial and topological properties from the experimental crystal growth results.

  8. Nucleation Chemical Physics: From Vapor Phase Clusters to Crystals in Solution

    SciTech Connect

    Kathmann, Shawn M.

    2007-08-03

    Both vapor-phase clusters and condensed-phase crystals are important in a wide variety of fundamental and applied problems in chemical physics. Favorable fluctuations in a supersaturated phase generate clusters of the new phase – exactly how one defines these new clusters as distinct from the mother phase represents a continuing challenge in molecular theories of nucleation. These incipient clusters can form homogeneously within the mother phase or heterogeneously on seeds, dust, impurities, ions, or others stability-inducing atomic/molecular structures (e.g., steps, edges, vacancies, etc.). Upon reaching a critical size the clusters may grow to macroscopic dimensions if enough nucleating material is present in surrounding environment or until relaxation processes dominate bringing the phase transformation to completion. This work was supported by the Chemical and Material Sciences Division, Office of Basic Energy Sciences, Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Homogeneous nucleation in sickle hemoglobin: stochastic measurements with a parallel method.

    PubMed Central

    Cao, Z; Ferrone, F A

    1997-01-01

    The homogeneous nucleation rate for sickle hemoglobin polymerization has been measured for concentrations from 3.9 to 4.9 mM and temperatures from 13 degrees C to 35 degrees C by observing the stochastic fluctuations of the time to complete 10% of the reaction after photolysis of the carboxy derivative. To allow efficient data collection, a mesh was used to divide the photolysis beam into an array of smaller beams, which allowed parallel observation of about 100 different regions. Nucleation rates measured here are consistent with more restricted previously published data and, when combined with directly measured monomer addition rates, are consistent with previous analysis of progress curves. By describing these rates with equilibrium nucleation theory, the concentration of nuclei and hence their stability can be ascertained. Consequently, the chemical potential by which a monomer is attached to the polymer is determined. This attachment energy ranges from -6.6 to -8.0 kcal/mol between 15 degrees C and 35 degrees C. The enthalpic part of that chemical potential is found to be equal to the enthalpy determined by solubility measurements, as expected from thermodynamic considerations. The entropic portion of the contact chemical potential contributes from -21.4 to -8.7 kcal/mol. The vibrational chemical potential of monomers in the polymer ranges from -25.7 to -27.4 kcal/mol over the same temperatures. PMID:8994619

  10. Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

    SciTech Connect

    Biener, M M; Biener, J; Hodge, A M; Hamza, A V

    2007-08-08

    The study of dislocation nucleation in closed-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single-crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity which is distinctly different from that of closed-packed metals. Most noticeable, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in context of the characteristic plastic deformation behavior of bcc metals.

  11. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  12. Inferred Differences in Ice Crystal Nucleation Rates between Continental and Maritime Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Avery, M. A.; Garnier, A.

    2014-12-01

    We present in situ and remotely sensed evidence for the following working hypothesis: Heterogeneous nucleation dominates during deep continental convection until ice nuclei in the updraft cannot prevent supersaturation from increasing. As it increases, homogeneous nucleation eventually occurs near cloud top (T < -60°C), with much faster ice crystal production rates. This is not the case in maritime anvil cirrus, where updrafts associated with deep convection are slower, promoting heterogeneous nucleation. We hypothesize that differences in updraft velocities and their effect on supersaturation might create a difference in the N/IWC ratios. Based on In situ measurements of the ice particle size distribution (PSD) from two aircraft field campaigns (SPARTICUS & TC4) and MODIS satellite retrievals of the temperature dependence of the 12/11 μm effective absorption optical depth ratio or βeff, ice crystal nucleation rates appear to be anomalously high near the tops of continental thunderstorms relative to maritime thunderstorms. The ice crystal nucleation rate, having units of g-1 s-1, is more related to the ratio of ice particle number concentration/ice water content (or N/IWC, with units of g-1) than to N. A surprisingly tight relationship was discovered between βeff and N/IWC, allowing N/IWC to be estimated from satellite retrievals of βeff. These retrievals verified that deep convection during TC4 over water did not produce the much higher N/IWC ratios observed during SPARTICUS in continental anvil cirrus. The imaging infrared radiometer (IIR) aboard CALIPSO has channels at 8, 10 and 12 μm and provides a data record of βeff dating back to 2006, as well as vertical profiles of IWC, extinction, depolarization and 1064/532 nm backscatter ratio from the CALIOP lidar. We will compare the MODIS-derived βeff and N/IWC relationship with that derived using the IIR data. We will also investigate the relationship between N/IWC, βeff and the vertically-resolved lidar

  13. Empirical relationships of homogeneous bubble nucleation, growth and coalescence in rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.; Gardner, J. E.; Truong, N.; Toledo, P.; Hajimirza, S.

    2015-12-01

    Decompression experiments of homogeneous nucleation, growth and coalescence of bubbles in rhyolitic melt provide new data for an empirical formulation to predict bubble number density and size from controlled experimental conditions. Samples were hydrated at 200-250 MPa and 850 °C to water contents of 5.4-6.0 wt%, followed by decompression at rates of 60-150 MPa.s-1. Samples were held at final pressures for 6-90 s, allowing for bubble growth and coalescence after decompression and nucleation. Scanning electron microscopic (SEM) images and computed tomography (CT) scans of the decompressed glasses were analyzed for size distributions of both isolated and coalesced bubbles separately. Sample porosities vary from 4% to 63%, and connected porosity is positively correlated with total porosity for samples where it is greater than approximately 35%. A steep increase in the proportion of connected bubbles is observed once the average bubble wall thickness becomes lower than approximately 2 μm. In combination with SEM, CT and bubble size distributions these results indicate that bubble coalescence is independent of bubble size. Bubble number density varies from 8.9×1011 m-3 to 4.4×1016 m-3 (melt-referenced), and is positively correlated with the degree of supersaturation (130-210 MPa), as well as initial water content. For most experiments, we do not observe any increase in bubble number density after 10-20 s, suggesting that bubble nucleation has stopped. The bubble number density does not show a systematic correlation with decompression rate.

  14. Homogeneous nucleation of ethanol and n-propanol in a shock tube

    NASA Technical Reports Server (NTRS)

    Peters, F.

    1982-01-01

    The condensation by homogeneous nucleation of ethanol (200 proof) and of n-propanol (99.98%) carried at small mole fraction in dry air (99.995%) was studied in the unsteady, isentropic expansion of a shock tube. Samples of the vapor at different partial pressures in dry air at room temperature were expanded into the liquid coexistence regime of the condensing species. A Kristler pressure transducer and Rayleigh light scattering were used to measure the pressure in the expansion and the onset of condensation. Condensation was observed at different locations between 0.15 and 1 m upstream of the diaphragm location, which correspond to different cooling rates of of the vapor samples about 50 to 10 C/ms.

  15. Crystal nucleation and near-epitaxial growth in nacre.

    PubMed

    Olson, Ian C; Blonsky, Adam Z; Tamura, Nobumichi; Kunz, Martin; Pokroy, Boaz; Romao, Carl P; White, Mary Anne; Gilbert, Pupa U P A

    2013-12-01

    Nacre is the iridescent inner lining of many mollusk shells, with a unique lamellar structure at the sub-micron scale, and remarkable resistance to fracture. Despite extensive studies, nacre formation mechanisms remain incompletely understood. Here we present 20-nm, 2°-resolution polarization-dependent imaging contrast (PIC) images of shells from 15 mollusk species, mapping nacre tablets and their orientation patterns. These data show where new crystal orientations appear and how similar orientations propagate as nacre grows. In all shells we found stacks of co-oriented aragonite (CaCO₃) tablets arranged into vertical columns or staggered diagonally. Near the nacre-prismatic (NP) boundary highly disordered spherulitic aragonite is nucleated. Overgrowing nacre tablet crystals are most frequently co-oriented with the underlying aragonite spherulites, or with another tablet. Away from the NP-boundary all tablets are nearly co-oriented in all species, with crystal lattice tilting, abrupt or gradual, always observed and always small (plus or minus 10°). Therefore aragonite crystal growth in nacre is near-epitaxial. Based on these data, we propose that there is one mineral bridge per tablet, and that "bridge tilting" may occur without fracturing the bridge, hence providing the seed from which the next tablet grows near-epitaxially.

  16. Influence of protein solution in nucleation and optimized formulation for the growth of ARM lipase crystal

    NASA Astrophysics Data System (ADS)

    Rahman, Raja Noor Zaliha Raja Abd; Masomian, Malihe; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad

    2015-09-01

    ARM lipase is a thermostable and organic solvent tolerant enzyme which was highly purified prior to crystallization. The His-tagged ARM lipase was purified with immobilized metal affinity chromatography followed by anion-exchange chromatography. The effect of different salt concentrations on stability, solubility and crystal nucleation of the protein was studied. The highly purified and homogeneous ARM lipase with protein concentration of 2 mg/mL was successfully crystallized by a sitting drop, vapor diffusion method with the use of 0.1 M MES monohydrate pH 6.5 and 12% (v/v) polyethylene glycol (PEG) 20000 as precipitant. The crystallization conditions were optimized by changing the pH and concentration of the precipitant. The optimum crystallization condition was 2 mg/mL ARM lipase in 0.1 M Tris-HCl, 0.15 M NaCl, pH 8.0 protein solution, crystallized using 0.1 M Tris-HCl, pH 8.0 and 12% (v/v) PEG 20000 as precipitant.

  17. A Proposed Model for Protein Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined

  18. Crystal nucleation in glass-forming alloy and pure metal melts under containerless and vibrationless conditions

    NASA Technical Reports Server (NTRS)

    Turnbull, D.

    1979-01-01

    Crystal nucleation behavior in metallic alloys known to form glasses in melt quenching was characterized and from this characterization the possibility that massive amounts of certain alloys could be slow cooled to the glass state was assessed. Crystal nucleation behavior of pure liquid metals was examined experimentally, under containerless conditions, and theoretically.

  19. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.

    PubMed

    Chung, Sung-Yoon; Kim, Young-Min; Choi, Si-Young; Kim, Jin-Gyu

    2015-01-27

    It has been generally accepted that crystal shrinkage during Ostwald ripening can be understood simply as a reverse process of crystal growth, and as a result, little attention has been paid to shrinkage behavior. The entire microstructure of polycrystalline materials, however, forms as a consequence of both growing and shrinking crystals. Thus, scrutiny of shrinking characteristics in addition to growth aspects is essential for a complete understanding of the evolution of microstructure during Ostwald ripening. By capturing real-time in situ high-resolution electron micrographs at high temperature, we herein demonstrate the shrinkage behavior of nanocrystals embedded in a solid crystalline matrix during the ripening process of a metal phosphate. Unlike typical crystal growth behavior based on two-dimensional homogeneous nucleation, heterogeneous types of nucleation with nanoscale pits at solid-solid interfaces (or crystal edges) are observed to dominantly occur during shrinkage of the crystals. The findings of this study suggest that crystal shrinkage proceeds with a lower activation energy barrier than that of crystal growth, although both crystal growth and shrinkage take place at the same time during Ostwald ripening.

  20. Report on the Implementation of Homogeneous Nucleation Scheme in MARMOT-based Phase Field Simulation

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2013-09-30

    In this report, we summarized our effort in developing mesoscale phase field models for predicting precipitation kinetics in alloys during thermal aging and/or under irradiation in nuclear reactors. The first part focused on developing a method to predict the thermodynamic properties of critical nuclei such as the sizes and concentration profiles of critical nuclei, and nucleation barrier. These properties are crucial for quantitative simulations of precipitate evolution kinetics with phase field models. Fe-Cr alloy was chosen as a model alloy because it has valid thermodynamic and kinetic data as well as it is an important structural material in nuclear reactors. A constrained shrinking dimer dynamics (CSDD) method was developed to search for the energy minimum path during nucleation. With the method we are able to predict the concentration profiles of the critical nuclei of Cr-rich precipitates and nucleation energy barriers. Simulations showed that Cr concentration distribution in the critical nucleus strongly depends on the overall Cr concentration as well as temperature. The Cr concentration inside the critical nucleus is much smaller than the equilibrium concentration calculated by the equilibrium phase diagram. This implies that a non-classical nucleation theory should be used to deal with the nucleation of Cr precipitates in Fe-Cr alloys. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. A number of interesting phenomena were observed from the simulations: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrated that it is critical to introduce the correct critical nuclei into phase

  1. Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate).

    PubMed

    Chen, Jianxiang; Xu, Chunjiang; Wu, Defeng; Pan, Keren; Qian, Aiwen; Sha, Yulu; Wang, Li; Tong, Wei

    2015-12-10

    Cellulose crystals, including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC), were used as the fillers to prepare green composites with poly(β-hydroxybutyrate) (PHB) by melt mixing for crystallization study. The results reveal that the spherulite morphology of PHB and its composites depends highly on the crystallization temperature, evolving from bundle shaped to ring-banded and finally to irregular or zigzag textures with increase of temperature. However, the ring-banded structure is strongly affected by the presence of cellulose crystals, and the average band space decreases evidently with the addition of MCC or NCC. Compared with PHB/MCC composite, PHB/NCC composite shows degraded spherulite structure with smaller band space and higher flocculation level of peak-to-valley height because of stronger unbalanced stresses in this system. Besides, cellulose crystals can act as good heterogeneous nucleating agent to accelerate the crystallization of PHB, which is further confirmed by the polarized optical microscopy observations and the kinetic analyses.

  2. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    2001-01-01

    This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on Earth (1 g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on Earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials.

  3. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium

    NASA Astrophysics Data System (ADS)

    Chayen, Naomi E.; Saridakis, Emmanuel; Sear, Richard P.

    2006-01-01

    The determination of high-resolution structures of proteins requires crystals of suitable quality. Because of the new impetus given to structural biology by structural genomics/proteomics, the problem of crystallizing proteins is becoming increasingly acute. There is therefore an urgent requirement for the development of new efficient methods to aid crystal growth. Nucleation is the crucial step that determines the entire crystallization process. Hence, the holy grail is to design a "universal nucleant," a substrate that induces the nucleation of crystals of any protein. We report a theory for nucleation on disordered porous media and its experimental testing and validation using a mesoporous bioactive gel-glass. This material induced the crystallization of the largest number of proteins ever crystallized using a single nucleant. The combination of the model and the experimental results opens up the scope for the rational design of nucleants, leading to alternative means of controlling crystallization. protein crystallization | phase diagram | microbatch | vapor diffusion

  4. Predictive nucleation of crystals in small volumes and its consequences.

    PubMed

    Grossier, Romain; Hammadi, Zoubida; Morin, Roger; Veesler, Stéphane

    2011-07-01

    We propose another way of getting to the bottom of nucleation by using finite volume systems. Here we show, using a sharp tip, that a single nucleation event is launched as soon as the tip touches the supersaturated confined metastable solution. We thus control spatial and temporal location and demonstrate that confinement allows us to carry out predictive nucleation experiments. This control is a major step forward in understanding the factors influencing the nucleation process and its underlying physics.

  5. Enhancement of nucleation of protein crystals on nano-wrinkled surfaces.

    PubMed

    Bommineni, Praveen K; Punnathanam, Sudeep N

    2016-01-01

    The synthesis of high quality protein crystals is essential for determining their structure. Hence the development of strategies to facilitate the nucleation of protein crystals is of prime importance. Recently, Ghatak and Ghatak [Langmuir 2013, 29, 4373] reported heterogeneous nucleation of protein crystals on nano-wrinkled surfaces. Through a series of experiments on different proteins, they were able to obtain high quality protein crystals even at low protein concentrations and sometimes without the addition of a precipitant. In this study, the mechanism of protein crystal nucleation on nano-wrinkled surfaces is studied through Monte Carlo simulations. The wrinkled surface is modeled by a sinusoidal surface. Free-energy barriers for heterogeneous crystal nucleation on flat and wrinkled surfaces are computed and compared. The study reveals that the enhancement of nucleation is closely related to the two step nucleation process seen during protein crystallization. There is an enhancement of protein concentration near the trough of the sinusoidal surface which aids in nucleation. However, the high curvature at the trough acts as a deterrent to crystal nucleus formation. Hence, significant lowering of the free-energy barrier is seen only if the increase in the protein concentration at the trough is very high.

  6. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

  7. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons. PMID:16784271

  8. Control of nucleation and growth in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Meehan, Edward J.

    1988-01-01

    The potential advantages of nucleation and growth control through temperature, rather than the addition of precipitants or removal of solvent, are discussed. A simple light scattering arrangement for the characterization of nucleation and growth conditions in solutions is described. The temperature dependence of the solubility of low ionic strength lysozyme solutions is applied in preliminary nucleation and growth experiments.

  9. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  10. Mechanism for diamond nucleation and growth on single crystal copper surfaces implanted with carbon

    NASA Technical Reports Server (NTRS)

    Ong, T. P.; Xiong, Fulin; Chang, R. P. H.; White, C. W.

    1992-01-01

    The nucleation and growth of diamond crystals on single-crystal copper surfaces implanted with carbon ions is studied. Microwave plasma-enhanced chemical-vapor deposition is used for diamond growth. The single-crystal copper substrates were implanted either at room or elevated temperature with carbon ions prior to diamond nucleation. This procedure leads to the formation of a graphite film on the copper surface which greatly enhances diamond crystallite nucleation. A simple lattice model is constructed for diamond growth on graphite as 111 line (diamond) parallel to 0001 line (graphite) and 110 line (diamond) parallel to 1 1 -2 0 (graphite).

  11. A quantitative parameter-free prediction of simulated crystal nucleation times

    SciTech Connect

    Aga, Rachel S; Morris, James R; Hoyt, Jeffrey John; Mendelev, Mikhail I.

    2006-01-01

    We present direct comparisons between simulated crystal-nucleation times and theoretical predictions using a model of aluminum, and demonstrate that a quantitative prediction can be made. All relevant thermodynamic properties of the system are known, making the agreement of our simulation data with nucleation theories free of any adjustable parameters. The role of transient nucleation is included in the classical nucleation theory approach, and shown to be necessary to understand the observed nucleation times. The calculations provide an explanation on why nucleation is difficult to observe in simulations at moderate undercoolings. Even when the simulations are significantly larger than the critical nucleus, and when simulation times are sufficiently long, at moderate undercoolings the small concentration of critical nuclei makes the probability of the nucleation low in molecular dynamics simulations.

  12. On the question of two-step nucleation in protein crystallization.

    PubMed

    Sauter, Andrea; Roosen-Runge, Felix; Zhang, Fajun; Lotze, Gudrun; Feoktystov, Artem; Jacobs, Robert M J; Schreiber, Frank

    2015-01-01

    We report a real-time study on protein crystallization in the presence of multivalent salts using small angle X-ray scattering (SAXS) and optical microscopy, focusing particularly on the nucleation mechanism as well as on the role of the metastable intermediate phase (MIP). Using bovine beta-lactoglobulin as a model system in the presence of the divalent salt CdCl2, we have monitored the early stage of crystallization kinetics which demonstrates a two-step nucleation mechanism: protein aggregates form a MIP, which is followed by the nucleation of crystals within the MIP. Here we focus on characterizing and tuning the structure of the MIP using salt and the related effects on the two-step nucleation kinetics. The results suggest that increasing the salt concentration near the transition zone pseudo-c** enhances the energy barrier for both MIPs and crystal nucleation, leading to slow growth. The structural evolution of the MIP and its effect on subsequent nucleation is discussed based on the growth kinetics. The observed kinetics can be well described, using a rate-equation model based on a clear physical two-step picture. This real-time study not only provides evidence for a two-step nucleation process for protein crystallization, but also elucidates the role and the structural signature of the MIPs in the nonclassical process of protein crystallization.

  13. Crystal Nucleation and Growth in Mount Unzen Dacite Decompression Experiments

    NASA Astrophysics Data System (ADS)

    Almberg, L. D.; Larsen, J. F.; Eichelberger, J. C.

    2005-12-01

    Central to understanding eruption dynamics is the interplay of decompression and degassing, which triggers crystal nucleation and growth. Microlite and microphenocryst textures are an often-used tool to decipher the rates of magma ascent for specific eruptions. It is critical to determine the depth and time scale at which these processes take place to fully understand the system behavior. Conduit material retrieved from 1500 m depth from the USDP-4 at Mount Unzen, Japan provides a snap shot of a viscous magma en route to the surface and is a perfect counterpoint to compare with laboratory experiments under controlled P, T, and XH2O conditions. The core samples were identified as representing material from the 1991-1995 eruption based upon their elemental and isotopic composition and coincidence with a temperature maximum and alteration minimum (Nakada et al, ICDP Symposium, Potsdam, 2005). Three plagioclase crystal populations coexist in the spine emplaced at the conclusion of the eruption sequence in 1995, microlites (<20 μm), microphenocrysts (20-100 μm) and phenocrysts (>100 μm). Only phenocrysts and microlites are present in the samples extracted from 1500 m during drilling of the USDP-4 core. These textural differences are the focus of decompression experiments, with the purpose of replicating shallow level crystallization that may have occurred between 1500 m depth and the surface. It is possible that the microphenocrysts present in the dome lavas and absent in the conduit core could have formed at very shallow levels during magmatic ascent. Our experimental work delineates the role of decompression in controlling crystal size distributions in Unzen dacite, for comparison with the natural dome lavas and USDP-4 core samples. We conducted isothermal (870 ± 3°C) single and multi-step decompression experiments, equilibrated at 40 ± 3 MPa under water saturation and NNO conditions, and decompressed to 7.5 ± 0.5 MPa or 318 m depth. We ran such experiments for

  14. Experimental study of homogeneous nucleation from the bismuth supersaturated vapor: evaluation of the surface tension of critical nucleus.

    PubMed

    Onischuk, A A; Vosel, S V; Borovkova, O V; Baklanov, A M; Karasev, V V; di Stasio, S

    2012-06-14

    The homogeneous nucleation of bismuth supersaturated vapor is studied in a laminar flow quartz tube nucleation chamber. The concentration, size, and morphology of outcoming aerosol particles are analyzed by a transmission electron microscope (TEM) and an automatic diffusion battery (ADB). The wall deposit morphology is studied by scanning electron microscopy. The rate of wall deposition is measured by the light absorption technique and direct weighting of the wall deposits. The confines of the nucleation region are determined in the "supersaturation cut-off" measurements inserting a metal grid into the nucleation zone and monitoring the outlet aerosol concentration response. Using the above experimental techniques, the nucleation rate, supersaturation, and nucleation temperature are measured. The surface tension of the critical nucleus and the radius of the surface of tension are determined from the measured nucleation parameters. To this aim an analytical formula for the nucleation rate is used, derived from author's previous papers based on the Gibbs formula for the work of formation of critical nucleus and the translation-rotation correction. A more accurate approach is also applied to determine the surface tension of critical drop from the experimentally measured bismuth mass flow, temperature profiles, ADB, and TEM data solving an inverse problem by numerical simulation. The simulation of the vapor to particles conversion is carried out in the framework of the explicit finite difference scheme accounting the nucleation, vapor to particles and vapor to wall deposition, and particle to wall deposition, coagulation. The nucleation rate is determined from simulations to be in the range of 10(9)-10(11) cm(-3) s(-1) for the supersaturation of Bi(2) dimers being 10(17)-10(7) and the nucleation temperature 330-570 K, respectively. The surface tension σ(S) of the bismuth critical nucleus is found to be in the range of 455-487 mN/m for the radius of the surface of

  15. Homogenization of reconstructed crystal surfaces: Fick's law of diffusion.

    PubMed

    Margetis, Dionisios

    2009-05-01

    Fick's law for the diffusion of adsorbed atoms (adatoms) on crystal surfaces below roughening is generalized to account for surface reconstruction. In this case, material parameters vary spatially at the microscale, and the coarse graining for crystal steps via Taylor expansions is not strictly applicable. By invoking elements of the theory of composites in one independent space dimension, we homogenize the microscale description to derive the macroscopic adatom flux from step kinetics. This approach relies on a multiscale expansion for the adatom density. The effective surface diffusivity is determined through appropriate discrete averages of microscale kinetic parameters.

  16. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  17. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.

    PubMed

    Ghosh, Satinath; Ghosh, Swapan K

    2011-01-14

    Density functional theory (DFT) with square gradient approximation for the free energy functional and a model density profile are used to obtain an analytical expression for the size-dependent free energy of formation of a liquid drop from the vapor through the process of homogeneous nucleation, without invoking the approximations used in classical nucleation theory (CNT). The density of the liquid drop in this work is not the same as the bulk liquid density but it corresponds to minimum free energy of formation of the liquid drop. The theory is applied to study the nucleation phenomena from supersaturated vapor of Lennard-Jones fluid. The barrier height predicted by this theory is significantly lower than the same in CNT which is rather high. The density at the center of the small liquid drop as obtained through optimization is less than the bulk density which is in agreement with other earlier works. Also proposed is a sharp interface limit of the proposed DFT of nucleation, which is as simple as CNT but with a modified barrier height and this modified classical nucleation theory, as we call it, is shown to lead to improved results.

  18. Nucleation ahead of a C 60 crystal growing from the vapor

    NASA Astrophysics Data System (ADS)

    Schönherr, E.; Matsumoto, K.

    1997-07-01

    Single crystals of the fullerene C 60 are grown by the Pizzarello method in an argon atmosphere. A C 60 nucleus is formed ahead of the growing crystal when a drive rate greater than the limited mass-transfer rate is used. The analysis of the crystal growth rates and temperature distribution reveals a constitutional supersaturation which causes this particular type of nucleation.

  19. In-situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites

    NASA Astrophysics Data System (ADS)

    Slouf, Miroslav; Krejcikova, Sabina; Vackova, Tatana; Kratochvil, Jaroslav; Novak, Libor

    2015-03-01

    We introduce a dynamic sandwich method, which can be used for in-situ observation and quantification of polymer crystallization nucleated by micro/nanoparticles. The method was applied on polyoxymethylene (POM) composites with three nucleating agents: talc micropowder (POM/mTalc), chalk nanopowder (POM/nChalk) and titanate nanotubes (POM/TiNT). The nucleating agents were deposited between polymer films, the resulting sandwich samples were consolidated by thermal treatment, and their microtomed cross-sections were observed during isothermal crystallization by polarized light microscopy. As the intensity of polarized light was shown to be proportional to the relative crystallinity, the PLM results could be fitted to Avrami equation and the nucleating activity of all investigated particles could be quantified by means of Avrami parameters (n, k). The crystallization half-times increased reproducibly in the following order: POM/nChalk < POM/mTalc < POM/TiNT ~ POM. For strong nucleating agents (mTalc, nChalk), the crystallization kinetics corresponded to spontaneous crystallization starting from central nucleating layer, which was verified by computer simulations. The results were also confirmed by DSC. We concluded that the sandwich method is an efficient microscopic technique for detailed evaluation of nucleating activity of arbitrary micro/nanoparticles in polymer systems.

  20. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase.

    PubMed

    Carreón-Calderón, Bernardo

    2012-10-14

    Stability analysis is generally used to verify that the solution to phase equilibrium calculations corresponds to a stable state (minimum of the free energy). In this work, tangent plane distance analysis for stability of macroscopic mixtures is also used for analyzing the nucleation process, reconciling thus this analysis with classical nucleation theories. In the context of the revised nucleation theory, the driving force and the nucleation work are expressed as a function of the Lagrange multiplier corresponding to the mole fraction constraint from the minimization problem of stability analysis. Using a van der Waals fluid applied to a ternary mixture, Lagrange multiplier properties are illustrated. In particular, it is shown how the Lagrange multiplier value is equal to one on the binodal and spinodal curves at the same time as the driving force of nucleation vanishes on these curves. Finally, it is shown that, on the spinodal curve, the nucleation work from the revised and generalized nucleation theories are characterized by two different local minima from stability analysis, irrespective of any interfacial tension models. PMID:23061836

  1. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase.

    PubMed

    Carreón-Calderón, Bernardo

    2012-10-14

    Stability analysis is generally used to verify that the solution to phase equilibrium calculations corresponds to a stable state (minimum of the free energy). In this work, tangent plane distance analysis for stability of macroscopic mixtures is also used for analyzing the nucleation process, reconciling thus this analysis with classical nucleation theories. In the context of the revised nucleation theory, the driving force and the nucleation work are expressed as a function of the Lagrange multiplier corresponding to the mole fraction constraint from the minimization problem of stability analysis. Using a van der Waals fluid applied to a ternary mixture, Lagrange multiplier properties are illustrated. In particular, it is shown how the Lagrange multiplier value is equal to one on the binodal and spinodal curves at the same time as the driving force of nucleation vanishes on these curves. Finally, it is shown that, on the spinodal curve, the nucleation work from the revised and generalized nucleation theories are characterized by two different local minima from stability analysis, irrespective of any interfacial tension models.

  2. Using natural seeding material to generate nucleation in protein crystallization experiments.

    PubMed

    D'Arcy, Allan; Mac Sweeney, Aengus; Haber, Alexander

    2003-07-01

    The nucleation event in protein crystallization is a part of the process that is poorly controlled. It is generally accepted that the protein should be in the metastable phase for crystal growth, but for nucleation higher levels of saturation are needed. Formation of nuclei in bulk solvent requires interaction of protein molecules until a critical size of aggregate is created. In many crystallization experiments sufficiently high levels of saturation are not reached to allow this critical nucleation event to occur. If an environment can be created that favours a higher local concentration of macromolecules, the energy barrier for nucleation may be lowered. When seeds are introduced at lower levels of saturation in a crystallization experiment, nucleation may be facilitated and crystal growth initiated. In this study, the use of natural materials as stable seeds for nucleation has been investigated. The method makes it possible to introduce seeds into crystallization trials at any stage of the experiment using both microbatch and vapour-diffusion methods.

  3. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  4. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.

    PubMed

    Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos

    2016-06-22

    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  5. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  6. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas

    NASA Astrophysics Data System (ADS)

    Němec, Tomáš

    2016-03-01

    A formulation of the classical nucleation theory (CNT) is developed for bubble nucleation in a binary system composed of a liquid solvent and a dissolved gas. The theoretical predictions are compared to the experimental nucleation data of four binary mixtures, i.e. diethylether - nitrogen, propane - carbon dioxide, isobutane - carbon dioxide, and R22 (chlorodifluoromethane) - carbon dioxide. The presented CNT formulation is found to improve the precision of the simpler theoretical method of Ward et al. [J. Basic Eng. 92 (10), 71-80, 1970] based on the weak-solution approximation. By analyzing the available experimental nucleation data, an inconsistency in the data reported by Mori et al. [Int. J. Heat Mass Transfer, 19 (10), 1153-1159, 1976] for propane - carbon dioxide and R22 - carbon dioxide is identified.

  7. Crystal nucleation and cluster-growth kinetics in a model glass under shear.

    PubMed

    Mokshin, Anatolii V; Barrat, Jean-Louis

    2010-08-01

    Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster size and the lag-time associated with this induction period are determined from a mean first-passage time analysis. The laws that describe the cluster-growth process are studied as a function of temperature and strain rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the molecular dynamics data. Scalings for the cluster-growth laws and for the crystallization kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain rate dependency. PMID:20866816

  8. Nucleation kinetics, growth and studies of β-alanine single crystals.

    PubMed

    Shanthi, D; Selvarajan, P; HemaDurga, K K; Lincy Mary Ponmani, S

    2013-06-01

    Solubility and metastable zone width for the re-crystallized salt of β-alanine was determined. Induction period measurement for the selected supersaturation ratios at room temperature (31 °C) was carried out for supersaturated aqueous solutions of β-alanine and it is noticed that induction period decreases with increase of supersaturation ratio. The nucleation parameters such as Gibbs free energy change, radius and number of molecules of the critical nucleus, interfacial tension and the nucleation rate have been evaluated by classical nucleation theory. Single crystals of β-alanine were grown using the optimized nucleation parameters by solution method and grown crystals have been subjected to various studies like XRD studies, FTIR, optical, thermal and SHG studies.

  9. Nucleation kinetics, growth and studies of β-alanine single crystals

    NASA Astrophysics Data System (ADS)

    Shanthi, D.; Selvarajan, P.; HemaDurga, K. K.; Lincy Mary Ponmani, S.

    2013-06-01

    Solubility and metastable zone width for the re-crystallized salt of β-alanine was determined. Induction period measurement for the selected supersaturation ratios at room temperature (31 °C) was carried out for supersaturated aqueous solutions of β-alanine and it is noticed that induction period decreases with increase of supersaturation ratio. The nucleation parameters such as Gibbs free energy change, radius and number of molecules of the critical nucleus, interfacial tension and the nucleation rate have been evaluated by classical nucleation theory. Single crystals of β-alanine were grown using the optimized nucleation parameters by solution method and grown crystals have been subjected to various studies like XRD studies, FTIR, optical, thermal and SHG studies.

  10. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water.

    PubMed

    Reinhardt, Aleks; Doye, Jonathan P K; Noya, Eva G; Vega, Carlos

    2012-11-21

    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.

