Science.gov

Sample records for homolog lectin structure

  1. Structural Insights into the Anti-HIV Activity of the Oscillatoria agardhii Agglutinin Homolog Lectin Family*

    PubMed Central

    Koharudin, Leonardus M. I.; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M.

    2012-01-01

    Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ∼66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties. PMID:22865886

  2. Homology modelling of the core domain of the endogenous lectin comitin: structural basis for its mannose-binding specificity.

    PubMed

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1999-03-01

    The N-terminal core domain of comitin from the slime mold Dictyostelium discoideum has been modelled from the X-ray coordinates of the monocot mannose-binding lectin from snowdrop (Galanthus nivalis). Docking experiments performed on the three-dimensional model showed that two of the three mannose-binding sites of the comitin monomer are functional. They are located at both ends of the comitin dimer whereas the actin-interacting region occurs in the central hinge region where both monomers are non covalently associated. This distribution is fully consistent with the bifunctional character of comitin which is believed to link the Golgi vesicles exhibiting mannosylated membrane glycans to the actin cytoskeleton in the cell.

  3. The Liverwort Contains a Lectin That Is Structurally and Evolutionary Related to the Monocot Mannose-Binding Lectins1

    PubMed Central

    Peumans, Willy J.; Barre, Annick; Bras, Julien; Rougé, Pierre; Proost, Paul; Van Damme, Els J.M.

    2002-01-01

    A mannose (Man)-binding lectin has been isolated and characterized from the thallus of the liverwort Marchantia polymorpha. N-terminal sequencing indicated that the M. polymorpha agglutinin (Marpola) shares sequence similarity with the superfamily of monocot Man-binding lectins. Searches in the databases yielded expressed sequence tags encoding Marpola. Sequence analysis, molecular modeling, and docking experiments revealed striking structural similarities between Marpola and the monocot Man-binding lectins. Activity and specificity studies further indicated that Marpola is a much stronger agglutinin than the Galanthus nivalis agglutinin and exhibits a preference for methylated Man and glucose, which is unprecedented within the family of monocot Man-binding lectins. The discovery of Marpola allows us, for the first time, to corroborate the evolutionary relationship between a lectin from a lower plant and a well-established lectin family from flowering plants. In addition, the identification of Marpola sheds a new light on the molecular evolution of the superfamily of monocot Man-binding lectins. Beside evolutionary considerations, the occurrence of a G. nivalis agglutinin homolog in a lower plant necessitates the rethinking of the physiological role of the whole family of monocot Man-binding lectins. PMID:12114560

  4. Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins.

    PubMed

    Tateno, Hiroaki; Goldstein, Irwin J

    2003-10-17

    We describe herein the cDNA cloning, expression, and characterization of a hemolytic lectin and its related species from the parasitic mushroom Laetiporus sulphureus. The lectin designated LSL (L. sulphureus lectin), is a tetramer composed of subunits of approximately 35 kDa associated by non-covalent bonds. From a cDNA library, three similar full-length cDNAs, termed LSLa, LSLb, and LSLc, were generated, each of which had an open reading frame of 945 bp encoding 315 amino acid residues. These proteins share 80-90% sequence identity and showed structural similarity to bacterial toxins: mosquitocidal toxin (MTX2) from Bacillus sphaericus and alpha toxin from Clostridium septicum. Native and recombinant forms of LSL showed hemagglutination and hemolytic activity and both activities were inhibited by N-acetyllactosamine, whereas a C-terminal deletion mutant of LSLa (LSLa-D1) retained hemagglutination, but not hemolytic activity, indicating the N-terminal domain is a carbohydrate recognition domain and the C-terminal domain functions as an oligomerization domain. The LSL-mediated hemolysis was protected osmotically by polyethylene glycol 4000 and maltohexaose. Inhibition studies showed that lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) was the best inhibitor for LSL. These results indicate that LSL is a novel pore-forming lectin homologous to bacterial toxins.

  5. Mushroom lectins: specificity, structure and bioactivity relevant to human disease.

    PubMed

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Tiralongo, Joe

    2015-04-08

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.

  6. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease

    PubMed Central

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W.; Tiralongo, Joe

    2015-01-01

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity. PMID:25856678

  7. Homolog of the maize beta-glucosidase aggregating factor from sorghum is a jacalin-related GalNAc-specific lectin but lacks protein aggregating activity.

    PubMed

    Kittur, Farooqahmed S; Yu, Hyun Young; Bevan, David R; Esen, Asim

    2009-03-01

    Recently, we identified the maize beta-glucosidase aggregating factor (BGAF) as a jacalin-related lectin (JRL) and showed that its lectin domain is responsible for beta-glucosidase aggregation. By searching for BGAF homologs in sorghum, we identified and obtained an EST clone and determined its complete sequence. The predicted protein had the same modular structure as maize BGAF, shared 67% sequence identity with it, and revealed the presence of two potential carbohydrate-binding sites (GG...ATYLQ, site I and GG...GVVLD, site II). Maize BGAF1 is the only lectin from a class of modular JRLs containing an N-terminal dirigent and a C-terminal JRL domain, whose sugar specificity and beta-glucosidase aggregating activity have been studied in detail. We purified to homogeneity a BGAF homolog designated as SL (Sorghum lectin) from sorghum and expressed its recombinant version in Escherichia coli. The native protein had a molecular mass of 32 kD and was monomeric. Both native and recombinant SL-agglutinated rabbit erythrocytes, and inhibition assays indicated that SL is a GalNAc-specific lectin. Exchanging the GG...GVVLD motif in SL with that of maize BGAF1 (GG...GIAVT) had no effect on GalNAc-binding, whereas binding to Man was abolished. Substitution of Thr(293) and Gln(296) in site I to corresponding residues (Val(294) and Asp(297)) of maize BGAF1 resulted in the loss of GalNAc-binding, indicating that site I is responsible for generating GalNAc specificity in SL. Gel-shift and pull-down assays after incubating SL with maize and sorghum beta-glucosidases showed no evidence of interaction nor were any SL-protein complexes detected in sorghum tissue extracts, suggesting that the sorghum homolog does not participate in protein-protein interactions. PMID:19056785

  8. Structures of Cvnh Family Lectins

    NASA Astrophysics Data System (ADS)

    Gronenborn, Angela M.

    Members of the CVNH family are found in a restricted range of eukaryotic organisms as diverse as filamentous ascomycetes and seedless plants. All CVNH proteins so far exhibit a fold that matches the unique fold of the cyanobacterial protein. The CVNH domain is a versatile protein module, and, with some exceptions, comprises 101-150 aa with two sequential repeats of 50 amino acids. We determined high resolution structures of CVNHs from Tuber borchii, Ceratopteris richardii, Neurospora crassa, and Gibberella zeae, representing different phylogenetic groups. All proteins exhibit the same fold and the overall structures resemble that of the founding member of the family, CVN, albeit with noteworthy differences in loop conformation and detailed local structure.

  9. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  10. Structural characterization of novel chitin-binding lectins from the genus Artocarpus and their antifungal activity.

    PubMed

    Trindade, Melissa B; Lopes, José L S; Soares-Costa, Andréa; Monteiro-Moreira, Ana Cristina; Moreira, Renato A; Oliva, Maria Luiza V; Beltramini, Leila M

    2006-01-01

    Two novel chitin-binding lectins from seeds of Artocarpus genus were described in this paper, one from A. integrifolia (jackfruit) and one from A. incisa (breadfruit). They were purified from saline crude extract of seeds using affinity chromatography on chitin column, size-exclusion chromatography and reverse-phase chromatography on the C-18 column. Both are 14 kDa proteins, made up of 3 chains linked by disulfide bonds. The partial amino acid sequences of the two lectins showed they are homologous to each other but not to other plant chitin-binding proteins. Thus, they cannot be classified in any known plant chitin-binding protein family, particularly because of their inter-chain covalent bonds. Their circular dichroism spectra and deconvolution showed a secondary structure content of beta-sheet and unordered elements. The lectins were thermally stable until 80 degrees C and structural changes were observed below pH 6. Both lectins inhibited the growth of Fusarium moniliforme and Saccharomyces cerevisiae, and presented hemagglutination activity against human and rabbit erythrocytes. These lectins were denoted jackin (from jackfruit) and frutackin (from breadfruit).

  11. Structural-functional insights and studies on saccharide binding of Sophora japonica seed lectin.

    PubMed

    Yadav, Priya; Shahane, Ganesh; Ramasamy, Sureshkumar; Sengupta, Durba; Gaikwad, Sushama

    2016-10-01

    Functional and conformational transitions of the Sophora japonica seed lectin (SJL) were studied in detail using bioinformatics and biophysical tools. Homology model of the lectin displayed all the characteristics of the legume lectin monomer and the experimental observations correlated well with the structural information. In silico studies were performed by protein-ligand docking, calculating the respective binding energies and the residues involved in the interactions were derived from LigPlot(+) analysis. Fluorescence titrations showed three times higher affinity of T-antigen disaccharide than N-acetyl galactosamine (GalNAc) towards SJL indicating extended sugar binding site of the lectin. Thermodynamic parameters of T-antigen binding to SJL indicated the process to be endothermic and entropically driven while those of GalNAc showed biphasic process. SDS-PAGE showed post-translationally modified homotetrameric species of the lectin under native conditions. In presence of guanidine hydrochloride (0.5-5.0M), the tetramer first dissociated into dimers followed by unfolding of the protein as indicated by size exclusion chromatography, fluorescence and CD spectroscopy. Different structural rearrangements were observed during thermal denaturation of SJL at physiological pH 7.2, native pH 8.5 and molten globule inducing pH 1.0. Topological information revealed by solute quenching studies at respective pH indicated differential hydrophobic environment and charge density around tryptophan residues. PMID:27185070

  12. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  13. Use of labeled tomato lectin for imaging vasculature structures.

    PubMed

    Robertson, Richard T; Levine, Samantha T; Haynes, Sherry M; Gutierrez, Paula; Baratta, Janie L; Tan, Zhiqun; Longmuir, Kenneth J

    2015-02-01

    Intravascular injections of fluorescent or biotinylated tomato lectin were tested to study labeling of vascular elements in laboratory mice. Injections of Lycopersicon esculentum agglutinin (tomato lectin) (50-100 µg/100 µl) were made intravascularly, through the tail vein, through a cannula implanted in the jugular vein, or directly into the left ventricle of the heart. Tissues cut for thin 10- to 12-µm cryostat sections, or thick 50- to 100-µm vibratome sections, were examined using fluorescence microscopy. Tissue labeled by biotinylated lectin was examined by bright field microscopy or electron microscopy after tissue processing for biotin. Intravascular injections of tomato lectin led to labeling of vascular structures in a variety of tissues, including brain, kidney, liver, intestine, spleen, skin, skeletal and cardiac muscle, and experimental tumors. Analyses of fluorescence in serum indicated the lectin was cleared from circulating blood within 2 min. Capillary labeling was apparent in tissues collected from animals within 1 min of intravascular injections, remained robust for about 1 h, and then declined markedly until difficult to detect 12 h after injection. Light microscopic images suggest the lectin bound to the endothelial cells that form capillaries and endothelial cells that line some larger vessels. Electron microscopic studies confirmed the labeling of luminal surfaces of endothelial cells. Vascular labeling by tomato lectin is compatible with a variety of other morphological labeling techniques, including histochemistry and immunocytochemistry, and thus appears to be a sensitive and useful method to reveal vascular patterns in relationship to other aspects of parenchymal development, structure, and function. PMID:25534591

  14. Crystal structure of an archaeal actin homolog.

    PubMed

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  15. Advances in Homology Protein Structure Modeling

    PubMed Central

    Xiang, Zhexin

    2007-01-01

    Homology modeling plays a central role in determining protein structure in the structural genomics project. The importance of homology modeling has been steadily increasing because of the large gap that exists between the overwhelming number of available protein sequences and experimentally solved protein structures, and also, more importantly, because of the increasing reliability and accuracy of the method. In fact, a protein sequence with over 30% identity to a known structure can often be predicted with an accuracy equivalent to a low-resolution X-ray structure. The recent advances in homology modeling, especially in detecting distant homologues, aligning sequences with template structures, modeling of loops and side chains, as well as detecting errors in a model, have contributed to reliable prediction of protein structure, which was not possible even several years ago. The ongoing efforts in solving protein structures, which can be time-consuming and often difficult, will continue to spur the development of a host of new computational methods that can fill in the gap and further contribute to understanding the relationship between protein structure and function. PMID:16787261

  16. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins.

    PubMed

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H; Cogdell, Richard J

    2014-06-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding.