  11. A novel approach to the theory of homogeneous and heterogeneous nucleation.

    PubMed

    Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan

    2015-01-01

    A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density

  12. Biliary proteins. Unique inhibitors of cholesterol crystal nucleation in human gallbladder bile.

    PubMed Central

    Holzbach, R T; Kibe, A; Thiel, E; Howell, J H; Marsh, M; Hermann, R E

    1984-01-01

    The onset time for cholesterol crystal nucleation of supersaturated normal human gallbladder biles is consistently prolonged when compared with biles from patients with cholesterol gallstone disease. Investigation of the factor(s) responsible for the suspended supersaturation (metastability) of normal human biles revealed that model bile solutions of cholesterol saturation index (CSI) and molar lipid composition identical to individual gallbladder bile specimens had much shorter crystal nucleation times, i.e., exhibited decreased metastability. Unsaturated normal biles, after supplementation with lecithin, cholesterol, and sodium taurocholate to a 'standard' supersaturated lipid composition, also demonstrated nucleation times three- to 15-fold longer than the comparable standard model bile. Total lipid extracts of normal biles, however, when similarly supplemented, did not differ in nucleation time from the control model solution. Gallbladder biles were fractionated by gel chromatography and the eluted fractions were pooled into two fractions. The fractions eluting in about the first 25% of the included volume when mixed with the supersaturated standard model bile induced a modest increase in nucleation time of approximately 1.5 times the control value. The fractions eluting in the second 25% of the included volume and which contained all of the bile lipids, were concentrated and supplemented with lipids to the standard composition. The nucleation times of these supplements were 3-10 times longer than the control nucleation times. Delipidated bile protein mixtures, purified by discontinuous sucrose gradient centrifugation, were recombined with purified lipids at the standard composition used previously. The nucleation times of these mixtures were significantly prolonged to the same extent as those associated with the second chromatographic fraction. These observations demonstrate that the delayed onset (inhibition) of cholesterol crystal nucleation observed in

  13. Nucleation of Crystals From Solution in Microgravity (USML-1 Glovebox (GBX) Investigation)

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.; Reiss, Donald A.; Lehoczky, Sandor L.

    1994-01-01

    A new method for initiating nucleation from solutions in microgravity which avoids nucleation on container walls and other surfaces is described. This method consists of injecting a small quantity of highly concentrated, heated solution into the interior of a lightly supersaturated, cooler host gowth solution. It was tested successfully on USML-I, producing a large number of LAP crystals whose longest dimension averaged 1 mm.

  14. Direct Visualization of the Two-step Nucleation Model by Fluorescence Color Changes during Evaporative Crystallization from Solution

    NASA Astrophysics Data System (ADS)

    Ito, Fuyuki; Suzuki, Yukino; Fujimori, Jun-Ichi; Sagawa, Takehiro; Hara, Mitsuo; Seki, Takahiro; Yasukuni, Ryohei; Chapelle, Marc Lamy De La

    2016-03-01

    The two-step nucleation model for crystal nuclei formation explains several experimental and theoretical results better than the classical nucleation theory. We report here direct visualization of the two-step nucleation model for organic molecular crystallization. Evaporative crystallization from a solution of a dibenzoylmethane boron complex that displays mechanofluorochromism, a fluorescence color change induced by mechanical perturbation, was probed by fluorescence change. The dependence of fluorescence change on dispersion concentration of the complex in a polymer matrix was also investigated. We detected transitional emission from the amorphous cluster state prior to crystallization. This is the first demonstration of the two-step nucleation model based on fluorescence color changes.

  15. Effects of chitosan on the alignment, morphology and shape of calcite crystals nucleating under Langmuir monolayers

    SciTech Connect

    Kim, Kyungil; Uysal, Ahmet; Kewalramani, Sumit; Stripe, Benjamin; Dutta, Pulak

    2009-04-22

    The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

  16. Effects of Chitosan on the Morphology and Alignment of Calcite Crystals Nucleating Under Langmuir Monolayers

    SciTech Connect

    Kim, K.; Uysal, A; Kewalramani, S; Stripe, B; Dutta, P

    2009-01-01

    The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

  17. The Measurement of Sulfur Oxidation Products and Their Role in Homogeneous Nucleation

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    1999-01-01

    An improved version of a transverse ion source was developed which uses selected ion chemical ionization mass spectrometry techniques inside of a particle nucleation flow tube. These new techniques are very unique, in that the chemical ionization is done inside of the flow tube rather than by having to remove the compounds and clusters of interest which are lost on first contact,with any surfaces. The transverse source is also unique because it allows the ion reaction time to be varied over more than an order of magnitude, which in turn makes possible the separation of ion induced cluster growth from the charging of preexisting molecular clusters. As a result of combining these unique capabilities, the first ever measurements of prenucleation molecular clusters were performed. These clusters are the intermediate stage of growth in the gas-to-particle conversion process. This new technique provides a means of observing clusters containing 2, 3, 4, ... and up to about 8 sulfuric acid molecules, where the critical cluster size under these measurement conditions was about 4 or 5. Thus, the nucleation process can now be directly observed and even growth beyond the critical cluster size can be investigated. The details of this investigation are discussed in a recently submitted paper, which is included as Appendix A. Measurements of the diffusion coefficient of sulfuric acid and sulfuric acid clustered with a water molecule have also been performed. The measurements are also discussed in more detail in another recently submitted paper which is included as Appendix B. The empirical results discussed in both of these papers provide a critical test of present nucleation theories. They also provide new hope for resolving many of the huge discrepancies between field observation and model prediction of particle nucleation. The second part of the research conducted under this project was directed towards the development of new chemical ionization techniques for measuring sulfur

  18. Influence of solvent on crystal nucleation of risperidone.

    PubMed

    Mealey, Donal; Zeglinski, Jacek; Khamar, Dikshitkumar; Rasmuson, Åke C

    2015-01-01

    Over 2100 induction time experiments were carried out for the medium-sized, antipsychotic drug molecule, risperidone in seven different organic solvents. To reach the same induction time the required driving force increases in the order: cumene, toluene, acetone, ethyl acetate, methanol, propanol, and butanol, which reasonably well correlates to the interfacial energies as determined within classical nucleation theory. FTIR spectroscopy has been used to investigate any shifts in the spectra and to estimate the interaction of solute and solvent at the corresponding site. The solution condition has also been investigated by Density Functional Theory (DFT) calculations over (1 : 1) solvent-solute binding interactions at 8 different sites on the risperidone molecule. The DFT computational results agree with the spectroscopic data suggesting that these methods do capture the binding strength of solvent molecules to the risperidone molecule. The difficulty of nucleation correlates reasonably to the DFT computations and the spectroscopic measurements. The results of the different measurements suggest that the stronger the solvent binds to the risperidone molecule in solution, the slower the nucleation becomes. PMID:25886651

  19. Initial stage of nucleation-mediated crystallization of a supercooled melt

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Pil'nik, A. A.; Islamov, D. R.

    2016-09-01

    The kinetic model of nucleation-mediated crystallization of a supercooled melt is presented in this work. It correctly takes into account the change in supercooling of the initial phase in the process of formation and evolution of a new phase. The model makes it possible to find the characteristic time of the process, time course of the crystal phase volume, solidified material microstructure. The distinctive feature of the model is the use of the "forbidden" zones in the volume where the formation of new nucleation centers is suppressed.

  20. Common crystal nucleation mechanism in shell formation of two morphologically distinct calcite brachiopods.

    PubMed

    Pérez-Huerta, Alberto; Cusack, Maggie

    2008-01-01

    Closely related mineral-producing organisms share common biomineralisation processes. We demonstrate that, in cases of disparate mineral structures where crystal growth mechanisms are necessarily diverse, nucleation processes are the common underlying mechanism during shell formation. Detailed crystallography in the context of shell microstructure in two morphologically distinct calcite brachiopods indicates that, despite differences in shell growth and fabric, at the centre of growth, calcite crystals nucleate with the c-axis 0001 parallel to the shell surface. Such detailed contextual crystallography of biomineralisation using electron backscatter diffraction (EBSD) will have significant applications for future research in biological and medical sciences.

  1. Controlled calcite nucleation on polarized calcite single crystal substrates in the presence of polyacrylic acid

    NASA Astrophysics Data System (ADS)

    Wada, Norio; Horiuchi, Naohiro; Nakamura, Miho; Nozaki, Kosuke; Hiyama, Tetsuo; Nagai, Akiko; Yamashita, Kimihiro

    2015-04-01

    We studied theoretically and experimentally the effects of the surface electric field generated by polarization and polyacrylic acid (PAA) additives on the heterogeneous nucleation of calcite on the calcite single crystal substrates with (10.4), (10.0) and (00.1) orientations. A set of "in-situ" experiments with optical microscopy was performed to determine the waiting time of CaCO3 nucleation, defined as the time interval between the onset of the diffusion of CO2 and the appearance of the first visible precipitation. Calcite was nucleated on the oriented calcite substrates through diffusion of NH3 and CO2 gas from a solid ammonium carbonate into calcium chloride solutions. A theoretical analysis showed that the surface electric field of the polarized calcite substrate decrease the activation energy for nucleation and consequently promotes nucleation. Experimentally, the surface electric field and PAA addition were found to decrease both contact angles and waiting times, and as a result, promote the heterogeneous nucleation. Combined effect of PAA and surface electric field further reduced contact angles and waiting times regardless of orientation differences of the calcite substrates. The cooperation acts remarkably on N-surface of the respective calcite substrates. The results were explained by the Cassie's equation, a classical heterogeneous nucleation theory under a surface electric field, and matching of the charged sites on the PAA chain with the ion arrangement on the calcite substrate.

  2. Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma

    SciTech Connect

    Gualda, G.; Cook, D.L.; Chopra, R.; Qin, L.; Anderson, A.T.; Rivers, M.

    2010-12-07

    The Bishop Tuff (USA) is a large-volume, high-silica pyroclastic rhyolite. Five pumice clasts from three early stratigraphic units were studied. Size distributions were obtained using three approaches: (1) crushing, sieving and winnowing (reliable for crystals >100 {micro}m); (2) microscopy of 1 mm{sup 3} fragments (preferable for crystals <100 {micro}m); and (3) computerised X-ray microtomography of {approx}1 cm{sup 3} pumice pieces. Phenocryst fragments coated with glass are common, and the size distributions for all crystals are concave-upward, indicating that crystal fragmentation is an important magmatic process. Three groups are recognised, characterised by: (1) high-density (0.759-0.902 g cm{sup -3}), high-crystal content (14.4-15.3 wt.%) and abundant large crystals (>800 {micro}m); concave-downward size distributions for whole crystals indicate late-stage growth with limited nucleation, compatible with the slow cooling of a large, gas-saturated, stably stratified magma body; (2) low-density (0.499 g cm{sup -3}), low-crystal content (6.63 wt.%) and few large crystals; the approximately linear size distribution reveals that nucleation was locally important, perhaps close to the walls; and (3) intermediate characteristics in all respects. The volumetric fraction of bubbles inversely correlates with the number of large crystals. This is incompatible with isobaric closed-system crystallisation, but can be explained by sinking of large crystals and rise of bubbles in the magma.

  3. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid).

    PubMed

    Shi, Xuetao; Zhang, Guangcheng; Phuong, Thanh Vu; Lazzeri, Andrea

    2015-01-01

    The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates) were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid) (PDLA) acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA) indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young's modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization. PMID:25608041

  4. First passage times in homogeneous nucleation: Dependence on the total number of particles.

    PubMed

    Yvinec, Romain; Bernard, Samuel; Hingant, Erwan; Pujo-Menjouet, Laurent

    2016-01-21

    Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings, we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number of identical particles in a finite volume. We study the statistics of times required for maximal clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes, we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first assembly time behavior as a function of the total quantity of particles. We find that the mean time to first completion of a maximum-sized cluster may have a surprisingly weak dependence on the total number of particles. We highlight how higher statistics (variance, distribution) of the first passage time may nevertheless help to infer key parameters, such as the size of the maximum cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent infrequent stochastic processes, in contrast to classical nucleation theory. PMID:26801019

  5. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition

    PubMed Central

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V.; Stanley, H. Eugene; Reguera, David; Franzese, Giancarlo

    2015-01-01

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments PMID:26095898

  6. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  7. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  8. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  9. Time-evolution of grain size distributions in random nucleation and growth crystallization processes

    NASA Astrophysics Data System (ADS)

    Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.

    2010-02-01

    We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.

  10. Nucleation kinetics of urea succinic acid –ferroelectric single crystal

    SciTech Connect

    Dhivya, R.; Vizhi, R. Ezhil E-mail: revizhi@gmail.com; Babu, D. Rajan

    2015-06-24

    Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.

  11. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.

    PubMed

    Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M

    2011-02-10

    The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.

  12. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho; Legros, Marc; Kiener, Daniel; Dehm, Gerhard

    2009-02-01

    `Smaller is stronger' does not hold true only for nanocrystalline materials but also for single crystals. It is argued that this effect is caused by geometrical constraints on the nucleation and motion of dislocations in submicrometre-sized crystals. Here, we report the first in situ transmission electron microscopy tensile tests of a submicrometre aluminium single crystal that are capable of providing direct insight into source-controlled dislocation plasticity in a submicrometre crystal. Single-ended sources emit dislocations that escape the crystal before being able to multiply. As dislocation nucleation and loss rates are counterbalanced at about 0.2 events per second, the dislocation density remains statistically constant throughout the deformation at strain rates of about 10-4s-1. However, a sudden increase in strain rate to 10-3s-1 causes a noticeable surge in dislocation density as the nucleation rate outweighs the loss rate. This observation indicates that the deformation of submicrometre crystals is strain-rate sensitive.

  13. Nucleation and crystallization of tailing-based glass-ceramics by microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bao-wei; Li, Hong-xia; Zhang, Xue-feng; Jia, Xiao-lin; Sun, Zhi-chao

    2015-12-01

    The effect of microwave radiation on the nucleation and crystallization of tailing-based glass-ceramics was investigated using a 2.45 GHz multimode microwave cavity. Tailing-based glass samples were prepared from Shandong gold tailings and Guyang iron tailings utilizing a conventional glass melting technique. For comparison, the tailing-based glass samples were crystallized using two different heat-treatment methods: conventional heating and hybrid microwave heating. The nucleation and crystallization temperatures were determined by performing a differential thermal analysis of the quenched tailing-based glass. The prepared glass-ceramic samples were further characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermal expansion coefficient measurements, and scanning electron microscopy. The results demonstrated that hybrid microwave heating could be successfully used to crystallize the tailing-based glass, reduce the processing time, and decrease the crystallization temperature. Furthermore, the results indicated that the nucleation and crystallization mechanism of the hybrid microwave heating process slightly differs from that of the conventional heating process.

  14. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    SciTech Connect

    Tohidifar, M.R.; Alizadeh, P.; Riello, P.

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  15. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate

    SciTech Connect

    Pan, Chien-Cheng; Lin, Kwang-Lung

    2011-05-15

    To illustrate the interfacial reaction mechanism, the Sn-Zn[Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (wt%)] solder was reflowed on Cu substrate at 250 deg. C for 15 s followed by immediate quench in liquid nitrogen. The frozen interfacial microstructure was investigated with high resolution transmission electron microscope. An amorphous double layer was formed at the interface which consists of a 5 nm pure Cu region and a Cu-Zn diffusion region. Nanocrystalline intermetallic compound (IMC) Cu{sub 5}Zn{sub 8} were observed in the Cu-Zn diffusion region. These nanocrystalline IMCs are suggested to form via a homogeneous nucleation process.

  16. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate

    NASA Astrophysics Data System (ADS)

    Pan, Chien-Cheng; Lin, Kwang-Lung

    2011-05-01

    To illustrate the interfacial reaction mechanism, the Sn-Zn[Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (wt%)] solder was reflowed on Cu substrate at 250 °C for 15 s followed by immediate quench in liquid nitrogen. The frozen interfacial microstructure was investigated with high resolution transmission electron microscope. An amorphous double layer was formed at the interface which consists of a 5 nm pure Cu region and a Cu-Zn diffusion region. Nanocrystalline intermetallic compound (IMC) Cu5Zn8 were observed in the Cu-Zn diffusion region. These nanocrystalline IMCs are suggested to form via a homogeneous nucleation process.

  17. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  18. Relaxation behavior of shear-induced crystallization precursors in isotactic polypropylene containing sorbitol-based nucleating agents with different nucleating abilities.

    PubMed

    Fan, Jiashu; Zhang, Qinglong; Hu, Dingding; Ren, Qilin; Feng, Jiachun

    2016-04-01

    The nature of shear-induced crystallization precursors, especially their relaxation behaviour, is an important issue in polymer chemical physics. In our work, relaxation behavior of shear-induced crystallization precursors in isotactic polypropylene containing various sorbitol-based nucleating agents (NAs) with different nucleating abilities was investigated by using both rheological and in situ small angle X-ray scattering (SAXS) methods. Rheological crystallization kinetics results showed that the amount of shear-induced precursors, calculated separately from the total nuclei, decayed exponentially with relaxation time in both pure and nucleated iPP. By fitting the decay of shear-induced precursors with relaxation time, the relaxation rate of precursors in nucleated iPP was found to be slower than that in pure iPP. Interestingly, it further decreased with the increase in the nucleating ability of sorbitol-based NAs. Meanwhile, the life-time of precursors was prolonged in nucleated iPP with increasing nucleating ability. Similar results were also testified by in situ SAXS measurements. By investigating the life-times at different temperatures, the activation energy for the relaxation of precursors was calculated and found to increase with stronger nucleating abilities. Our results demonstrated that sorbitol-based NAs could stabilize the iPP precursors and the effect of stabilization enhanced with the increase in nucleating ability. We believe that our work can not only help better reveal the relaxation behavior of shear-induced precursors but also provides a new perspective for understanding the role of NAs in real processing.

  19. Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-Jones liquid

    SciTech Connect

    Lundrigan, Sarah E. M.; Saika-Voivod, Ivan

    2009-09-14

    We perform molecular dynamics (MD) and Monte Carlo computer simulations to test the ability of the recently developed formalism of mean first-passage time (MFPT) [J. Wedekind, R. Strey, and D. Reguera, J. Chem. Phys. 126, 134103 (2007); J. Wedekind and D. Reguera, J. Phys. Chem. B 112, 11060 (2008)] to characterize crystal nucleation in the Lennard-Jones liquid. We find that the nucleation rate, critical embryo size, Zeldovich factor, attachment rate, and the nucleation barrier profile obtained from MFPT all compare very well to the same quantities calculated using other methods. Furthermore, we find that the nucleation rate obtained directly through MD closely matches the prediction of classical nucleation theory.

  20. Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures.

    PubMed

    Löwen, Hartmut; Allahyarov, Elshad

    2011-10-01

    Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.

  1. Biomineralization Mechanisms: A new paradigm for crystal nucleation in organic matricies

    PubMed Central

    Veis, Arthur; Dorvee, Jason R.

    2013-01-01

    There is substantial practical interest in the mechanism by which the carbonated apatite of bone mineral can be initiated specifically in a matrix. The current literature is replete with studies aimed at mimicking the properties of vertebrate bone, teeth and other hard tissues by creating organic matrices that can be mineralized in vitro, and either functionally substitute for bone on a permanent basis, or serve as a temporary structure that can be replaced by normal remodeling processes. A key element in this is mineralization of an implant with the matrix and mineral disposed in the proper orientations and relationships. This review examines the pathway to crystallization from a supersaturated calcium phosphate solution in vitro, focusing on the basic mechanistic questions concerning mineral nucleation and growth. Since bone and dentin mineral forms within collagenous matricies we consider how the in vitro crystallization mechanisms might or might not be applicable to understanding the in vivo processes of biomineralization in bone and dentin. We propose that the pathway to crystallization from the calcium phosphate supersaturated tissue fluids involves the formation of a dense liquid phase of first-layer bound-water hydrated calcium and phosphate ions in which the crystallization is nucleated. SIBLING proteins and their in vitro analogs such as polyaspartic acids, have similar dense liquid first-layer bound water surfaces which interact with the dense liquid calcium phosphate nucleation clusters and modulate the rate of crystallization within the bone and dentin collagen fibril matrix. PMID:23241924

  2. Crystal nucleation of zincophosphate open frameworks in reverse micelle nanoreactors

    NASA Astrophysics Data System (ADS)

    Castagnola, Mario J.

    The synthesis of microporous zincophosphates was studied through a novel synthetic route based on reactants encapsulated in reverse micelles. The zincophosphate analog of sodalite had been previously synthesized in a reverse micelle system using Aerosol OT (AOT) as surfactant. The synthesis of open framework zincophosphates using this detergent proved unsuccessful. By studying the conventional synthesis of zincophosphates and the AOT reverse micelle aqueous environment through Raman microscopy, FTIR, NMR and XRD, it was found that the relatively high concentrations of sodium ions and the disordered structure of water present in the AOT reverse micelles prevented the synthesis of open framework structures. Based on these results, a system containing reverse micelles of the cationic surfactant dioctyldimethylammonium chloride (DODMAC) was developed. Zn 2+- and PO43--containing DODMAC reverse micelles were characterized by dynamic light scattering and conductivity measurements, indicating a rod-like shape for the former and a spherical shape for the latter reverse micelles. Combination of the two reverse micelle solutions led to the first successful reverse micelle based synthesis of the zincophosphate analog of Zeolite-X, ZnPO-X. The size of the crystals was controlled by modifying the volume ratio between the individual reagent micellar solutions. Nanocrystals of the order of 20 nm were obtained by interrupting the reaction at early stages. Studies of both the conventional aqueous and the reverse micelle based syntheses of ZnPO-X revealed that the morphology of the ZnPO-X crystals was controlled by the concentration of tetramethylammonium ions (TMA+). The ZnPO-X crystals synthesized via the reverse micelles were obtained as a single phase. Using Raman spectroscopy, it was determined that, during conventional synthesis, H+ ions promote the hydrolysis of the ZnPO-X crystals that leads to hopeite formation. Ion-exchange by monovalent cations indicated that the crystal

  3. Supercooling, ice nucleation and crystal growth: a systematic study in plant samples.

    PubMed

    Zaragotas, Dimitris; Liolios, Nikolaos T; Anastassopoulos, Elias

    2016-06-01

    This paper presents an innovative technological platform which is based on infrared video recording and is used for monitoring multiple ice nucleation events and their interactions, as they happen in 96 well microplates. Thousands of freezing curves were obtained during this study and the following freezing parameters were measured: cooling rate, nucleation point, freezing point, solidus point, degree of supercooling, duration of dendritic phase and duration of crystal growth. We demonstrate the use of this platform in the detection of ice nuclei in plant samples. Future applications of this platform may include breeding for frost tolerance, cryopreservation, frozen food technology and atmospheric sciences. PMID:27056262

  4. Supercooling, ice nucleation and crystal growth: a systematic study in plant samples.

    PubMed

    Zaragotas, Dimitris; Liolios, Nikolaos T; Anastassopoulos, Elias

    2016-06-01

    This paper presents an innovative technological platform which is based on infrared video recording and is used for monitoring multiple ice nucleation events and their interactions, as they happen in 96 well microplates. Thousands of freezing curves were obtained during this study and the following freezing parameters were measured: cooling rate, nucleation point, freezing point, solidus point, degree of supercooling, duration of dendritic phase and duration of crystal growth. We demonstrate the use of this platform in the detection of ice nuclei in plant samples. Future applications of this platform may include breeding for frost tolerance, cryopreservation, frozen food technology and atmospheric sciences.

  5. Engineering nanoparticle-protein associations for protein crystal nucleation and nanoparticle arrangement

    NASA Astrophysics Data System (ADS)

    Benoit, Denise N.

    Engineering the nanoparticle - protein association offers a new way to form protein crystals as well as new approaches for arrangement of nanoparticles. Central to this control is the nanoparticle surface. By conjugating polymers on the surface with controlled molecular weights many properties of the nanoparticle can be changed including its size, stability in buffers and the association of proteins with its surface. Large molecular weight poly(ethylene glycol) (PEG) coatings allow for weak associations between proteins and nanoparticles. These interactions can lead to changes in how proteins crystallize. In particular, they decrease the time to nucleation and expand the range of conditions over which protein crystals form. Interestingly, when PEG chain lengths are too short then protein association is minimized and these effects are not observed. One important feature of protein crystals nucleated with nanoparticles is that the nanoparticles are incorporated into the crystals. What results are nanoparticles placed at well-defined distances in composite protein-nanoparticle crystals. Crystals on the size scale of 10 - 100 micrometers exhibit optical absorbance, fluorescence and super paramagnetic behavior derivative from the incorporated nanomaterials. The arrangement of nanoparticles into three dimensional arrays also gives rise to new and interesting physical and chemical properties, such as fluorescence enhancement and varied magnetic response. In addition, anisotropic nanomaterials aligned throughout the composite crystal have polarization dependent optical properties.

  6. Effect of pressure and hydrogen flow in nucleation density and morphology of graphene bidimensional crystals

    NASA Astrophysics Data System (ADS)

    Chaitoglou, S.; Bertran, E.

    2016-07-01

    In this paper we present new results concerning the growth of graphene by low pressure chemical vapor deposition on polycrystalline copper foils and using methane as carbon precursor. We have studied the role of hydrogen and pressure in graphene growth on substrates of polycrystalline copper foil and we have examined how they affect the nucleation density and the size of graphene bidimensional crystals. For that, small ranges of pressure (between 10 and 30 Pa) and hydrogen flow (between 10 and 20 sccm) were explored. In addition, the antagonism between two of the main effects of hydrogen was studied. Hydrogen promotes the growth but, at the same time, applies an intense dry etching during the growth process of graphene. The challenge of the present study is to find the equilibrium between these two effects so that, the growth of highly ordered crystals on copper becomes possible. The results reveal that the total pressure during the growth process of graphene affects the size as well as the nucleation density of the graphene bidimensional crystals on polycrystalline copper. Besides, the hydrogen flow affects the morphology and quality of the graphene layer. An important parameter for a correct interpretation of the results is the change of the partial pressure ratio, < {P}{{{H}}2}> /< {P}{{{C}{{H}}}4}> , during the growth process under a constant flow of H2 and CH4. Dendritic graphene crystals with lobe lengths around 30 μm along with a nucleation density of 25 nuclei/10 000 μm2 were obtained in the studied technological conditions, which corroborates that a low nucleation of graphene is required to obtain large graphene islands and a low number of crystal boundaries. Raman spectroscopy and scanning electron microscopy evidenced the effects of hydrogen on the characteristics of growth and morphology of the graphene dendritic bidimensional crystals.

  7. Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals

    SciTech Connect

    Khon, Yury A. Kaminskii, Petr P.

    2015-10-27

    New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.

  8. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  9. Secondary nucleation due to crystal?impeller and crystal?vessel collisions by population balances in CFD-modelling

    NASA Astrophysics Data System (ADS)

    Liiri, Maret; Koiranen, Tuomas; Aittamaa, Juhani

    2002-04-01

    Effect of local variables on crystal breakage rate due to crystal-impeller and crystal-vessel collisions was studied. Recently, Gahn and Mersmann (Chem. Eng. Sci. 54 (1999) 1273) presented a model to calculate maximum fragment size from impact energy. We extended the model by including the tangential velocity of particles and we also introduced local velocities instead of average velocities. Our results for impact velocity in crystal-impeller collisions were in agreement with the experiments of Rielly (Proceedings of the 10th European Conference on Mixing, The Netherlands, 2000, 231). Our results for secondary nucleation showed clearly that crystal-impeller collisions were a dominant source of secondary nuclei. Number density distribution and total number of the fragments generated in each collision were used to describe the material removal from one size group to other size groups leading to birth and death rates of the crystals in each size group. Population balances were used to calculate changes of crystal size distribution against time. The influence of bottom-impeller distance on secondary nucleation was studied. The distance affects on flow velocities, mostly on axial flow and consequently on the impact velocity and the breakage of the crystals. The effect of 45°-pitched 6-bladed and 45°-pitched 4-bladed impeller at the same rotation speed (1500 rpm) was studied. Model for 45°-pitched 6-bladed impeller was verified with experimental data (Chem. Eng. Sci. 45 (1990) 1405) for secondary nucleation of potassium sulphate in methanol solution. The simulated results agreed well with the experimental results.

  10. Satellite Remote Sensing of the Dependence of Homogeneous Ice Nucleation on Latitude and Season

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Garnier, A.; Avery, M. A.; Erfani, E.

    2015-12-01

    Cirrus clouds can be thought of as belonging to one of two categories: those formed through (1) homo- and (2) heterogeneous ice nucleation (henceforth hom and het) due to the very different microphysical and radiative properties associated with these two mechanisms. Hom cirrus will form only when atmospheric ice nuclei (IN) are sufficiently low in concentration, and studies suggest that mineral dust may account for most IN globally. Hence the occurrence of hom and het cirrus is likely to depend on latitude and season as mineral dust does, making satellite remote sensing the preferred method for characterizing this occurrence. A new understanding of thermal absorption in two split-window channels renders a reinterpretation of a standard CALIPSO satellite retrieval; the effective absorption optical depth ratio or βeff. Using earlier studies and aircraft measurements in cirrus clouds, βeff is found to be tightly related to the ice particle number concentration/ice water content ratio, or N/IWC, and thresholds for hom cirrus are estimated in terms of N/IWC and βeff. When applied to cold semi-transparent cirrus clouds, we find that (1) polar cirrus (T < -38 C) occur much more often during winter than summer and (2) hom cirrus prevail at high latitudes during winter, and during spring and fall over Antarctica. The figure shows estimates of the fraction of cirrus produced by hom (where βeff > 1.15) during January and August, where green is ~ 50% and red ~ 90-100%. These high N/IWC values associated with hom cirrus occur in regions where mineral dust concentrations are predicted to be minimal. This high N/IWC condition during winter is likely to have a strong greenhouse effect that may increase high latitude temperatures by 2-5°K relative to conditions where het cirrus dominates (Storelvmo et al. 2014, Philos. Trans. A, Royal Soc.). Thus, the lack of mineral dust in the high latitudes during winter may result in a strong warming influence over these regions. Moreover

  11. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  12. Evidence of Multi-step Nucleation Leading to Various Crystallization Pathways from an Fe-O-Al Melt

    PubMed Central

    Wang, G. C.; Wang, Q.; Li, S. L.; Ai, X. G.; Fan, C. G.

    2014-01-01

    The crystallization process from a solution begins with nucleation, which determines the structure and size of the resulting crystals. Further understanding of multi-pathway crystallizations from solution through two-step nucleation mechanisms is needed. This study uses density functional theory to probe the thermodynamic properties of alumina clusters at high temperature and reveals the thermodynamic relationship between these clusters and the saturation levels of dissolved oxygen and aluminum in an Fe–O–Al melt. Based on the thermodynamics of cluster formation and the experimental evidence for both excess oxygen in the Fe-O-Al melt and for alumina with a polycrystalline structure in solidified iron, we demonstrate that the appearance of various types of clusters that depends on the saturation ratio determines the nucleation steps that lead to the various crystallization pathways. Such mechanisms may also be important in nucleation and crystallization from solution. PMID:24866413

  13. Separation and nucleation control of α and β polymorphs of L: -glutamic acid by swift cooling crystallization process.

    PubMed

    Srinivasan, K; Dhanasekaran, P

    2011-04-01

    Separation of crystal nucleation of the two known polymorphs of L: -glutamic acid, the metastable α and the stable β, from pure aqueous solution is attained by following a swift cooling crystallization process. Results elucidate a clear distinction of the preferred nucleation regions of α, β and combinations of α and β in the temperature range between 1 and 40°C. Also, the type of nucleation is supersaturation dependent: higher supersaturation favours α and lower supersaturation favours β. Morphology and structure of the polymorphs confirm their form of crystallization. PMID:20593295

  14. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  15. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGES

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  16. Role of clusters in nonclassical nucleation and growth of protein crystals

    PubMed Central

    Sleutel, Mike; Van Driessche, Alexander E. S.

    2014-01-01

    The development of multistep nucleation theory has spurred on experimentalists to find intermediate metastable states that are relevant to the solidification pathway of the molecule under interest. A great deal of studies focused on characterizing the so-called “precritical clusters” that may arise in the precipitation process. However, in macromolecular systems, the role that these clusters might play in the nucleation process and in the second stage of the precipitation process, i.e., growth, remains to a great extent unknown. Therefore, using biological macromolecules as a model system, we have studied the mesoscopic intermediate, the solid end state, and the relationship that exists between them. We present experimental evidence that these clusters are liquid-like and stable with respect to the parent liquid and metastable compared with the emerging crystalline phase. The presence of these clusters in the bulk liquid is associated with a nonclassical mechanism of crystal growth and can trigger a self-purifying cascade of impurity-poisoned crystal surfaces. These observations demonstrate that there exists a nontrivial connection between the growth of the macroscopic crystalline phase and the mesoscopic intermediate which should not be ignored. On the other hand, our experimental data also show that clusters existing in protein solutions can significantly increase the nucleation rate and therefore play a relevant role in the nucleation process. PMID:24449867

  17. Nucleation in Synoptically Forced Cirrostratus

    NASA Technical Reports Server (NTRS)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  18. Effects of crystallization and bubble nucleation on the seismic properties of magmas

    NASA Astrophysics Data System (ADS)

    Tripoli, Barbara Andrea; Cordonnier, Benoit; Zappone, Alba; Ulmer, Peter

    2016-02-01

    Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the location and dimensions of magmatic reservoirs. Seismic velocities are strongly affected by processes occurring within the conduit or in the magma chamber, such as crystallization and bubble exsolution. However, the limited number of constrained measurements does not allow yet to link seismic tomography and the textural state of a particular volcanic system. In this study, we investigated a chemically simplified melt in the system CaO-Na2O-Al2O3-SiO2-H2O-CO2, which undergoes plagioclase crystallization and bubble exsolution. A Paterson-type internally heated gas pressure apparatus was employed to measure ultrasonic velocities at a constant pressure of 250 MPa and at temperature from 850 to 700°C. Magmatic processes such as crystallization, bubble nucleation, and coalescence have been recognized throughout the measurements of seismic velocities in the laboratory. Compression and shear wave velocities increase nonlinearly during crystallization. At a crystal fraction exceeding 0.45, the formation of a crystal network favors the propagation of seismic waves through magmatic liquids. However, bubble nucleation induced by crystallization leads to an increase of magma compressibility resulting in a lowering of the wave propagation velocities. These two processes occur simultaneously and have a competing influence on the seismic properties of magmas. In addition, as already observed by previous authors, when the bubble fraction is less than 0.10, the decrease in seismic velocities is more pronounced than for higher bubble fractions. The effect of bubble coalescence on elastic properties is thus lower than the effect of bubble nucleation.

  19. Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers

    NASA Technical Reports Server (NTRS)

    Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.

    2003-01-01

    Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.

  20. Mathematical modelling of nucleation and growth of crystals with buoyancy effects

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.

    2016-04-01

    A complete analytical solution of the integro-differential model describing the nucleation of crystals and their subsequent growth in a binary system with allowance for buoyancy forces is constructed. An exact analytical solution of the Fokker-Planck-type equation for the three-parameter density distribution function is found for arbitrary nucleation kinetics. Two important cases of the Weber-Volmer-Frenkel-Zel'dovich and Meirs kinetics are considered in some detail. It is shown that the solute concentration decreases and the distribution function increases with increasing the melt supercooling (with increasing the depth of a metastable system). It is demonstrated that the distribution function attains its minimum at a certain size of crystals owing to buoyancy forces.

  1. Liquid crystals and cholesterol nucleation during equilibration in supersaturated bile analogs.

    PubMed

    Holzbach, R T; Corbusier, C

    1978-03-30

    In recent work, apparent liquid crystal agglomeration to form typical solid cholesterol microcrystals was frequently observed photomicrographically in bile samples from prairie dogs fed a cholesterol-enriched diet, prior to solid crystal formation. We therefore have conducted a systematic study of time-course lipid compositional changes in the mesophase and micellar phase constituents of bile analog solutions while undergoing cholesterol nucleation during equilibration. On the basis of these studies, we conclude that the nucleation process for microcrystal formation most likely occurs within the mesophase component which is only the first of a two-step transition in a sequential series of physical ordering processes. We deduce that mesophase formation must have a lower kinetic energy requirement and that the second step (microcrystal formation) must be rate limiting. In keeping with theoretical considerations, structural evidence for increased hydration is demonstrable near the point of complete equilibration when the mesophase is dissolving.

  2. Temperature dependence of homogeneous nucleation rates for water: Near equivalence of the empirical fit of Wölk and Strey, and the scaled nucleation model

    NASA Astrophysics Data System (ADS)

    Hale, Barbara N.

    2005-05-01

    It is pointed out that the temperature fitting function of Wölk and Strey [J. Phys. Chem. 105, 11683 (2001)], recently shown to convert the Becker-Döring [Ann. Phys. (Leipzig) 24, 719 (1935)] nucleation rate into an expression in agreement with much of the experimental water nucleation rate data, also converts the Becker-Döring rate into a form nearly equivalent with the scaled nucleation rate model, Jscaled=Jocexp[-16πΩ3(Tc/T-1)3/3(lnS)2]. In the latter expression Joc is the inverse thermal wavelength cubed/sec, evaluated at Tc.

  3. A new experimental setup to investigate nucleation, dynamic growth and surface properties of single ice crystals

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Jens; Bieligk, Henner; Niedermeier, Dennis; Clauss, Tina; Chou, Cédric; Ulanowski, Zbigniew; Stratmann, Frank

    2013-04-01

    The nucleation and growth of atmospheric ice particles is of importance for both, weather and climate. However, knowledge is still sparse, e.g. when considering the influences of ice particle surface properties on the radiative properties of clouds. Therefore, based on the experiences with our laminar flow tube chamber LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004), we developed a new device to characterize nucleation, dynamic growth and light scattering properties of a fixed single ice crystal in dependence on the prevailing thermodynamic conditions. Main part of the new setup is a thermodynamically controlled laminar flow tube with a diameter of 15 mm and a length of 1.0 m. Connected to the flow tube is a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (Leipzig Ice Scattering Apparatus), equipped with an additional optical microscope. For the investigations, a single ice nucleus (IN) with a dry size of 2-5 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Two mass flow controllers adjusting a dry and a humidified gas flow are applied to control both, the temperature and the saturation ratio over a wide range. The thermodynamic conditions in the experiments were characterized using a) temperature and dew-point measurements, and b) computational fluid dynamics (CFD) calculations. Dependent on temperature and saturation ratio in the measuring volume, ice nucleation and ice crystal growth/shrinkage can occur. The optical microscope allows a time dependent visualization of the particle/ice crystal, and the LISA instrument is used to obtain 2-D light scattering patterns. Both devices together can be applied to investigate the influence of thermodynamic conditions on ice crystal growth, in particular its shape and surface properties. We successfully performed

  4. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    PubMed

    de Bruyn, John R; Goiko, Maria; Mozaffari, Maryam; Bator, Daniel; Dauphinee, Ron L; Liao, Yinyin; Flemming, Roberta L; Bramble, Michael S; Hunter, Graeme K; Goldberg, Harvey A

    2013-01-01

    We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation.

  5. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    PubMed

    de Bruyn, John R; Goiko, Maria; Mozaffari, Maryam; Bator, Daniel; Dauphinee, Ron L; Liao, Yinyin; Flemming, Roberta L; Bramble, Michael S; Hunter, Graeme K; Goldberg, Harvey A

    2013-01-01

    We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation. PMID:23457612

  6. Novel Electric Nucleation Technique for Growing Large Single Crystal in Space

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.

    1999-01-01

    We present, herein, an electrical model for growing crystals without a seed which might not be free of defects and thereby still hinder the growth of a perfect crystal in space. The system is designed to confine nucleation to a single site automatically in an under saturated solution to avoid multiple nucleation. The technique is based on the effect of electrostriction, which is the tendency of a material to become more compressed in the presence of an electric field. The system is designed to create an electrical potential well between two hyperboloid electrodes with applied voltage at low frequency. The induced potential well between the electrodes oscillates at low frequency and attracts the solute and condenses it into the region of maximum field intensity. The alternating voltage prevents molecules with intrinsic charge from being attracted to the electrodes. The continuous presence of the electric field during the duration of the experiment, provides a continuous migration of the molecules toward the trapping site. This will eliminate the creation of a depletion region around the nucleation center and will enhance the crystal growth rate. Aside from the above mentioned advantages, the system is compact, safe to operate, and inexpensive to build.

  7. The Laminar Flow Tube Reactor as a Quantitative Tool for Nucleation Studies: Experimental Results and Theoretical Analysis of Homogeneous Nucleation of Dibutylphthalate

    SciTech Connect

    Mikheev, Vladimir B.; Laulainen, Nels S. ); Barlow, Stephan E. ); Knott, Michael; Ford, Ian J.

    1999-12-01

    A Laminar Flow Tube Reactor has been designed and constructed in order to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 C to+19.1 C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) has been provided. Both isothermal and the isobaric nucleation rates have been measured. The experimental data obtained have been compared with measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis based on the first and the second nucleation theorems has been made. The critical cluster size and the excess of internal energy of the critical cluster have been obtained.

  8. The laminar flow tube reactor as a quantitative tool for nucleation studies: Experimental results and theoretical analysis of homogeneous nucleation of dibutylphthalate

    SciTech Connect

    Mikheev, Vladimir B.; Laulainen, Nels S.; Barlow, Stephan E.; Knott, Michael; Ford, Ian J.

    2000-09-01

    A laminar flow tube reactor was designed and constructed to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 to +19.1 degree sign C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) is given. Both isothermal and the isobaric nucleation rates were measured. The experimental data obtained were compared with the measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis, based on the first and the second nucleation theorems, is also presented. The critical cluster size and the excess of internal energy of the critical cluster are obtained. (c) 2000 American Institute of Physics.

  9. Crystal growth rates and secondary nucleation threshold for γ-DL-methionine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wantha, Lek; Flood, Adrian E.

    2011-03-01

    The Secondary Nucleation Threshold (SNT) of γ-DL-methionine (DL-met) in aqueous solution was measured for the temperature range 10-61 °C. The width of the SNT is weakly temperature dependent with slightly smaller induction times at higher temperatures. Seeded batch crystallizations of γ-DL-met were performed isothermally at 10, 25, and 40 °C in an agitated batch crystallizer, and within the SNT region to avoid nucleation. The effect of the initial supersaturation and seed mass on crystal growth were also studied at 25 °C. The initial growth rate (during the first 20 min of the batch) is significantly higher than subsequent crystal growth, a phenomenon previously seen with other species. The measured growth rates are independent of seed mass, as expected, for the usable portion of the growth rate data. The growth rates were found to linearly depend on the relative supersaturation of the total DL-met in the system. The growth rate constants increase with increasing temperature and follow an Arrhenius relationship. The growth kinetics of the γ-DL-met will be used to study in order to begin characterization of the polymorphic transformations and the overall crystallization rate of DL-met.

  10. Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method

    SciTech Connect

    Jagannathan, K.; Kalainathan, S.

    2007-11-06

    Good quality single crystal 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) has been grown by novel nucleation reduction method instead of regular slope nucleation technique (SNT). The grown crystal was subjected to high resolution X-ray diffraction (HRXRD) studies, the perfection of the crystal was found to be better than the crystal grown by slope nucleation technique and slow cooling method. The UV-vis-NIR spectrum was recorded for the grown crystal and relative second harmonic generation (SHG) efficiency was investigated to explore the nonlinear optical (NLO) property. The dielectric and thermal behaviour of the crystal were also studied. The nuclear magnetic resonance (NMR) studies also performed for the identification of different modes present in the compound. The photoluminescence and mechanical were carried out and the results were discussed in detail.

  11. Complete thermodynamically consistent kinetic model of particle nucleation and growth: Numerical study of the applicability of the classical theory of homogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Chesnokov, Evgeni N.; Krasnoperov, Lev N.

    2007-04-01

    A complete thermodynamically consistent elementary reaction kinetic model of particle nucleation and growth from supersaturated vapor was developed and numerically evaluated to determine the conditions for the steady-state regime. The model treats all processes recognized in the aerosol science (such as nucleation, condensation, evaporation, agglomeration/coagulation, etc.) as reversible elementary reactions. It includes all possible forward reactions (i.e., of monomers, dimers, trimers, etc.) together with the thermodynamically consistent reverse processes. The model is built based on the Kelvin approximation, and has two dimensionless parameters: S0—the initial supersaturation and Θ—the dimensionless surface tension. The time evolution of the size distribution function was obtained over the ranges of parameters S0 and Θ. At low initial supersaturations, S0, the steady state is established after a delay, and the steady-state distribution function corresponds to the predictions of the classical nucleation theory. At high initial supersaturations, the depletion of monomers due to condensation on large clusters starts before the establishing of the steady state. The steady state is never reached, and the classical nucleation theory is not applicable. The boundary that separates these two regimes in the two dimensionless parameter space, S0 and Θ, was determined. The model was applied to several experiments on water nucleation in an expansion chamber [J. Wolk and R. Strey, J. Phys. Chem. B 105, 11683 (2001)] and in Laval nozzle [Y. J. Kim et al., J. Phys. Chem. A 108, 4365 (2004)]. The conditions of the experiments performed using Laval nozzle (S0=40-120) were found to be close to the boundary of the non-steady-state regime. Additional calculations have shown that in the non-steady-state regime the nucleation rate is sensitive to the rate constants of the initial steps of the nucleation process, such as the monomer-monomer, monomer-dimer, etc., reactions. This

  12. Nucleation and Crystallization of Globular Proteins: What we Know and What is Missing

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Vekilov, P. G.; Muschol, M.; Thomas, B. R.

    1996-01-01

    Recently. much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects, Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies. can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.

  13. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    NASA Technical Reports Server (NTRS)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-01-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  14. Theoretical study of production of unique glasses in space. [kinetic relationships describing nucleation and crystallization phenomena

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Sievert, J. L.

    1975-01-01

    The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate.

  15. Phase behavior and crystal nucleation and growth in a system of short semi-flexible chains

    NASA Astrophysics Data System (ADS)

    Vorselaars, Bart; Quigley, David

    2014-03-01

    A system of semi-flexible short chains is simulated to study its phase behavior and ability to crystallize, by using a combination of molecular dynamics and other techniques. For calculating the free energy of the liquid phase a new method is introduced. It is very simple to implement in practice and leads to accurate computation of the melting curve. Furthermore we determine the rate of nucleation and crystal growth in this system via a combination of path-sampling and brute-force simulation techniques. By comparing these quantities, we infer the initial microstructure of the solid phase. Due to the strong anisotropy in the crystal growth rate grains no thicker than a single chain are common, even at moderate supercoolings. This work is supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

  16. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar

    2002-01-01

    Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it

  17. Method for preparing homogeneous single crystal ternary III-V alloys

    DOEpatents

    Ciszek, Theodore F.

    1991-01-01

    A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.

  18. Climate Impacts of Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  19. Climate Impacts of Ice Nucleation

    SciTech Connect

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-19

    [1] Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (-0.06 Wm-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm-2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 ± 0.10 Wm-2 (1σ uncertainty). Finally, this represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of -1.6 Wm-2.

  20. The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Schall, Constance A.

    1998-01-01

    Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.

  1. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1

    NASA Astrophysics Data System (ADS)

    He, Gen; Dahl, Tom; Veis, Arthur; George, Anne

    2003-08-01

    Bones and teeth are biocomposites that require controlled mineral deposition during their self-assembly to form tissues with unique mechanical properties. Acidic extracellular matrix proteins play a pivotal role during biomineral formation. However, the mechanisms of protein-mediated mineral initiation are far from understood. Here we report that dentin matrix protein 1 (DMP1), an acidic protein, can nucleate the formation of hydroxyapatite in vitro in a multistep process that begins by DMP1 binding calcium ions and initiating mineral deposition. The nucleated amorphous calcium phosphate precipitates ripen and nanocrystals form. Subsequently, these expand and coalesce into microscale crystals elongated in the c-axis direction. Characterization of the functional domains in DMP1 demonstrated that intermolecular assembly of acidic clusters into a β-sheet template was essential for the observed mineral nucleation. Protein-mediated initiation of nanocrystals, as discussed here, might provide a new methodology for constructing nanoscale composites by self-assembly of polypeptides with tailor-made peptide sequences.

  2. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    SciTech Connect

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.; Mackley, Malcolm R.

    2009-11-01

    The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a protein drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.

  3. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    PubMed Central

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.; Mackley, Malcolm R.

    2009-01-01

    This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a protein drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallo­graphy. PMID:19923710

  4. Investigation of nucleation, dynamic growth and surface properties of single ice crystals

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Jens; Herenz, Paul; Chou, Cédric; Bieligk, Henner; Clauss, Tina; Niedermeier, Dennis; Ritter, Georg; Ulanowski, Joseph Z.; Stratmann, Frank

    2014-05-01

    Nucleation, dynamic growth and optical light scattering properties of a fixed single ice crystal have been experimentally characterized in dependence of both, the type of the ice nucleus (IN) and the prevailing thermodynamic conditions. The set up was developed based on the laminar flow tube LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004; Hartmann et al., 2011). The flow tube is equipped with a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (LACIS Ice Scattering Apparatus) and an additional optical microscope. For the investigations, a single (IN with a dry size of 2-10 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Temperature and saturation ratio in the measuring volume can be varied on a time scale of 1-2 s by adjusting the humidified gas flow. Dependent on the thermodynamic conditions, ice nucleation and ice particle growth/shrinkage occur and can be studied. Thereby, the LISA instrument is applied to obtain 2-D light scattering patterns, and the additional optical microscope allows a time dependent visualization of the ice crystal. Both devices together allow to investigate the influence of the thermodynamic conditions on ice particle growth, the particle shape and its surface properties (i.e., its surface roughness, Ulanowski et al., 2011; Ulanowski et al., 2012; Ulanowski et al., 2013)). The thermodynamic conditions in the optical measuring volume have been extensively characterized using a) computational fluid dynamics (CFD) calculations, b) temperature and dew-point measurements, and c) evaluation of droplet and ice particle growth data. Furthermore, we successfully performed condensation freezing and deposition nucleation experiments with ATD (Arizona Test Dust), kaolinite, illite and SnomaxTM (Johnson Controls Snow, Colorado, USA) particles. In

  5. Nucleation, growth and characterization of semiorganic nonlinear optical crystal sodium acetate doped L-tyrosine

    NASA Astrophysics Data System (ADS)

    Arthi, D.; Anbuselvi, D.; Jayaraman, D.; Arul Martin Mani, J.; Joseph, V.

    2015-02-01

    Sodium acetate doped L-tyrosine single crystal with dimensions 47 × 15 × 8 mm3 was grown by slow evaporation solution growth technique. Nucleation kinetics of the growth of the material was studied to optimize the growth conditions. The grown doped crystal was then characterized using single crystal XRD, UV-vis-NIR, FTIR, NMR, SEM-EDAX and NLO studies. XRD study reveals that the grown crystal belongs to monoclinic system with space group P21. Lattice parameters of the grown crystals are found to be a = 5.096 Å, b = 8.966 Å, c = 11.088 Å, α = β = 90° and γ = 92.035°. The transparent range of the grown crystal was measured as 260-1100 nm with 260 nm as lower cut off wavelength using UV-vis-NIR absorption spectrum and the optical band gap was evaluated as 3.24 eV from the Tauc's plot. The various functional groups were identified using FTIR spectral analysis. The thermal behavior of the title compound has been analyzed using TGA/DTA and DSC thermal curves. From the thermal study, the material is found to possess thermal stability up to 158 °C. The microstructure of the grown crystal and the presence of various elements in the crystal were analyzed using SEM and EDAX techniques. NMR spectral analysis confirms the molecular structure of the grown compound. The nonlinear optical property was tested using Kurtz Perry powder technique and SHG efficiency was measured nearly same as that of KDP.

  6. Nucleation, growth and characterization of semiorganic nonlinear optical crystal sodium acetate doped L-tyrosine.

    PubMed

    Arthi, D; Anbuselvi, D; Jayaraman, D; Arul Martin Mani, J; Joseph, V

    2015-02-01

    Sodium acetate doped L-tyrosine single crystal with dimensions 47×15×8 mm(3) was grown by slow evaporation solution growth technique. Nucleation kinetics of the growth of the material was studied to optimize the growth conditions. The grown doped crystal was then characterized using single crystal XRD, UV-vis-NIR, FTIR, NMR, SEM-EDAX and NLO studies. XRD study reveals that the grown crystal belongs to monoclinic system with space group P21. Lattice parameters of the grown crystals are found to be a=5.096 Å, b=8.966 Å, c=11.088 Å, α=β=90° and γ=92.035°. The transparent range of the grown crystal was measured as 260-1100 nm with 260 nm as lower cut off wavelength using UV-vis-NIR absorption spectrum and the optical band gap was evaluated as 3.24 eV from the Tauc's plot. The various functional groups were identified using FTIR spectral analysis. The thermal behavior of the title compound has been analyzed using TGA/DTA and DSC thermal curves. From the thermal study, the material is found to possess thermal stability up to 158°C. The microstructure of the grown crystal and the presence of various elements in the crystal were analyzed using SEM and EDAX techniques. NMR spectral analysis confirms the molecular structure of the grown compound. The nonlinear optical property was tested using Kurtz Perry powder technique and SHG efficiency was measured nearly same as that of KDP.

  7. Nucleation of liquid droplets and voids in a stretched Lennard-Jones fcc crystal.

    PubMed

    Baidakov, Vladimir G; Tipeev, Azat O

    2015-09-28

    The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal-liquid phase equilibrium when the melting line comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.

  8. A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.

    1996-01-01

    Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.

  9. Kinetics of Ice Nucleation Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Butt, Hans-Jürgen; Floudas, George

    2015-09-01

    The nucleation mechanism of water (heterogeneous/homogeneous) can be regulated by confinement within nanoporous alumina. The kinetics of ice nucleation is studied in confinement by employing dielectric permittivity as a probe. Both heterogeneous and homogeneous nucleation, obtained at low and high undercooling, respectively, are stochastic in nature. The temperature interval of metastability extends over ∼4 and 0.4 °C for heterogeneous and homogeneous nucleation, respectively. Nucleation within a pore is spread to all pores in the template. We have examined a possible coupling of all pores through a heat wave and a sound wave, with the latter being a more realistic scenario. In addition, dielectric spectroscopy indicates that prior to crystallization undercooled water molecules relax with an activation energy of ∼50 kJ/mol, and this process acts as precursor to ice nucleation. PMID:26241561

  10. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.

    PubMed

    Kobayashi, Atsuko; Golash, Harry N; Kirschvink, Joseph L

    2016-06-01

    An outstanding biophysical puzzle is focused on the apparent ability of weak, extremely low-frequency oscillating magnetic fields to enhance cryopreservation of many biological tissues. A recent theory holds that these weak magnetic fields could be inhibiting ice-crystal nucleation on the nanocrystals of biological magnetite (Fe3O4, an inverse cubic spinel) that are present in many plant and animal tissues by causing them to oscillate. In this theory, magnetically-induced mechanical oscillations disrupt the ability of water molecules to nucleate on the surface of the magnetite nanocrystals. However, the ability of the magnetite crystal lattice to serve as a template for heterogeneous ice crystal nucleation is as yet unknown, particularly for particles in the 10-100 nm size range. Here we report that the addition of trace-amounts of finely-dispersed magnetite into ultrapure water samples reduces strongly the incidence of supercooling, as measured in experiments conducted using a controlled freezing apparatus with multiple thermocouples. SQUID magnetometry was used to quantify nanogram levels of magnetite in the water samples. We also report a relationship between the volume change of ice, and the degree of supercooling, that may indicate lower degassing during the crystallization of supercooled water. In addition to supporting the role of ice-crystal nucleation by biogenic magnetite in many tissues, magnetite nanocrystals could provide inexpensive, non-toxic, and non-pathogenic ice nucleating agents needed in a variety of industrial processes, as well as influencing the dynamics of ice crystal nucleation in many natural environments. PMID:27087604

  11. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.

    PubMed

    Kobayashi, Atsuko; Golash, Harry N; Kirschvink, Joseph L

    2016-06-01

    An outstanding biophysical puzzle is focused on the apparent ability of weak, extremely low-frequency oscillating magnetic fields to enhance cryopreservation of many biological tissues. A recent theory holds that these weak magnetic fields could be inhibiting ice-crystal nucleation on the nanocrystals of biological magnetite (Fe3O4, an inverse cubic spinel) that are present in many plant and animal tissues by causing them to oscillate. In this theory, magnetically-induced mechanical oscillations disrupt the ability of water molecules to nucleate on the surface of the magnetite nanocrystals. However, the ability of the magnetite crystal lattice to serve as a template for heterogeneous ice crystal nucleation is as yet unknown, particularly for particles in the 10-100 nm size range. Here we report that the addition of trace-amounts of finely-dispersed magnetite into ultrapure water samples reduces strongly the incidence of supercooling, as measured in experiments conducted using a controlled freezing apparatus with multiple thermocouples. SQUID magnetometry was used to quantify nanogram levels of magnetite in the water samples. We also report a relationship between the volume change of ice, and the degree of supercooling, that may indicate lower degassing during the crystallization of supercooled water. In addition to supporting the role of ice-crystal nucleation by biogenic magnetite in many tissues, magnetite nanocrystals could provide inexpensive, non-toxic, and non-pathogenic ice nucleating agents needed in a variety of industrial processes, as well as influencing the dynamics of ice crystal nucleation in many natural environments.

  12. Nucleation of liquid droplets and voids in a stretched Lennard-Jones fcc crystal

    SciTech Connect

    Baidakov, Vladimir G. Tipeev, Azat O.

    2015-09-28

    The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting line comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.

  13. Early Stages in Polymer Crystal Growth for Isotactic Poly-1-Butene: From Nucleation to Network Percolation

    NASA Astrophysics Data System (ADS)

    Arora, Deepak; Winter, Horst

    2010-03-01

    Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. An attempt is made to connect the crystal fraction inside spherulites with the average crystallinity of the entire sample. The crystal fraction inside spherulites is very small initially but increases with time and catches up with the sample crystallinity later on. Experiments include optical microscopy, DSC, SALS, and rheology. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by rheology, is not caused by packing/jamming of spherulites but by the formation of a percolating structure. Impingement of pairs of spherulites occurs already much before percolation. This makes it difficult to predict crystal growth and define spherulitic impingement for the whole sample. At percolation, the absolute crystallinity is about 7-8 vol%. This shows that spherulites are mostly amorphous before impingement.

  14. Pretile angle control of liquid crystal from homogeneous to homeotropic using photocurable prepolymer

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Hun; Kang, Daeseung

    2012-03-01

    We study pretilt angle control of liquid crystal from homogeneous to homeotropic using phase separation techniques of photocurable prepolymer by UV irradiation. Pretilt angle was controlled by changing the weight ratio of LC/photocurable prepolymer in homogeneous polyimide (PI) coated LC cell. Homogeneous alignment was observed in LC/photocurable prepolymer mixture of weight ratio of 99.9:0.1 after UV irradiation for 20 minutes. Tilted alignment was observed in weight ratio of 99.8:0.2. Finally homeotropic alignment was observed in weight ratio of over 99.7:0.3.

  15. Significant improvement of GaN crystal quality with ex-situ sputtered AlN nucleation layers

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Wei; Yang, Young; Wen, Wei-Chih; Li, Heng; Lu, Tien-Chang

    2016-03-01

    Ex-situ sputtered AlN nucleation layer has been demonstrated effective to significantly improve crystal quality and electrical properties of GaN epitaxy layers for GaN based Light-emitting diodes (LEDs). In this report, we have successfully reduced X-ray (102) FWHM from 240 to 110 arcsec, and (002) FWHM from 230 to 101 arcsec. In addition, reverse-bias voltage (Vr) increased around 20% with the sputtered AlN nucleation layer. Furthermore, output power of LEDs grown on sputtered AlN nucleation layer can be improved around 4.0% compared with LEDs which is with conventional GaN nucleation layer on pattern sapphire substrate (PSS).

  16. Epitaxy versus oriented heterogeneous nucleation of organic crystals on ionic substrates

    NASA Astrophysics Data System (ADS)

    Sarma, K. R.; Shlichta, P. J.; Wilcox, W. R.; Lefever, R. A.

    1997-04-01

    It is plausible to assume that epitaxy is a special case of heterogeneous nucleation in which a restrictive crystallographic relationship exists between substrate and deposit orientations. This would mean that epitaxial substrates should always induce a perceptible reduction in the critical supercooling for nucleation of the deposit. To test this hypothesis, the critical supercoolings of six organic compounds were measured on glass and 11 single-crystal cleaved substrates including (0001) graphite, (001) mica, (111) BaF 2, SrF 2, and CaF 2, and (100) KCl, KBr, KI, NaCl, NaF, and LiF. Reductions in supercooling (with reference to glass substrates) were checked many times for repeatability and reproducibility and shown in almost all cases to have a standard deviation of 1 C or less. Acetanilide, benzoic acid, and p-bromochlorobenzene showed a wide range of supercooling reductions and were oriented on all crystalline substrates. Naphthalene and p-dibromobenzene showed only slight supercooling reductions but were oriented on all substrates, including glass. Benzil showed strong supercooling reductions only for mica and KI but was oriented not only in these cases but also with KI, BaF 2, CaF 2, and graphite. There was little correlation between degree of lattice match and either supercooling reduction or degree of preferred orientation. These results suggest that, for the systems and geometry studied, forces such as molecular dipole binding and growth anisotropy had a stronger effect than lattice match.

  17. Mesoscopic Impurities Expose a Nucleation-Limited Regime of Crystal Growth

    NASA Astrophysics Data System (ADS)

    Sleutel, Mike; Lutsko, James F.; Maes, Dominique; Van Driessche, Alexander E. S.

    2015-06-01

    Nanoscale self-assembly is naturally subject to impediments at the nanoscale. The recently developed ability to follow processes at the molecular level forces us to resolve older, coarse-grained concepts in terms of their molecular mechanisms. In this Letter, we highlight one such example. We present evidence based on experimental and simulation data that one of the cornerstones of crystal growth theory, the Cabrera-Vermilyea model of step advancement in the presence of impurities, is based on incomplete physics. We demonstrate that the piercing of an impurity fence by elementary steps is not solely determined by the Gibbs-Thomson effect, as assumed by Cabrera-Vermilyea. Our data show that for conditions leading up to growth cessation, step retardation is dominated by the formation of critically sized fluctuations. The growth recovery of steps is counter to what is typically assumed, not instantaneous. Our observations on mesoscopic impurities for lysozyme expose a nucleation-dominated regime of growth that has not been hitherto considered, where the system alternates between zero and near-pure velocity. The time spent by the system in arrest is the nucleation induction time required for the step to amass a supercritical fluctuation that pierces the impurity fence.

  18. Studies in SiO(2)-based glass systems devitrifying by nucleation and growth

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi Narayan

    Experimental and computational studies have been made on SiOsb2-based glasses crystallizing by homogenous nucleation (nucleation occurring randomly in space and time), heterogenous nucleation (nucleation occurring at specific sites through the glass), or non-polymorphic nucleation (nucleation occurring in systems where the composition of the crystallizing phase is different from that of the glass phase). A comprehensive computer model based on the classical theory of nucleation has been developed to simulate the process of crystallization occurring in differential thermal analysis experiments. The model, which takes into account the mode of the crystallization as well as the finite-size of the glass particles used in the measurements, is used to study homogenous and heterogenous crystallization of Lisb2O.2SiOsb2 glasses. The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented. An analysis of the steady-state nucleation rates in Nasb2O.2CaO.3SiOsb2 glasses made with different SiOsb2 concentrations show that the data are consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy. Further measurements of the transient nucleation rates resulting from multi-step annealing treatments support this claim, though small systematic differences suggest possible deviations from the kinetic model for nucleation.

  19. Probing homogenous ice nucleation within supercooled bulk water droplet in "no man's land" with an ultrafast X-ray laser

    NASA Astrophysics Data System (ADS)

    Laksmono, Hartawan; McQueen, Trevor A.; Sellberg, Jonas A.; Huang, Congcong; Loh, N. Duane; Sierra, Raymond G.; Starodub, Dmitri; Norlund, Dennis; Beye, Martin; Deponte, Daniel P.; Martin, Andrew; Barty, Anton; Feldkamp, Jan; Boutet, Sébastien; Williams, Garth J.; Bogan, Michael J.; Nilsson, Anders

    2013-05-01

    We performed experimental study of liquid to ice phase transition of bulk water in "no man's land". Results from this experiment will be presented and discussed together with currently available data, with emphasis on the nucleation kinetics and the resulting phase.

  20. Identification of Material Properties of PZT Single Crystals through Crystallographic Homogenization Method

    NASA Astrophysics Data System (ADS)

    Uetsuji, Yasutomo; Tanaka, Satoshi; Tsuchiya, Kazuyoshi; Ueda, Sei; Nakamachi, Eiji

    Single crystals of lead zirconium titanate (PZT) are difficult to fabricate. Thus, not all material properties of PZT have been fully characterized. In this paper, the mechanical and electrical properties of a PZT single crystal, which can be assumed to be identical to those of a crystal grain in a polycrystal, have been computed from those of a polycrystalline PZT ceramic by the steepest decent method and multiscale finite element modeling based on crystallographic homogenization method. Crystallographic homogenization enables us to predict macroscopic properties of ceramics taking into account the inhomogeneous microstructure of an aggregate of crystal grains. The crystal morphology of the PZT ceramic was measured by the SEM·EBSD technique, and the result was used in the microscopic finite element model. Then, the mechanical and electrical properties of the crystal grain were derived by the steepest decent method so that its macroscopic properties would correspond to the measured properties of the PZT ceramic. The proposed computational method was applied to barium titanate (BT) and validated by comparison of the computed material properties with known properties of the BT single crystal. Finally, the computed material properties, such as the elastic compliance, and the dielectric and piezoelectric constants, were presented for the PZT single crystal.