  17. Structures of two lectins from the roots of pokeweed (Phytolacca americana).

    PubMed

    Fujii, Tomomi; Hayashida, Minoru; Hamasu, Mika; Ishiguro, Masatsune; Hata, Yasuo

    2004-04-01

    Pokeweed lectin (PL), a lectin specific for N-acetylglucosamine-containing saccharides, stimulates peripheral lymphocytes to undergo mitosis by binding to their cell surfaces. Four types of lectins have been isolated from the roots of pokeweed (Phytolacca americana) and shown to contain homologous domains but to have different molecular sizes and biological properties. PL-D, the smallest lectin in the group, has two isolectins, PL-D1 and PL-D2. PL-D1 consists of 84 amino-acid residues, while PL-D2 is identical to PL-D1 in sequence except for the lack of two C-terminal residues, Leu83 and Thr84. The crystal structures of PL-D1 and PL-D2 were solved by the molecular-replacement method and refined to 1.65 and 1.5 A resolution with R factors of 17.2 and 17.6%, respectively. The PL-Ds are composed of two repetitive chitin-binding domains, each of which has four S-S bridges and one putative carbohydrate-binding site. The two carbohydrate-binding sites in PL-D are located on one side of the molecule. The relative orientation of the two domains in PL-D1 differs from that in PL-D2. Two C-terminal residues of PL-D1 are invisible in the present crystal structure, indicating the flexibility of the region. PL-D2 has a Ca2+ ion bound to the C-terminus on the molecular surface. A wide distribution of acidic residues is characteristically observed on one side of the C-terminal region of PL-D.

  18. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide. PMID:26022515

  19. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide.

  20. Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition.

    PubMed

    Wangkanont, Kittikhun; Wesener, Darryl A; Vidani, Jack A; Kiessling, Laura L; Forest, Katrina T

    2016-03-11

    Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates.

  1. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins

    PubMed Central

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H.; Cogdell, Richard J.

    2014-01-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding. PMID:24915077

  2. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins.

    PubMed

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H; Cogdell, Richard J

    2014-06-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding. PMID:24915077

  3. Novel Matrix Proteins of Pteria penguin Pearl Oyster Shell Nacre Homologous to the Jacalin-Related β-Prism Fold Lectins

    PubMed Central

    Naganuma, Takako; Hoshino, Wataru; Shikanai, Yukihiro; Sato, Rie; Liu, Kaiyue; Sato, Saho; Muramoto, Koji; Osada, Makoto; Yoshimi, Kyosuke; Ogawa, Tomohisa

    2014-01-01

    Nacreous layers of pearl oyster are one of the major functional biominerals. By participating in organic compound-crystal interactions, they assemble into consecutive mineral lamellae-like photonic crystals. Their biomineralization mechanisms are controlled by macromolecules; however, they are largely unknown. Here, we report two novel lectins termed PPL2A and PPL2B, which were isolated from the mantle and the secreted fluid of Pteria penguin oyster. PPL2A is a hetero-dimer composed of α and γ subunits, and PPL2B is a homo-dimer of β subunit, all of which surprisingly shared sequence homology with the jacalin-related plant lectin. On the basis of knockdown experiments at the larval stage, the identification of PPLs in the shell matrix, and in vitro CaCO3 crystallization analysis, we conclude that two novel jacalin-related lectins participate in the biomineralization of P. penguin nacre as matrix proteins. Furthermore, it was found that trehalose, which is specific recognizing carbohydrates for PPL2A and is abundant in the secreted fluid of P. penguin mantle, functions as a regulatory factor for biomineralization via PPL2A. These observations highlight the unique functions, diversity and molecular evolution of this lectin family involved in the mollusk shell formation. PMID:25375177

  4. Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin.

    PubMed

    Hori, Kanji; Sato, Yuichiro; Ito, Kaori; Fujiwara, Yoshifumi; Iwamoto, Yasumasa; Makino, Hiroyuki; Kawakubo, Akihiro

    2007-05-01

    We have elucidated the carbohydrate-binding profile of a non-monosaccharide-binding lectin named Eucheuma serra lectin (ESA)-2 from the red alga Eucheuma serra using a lectin-immobilized column and a centrifugal ultrafiltration-high performance liquid chromatography method with a variety of fluorescence-labeled oligosaccharides. In both methods, ESA-2 exclusively bound with high-mannose type (HM) N-glycans, but not with any of other N-glycans including complex type, hybrid type and core pentasaccharides, and oligosaccharides from glycolipids. These findings indicate that ESA-2 recognizes the branched oligomannosides of the N-glycans. However, ESA-2 did not bind with any of the free oligomannoses examined that are constituents of the branched oligomannosides implying that the portion of the core N-acetyl-D-glucosamine (GlcNAc) residue(s) of the N-glycans is also essential for binding. Thus, the algal lectin was strictly specific for HM N-glycans and recognized the extended carbohydrate structure with a minimum size of the pentasaccharide, Man(alpha1-3)Man(alpha1-6)Man(beta1-4)GlcNAc(beta1-4) GlcNAc. Kinetic analysis of binding with a HM heptasaccharide (M5) showed that ESA-2 has four carbohydrate-binding sites per polypeptide with a high association constant of 1.6x10(8) M-1. Sequence analysis, by a combination of Edman degradation and mass analyses of the intact protein and of peptides produced by its enzymic digestions, showed that ESA-2 is composed of 268 amino acids (molecular weight 27950) with four tandemly repeated domains of 67 amino acids. The number of repeats coincided with the number of carbohydrate-binding sites in the monomeric molecule. Surprisingly, the marine algal lectin was homologous to hemagglutinin from the soil bacterium Myxococcus xanthus. PMID:17259190

  5. Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin.

    PubMed

    Van Damme, E J; Kaku, H; Perini, F; Goldstein, I J; Peeters, B; Yagi, F; Decock, B; Peumans, W J

    1991-11-15

    Poly(A)-rich RNA isolated from ripening ovaries of snowdrop (Galanthus nivalis L.) yielded a single 17-kDa lectin polypeptide upon translation in a wheat-germ cell-free system. This lectin was purified by affinity chromatography. Translation of the same RNA in Xenopus leavis oocytes revealed a lectin polypeptide which was about 2 kDa smaller than the in vitro synthesized precursor, suggesting that the oocyte system had removed a 2-kDa signal peptide. A second post-translational processing step was likely to be involved since both the in vivo precursor and the Xenopus translation products were about 2 kDa larger than the mature lectin polypeptide. This hypothesis was confirmed by the structural analysis of the amino acid sequence of the mature protein and the cloned mRNA. Edman degradation and carboxypeptidase Y digestion of the mature protein, and structural analysis of the peptides obtained after chemical cleavage and modification, allowed determination of the complete 105 amino acid sequence of the snowdrop lectin polypeptide. Comparison of this sequence with the deduced amino acid sequence of a lectin cDNA clone revealed that besides the mature lectin polypeptide, the lectin mRNA also encoded a 23 amino acid signal-sequence and a C-terminal extension of 29 amino acids, which confirms the results from in vitro translation experiments.

  6. Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family.

    PubMed

    Hester, G; Kaku, H; Goldstein, I J; Wright, C S

    1995-06-01

    Tetrameric Galanthus nivalis agglutinin (50,000 M(r)) belongs to a super-family of alpha-D-mannose-specific plant bulb lectins known to be potent inhibitors of retroviruses. The 2.3 A crystal structure of this lectin complexed with methyl alpha-D-mannose reveals a novel three-fold symmetric beta-sheet polypeptide fold. Three antiparallel four-stranded beta-sheets, each with a conserved mannose-binding site, are arranged as a 12-stranded beta-barrel. The tetramer displays 222 symmetry. Pairs of monomers form stable dimers through C-terminal strand exchange. The so formed hybrid beta-sheets are the sites for high affinity mannose binding in the dimer interface. Occupancy observed at corresponding sites in other beta-sheets suggests a potential for twelve sites per tetramer.

  7. A soluble fucose-specific lectin from Aspergillus fumigatus conidia--structure, specificity and possible role in fungal pathogenicity.

    PubMed

    Houser, Josef; Komarek, Jan; Kostlanova, Nikola; Cioci, Gianluca; Varrot, Annabelle; Kerr, Sheena C; Lahmann, Martina; Balloy, Viviane; Fahy, John V; Chignard, Michel; Imberty, Anne; Wimmerova, Michaela

    2013-01-01

    Aspergillus fumigatus is an important allergen and opportunistic pathogen. Similarly to many other pathogens, it is able to produce lectins that may be involved in the host-pathogen interaction. We focused on the lectin AFL, which was prepared in recombinant form and characterized. Its binding properties were studied using hemagglutination and glycan array analysis. We determined the specificity of the lectin towards l-fucose and fucosylated oligosaccharides, including α1-6 linked core-fucose, which is an important marker for cancerogenesis. Other biologically relevant saccharides such as sialic acid, d-mannose or d-galactose were not bound. Blood group epitopes of the ABH and Lewis systems were recognized, Le(Y) being the preferred ligand among others. To provide a correlation between the observed functional characteristics and structural basis, AFL was crystallized in a complex with methyl-α,L-selenofucoside and its structure was solved using the SAD method. Six binding sites, each with different compositions, were identified per monomer and significant differences from the homologous AAL lectin were found. Structure-derived peptides were utilized to prepare anti-AFL polyclonal antibodies, which suggested the presence of AFL on the Aspergillus' conidia, confirming its expression in vivo. Stimulation of human bronchial cells by AFL led to IL-8 production in a dose-dependent manner. AFL thus probably contributes to the inflammatory response observed upon the exposure of a patient to A. fumigatus. The combination of affinity to human epithelial epitopes, production by conidia and pro-inflammatory activity is remarkable and shows that AFL might be an important virulence factor involved in an early stage of A. fumigatus infection.

  8. Carbohydrate-binding motifs in a novel type lectin from the sea mussel Crenomytilus grayanus: Homology modeling study and site-specific mutagenesis.

    PubMed

    Kovalchuk, Svetlana N; Golotin, Vasily A; Balabanova, Larissa A; Buinovskaya, Nina S; Likhatskaya, Galina N; Rasskazov, Valery A

    2015-11-01

    The GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus (CGL) was shown to represent a novel family of lectins and to be characterized by three amino acid tandem repeats with high (up to 73%) sequence similarities to each other. We have used homology modeling approach to predict CGL sugar-binding sites. In silico analysis of CGL-GalNAc complexes showed that CGL contained three binding sites, each of which included conserved HPY(K)G motif. In silico substitutions of histidine, proline and glycine residues by alanine in the HPY(K)G motifs of the Sites 1-3 was shown to lead to loss of hydrogen bonds between His and GalNAc and to the increasing the calculated CGL-GalNAc binding energies. We have obtained recombinant CGL and used site-specific mutagenesis to experimentally examine the role of HPK(Y)G motifs in hemagglutinating and carbohydrate binding activities of CGL. Substitutions of histidine, proline and glycine residues by alanine in the HPYG motif of Site 1 and Site 2 was found to led to complete loss of CGL hemagglutinating and mucin-binding activities. The same mutations in HPKG motif of the Site 3 resulted in decreasing the mucin-binding activity in 6-folds in comparison with the wild type lectin. The mutagenesis and in silico analysis indicates the importance of the all three HPY(K)G motifs in the carbohydrate-binding and hemagglutinating activities of CGL. PMID:26439416

  9. Coronal Magnetic Structures for Homologous Eruptions

    NASA Astrophysics Data System (ADS)

    Lee, J.; Liu, C.; Jing, J.; Chae, J.

    2015-12-01

    Many studies have been made on homologous eruptions for their importance in understanding the flare energy build-up and release processes. We study the homologous eruptions that occurred in three active regions, NOAA 11444, 11283, and 12192, with emphasis on the coronal quantities derived from the nonlinear force-free field (NLFFF) extrapolation. The quantities include magnetic energy, electric current, and magnetic twist number, and decay index, computed from the high cadence photospheric vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). In addition, photospheric magnetic flux, flare ribbons and overlying field distribution are also examined to determine the changes associated with each eruption. As main results, we will present the difference between the homology of confined eruptions and that of eruptive ones, and variations of the coronal quantities with flare strength.

  10. Structural and functional similarities of breadfruit seed lectin and jacalin.

    PubMed

    Pineau, N; Pousset, J L; Preud'Homme, J L; Aucouturier, P

    1990-03-01

    Aquous extracts from seeds of Artocarpus altilis (breadfruit) and Artocarpus heterophyllus (jackfruit) were compared by polyacrylamide gel electrophoresis. Two bands of the same size (12 and 15 kD) as the jacalin subunits were the major components in breadfruit seed extract. They strongly reacted with anti-jacalin antibodies by western blotting. The breadfruit lectin displayed the same IgAl and IgD precipitation specificity as jacalin in gel double diffusion experiments. It also stimulated in vitro proliferation of human peripheral blood mononuclear cells. These results suggest that lectins from both species of Artocarpus are very similar.

  11. Homology of the D-galactose-specific lectins from Artocarpus integrifolia and Maclura pomifera and the role of an unusual small polypeptide subunit.