  1. Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions.

    PubMed

    Yoo, Byung-Kuk; Kwon, Oh-Hoon; Liu, Haihua; Tang, Jau; Zewail, Ahmed H

    2015-01-01

    The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique 'two-step' dynamics, with a robust 'plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson-Mehl-Avrami-Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation.

  2. Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions

    PubMed Central

    Yoo, Byung-Kuk; Kwon, Oh-Hoon; Liu, Haihua; Tang, Jau; Zewail, Ahmed H.

    2015-01-01

    The phase transition of crystalline ordering is a general phenomenon, but its evolution in space and time requires microscopic probes for visualization. Here we report direct imaging of the transformation of amorphous titanium dioxide nanofilm, from the liquid state, passing through the nucleation step and finally to the ordered crystal phase. Single-pulse transient diffraction profiles at different times provide the structural transformation and the specific degree of crystallinity (η) in the evolution process. It is found that the temporal behaviour of η exhibits unique ‘two-step' dynamics, with a robust ‘plateau' that extends over a microsecond; the rate constants vary by two orders of magnitude. Such behaviour reflects the presence of intermediate structure(s) that are the precursor of the ordered crystal state. Theoretically, we extend the well-known Johnson–Mehl–Avrami–Kolmogorov equation, which describes the isothermal process with a stretched-exponential function, but here over the range of times covering the melt-to-crystal transformation. PMID:26478194

  3. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOEpatents

    Kim, Sung-Hou; Kim, Rosalind; Jancarik, Jamila

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  4. Influence of crystallography upon critical nucleus shapes and kinetics of homogeneous f. c. c. -f. c. c. nucleation-II. The non-classical regime

    SciTech Connect

    Le Goues, F.K.; Aaronson, H.I.; Lee, Y.W.

    1984-10-01

    In a previous paper, the shape of the critical nucleus and its influence upon nucleation kinetics were studied at near zero supersaturation, i.e. in the classical nucleation regime, using a discrete lattice plane model of the coherent interphase boundary energy. In order to extend these studies to higher supersaturations, a discrete lattice point model, based on a formalism developed by Cook, de Fontaine and Hilliard, is employed in the present paper and applied to homogeneous nucleation of coherent f.c.c. precipitates in an f.c.c. matrix. Concentration profiles and free energies of formation of critical nuclei are calculated from this model as a function of temperature and supersaturation and compared with results obtained from the Cahn-Hilliard continuum non-classical model and the previously used discrete lattice plane classical model. As predicted in effect by Cahn and Hilliard, the three models converge at very low supersaturations, and the continuum and the discrete lattice point (but not the classical discrete lattice plane) models also do so near the spinodal. Thus the most important differences between the continuum and the discrete lattice point models develop at intermediate supersaturations. The main advantages of the discrete lattice point model are that it allows the influence of crystalline anisotropy to be taken into account, permits treatment of arbitrarily steep variations in composition and provides a more convenient milieu for the incorporation of volume strain energy, as is done in the next paper in this series.

  5. Transmission of light in crystals with different homogeneity: using Shannon index in photonic media

    NASA Astrophysics Data System (ADS)

    Bellingeri, M.; Longhi, S.; Scotognella, F.

    2010-09-01

    Light transmission in inhomogeneous photonic media is strongly influenced by the distribution of the diffractive elements in the medium. Here it is shown theoretically that, in a pillar photonic crystal structure, light transmission and homogeneity of the pillar distribution are correlated by a simple linear law once the grade of homogeneity of the photonic structure is measured by the Shannon index, widely employed in statistics, ecology and information entropy. The statistical analysis shows that the transmission of light in such media depends linearly from their homogeneity: the more is homogeneous the structure, the more is the light transmitted. With the found linear relationship it is possible to predict the transmission of light in random photonic structures. The result can be useful for the study of electron transport in solids, since the similarity with light in photonic media, but also for the engineering of scattering layers for the entrapping of light to be co! upled with photovoltaic devices.

  6. Homogenous nucleation rates of n-propanol measured in the Laminar Flow Diffusion Chamber at different total pressures.

    PubMed

    Görke, Hanna; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Lihavainen, Heikki; Wölk, Judith; Strey, Reinhard; Brus, David

    2014-05-01

    Nucleation rates of n-propanol were investigated in the Laminar Flow Diffusion Chamber. Nucleation temperatures between 270 and 300 K and rates between 10(0) and 10(6) cm(-3) s(-1) were achieved. Since earlier measurements of n-butanol and n‑pentanol suggest a dependence of nucleation rates on carrier gas pressure, similar conditions were adjusted for these measurements. The obtained data fit well to results available from literature. A small positive pressure effect was found which strengthen the assumption that this effect is attributed to the carbon chain length of the n-alcohol [D. Brus, A. P. Hyvärinen, J. Wedekind, Y. Viisanen, M. Kulmala, V. Ždímal, J. Smolík, and H. Lihavainen, J. Chem. Phys. 128, 134312 (2008)] and might be less intensive for substances in the homologous series with higher equilibrium vapor pressure. A comparison with the theoretical approach by Wedekind et al. [Phys. Rev. Lett. 101, 12 (2008)] shows that the effect goes in the same direction but that the intensity is much stronger in experiments than in theory. PMID:24811635

  7. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition

    NASA Astrophysics Data System (ADS)

    Ni, Ran; Smallenburg, Frank; Filion, Laura; Dijkstra, Marjolein

    2011-03-01

    We study crystal nucleation in a binary mixture of hard spheres and investigate the composition and size of the (non)critical clusters using Monte Carlo simulations. In order to study nucleation of a crystal phase in computer simulations, a one-dimensional order parameter is usually defined to identify the solid phase from the supersaturated fluid phase. We show that the choice of order parameter can strongly influence the composition of noncritical clusters due to the projection of the Gibbs free-energy landscape in the two-dimensional composition plane onto a one-dimensional order parameter. On the other hand, the critical cluster is independent of the choice of the order parameter, due to the geometrical properties of the saddle point in the free-energy landscape, which is invariant under coordinate transformation. We investigate the effect of the order parameter on the cluster composition for nucleation of a substitutional solid solution in a simple toy model of identical hard spheres but tagged with different colours and for nucleation of an interstitial solid solution in a binary hard-sphere mixture with a diameter ratio q = 0.3. In both cases, we find that the composition of noncritical clusters depends on the order parameter choice, but are well explained by the predictions from classical nucleation theory. More importantly, we find that the properties of the critical cluster do not depend on the order parameter choice.

  8. New Understandings for Three-Dimensional Nucleation (I)

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.

    The generic heterogeneous effect of foreign particles on 3D nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m, x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m, x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m, x)-->1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some crystals. The results are in excellent agreement with the theory. Apart from this, the implications for epitaxial growth have also been discussed. In order to grow crystals epitaxially, the supersaturation should be kept at a low level, despite a good structural match between the crystal and substrate.

  9. Thermodynamic equilibrium, metastable zone widths, and nucleation behavior in the cooling crystallization of gestodene-ethanol systems

    NASA Astrophysics Data System (ADS)

    Wang, Li-yu; Zhu, Liang; Yang, Li-bin; Wang, Yan-fei; Sha, Zuo-liang; Zhao, Xiao-yu

    2016-03-01

    A systematic investigation of nucleation behavior for the batch cooling crystallization of unseeded gestodene-ethanol solutions was carried out. The solubilities of the two polymorphs (forms I and II) of gestodene in ethanol were gravimetrically measured between 268.15 and 333.15 K under atmospheric pressure of 0.10 MPa. In addition, the metastable zone widths (MSZWs) of the gestodene-ethanol solutions were determined by the polythermal method combined with the focused beam reflectance measurement (FBRM®) technique. Moreover, polymorphic forms of the grown crystals were identified by X-ray powder diffraction (XRD) and optical microscope. Experimental results indicated that the measured MSZWs were dependent on numerous technological parameters, including cooling rate, saturation temperature, and agitation intensity. With variation of the nucleation temperature and cooling rate, forms I, II, and a mixture of the two forms were crystallized from ethanol solution. The nucleation kinetic parameters were estimated from MSZW data using the self-consistent Nývlt-like approach. Due to the high solubility of form I in ethanol at the corresponding temperature range, the stronger solute-solvent interactions confirmed that the nucleation of form I had a greater activation energy than that of form II.

  10. Summary of in situ epitaxial nucleation and growth measurements. [for semiconducting single crystal PbSe films

    NASA Technical Reports Server (NTRS)

    Poppa, H.; Moorhead, R. D.; Heinemann, K.

    1974-01-01

    In situ nucleation and growth measurements of Ag and Au on single-crystal PbSe thin films were made using a transmission electron microscope. Properties studied were polymorphism, crystalline perfection, and the stoichiometric composition of the initial and the autoepitaxially thickened PbSe substrates. The quantitative nucleation and cluster growth measurements were limited to low-saturation conditions. The epitaxial orientations are discussed, and evidence is presented as to the stage of deposition at which the epitaxial order for Ag is introduced. Strong substrate/overgrowth interaction manifested itself by alloying and interdiffusion.

  11. Nucleation of Ice

    NASA Astrophysics Data System (ADS)

    Molinero, Valeria

    2009-03-01

    The freezing of water into ice is a ubiquitous transformation in nature, yet the microscopic mechanism of homogeneous nucleation of ice has not yet been elucidated. One of the reasons is that nucleation happens in time scales that are too fast for an experimental characterization and two slow for a systematic study with atomistic simulations. In this work we use coarse-grained molecular dynamics simulations with the monatomic model of water mW[1] to shed light into the mechanism of homogeneous nucleation of ice and its relationship to the thermodynamics of supercooled water. Cooling of bulk water produces either crystalline ice or low- density amorphous ice (LDA) depending on the quenching rate. We find that ice crystallization occurs faster at temperatures close to the liquid-liquid transition, defined as the point of maximum inflection of the density with respect to the temperature. At the liquid-liquid transition, the time scale of nucleation becomes comparable to the time scale of relaxation within the liquid phase, determining --effectively- the end of the metastable liquid state. Our results imply that no ultraviscous liquid water can exist at temperatures just above the much disputed glass transition of water. We discuss how the scenario is changed when water is in confinement, and the relationship of the mechanism of ice nucleation to that of other liquids that present the same phase behavior, silicon [2] and germanium [3]. [4pt] [1] Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. Journal of Physical Chemistry B (2008). Online at http://pubs.acs.org/cgi- bin/abstract.cgi/jpcbfk/asap/abs/jp805227c.html [0pt] [2] Molinero, V., Sastry, S. & Angell, C. A. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Physical Review Letters 97, 075701 (2006).

  12. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal

    NASA Astrophysics Data System (ADS)

    Xu, Shaowen; Deng, Xiaomin

    2008-03-01

    A constrained three-dimensional atomistic model of a cracked aluminum single crystal has been employed to investigate the growth behavior of a nanoscale crack in a single crystal using molecular dynamics simulations with the EAM potential. This study is focused on the stress field around the crack tip and its evolution during fast crack growth. Simulation results of the observed nanoscale fracture behavior are presented in terms of atomistic stresses. Major findings from the simulation results are the following: (a) crack growth is in the form of void nucleation, growth and coalescence ahead of the crack tip, thus resembling that of ductile fracture at the continuum scale; (b) void nucleation occurs at a certain distance ahead of the current crack tip or the forward edge of the leading void ahead of the crack tip; (c) just before void nucleation the mean atomic stress (or equivalently its ratio to the von Mises effective stress, which is called the stress constraint or triaxiality) has a high concentration at the site of void nucleation; and (d) the stress field ahead of the current crack tip or the forward edge of the leading void is more or less self-similar (so that the forward edge of the leading void can be viewed as the effective crack tip).

  13. Homogeneous nucleation rate measurements of 1-butanol in helium: a comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber.

    PubMed

    Brus, David; Hyvärinen, Antti-Pekka; Zdímal, Vladimír; Lihavainen, Heikki

    2005-06-01

    Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results.

  14. Homogeneous nucleation rate measurements of 1-butanol in helium: a comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber.

    PubMed

    Brus, David; Hyvärinen, Antti-Pekka; Zdímal, Vladimír; Lihavainen, Heikki

    2005-06-01

    Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results. PMID:15974753

  15. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%

    NASA Astrophysics Data System (ADS)

    Bi, Dongqin; Yi, Chenyi; Luo, Jingshan; Décoppet, Jean-David; Zhang, Fei; Zakeeruddin, Shaik Mohammed; Li, Xiong; Hagfeldt, Anders; Grätzel, Michael

    2016-10-01

    The past several years have witnessed the rapid emergence of a class of solar cells based on mixed organic–inorganic halide perovskites. Today’s state-of-the-art perovskite solar cells (PSCs) employ various methods to enhance nucleation and improve the smoothness of the perovskite films formed via solution processing. However, the lack of precise control over the crystallization process creates a risk of forming unwanted defects, for example, pinholes and grain boundaries. Here, we introduce an approach to prepare perovskite films of high electronic quality by using poly(methyl methacrylate) (PMMA) as a template to control nucleation and crystal growth. We obtain shiny smooth perovskite films of excellent electronic quality, as manifested by a remarkably long photoluminescence lifetime. We realize stable PSCs with excellent reproducibility showing a power conversion efficiency (PCE) of up to 21.6% and a certified PCE of 21.02% under standard AM 1.5G reporting conditions.

  16. Verification of an Analytical Method for Measuring Crystal Nucleation Rates in Glasses from DTA Data

    NASA Technical Reports Server (NTRS)

    Ranasinghe, K. S.; Wei, P. F.; Kelton, K. F.; Ray, C. S.; Day, D. E.

    2004-01-01

    A recently proposed analytical (DTA) method for estimating the nucleation rates in glasses has been evaluated by comparing experimental data with numerically computed nucleation rates for a model lithium disilicate glass. The time and temperature dependent nucleation rates were predicted using the model and compared with those values from an analysis of numerically calculated DTA curves. The validity of the numerical approach was demonstrated earlier by a comparison with experimental data. The excellent agreement between the nucleation rates from the model calculations and fiom the computer generated DTA data demonstrates the validity of the proposed analytical DTA method.

  17. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  18. Probing the homogeneity of the isotopic composition and molar mass of the ‘Avogadro’-crystal

    NASA Astrophysics Data System (ADS)

    Pramann, Axel; Lee, Kyoung-Seok; Noordmann, Janine; Rienitz, Olaf

    2015-12-01

    Improved measurements on silicon crystal samples highly enriched in the 28Si isotope (known as ‘Si28’ or AVO28 crystal material) have been carried out at PTB to investigate local isotopic variations in the original crystal. This material was used for the determination of the Avogadro constant NA and therefore plays an important role in the upcoming redefinition of the SI units kilogram and mole, using fundamental constants. Subsamples of the original crystal have been extensively studied over the past few years at the National Research Council (NRC, Canada), the National Metrology Institute of Japan (NMIJ, Japan), the National Institute of Standards and Technology (NIST, USA), the National Institute of Metrology (NIM, People’s Republic of China), and multiple times at PTB. In this study, four to five discrete, but adjacent samples were taken from three distinct axial positions of the crystal to obtain a more systematic and comprehensive understanding of the distribution of the isotopic composition and molar mass throughout the crystal. Moreover, improved state-of-the-art techniques in the experimental measurements as well as the evaluation approach and the determination of the calibration factors were utilized. The average molar mass of the measured samples is M  =  27.976 970 12(12) g mol-1 with a relative combined uncertainty uc,rel(M)  =  4.4 ×10-9. This value is in astounding agreement with the values of single samples measured and published by NIST, NMIJ, and PTB. With respect to the associated uncertainties, no significant variations in the molar mass and the isotopic composition as a function of the sample position in the boule were observed and thus could not be traced back to an inherent property of the crystal. This means that the crystal is not only ‘homogeneous’ with respect to molar mass but also has predominantly homogeneous distribution of the three stable Si isotopes.

  19. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  20. Effect of Pt Doping on Nucleation and Crystallization in Li2O.2SiO2 Glass: Experimental Measurements and Computer Modeling

    NASA Technical Reports Server (NTRS)

    Narayan, K. Lakshmi; Kelton, K. F.; Ray, C. S.

    1996-01-01

    Heterogeneous nucleation and its effects on the crystallization of lithium disilicate glass containing small amounts of Pt are investigated. Measurements of the nucleation frequencies and induction times with and without Pt are shown to be consistent with predictions based on the classical nucleation theory. A realistic computer model for the transformation is presented. Computed differential thermal analysis data (such as crystallization rates as a function of time and temperature) are shown to be in good agreement with experimental results. This modeling provides a new, more quantitative method for analyzing calorimetric data.

  1. Influence of crystallography upon critical nucleus shapes and kinetics of homogeneous f. c. c. -f. c. c. nucleation-IV. Comparisons between theory and experiment in Cu-Co alloys

    SciTech Connect

    Le Goues, F.K.; Aaronson, H.I.

    1984-10-01

    A discrete lattice point model (Cook, de Fontaine and Hilliard) which incorporates strain energy (Cook and de Fontaine), described in earlier papers, has been used to determine the ranges of temperature and composition at which homogeneous nucleation kinetics of f.c.c. precipitates in Cu-Co alloys would be neither too fast nor too slow to be measured. These predictions proved successful and it was possible to measure experimentally nucleation kinetics in Cu-Co alloys containing from 0.5 to 1.0 at.% Co within 50/sup 0/C temperature ranges. Experimental results were compared with theoretical values obtained from the discrete lattice point, the Cahn-Hilliard continuum and the classical theories of homogeneous nucleation. Very good agreement was obtained between the experiments and all three theories. Although surprising at first, the good matching between classical theory and experiment was explained by showing that the calculated concentration profiles of critical nuclei at the temperatures and alloy compositions experimentally studied did show distinct ''volumes'' and ''interfaces'' i.e. the solute concentration did not vary continuously throughout the nuclei. In this case, as pointed out in effect by Cahn and Hilliard, classical nucleation theory indeed applies. These findings provide the first strong support for the essential correctness of homogeneous nucleation theory.

  2. The interaction of colloidal particles with weak homeotropic anchoring energy in homogeneous nematic liquid crystal cells.

    PubMed

    Kim, Sung-Jo; Kim, Jong-Hyun

    2014-04-21

    We have investigated interactions of colloidal particles with weak homeotropic anchoring energy in homogeneous nematic liquid crystal cells. Particle-wall and inter-particle interactions were observed experimentally and analyzed using typical dipole-dipole and quadrupole-quadrupole interactions, including substrate effects as the image charges. Both experimental results matched well with the calculated results for the effective particle radius reflecting the weak anchoring. The effective radius is reduced by the amount of extrapolation length than the actual particle radius. The effective radii of polyethylene micro-particles were reduced to a coefficient ζ (0.78 ≥ ζ ≥ 0.52) times the actual radius with anchoring coefficients in the range of 3.8 × 10(-6) to 1.4 × 10(-6) J m(-2). The anchoring energy of the particles is, therefore, a key component for explaining liquid crystal colloidal systems.

  3. Cavitation nucleation

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2001-05-01

    For his dissertation research at Harvard, Bob Apfel chose the subject of homogeneous nucleation, and conceived of some ingenious experiments to test existing theories. By selecting a small microdroplet of liquid, he could make the reasonable assumption that no inhomogeneities were present to serve as preferential sites for liquid rupture. However, Bob also studied dirty liquids, as well as very clean ones, and wrote some seminal papers on inhomogeneous nucleation, in which he developed the Golden rule: Know thy liquid! Currently, considerable attention has been devoted to the study of cavitation generation in vivo, particularly in blood, and, for this case, the nucleation conditions are much different than those for normal liquids. In this presentation, I will review some of Bob's pioneering studies and present some of our latest studies of cavitation inception, both in vitro and in vivo.

  4. Finite-size effects on liquid-solid phase coexistence and the estimation of crystal nucleation barriers.

    PubMed

    Statt, Antonia; Virnau, Peter; Binder, Kurt

    2015-01-16

    A fluid in equilibrium in a finite volume V with particle number N at a density ρ=N/V exceeding the onset density ρ_{f} of freezing may exhibit phase coexistence between a crystalline nucleus and surrounding fluid. Using a method suitable for the estimation of the chemical potential of dense fluids, we obtain the excess free energy due to the surface of the crystalline nucleus. There is neither a need to precisely locate the interface nor to compute the (anisotropic) interfacial tension. As a test case, a soft version of the Asakura-Oosawa model for colloid-polymer mixtures is treated. While our analysis is appropriate for crystal nuclei of arbitrary shape, we find the nucleation barrier to be compatible with a spherical shape and consistent with classical nucleation theory.

  5. Finite-Size Effects on Liquid-Solid Phase Coexistence and the Estimation of Crystal Nucleation Barriers

    NASA Astrophysics Data System (ADS)

    Statt, Antonia; Virnau, Peter; Binder, Kurt

    2015-01-01

    A fluid in equilibrium in a finite volume V with particle number N at a density ρ =N /V exceeding the onset density ρf of freezing may exhibit phase coexistence between a crystalline nucleus and surrounding fluid. Using a method suitable for the estimation of the chemical potential of dense fluids, we obtain the excess free energy due to the surface of the crystalline nucleus. There is neither a need to precisely locate the interface nor to compute the (anisotropic) interfacial tension. As a test case, a soft version of the Asakura-Oosawa model for colloid-polymer mixtures is treated. While our analysis is appropriate for crystal nuclei of arbitrary shape, we find the nucleation barrier to be compatible with a spherical shape and consistent with classical nucleation theory.

  6. Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity.

    PubMed

    Fernández-Garrido, Sergio; Kong, Xiang; Gotschke, Tobias; Calarco, Raffaella; Geelhaar, Lutz; Trampert, Achim; Brandt, Oliver

    2012-12-12

    We experimentally investigate whether crystal polarity affects the growth of GaN nanowires in plasma-assisted molecular beam epitaxy and whether their formation has to be induced by defects. For this purpose, we prepare smooth and coherently strained AlN layers on 6H-SiC(0001) and SiC(0001̅) substrates to ensure a well-defined polarity and an absence of structural and morphological defects. On N-polar AlN, a homogeneous and dense N-polar GaN nanowire array forms, evidencing that GaN nanowires form spontaneously in the absence of defects. On Al-polar AlN, we do not observe the formation of Ga-polar GaN NWs. Instead, sparse N-polar GaN nanowires grow embedded in a Ga-polar GaN layer. These N-polar GaN nanowires are shown to be accidental in that the necessary polarity inversion is induced by the formation of Si(x)N. The present findings thus demonstrate that spontaneously formed GaN nanowires are irrevocably N-polar. Due to the strong impact of the polarity on the properties of GaN-based devices, these results are not only essential to understand the spontaneous formation of GaN nanowires but also of high technological relevance.

  7. The effect of nucleation layer thickness on the structural evolution and crystal quality of bulk GaN grown by a two-step process on cone-patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Zhai, Guangmei; Mei, Fuhong; Jia, Wei; Yu, Chunyan; Liu, Xuguang; Xu, Bingshe

    2016-05-01

    The role of nucleation layer thickness on the GaN crystal quality grown on cone-patterned sapphire substrate (PSS) was explored. The morphologies of epitaxial GaN at different growth stages were investigated by a series of growth interruption in detail. After 10- and 15-min three-dimensional growth, the nucleation sites are very important for the bulk GaN crystal quality. They have a close relationship with the nucleation layer thickness, as confirmed through the scanning electron microscope (SEM) analysis. Nucleation sites formed mainly on patterns are bad for bulk GaN crystal quality and nucleation sites formed mainly in the trenches of PSS mounds are good for bulk GaN crystal quality, as proved by X-ray diffraction analysis. Nucleation layer thickness can effectively control the nucleation sites and thus determine the crystal quality of bulk GaN.

  8. Bubble Nucleation, Coalescence and Outgassing Induced by Crystallization: Insights into Their Contribution to Seismic Properties of Magmas.

    NASA Astrophysics Data System (ADS)

    Tripoli, B. A.

    2015-12-01

    Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the location and dimensions of magmatic reservoirs. Magma rheology and volcanic eruptive style are to a first order controlled by processes occurring within the conduit or in the magma chamber, such as crystallization and bubble exsolution. Seismic velocities are strongly affected by these processes, but the limited number of constrained measurements does not allow yet establishing a firm link between seismic tomography and the textural and hence rheologic state of volcanic systems. Elastic parameters of vapor-saturated, partially molten systems are thus providing fundamental information for the identification of such reservoirs under volcanoes. We investigated a chemically simplified melt analogous to trachyte, which undergoes plagioclase crystallization and bubble exsolution. A Paterson-type apparatus was employed to measure the seismic velocities at a constant pressure of 250 MPa and at a frequency of 0.1 MHz. The temperature was decreased at a rate of 0.5 or 0.1 °C/min from 850 to 700 °C and velocities were recorded every 45 minutes. In order to characterize the microstructure evolution, we conducted series of cold-seal experiments at identical pressure conditions but with rapid-quenching at each of the recorded temperatures. Magmatic processes such as crystallization, bubble nucleation and coalescence have been recognized throughout the measurements of seismic velocities in the laboratory. Compression and shear wave velocities increase non-linearly during crystallization. At crystal fraction exceeding 45 vol%, the formation of a crystal network favors the propagation of seismic waves through magmatic liquids. However, bubble nucleation induced by crystallization leads to an increase of magma compressibility resulting in a lowering of the wave propagation velocities. These two processes occurring simultaneously have thus competing effects on the seismic properties of magmas. In

  9. Anatomy of a metabentonite: nucleation and growth of illite crystals and their colescence into mixed-layer illite/smectite

    USGS Publications Warehouse

    Eberl, D.D.; Blum, A.E.; Serravezza, M.

    2011-01-01

    The illite layer content of mixed-layer illite/smectite (I/S) in a 2.5 m thick, zoned, metabentonite bed from Montana decreases regularly from the edges to the center of the bed. Traditional X-ray diffraction (XRD) pattern modeling using Markovian statistics indicated that this zonation results from a mixing in different proportions of smectite-rich R0 I/S and illite-rich R1 I/S, with each phase having a relatively constant illite layer content. However, a new method for modeling XRD patterns of I/S indicates that R0 and R1 I/S in these samples are not separate phases (in the mineralogical sense of the word), but that the samples are composed of illite crystals that have continuous distributions of crystal thicknesses, and of 1 nm thick smectite crystals. The shapes of these distributions indicate that the crystals were formed by simultaneous nucleation and growth. XRD patterns for R0 and R1 I/S arise by interparticle diffraction from a random stacking of the crystals, with swelling interlayers formed at interfaces between crystals from water or glycol that is sorbed on crystal surfaces. It is the thickness distributions of smectite and illite crystals (also termed fundamental particles, or Nadeau particles), rather than XRD patterns for mixed-layer I/S, that are the more reliable indicators of geologic history, because such distributions are composed of well-defined crystals that are not affected by differences in surface sorption and particle arrangements, and because their thickness distribution shapes conform to the predictions of crystal growth theory, which describes their genesis.

  10. Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata.

    PubMed

    Saruwatari, Kazuko; Matsui, Tomoyuki; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2009-06-01

    The growth front of nacreous layer, which lies just above the outer prismatic layer, is one of the crucial areas to comprehend the formation of nacreous aragonite. The crystallographic properties of aragonite crystals at the growth front in pearl oyster, Pinctada fucata, were investigated using scanning electron microscopy with electron back-scattered diffraction, and transmission electron microscopy with focused ion beam sample preparation technique. Nano-sized aragonite crystals nucleate with random crystallographic orientation inside the dimples on the surface of the organic matrix that covers the outer prismatic columns. The dimples are filled with horn-like aragonite crystals, which enlarge from the bottom to the upper surface to form hemispheric domes. The domes grow concentrically and coalesce together to become the initial nacreous layer. The c-axes of aragonite at the top surface of the domes are preferentially oriented perpendicular to the surface. The horn-like aragonite and its crystallographic orientation are probably attained by geometrical selection with the fastest growth rate of aragonite along the c-axis, until organic sheets are continuously formed and interrupt the crystal growth of aragonite. The further crystal growth along the shell thickness is attained via mineral bridges through discontinuity or holes in the organic sheets. These results indicate that the crystal growth of aragonite at the growth front results from not only biotic process but also inorganic ones such as geometrical selection and mineral bridges.

  11. Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals

    PubMed Central

    Rodenbücher, C.; Luysberg, M.; Schwedt, A.; Havel, V.; Gunkel, F.; Mayer, J.; Waser, R.

    2016-01-01

    The homogeneity of Verneuil-grown SrTiO3:Nb crystals was investigated. Due to the fast crystal growth process, inhomogeneities in the donor dopant distribution and variation in the dislocation density are expected to occur. In fact, for some crystals optical studies show variations in the density of Ti3+ states on the microscale and a cluster-like surface conductivity was reported in tip-induced resistive switching studies. However, our investigations by TEM, EDX mapping, and 3D atom probe reveal that the Nb donors are distributed in a statistically random manner, indicating that there is clearly no inhomogeneity on the macro-, micro-, and nanoscale in high quality Verneuil-grown crystals. In consequence, the electronic transport in the bulk of donor-doped crystals is homogeneous and it is not significantly channelled by extended defects such as dislocations which justifies using this material, for example, as electronically conducting substrate for epitaxial oxide film growth. PMID:27577508

  12. Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals

    NASA Astrophysics Data System (ADS)

    Rodenbücher, C.; Luysberg, M.; Schwedt, A.; Havel, V.; Gunkel, F.; Mayer, J.; Waser, R.

    2016-08-01

    The homogeneity of Verneuil-grown SrTiO3:Nb crystals was investigated. Due to the fast crystal growth process, inhomogeneities in the donor dopant distribution and variation in the dislocation density are expected to occur. In fact, for some crystals optical studies show variations in the density of Ti3+ states on the microscale and a cluster-like surface conductivity was reported in tip-induced resistive switching studies. However, our investigations by TEM, EDX mapping, and 3D atom probe reveal that the Nb donors are distributed in a statistically random manner, indicating that there is clearly no inhomogeneity on the macro-, micro-, and nanoscale in high quality Verneuil-grown crystals. In consequence, the electronic transport in the bulk of donor-doped crystals is homogeneous and it is not significantly channelled by extended defects such as dislocations which justifies using this material, for example, as electronically conducting substrate for epitaxial oxide film growth.

  13. Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals.

    PubMed

    Rodenbücher, C; Luysberg, M; Schwedt, A; Havel, V; Gunkel, F; Mayer, J; Waser, R

    2016-01-01

    The homogeneity of Verneuil-grown SrTiO3:Nb crystals was investigated. Due to the fast crystal growth process, inhomogeneities in the donor dopant distribution and variation in the dislocation density are expected to occur. In fact, for some crystals optical studies show variations in the density of Ti(3+) states on the microscale and a cluster-like surface conductivity was reported in tip-induced resistive switching studies. However, our investigations by TEM, EDX mapping, and 3D atom probe reveal that the Nb donors are distributed in a statistically random manner, indicating that there is clearly no inhomogeneity on the macro-, micro-, and nanoscale in high quality Verneuil-grown crystals. In consequence, the electronic transport in the bulk of donor-doped crystals is homogeneous and it is not significantly channelled by extended defects such as dislocations which justifies using this material, for example, as electronically conducting substrate for epitaxial oxide film growth. PMID:27577508

  14. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  15. Unraveling the microscopic pathway of homogeneous water crystallization at supercooled conditions from direct simulations

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Palmer, Jeremy; Singh, Rakesh; Debenedetti, Pablo; Car, Roberto

    By means of unbiased classical molecular dynamics simulations, we identify the microscopic pathways of spontaneous homogeneous crystallization in supercooled ST2 water. By introducing a new order parameter, we are able to monitor formation/disruption of locally ordered regions characterized by small ice clusters with intermediate range order. When two of these regions are close each other, they percolate and form a larger ordered region. The process is slow enough to allow for polymorphic selection in favor of cubic ice (Ic). The formation of an ice nucleus requires percolation of many small clusters so that the transformations at the interface of the nucleus do not involve its core, thus guaranteeing the stability of the nucleus. The growth of the crystalline nucleus is fast and involves direct transformation of interfacial liquid molecules as well as percolation of small Ic/Ih clusters. The growth is too fast to allow conversion of Ih into Ic sites, originating the formation of a stacking fault in the final crystal. We recognize Euclidean structures in the oxygen configuration of the second shell in Ic and Ih clusters. This new point of view allows us to explain the source of the ordered stacking fault geometry.

  16. Vapor deposition of a smectic liquid crystal: highly anisotropic, homogeneous glasses with tunable molecular orientation.