    PubMed

    Young, N M; Johnston, R A; Szabo, A G; Watson, D C

    1989-05-01

    The Maclura pomifera agglutinin (MPA) was purified by affinity chromatography from a seed extract and its properties were compared with those of the Artocarpus integrifolia lectin, jacalin. Reverse-phase high-performance liquid chromatography showed both proteins had multiple forms of a small approximately 20-residue polypeptide chain in addition to the major 12,000 Mr subunit. The amino acid sequences of the small chains and the N-terminal sequences of the large subunits showed considerable similarity between the two proteins, approximately 60% identical residues. The homology of the proteins was confirmed by the similarity of their circular dichroism and fluorescence emission spectra. MPA showed much greater spectral changes upon binding methyl alpha-D-galactoside, suggesting it has complete activity rather than the partial activity found for jacalin. The binding of methyl alpha-D-galactoside by MPA was measured by fluorescence titration; the KA was 1.9 X 10(4) M-1 compared to 3.4 X 10(4) M-1 for jacalin. MPA also precipitated human IgA1 in the same manner as jacalin. The spectra indicate the involvement of tryptophan and tyrosine residues in the binding site of these lectins. Since a tryptophan residue is conserved in all the small subunits, they may form part of the binding site.

  12. A Lectin from the Mussel Mytilus galloprovincialis Has a Highly Novel Primary Structure and Induces Glycan-mediated Cytotoxicity of Globotriaosylceramide-expressing Lymphoma Cells*

    PubMed Central

    Fujii, Yuki; Dohmae, Naoshi; Takio, Koji; Kawsar, Sarkar M. A.; Matsumoto, Ryo; Hasan, Imtiaj; Koide, Yasuhiro; Kanaly, Robert A.; Yasumitsu, Hidetaro; Ogawa, Yukiko; Sugawara, Shigeki; Hosono, Masahiro; Nitta, Kazuo; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2012-01-01

    A novel lectin structure was found for a 17-kDa α-d-galactose-binding lectin (termed “MytiLec”) isolated from the Mediterranean mussel, Mytilus galloprovincialis. The complete primary structure of the lectin was determined by Edman degradation and mass spectrometric analysis. MytiLec was found to consist of 149 amino acids with a total molecular mass of 16,812.59 Da by Fourier transform-ion cyclotron resonance mass spectrometry, in good agreement with the calculated value of 16,823.22 Da. MytiLec had an N terminus of acetylthreonine and a primary structure that was highly novel in comparison with those of all known lectins in the structure database. The polypeptide structure consisted of three tandem-repeat domains of ∼50 amino acids each having 45–52% homology with each other. Frontal affinity chromatography technology indicated that MytiLec bound specifically to globotriose (Gb3; Galα1–4Galβ1–4Glc), the epitope of globotriaosylceramide. MytiLec showed a dose-dependent cytotoxic effect on human Burkitt lymphoma Raji cells (which have high surface expression of Gb3) but had no such effect on erythroleukemia K562 cells (which do not express Gb3). The cytotoxic effect of MytiLec was specifically blocked by the co-presence of an α-galactoside. MytiLec treatment of Raji cells caused increased binding of anti-annexin V antibody and incorporation of propidium iodide, which are indicators of cell membrane inversion and perforation. MytiLec is the first reported lectin having a primary structure with the highly novel triple tandem-repeat domain and showing transduction of apoptotic signaling against Burkitt lymphoma cells by interaction with a glycosphingolipid-enriched microdomain containing Gb3. PMID:23093409

  13. Structural characterization of coagulant Moringa oleifera Lectin and its effect on hemostatic parameters.

    PubMed

    Luz, Luciana de Andrade; Silva, Mariana Cristina Cabral; Ferreira, Rodrigo da Silva; Santana, Lucimeire Aparecida; Silva-Lucca, Rosemeire Aparecida; Mentele, Reinhard; Oliva, Maria Luiza Vilela; Paiva, Patricia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso

    2013-07-01

    Lectins are carbohydrate recognition proteins. cMoL, a coagulant Moringa oleifera Lectin, was isolated from seeds of the plant. Structural studies revealed a heat-stable and pH resistant protein with 101 amino acids, 11.67 theoretical pI and 81% similarity with a M. oleifera flocculent protein. Secondary structure content was estimated as 46% α-helix, 12% β-sheets, 17% β-turns and 25% unordered structures belonging to the α/β tertiary structure class. cMoL significantly prolonged the time required for blood coagulation, activated partial thromboplastin (aPTT) and prothrombin times (PT), but was not so effective in prolonging aPTT in asialofetuin presence. cMoL acted as an anticoagulant protein on in vitro blood coagulation parameters and at least on aPTT, the lectin interacted through the carbohydrate recognition domain. PMID:23537800

  14. Basis for Structural Diversity in Homologous RNAs

    SciTech Connect

    Krasilnikov, Andrey S.; Xiao, Yinghua; Pan, Tao; Mondragon, Alfonso

    2010-03-08

    Large RNA molecules, such as ribozymes, fold with well-defined tertiary structures that are important for their activity. There are many instances of ribozymes with identical function but differences in their secondary structures, suggesting alternative tertiary folds. Here, we report a crystal structure of the 161-nucleotide specificity domain of an A-type ribonuclease P that differs in secondary and tertiary structure from the specificity domain of a B-type molecule. Despite the differences, the cores of the domains have similar three-dimensional structure. Remarkably, the similar geometry of the cores is stabilized by a different set of interactions involving distinct auxiliary elements.

  15. Homology-Based Modeling of Protein Structure

    NASA Astrophysics Data System (ADS)

    Xiang, Zhexin

    The human genome project has already discovered millions of proteins (http://www.swissprot.com). The potential of the genome project can only be fully realized once we can assign, understand, manipulate, and predict the function of these new proteins (Sanchez and Sali, 1997; Frishman et al., 2000; Domingues et al., 2000). Predicting protein function generally requires knowledge of protein three-dimensional structure (Blundell et al., 1978;Weber, 1990), which is ultimately determined by protein sequence (Anfinsen, 1973). Protein structure determination using experimental methods such as X-ray crystallography or NMR spectroscopy is very time consuming (Johnson et al. 1994). To date, fewer than 2% of the known proteins have had their structures solved experimentally. In 2004, more than half a million new proteins were sequenced that almost doubled the efforts in the previous year, but only 5300 structures were solved. Although the rate of experimental structure determination will continue to increase, the number of newly discovered sequences grows much faster than the number of structures solved (see Fig. 10.1).

  16. Sugar-complex structures of the C-half domain of the galactose-binding lectin EW29 from the earthworm Lumbricus terrestris.

    PubMed

    Suzuki, Ryuichiro; Kuno, Atsushi; Hasegawa, Tsunemi; Hirabayashi, Jun; Kasai, Ken Ichi; Momma, Mitsuru; Fujimoto, Zui

    2009-01-01

    R-type lectins are one of the most prominent types of lectin; they exist ubiquitously in nature and mainly bind to the galactose unit of sugar chains. The galactose-binding lectin EW29 from the earthworm Lumbricus terrestris belongs to the R-type lectin family as represented by the plant lectin ricin. It shows haemagglutination activity and is composed of a single peptide chain that includes two homologous domains: N-terminal and C-terminal domains. A truncated mutant of EW29 comprising the C-terminal domain (rC-half) has haemagglutination activity by itself. In order to clarify how rC-half recognizes ligands and shows haemagglutination activity, X-ray crystal structures of rC-half in complex with D-lactose and N-acetyl-D-galactosamine have been determined. The structure of rC-half is similar to that of the ricin B chain and consists of a beta-trefoil fold; the fold is further divided into three similar subdomains referred to as subdomains alpha, beta and gamma, which are gathered around the pseudo-threefold axis. The structures of sugar complexes demonstrated that subdomains alpha and gamma of rC-half bind terminal galactosyl and N-acetylgalactosaminyl glycans. The sugar-binding properties are common to both ligands in both subdomains and are quite similar to those of ricin B chain-lactose complexes. These results indicate that the C-terminal domain of EW29 uses these two galactose-binding sites for its function as a single-domain-type haemagglutinin. PMID:19153466

  17. Animal lectins as self/non-self recognition molecules. Biochemical and genetic approaches to understanding their biological roles and evolution.

    PubMed

    Vasta, G R; Ahmed, H; Fink, N E; Elola, M T; Marsh, A G; Snowden, A; Odom, E W

    1994-04-15

    In recent years, the significant contributions from molecular research studies on animal lectins have elucidated structural aspects and provided clues not only to their evolution but also to their multiple biological functions. The experimental evidence has suggested that distinct, and probably unrelated, groups of molecules are included under the term "lectin." Within the invertebrate taxa, major groups of lectins can be identified: One group would include lectins that show significant homology to membrane-integrated or soluble vertebrate C-type lectins. The second would include those beta-galactosyl-specific lectins homologous to the S-type vertebrate lectins. The third group would be constituted by lectins that show homology to vertebrate pentraxins that exhibit lectin-like properties, such as C-reactive protein and serum amyloid P. Finally, there are examples that do not exhibit similarities to any of the aforementioned categories. Moreover, the vast majority of invertebrate lectins described so far cannot yet be placed in one or another group because of the lack of information regarding their primary structure. (See Table 1.) Animal lectins do not express a recombinatorial diversity like that of antibodies, but a limited diversity in recognition capabilities would be accomplished by the occurrence of multiple lectins with distinct specificities, the presence of more than one binding site, specific for different carbohydrates in a single molecule, and by certain "flexibility" of the binding sites that would allow the recognition of a range of structurally related carbohydrates. In order to identify the lectins' "natural" ligands, we have investigated the interactions between those proteins and the putative endogenous or exogenous glycosylated substances or cells that may be relevant to their biological function. Results from these studies, together with information on the biochemical properties of invertebrate and vertebrate lectins, including their structural

  18. Burkholderia oklahomensis agglutinin is a canonical two-domain OAA-family lectin: structures, carbohydrate binding and anti-HIV activity.

    PubMed

    Whitley, Matthew J; Furey, William; Kollipara, Sireesha; Gronenborn, Angela M

    2013-05-01

    Burkholderia oklahomensis EO147 agglutinin (BOA) is a 29 kDa member of the Oscillatoria agardhii agglutinin (OAA) family of lectins. Members of the OAA family recognize high-mannose glycans, and, by binding to the HIV envelope glycoprotein 120 (gp120), block the virus from binding to and entering the host cell, thereby inhibiting infection. OAA-family lectins comprise either one or two homologous domains, with a single domain possessing two glycan binding sites. We solved the structure of BOA in the ligand-free form as well as in complex with four molecules of 3α,6α-mannopentaose, the core unit of the N-linked high-mannose structures found on gp120 in vivo. This is the first structure of a double-domain OAA-family lectin in which all four binding sites are occupied by ligand. The structural details of the BOA-glycan interactions presented here, together with determination of affinity constants and HIV inactivation data, shed further light onto the structure-function relationship in this important class of anti-HIV proteins.

  19. Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL

    PubMed Central

    Furukawa, Atsushi; Kamishikiryo, Jun; Mori, Daiki; Toyonaga, Kenji; Okabe, Yuki; Toji, Aya; Kanda, Ryo; Miyake, Yasunobu; Ose, Toyoyuki; Yamasaki, Sho; Maenaka, Katsumi

    2013-01-01

    Mincle [macrophage inducible Ca2+-dependent (C-type) lectin; CLEC4E] and MCL (macrophage C-type lectin; CLEC4D) are receptors for the cord factor TDM (trehalose-6,6′-dimycolate), a unique glycolipid of mycobacterial cell-surface components, and activate immune cells to confer adjuvant activity. Although it is known that receptor–TDM interactions require both sugar and lipid moieties of TDM, the mechanisms of glycolipid recognition by Mincle and MCL remain unclear. We here report the crystal structures of Mincle, MCL, and the Mincle–citric acid complex. The structures revealed that these receptors are capable of interacting with sugar in a Ca2+-dependent manner, as observed in other C-type lectins. However, Mincle and MCL uniquely possess shallow hydrophobic regions found adjacent to their putative sugar binding sites, which reasonably locate for recognition of fatty acid moieties of glycolipids. Functional studies using mutant receptors as well as glycolipid ligands support this deduced binding mode. These results give insight into the molecular mechanism of glycolipid recognition through C-type lectin receptors, which may provide clues to rational design for effective adjuvants. PMID:24101491

  20. Snake venom galactoside-binding lectins: a structural and functional overview.

    PubMed

    Sartim, Marco A; Sampaio, Suely V

    2015-01-01

    Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications. PMID:26413085

  1. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.

    PubMed

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. PMID:27318092

  2. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.

    PubMed

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity.

  3. HOMSTRAD: a database of protein structure alignments for homologous families.

    PubMed

    Mizuguchi, K; Deane, C M; Blundell, T L; Overington, J P

    1998-11-01

    We describe a database of protein structure alignments for homologous families. The database HOMSTRAD presently contains 130 protein families and 590 aligned structures, which have been selected on the basis of quality of the X-ray analysis and accuracy of the structure. For each family, the database provides a structure-based alignment derived using COMPARER and annotated with JOY in a special format that represents the local structural environment of each amino acid residue. HOMSTRAD also provides a set of superposed atomic coordinates obtained using MNYFIT, which can be viewed with a graphical user interface or used for comparative modeling studies. The database is freely available on the World Wide Web at: http://www-cryst.bioc.cam. ac.uk/-homstrad/, with search facilities and links to other databases.

  4. Quaternary structure of Dioclea grandiflora lectin assessed by equilibrium sedimentation and crystallographic analysis of recombinant mutants.

    PubMed

    Zamora-Caballero, Sara; Pérez, Alicia; Sanz, Libia; Bravo, Jerónimo; Calvete, Juan J

    2015-08-19

    The structural basis of the pH dependency of the dimer-tetramer transition exhibited by Brinda's type II Diocleinae lectins was investigated by equilibrium sedimentation and X-ray crystal structure determination of recombinant wild-type and site-directed single and double mutants of the pH-stable tetrameric Dioclea grandiflora lectin (r-αDGL). Releasing the peripheral site interdimeric contact between R60 and D78 rendered a mutant displaying dimer-tetramer equilibrium in the pH range equivalent to pKa±1 of the γ-COOH. Mutation of both histidines 51 and 131, but not the mutation of each His separately, abolished the formation of the Diocleinae canonical tetramer in the pH range 2.5-8.5. The X-ray structure of the double mutant r-αDGL H51G/H131N suggests that H131 plays a crucial role in networking loop 114-125 residues from all four subunits at the central cavity of the tetrameric lectin, and that H51 maintains the central cavity loops in a proper spatial orientation to make H131-mediated interdimer contacts.

  5. Crystal Structure of a Fructokinase Homolog from Halothermothrix orenii

    SciTech Connect

    Khiang, C.; Seetharaman, J; Kasprzak, J; Cherlyn, N; Patel, B; Love, C; Bujnicki, J; Sivaraman, J

    2010-01-01

    Fructokinase (FRK; EC 2.7.1.4) catalyzes the phosphorylation of D-fructose to D-fructose 6-phosphate (F6P). This irreversible and near rate-limiting step is a central and regulatory process in plants and bacteria, which channels fructose into a metabolically active state for glycolysis. Towards understanding the mechanism of FRK, here we report the crystal structure of a FRK homolog from a thermohalophilic bacterium Halothermothrix orenii (Hore{_}18220 in sequence databases). The structure of the Hore{_}18220 protein reveals a catalytic domain with a Rossmann-like fold and a b-sheet 'lid' for dimerization. Based on comparison of Hore{_}18220 to structures of related proteins, we propose its mechanism of action, in which the lid serves to regulate access to the substrate binding sites. Close relationship of Hore{_}18220 and plant FRK enzymes allows us to propose a model for the structure and function of FRKs.

  6. Glycodendritic structures based on Boltorn hyperbranched polymers and their interactions with Lens culinaris lectin.

    PubMed

    Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier

    2003-01-01

    Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies. PMID:12862436

  7. Glycodendritic structures based on Boltorn hyperbranched polymers and their interactions with Lens culinaris lectin.

    PubMed

    Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier

    2003-01-01

    Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.

  8. Lectins from edible mushrooms.

    PubMed

    Singh, Senjam Sunil; Wang, Hexiang; Chan, Yau Sang; Pan, Wenliang; Dan, Xiuli; Yin, Cui Ming; Akkouh, Ouafae; Ng, Tzi Bun

    2014-12-31

    Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.

  9. Structural Studies of an Anti-Inflammatory Lectin from Canavalia boliviana Seeds in Complex with Dimannosides

    PubMed Central

    Moura, Tales Rocha; Delatorre, Plínio; Rocha, Bruno Anderson Matias; do Nascimento, Kyria Santiago; Figueiredo, Jozi Godoy; Bezerra, Ingrid Gonçalves; Teixeira, Cicero Silvano; Simões, Rafael Conceição; Nagano, Celso Shiniti; de Alencar, Nylane Maria Nunes; Gruber, Karl; Cavada, Benildo Sousa

    2014-01-01

    Plant lectins, especially those purified from species of the Leguminosae family, represent the best-studied group of carbohydrate-binding proteins. Lectins purified from seeds of the Diocleinae subtribe exhibit a high degree of sequence identity notwithstanding that they show very distinct biological activities. Two main factors have been related to this feature: variance in key residues influencing the carbohydrate-binding site geometry and differences in the pH-dependent oligomeric state profile. In this work, we have isolated a lectin from Canavalia boliviana (Cbol) and solved its x-ray crystal structure in the unbound form and in complex with the carbohydrates Man(α1-3)Man(α1-O)Me, Man(α1-4)Man(α1-O)Me and 5-bromo-4-chloro-3-indolyl-α-D-mannose. We evaluated its oligomerization profile at different pH values using Small Angle X-ray Scattering and compared it to that of Concanavalin A. Based on predicted pKa-shifts of amino acids in the subunit interfaces we devised a model for the dimer-tetramer equilibrium phenomena of these proteins. Additionally, we demonstrated Cbol anti-inflammatory properties and further characterized them using in vivo and in vitro models. PMID:24865454

  10. Protein structure refinement with adaptively restrained homologous replicas.

    PubMed

    Della Corte, Dennis; Wildberg, André; Schröder, Gunnar F

    2016-09-01

    A novel protein refinement protocol is presented which utilizes molecular dynamics (MD) simulations of an ensemble of adaptively restrained homologous replicas. This approach adds evolutionary information to the force field and reduces random conformational fluctuations by coupling of several replicas. It is shown that this protocol refines the majority of models from the CASP11 refinement category and that larger conformational changes of the starting structure are possible than with current state of the art methods. The performance of this protocol in the CASP11 experiment is discussed. We found that the quality of the refined model is correlated with the structural variance of the coupled replicas, which therefore provides a good estimator of model quality. Furthermore, some remarkable refinement results are discussed in detail. Proteins 2016; 84(Suppl 1):302-313. © 2015 Wiley Periodicals, Inc. PMID:26441154

  11. Persistent homology analysis of protein structure, flexibility and folding

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720

  12. KM+, a mannose-binding lectin from Artocarpus integrifolia: amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the beta-prism fold.

    PubMed

    Rosa, J C; De Oliveira, P S; Garratt, R; Beltramini, L; Resing, K; Roque-Barreira, M C; Greene, L J

    1999-01-01

    The complete amino acid sequence of the lectin KM+ from Artocarpus integrifolia (jackfruit), which contains 149 residues/mol, is reported and compared to those of other members of the Moraceae family, particularly that of jacalin, also from jackfruit, with which it shares 52% sequence identity. KM+ presents an acetyl-blocked N-terminus and is not posttranslationally modified by proteolytic cleavage as is the case for jacalin. Rather, it possesses a short, glycine-rich linker that unites the regions homologous to the alpha- and beta-chains of jacalin. The results of homology modeling implicate the linker sequence in sterically impeding rotation of the side chain of Asp141 within the binding site pocket. As a consequence, the aspartic acid is locked into a conformation adequate only for the recognition of equatorial hydroxyl groups on the C4 epimeric center (alpha-D-mannose, alpha-D-glucose, and their derivatives). In contrast, the internal cleavage of the jacalin chain permits free rotation of the homologous aspartic acid, rendering it capable of accepting hydrogen bonds from both possible hydroxyl configurations on C4. We suggest that, together with direct recognition of epimeric hydroxyls and the steric exclusion of disfavored ligands, conformational restriction of the lectin should be considered to be a new mechanism by which selectivity may be built into carbohydrate binding sites. Jacalin and KM+ adopt the beta-prism fold already observed in two unrelated protein families. Despite presenting little or no sequence similarity, an analysis of the beta-prism reveals a canonical feature repeatedly present in all such structures, which is based on six largely hydrophobic residues within a beta-hairpin containing two classic-type beta-bulges. We suggest the term beta-prism motif to describe this feature.

  13. Structural analysis of β-prism lectin from Colocasia esculenta (L.) S chott.

    PubMed

    Vajravijayan, S; Pletnev, S; Pletnev, V Z; Nandhagopal, N; Gunasekaran, K

    2016-10-01

    The Mannose-binding β-Prism Colocasia esculenta lectin (β-PCL) was purified from tubers using ion exchange chromatography. The purified β-PCL appeared as a single band of ∼12kDa on SDS-PAGE. β-PCL crystallizes in trigonal space group P3121 and diffracted to a resolution of 2.1Å. The structure was solved using Molecular replacement using Crocus vernus lectin (PDB: 3MEZ) as a model. From the final refined model to an R-factor of 16.5% and an Rfree of 20.4%, it has been observed that the biological unit consists of two β-Prism domains augmented through C-terminals swap over to form one of faces for each domain. Cα superposition of individual domains of β-PCL with individual domains of other related structures and superposition of whole protein structures were carried out. The higher RMS deviation for the superposition of whole structures suggest that β-prism domains assume different orientation in each structure.

  14. Structural analysis of β-prism lectin from Colocasia esculenta (L.) S chott.

    PubMed

    Vajravijayan, S; Pletnev, S; Pletnev, V Z; Nandhagopal, N; Gunasekaran, K

    2016-10-01

    The Mannose-binding β-Prism Colocasia esculenta lectin (β-PCL) was purified from tubers using ion exchange chromatography. The purified β-PCL appeared as a single band of ∼12kDa on SDS-PAGE. β-PCL crystallizes in trigonal space group P3121 and diffracted to a resolution of 2.1Å. The structure was solved using Molecular replacement using Crocus vernus lectin (PDB: 3MEZ) as a model. From the final refined model to an R-factor of 16.5% and an Rfree of 20.4%, it has been observed that the biological unit consists of two β-Prism domains augmented through C-terminals swap over to form one of faces for each domain. Cα superposition of individual domains of β-PCL with individual domains of other related structures and superposition of whole protein structures were carried out. The higher RMS deviation for the superposition of whole structures suggest that β-prism domains assume different orientation in each structure. PMID:27262515

  15. Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis).

    PubMed

    Bianchet, Mario A; Odom, Eric W; Vasta, Gerardo R; Amzel, L Mario

    2010-08-13

    The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical 81-A-long and 60-A-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysis of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking "non-self" carbohydrate ligands and "self" carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.

  16. Structure and Specificity of a Binary Tandem Domain F-Lectin from Striped Bass (Morone saxatilis)

    SciTech Connect

    Bianchet, M.; Odom, E; Vasta, J; Amzel, M

    2010-01-01

    The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical 81-A-long and 60-A-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysis of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking 'non-self' carbohydrate ligands and 'self' carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.

  17. A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma1

    PubMed Central

    Drake, Penelope M.; Schilling, Birgit; Niles, Richard K.; Braten, Miles; Johansen, Eric; Liu, Haichuan; Lerch, Michael; Sorensen, Dylan J.; Li, Bensheng; Allen, Simon; Hall, Steven C.; Witkowska, H. Ewa; Regnier, Fred E.; Gibson, Bradford W.; Fisher, Susan J.

    2011-01-01

    Glycans are cell-type specific, post-translational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low ng/mL levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines. PMID:20705048

  18. Purification of beta-glucuronidase and structural assessment of the carbohydrate chains by lectin affinity immunoelectrophoresis.

    PubMed

    Wójczyk, B; Hoja, D; Lityńska, A

    1991-08-01

    The purification of rat liver beta-glucuronidase from a lysosomal fraction by methods including affinity chromatography, chromatofocusing and preparative PAGE steps is described. Molecular weights of 300,000 and 150,000 were estimated by two dimensional gradient PAGE/immunoelectrophoresis of the lysosomal extract. Isoelectrofocusing in agarose gel followed by immunoelectrophoresis in the second dimension revealed the presence of at least five maxima in the range pH 4.3-7.4. The structural assessment of the carbohydrate chains of lysosomal and microsomal beta-glucuronidase was performed by lectin affinity immunoelectrophoresis. Reaction with Concanavalin A indicated the presence of bi-antennary complex, oligomannosidic and hybrid type structures, whereas the absence of tri- and tetra-antennary complex type structures was deduced from the lack of interaction with phytohemagglutinin-L. The reaction with Lens culinaris agglutinin, Pisum sativum agglutinin and Lotus tetragonolobus lectin revealed that part of the glycans contained a fucose alpha(1-6)-linked to the N-acetylglucosamine attached to asparagine. The presence of terminal beta(1-4)-galactose residues was detected with Ricinus communis agglutinin I. PMID:1841676

  19. Structure of the native (unligated) mannose-specific bulb lectin from Scilla campanulata (bluebell) at 1.7 A resolution.