    PubMed

    Gómez, Jaritza; Jiang, Jing; Gujral, Ankit; Huang, Chengbin; Yu, Lian; Ediger, M D

    2016-03-21

    Physical vapor deposition (PVD) has been used to prepare glasses of itraconazole, a smectic A liquid crystal. Glasses were deposited onto subtrates at a range of temperatures (Tsubstrate) near the glass transition temperature (Tg), with Tsubstrate/Tg ranging from 0.70 to 1.02. Infrared spectroscopy and spectroscopic ellipsometry were used to characterize the molecular orientation using the orientational order parameter, Sz, and the birefringence. We find that the molecules in glasses deposited at Tsubstrate = Tg are nearly perpendicular to the substrate (Sz = +0.66) while at lower Tsubstrate molecules are nearly parallel to the substrate (Sz = -0.45). The molecular orientation depends on the temperature of the substrate during preparation, allowing layered samples with differing orientations to be readily prepared. In addition, these vapor-deposited glasses are macroscopically homogeneous and molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. Vapor deposition of liquid crystals is likely a general approach for the preparation of highly anisotropic glasses with tunable molecular orientation for use in organic electronics and optoelectronics.

  17. Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.

    PubMed

    Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S

    2014-12-14

    Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated. PMID:25340949

  18. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2002-01-01

    Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative

  19. Transient nucleation in glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.

    1991-01-01

    Nucleation rates in condensed systems are frequently not at their steady state values. Such time dependent (or transient) nucleation is most clearly observed in devitrification studies of metallic and silicate glasses. The origin of transient nucleation and its role in the formation and stability of desired phases and microstructures are discussed. Numerical models of nucleation in isothermal and nonisothermal situations, based on the coupled differential equations describing cluster evolution within the classical theory, are presented. The importance of transient nucleation in glass formation and crystallization is discussed.

  20. Mercury iodide nucleation and crystal growth in vapor phase (4-IML-1)

    NASA Technical Reports Server (NTRS)

    Cadoret, Robert

    1992-01-01

    The objectives of this experiment are to grow simultaneously three single crystals of mercuric iodide (HgI2) in an imposed temperature profile and to assess the advantages of growth in microgravity on the HgI2 crystal quality. Growth in microgravity should reduce fluctuations in HgI2 concentrations and thus decrease the resultant crystal defects. In order to test this hypothesis, a seeded growth of HgI2 crystals will be performed on International Microgravity Lab. (IML-1).

  1. Shear-Induced Precursor Relaxation-Dependent Growth Dynamics and Lamellar Orientation of β-Crystals in β-Nucleated Isotactic Polypropylene.

    PubMed

    Chen, Yan-Hui; Fang, Du-Fei; Lei, Jun; Li, Liang-Bin; Hsiao, Benjamin S; Li, Zhong-Ming

    2015-04-30

    Although a shear flow field and β-nucleating agents (β-NAs) can separately induce the formation of β-crystals in isotactic polypropylene (iPP) in an efficient manner, we previously encountered difficulty in obtaining abundant β-crystals when these two factors were applied due to the competitive growth of α- and β-crystals. In the current study, to induce the formation of a high fraction of β-crystals, a strategy that introduces a relaxation process after applying a shear flow field but before cooling to crystallize β-nucleated iPP was proposed. Depending on the relaxation state of the shear-induced oriented precursors, abundant β-crystals with a refined orientation morphology were indeed formed. The key to producing these crystals lay in the partially dissolved shear-induced oriented precursors as a result of the relaxation process's ability to generate β-crystals by inducing the formation of needlelike β-NAs. Therefore, the content of β-crystals gradually increased with relaxation time, whereas the overall crystallization kinetics progressively decreased. Moreover, more time was required for the content of the β-phase to increase to the (maximum) value observed in quiescent crystallization than for the effect of flow on crystallization kinetics to be completely eliminated. The c-axis of the oriented β-lamellae was observed to be perpendicular, rather than parallel, to the fiber axis of the needlelike β-NAs, as first evidenced by the unique small-angle X-ray scattering patterns obtained. The significance of the relaxation process was manifested in regulating the content and morphology of oriented β-crystals in sheared, β-nucleated iPP and thus in the structure and property manipulation of iPP.

  2. Quantification of gypsum crystal nucleation, growth, and breakage rates in a wet flue gas desulfurization pilot plant

    SciTech Connect

    Hansen, B.B.; Kiil, S.; Johnsson, J.E.

    2009-10-15

    The aim of this work is to study the influence of nucleation, growth and breakage on the particle size distribution (PSD) of gypsum crystals produced by the wet flue gas desulfurization (FGD) process. The steady state PSD, obtained in a falling film wet FGD pilot plant during desulfurization of a 1000 ppm(V) SO{sub 2} gas stream, displayed a strong nonlinear behaviour (in a ln(n(l)) vs. I plot) at the lower end of the particle size range, compared to the well-known linear mixed suspension mixed product removal model. A transient population balance breakage model, fitted to experimental data, was able to model an increase in the fraction of small particles, but not to the extent observed experimentally. A three-parameter, size-dependent growth model, previously used for sodium sulphate decahydrate and potash alum, was able to describe the experimental data, indicating either size-dependent integration kinetics or growth rate dispersion.

  3. High Compositional Homogeneity of CdTexSe1-x Crystals Grown by the Bridgman Method

    DOE PAGES

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; et al

    2015-02-03

    We obtained high-quality CdTexSe1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-raymore » detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1-xTe (CdZnTe or CZT).« less

  4. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy.

    PubMed

    Ievlev, Anton V; Jesse, Stephen; Cochell, Thomas J; Unocic, Raymond R; Protopopescu, Vladimir A; Kalinin, Sergei V

    2015-12-22

    Recent advances in liquid cell (scanning) transmission electron microscopy (S)TEM has enabled in situ nanoscale investigations of controlled nanocrystal growth mechanisms. Here, we experimentally and quantitatively investigated the nucleation and growth mechanisms of Pt nanostructures from an aqueous solution of K2PtCl6. Averaged statistical, network, and local approaches have been used for the data analysis and the description of both collective particles dynamics and local growth features. In particular, interaction between neighboring particles has been revealed and attributed to reduction of the platinum concentration in the vicinity of the particle boundary. The local approach for solving the inverse problem showed that particles dynamics can be simulated by a stationary diffusional model. The obtained results are important for understanding nanocrystal formation and growth processes and for optimization of synthesis conditions.

  5. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation.

    PubMed

    Chen, Xi; Wang, Wenda; Cheng, Shan; Dong, Bin; Li, Christopher Y

    2013-09-24

    The orientation and spatial distribution of nanocrystals in the organic matrix are two distinctive structural characteristics associated with natural bone. Synthetic soft materials have been used to successfully control the orientation of mineral crystals. The spatial distribution of minerals in a synthetic scaffold, however, has yet to be reproduced in a biomimetic manner. Herein, we report using block copolymer-decorated polymer nanofibers to achieve biomineralized fibrils with precise control of both mineral crystal orientation and spatial distribution. Exquisite nanoscale structural control in biomimetic hybrid materials has been demonstrated.

  6. In situ X-ray studies of adlayer-induced crystal nucleation at the liquid-liquid interface

    SciTech Connect

    Elsen, Annika; Festersen, Sven; Runge, Benjamin; Koops, Christian T.; Ocko, Benjamin M.; Deutsch, Moshe; Seeck, Oliver H.; Murphy, Bridget M.; Magnussen, Olaf M.

    2013-05-29

    Crystal nucleation and growth at a liquid–liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb2+, F-, and Br- ions. In the regime negative of the Pb amalgamation potential Φrp = -0.70 V, no change is observed from the surface-layered structure of pure Hg. Upon potential-induced release of Pb2+ from the Hg bulk at Graphic, the formation of an intriguing interface structure is observed, comprising a well-defined 7.6-Å–thick adlayer, decorated with structurally related 3D crystallites. Both are identified by their diffraction peaks as PbFBr, preferentially aligned with their Graphic axis along the interface normal. X-ray reflectivity shows the adlayer to consist of a stack of five ionic layers, forming a single-unit-cell–thick crystalline PbFBr precursor film, which acts as a template for the subsequent quasiepitaxial 3D crystal growth. This growth behavior is assigned to the combined action of electrostatic and short-range chemical interactions.

  7. In situ X-ray studies of adlayer-induced crystal nucleation at the liquid–liquid interface

    PubMed Central

    Elsen, Annika; Festersen, Sven; Runge, Benjamin; Koops, Christian T.; Ocko, Benjamin M.; Deutsch, Moshe; Seeck, Oliver H.; Murphy, Bridget M.; Magnussen, Olaf M.

    2013-01-01

    Crystal nucleation and growth at a liquid–liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb2+, F−, and Br− ions. In the regime negative of the Pb amalgamation potential V, no change is observed from the surface-layered structure of pure Hg. Upon potential-induced release of Pb2+ from the Hg bulk at , the formation of an intriguing interface structure is observed, comprising a well-defined 7.6-Å–thick adlayer, decorated with structurally related 3D crystallites. Both are identified by their diffraction peaks as PbFBr, preferentially aligned with their axis along the interface normal. X-ray reflectivity shows the adlayer to consist of a stack of five ionic layers, forming a single-unit-cell–thick crystalline PbFBr precursor film, which acts as a template for the subsequent quasiepitaxial 3D crystal growth. This growth behavior is assigned to the combined action of electrostatic and short-range chemical interactions. PMID:23553838

  8. The Influence of Gravity on Nucleation, Growth, Stability and Structure in Crystallizing Colloidal Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, Alice P.

    1996-01-01

    Our goal is to understand the dynamics of particles within colloidal crystals. In particular, we focus on the influence of the cell walls and gravity on the particle dynamics. In this study, we will use a novel light scattering experiment, known as diffusing wave spectroscopy, to probe particle motions in turbid suspensions. This is a noninvasive experimental probe of interparticle dynamics.

  9. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.

    PubMed

    Sarode, Ashish L; Wang, Peng; Obara, Sakae; Worthen, David R

    2014-04-01

    The influence of polymers on the dissolution, supersaturation, crystallization, and partitioning of poorly water soluble compounds in biphasic media was evaluated. Amorphous solid dispersions (ASDs) containing felodipine (FLD) and itraconazole (ITZ) were prepared by hot melt mixing (HMM) using various polymers. The ASDs were analyzed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and HPLC. Amorphous drug conversion was confirmed using DSC and PXRD, and drug stability by HPLC. Single- and biphasic dissolution studies of the ASDs with concurrent dynamic light scattering (DLS) and polarized light microscopic (PLM) analysis of precipitated drugs were performed. HPLC revealed no HMM-induced drug degradation. Maximum partitioning into the organic phase was dependent upon the degree of supersaturation. Although the highest supersaturation of FLD was attained using Eudragit® EPO and AQOAT® AS-LF with better nucleation and crystal growth inhibition using the latter, higher partitioning of the drug into the organic phase was achieved using Pharmacoat® 603 and Kollidon® VA-64 by maintaining supersaturation below critical nucleation. Critical supersaturation for ITZ was surpassed using all of the polymers, and partitioning was dependent upon nucleation and crystal growth inhibition in the order of Pharmacoat® 603>Eudragit® L-100-55>AQOAT® AS-LF. HMM drug-polymer systems that prevent drug nucleation by staying below critical supersaturation are more effective for partitioning than those that achieve the highest supersaturation.

  10. Effect of Y2O3 on the crystallization kinetics of TiO2 nucleated LAS glass for the production of nanocrystalline transparent glass ceramics

    NASA Astrophysics Data System (ADS)

    Shakeri, Mohammad Sadegh

    2013-05-01

    Crystallization kinetics of metastable β-quartz solid solution as a desirable phase for the production of transparent lithium aluminosilicate (LAS) glass ceramics was investigated in the presence of Y2O3. Accordingly, differential thermal analysis scans were performed thoroughly to study the mechanism of crystallization kinetics. The aim of this investigation is to discover the complicated mechanism of crystallization process in the presence of co-additives and accordingly find a way for increasing the transparency of glass ceramics. It is shown that the bulk (3D) growth is intensively increased by the enhancement of Y2O3. Then again, reducing nucleation and increasing growth mechanisms were recognized for the LAS system in the presence of Y2O3. Results of the investigation illustrate that when co-additives are added to glasses, it is necessary to nucleate the optical component separately before the growth process.

  11. Elements in Nucleating Crystals (Mineraloids?) on Fibers: Are Fumaroles Unknown Resources for a Future Hydrogen Economy?

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.

    2005-12-01

    Crabtree et al. (2004) summarized some key aspects of H2 production and H storage. Elements in compounds necessary for natural H2 production are Mn in MnO (photosynthesis) and Fe in Fe clusters (bacteria). Relevant elements for H2 production and H storage in compounds known from fumarole emissions and/or volcanic ash leachates are: Mn, Fe, Ti, Mg, B, N, Al, Ni, La, K, Na. H2 and H_ {2}S are common species of many fumaroles. If H2S is pumped through steel tubes Fe sulfides are forming and H2 is released. In the past several estimations of global volcanic metal fluxes to the atmosphere had been published. No attempt had been made to mine volcanic gases for certain elements. Filter experiments performed at a fumarole at La Fossa volcano, Vulcano Island, Italy and subsequent FESEM/EDS analysis document some phenomena difficult to explain. 1. On an Al-P-O ceramic filter applied for 5 mins. at a filter-2-bubblers system (0.8 - 1 l/min) once Hg-S-rich particles got collected, at another time Ce-La-carbonate particles. Other filters (borosilicate glass fiber and/or Nuclepore or Millipore (0.2 micrometers) applied for 1 h before or after the ceramic filters did not collect these particles. It remains unanswered if problems related to adhesion caused these results, or the ceramic filter had been in place at times of particle ``bursts", or classical physics cannot explain such phenomena. 2. Particles are nucleating on glass and organic fibers. One set of experiments followed a traditional aerosol particle collection approach utilizing a filter-2-bubblers system (AC). Another experiment had been the clogging of a fumarole vent by various glass fiber materials (CE). FESEM/EDS data from AC and CE show both nucleating particles on fibers. One data set of the AC and CE documents that one type of particle (CE: mostly metal chlorides, to a minor amount metal sulfides and AC: barberiite) nucleates on one fiber, whereas other fibers are empty. This single fiber anomaly had been

  12. On the Effect of the Film Hydrogen Content and Deposition Type on the Grain Nucleation and Grain Growth During Crystallization of a-Si:H Films: Preprint

    SciTech Connect

    Mahan, A. H.; Ahrenkiel, S. P.; Roy, B.; Schropp, R.E.I.; Li, H.; Ginley, D. S.

    2006-05-01

    We report the effect of the initial film hydrogen content (CH) on the crystallization kinetics, crystallite nucleation rate and grain growth rate when HWCVD and PECVD a-Si:H films are crystallized by annealing at 600 C. For the HWCVD films, both the incubation time and crystallization time decrease, and the full width at half maximum (FWHM) of the XRD (111) peak decreases with decreasing film CH. However, other sources of XRD line broadening exist in such materials in addition to crystallite size, including the density of crystallite defects. To address these issues, TEM measurements have also been performed on a-Si:H films deposited directly onto TEM grids.

  13. Homogeneous self-aligned liquid crystals on wrinkled-wall poly(dimethylsiloxane) via localised ion-beam irradiation

    PubMed Central

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Jung, Yoon Ho; Jang, Sang Bok; Seo, Dae-Shik

    2015-01-01

    We demonstrate self-aligned liquid crystals (LCs) using a wrinkled-wall polydimethylsiloxane (PDMS) wrinkle structure, which is a key factor to obtain a stable homogeneous alignment state with positive LCs. We constructed the wrinkled walls via localised surface exposure to IB radiation, which passed through a long length localised pattern mask. The creation of the wrinkled wall helped to align the LC molecules homogeneously because the wrinkled wall acted as a guide for the arrangement of positive LC molecules. In addition, we confirmed the stability of the alignment state as the width of the wrinkled wall was changed. Although this wrinkled-wall method is a non-contact method, LC alignment is achieved via an anisotropic topographical guide, which provides the LC molecules with stable homogeneous alignment. PMID:25728372

  14. Colloids and Nucleation

    NASA Technical Reports Server (NTRS)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  15. Seismic properties of magmatic processes at laboratory scale: Effects of crystallization and bubble nucleation

    NASA Astrophysics Data System (ADS)

    Tripoli, Barbara; Cordonnier, Benoit; Ulmer, Peter

    2014-05-01

    Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the dimensions of magmatic reservoirs and possible magmatic ascent. Magma rheology and volcanic eruptive style are to a first order controlled by processes occurring in the conduit or in the chamber, such as crystallization and bubble exsolution. Seismic velocities are strongly affected by these processes (Carrichi et al, 2009) but the only few constrained measurements don't allow yet to establish a link between seismic tomography and the textural state of the volcanic system. Elastic parameters of vapor-saturated, partially molten systems are thus providing fundamental information for the identification of such reservoirs under active and seemingly dormant volcanoes. We investigated a chemically simplified melt analogous to andesite and trachyte, in the system CaO-Na2O-Al2O3-SiO2-H2O-CO2 (Picard et al, 2011), which undergoes plagioclase crystallization and bubble exsolution. Using a Paterson-type internally-heated gas pressure apparatus, we measured the ultrasonic velocities at a constant pressure of 250 MPa and at a frequency of 0.1 MHz. Samples have been first heated at 850 °C for 30 minutes. Subsequently, the temperature has been decreased to 650 °C at a rate of 0.5 or 0.1 °C/min and velocities were recorded every 45 minutes. In order to characterize the microstructure evolution, series of cold-seal experiments at identical pressure conditions but with rapid-quenching at each of the recorded temperatures have been undertaken. We will present new experimental results that clarify the dependence of the seismic velocities on the evolution of microstructures (bubble and crystal-size distribution) as well as the evolution of composition (melt and crystals). REFERENCES Caricchi, L., Burlini, L., and Ulmer, P. (2009) Propagation of P and S-waves in magmas with different crystal contents: insights into the crystallinity of magmatic reservoirs. Journal of Volcanology and Geothermal

  16. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  17. Ice nucleation at the nanoscale probes no man's land of water.

    PubMed

    Li, Tianshu; Donadio, Davide; Galli, Giulia

    2013-01-01

    At a given thermodynamic condition, nucleation events occur at a frequency that scales with the volume of the system. Therefore at the nanoscale, one may expect to obtain supercooled liquids below the bulk homogeneous nucleation temperature. Here we report direct computational evidence that in supercooled water nano-droplets ice nucleation rates are strongly size dependent and at the nanoscale they are several orders of magnitude smaller than in bulk water. Using a thermodynamic model based on classical nucleation theory, we show that the Laplace pressure is partially responsible for the suppression of ice crystallization. Our simulations show that the nucleation rates found for droplets are similar to those of liquid water subject to a pressure of the order of the Laplace pressure within droplets. Our findings aid the interpretation of molecular beam experiments and support the hypothesis of surface crystallization of ice in microscopic water droplets in clouds.

  18. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  19. Promising dissolution enhancement effect of soluplus on crystallized celecoxib obtained through antisolvent precipitation and high pressure homogenization techniques.

    PubMed

    Homayouni, Alireza; Sadeghi, Fatemeh; Varshosaz, Jaleh; Afrasiabi Garekani, Hadi; Nokhodchi, Ali

    2014-10-01

    Poor solubility and dissolution of hydrophobic drugs have become a major challenge in pharmaceutical development. Drug nanoparticles have been widely accepted to overcome this problem. The aim of this study was to manufacture celecoxib nanoparticles using antisolvent precipitation and high pressure homogenization techniques in the presence of varying concentrations of soluplus(®) as a hydrophilic stabilizer. Antisolvent crystallization followed by freeze drying (CRS-FD) and antisolvent crystallization followed by high pressure homogenization and freeze drying (HPH-FD) were used to obtain celecoxib nanoparticles. The obtained nanoparticles were analyzed in terms of particle size, saturation solubility, morphology (optical and scanning electron microscopy), solid state (DSC, XRPD and FT-IR) and dissolution behavior. The results showed that celecoxib nanoparticle can be obtained when soluplus was added to the crystallization medium. In addition, the results showed that the concentration of soluplus and the method used to prepare nanoparticles can control the size and dissolution of celecoxib. Samples obtained in the presence of 5% soluplus through HPH technique showed an excellent dissolution (90%) within 4min. It is interesting to note that celecoxib samples with high crystallinity showed better dissolution than those celecoxib samples with high amorphous content, although they had the same concentration of soluplus. DSC and XRPD proved that samples obtained via HPH technique are more crystalline than the samples obtained through only antisolvent crystallization technique. PMID:25124835

  20. Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process

    NASA Astrophysics Data System (ADS)

    Kumar, S. Girish; Rao, K. S. R. Koteswara

    2014-09-01

    Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The non-aqueous route and ball milling-induced titania transformation is briefly

  1. Photophysical Analysis of the Formation of Organic–Inorganic Trihalide Perovskite Films: Identification and Characterization of Crystal Nucleation and Growth

    PubMed Central

    2016-01-01

    In this work we demonstrate that the different processes occurring during hybrid organic–inorganic lead iodide perovskite film formation can be identified and analyzed by a combined in situ analysis of their photophysical and structural properties. Our observations indicate that this approach permits unambiguously identifying the crystal nucleation and growth regimes that lead to the final material having a cubic crystallographic phase, which stabilizes to the well-known tetragonal phase upon cooling to room temperature. Strong correlation between the dynamic and static photoemission results and the temperature-dependent X-ray diffraction data allows us to provide a description and to establish an approximate time scale for each one of the stages and their evolution. The combined characterization approach herein explored yields key information about the kinetics of the process, such as the link between the evolution of the defect density during film formation, revealed by a fluctuating photoluminescence quantum yield, and the gradual changes observed in the PbI2-related precursor structure. PMID:26949439

  2. Surface induced nucleation of a Lennard-Jones system on an implicit surface at sub-freezing temperatures: a comparison with the classical nucleation theory.

    PubMed

    Loeffler, Troy D; Chen, Bin

    2013-12-21

    The aggregation-volume-bias Monte Carlo method was employed to study surface-induced nucleation of Lennard-Jonesium on an implicit surface below the melting point. It was found that surfaces catalyze not only the formation of the droplets (where the nucleation free energy barriers were shown to decrease with increasing surface interaction strength), but also the transition of these droplets into crystal structures due to the surface-induced layering effects. However, this only occurs under suitable interaction strength. When surface attraction is too strong, crystallization is actually inhibited due to the spread of the particles across the surface and corresponding formation of two-dimensional clusters. The simulation results were also used to examine the bulk-droplet based classical nucleation theory for surface-induced nucleation, particularly the additional contact angle term used to describe both the nucleation free energy barrier heights and the critical cluster sizes compared to its homogeneous nucleation formalism. Similar to what has been found previously for homogeneous nucleation, the theory does poorly toward the high-supersaturation region when the critical clusters are small and fractal, but the theoretical predictions on both barrier heights and critical cluster sizes improve rapidly with the decrease of the supersaturation.

  3. Main features of nucleation in model solutions of oral cavity

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Chikanova, E. S.; Punin, Yu. O.

    2015-05-01

    The regularities of nucleation in model solutions of oral cavity have been investigated, and the induction order and constants have been determined for two systems: saliva and dental plaque fluid (DPF). It is shown that an increase in the initial supersaturation leads to a transition from the heterogeneous nucleation of crystallites to a homogeneous one. Some additives are found to enhance nucleation: HCO{3/-} > C6H12O6 > F-, while others hinder this process: protein (casein) > Mg2+. It is established that crystallization in DPF occurs more rapidly and the DPF composition is favorable for the growth of small (52.6-26.1 μm) crystallites. On the contrary, the conditions implemented in the model saliva solution facilitate the formation of larger (198.4-41.8 μm) crystals.

  4. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature

    NASA Astrophysics Data System (ADS)

    Toxvaerd, Søren

    2016-04-01

    In 1897 Ostwald formulated his step rule for formation of the most stable crystal state for a system with crystal polymorphism. The rule describes the irreversible way a system converts to the crystal with lowest free energy. But in fact the irreversible way a supercooled gas below the triple point temperature Ttr.p. crystallizes via a liquid droplet is an example of Ostwald's step rule. The homogeneous nucleation in the supersaturated gas is not to a crystal, but to a liquid-like critical nucleus. We have for the first time performed constant energy (NVE) Molecular Dynamics (MD) of homogeneous nucleation without the use of a thermostat. The simulations of homogeneous nucleation in a Lennard-Jones system from supersaturated vapor at temperatures below Ttr.p. reveal that the nucleation to a liquid-like critical nucleus is initiated by a small cold cluster [S. Toxvaerd, J. Chem. Phys. 143, 154705 (2015)]. The release of latent heat at the subsequent droplet growth increases the temperature in the liquid-like droplet, which for not deep supercooling and/or low supersaturation, can exceed Ttr.p.. The temperature of the liquid-like droplet increases less for a low supersaturation and remains below Ttr.p., but without a crystallization of the droplet for long times. The dissipation of the latent heat into the surrounding gas is affected by a traditional MD thermostat, with the consequence that droplet growth is different for (NVE) MD and constant temperature (NVT) MD.

  5. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds

    SciTech Connect

    Spichtinger, Peter; Cziczo, Daniel J.

    2010-07-29

    The influence of initial heterogeneous nucleation on subsequent homogeneous nucleation events in cirrus clouds is investigated using a box model which includes the explicit impact of aerosols on the nucleation of ice crystals and sedimentation. Different effects are discussed, namely the impact of external mixtures of heterogeneous ice nuclei and the influence of size-dependent freezing thresholds. Several idealized experiments are carried out, which show that the treatment of external mixtures of ice nuclei can strongly change later homogeneous nucleation events (i.e., the ice crystal number densities) in different matters. The use of size-dependent freezing thresholds can also change the cloud prop erties when compared to more simple parameterizations. This size effect is most important for large IN concentrations. Based upon these findings, recommendations for future modeling and measurement efforts are presented.

  6. New in situ solid-state NMR techniques for probing the evolution of crystallization processes: pre-nucleation, nucleation and growth.

    PubMed

    Hughes, Colan E; Williams, P Andrew; Keast, Victoria L; Charalampopoulos, Vasileios G; Edwards-Gau, Gregory R; Harris, Kenneth D M

    2015-01-01

    The application of in situ techniques for investigating crystallization processes promises to yield significant new insights into fundamental aspects of crystallization science. With this motivation, we recently developed a new in situ solid-state NMR technique that exploits the ability of NMR to selectively detect the solid phase in heterogeneous solid-liquid systems (of the type that exist during crystallization from solution), with the liquid phase "invisible" to the measurement. As a consequence, the technique allows the first solid particles produced during crystallization to be observed and identified, and allows the evolution of different solid phases (e.g., polymorphs) present during the crystallization process to be monitored as a function of time. This in situ solid-state NMR strategy has been demonstrated to be a powerful approach for establishing the sequence of solid phases produced during crystallization and for the discovery of new polymorphs. The most recent advance of the in situ NMR methodology has been the development of a strategy (named "CLASSIC NMR") that allows both solid-state NMR and liquid-state NMR spectra to be measured (essentially simultaneously) during the crystallization process, yielding information on the complementary changes that occur in both the solid and liquid phases as a function of time. In this article, we present new results that highlight the application of our in situ NMR techniques to successfully unravel different aspects of crystallization processes, focusing on: (i) the application of a CLASSIC NMR approach to monitor competitive inclusion processes in solid urea inclusion compounds, (ii) exploiting liquid-state NMR to gain insights into co-crystal formation between benzoic acid and pentafluorobenzoic acid, and (iii) applications of in situ solid-state NMR for the discovery of new solid forms of trimethylphosphine oxide and L-phenylalanine. Finally, the article discusses a number of important fundamental issues

  7. Influence of Nucleation Mechanisms on the Radiative Properties of Deep Convective Clouds and Subvisible Cirrus in CRYSTAL/FACE

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2005-01-01

    their data can be fit using standard Langmuir isotherms as suggested in some, but not all, laboratory studies. We have found in the SOLVE data set that this is not the case. Moreover some laboratory studies show there are important kinetic effects that may be occurring in the atmosphere limiting the transfer of nitric acid to the ice. The SOLVE data seem consistent with these studies. We are currently re-analyzing the CRYSTAL data to look for these kinetic effects. There are a number of implications of these studies. One of the more interesting is that the nitric acid coating on ice can be used as a cloud clock to determine how long the cloud parcel has been in existence. We have also been involved with several laboratory studies. We have worked to improve the database on ice optical constants, which are critical for remote sensing. We have also studied the ways in which ice nucleates on clays. We suspect now that the standard theories used for depositional ice nucleation are completely incorrect. Further work will be needed to develop a new theory.

  8. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  9. The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride

    NASA Astrophysics Data System (ADS)

    Du, Guangchao; Sun, Zhaohui; Xian, Yong; Jing, Han; Chen, Haijun; Yin, Danfeng

    2016-05-01

    The nucleation kinetics of ammonium metavanadate (NH4VO3) was investigated under conditions of the simulated process for precipitation of NH4VO3 from the vanadium-containing solution. Induction periods for the nucleation of NH4VO3 were experimentally determined as a function of supersaturation at temperatures from 30 to 45 °C. Using the classical nucleation theory, the interfacial tension between NH4VO3 and supersaturated solution, the nucleation rate and critical radius of nucleus for the homogeneous nucleation of NH4VO3 were estimated. With temperature increasing, the calculated interfacial tension gradually decreased from 29.78 mJ/m2 at 30 °C to 23.66 mJ/m2 at 45 °C. The nucleation rate was found to proportionally increase but the critical radius of nucleus exponentially decreased, with increase in supersaturation ratio at a constant temperature. The activation energy for NH4VO3 nucleation was obtained from the relationship between temperature and induction period, ranging from 79.17 kJ/mol at S=25 to 115.50 kJ/mol at S=15. FT-IR and Raman spectrum indicated that the crystals obtained in the precipitation process were NH4VO3.

  10. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    NASA Astrophysics Data System (ADS)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  11. Photoinduced Directional Motions of Microparticles at Air-Liquid-Crystal Interfaces of Azobenzene-Doped Liquid-Crystal Films with Homeotropic or Homogeneous Alignment Structures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Yoshida, Masaru

    2012-10-01

    We investigated the effects of liquid-crystal (LC) alignments on photoinduced motions of microparticles at air-LC interfaces of azobenzene-doped LC films. In homeotropically aligned LC films, the lattice spacings of pseudo-hexagonal structures of microparticles site-selectively exhibited reversible expansion or contraction on alternating irradiation with ultraviolet and visible light. The particle motions were probably driven by photochemical deformation of LC surfaces. In homogeneously aligned films, alternating irradiation induced macroscopic convective flows followed by rapid gathering or dispersion of linear chains of microparticles. Particle motions were significantly influenced by LC alignments as well as the light wavelength.

  12. Photochemical manipulation of microparticles on azobenzene-doped liquid-crystal films with homogeneous or homeotropic alignment structures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Yoshida, Masaru

    2012-10-01

    In this study, we investigated self-organized structures and photoinduced motions of microparticles on azobenzenedoped liquid crystal (LC) films with homogeneous or homeotropic alignment structures. In the case of homogeneous alignment, the microparticles formed linear chains oriented along the direction of the bulk LC alignment at air-LC interface in the initial state. Upon irradiation with ultra-violet (UV) light, the linear chains gathered into the irradiated area and formed closely-packed aggregates. The assembled chains diffused outside the irradiated area to reform the chains upon irradiation with visible light. In contrast, on the homeotropically aligned LC films, pseudo-hexagonal lattice structures of microparticles with long interparticle distances have been organized in the initial state. The particles exhibited photoinduced motions in directions opposite to those observed on the homogeneously aligned LC films. Upon irradiation with UV light, lattice structures were expanded by a particle motion away from the photoirradiated area. Irradiation with visible light then induced contraction of lattice structures based on a particle motion toward the irradiated area. The photoinduced particle motions depending on LC alignments would be explained by macroscopic convective flow or deformation of LC surface induced by cis-trans photoisomerization of azobenzene dopant.

  13. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance

  14. Using priority growth orientation of crystallite of the Monte Carlo method to study the process of crystal nucleation and growth in liquid phase

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Chen, Manjiao; Huang, Jiankang; Gu, Yufen; Fan, Ding

    2016-01-01

    The technique of “crystallite growth preferred orientation” was presented based on the Monte Carlo (MC) simulations of grain growth, and its factor was used to establish a lattice coordinate tracking method. The nucleation and growth of crystal from the liquid phase throughout the whole simulation were examined. Changes in solid fraction and crystallite size were counted via simulation by lattice tracking. Results showed that the established model could properly reflect crystallite nucleation and growth. The model was also determined capable of accurately estimating the number of solid phase fraction and achieving change in crystallite size by the lattice tracking method. The change in solid fraction and MC step (MCS) satisfied the S curve during simulation. The crystallite growth index was 0.477, which was relatively close to the theoretical value of 0.5.