    PubMed

    Wood, S D; Wright, L M; Reynolds, C D; Rizkallah, P J; Allen, A K; Peumans, W J; Van Damme, E J

    1999-07-01

    The X-ray crystal structure of native Scilla campanulata agglutinin, a mannose-specific lectin from bluebell bulbs and a member of the Liliaceae family, has been determined by molecular replacement and refined to an R value of 0.186 at 1.7 A resolution. The lectin crystallizes in space group P21212 with unit-cell parameters a = 70. 42, b = 92.95, c = 46.64 A. The unit cell contains eight protein molecules of Mr = 13143 Da (119 amino-acid residues). The asymmetric unit comprises two chemically identical molecules, A and B, related by a non-crystallographic twofold axis perpendicular to c. This dimer further associates by crystallographic twofold symmetry to form a tetramer. The fold of the polypeptide backbone closely resembles that found in the lectins from Galanthus nivalis (snowdrop) and Hippeastrum (amaryllis) and contains a threefold symmetric beta-prism made up of three antiparallel four-stranded beta-sheets. Each of the four-stranded beta-sheets (I, II and III) possesses a potential saccharide-binding site containing conserved residues; however, site II has two mutations relative to sites I and III which may prevent ligation at this site. Our study provides the first accurate and detailed description of a native (unligated) structure from this superfamily of mannose-specific bulb lectins and will allow comparisons with a number of lectin-saccharide complexes which have already been determined or are currently under investigation.

  20. Structural Basis for Multiple Sugar Recognition of Jacalin-related Human ZG16p Lectin*

    PubMed Central

    Kanagawa, Mayumi; Liu, Yan; Hanashima, Shinya; Ikeda, Akemi; Chai, Wengang; Nakano, Yukiko; Kojima-Aikawa, Kyoko; Feizi, Ten; Yamaguchi, Yoshiki

    2014-01-01

    ZG16p is a soluble mammalian lectin, the first to be described with a Jacalin-related β-prism-fold. ZG16p has been reported to bind both to glycosaminoglycans and mannose. To determine the structural basis of the multiple sugar-binding properties, we conducted glycan microarray analyses of human ZG16p. We observed that ZG16p preferentially binds to α-mannose-terminating short glycans such as Ser/Thr-linked O-mannose, but not to high mannose-type N-glycans. Among sulfated glycosaminoglycan oligomers examined, chondroitin sulfate B and heparin oligosaccharides showed significant binding. Crystallographic studies of human ZG16p lectin in the presence of selected ligands revealed the mechanism of multiple sugar recognition. Manα1–3Man and Glcβ1–3Glc bound in different orientations: the nonreducing end of the former and the reducing end of the latter fitted in the canonical shallow mannose binding pocket. Solution NMR analysis using 15N-labeled ZG16p defined the heparin-binding region, which is on an adjacent flat surface of the protein. On-array competitive binding assays suggest that it is possible for ZG16p to bind simultaneously to both types of ligands. Recognition of a broad spectrum of ligands by ZG16p may account for the multiple functions of this lectin in the formation of zymogen granules via glycosaminoglycan binding, and in the recognition of pathogens in the digestive system through α-mannose-related recognition. PMID:24790092

  1. Structural assessment of beta-glucuronidase carbohydrate chains by lectin affinity chromatography.

    PubMed

    Wójczyk, B; Hoja, D; Lityńska, A

    1993-04-01

    Rat liver beta-glucuronidase was studied by sequential lectin affinity chromatography. beta-Glucuronidase glycopeptides were obtained by extensive Pronase digestion followed by N-[14C]acetylation and desialylation by neuraminidase treatment. According to the distribution of the radioactivity in the various fractions obtained by chromatography on different lectins, and on the assumption that all glycopeptides were acetylated to the same specific radioactivity, a relative distribution of glycan structure types is proposed. The presence of complex biantennary and oligomannose type glycans (56.8% and 42.7%, respectively) was indicated by Concanavalin A-Sepharose chromatography. Ulex europaeus agglutinin-agarose chromatography revealed the presence of alpha(1-3)linked fucose in some of the complex biantennary type glycans (16.6% of the total glycopeptides). Wheat germ agglutinin chromatography indicated that the minority (0.5%) were hybrid or poly (N-acetyllactosamine) type glycans. Furthermore, the absence of O-glycans, tri-, tetra- and bisected biantennary type glycans was demonstrated by analysis of Concanavalin A-Sepharose unbound fraction by chromatography on immobilized soybean agglutinin, Ricinus communis agglutinin and Phaseolus vulgaris erythroagglutinin. PMID:8400827

  2. Structural characterisation of the native fetuin-binding protein Scilla campanulata agglutinin: a novel two-domain lectin.

    PubMed

    Wright, L M; Reynolds, C D; Rizkallah, P J; Allen, A K; Van Damme, E J; Donovan, M J; Peumans, W J

    2000-02-18

    The three-dimensional structure of a 244-residue, multivalent, fetuin-binding lectin, SCAfet, isolated from bluebell (Scilla campanulata) bulbs, has been solved at 3.3 A resolution by molecular replacement using the coordinates of the 119-residue, mannose-binding lectin, SCAman, also from bluebell bulbs. Unlike most monocot mannose-binding lectins, such as Galanthus nivalis agglutinin from snowdrop bulbs, which fold into a single domain, SCAfet contains two domains with approximately 55% sequence identity, joined by a linker peptide. Both domains are made up of a 12-stranded beta-prism II fold, with three putative carbohydrate-binding sites, one on each subdomain. SCAfet binds to the complex saccharides of various animal glycoproteins but not to simple sugars.

  3. А new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: Structure, tissue specificity, antimicrobial and antifungal activity.

    PubMed

    Chikalovets, Irina V; Kovalchuk, Svetlana N; Litovchenko, Alina P; Molchanova, Valentina I; Pivkin, Mikhail V; Chernikov, Oleg V

    2016-03-01

    In the present study, a new Gal/GalNAc specific lectin from the mussel Mytilus trossulus (designated as MTL) was identified, and its expression levels, both in tissues and toward pathogen stimulation, were then characterized. The MTL primary structure was determined via cDNA sequencing. Deduced sequence of 150 amino acid residues showed 89% similarity to lectins from the mussels Crenomytilus grayanus and Mytilus galloprovincialis that were the first members of a new family of zoolectins. The results indicated that the MTL might be involved in immune response toward pathogen infection, and it might perform different recognition specificity toward bacteria or fungi.

  4. Structural studies of Helix aspersa agglutinin complexed with GalNAc: A lectin that serves as a diagnostic tool.

    PubMed

    Pietrzyk, Agnieszka J; Bujacz, Anna; Mak, Paweł; Potempa, Barbara; Niedziela, Tomasz

    2015-11-01

    Lectins belong to a differentiated group of proteins known to possess sugar-binding properties. Due to this fact, they are interesting research targets in medical diagnostics. Helix aspersa agglutinin (HAA) is a lectin that recognizes the epitopes containing α-d-N-acetylgalactosamine (GalNAc), which is present at the surface of metastatic cancer cells. Although several reports have already described the use of HAA as a diagnostic tool, this protein was not characterized on the molecular level. Here, we present for the first time the structural information about lectin isolated from mucus of Helix aspersa (garden snail). The amino acid sequence of this agglutinin was determined by Edman degradation and tertiary as well as quaternary structure by X-ray crystallography. The high resolution crystal structure (1.38Å) and MALDI-TOF mass spectrometry analysis provide the detailed information about a large part of the HAA natural glycan chain. The topology of the GalNAc binding cleft and interaction with lectin are very well defined in the structure and fully confirmed by STD HSQC NMR spectroscopy. Together, this provides structural clues regarding HAA specificity and opens possibilities to rational modifications of this important diagnostic tool.

  5. Structural Analysis of Diheme Cytochrome c by Hydrogen–Deuterium Exchange Mass Spectrometry and Homology Modeling

    PubMed Central

    2015-01-01

    A lack of X-ray or nuclear magnetic resonance structures of proteins inhibits their further study and characterization, motivating the development of new ways of analyzing structural information without crystal structures. The combination of hydrogen–deuterium exchange mass spectrometry (HDX-MS) data in conjunction with homology modeling can provide improved structure and mechanistic predictions. Here a unique diheme cytochrome c (DHCC) protein from Heliobacterium modesticaldum is studied with both HDX and homology modeling to bring some definition of the structure of the protein and its role. Specifically, HDX data were used to guide the homology modeling to yield a more functionally relevant structural model of DHCC. PMID:25138816

  6. Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes.

    PubMed

    Jeyaprakash, A Arockia; Geetha Rani, P; Banuprakash Reddy, G; Banumathi, S; Betzel, C; Sekar, K; Surolia, A; Vijayan, M

    2002-08-23

    Thomsen-Friedenreich antigen (Galbeta1-3GalNAc), generally known as T-antigen, is expressed in more than 85% of human carcinomas. Therefore, proteins which specifically bind T-antigen have potential diagnostic value. Jacalin, a lectin from jack fruit (Artocarpus integrifolia) seeds, is a tetramer of molecular mass 66kDa. It is one of the very few proteins which are known to bind T-antigen. The crystal structure of the jacalin-T-antigen complex has been determined at 1.62A resolution. The interactions of the disaccharide at the binding site are predominantly through the GalNAc moiety, with Gal interacting only through water molecules. They include a hydrogen bond between the anomeric oxygen of GalNAc and the pi electrons of an aromatic side-chain. Several intermolecular interactions involving the bound carbohydrate contribute to the stability of the crystal structure. The present structure, along with that of the Me-alpha-Gal complex, provides a reasonable qualitative explanation for the known affinities of jacalin to different carbohydrate ligands and a plausible model of the binding of the lectin to T-antigen O-linked to seryl or threonyl residues. Including the present one, the structures of five lectin-T-antigen complexes are available. GalNAc occupies the primary binding site in three of them, while Gal occupies the site in two. The choice appears to be related to the ability of the lectin to bind sialylated sugars. In either case, most of the lectin-disaccharide interactions are at the primary binding site. The conformation of T-antigen in the five complexes is nearly the same.

  7. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    SciTech Connect

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.

  8. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    DOE PAGES

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog ofmore » uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.« less

  9. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta.

    PubMed

    Pereira, Patrícia R; Winter, Harry C; Verícimo, Mauricio A; Meagher, Jennifer L; Stuckey, Jeanne A; Goldstein, Irwin J; Paschoalin, Vânia M F; Silva, Joab T

    2015-01-01

    The lectins, a class of proteins that occur widely in animals, plants, fungi, lichens and microorganisms, are known for their ability to specifically bind to carbohydrates. Plant lectins can be classified into 12 families including the Galanthus nivalis agglutinin (GNA)-related lectin superfamily, which is widespread among monocotyledonous plants and binds specifically to mannose, a behavior that confers remarkable anti-tumor, anti-viral and insecticidal properties on these proteins. The present study characterized a mitogenic lectin from this family, called tarin, which was purified from the crude extract from taro (Colocasia esculenta). The results showed that tarin is a glycoprotein with 2-3% carbohydrate content, composed of least 10 isoforms with pIs ranging from 5.5 to 9.5. The intact protein is a heterotetramer of 47kDa composed of two non-identical and non-covalently associated polypeptides, with small subunits of 11.9kDa and large subunits of 12.6kDa. The tarin structure is stable and recovers or maintains its functional structure following treatments at different temperatures and pH. Tarin showed a complex carbohydrate specificity, binding with high affinity to high-mannose and complex N-glycans. Many of these ligands can be found in viruses, tumor cells and insects, as well as in hematopoietic progenitor cells. Chemical modifications confirmed that both conserved and non-conserved amino acids participate in this interaction. This study determined the structural and ligand binding characteristics of a GNA-related lectin that can be exploited for several different purposes, particularly as a proliferative therapeutic molecule that is able to enhance the immunological response.

  10. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta.

    PubMed

    Pereira, Patrícia R; Winter, Harry C; Verícimo, Mauricio A; Meagher, Jennifer L; Stuckey, Jeanne A; Goldstein, Irwin J; Paschoalin, Vânia M F; Silva, Joab T

    2015-01-01

    The lectins, a class of proteins that occur widely in animals, plants, fungi, lichens and microorganisms, are known for their ability to specifically bind to carbohydrates. Plant lectins can be classified into 12 families including the Galanthus nivalis agglutinin (GNA)-related lectin superfamily, which is widespread among monocotyledonous plants and binds specifically to mannose, a behavior that confers remarkable anti-tumor, anti-viral and insecticidal properties on these proteins. The present study characterized a mitogenic lectin from this family, called tarin, which was purified from the crude extract from taro (Colocasia esculenta). The results showed that tarin is a glycoprotein with 2-3% carbohydrate content, composed of least 10 isoforms with pIs ranging from 5.5 to 9.5. The intact protein is a heterotetramer of 47kDa composed of two non-identical and non-covalently associated polypeptides, with small subunits of 11.9kDa and large subunits of 12.6kDa. The tarin structure is stable and recovers or maintains its functional structure following treatments at different temperatures and pH. Tarin showed a complex carbohydrate specificity, binding with high affinity to high-mannose and complex N-glycans. Many of these ligands can be found in viruses, tumor cells and insects, as well as in hematopoietic progenitor cells. Chemical modifications confirmed that both conserved and non-conserved amino acids participate in this interaction. This study determined the structural and ligand binding characteristics of a GNA-related lectin that can be exploited for several different purposes, particularly as a proliferative therapeutic molecule that is able to enhance the immunological response. PMID:25448725

  11. A cohesin-based structural platform supporting homologous chromosome pairing in meiosis.

    PubMed

    Ding, Da-Qiao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-08-01

    The pairing and recombination of homologous chromosomes during the meiotic prophase is necessary for the accurate segregation of chromosomes in meiosis. However, the mechanism by which homologous chromosomes achieve this pairing has remained an open question. Meiotic cohesins have been shown to affect chromatin compaction; however, the impact of meiotic cohesins on homologous pairing and the fine structures of cohesion-based chromatin remain to be determined. A recent report using live-cell imaging and super-resolution microscopy demonstrated that the lack of meiotic cohesins alters the chromosome axis structures and impairs the pairing of homologous chromosomes. These results suggest that meiotic cohesin-based chromosome axis structures are crucial for the pairing of homologous chromosomes.

  12. Structure and Glycan Binding of a New Cyanovirin-N Homolog.

    PubMed

    Matei, Elena; Basu, Rohan; Furey, William; Shi, Jiong; Calnan, Conor; Aiken, Christopher; Gronenborn, Angela M

    2016-09-01

    The HIV-1 envelope glycoprotein gp120 is heavily glycosylated and bears numerous high mannose sugars. These sugars can serve as targets for HIV-inactivating compounds, such as antibodies and lectins, which bind to the glycans and interfere with viral entry into the target cell. We determined the 1.6 Å x-ray structure of Cyt-CVNH, a recently identified lectin from the cyanobacterium Cyanothece(7424), and elucidated its glycan specificity by NMR. The Cyt-CVNH structure and glycan recognition profile are similar to those of other CVNH proteins, with each domain specifically binding to Manα(1-2)Manα units on the D1 and D3 arms of high mannose glycans. However, in contrast to CV-N, no cross-linking and precipitation of the cross-linked species in solution was observed upon Man-9 binding, allowing, for the first time, investigation of the interaction of Man-9 with a member of the CVNH family by NMR. HIV assays showed that Cyt-CVNH is able to inhibit HIV-1 with ∼4-fold higher potency than CV-N(P51G), a stabilized version of wild type CV-N. Therefore, Cyt-CVNH may qualify as a valuable lectin for potential microbicidal use. PMID:27402833

  13. HorA web server to infer homology between proteins using sequence and structural similarity.

    PubMed

    Kim, Bong-Hyun; Cheng, Hua; Grishin, Nick V

    2009-07-01

    The biological properties of proteins are often gleaned through comparative analysis of evolutionary relatives. Although protein structure similarity search methods detect more distant homologs than purely sequence-based methods, structural resemblance can result from either homology (common ancestry) or analogy (similarity without common ancestry). While many existing web servers detect structural neighbors, they do not explicitly address the question of homology versus analogy. Here, we present a web server named HorA (Homology or Analogy) that identifies likely homologs for a query protein structure. Unlike other servers, HorA combines sequence information from state-of-the-art profile methods with structure information from spatial similarity measures using an advanced computational technique. HorA aims to identify biologically meaningful connections rather than purely 3D-geometric similarities. The HorA method finds approximately 90% of remote homologs defined in the manually curated database SCOP. HorA will be especially useful for finding remote homologs that might be overlooked by other sequence or structural similarity search servers. The HorA server is available at http://prodata.swmed.edu/horaserver. PMID:19417074

  14. HorA web server to infer homology between proteins using sequence and structural similarity

    PubMed Central

    Kim, Bong-Hyun; Cheng, Hua; Grishin, Nick V.

    2009-01-01

    The biological properties of proteins are often gleaned through comparative analysis of evolutionary relatives. Although protein structure similarity search methods detect more distant homologs than purely sequence-based methods, structural resemblance can result from either homology (common ancestry) or analogy (similarity without common ancestry). While many existing web servers detect structural neighbors, they do not explicitly address the question of homology versus analogy. Here, we present a web server named HorA (Homology or Analogy) that identifies likely homologs for a query protein structure. Unlike other servers, HorA combines sequence information from state-of-the-art profile methods with structure information from spatial similarity measures using an advanced computational technique. HorA aims to identify biologically meaningful connections rather than purely 3D-geometric similarities. The HorA method finds ∼90% of remote homologs defined in the manually curated database SCOP. HorA will be especially useful for finding remote homologs that might be overlooked by other sequence or structural similarity search servers. The HorA server is available at http://prodata.swmed.edu/horaserver. PMID:19417074

  15. Two orthorhombic crystal structures of a galactose-specific lectin from Artocarpus hirsuta in complex with methyl-alpha-D-galactose.

    PubMed

    Rao, K N; Suresh, C G; Katre, U V; Gaikwad, S M; Khan, M I

    2004-08-01

    Based on their carbohydrate specificity, the jacalin family of lectins can be divided into two groups: galactose-specific and mannose-specific. The former are cytoplasmic proteins, whereas the latter are localized in the storage vacuoles of cells. It has been proposed that the post-translational modification in some of the lectins that splits their polypeptide chains into two may be crucial for galactose specificity. The mannose-specific members of the family are single-chain proteins that lack the above modification. Although the galactose-specific and the mannose-specific jacalin-type lectins differ in their sequences, they share a common fold: the beta-prism I fold, which is characteristic of Moraceae plant lectins. Here, two crystal structures of a jacalin-related lectin from Artocarpus hirsuta, which is specific for galactose, in complex with methyl-alpha-D-galactose are reported. The lectin crystallized in two orthorhombic forms and one hexagonal form under similar conditions. The crystals had an unusually high solvent content. The structure was solved using the molecular-replacement method using the jacalin structure as a search model. The two orthorhombic forms were refined using data to 2.5 and 3.0 A resolution, respectively. The structures of the A. hirsuta lectin and jacalin are identical. In orthorhombic form I the crystal packing provides three different micro-environments for sugar binding in the same crystal. The observed difference in the specificity for oligosaccharides between the A. hirsuta lectin and jacalin could only be explained based on differences in the molecular associations in the packing and variation of the C-terminal length of the beta-chain. The observed insecticidal activity of A. hirsuta lectin may arise from its similar fold to domain II of the unrelated delta-endotoxin from Bacillus thuringiensis.

  16. Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA

    PubMed Central

    Goettel, Wolfgang; Messing, Joachim

    2009-01-01

    An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization

  17. Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA.

    PubMed

    Goettel, Wolfgang; Messing, Joachim

    2009-06-01

    An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization

  18. Lectins in the investigation of receptors

    NASA Astrophysics Data System (ADS)

    Lakhtin, V. M.; Yamskov, Igor A.

    1991-08-01

    Problems of the purification and characterisation are considered for approximately 270 receptors (including cell surface and organelle enzymes), which are glycoconjugates (mainly glycoproteins) from animals, plants and microorganisms, using various lectins (mainly lectin sorbents). An analysis has been carried out of the stages of lectin affinity chromatography of receptors (choice of detergent, use of organic solvents, elution with carbohydrates, etc.). Examples are given of procedures for the purification of receptors, including the use of paired columns and combination chromatography on lectins. The possibility of separating sub-populations of receptors using lectins has been demonstrated. Examples are given of the use of lectins in the analysis of the oligosaccharide structure of receptors. Cases are recorded of the interaction of receptors with endogenous lectins and of receptor lectins with endogenous glycoconjugates. It has been shown that lectins, in combination with glycosidases and antibodies, may be useful in the investigation of receptors. The bibliography contains 406 references.

  19. A structural and functional homolog supports a general role for frataxin in cellular iron chemistry.

    PubMed

    Qi, Wenbin; Cowan, J A

    2010-02-01

    Bacillus subtilis YdhG lacks sequence homology, but demonstrates structural and functional similarity to the frataxin family, supporting a general cellular role for frataxin-type proteins in cellular iron homeostasis.

  20. Structural and thermodynamic studies of KM+, a d-mannose binding lectin from Artocarpus integrifolia seeds.

    PubMed

    Silva-Lucca, R A; Tabak, M; Nascimento, O R; Roque-Barreira, M C; Beltramini, L M

    1999-06-01

    The KM+ lectin exhibits a novel and unusual circular dichroism (CD) spectrum that could be explained by a high proline content that would be inducing deformation of the beta-structure and/or unusual turns. KM+ was shown to be a very rigid lectin, which was very stable under a broad variety of conditions (urea, guanidine, hydrolysis, pH, etc.). Only incubation for 60 min at 333-338 K and extreme basic pH were able to induce conformational changes which could be observed by CD and fluorescence measurements. Data from CD are typical for protein denaturing associated with changes in the overall secondary structure. Data from high-performance size exclusion chromatography (SEC) showed that the denatured forms produced at pH 12.0 are eluted in clusters that co-elute with the native forms. A significant contribution from the tyrosines to the fluorescence emission upon denaturation was observed above 328 K. In fact at 328 K some broadening of the emission spectrum takes place followed by the appearance of a shoulder (approx. 305 nm) at 333 K and above. The sensitivity of tryptophan fluorescence to the addition of sugar suggests a close proximity of the tryptophan residues to the sugar binding site, K(a)=(2.9+/-0.6)x10(3) M(-1). The fraction of chromophore accessible to the quencher obtained is f(a)=0.43+/-0.08, suggesting that approximately 50% of the tryptophan residues are not accessible to quenching by d-mannose. KM+ thermal denaturation was found to be irreversible and was analyzed using a two-state model (N-->D). The results obtained for the activation energy and transition temperature from the equilibrium CD studies were: activation energy, E(a)=134+/-11 kJ/mol and transition temperature, T(m)=339+/-1 K, and from the fluorescence data: E(a)=179+/-18 kJ/mol and T(m)=337+/-1 K. Kinetic studies gave the following values: E(a)=108+/-18 kJ/mol and E(a)=167+/-12 kJ/mol for CD and fluorescence data, respectively.

  1. Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin.

    PubMed

    Meyer, Arne; Rypniewski, Wojciech; Szymański, Maciej; Voelter, Wolfgang; Barciszewski, Jan; Betzel, Christian

    2008-11-01

    The crystal structure of mistletoe lectin I (ML-I) isolated from the European mistletoe Viscum album in complex with the most active phytohormone zeatin has been analyzed and refined to 2.54 A resolution. X-ray suitable crystals of ML-I were obtained by the counter-diffusion method using the Gel-Tube R crystallization kit (GT-R) onboard the Russian Service Module on the international space station ISS. High quality hexagonal bipyramidal crystals were grown during 3 months under microgravity conditions. Selected crystals were soaked in a saturated solution of zeatin and subsequently diffraction data were collected applying synchrotron radiation. A distinct F(o)-F(c) electron density has been found inside a binding pocket located in subunit B of ML-I and has been interpreted as a single zeatin molecule. The structure was refined to investigate the zeatin-ML-I interactions in detail. The results demonstrate the ability of mistletoe to protect itself from the host transpiration regulation by absorbing the most active host plant hormones as part of a defense mechanism.

  2. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  3. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24270074

  4. Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alpha-D-mannose: implications to the generation of carbohydrate specificity.

    PubMed

    Pratap, J V; Jeyaprakash, A Arockia; Rani, P Geetha; Sekar, K; Surolia, A; Vijayan, M

    2002-03-22

    The seeds of jack fruit (Artocarpus integrifolia) contain two tetrameric lectins, jacalin and artocarpin. Jacalin was the first lectin found to exhibit the beta-prism I fold, which is characteristic of the Moraceae plant lectin family. Jacalin contains two polypeptide chains produced by a post-translational proteolysis which has been shown to be crucial for generating its specificity for galactose. Artocarpin is a single chain protein with considerable sequence similarity with jacalin. It, however, exhibits many properties different from those of jacalin. In particular, it is specific to mannose. The structures of two crystal forms, form I and form II, of the native lectin have been determined at 2.4 and 2.5 A resolution, respectively. The structure of the lectin complexed with methyl-alpha-mannose, has also been determined at 2.9 A resolution. The structure is similar to jacalin, although differences exist in details. The crystal structures and detailed modelling studies indicate that the following differences between the carbohydrate binding sites of artocarpin and jacalin are responsible for the difference in the specificities of the two lectins. Firstly, artocarpin does not contain, unlike jacalin, an N terminus generated by post-translational proteolysis. Secondly, there is no aromatic residue in the binding site of artocarpin whereas there are four in that of jacalin. A comparison with similar lectins of known structures or sequences, suggests that, in general, stacking interactions with aromatic residues are important for the binding of galactose while such interactions are usually absent in the carbohydrate binding sites of mannose-specific lectins with the beta-prism I fold.