  15. Electron in a homogeneous crystal of point atoms with internal structure. II

    SciTech Connect

    Kurasov, P.B.; Pavlov, B.S.

    1988-07-01

    A spectral analysis is made of a Schroedinger operator with zero-range potential of the type of one- or two-dimensional lattice in the presence of internal structure. The relationship between the resonances of an isolated atom and the spectral properties of the crystal is established.

  16. Solid-liquid surface tensions of critical nuclei and nucleation barriers from a phase-field-crystal study of a model binary alloy using finite system sizes.

    PubMed

    Choudhary, Muhammad Ajmal; Kundin, Julia; Emmerich, Heike; Oettel, Martin

    2014-08-01

    Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study critical nuclei and their liquid-solid phase boundaries, in particular the nucleus size dependence of the liquid-solid interface tension as well as of the nucleation barrier. Critical nuclei are stabilized in finite systems of various sizes, however, the extracted interface tension as function of the nucleus radius r is independent of system size. We suggest a phenomenological expression to describe the dependence of the extracted interface tension on the nucleus radius r for the liquid-solid system. Moreover, the numerical PFC results show that this dependency can not be fully described by the nonclassical Tolman formula. PMID:25215738

  17. Solid-liquid surface tensions of critical nuclei and nucleation barriers from a phase-field-crystal study of a model binary alloy using finite system sizes

    NASA Astrophysics Data System (ADS)

    Choudhary, Muhammad Ajmal; Kundin, Julia; Emmerich, Heike; Oettel, Martin

    2014-08-01

    Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007), 10.1103/PhysRevB.75.064107] to study critical nuclei and their liquid-solid phase boundaries, in particular the nucleus size dependence of the liquid-solid interface tension as well as of the nucleation barrier. Critical nuclei are stabilized in finite systems of various sizes, however, the extracted interface tension as function of the nucleus radius r is independent of system size. We suggest a phenomenological expression to describe the dependence of the extracted interface tension on the nucleus radius r for the liquid-solid system. Moreover, the numerical PFC results show that this dependency can not be fully described by the nonclassical Tolman formula.

  18. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line

    NASA Astrophysics Data System (ADS)

    Ni, Yicun; Skinner, J. L.

    2016-06-01

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  19. The Influence of Bubble Nucleation Mechanism on Eruptive Degassing: Experiments with Dacite and Rhyolite Melts

    NASA Astrophysics Data System (ADS)

    Mangan, M.; Sisson, T.

    2001-12-01

    Recent decompression experiments using water-saturated rhyolite melts (>70 wt% SiO2) at magma chamber conditions ( ~ 800-900° C; 150-200 MPa) illustrate how bubble nucleation mechanism affects the pressure-depth interval for eruptive degassing and the resulting development of porosity in ascending magma. A slight pressure drop of Δ P < 5-20 MPa triggers vesiculation in heterogeneous melts where crystals or other discontinuities offer favorable collection sites for nascent bubble nuclei [1,2]. Volatile supersaturation is low at the onset of heterogeneous nucleation ( C(actual)-C(equilibrium) < 0.3 wt% H2O) and the nucleation rate depends on the number of crystals present. Spontaneous bubble nucleation in homogeneous, crystal-free melt is difficult by comparison, requiring Δ P of ~ 150 MPa [3,4]. In this instance, extreme supersaturations develop (C(actual)-C(equilibrium) > 2.0 wt% H2O) and the homogeneous nucleation rate is dictated by Δ P. Collectively, [1-4] suggest that systems dominated by heterogeneous nucleation undergo continuous near-equilibrium gas evolution, whereas a disequilibrium, low-pressure vesiculation burst is characteristic of those constrained by homogeneous processes. Although real systems are probably never truly crystal-free, results in [4] show that rhyolite magmas containing up to 104 crystals/cm3 and perhaps as high as 106 crystals/cm3 are controlled by homogeneous, rather than heterogeneous nucleation, during ascent. New experiments suggest that the extreme supersaturations seen in homogeneously-nucleating rhyolite may not hold for other compositions. Water-saturated, crystal-free dacite melt (65 wt% SiO2) containing 5.9 wt% H2O at 1000° C and 200 MPa begins to vesiculate under isothermal decompression (dP/dt ~ 1 MPa/s) at Δ P = 50 MPa and C(actual)-C(equilibrium) ~ 1.0 wt% H2O. As might be expected by the relatively low degree of supersaturation, the homogenous nucleation rate at the triggering Δ P is less than in similarly

  20. Nucleation rate in monotectic alloys

    NASA Astrophysics Data System (ADS)

    Falk, F.

    Cooling a melt of a monotectic system into the miscibility gap results in nucleation of fluid droplets in a fluid matrix prior to solidification. For homogeneous nucleation the temperature dependence of the nucleation rate is calculated. As material parameters the chemical potential of the species involved, the diffusion constant of the fluid, and the surface tension between adjacent phases are important. Since their temperature dependence is not well known from experiments, different theoretical models are used and their influence is discussed. The surface tension turns out to be the most crucial parameter in determining the nucleation rate. For AlIn numerical results are presented. In this system the undercooling with respect to homogeneous nucleation increases from zero at the critical point to 100 K at a composition near the monotectic point.

  1. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  2. Homogeneous liquid crystal alignment characteristics on solution-derived HfYGaO films treated with IB irradiation.

    PubMed

    Lee, Yun-Gun; Park, Hong-Gyu; Jeong, Hae-Chang; Lee, Ju Hwan; Heo, Gi-Seok; Seo, Dae-Shik

    2015-06-29

    Solution-derived HfYGaO films have been treated by ion beam (IB) irradiation and used as liquid crystal (LC) alignment layers. Solution processing was adopted due to its simplicity, high throughput, and facile composition modification. Homogeneous and uniform LC alignment was achieved on the IB-irradiated HfYGaO films, and when these films were adopted in twisted nematic (TN) cells, electro-optical performance comparable to that of TN cells with conventional polyimide layers was achieved, with almost no capacitance-voltage hysteresis. Moreover, LC cells based on IB-irradiated HfYGaO films had a high thermal budget. The proposed IB-irradiated solution-derived HfYGaO films have considerable potential for use in advanced LC applications.

  3. Glassy aerosols heterogeneously nucleate cirrus ice particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Murray, Benjamin J.; Dobbie, Steven; Cui, Zhiqiang; Al-Jumur, Sardar M. R. K.; Möhler, Ottmar; Schnaiter, Martin; Wagner, Robert; Benz, Stefan; Niemand, Monika; Saathoff, Harald; Ebert, Volker; Wagner, Steven; Kärcher, Bernd

    2010-05-01

    Ice clouds in the tropical tropopause layer (TTL, ~12-18 km, ~180-200 K) play a key role in dehydrating air entering the stratosphere. However, in-situ measurements show that air within these clouds is unexpectedly supersaturated(1); normally the growth of ice crystals rapidly quenches any supersaturation. A number of explanations for high in-cloud humidity have been put forward, but recent research suggests high humidity may be related to the low numbers of ice crystals found within these clouds(1). Low ice number densities can be produced through selective nucleation by a small subset of aerosol particles. This is inconsistent with homogeneous nucleation of ice in liquid aerosols. However, droplets rich in organic material, ubiquitous in the TTL, are known to become glassy (amorphous, non-crystalline solid) under TTL conditions(2,3). Here we show, using a large cloud simulation chamber, that glassy solution droplets nucleate ice heterogeneously at low supersaturations. Using a one-dimensional cirrus model we also show that nucleation by glassy aerosol in the TTL may explain low TTL ice number densities and high in-cloud humidity. Recent measurements of the composition of TTL cirrus residues are consistent with our findings(4). (1) Krämer, M. et al. Ice supersaturations and cirrus cloud crystal numbers. Atm. Chem. Phys. 9, 3505-3522 (2009). (2) Murray, B. J. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets. Atm. Chem. Phys. 8, 5423-5433 (2008). (3) Zobrist, B., Marcolli, C., Pedernera, D. A. & Koop, T. Do atmospheric aerosols form glasses? Atm. Chem. Phys. 8, 5221-5244 (2008). (4) Froyd, K. D., Murphy, D. M., Lawson, P., Baumgardner, D. & Herman, R. L. Aerosols that form subvisible cirrus at the tropical tropopause. Atmos. Chem. Phys. 10, 209-218 (2010).

  4. An examination of polymorphic stability and molecular conformational flexibility as a function of crystal size associated with the nucleation and growth of benzophenone.

    PubMed

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J

    2007-01-01

    The polymorphic behaviour of the aromatic ketone, benzophenone, which is a conformationally flexible molecule and forms crystal structures dominated by van der Waals intermolecular interactions, is examined. Crystallization of this material from the undercooled molten state yields the two known polymorphic forms, i.e. the stable alpha-form and the metastable beta-form. The relative, energetic stabilities are examined using both crystal lattice and molecular conformational modelling techniques. Examination of nano-sized faceted molecular clusters of these forms, with cluster sizes ranging from 3 to 100 molecules, reveals that at very small cluster size (< 5 molecules) the relative energetic stability of clusters representative for the two forms become very similar, indicating that for high melting undercooling (i.e. small critical cluster size for nucleation) crystallization of the metastable beta-phase becomes more likely. Detailed analysis of the variation in molecular conformations within the simulated molecular clusters reveals more disordered three-dimensional structures at small compared to larger cluster sizes. The conformational disorder was found to be higher for the metastable beta-form. This observation, together with the lower stability of clusters for this form is indicative of the difficulty in achieving crystallization of the metastable beta-form from the melt, which requires a considerable undercooling.

  5. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning

    PubMed Central

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2016-01-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8x enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62nM from a liquid volume of only ~20 nl. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. PMID:24376013

  6. Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning.

    PubMed

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G; Cunningham, Brian T

    2014-04-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8× enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only ∼20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. PMID:24376013

  7. Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning.

    PubMed

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G; Cunningham, Brian T

    2014-04-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8× enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only ∼20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection.

  8. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  9. A modified homogeneous freezing rate parameterization for aqueous solution droplets

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Benz, S.; Hoehler, K.; Wagner, R.

    2012-12-01

    It is still a matter of debate wether cirrus cloud formation is dominated by heterogeneous ice nucleation, leading to low ice crystal number concentrations, or is also influenced by homogeneous freezing of solution aerosols leading to higher ice crystal number concentrations. Part of the discussion is due to the fact that current models seem to overestimate ice crystal numbers from homogeneous freezing compared to measurements, though the formation rate of cirrus ice crystals by homogeneous freezing of aqueous particles is believed to be well understood and formulated in terms of e.g. the concept of effective freezing temperatures or the water activity dependent ice nucleation rates. Series of recent cirrus cloud simulation experiments at the cloud chamber facility AIDA at the Karlsruhe Institute of Technology at temperatures between -40°C and -80°C together with process modeling studies demonstrated, that the freezing formulations tend to show a low bias in the humidity onset thresholds for homogeneous ice formation at temperatures below about 210 K, and furthermore overestimate the ice formation rate by at least a factor of 2. The experimental results will be summarized and a new empirical fit to the experimental data will be suggested for use in atmospheric models.

  10. Closure between ice-nucleating particle and ice crystal number concentrations in ice clouds embedded in Saharan dust: Lidar observation during the BACCHUS Cyprus 2015 campaign

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Bühl, Johannes; Engelmann, Ronny; Baars, Holger; Nisantzi, Argyro; Hadjimitsis, Diofantos; Atkinson, James; Kanji, Zamin; Vrekoussis, Michalis; Sciare, Jean; Mihalopoulos, Nikos

    2016-04-01

    For the first time, we compare ice-nucleating particle number concentration (INPC) derived from polarization lidar (Mamouri and Ansmann, 2015) with ice crystal number concentrations (ICNC) in ice cloud layers embedded in the observed Saharan dust layers (at heights above 6 km and corresponding temperatures from -20 to -40°C). ICNC is estimated from the respective cirrus extinction profiles obtained with the same polarization lidar in combination with Doppler lidar measurements of the ice crystal sedimentation speed from which the mean size of the crystals can be estimated. Good agreement between INPC and ICNC was obtained for two case studies of the BACCHUS Cyprus 2015 field campaign with focus on INPC profiling. The campaign was organized by the Cyprus Institute, Nicosia, where a lidar was deployed. Additionaly, observations of AERONET and EALINET Lidar stations during the BACCHUS Cyprus 2015 field campaign, performed by Cyprus University of Technology in Limassol. Both, INPC and ICNC were found in the range from 10-50 1/L. Lidar-derived INPC values were also compared with in-situ INPC measurements (Horizontal Ice Nucleation Chamber, HINC, ETH Zurich, deployed at Agia Marina, at 500 m a.s.l., 30 km west of the lidar site). Reasonable and partly good agreement (during dust events) was found between the two retrievals. The findings of these closure studies corroborate the applicability of available INPC parameterization schemes (DeMott et al., 2010, 2015) implemented in the lidar retrieval scheme, and more generally INPC profiling by using active remote sensing (at ground and in space with CALIPSO and EarthCARE lidars).

  11. Preferential Nucleation during Polymorphic Transformations

    PubMed Central

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-01-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material. PMID:27484579

  12. Preferential Nucleation during Polymorphic Transformations

    NASA Astrophysics Data System (ADS)

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-08-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  13. Preferential Nucleation during Polymorphic Transformations.

    PubMed

    Sharma, H; Sietsma, J; Offerman, S E

    2016-08-03

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR's) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR's with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller - and therefore nucleation more probable - with increasing number of special OR's. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  14. Preferential Nucleation during Polymorphic Transformations.

    PubMed

    Sharma, H; Sietsma, J; Offerman, S E

    2016-01-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR's) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR's with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller - and therefore nucleation more probable - with increasing number of special OR's. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material. PMID:27484579

  15. Growth of Nd{sub 2}TiO{sub 5} single crystal using optical floating zone technique

    SciTech Connect

    Murugesan, G.; Kalainathan, S.; Nithya, R.; Ravindran, T. R.

    2015-06-24

    Single crystals of Nd{sub 2}TiO{sub 5} were grown using Optical Floating zone technique in oxygen atmosphere by spontaneous nucleation. Powder X-ray diffraction pattern showed that the grown single crystal is of homogeneous composition. Laue diffraction was recorded in both transmission and backscattering geometries to check the crystal quality. Vibrational properties were analyzed using Raman measurements.

  16. Isoconversional Kinetics of Nonisothermal Crystallization of Salts from Solutions.

    PubMed

    Stanford, Victoria L; McCulley, Calla M; Vyazovkin, Sergey

    2016-06-30

    In this study, differential scanning calorimetry (DSC) has been applied to measure the kinetics of nonisothermal crystallization of potassium nitrate and ammonium perchlorate from unsaturated and saturated aqueous solutions. DSC data have been analyzed by an advanced isoconversional method that demonstrates that the process is represented by negative values of the effective activation energy, which varies with the progress of crystallization. The classical nucleation model can be used to predict and understand the experimentally observed variation in the effective activation energy. The saturated and unsaturated solutions have demonstrated distinctly different crystallization kinetics. It is suggested that the unsaturated solutions undergo a change in crystallization mechanism from homogeneous to heterogeneous nucleation. PMID:27305831

  17. Effect of mixing, concentration and temperature on the formation of mesostructured solutions and their role in the nucleation of DL-valine crystals.

    PubMed

    Jawor-Baczynska, Anna; Moore, Barry D; Sefcik, Jan

    2015-01-01

    We report investigations on the formation of mesostructured solutions in DL-valine-water-2-propanol mixtures, and the crystallization of DL-valine from these solutions. Mesostructured liquid phases, similar to those previously observed in aqueous solutions of glycine and DL-alanine, were observed using Dynamic Light Scattering and Brownian microscopy, in both undersaturated and supersaturated solutions below a certain transition temperature. Careful experimentation was used to demonstrate that the optically clear mesostructured liquid phase, comprising colloidal mesoscale clusters dispersed within bulk solution, is thermodynamically stable and present in equilibrium with the solid phase at saturation conditions. Solutions prepared by slow cooling contained mesoscale clusters with a narrow size distribution and a mean hydrodynamic diameter of around 200 nm. Solutions of identical composition prepared by rapid isothermal mixing of valine aqueous solutions with 2-propanol contained mesoscale clusters which were significantly larger than those observed in slowly cooled solutions. The presence of larger mesoscale clusters was found to correspond to faster nucleation. Observed induction times were strongly dependent on the rapid initial mixing step, although solutions were left undisturbed afterwards and the induction times observed were up to two orders of magnitude longer than the initial mixing period. We propose that mesoscale clusters above a certain critical size are likely to be the location of productive nucleation events.

  18. Nucleation-controlled crystallization of a new, spontaneously resolved solvate of [Ru(bpy)3](PF6)2 and its desolvation reaction.

    PubMed

    Breu, Josef; Seidl, Wolfgang; Huttner, Dominikus; Kraus, Florian

    2002-10-01

    Simply by increasing the supersaturation level, racemic [Ru(bpy)(3)](PF(6))(2) no longer crystallises as the well-known true racemate (beta-modification; P$\\bar 3$c1, a=10.6453(5), c=16.2987(9) A, Z=2). Rather, it spontaneously resolves and forms a conglomerate of pure Lambda- and pure Delta-crystals with a so far unknown structure type. This new modification actually is a solvate ([Ru(bpy)(3)](PF(6))(2).1.5 CH(3)COCH(3); delta-type; P32, a=13.8133(7) A, c=11.6523(7) A, Z=2). By a solution-mediated equilibration the new modification is shown to be the metastable (Ostwald) product, which is formed based on nucleation kinetics. Upon desolvation the solvate transforms into a second enantiomorphic crystal structure (gamma-type; P3(1), a=10.3809(4), c=26.2576(13) A, Z=3). The latter could previously only be obtained by chemical resolution prior to crystallisation, but could not be accessed directly from racemic solutions. However, the new delta-modification can now be utilised for optical resolution by the so-called method of "resolution by entrainment". This example emphasises the potential that both kinetically controlled crystallisation and desolvation of solvates bear with respect to crystal engineering.

  19. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    PubMed Central

    Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-01-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765

  20. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-05-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.

  1. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  2. Numerical biaxial tensile test for sheet metal forming simulation of aluminium alloy sheets based on the homogenized crystal plasticity finite element method

    NASA Astrophysics Data System (ADS)

    Yamanaka, A.; Ishii, Y.; Hakoyama, T.; Eyckens, P.; Kuwabara, T.

    2016-08-01

    The simulation of the stretch forming of A5182-O aluminum alloy sheet with a spherical punch is performed using the crystal plasticity (CP) finite element method based on the mathematical homogenization theory. In the simulation, the CP constitutive equations and their parameters calibrated by the numerical and experimental biaxial tensile tests with a cruciform specimen are used. The results demonstrate that the variation of the sheet thickness distribution simulated show a relatively good agreement with the experimental results.

  3. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells.

    PubMed

    Yang, Mingying; Shuai, Yajun; Zhang, Can; Chen, Yuyin; Zhu, Liangjun; Mao, Chuanbin; OuYang, Hongwei

    2014-04-14

    Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here, for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method and consequently the cell viability and osteogenic differentiation of BMSCs on mineralized AS were investigated. It was found that AS mediated the nucleation of HAps in the form of nanoneedles while self-assembling into β-sheet conformation, leading to the formation of a biomineralized protein based biomaterial. The cell viability assay of BMSCs showed that the mineralization of AS stimulated cell adhesion and proliferation, showing that the resultant AS biomaterial is biocompatible. The differentiation assay confirmed that the mineralized AS significantly promoted the osteogenic differentiation of BMSCs when compared to nonmineralized AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. This result represented the first work proving the osteogenic differentiation of BMSCs directed by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs on the resultant mineralized biomaterials is a useful strategy to develop the potential application of this unexplored silk sericin in the field of bone tissue engineering. This study lays the foundation for the use of A. pernyi silk sericin as a potential scaffold for tissue engineering.

  4. Biomimetic Nucleation of Hydroxyapatite Crystals Mediated by Antheraea pernyi Silk Sericin Promotes Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    2015-01-01

    Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here, for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method and consequently the cell viability and osteogenic differentiation of BMSCs on mineralized AS were investigated. It was found that AS mediated the nucleation of HAps in the form of nanoneedles while self-assembling into β-sheet conformation, leading to the formation of a biomineralized protein based biomaterial. The cell viability assay of BMSCs showed that the mineralization of AS stimulated cell adhesion and proliferation, showing that the resultant AS biomaterial is biocompatible. The differentiation assay confirmed that the mineralized AS significantly promoted the osteogenic differentiation of BMSCs when compared to nonmineralized AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. This result represented the first work proving the osteogenic differentiation of BMSCs directed by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs on the resultant mineralized biomaterials is a useful strategy to develop the potential application of this unexplored silk sericin in the field of bone tissue engineering. This study lays the foundation for the use of A. pernyi silk sericin as a potential scaffold for tissue engineering. PMID:24666022

  5. Deciphering the energetic barriers to calcium carbonate nucleation as a continuum of competing interfacial forces between polysaccharide chemistry and ionic strength

    NASA Astrophysics Data System (ADS)

    Giuffre, A. J.; De Yoreo, J. J.; Dove, P. M.

    2013-12-01

    Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Researchers have long-postulated that living organisms utilize organic matrices to actively guide the formation and growth of crystalline structures. The timing and placement of these features are most easily controlled during the nucleation stage. Our recent kinetic study of heterogeneous calcite nucleation found the energy barrier to formation is regulated by a systematic relationship to the competing interfacial energies between the substrate, crystal, and liquid (Giuffre et al., 2013). Chitosan presents a low energy barrier to nucleation because its near-neutral charge favors formation of a substrate-crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate-crystal interfaces. These results showed calcite nucleation is regulated by substrate-crystal interactions but could not quantify the larger continuum of competing forces that must regulate calcite nucleation. To determine these relationships, we estimate the energy barriers to nucleation and crystal-liquid interfacial energies by measuring the kinetics of homogeneous calcite nucleation in NaCl solutions at ionic strengths that extend to seawater salinity (0.6 M). The data show that solutions of greater ionic strength produce faster nucleation rates, smaller crystal-liquid interfacial energies, and lower barriers to nucleation, which concurs with recent theoretical and experimental findings that background electrolytes promote ion desolvation during nucleation. By applying this relationship to heterogeneous nucleation on chitosan and heparin in future work, we will quantify the relative contributions of substrate-crystal-liquid interfacial energies. The findings reiterate a directing role for PS

  6. Part A: Cirrus ice crystal nucleation and growth. Part B: Automated analysis of aircraft ice particle data

    NASA Technical Reports Server (NTRS)

    Arnott, William P.; Hallett, John; Hudson, James G.

    1995-01-01

    Specific measurement of cirrus crystals by aircraft and temperature modified CN are used to specify measurements necessary to provide a basis for a conceptual model of cirrus particle formation. Key to this is the ability to measure the complete spectrum of particles at cirrus levels. The most difficult regions for such measurement is from a few to 100 microns, and uses a replicator. The details of the system to automate replicator data analysis are given, together with an example case study of the system provided from a cirrus cloud in FIRE 2, with particles detectable by replicator and FSSP, but not 2DC.

  7. Cu-Zn Slags from R⊘ros (Norway): A Case Study of Rapid Cooling and Crystal Nucleation

    NASA Astrophysics Data System (ADS)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of R⊘ros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. R⊘ros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. R⊘ros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material.

  8. Cu-Zn slags from Røros (Norway): a case study of rapid cooling and crystal nucleation

    NASA Astrophysics Data System (ADS)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of Røros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. Røros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. Røros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material

  9. Containerless Undercooled Melts: Ordering, Nucleation, and Dendrite Growth

    NASA Astrophysics Data System (ADS)

    Herlach, Dieter M.; Binder, Sven; Galenko, Peter; Gegner, Jan; Holland-Moritz, Dirk; Klein, Stefan; Kolbe, Matthias; Volkmann, Thomas

    2015-11-01

    Electromagnetic and electrostatic levitation are applied to containerless undercool and solidify metallic melts. A large undercooling range becomes accessible with the extra benefit that the freely suspended drop is accessible directly for in situ observation. The short-range order in undercooled melts is investigated by combining levitation with elastic neutron scattering and X-ray scattering using synchrotron radiation. Muon Spin Rotation ( µSR) experiments show magnetic ordering in deeply undercooled Co80Pd20 alloys. The onset of magnetic ordering stimulates nucleation. Results on nucleation undercooling of zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Metastable phase diagrams are determined by applying energy-dispersive X-ray diffraction of Ni-V alloys with varying concentration. Nucleation is followed by crystal growth. Rapid dendrite growth velocity is measured on levitation-processed samples as a function of undercooling ∆ T by using high-speed video camera technique. Solute trapping in dilute solid solutions and disorder trapping in intermetallic compounds are experimentally verified. Measurements of glass-forming Cu-Zr alloy show a maximum in the V(∆ T) relation that is indicative for diffusion-controlled growth. The influence of convection on dendrite growth of Al50Ni50 is shown by comparative measurements of dendrite growth velocity on Earth and in reduced gravity. Eventually, faceting of a rough interface by convection is presented as observed on Ni2B alloys.

  10. Nucleation reduction strategy of BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate, in vitro approach-1) crystals grown in silica gel medium and its characterization studies

    NASA Astrophysics Data System (ADS)

    Suresh, P.; Kanchana, G.; Sundaramoorthi, P.

    2009-02-01

    Kidney stones consist of various organic, inorganic and semi-organic compounds. Mineral oxalate monohydrate and di-hydrate is the main inorganic constituent of kidney stones. However, the mechanisms for the formation of crystal mineral oxalate are not clearly understood. In this field of study there are many hypothesis including nucleation, crystal growth and or aggregation of formation of AOMH (ammonium oxalate monohydrate) and AODH (ammonium oxalate di-hydrate) crystals. The effect of some urinary species such as ammonium oxalates, calcium, citrate, proteins and trace mineral elements have been previously reported by the author. The kidney stone constituents are grown in the kidney environments, the sodium meta silica gel medium (SMS) provides the necessary growth simulation (in vitro). In the artificial urinary stone growth process, growth parameters within the different chemical environments are identified. The author has reported the growth of urinary crystals such as CHP, SHP, BHP and AHP. In the present study, BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate) crystals have been grown in three different growth faces to attain the total nucleation reductions. As an extension of this research, many characterization studies have been carried out and the results are reported.

  11. Colloidal Crystal Growth Monitored By Bragg Diffraction Interference Fringes

    PubMed Central

    Bohn, Justin J.; Tikhonov, Alexander; Asher, Sanford A.

    2010-01-01

    We monitor the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (111) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion driven linear growth is followed by ripening-driven growth. Between 80 to 90 μM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 μm/sec until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 μM NaCl concentrations. Increasing NaCl concentrations slows the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall nucleated CCA is determined by the competition between growth of heterogeneously and homogenously nucleated CCA and increases with higher NaCl concentrations. PMID:20542277

  12. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE PAGES

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  13. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  14. Slow processes in viscous liquids: Stress and structural relaxation, chemical reaction freezing, crystal nucleation and microemulsion arrest, in relation to liquid fragility

    NASA Astrophysics Data System (ADS)

    Angell, C. A.; Alba, C.; Arzimanoglou, A.; Fan, J.; Böhmer, R.; Lu, Q.; Sanchez, E.; Senapati, H.; Tatsumisago, M.

    1992-05-01

    We review a variety of measurements on model systems in the medium viscosity range which seem consistent with both thermodynamical (entropy vanishing) and dynamical (mode coupling) origins of glassy behavior and then examine behavior near and below Tg to seek relations between liquid fragility and the non-exponential and non-linear aspects of liquid relaxation processes. We include the model ionic system Ca(NO3)2-KNO3 and analogs, van der Waals systems, and the covalently-bonded system Ge-As-Se in which the relation of liquid properties to the vector percolation concepts of Phillips and Thorpe can be conveniently studied. With some basic phenomenology in the liquid state itself thereby established, we turn attention to longer length-scale processes occurring in viscous liquid media. Among these will be the kinetics of nucleation of crystals, the freezing of microemulsion droplet sizes during continuous cooling of temperature sensitive microemulsions, and the freezing of chemical reactions during continuous cooling or continuous evaporation of solvent. The latter freezings can occur at temperatures which are far above the solvent glass transition temperature depending on solvent fragility, which may be a consideration in the strategies adopted by nature in preservation of plant and insect integrity in cold and arid climates. Finally we consider the slowing down which occurs in liquids with density maxima like water and SiO2 which appear to have, as their low temperature metastable limits, spinodal instabilities (with associated divergences in physical properties) in place of the usual ideal glass transitions. So far little studied for lack of tractable slow systems, these offer a new and challenging arena for relaxation studies.

  15. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Muniz, R. F.; de Ligny, D.; Le Floch, S.; Martinet, C.; Rohling, J. H.; Medina, A. N.; Sandrini, M.; Andrade, L. H. C.; Lima, S. M.; Baesso, M. L.; Guyot, Y.

    2016-06-01

    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca3Mg(SiO4)2] and diopside [CaMgSi2O6]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f65d1 → 4f7 transition of Eu2+ was studied in both host systems. Additionally, the 5D0 → 7FJ transition of Eu3+ was used as an environment probe in the pristine glass and the glass-ceramic.

  16. Formation of gallium microinclusions in GaAs single crystals

    SciTech Connect

    Vasilenko, N.D.; Gorbatyuk, A.Ya.; Maronchuk, I.E.

    1988-08-01

    In this report we analyze the causes of gallium microinclusion formation in gallium arsenide single crystals. We present a model in which microinclusions result from the decomposition of a supersaturated solid solution. From experimental data available in the literature and calculated kinetic parameters of the model we demonstrate that microinclusion formation in bulk single crystals follows the mechanism of homogeneous nucleation and Brownian coalescence of precipitated liquid gallium metal.

  17. Accurate control of a liquid-crystal display to produce a homogenized Fourier transform for holographic memories.

    PubMed

    Márquez, Andrés; Gallego, Sergi; Méndez, David; Alvarez, Mariela L; Fernández, Elena; Ortuño, Manuel; Neipp, Cristian; Beléndez, Augusto; Pascual, Inmaculada

    2007-09-01

    We show an accurate procedure to obtain a Fourier transform (FT) with no dc term using a commercial twisted-nematic liquid-crystal display. We focus on the application to holographic storage of binary data pages, where a drastic decrease of the dc term in the FT is highly desirable. Two different codification schemes are considered: binary pi radians phase modulation and hybrid ternary modulation. Any deviation in the values of the amplitude and phase shift generates the appearance of a strong dc term. Experimental results confirm that the calculated configurations provide a FT with no dc term, thus showing the effectiveness of the proposal.

  18. Nucleation pressure threshold in acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.; Kripfgans, Oliver D.

    2016-07-01

    We combine classical nucleation theory with superharmonic focusing to predict necessary pressures to induce nucleation in acoustic droplet vaporization. We show that linear acoustics is a valid approximation to leading order when particle displacements in the sound field are small relative to the radius of the droplet. This is done by perturbation analysis of an axisymmetric compressible inviscid flow about a droplet with small surface perturbations relative to the mean radius subjected to an incoming ultrasonic wave. The necessary nucleation pressure threshold inside the droplet is calculated to be -9.33 ± 0.30 MPa for typical experimental parameters by employing results from classical homogeneous nucleation theory. As a result, we are able to predict if a given incident pressure waveform will induce nucleation.

  19. Influence of the presence of ethanol on the homogeneous freezing of ice particles

    NASA Astrophysics Data System (ADS)

    Facq, S.; Focsa, C.; Ziskind, M.; Chazallon, B.