  5. Purification and characterization of a new mannose-specific lectin from Sternbergia lutea bulbs.

    PubMed

    Saito, K; Misaki, A; Goldstein, I J

    1997-12-01

    A new mannose-binding lectin was isolated from Sternbergia lutea bulbs by affinity chromatography on an alpha(1-2)mannobiose-Synsorb column and purified further by gel filtration. This lectin (S. lutea agglutinin; SLA) appeared homogeneous by native-gel electrophoresis at pH 4.3, gel filtration chromatography on a Sephadex G-75 column, and SDS-polyacrylamide gel electrophoresis, These data indicate that SLA is a dimeric protein (20 kDa) composed of two identical subunits of 10 kDa which are linked by non-covalent interactions. The carbohydrate binding specificity of the lectin was investigated by quantitative precipitation and hapten inhibition assays. It is an alpha-D-mannose-specific lectin that interacts to form precipitates with various alpha-mannans, galactomannan and asialo-thyroglobulin, but not with alpha-glucans and thyroglobulin. Of the monosaccharides tested only D-mannose was a hapten inhibitor of the SLA-asialothyroglobulin precipitation system, whereas D-glucose, D-galactose and L-arabinose were not. The lectin appears to be highly specific for terminal alpha(1-3)-mannooligosaccharides. The primary structure of SLA appears to be quite similar to that of the snow drop (Galanthus nivalis) bulb lectin which is a mannose-binding lectin from the same plant family Amaryllidaceae. The N-terminal 46 amino acid sequence SLA showed 76% homology with that of GNA.

  6. Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii.

    PubMed

    Sato, Yuichiro; Okuyama, Satomi; Hori, Kanji

    2007-04-13

    The primary structure of a lectin, designated Oscillatoria agardhii agglutinin (OAA), isolated from the freshwater cyanobacterium O. agardhii NIES-204 was determined by the combination of Edman degradation and electron spray ionization-mass spectrometry. OAA is a polypeptide (Mr 13,925) consisting of two tandem repeats. Interestingly, each repeat sequence of OAA showed a high degree of similarity to those of a myxobacterium, Myxococcus xanthus hemagglutinin, and a marine red alga Eucheuma serra lectin. A systematic binding assay with pyridylaminated oligosaccharides revealed that OAA exclusively binds to high mannose (HM)-type N-glycans but not to other N-glycans, including complex types, hybrid types, and the pentasaccharide core or oligosaccharides from glycolipids. OAA did not interact with any of free mono- and oligomannoses that are constituents of the branched oligomannosides. These results suggest that the core disaccharide, GlcNAc-GlcNAc, is also essential for binding to OAA. The binding activity of OAA to HM type N-glycans was dramatically decreased when alpha1-2 Man was attached to alpha1-3 Man branched from the alpha1-6 Man of the pentasaccharide core. This specificity of OAA for HM-type oligosaccharides is distinct from other HM-binding lectins. Kinetic analysis with an HM heptasaccharide revealed that OAA possesses two carbohydrate binding sites per molecule, with an association constant of 2.41x10(8) m-1. Furthermore, OAA potently inhibits human immunodeficiency virus replication in MT-4 cells (EC50=44.5 nm). Thus, we have found a novel lectin family sharing similar structure and carbohydrate binding specificity among bacteria, cyanobacteria, and marine algae. PMID:17314091

  7. Weak conservation of structural features in the interfaces of homologous transient protein–protein complexes

    PubMed Central

    Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy

    2015-01-01

    Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures. PMID:26311309

  8. New insights on the structural/functional properties of recombinant human mannan-binding lectin and its variants.

    PubMed

    Rajagopalan, Rema; Salvi, Veena P; Jensenius, Jens Chr; Rawal, Nenoo

    2009-04-27

    Inefficient activation of complement lectin pathway in individuals with variant mannan-binding lectin (MBL) genotypes has been attributed to poor formation of higher order oligomers by MBL. But recent studies have shown the presence of large oligomers of MBL (approximately 450 kDa) in serum of individuals with variant MBL alleles. The recombinant forms of MBL (rMBL) variants except MBL/B that assemble into higher order oligomers have not yet been reported. In the present study, structural/functional properties of recombinant forms of wild type MBL (rMBL/A) and its three structural variants, rMBL/B, C, and D generated in insect cells were examined. Western blot analysis indicated covalently linked monomers to hexamers while gel filtration chromatography exhibited non-covalently linked higher order oligomers in addition to prevalent low oligomeric forms. Mannan binding determined by ELISA showed rMBL/A but not the structural variants bind to mannan. Apparent avidity of monoclonal antibody used was found to be about 18- to 52-fold weaker for rMBL structural variants than rMBL/A. Complement activation varied with maximum impairment apparent in rMBL/C followed by rMBL/B, but rMBL/D was functional to the same extent as rMBL/A. Comparison of rMBL/A to MBL purified from plasma (pMBL/A) indicated 8- and 24-fold weaker binding to mannan by BIAcore analysis and ELISA and about 5-fold lesser efficiency in activating complement. The findings provide new insights on the structural/functional properties of rMBL variants and imply that lectin pathway activation may be impaired in individuals, homozygous for the mutant alleles, MBL/C and to a lesser extent MBL/B but not MBL/D. PMID:19428558

  9. Hierarchical structures of amorphous solids characterized by persistent homology.

    PubMed

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G; Matsue, Kaname; Nishiura, Yasumasa

    2016-06-28

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods.

  10. Hierarchical structures of amorphous solids characterized by persistent homology

    PubMed Central

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa

    2016-01-01

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  11. Mimicking the folding pathway to improve homology-free protein structure prediction

    NASA Astrophysics Data System (ADS)

    Freed, Karl; Debartolo, Joe; Colubri, Andres; Jha, Abhishek; Fitzgerald, James; Sosnick, Tobin

    2010-03-01

    Since demonstrating that a protein's sequence encodes its structure, the prediction of structure from sequence remains an outstanding problem that impacts numerous scientific disciplines including many genome projects. By iteratively fixing secondary structure assignments of residues during Monte Carlo simulations of folding, our coarse grained model without information concerning homology or explicit side chains outperforms current homology-based secondary structure prediction methods for many proteins. The computationally rapid algorithm using only single residue (phi, psi) dihedral angle moves also generates tertiary structures of comparable accuracy to existing all-atom methods for many small proteins, particularly ones with low homology. Hence, given appropriate search strategies and scoring functions, reduced representations can be used for accurately predicting secondary structure as well as providing three-dimensional structures, thereby increasing the size of proteins approachable by homology-free methods and the accuracy of template methods whose accuracy depends on the quality of the input secondary structure. Inclusion of information from evolutionarily related sequences enhances the statistics and the accuracy of the predictions.

  12. Structural features of the combining site region of Erythrina corallodendron lectin: role of tryptophan 135.

    PubMed Central

    Adar, R.; Moreno, E.; Streicher, H.; Karlsson, K. A.; Angström, J.; Sharon, N.

    1998-01-01

    The role of Trp 135 and Tyr 108 in the combining site of Erythrina corallodendron lectin (ECorL) was investigated by physicochemical characterization of mutants obtained by site-directed mutagenesis, hemagglutination-inhibition studies, and molecular modeling, including dynamics simulations. The findings demonstrate that Trp 135 in ECorL: (1) is required for the tight binding of Ca2+ and Mn2+ to the lectin because mutation of this residue into alanine results in loss of these ions upon dialysis and concomitant reversible inactivation of the mutant; (2) contributes to the high affinity of methyl alpha-N-dansylgalactosaminide (MealphaGalNDns) to the lectin; and (3) is solely responsible for the fluorescence energy transfer between the aromatic residues of the lectin and the dansyl group in the ECorL-MealphaGalNDns complex. Docking of MealphaGalNDns into the combining site of the lectin reveals that the dansyl moiety is parallel with the indole of Trp 135, as required for efficient fluorescence energy transfer, in one of the two possible conformations that this ligand assumes in the bound state. In the W135A mutant, which still binds MealphaGalNDns strongly, the dansyl group may partially insert itself into the place formerly occupied by Trp 135, a process that from dynamics simulations does not appear to be energetically favored unless the loop containing this residue assumes an open conformation. However, a small fraction of the W135A molecules must be able to bind MealphaGalNDns in order to explain the relatively high affinity, as compared to galactose, still remaining for this ligand. A model for the molecular events leading to inactivation of the W135A mutant upon demetallization is also presented in which the cis-trans isomerization of the Ala 88-Asp 89 peptide bond, observed in high-temperature dynamics simulations, appears not to be a required step. PMID:9514259

  13. Biological Modulation by Lectins and Their Ligands in Tumor Progression and Metastasis

    PubMed Central

    Nakahara, Susumu; Raz, Avraham

    2013-01-01

    Lectins are a group of specific proteins that preferentially bind to carbohydrates inside and outside cells. To date, an increasing number of animal lectins have been found and categorized into several families in terms of the significant primary structural homology, while the classification is not always straightforward. These lectins can exert immense biological functions mainly through their specific carbohydrate-protein interactions in a variety of situations. In cancer biology, aberrant glycosylation changes on many glycoproteins and glycolipids are often observed and numerous experimental evidences have revealed that these structural changes are related to tumor malignancy. Galectins, which are broadly expressed animal lectins, can play crucial biological roles in tumor cell-cell or cell-matrix interactions through their binding activities to the tumor cell surface carbohydrate determinants. Certain galectin family proteins have also shown to affect tumor cell survival, signal transduction, and proliferation mainly inside the cell. Selectins, which are one of the C-type lectins and expressed leukocytes and/or vascular endothelium, can also play an immense role in tumor cell adhesion and invasion. In addition, certain annexin family proteins, which are originally known as phospholipid binding proteins, have been revealed to possess the carbohydrate binding activity, and these novel functions in tumors are being unveiled. Understanding how carbohydrate-protein interactions function in tumor cells will be one of the important goals in cancer research. This review focuses on the role of these lectins and their ligands in cancer progression and metastasis. PMID:18220503

  14. On Recurrent/Homologous Coronal Jets Emission: Coronal Geyser Structures

    NASA Astrophysics Data System (ADS)

    Razvan Paraschiv, Alin; Donea, Alina

    2016-05-01

    Active region 11302 has shown a vast display of solar jets during its lifetime. We examine the emission mechanism responsible for multiple coronal jet events occurring at the center-east side of the active region. Identified jet events were detected in extreme-ultraviolet (EUV), hard X-ray (HXR) and radio emissions, observed by dedicated instruments such as SDO's AIA and HMI, STEREO's EUVI and WAVES, and RHESSI, respectively. We report the detection of a base-arch structure in the lower atmosphere. The site was labelled "Coronal Geyser". The structure had emitted jets quasi-periodically for the entire time the AR was visible in SDO'S field of view. The jets expand into the corona with an apparent line of sight velocity of ~200-300$ km/s. To our knowledge the long time-scale behaviour of jet recurrence and base geyser structure was not previously discussed and data analysis of this phenomena will provide new information for theoretical modelling and data interpretation of jets.

  15. Structural characterization and antitumor and mitogenic activity of a lectin from the gill of bighead carp (Aristichthys nobilis).

    PubMed

    Yao, Dongrui; Pan, Saikun; Zhou, Mingqian

    2012-12-01

    In this study, we investigated the gross structure, secondary structure, and antitumor and mitogenic activity of GANL, a lectin from the gill of bighead carp (Aristichthys nobilis). We used infrared spectroscopy, β-elimination, and circular dichroism spectroscopy to determine the structure of GANL. We measured antiproliferation activity against six human tumor cell lines and mitogenic activity against murine splenocytes using the MTT assay. Based on infrared spectroscopy and β-elimination, we conclude that GANL is a glycoprotein. The protein and carbohydrate moieties are joined by O-glycosidic linkage. A circular dichroism spectroscopic analysis revealed that the secondary structure of GANL consists of α-helices (34.8 %), β-sheets (12.1 %), β-turns (24.5 %), and unordered structures (33.0 %). GANL exerted potent antitumor activity against the HeLa cell line (IC(50) = 11.86 μg/mL) and a mitogenic effect on murine splenocytes in the MTT assay. GANL, a lectin that is isolated from the gills of bighead carp, is a glycoprotein with potent antitumor and mitogenic activity. PMID:22714932

  16. Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates.