    2012-04-01

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. It has been recently demonstrated that water uptake of aerosols, heterogeneous chemical reactions in aerosol particles, as well as ice nucleation and ice crystal growth can be significantly impeded or even completely inhibited in organic-enriched aqueous solutions at upper tropospheric temperatures with implications for cirrus cloud formation and upper tropospheric relative humidity [1]. However, the presence of oxygenated volatile organic compounds such as alcohols, ketones and carboxylic acids in the upper troposphere is also well established [2]. These soluble species are likely scavenged by supercooled droplets contained in polluted air masses. When ice particles are then forming, soluble species contained in those particles that freeze may be retained in the bulk of these new ice crystals until they evaporate in the upper troposphere [3]. In this study, we perform laboratory work to examine and characterize the influence of the presence of a VOC, ethanol, on the homogeneous freezing of ice particles. Supercooled micro-droplets (in the micrometer size range) produced in emulsion are characterized by optical microscopy and micro-Raman analysis. It is found that the first solid that nucleates during the cooling of micro-droplets of ethanol aqueous solutions of concentrations (0 to 2.62 mol %) is ice whereas it is an ethanol hydrate for concentrations in the range (5.30 to 20 mol %). These experimental results imply some deviation from the behaviour of homogeneous ice nucleation in aqueous solutions predicted by the water-activity-based nucleation theory. [1] Zobrist et al. Atmos. Chem. Phys., 8, 5221 (2008) [2] Singh et al. Nature, 410, 1078 (2001) [3] Kerbrat et al. J. Phys. Chem., 111, 925 (2007)

  20. Structure and optical homogeneity of LiNbO{sub 3}:Zn (0.03–4.5 mol.%) crystals

    SciTech Connect

    Sidorov, Nikolay E-mail: tepl-na@chemy.kolasc.net.ru E-mail: Jovial1985@yandex.ru Tepljakova, Natalja E-mail: tepl-na@chemy.kolasc.net.ru E-mail: Jovial1985@yandex.ru Gabain, Aleksei E-mail: tepl-na@chemy.kolasc.net.ru E-mail: Jovial1985@yandex.ru Yanichev, Aleksander E-mail: tepl-na@chemy.kolasc.net.ru E-mail: Jovial1985@yandex.ru Palatnikov, Mikhail E-mail: tepl-na@chemy.kolasc.net.ru E-mail: Jovial1985@yandex.ru

    2014-11-14

    Structure and optical homogeneity of LiNbO{sub 3}:Zn (0.03–4.5 mol.%) crystals were searched by photoinduced light scattering and by Raman spectroscopy. The photorefractive effect depends on Zn{sup 2+} concentration nonmonotonically. Decrease of photorefractive effect is explained by decrease of structure defects with localized electrons. The Zn{sup 2+} cations replace structure defects Nb{sub Li} and Li{sub Nb}, trapping levels appear near the bottom of the conduction band and photo electrons recombine with emission under laser radiation. By the Raman spectra the area of the high structure order is found. In this area the own alternation, the alternation of impurity cations and the vacancies along the polar axis is almost perfect.

  1. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    NASA Astrophysics Data System (ADS)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, Hugh; Somerville, Richard C. J.; Zhang, Kai; Liu, Xiaohong; Li, Jui-Lin F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme has been implemented in an aerosol-enabled Multiscale Modeling Framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10-100/L) at cirrus temperatures. The new model simulates the observed shift of the ice supersaturation PDF toward higher values at low temperatures following the homogeneous nucleation threshold. The MMF model predicts a higher frequency of midlatitude supersaturation in the Southern Hemisphere and winter hemisphere, which is consistent with previous satellite and in situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to simulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation scheme and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement with the satellite-retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  2. Time dependent nucleation in a bulk metallic glass forming alloy

    SciTech Connect

    Croat, T.K.; Kelton, K.F.

    1998-12-31

    The effect of composition on the time-dependent nucleation rates in Zr{sub 65}Al{sub 7.5}Ni{sub 10}Cu{sub 17.5} glasses is investigated to better understand nucleation processes in partitioning systems. As-quenched glasses were annealed to produce a homogeneous dispersion of nanocrystals within the amorphous matrix. The nucleation rates were estimated from the number of crystallites produced as function of annealing time, using scanning and transmission electron microscopy. Experimental results for single and multiple-step annealing treatments are presented. The nucleation results are discussed briefly within the time-dependent model of the classical theory of nucleation.

  3. Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films

    DOE PAGES

    Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; Bommisetty, V. R.

    2009-01-01

    Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less

  4. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta.

    PubMed

    Parry, David A; Brookes, Steven J; Logan, Clare V; Poulter, James A; El-Sayed, Walid; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Sayed, Jihad; Raïf, El Mostafa; Shore, Roger C; Dashash, Mayssoon; Barron, Martin; Morgan, Joanne E; Carr, Ian M; Taylor, Graham R; Johnson, Colin A; Aldred, Michael J; Dixon, Michael J; Wright, J Tim; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2012-09-01

    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein's phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis.

  5. Simple improvements to classical bubble nucleation models.

    PubMed

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  6. Simple improvements to classical bubble nucleation models

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  7. Simple improvements to classical bubble nucleation models.

    PubMed

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations. PMID:26382410

  8. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    PubMed

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed. PMID:18363389

  9. Crystallization of amorphous solid films

    NASA Astrophysics Data System (ADS)

    Safarik, Douglas Joseph

    2003-06-01

    Below ˜130 K, H2O can exist for prolonged periods in a thermodynamically unstable, non-crystalline solid form known as amorphous solid water (ASW). When warmed to above 135 K, ASW crystallizes to the thermodynamically favored state, cubic ice I, on a laboratory time scale. Despite the relevance of ASW crystallization to a variety of scientific problems ranging from astrophysical phenomena to cryopreservation, the kinetics of this transformation are largely uncharacterized, and its mechanism is not fully understood. In the present work, the crystallization kinetics of vapor-deposited, nonporous ASW films less than one micron thick are investigated experimentally near 140 K. The amorphous to crystalline transition is characterized using a probe molecule, chlorodifluoromethane (CHF2Cl), whose adsorbed states and hence desorption kinetics are sensitive to the crystallinity of solid water surfaces. The transformation kinetics of very thick ASW films are found to be both independent of specimen size and consistent with simultaneous homogeneous nucleation and isotropic growth of crystalline ice grains. As the ASW film thickness is reduced from 385 nm to 55 nm, however, the rate of surface crystallization decelerates, in apparent conflict with a homogeneous nucleation and growth mechanism. In an attempt to explain this behavior, a geometrical model of phase transition kinetics at the surface of solids, with special consideration of finite specimen size in one dimension, is constructed. For materials in which nucleation occurs spatially randomly, phase change is predicted to decelerate when film thickness is reduced below the mean crystal grain size. This phenomenon originates from a reduction in the number of crystallites available to transform the surface as the sample becomes thinner. Good quantitative agreement between this simple model and the experimental data is attained using a minimum of kinetic parameters, suggesting it captures the essential physics of ASW

  10. Constraining Climate Forcing of Ice Nucleation with SPartICus/MACPEX Observations

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, M.; Comstock, J. M.; Mitchell, D. L.; Mace, G. G.; Jensen, E. J.

    2012-12-01

    Cirrus clouds composed of ice crystals play an important role in modifying the global radiative balance through scattering shortwave (SW) radiation and absorbing and emitting longwave (LW) terrestrial radiation. Cirrus clouds also modulate water vapor in the upper troposphere and lower stratosphere, which is an important greenhouse gas. Although cirrus clouds are an important player in the global climate system, there are still large uncertainties in the understanding of cirrus cloud properties and processes and their treatments in global climate models, due to the scarcity of cirrus measurements and instrument artifacts of in situ ice crystal number measurements. The DOE Atmospheric Radiation Measurement (ARM)'s Small Particles in Cirrus (SPartICus) campaign (http://campaign.arm.gov/sparticus/) and the NASA's Mid-latitude Airborne Cirrus Properties Experiment (MACPEX, http://www.espo.nasa.gov/macpex/) conducted airborne measurements over central North America with special emphasis in the vicinity of the DOE ARM's Southern Great Plains (SGP) site to investigate the properties of mid-latitude cirrus clouds, the processes affecting these properties and their impact on radiation. With a new generation of probes designed to minimize artifacts due to ice shattering, SPartICus and MACPEX provide unprecedented datasets characterizing cirrus microphysical properties and dynamics. In this study we use the SPartICus/MACPEX observations to constrain the parameterizations of formation and growth of ice crystals in the Community Atmospheric Model version 5 (CAM5). This is achieved by comparing modeled ice crystal number concentration, ice water content, updraft velocity and relative humidity in- and outside cirrus, and their covariance with temperature with the statistics from SPartICus/MACPEX observations. Model sensitivity tests are performed with different ice nucleation mechanisms (homogeneous versus heterogeneous nucleation) and different vapor deposition coefficients to

  11. Crystallization of Li sub 2 O ter dot Al sub 2 O sub 3 ter dot 6SiO sub 2 glasses containing niobium pentoxide as nucleating dopant

    SciTech Connect

    Hsu, J.Y.; Speyer, R.F. )

    1991-02-01

    Niobium pentoxide (T form, orthorhombic system) was utilized to promote devitrification in Li{sub 2}O {center dot} Al{sub 2}O{sub 3} {center dot} 6 SiO{sub 2} glasses. Two or more mole percentage of this nucleating dopant enhanced crystallization in these glasses. Glasses containing 4.0 and 8.0 mol% T-Nb{sub 2}O{sub 5} exhibited a high tendency to form dispersed TT-Nb{sub 2}O{sub 5} (monoclinic system) precipitates during the glass quenching process. The crystallization process in glasses containing 2.0 or 4.0 mol% T-Nb{sub 2}O{sub 5} occurred as microphase separation, followed by the formation of dispersed TT-Nb{sub 2}O{sub 5} crystalline precipitates (760{degrees}C), followed by {beta}-quartz solid-solution (ss) formation (850{degrees} to 900{degrees}C) heterogeneously nucleated from the precipitates. {beta}-quartz(ss) transformed to {beta}- spodumene(ss), along with a polymorphic transition from the TT-Nb{sub 2}O{sub 5} to M-Nb{sub 2}O{sub 5} (tetragonal system) crystalline phase.

  12. Homogeneity Pursuit

    PubMed Central

    Ke, Tracy; Fan, Jianqing; Wu, Yichao

    2014-01-01

    This paper explores the homogeneity of coefficients in high-dimensional regression, which extends the sparsity concept and is more general and suitable for many applications. Homogeneity arises when regression coefficients corresponding to neighboring geographical regions or a similar cluster of covariates are expected to be approximately the same. Sparsity corresponds to a special case of homogeneity with a large cluster of known atom zero. In this article, we propose a new method called clustering algorithm in regression via data-driven segmentation (CARDS) to explore homogeneity. New mathematics are provided on the gain that can be achieved by exploring homogeneity. Statistical properties of two versions of CARDS are analyzed. In particular, the asymptotic normality of our proposed CARDS estimator is established, which reveals better estimation accuracy for homogeneous parameters than that without homogeneity exploration. When our methods are combined with sparsity exploration, further efficiency can be achieved beyond the exploration of sparsity alone. This provides additional insights into the power of exploring low-dimensional structures in high-dimensional regression: homogeneity and sparsity. Our results also shed lights on the properties of the fussed Lasso. The newly developed method is further illustrated by simulation studies and applications to real data. Supplementary materials for this article are available online. PMID:26085701

  13. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Agostini, C.; Landi, P.; Fortunati, A.; Mancini, L.; Carroll, M. R.

    2015-12-01

    Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as a function of pressure, effective undercooling (Δ T eff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (∆ T eff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities ( N a) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5-10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density ( N a) and crystal fraction ( ϕ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.

  14. Binary nucleation of n-octane and i-octane

    NASA Astrophysics Data System (ADS)

    Doster, G. Jay; Schmitt, John L.; Bertrand, Gary L.

    2000-11-01

    The authors used a Wilson expansion cloud chamber to measure binary homogeneous nucleation rates for pure n-octane, pure i-octane, and 3:1, 1:1, 1:3 (mole ratio) mixtures in a temperature range from 215 to 260 K. The nucleation rates range from approximately 100 to 50 000 drops/cm3 s. Current binary nucleation theory is unable to predict the data for this nearly ideal system.

  15. Damage nucleation in Si during ion irradiation

    SciTech Connect

    Holland, O.W.; Fathy, D.; Narayan, J.

    1984-01-01

    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed.

  16. Temporal and spectral cloud screening of polar winter aerosol optical depth (AOD): impact of homogeneous and inhomogeneous clouds and crystal layers on climatological-scale AODs

    NASA Astrophysics Data System (ADS)

    O'Neill, Norman T.; Baibakov, Konstantin; Hesaraki, Sareh; Ivanescu, Liviu; Martin, Randall V.; Perro, Chris; Chaubey, Jai P.; Herber, Andreas; Duck, Thomas J.

    2016-10-01

    We compared star-photometry-derived, polar winter aerosol optical depths (AODs), acquired at Eureka, Nunavut, Canada, and Ny-Ålesund, Svalbard, with GEOS-Chem (GC) simulations as well as ground-based lidar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) retrievals over a sampling period of two polar winters. The results indicate significant cloud and/or low-altitude ice crystal (LIC) contamination which is only partially corrected using temporal cloud screening. Spatially homogeneous clouds and LICs that remain after temporal cloud screening represent an inevitable systematic error in the estimation of AOD: this error was estimated to vary from 78 to 210 % at Eureka and from 2 to 157 % at Ny-Ålesund. Lidar analysis indicated that LICs appeared to have a disproportionately large influence on the homogeneous coarse-mode optical depths that escape temporal cloud screening. In principle, spectral cloud screening (to yield fine-mode or submicron AODs) reduces pre-cloud-screened AODs to the aerosol contribution if one assumes that coarse-mode (super-micron) aerosols are a minor part of the AOD. Large, low-frequency differences between these retrieved values and their GC analogue appeared to be often linked to strong, spatially extensive planetary boundary layer events whose presence at either site was inferred from CALIOP profiles. These events were either not captured or significantly underestimated by the GC simulations. High-frequency AOD variations of GC fine-mode aerosols at Ny-Ålesund were attributed to sea salt, while low-frequency GC variations at Eureka and Ny-Ålesund were attributable to sulfates. CALIOP profiles and AODs were invaluable as spatial and temporal redundancy support (or, alternatively, as insightful points of contention) for star photometry retrievals and GC estimates of AOD.

  17. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  18. Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment.

    PubMed

    Yan, Ke-Feng; Li, Xiao-Sen; Chen, Zhao-Yang; Xia, Zhi-Ming; Xu, Chun-Gang; Zhang, Zhiqiang

    2016-08-01

    The behavior of hydrate formation in porous sediment has been widely studied because of its importance in the investigation of reservoirs and in the drilling of natural gas hydrate. However, it is difficult to understand the hydrate nucleation and growth mechanism on the surface and in the nanopores of porous media by experimental and numerical simulation methods. In this work, molecular dynamics simulations of the nucleation and growth of CH4 hydrate in the presence of the surface and nanopores of clay are carried out. The molecular configurations and microstructure properties are analyzed for systems containing one H2O hydrate layer (System A), three H2O hydrate layers (System B), and six H2O hydrate layers (System C) in both clay and the bulk solution. It is found that hydrate formation is more complex in porous media than in the pure bulk solution and that there is cooperativity between hydrate growth and molecular diffusion in clay nanopores. The hydroxylated edge sites of the clay surface could serve as a source of CH4 molecules to facilitate hydrate nucleation. The diffusion velocity of molecules is influenced by the growth of the hydrate that forms a block in the throats of the clay nanopore. Comparing hydrate growth in different clay pore sizes reveals that the pore size plays an important role in hydrate growth and molecular diffusion in clay. This simulation study provides the microscopic mechanism of hydrate nucleation and growth in porous media, which can be favorable for the investigation of the formation of natural gas hydrate in sediments. PMID:27398713

  19. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    SciTech Connect

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.

    2010-08-29

    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

  20. High Compositional Homogeneity of CdTexSe1-x Crystals Grown by the Bridgman Method

    SciTech Connect

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; James, R. B.

    2015-02-03

    We obtained high-quality CdTexSe1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1-xTe (CdZnTe or CZT).

  1. High compositional homogeneity of CdTe{sub x}Se{sub 1−x} crystals grown by the Bridgman method

    SciTech Connect

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Tappero, R.; Yang, G.; Gul, R.; James, R. B.; Lee, K.; Lee, W.

    2015-02-01

    We obtained high-quality CdTe{sub x}Se{sub 1−x} (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd{sub x}Zn{sub 1−x}Te (CdZnTe or CZT)

  2. An extensive investigation on nucleation, growth parameters, crystalline perfection, spectroscopy, thermal, optical, microhardness, dielectric and SHG studies on potential NLO crystal - ammonium Hydrogen L-tartarte.

    PubMed

    Hanumantharao, Redrothu; Kalainathan, S; Bhagavannarayana, G; Madhusoodanan, U

    2013-02-15

    Ammonium Hydrogen L-tartarte (AMT), an organic nonlinear optical crystal was grown by slow evaporation method at ambient temperature. Solubility, metastable zone width and induction period of Ammonium Hydrogen L-tartarte in aqueous solution were determined. Good quality crystals were selected and characterized by Single crystal XRD, HR-XRD, FT-IR, (1)H NMR, Mass, TGA-DTA, SEM, EDAX, optical and NLO studies. Single crystal XRD analysis revealed that the crystal system belongs to orthorhombic with cell parameters a=7.65Å, b=7.85Å and c=11.07Å. High-resolution-X-ray diffraction (HR-XRD) analysis was carried out to study the crystalline perfection of the grown crystal. (1)H NMR and FTIR spectrum thus confirmed the presence of functional groups of the grown crystal. Molecular mass of AMT was measured accurately by mass spectroscopic analysis. Surface features of the grown crystal were analyzed by SEM, AFM, chemical etching and the presence of elements in the compound was identified by EDAX analysis. Thermal behavior of the grown crystal has been studied by TG/DTA analysis. The recorded UV-Vis-NIR spectrum shows excellent transmission in the region of 190-1100 nm. The Vickers and Knoop's microhardness studies have been carried out on AMT crystals over a range of 10-50 g. Hardness anisotropy has been observed in accordance with the orientation of the crystal. Fluorescence spectral studies were carried in the range of 280-500 nm for the grown crystal. The SHG conversion efficiency and laser damage threshold were measured using an Nd: YAG laser (1064 nm).

  3. Homogeneous Aerosol Freezing in the Tops of High-Altitude Tropical Cumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Ackerman, A. S.

    2006-01-01

    Numerical simulations of deep, intense continental tropical convection indicate that when the cloud tops extend more than a few kilometers above the liquid water homogeneous freezing level, ice nucleation due to freezing of entrained aqueous sulfate aerosols generates large concentrations of small crystals (diameters less than approx. equal to 20 micrometers). The small crystals produced by aerosol freezing have the largest impact on cloud-top ice concentration for convective clouds with strong updrafts but relatively low aerosol concentrations. An implication of this result is that cloud-top ice concentrations in high anvil cirrus can be controlled primarily by updraft speeds in the tops of convective plumes and to a lesser extent by aerosol concentrations in the uppermost troposphere. While larger crystals precipitate out and sublimate in subsaturated air below, the population of small crystals can persist in the saturated uppermost troposphere for many hours, thereby prolonging the lifetime of remnants from anvil cirrus in the tropical tropopause layer.

  4. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    ice crystals during the preceding homogeneous freezing cycle exhibit pre-activation: they may retain small ice embryos in pores, have footprints on their surface which match the ice lattice, or simply have a much greater surface area or different surface microstructure compared to the unprocessed glassy aerosol particles. Pre-activation must be considered for the correct interpretation of experimental results on the heterogeneous ice nucleation ability of glassy aerosol particles and may provide a mechanism of producing a population of extremely efficient ice nuclei in the upper troposphere.

  5. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    with the ice crystals during the preceding homogeneous freezing cycle exhibit pre-activation: they may retain small ice embryos in pores, have footprints on their surface which match the ice lattice, or simply have a much greater surface area or different surface microstructure compared to the unprocessed glassy aerosol particles. Pre-activation must be considered for the correct interpretation of experimental results on the heterogeneous ice nucleation ability of glassy aerosol particles and may provide a mechanism of producing a population of extremely efficient ice nuclei in the upper troposphere.

  6. Nucleation-fibrillation dynamics of Aβ1-40 peptides on liquid-solid surface studied by total-internal-reflection fluorescence microscopy coupled with quartz-crystal microbalance biosensor

    NASA Astrophysics Data System (ADS)

    Hamada, Hiroki; Ogi, Hirotsugu; Noi, Kentaro; Yagi, Hisashi; Goto, Yuji; Hirao, Masahiko

    2015-07-01

    We have successfully developed the total-internal-reflection-fluorescence microscopy combined with a quartz-crystal microbalance (TIRFM-QCM) biosensor, and monitored the nucleation-fibrillation phenomenon of amyloid β1-40 peptide on the naked quartz surface. The cross-β-sheet structures were visualized with the TIRFM using the thioflavin-T (Th-T) label, and other unlabeled aggregates were detected through the frequency change of the 58-MHz wireless-electrodeless QCM throughout the aggregation reaction. The QCM response indicates significant adsorption of the peptides on the quartz surface at the early stage, which is followed by fibrillation. The non-cross-β-sheet oligomers are first formed, and nuclei appear in the oligomer region, from which fibrils originate and elongate. The two-color TIRFM observation was performed after the aggregation reaction with the Nile-red label as well as the ThT label for identifying nucleation from non-β-sheet regions. An aggregation model is proposed.

  7. Self-assembling process of Oxalamide compounds and their nucleation efficiency in bio-degradable Poly(hydroxyalkanoate)s

    NASA Astrophysics Data System (ADS)

    Ma, Piming; Deshmukh, Yogesh S.; Wilsens, Carolus H. R. M.; Ryan Hansen, Michael; Graf, Robert; Rastogi, Sanjay

    2015-08-01

    One of the key requirements in semi-crystalline polyesters, synthetic or bio-based, is the control on crystallization rate and crystallinity. One of the limiting factors in the commercialization of the bio-based polyesters, for example polyhydroxyalkanoates synthesized by bacteria for energy storage purposes, is the slow crystallization rate. In this study, we show that by tailoring the molecular structure of oxalamide compounds, it is possible to dissolve these compounds in molten poly(hydroxybutyrate) (PHB), having a hydroxyvalerate co-monomer content of less than 2 mol%. Upon cooling the polymer melt, the homogeneously dispersed oxalamide compound crystallizes just below the melting temperature of the polymer. The phase-separated compound reduces the nucleation barrier of the polymer, thus enhancing the crystallization rate, nucleation density and crystallinity. The findings reported in this study provide a generic route for the molecular design of oxalamide-based compounds that can be used for enhancing nucleation efficiency of semi-crystalline bio-based polyesters.

  8. Final technical report. [Heterogeneous nucleation and growth in metal alloys

    SciTech Connect

    G.J. Shiflet

    1997-09-14

    We have refined a heat treatment to obtain coherent, heterogeneous nucleation of precipitates on dislocations in a high purity binary alloy. This allowed, for the first time, a quantitative comparison to be made for coherent heterogeneous nucleation. This part of the research resulted from our concern about the role of dislocations in sub-boundaries in aluminum alloys and directed us to first examine isolated dislocations in the binary Al-Li systems. We were able to design the experiment so the heterogeneous nucleation of AL{sub 3}Li occurred. Previously, only homogeneous nucleation of Al{sub 3}Li had been examined.

  9. Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam

    SciTech Connect

    Takashiri, Masayuki Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake; Hagino, Harutoshi; Miyazaki, Koji; Tanaka, Saburo

    2014-06-07

    The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17 MeV. For the n-type thin films, nanodots with a diameter of less than 10 nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

  10. Nanoscale control of polymer crystallization by nanoimprint lithography.

    PubMed

    Hu, Zhijun; Baralia, Gabriel; Bayot, Vincent; Gohy, Jean-François; Jonas, Alain M

    2005-09-01

    Polymer crystallization is notoriously difficult to control. Here, we demonstrate that the orientation of polymer crystals can be fully controlled at the nanoscale by using nanoimprint lithography (NIL) with molds bearing nanotrenches to shape thin films of poly(vinylidene fluoride). This unprecedented control is due to the thermomechanical history experienced by the polymer during embossing, to the shift of the nucleation mechanism from heterogeneous to homogeneous in confined regions of the mold, and to the constraining of the fast growth axis along the direction of the trenches. NIL thus appears as an ideal tool to realize smart polymer surfaces where crystal ordering can be tuned locally.

  11. Computer Modeling of Non-Isothermal Crystallization

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi; Levine, L. E.; Cull, T. C.; Ray, C. S.

    1996-01-01

    A realistic computer model for simulating isothermal and non-isothermal phase transformations proceeding by homogeneous and heterogeneous nucleation and interface-limited growth is presented. A new treatment for particle size effects on the crystallization kinetics is developed and is incorporated into the numerical model. Time-dependent nucleation rates, size-dependent growth rates, and surface crystallization are also included. Model predictions are compared with experimental measurements of DSC/DTA peak parameters for the crystallization of lithium disilicate glass as a function of particle size, Pt doping levels, and water content. The quantitative agreement that is demonstrated indicates that the numerical model can be used to extract key kinetic data from easily obtained calorimetric data. The model can also be used to probe nucleation and growth behavior in regimes that are otherwise inaccessible. Based on a fit to data, an earlier prediction that the time-dependent nucleation rate in a DSC/DTA scan can rise above the steady-state value at a temperature higher than the peak in the steady-state rate is demonstrated.

  12. A tale of two mechanisms. Strain-softening versus strain-hardening in single crystals under small stressed volumes

    DOE PAGES

    Bei, Hongbin; Xia, Yuzhi; Barabash, Rozaliya; Gao, Y. F.

    2015-08-10

    Pre-straining defect-free single crystals will introduce heterogeneous dislocation nucleation sources that reduce the measured strength from the theoretical value, while pre-straining bulk samples will lead to strain hardening. Their competition is investigated by nanoindentation pop-in tests on variously pre-strained Mo single crystals with several indenter radii (~micrometer). Pre-straining primarily shifts deformation mechanism from homogeneous dislocation nucleation to a stochastic behavior, while strain hardening plays a secondary role, as summarized in a master plot of pop-in strength versus normalized indenter radius.

  13. Effect of solute on the nucleation and propagation of ice.

    PubMed

    Charoenrein, S; Goddard, M; Reid, D S

    1991-01-01

    Using the emulsion technique, we have studied nucleation of ice in aqueous solutions containing silver iodide or Pseudomonas syringae. Using a Differential Scanning Calorimeter (DSC), we determined characteristic temperatures of nucleation, and also rates of nucleation at selected temperatures. The freezing point depression induced by added solute is linearly related to the lowering of both homogeneous and heterogeneous nucleation temperature. Nucleation kinetics depend on a fifth power function of the temperature. Solute is found to affect the parameters of this relationship in different ways, dependent upon the nature of the catalytic site for ice nucleation. We have also studied the effect of composition on the linear propagation velocity (LPV) of ice in undercooled solutions contained in a U-tube. We have determined velocities in a range of concentrations of sugar solution at the same undercooling, and also as a function of undercooling. The role of added polymer has also been investigated. It is affected by the sugar concentration. PMID:1746327

  14. Dew nucleation and growth

    NASA Astrophysics Data System (ADS)

    Beysens, Daniel

    2006-11-01

    Dew is the condensation of water vapor into liquid droplets on a substrate. It is characterized by an initial heterogeneous nucleation on a substrate and a further growth of droplets. The presence of a substrate that geometrically constrains the growth is the origin of the peculiarities and richness of the phenomenon. A key point is the drop interaction through drop fusion or coalescence, which leads to scaling in the growth and gives universality to the process. As a matter of fact, growth dynamics are only dependent on substrate and drop dimensionality. Coalescence events lead to temporal and spatio-temporal fluctuations in the substrate coverage, drop configuration, etc., which give rise to a very peculiar dynamics. When the substrate is a liquid or a liquid crystal, the drop pattern can exhibit special spatial order, such as crystalline, hexatic phases and fractal contours. Condensation on a solid substrate near its melting point can make the drop jump. The applications of monitoring dew formation are manifold. Examples can be found in medicine (sterilization process), agriculture (green houses) and hydrology (production of drinkable water). To cite this article: D. Beysens, C. R. Physique 7 (2006).

  15. A First Step Toward Understanding Nucleation Processes: in situ High-Temperature X-ray Diffraction and Absorption Investigations

    NASA Astrophysics Data System (ADS)

    Strukelj, E.; Neuville, D. R.; Cochain, B.; Hennet, L.; Thiaudière, D.; Guillot, B.; Roskosz, M.; Comte, M.; Richet, P.

    2009-05-01

    Nucleation is the first step of the transition between the amorphous and crystalline states and thus plays a key role in Earth and Materials sciences whenever crystallization takes place. In spite of its considerable importance in igneous petrology and industrial applications (ceramics, glass-ceramics, etc.), nucleation remains known poorly because of the difficulties of investigating the structural rearrangements that take place at a nm scale when an ordered atomic packing begins to develop in a melt. In addition, the structure of amorphous phases is not only difficult to determine, but the wealth of information available for glasses is not necessarily applicable to nucleation because of the existence of temperature-induced structural changes in melts. In view of the basic geological and industrial importance of the SiO2-Al2O3-CaO system, we have investigated a calcium aluminosilicate whose crystallization has already been studied. And because elements such as Ti or Zr can promote rapid nucleation, information can be gained about the structural changes they induce by probing specifically their own environment. In this work we have thus performed a high-temperature study of the very first steps of crystallization in a calcium aluminosilicate with 7 mol percent ZrO2 by X-ray absorption measurements at the Zr K-edge et 1873 K on the homogenous melt and 1173 K on a nucleating supercooled liquid. To complement these results with information on medium range order (MRO) X-Ray diffraction experiments have also been performed under the same conditions. As a reference, the glass has been investigated by both techniques at room temperature.

  16. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  17. Diamond nucleation under bias conditions

    SciTech Connect

    Stoeckel, R.; Stammler, M.; Janischowsky, K.; Ley, L.; Albrecht, M.; Strunk, H.P.

    1998-01-01

    The so-called bias pretreatment allows the growth of heteroepitaxial diamond films by plasma chemical vapor deposition on silicon (100) surfaces. We present plan-view and cross-sectional transmission electron micrographs of the substrate surface at different phases of the bias pretreatment. These observations are augmented by measurements of the etch rates of Si, SiC, and different carbon modifications under plasma conditions and the size distribution of oriented diamond crystals grown after bias pretreatment. Based on these results a new model for diamond nucleation under bias conditions is proposed. First, a closed layer of nearly epitaxially oriented cubic SiC with a thickness of about 10 nm is formed. Subplantation of carbon into this SiC layer causes a supersaturation with carbon and results in the subcutaneous formation of epitaxially oriented nucleation centers in the SiC layer. Etching of the SiC during the bias pretreatment as well as during diamond growth brings these nucleation centers to the sample surface and causes the growth of diamonds epitaxially oriented on the Si/SiC substrate. {copyright} {ital 1998 American Institute of Physics.}

  18. Diamond nucleation using polyethene

    DOEpatents

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  19. Diamond Nucleation Using Polyethene

    NASA Technical Reports Server (NTRS)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  20. Melt structure and self-nucleation of ethylene copolymers

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina G.

    A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of

  1. Bacterial ice nucleation: significance and molecular basis.

    PubMed

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation.

  2. Bacterial ice nucleation: significance and molecular basis.

    PubMed

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation. PMID:8224607

  3. Regional Homogeneity

    PubMed Central

    Jiang, Lili; Zuo, Xi-Nian

    2015-01-01

    Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies. PMID:26170004

  4. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    NASA Astrophysics Data System (ADS)

    Kerminen, V.-M.; Petäjä, T.; Manninen, H. E.; Paasonen, P.; Nieminen, T.; Sipilä, M.; Junninen, H.; Ehn, M.; Gagné, S.; Laakso, L.; Riipinen, I.; Vehkamäki, H.; Kurten, T.; Ortega, I. K.; Dal Maso, M.; Brus, D.; Hyvärinen, A.; Lihavainen, H.; Leppä, J.; Lehtinen, K. E. J.; Mirme, A.; Mirme, S.; Hõrrak, U.; Berndt, T.; Stratmann, F.; Birmili, W.; Wiedensohler, A.; Metzger, A.; Dommen, J.; Baltensperger, U.; Kiendler-Scharr, A.; Mentel, T. F.; Wildt, J.; Winkler, P. M.; Wagner, P. E.; Petzold, A.; Minikin, A.; Plass-Dülmer, C.; Pöschl, U.; Laaksonen, A.; Kulmala, M.

    2010-07-01

    Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions), atmospheric nucleation was studied by (i) developing and testing new air ion and cluster spectrometers, (ii) conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii) investigating atmospheric nucleation mechanism under field conditions, and (iv) applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation, in addition to which other vapours, especially organic ones, are needed to explain the nucleation and the subsequent growth processes. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s). This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the lower troposphere. The most concrete outcome of the EUCAARI nucleation studies are the new semi-empirical nucleation rate parameterizations based on field observations, along with

  5. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    NASA Astrophysics Data System (ADS)

    Kerminen, V.-M.; Petäjä, T.; Manninen, H. E.; Paasonen, P.; Nieminen, T.; Sipilä, M.; Junninen, H.; Ehn, M.; Gagné, S.; Laakso, L.; Riipinen, I.; Vehkamäki, H.; Kurten, T.; Ortega, I. K.; Dal Maso, M.; Brus, D.; Hyvärinen, A.; Lihavainen, H.; Leppä, J.; Lehtinen, K. E. J.; Mirme, A.; Mirme, S.; Hõrrak, U.; Berndt, T.; Stratmann, F.; Birmili, W.; Wiedensohler, A.; Metzger, A.; Dommen, J.; Baltensperger, U.; Kiendler-Scharr, A.; Mentel, T. F.; Wildt, J.; Winkler, P. M.; Wagner, P. E.; Petzold, A.; Minikin, A.; Plass-Dülmer, C.; Pöschl, U.; Laaksonen, A.; Kulmala, M.

    2010-11-01

    Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions), atmospheric nucleation was studied by (i) developing and testing new air ion and cluster spectrometers, (ii) conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii) investigating atmospheric nucleation mechanism under field conditions, and (iv) applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s). This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete outcome of

  6. Ice Nucleation properties of Air-Plane Soot Surrogates Using Vibrational Micro-spectroscopy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Ismael; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand

    2015-04-01

    Aircraft emissions have been studied extensively since the late 1960s and the interest was mainly driven by their direct and indirect effects on climate and the generation of contrails [1-4]. Emissions of solid-state particles (soots) from engine exhausts due to incomplete fuel combustion are considered to influence ice and liquid water cloud droplet activation [4]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation by promoting ice formation above water homogeneous freezing point. While some experiments focused on ice nucleation on soot particles did not yet reach definitive conclusions, soot are reported to be generally worse ice nuclei than mineral dust, nucleating at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing. However, there are still numerous opened questions on the ice nucleation properties of soot particles [5], most likely due to the lack of information on the abundance, on the physico-chemical properties (structure and chemical compositions) of these aerosols, competition between different ice nucleation modes and dynamical factors that affect ice nucleation. Furthermore, the soot emitted from aircraft may be associated with soluble components like sulphate that can act as heterogeneous ice nuclei and initiate freezing at supersaturation of only 120-130% [6]. Therefore, more detailed studies of aerosol nucleation activity combined with throughout structural and compositional analyzes are needed in order to establish any association between the particles' hygroscopicity and their physico-chemical properties. In the present preliminary work, nucleation activity of air-plane soot particle surrogates is monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a

  7. The Vaguries of Pyroxene Nucleation and the Resulting Chondrule Textures

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2004-01-01

    Pyroxene is a major phase in chondrules, but often follows olivine in the crystallization sequence and depending on the melting temperature and time may not nucleate readily upon cooling. Dynamic crystallization experiments based on total or near total melting were used to study PO (porphyritic olivine) and PP (Porphyritic pyroxene) compositions as defined by. The experiments showed that pyroxene nucleated only at subliquidus temperatures in the PP melts and rarely in the PO melts. Porphyritic chondrules with phenocrysts of both olivine and pyroxene (POP chondrules) were not easily produced in the experiments. POP chondrules are common and it is important for deciphering their formation that we understand pyroxene nucleation properties of chondrule melts.

  8. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Kiselev, Alexei; Möhler, Ottmar; Saathoff, Harald; Steinke, Isabelle

    2016-02-01

    In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270-271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  9. Multiscale approach to CO2 hydrate formation in aqueous solution: phase field theory and molecular dynamics. Nucleation and growth.

    PubMed

    Tegze, György; Pusztai, Tamás; Tóth, Gyula; Gránásy, László; Svandal, Atle; Buanes, Trygve; Kuznetsova, Tatyana; Kvamme, Bjorn

    2006-06-21

    A phase field theory with model parameters evaluated from atomistic simulations/experiments is applied to predict the nucleation and growth rates of solid CO(2) hydrate in aqueous solutions under conditions typical to underwater natural gas hydrate reservoirs. It is shown that under practical conditions a homogeneous nucleation of the hydrate phase can be ruled out. The growth rate of CO(2) hydrate dendrites has been determined from phase field simulations as a function of composition while using a physical interface thickness (0.85+/-0.07 nm) evaluated from molecular dynamics simulations. The growth rate extrapolated to realistic supersaturations is about three orders of magnitude larger than the respective experimental observation. A possible origin of the discrepancy is discussed. It is suggested that a kinetic barrier reflecting the difficulties in building the complex crystal structure is the most probable source of the deviations.

  10. A review of phosphate mineral nucleation in biology and geobiology.

    PubMed

    Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio

    2013-10-01

    Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.

  11. Homogeneous freezing of water starts in the subsurface.

    PubMed

    Vrbka, Lubos; Jungwirth, Pavel

    2006-09-21

    Molecular dynamics simulations of homogeneous ice nucleation in extended aqueous slabs show that freezing preferentially starts in the subsurface. The top surface layer remains disordered during the freezing process. The subsurface accommodates better than the bulk the increase of volume connected with freezing. It also experiences strong electric fields caused by oriented surface water molecules, which can enhance ice nucleation. Our computational results shed new light on the experimental controversy concerning the bulk vs surface origin of homogeneous ice nucleation in water droplets. This has important atmospheric implications for the microphysics of formation of high altitude clouds.

  12. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  13. Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation

    PubMed Central

    Zahn, Dirk

    2015-01-01

    Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. PMID:25914369

  14. Nucleation in small scale multicrystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Brynjulfsen, I.; Arnberg, L.; Autruffe, A.

    2012-12-01

    Small scale solidification experiments were performed in order to study nucleation mechanisms of solar cell silicon. Ingots were grown in a Bridgman furnace; with a high rate (5 cm/min), inducing dendrite-like grains; and at a slow rate (0.2 mm/min), simulating the common slow crystal growth process. Two types of silicon were used, polysilicon and compensated material. The results showed that for the early stages of silicon solidification, the compensated material behaves similar to the polysilicon. A high undercooling of 11±3 K was obtained for one of the fast cooled experiments. This suggests that Si3N4-coating is not the important factor for nucleation, but Si3N4-precipitates in the melt could contribute as inoculants. Grains with similar orientation were observed for both the solidification rates, which indicates that the most important issue for grain growth selection in PV silicon is control of the vertical growth, rather than nucleation substrates.

  15. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a

  16. Review of nucleation and incipient boiling under pool and forced convection conditions

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1987-01-01

    An overview of liquid-vapor nucleation is given. The result of thermodynamic equilibrium across curved liquid-vapor interfaces is presented. The extension of this to include the interaction with idealizations of surface cavities is made to demonstrate how superheat requirements for nucleation will be affected by surface roughness, flow velocity and buoyancy. Experimental measurements of high liquid superheats and nucleation delay times are presented as examples of homogeneous nucleation. Examples of nucleation and boiling on smooth glass substrates and on metal surfaces with various surface roughnesses are presented.

  17. Surface crystallization of supercooled water in clouds.

    PubMed

    Tabazadeh, A; Djikaev, Y S; Reiss, H

    2002-12-10

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 degrees C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 degrees C.

  18. Recombinant perlucin nucleates the growth of calcium carbonate crystals: molecular cloning and characterization of perlucin from disk abalone, Haliotis discus discus.

    PubMed

    Wang, Ning; Lee, Youn-Ho; Lee, Jehee

    2008-02-01

    Perlucin is well known as an important functional protein regulating pearl formation and shell biomineralization. In this study, we cloned the perlucin gene from the abalone Haliotis discus discus cDNA library. The full-length cDNA of the abalone H. discus discus perlucin gene consisted of 1038 bp nucleotides, encoding a putative signal peptide of 22 amino acids and a mature protein of 129 amino acids, which shared 55% identity with the homologous protein in greenlip abalone. The mature protein coding sequence was inserted into pMal-c2X expression vector and it expressed the recombinant protein in E. coli (Rosetta-gammi DE3). The maltose binding protein (MBP) fusion perlucin successfully promoted calcium carbonate precipitation and directed calcite crystal morphological modification. The successful expression of active recombinant perlucin suggested that recombinant perlucin gene transfer has the capability by color modification to improve the pearl's value. In the view of molecular structure, perlucin was a typical C-type lectin, which contained one highly conserved carbohydrate recognition domain. Reverse transcription polymerase chain reaction (RT-PCR) results showed that perlucin gene was expressed not only in the mantle, but also in the gill and digestive tract. Further characterization of perlucin in abalone non-self recognition and disease resistance is promising and anticipated.

  19. Molecular Ice Nucleation Activity of Birch Pollen

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Häusler, Thomas; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation plays a major part in ecosystem and climate. Due to the triggering of ice cloud formation it influences the radiation balance of the earth, but also on the ground it can be found to be important in many processes of nature. So far the process of heterogeneous ice nucleation is not fully understood and many questions remain to be answered. Biological ice nucleation is hereby from great interest, because it shows the highest freezing temperatures. Several bacteria and fungi act as ice nuclei. A famous example is Pseudomonas syringae, a bacterium in commercial use (Snomax®), which increases the freezing from homogeneous freezing temperatures of approx. -40° C (for small volumes as in cloud droplets) to temperatures up to -2° C. In 2001 it was found that birch pollen can trigger ice nucleation (Diehl et al. 2001; Diehl et al. 2002). For a long time it was believed that this is due to macroscopic features of the pollen surface. Recent findings of Bernhard Pummer (2012) show a different picture. The ice nuclei are not attached on the pollen surface directly, but on surface material which can be easily washed off. This shows that not only the surface morphology, but also specific molecules or molecular structures are responsible for the ice nucleation activity of birch pollen. With various analytic methods we work on elucidating the structure of these molecules as well as the mechanism with which they trigger ice nucleation. To solve this we use various instrumental analytic techniques like Nuclear Magnetic Resonance spectroscopy (NMR), Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), and Gas-phase Electrophoretic Mobility Molecular Analysis (GEMMA). Also standard techniques like various chromatographic separation techniques and solvent extraction are in use. We state here that this feature might be due to the aggregation of small molecules, with agglomerates showing a specific surface structure. Our results

  20. Surface Crystallization of Cloud Droplets: Implications for Climate Change and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process of supercooled liquid water crystallization into ice is still not well understood. Current experimental data on homogeneous freezing rates of ice nucleation in supercooled water droplets show considerable scatter. For example, at -33 C, the reported freezing nucleation rates vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Until now, experimental data on the freezing of supercooled water has been analyzed under the assumption that nucleation of ice took place in the interior volume of a water droplet. Here, the same data is reanalyzed assuming that the nucleation occurred "pseudoheterogeneously" at the air (or oil)-liquid water interface of the droplet. Our analysis suggest that the scatter in the nucleation data can be explained by two main factors. First, the current assumption that nucleation occurs solely inside the volume of a water droplet is incorrect. Second, because the nucleation process most likely occurs on the surface, the rates of nuclei formation could differ vastly when oil or air interfaces are involved. Our results suggest that ice freezing in clouds may initiate on droplet surfaces and such a process can allow for low amounts of liquid water (approx. 0.002 g per cubic meters) to remain supercooled down to -40 C as observed in the atmosphere.

  1. Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation.

    PubMed

    Wilson, P W; Heneghan, A F; Haymet, A D J

    2003-02-01

    In biological systems, nucleation of ice from a supercooled aqueous solution is a stochastic process and always heterogeneous. The average time any solution may remain supercooled is determined only by the degree of supercooling and heterogeneous nucleation sites it encounters. Here we summarize the many and varied definitions of the so-called "supercooling point," also called the "temperature of crystallization" and the "nucleation temperature," and exhibit the natural, inherent width associated with this quantity. We describe a new method for accurate determination of the supercooling point, which takes into account the inherent statistical fluctuations of the value. We show further that many measurements on a single unchanging sample are required to make a statistically valid measure of the supercooling point. This raises an interesting difference in circumstances where such repeat measurements are inconvenient, or impossible, for example for live organism experiments. We also discuss the effect of solutes on this temperature of nucleation. Existing data appear to show that various solute species decrease the nucleation temperature somewhat more than the equivalent melting point depression. For non-ionic solutes the species appears not to be a significant factor whereas for ions the species does affect the level of decrease of the nucleation temperature.

  2. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.; Stephens, J. R.

    1992-01-01

    This project is a part of a program at GSFC to study to formation and growth of cosmic dust grain analogs under terrestrial as well as microgravity conditions. Its primary scientific objective is to study the homogeneous nucleation of refractory metal vapors and a variety of their oxides among others, while the engineering, and perhaps a more immediate objective is to develop a system capable of producing mono-dispersed, homogeneous suspensions of well-characterized refractory particles for various particle interaction experiments aboard the Space Shuttle and Space Station Freedom. Both of these objectives are to be met by a judicious combination of laboratory experiments on the ground and aboard NASA's KC-135 experimental research aircraft. Major effort during the current reporting period was devoted to the evaluation of our very successful first series of microgravity test runs in Feb. 1990. Although the apparatus performed well, it was decided to 'repackage' the equipment for easier installation on the KC-135 and access to various components. It will now consist of three separate racks: one each for the nucleation chamber, the power subsystem, and the electronic packages. The racks were fabricated at the University of Virginia and the assembly of the repackaged units is proceeding well. Preliminary analysis of the video data from the first microgravity flight series was performed and the results appear to display some trends expected from Hale's Scaled Nucleation Theory of 1986. The data acquisition system is currently being refined.

  3. Energy dependence of island nucleation density during ion beam deposition

    NASA Astrophysics Data System (ADS)

    Pomeroy, Joshua M.; Brock, Joel D.

    2002-03-01

    Thin copper films were grown on single crystal copper substrates using highly collimated copper ion beams with precisely controlled incidence energies. The energetic collisions between the copper ions and the surface can form adatom-vacancy pairs or sputter eject atoms into the vaccuum. Island nucleation densities are affected by these atomistic mechanisms, which increase surface adatom densities and surface defect densities. This paper reports STM measurements of the island nucleation density for films grown both thermally and at energies between 10-150 eV. The measured island nucleation density systematically deviates with increasing energy from the density predicted by mean field nucleation theory (J.A. Venables, et.al., Rep. Prog. Phys. 47 (1984) p. 399-459). This deviation can be understood using a phenomenological extension of mean field nucleation theory that includes the effects of adatom-vacancy pair production and sputter ejection on the effective flux.

  4. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Lass, T. J.

    1987-01-01

    A hollow sphere model is developed to predict the range of supersaturation ratio values for refractory metal vapors in a proposed experimental nucleation apparatus. Since the experiments are to be carried out in a microgravity environment, the model neglects the effects of convection and assumes that the only transfer of vapors through an inert gas atmosphere is by conduction and molecular diffusion. A consistent set of physical properties data is assembled for the various candidate metals and inert ambient gases expected to be used in the nucleation experiments. Transient partial pressure profiles are computed for the diffusing refractory species for two possible temperature distributions. The supersaturation ratio values from both candidate temperature profiles are compared with previously obtained experimetnal data on a silver-hydrogen system. The model is used to simulate the diffusion of magnesium vapor through argon and other inert gas atmospheres over ranges of initial and boundary conditions. These results identify different combinations of design and operating parameters which are liekly to produce supersaturation ratio values high enough to induce homogeneous nucleation in the apparatus being designed for the microgravity nucleation experiments.

  5. Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers

    NASA Astrophysics Data System (ADS)

    Spichtinger, P.; Krämer, M.

    2013-10-01

    The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL) remains an enigma that is intensely debated as the "ice supersaturation puzzle". However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause "ice supersaturation puzzle" has become an "ice nucleation puzzle". To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results are composed from scenarios with consecutive heterogeneous and homogeneous ice formation and scenarios with pure homogeneous ice formation occurring in very slow (< 1 cm s-1) and faster (> 1 cm s-1) large-scale updraughts, respectively. This statistical analysis shows that about 80% of TTL cirrus can be explained by "classical" homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.

  6. Ultrasound assisted nucleation and growth characteristics of glycine polymorphs--a combined experimental and analytical approach.

    PubMed

    Renuka Devi, K; Raja, A; Srinivasan, K

    2015-05-01

    For the first time, the effect of ultrasound in the diagnostic frequency range of 1-10 MHz on the nucleation and growth characteristics of glycine has been explored. The investigation employing the ultrasonic interferometer was carried out at a constant insonation time over a wide range of relative supersaturation from σ=-0.09 to 0.76 in the solution. Ultrasound promotes only α nucleation and completely inhibits both the β and γ nucleation in the system. The propagation of ultrasound assisted mass transport facilitates nucleation even at very low supersaturation levels in the solution. The presence of ultrasound exhibits a profound effect on nucleation and growth characteristics in terms of decrease in induction period, increase in nucleation rate and decrease in crystal size than its absence in the solution. With an increase in the frequency of ultrasound, a further decrease in induction period, increase in nucleation rate and decrease in the size of the crystal is noticed even at the same relative supersaturation levels. The increase in the nucleation rate explains the combined dominating effects of both the ultrasound frequency and the supersaturation in the solution. Analytically, the nucleation parameters of the nucleated polymorph have been deduced at different ultrasonic frequencies based on the classical nucleation theory and correlations with the experimental results have been obtained. Structural affirmation of the nucleated polymorph has been ascertained by powder X-ray diffraction. PMID:25465875

  7. Evaluation of the contribution of different mechanisms to the secondary nucleation of potassium alum

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Kubota, N.; Sunagawa, I.

    1984-11-01

    By measuring the number of secondary nuclei of potassium alum formed with differently treated seed crystals, together with scanning electron microscopic observation of the crystal surface, it was found that secondary nucleation is principally due to particles chipped off and adhering to the crystal, and that crystal-crystal contact provides many more particles than any other types of treatment of crystals, i.e. initial breeding, fluid shear and crystal-glass rod contact.

  8. Observing classical nucleation theory at work by monitoring phase transitions with molecular precision

    PubMed Central

    Sleutel, Mike; Lutsko, Jim; Van Driessche, Alexander E.S.; Durán-Olivencia, Miguel A.; Maes, Dominique

    2014-01-01

    It is widely accepted that many phase transitions do not follow nucleation pathways as envisaged by the classical nucleation theory. Many substances can traverse intermediate states before arriving at the stable phase. The apparent ubiquity of multi-step nucleation has made the inverse question relevant: does multistep nucleation always dominate single-step pathways? Here we provide an explicit example of the classical nucleation mechanism for a system known to exhibit the characteristics of multi-step nucleation. Molecular resolution atomic force microscopy imaging of the two-dimensional nucleation of the protein glucose isomerase demonstrates that the interior of subcritical clusters is in the same state as the crystalline bulk phase. Our data show that despite having all the characteristics typically associated with rich phase behaviour, glucose isomerase 2D crystals are formed classically. These observations illustrate the resurfacing importance of the classical nucleation theory by re-validating some of the key assumptions that have been recently questioned. PMID:25465441

  9. On the feasibility of cirrus cloud thinning: Dependence of homo- and heterogeneous ice nucleation on latitude and season

    NASA Astrophysics Data System (ADS)

    Mitchell, David; Garnier, Anne; Avery, Melody

    2015-04-01

    While GCM testing of cirrus cloud climate engineering (CE) reveals some advantages over stratospheric aerosol injection, cirrus CE will not work when ice is primarily formed through heterogeneous nucleation for T < -38°C. Field campaigns have shown that ice in cold cirrus is generally produced heterogeneously, but these campaigns have not addressed the cirrus at high latitudes that would determine the effectiveness of cirrus CE. This presentation introduces a new understanding of the satellite retrieved "effective absorption optical depth ratio", or βeff, based on the 12.05 and 10.60 μm channels of the imaging infrared radiometer (IIR) aboard the CALIPSO satellite. Using βeff calculations from in situ data, it is found that βeff is tightly related to the N/IWC ratio, where N = ice particle number concentration and IWC = ice water content. This is because N is primarily determined by the smallest ice particles, and βeff is primarily due to differences in wave resonance (i.e. photon tunneling) absorption, a process that is only significant when ice particle maximum dimension D < ~ 60 μm (i.e. when wavelength and effective particle size are comparable). Thus βeff is a measure of the concentration of small (D < 60 μm) ice crystals relative to the concentration of larger ice particles. Since homogeneous ice nucleation generally results in N > 500 liter-1, with a relatively high concentration of small ice crystals, βeff may be used to determine when homogeneous nucleation dominates in a region for T < -38°C. Satellite retrievals of βeff from anvil cirrus having N > 500 liter-1 (based on co-located/coincident in situ measurements) suggest that homogeneous nucleation dominates when βeff > 1.15 ± 0.05. A global analysis of βeff was conducted for the boreal summer (July-Aug.) and winter (Jan.-Feb.) of 2007 and 2008, respectively. Using βeff to discriminate between regions of homo- and heterogeneous ice nucleation for cirrus clouds having emissivities between

  10. Investigations on the nucleation kinetics of bis glycine sodium nitrate

    NASA Astrophysics Data System (ADS)

    Selvaraju, K.; Kirubavathi, K.; Vijayan, N.; Kumararaman, S.

    2008-05-01

    The nucleation parameters such as, energy per unit volume, radius of critical nucleus, critical free energy barrier, number of molecules in the critical nucleus and nucleation rate have been evaluated for bis glycine sodium nitrate single crystals. The interfacial energy of the solution at various temperatures has been estimated from existing solubility data. The metastable zone width and induction period measurements have been carried out experimentally.

  11. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.; Stephens, J. R.

    1988-01-01

    Researchers at NASA Goddard Space Flight Center have embarked on a program to study the formation and growth of cosmic grains. This includes experiments on the homogeneous nucleation of refractory vapors of materials such as magnesium, lead, tin, and silicon oxides. As part of this program, the Chemical Engineering Department of the University of Virginia has undertaken to develop a math model for these experiments, to assist in the design and construction of the apparatus, and to analyze the data once the experiments have begun. Status Reports 1 and 2 addressed the design of the apparatus and the development of math models for temperature and concentration fields. The bulk of this report discusses the continued refinement of these models, and the assembly and testing of the nucleation chamber along with its ancillary equipment, which began in the spring of 1988.

  12. Onset of runaway nucleation in aerosol reactors

    NASA Technical Reports Server (NTRS)

    Wu, Jin Jwang; Flagan, Richard C.

    1987-01-01

    The onset of homogeneous nucleation of new particles from the products of gas phase chemical reactions was explored using an aerosol reactor in which seed particles of silicon were grown by silane pyrolysis. The transition from seed growth by cluster deposition to catastrophic nucleation was extremely abrupt, with as little as a 17 percent change in the reactant concentration leading to an increase in the concentration of measurable particles of four orders of magnitude. From the structure of the particles grown near this transition, it is apparent that much of the growth occurs by the accumulation of clusters on the growing seed particles. The time scale for cluster diffusion indicates, however, that the clusters responsible for growth must be much smaller than the apparent fine structure of the product particles.

  13. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    ERIC Educational Resources Information Center

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  14. Temperature dependence of heterogeneous nucleation: Extension of the Fletcher model

    NASA Astrophysics Data System (ADS)

    McGraw, Robert; Winkler, Paul; Wagner, Paul

    2015-04-01

    Recently there have been several cases reported where the critical saturation ratio for onset of heterogeneous nucleation increases with nucleation temperature (positive slope dependence). This behavior contrasts with the behavior observed in homogeneous nucleation, where a decreasing critical saturation ratio with increasing nucleation temperature (negative slope dependence) seems universal. For this reason the positive slope dependence is referred to as anomalous. Negative slope dependence is found in heterogeneous nucleation as well, but because so few temperature-dependent measurements have been reported, it is not presently clear which slope condition (positive or negative) will become more frequent. Especially interesting is the case of water vapor condensation on silver nanoparticles [Kupc et al., AS&T 47: i-iv, 2013] where the critical saturation ratio for heterogeneous nucleation onset passes through a maximum, at about 278K, with higher (lower) temperatures showing the usual (anomalous) temperature dependence. In the present study we develop an extension of Fletcher's classical, capillarity-based, model of heterogeneous nucleation that explicitly resolves the roles of surface energy and surface entropy in determining temperature dependence. Application of the second nucleation theorem, which relates temperature dependence of nucleation rate to cluster energy, yields both necessary and sufficient conditions for anomalous temperature behavior in the extended Fletcher model. In particular it is found that an increasing contact angle with temperature is a necessary, but not sufficient, condition for anomalous temperature dependence to occur. Methods for inferring microscopic contact angle and its temperature dependence from heterogeneous nucleation probability measurements are discussed in light of the new theory.

  15. Source of Electrofreezing of Supercooled Water by Polar Crystals.

    PubMed

    Belitzky, Alik; Mishuk, Eran; Ehre, David; Lahav, Meir; Lubomirsky, Igor

    2016-01-01

    Polar crystals, which display pyroelectricity, have a propensity to elevate, in a heterogeneous nucleation, without epitaxy, the freezing temperature of supercooled water (SCW). Upon cooling, such crystals accumulate an electric charge at their surfaces, which creates weak electric fields, homogeneous ice nucleation. By performing comparative freezing experiments of SCW on the same surfaces of three different polar crystals of amino acids, we demonstrate that preventing the formation of charge at these surfaces, by linking the two hemihedral faces of the polar crystals with a conducting paint, reduces the temperature of freezing by 2-5 °C. The temperature of ice nucleation was found to be correlated with the amount of the surface charge, thus implying that the surface-charge-induced interactions affect the interfacial water molecules that trigger freezing at a higher temperature. This finding is in contrast to previous hypotheses, which attribute the enhanced SCW freezing to the effect of the electric field or capture of external ions or particles. Possible implications of this mechanism of freezing are presented. PMID:26641500

  16. Heterogeneous nucleation of supercooled water, and the effect of an added catalyst

    PubMed Central

    Heneghan, A. F.; Wilson, P. W.; Haymet, A. D. J.

    2002-01-01

    The statistics of liquid-to-crystal nucleation are measured rigorously by using a recently developed automated lag-time apparatus (ALTA). A single sample, in this case a sample of pure water both with and without an (insoluble) AgI crystal, is repeatedly cooled, nucleated, and thawed. Analysis of the data, coupled with a second kind of experiment, shows that the statistics of nucleation are consistent with a first-order kinetic mechanism over a wide range of supercooling temperatures. The limitations of classical nucleation theory are exhibited. Our analysis unifies many related experiments in biology, physics, chemistry, and chemical engineering. PMID:12114536

  17. Scaling properties of induction times in heterogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Shneidman, Vitaly A.; Weinberg, Michael C.

    1991-01-01

    The heterogeneous-to-homogeneous induction time ratio is obtained as a function of the contact angle in the asymptotic limit of a high nucleation barrier. Model-dependent corrections to t(ind) are investigated, particularly in cases of the Turnbull-Fisher model used in numerical simulations by Greer et al. (1990).

  18. Crystallization, densification and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass with ZrO{sub 2} as nucleating agent

    SciTech Connect

    Hsiang, Hsing-I; Yung, Shi-Wen; Wang, Chung-Ching

    2014-12-15

    SEM micrographs for the pure CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass sintered at 850–1000 °C (a) 850 °C, (b) 900 °C, (c) 950 °C, (d) 1000 °C. - Highlights: • ZrO{sub 2} effects on the crystallization of LTCC glass system were investigated. • ZrO{sub 2} effects on the dielectric properties of LTCC glass system were investigated. • LTCC with a dielectric constant of 6.65 and a low dielectric loss can be obtained. - Abstract: The zirconium oxide effects on the crystallization and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} (CMAS) glass were investigated. The results showed that phyllosiloxide and anorthite crystallites were observed in sequence during sintering. For glass added with 8 wt% ZrO{sub 2}, homogeneously dispersed tetragonal ZrO{sub 2} crystallites were observed at 850 °C. The as-prepared CMAS glass–ceramics exhibited a dielectric constant of about 6–7 and a dielectric loss below 0.005 at 100 MHz. The dielectric properties of CMAS glass with 8 wt% ZrO{sub 2} sintered at 850 °C show a low dielectric constant of 6.65 and a dielectric loss tangent of about 2.5 × 10{sup −3}, which provides a promising candidate for LTCC applications.

  19. Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere.

    PubMed

    Moses, J I; Allen, M; Yung, Y L

    1992-10-01

    Photodissociation of methane at high altitude levels in Neptune's atmosphere leads to the production of complex hydrocarbon species such as acetylene (C2H2), ethane (C2H6), methylacetylene (CH3C2H), propane (C3H8), diacetylene (C4H2), and butane (C4H8). These gases diffuse to the lower stratosphere where temperatures are low enough to initiate condensation. Particle formation may not occur readily, however, as the vapor species become supersaturated. We present a theoretical analysis of particle formation mechanisms at conditions relevant to Neptune's troposphere and stratosphere and show that hydrocarbon nucleation is very inefficient under Neptunian conditions: saturation ratios much greater than unity are required for aerosol formation by either homogeneous, heterogeneous, or ion-induced nucleation. Homogeneous nucleation will not be important for any of the hydrocarbon species considered; however, both heterogeneous and ion-induced nucleation should be possible on Neptune for most of the above species. The relative effectiveness of heterogeneous and ion-induced nucleation depends on the physical and thermodynamic properties of the particular species, the abundance of the condensable species, the temperature at which the vapor becomes supersaturated, and the number and type of condensation nuclei or ions available. Typical saturation ratios required for observable particle formation rates on Neptune range from approximately 3 for heterogeneous nucleation of methane in the upper troposphere to greater than 1000 for heterogeneous nucleation of methylacetylene, diacetylene, and butane in the lower stratosphere. Thus, methane clouds may form slightly above, and stratospheric hazes far below, their saturation levels. When used in conjunction with the results of detailed models of atmospheric photochemistry, our nucleation models place realistic constraints on the altitude levels at which we expect hydrocarbon hazes or clouds to form on Neptune. PMID:11538166

  20. Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere.

    PubMed

    Moses, J I; Allen, M; Yung, Y L

    1992-10-01

    Photodissociation of methane at high altitude levels in Neptune's atmosphere leads to the production of complex hydrocarbon species such as acetylene (C2H2), ethane (C2H6), methylacetylene (CH3C2H), propane (C3H8), diacetylene (C4H2), and butane (C4H8). These gases diffuse to the lower stratosphere where temperatures are low enough to initiate condensation. Particle formation may not occur readily, however, as the vapor species become supersaturated. We present a theoretical analysis of particle formation mechanisms at conditions relevant to Neptune's troposphere and stratosphere and show that hydrocarbon nucleation is very inefficient under Neptunian conditions: saturation ratios much greater than unity are required for aerosol formation by either homogeneous, heterogeneous, or ion-induced nucleation. Homogeneous nucleation will not be important for any of the hydrocarbon species considered; however, both heterogeneous and ion-induced nucleation should be possible on Neptune for most of the above species. The relative effectiveness of heterogeneous and ion-induced nucleation depends on the physical and thermodynamic properties of the particular species, the abundance of the condensable species, the temperature at which the vapor becomes supersaturated, and the number and type of condensation nuclei or ions available. Typical saturation ratios required for observable particle formation rates on Neptune range from approximately 3 for heterogeneous nucleation of methane in the upper troposphere to greater than 1000 for heterogeneous nucleation of methylacetylene, diacetylene, and butane in the lower stratosphere. Thus, methane clouds may form slightly above, and stratospheric hazes far below, their saturation levels. When used in conjunction with the results of detailed models of atmospheric photochemistry, our nucleation models place realistic constraints on the altitude levels at which we expect hydrocarbon hazes or clouds to form on Neptune.

  1. Impact of controlled ice nucleation on process performance and quality attributes of a lyophilized monoclonal antibody.

    PubMed

    Awotwe-Otoo, David; Agarabi, Cyrus; Read, Erik K; Lute, Scott; Brorson, Kurt A; Khan, Mansoor A; Shah, Rakhi B

    2013-06-25

    An efficient and potentially scalable technology was evaluated to control the ice nucleation step of the freezing process for a model monoclonal antibody formulation and the effect on process performance and quality attributes of the final lyophilized product was compared with the conventional shelf ramping method of freezing. Controlled ice nucleation resulted in uniform nucleation at temperatures between -2.3 and -3.2 °C while uncontrolled nucleation resulted in random nucleation at temperatures between -10 and -16.4 °C. The sublimation rate (dm/dt) during primary drying was higher in the controlled nucleation cycle (0.13 g/h/vial) than in the uncontrolled nucleation cycle (0.11 g/h/vial). This was due to the formation of larger ice crystals, leading to lower product resistance (Rp) and 19% reduction in the primary drying for the controlled nucleation cycle. Controlled ice nucleation resulted in lyophilized cakes with more acceptable appearance, no visible collapse or shrinkage and decreased reconstitution times compared with uncontrolled nucleation. There were no observed differences in the particle size, concentration (A280 nm) and presence of aggregates (A410 nm) between the two nucleation cycles when the lyophilized cakes were reconstituted. These were confirmed by SEC and protein A-HPLC analyses which showed similar peak shapes and retention times between the two cycles. However, uncontrolled nucleation resulted in cakes with larger specific surface area (0.90 m(2)/g) than controlled nucleation (0.46 m(2)/g). SEM images of the lyophilized cakes from uncontrolled nucleation revealed a sponge-like morphology with smaller pores while cakes from controlled nucleation cycle revealed plate-like structures with more open and larger pores. While controlled nucleation resulted in a final product with a higher residual moisture content (2.1±0.08%) than uncontrolled nucleation (1.62±0.11%), this was resolved by increasing the secondary drying temperature.

  2. Nucleation and particle coagulation experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Nuth, J.

    1987-01-01

    Measurements of the co