    PubMed

    Rozwarski, D A; Swami, B M; Brewer, C F; Sacchettini, J C

    1998-12-01

    The seed lectin from Dioclea grandiflora (DGL) has recently been shown to possess high affinity for 3, 6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranose, the core trimannoside of asparagine-linked carbohydrates, but lower affinity for biantennary complex carbohydrates. In the previous paper, the thermodynamics of DGL binding to deoxy analogs of the core trimannoside and to a biantennary complex carbohydrate were determined by isothermal titration microcalorimetry. The data suggest that DGL recognizes specific hydroxyl groups of the trimannoside similar to that of the jack bean lectin concanavalin A (ConA) (Gupta, D. Dam, T. K., Oscarson, S., and Brewer, C. F. (1997) J. Biol. Chem. 272, 6388-6392). However, the thermodynamics of DGL binding to certain deoxy analogs and to the complex carbohydrate are different from that of ConA. In the present paper, the x-ray crystal structure of DGL complexed to the core trimannoside was determined to a resolution of 2.6 A. The overall structure of the DGL complex is similar to the structure of the ConA-trimannoside complex (Naismith, J. H., and Field, R. A. (1996) J. Biol. Chem. 271, 972-976). The location and conformation of the bound trimannoside as well as its hydrogen-bonding interactions in both complexes are nearly identical. However, differences exist in the location of two loops outside of the respective binding sites containing residues 114-125 and 222-227. The latter residues affect the location of a network of hydrogen-bonded water molecules that interact with the trisaccharide. Differences in the arrangement of ordered water molecules in the binding site and/or protein conformational differences outside of the binding site may account for the differences in the thermodynamics of binding of the two lectins to deoxy analogs of the trimannoside. Molecular modeling studies suggest how DGL discriminates against binding the biantennary complex carbohydrate relative to ConA.

  17. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    PubMed

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  18. NMR Structure of Francisella tularensis Virulence Determinant Reveals Structural Homology to Bet v1 Allergen Proteins.

    PubMed

    Zook, James; Mo, Gina; Sisco, Nicholas J; Craciunescu, Felicia M; Hansen, Debra T; Baravati, Bobby; Cherry, Brian R; Sykes, Kathryn; Wachter, Rebekka; Van Horn, Wade D; Fromme, Petra

    2015-06-01

    Tularemia is a potentially fatal bacterial infection caused by Francisella tularensis, and is endemic to North America and many parts of northern Europe and Asia. The outer membrane lipoprotein, Flpp3, has been identified as a virulence determinant as well as a potential subunit template for vaccine development. Here we present the first structure for the soluble domain of Flpp3 from the highly infectious Type A SCHU S4 strain, derived through high-resolution solution nuclear magnetic resonance (NMR) spectroscopy; the first structure of a lipoprotein from the genus Francisella. The Flpp3 structure demonstrates a globular protein with an electrostatically polarized surface containing an internal cavity-a putative binding site based on the structurally homologous Bet v1 protein family of allergens. NMR-based relaxation studies suggest loop regions that potentially modulate access to the internal cavity. The Flpp3 structure may add to the understanding of F. tularensis virulence and contribute to the development of effective vaccines.

  19. Sequence–structure relationships in RNA loops: establishing the basis for loop homology modeling

    PubMed Central

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence–structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts. PMID:19923230

  20. Crystallization and preliminary structural studies of champedak galactose-binding lectin

    PubMed Central

    Gabrielsen, Mads; Riboldi-Tunnicliffe, Alan; Abdul-Rahman, Puteri Shafinaz; Mohamed, Emida; Ibrahim, Wan Izlina Wan; Hashim, Onn Haji; Isaacs, Neil W.; Cogdell, Richard J.

    2009-01-01

    Galactose-binding lectin from champedak (Artocarpus integer) consists of two chains: α and β (133 and 21 amino acids, respectively). It has been shown to recognize and bind to carbohydrates involved in IgA and C1 inhibitor molecules. The protein was purified and crystallized at 293 K. Crystals were observed in two space groups, P21 and P21212, and diffracted to 1.65 and 2.6 Å, respectively. PMID:19724126

  1. Crystallization and preliminary structural studies of champedak galactose-binding lectin.

    PubMed

    Gabrielsen, Mads; Riboldi-Tunnicliffe, Alan; Abdul-Rahman, Puteri Shafinaz; Mohamed, Emida; Ibrahim, Wan Izlina Wan; Hashim, Onn Haji; Isaacs, Neil W; Cogdell, Richard J

    2009-09-01

    Galactose-binding lectin from champedak (Artocarpus integer) consists of two chains: alpha and beta (133 and 21 amino acids, respectively). It has been shown to recognize and bind to carbohydrates involved in IgA and C1 inhibitor molecules. The protein was purified and crystallized at 293 K. Crystals were observed in two space groups, P2(1) and P2(1)2(1)2, and diffracted to 1.65 and 2.6 A, respectively.

  2. Structural Basis of Specific Recognition of Non-Reducing Terminal N-Acetylglucosamine by an Agrocybe aegerita Lectin

    PubMed Central

    Ren, Xiao-Ming; Li, De-Feng; Jiang, Shuai; Lan, Xian-Qing; Hu, Yonglin; Sun, Hui; Wang, Da-Cheng

    2015-01-01

    O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification that plays essential roles in many cellular pathways. Research in this field, however, is hampered by the lack of suitable probes to identify, accumulate, and purify the O-GlcNAcylated proteins. We have previously reported the identification of a lectin from the mushroom Agrocybe aegerita, i.e., Agrocybe aegerita lectin 2, or AAL2, that could bind terminal N-acetylglucosamine with higher affinities and specificity than other currently used probes. In this paper, we report the crystal structures of AAL2 and its complexes with GlcNAc and GlcNAcβ1-3Galβ1-4GlcNAc and reveal the structural basis of GlcNAc recognition by AAL2 and residues essential for the binding of terminal N-acetylglucosamine. Study on AAL2 may enable us to design a protein probe that can be used to identify and purify O-GlcNAcylated proteins more efficiently. PMID:26114302

  3. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole; Petersen, Thomas Nordahl

    2010-07-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models for 94% of the targets (117 out of 128), 74% were predicted as high reliability models (87 out of 117). These achieved an average RMSD of 4.6 A when superimposed to the 3D structure. The remaining 26% low reliably models (30 out of 117) could superimpose to the true 3D structure with an average RMSD of 9.3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is <20 min. The web server is available at http://www.cbs.dtu.dk/services/CPHmodels/.

  4. Energetics of 5-bromo-4-chloro-3-indolyl-α-d-mannose binding to the Parkia platycephala seed lectin and its use for MAD phasing

    PubMed Central

    Gallego del Sol, Francisca; Gómez, Javier; Hoos, Sylviane; Nagano, Celso S.; Cavada, Benildo S.; England, Patrick; Calvete, Juan J.

    2005-01-01

    Parkia platycephala belongs to the most primitive group of Leguminosae plants. Its seed lectin is made up of three homologous β-prism repeats and exhibits binding specificity for mannose/glucose. The properties of the association between the lectin from P. platycephala seeds and monosaccharide ligands were analysed by isothermal titration calorimetry and surface plasmon resonance. The results are consistent with the lectin bearing three thermodynamically identical binding sites for mannose/glucose per monomer with dissociation constants in the millimolar range. Binding of each ligand by the lectin is enthalpically driven. Crystals have been obtained of the lectin in complex with a brominated derivative of mannose (5-bromo-4-chloro-3-indolyl-α-d-mannose), which were suitable for deriving an electron-density map by MAD phasing. In agreement with the thermodynamic data, six Br atoms were found in the asymmetric unit of the monoclinic P21 crystals, which contained two P. platycephala lectin molecules. The availability of other Br derivatives of monosaccharides (glucose, galactose, fucose) may make this strategy widely useful for structure elucidation of novel lectins or when (as in the case of the P. platycephala lectin) molecular-replacement methods fail. PMID:16511032

  5. The bark of Robinia pseudoacacia contains a complex mixture of lectins.Characterization of the proteins and the cDNA clones.

    PubMed Central

    Van Damme, E J; Barre, A; Smeets, K; Torrekens, S; Van Leuven, F; Rougé, P; Peumans, W J

    1995-01-01

    Two lectins were isolated from the inner bark of Robinia pseudoacacia (black locust). The first (and major) lectin (called RPbAI) is composed of five isolectins that originate from the association of 31.5- and 29-kD polypeptides into tetramers. In contrast, the second (minor) lectin (called RPbAII) is a hometetramer composed of 26-kD subunits. The cDNA clones encoding the polypeptides of RPbAI and RPbAII were isolated and their sequences determined. Apparently all three polypeptides are translated from mRNAs of approximately 1.2 kb. Alignment of the deduced amino acid sequences of the different clones indicates that the 31.5- and 29-kD RPbAI polypeptides show approximately 80% sequence identity and are homologous to the previously reported legume seed lectins, whereas the 26-kD RPbAII polypeptide shows only 33% sequence identity to the previously described legume lectins. Modeling the 31.5-kD subunit of RPbAI predicts that its three-dimensional structure is strongly related to the three-dimensional models that have been determined thus far for a few legume lectins. Southern blot analysis of genomic DNA isolated from Robinia has revealed that the Robinia bark lectins are the result of the expression of a small family of lectin genes. PMID:7716244

  6. Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities.

    PubMed

    Hu, Dan; Tateno, Hiroaki; Hirabayashi, Jun

    2015-01-01

    In the post genomic era, glycomics--the systematic study of all glycan structures of a given cell or organism--has emerged as an indispensable technology in various fields of biology and medicine. Lectins are regarded as "decipherers of glycans", being useful reagents for their structural analysis, and have been widely used in glycomic studies. However, the inconsistent activity and availability associated with the plant-derived lectins that comprise most of the commercially available lectins, and the limit in the range of glycan structures covered, have necessitated the development of innovative tools via engineering of lectins on existing scaffolds. This review will summarize the current state of the art of lectin engineering and highlight recent technological advances in this field. The key issues associated with the strategy of lectin engineering including selection of template lectin, construction of a mutagenesis library, and high-throughput screening methods are discussed.

  7. On the quaternary structure of a C-type lectin from Bothrops jararacussu venom--BJ-32 (BjcuL).

    PubMed

    Silva, F P; Alexandre, G M C; Ramos, C H I; De-Simone, S G

    2008-12-15

    BJ-32 (also known as BjcuL) is a C-type lectin from the venom of Bothrops jararacussu with specificity for beta-galactosides and a remarkable ability to agglutinate several species of trypanosomatids. Our objective was to study the oligomerization state of native BJ-32 by using different biophysical and computational methods. Small-angle X-ray light scattering (SAXS) experiments disclosed a compact, globular protein with a radius of gyration of 36.72+/-0.04A and molecular weight calculated as 147.5+/-2.0kDa. From analytical ultracentrifugation analysis, it was determined that the BJ-32 sedimentation profile fits nicely to a decamer model. The analysis of the intrinsic emitted fluorescence spectra for BJ-32 solutions indicated that association of subunits in the decamer is accompanied by changes in the environment of Tryptophan residues. Both ab initio and comparative models of BJ-32 supported the resemblance of the decamer in the crystallographic structure from a close homologue, the rattlesnake venom lectin (RSL) from Crotalus atrox. PMID:18948130

  8. An N-acetyllactosamine-specific lectin, PFA, isolated from a moth (Phalera flavescens), structurally resembles an invertebrate-type lysozyme.

    PubMed

    Yokoyama, Kazutaka; Sato, Michihiko; Haneda, Toshihiro; Yamazaki, Kentaro; Kitano, Takashi; Umetsu, Kazuo

    2014-11-01

    PFA (Phalera flavescens agglutinin) lectin purified from larvae of the lobster moth (P. flavescens) shows a strong binding ability specific to the N-acetyllactosamine (Galβ1-4GlcNAc) site. We determined the genomic and cDNA sequences of the PFA gene, which consists of five exons and spans approximately 5 kb of a genomic region. Surprisingly, the amino acid sequence (149 amino acids) was similar to invertebrate-type lysozymes and related proteins. The predicted tertiary structure of the PFA protein was similar to the lysozymes of clams such as the common orient clam (Meretrix lusoria) and Japanese littleneck (Venerupis philippinarum (Tapes japonica)). The PFA, however, lacks a catalytically essential amino acid, an Asp (D), which is one of the two important amino acids (Glu (E) and D) express the function of lysozyme. As a result, lysozyme activity assays indicated that PFA does not have lysozyme activity. Results suggest that the PFA gene evolved from a lysozyme gene through the loss of lysozyme activity sites and the acquisition of lectin activity during evolution of the genus Phalera. PMID:25257940

  9. Functional and structural balances of homologous sensorimotor regions in multiple sclerosis fatigue.

    PubMed

    Cogliati Dezza, I; Zito, G; Tomasevic, L; Filippi, M M; Ghazaryan, A; Porcaro, C; Squitti, R; Ventriglia, M; Lupoi, D; Tecchio, F

    2015-03-01

    Fatigue in multiple sclerosis (MS) is a highly disabling symptom. Among the central mechanisms behind it, an involvement of sensorimotor networks is clearly evident from structural and functional studies. We aimed at assessing whether functional/structural balances of homologous sensorimotor regions-known to be crucial for sensorimotor networks effectiveness-decrease with MS fatigue increase. Functional connectivity measures at rest and during a simple motor task (weak handgrip of either the right or left hand) were derived from primary sensorimotor areas electroencephalographic recordings in 27 mildly disabled MS patients. Structural MRI-derived inter-hemispheric asymmetries included the cortical thickness of Rolandic regions and the volume of thalami. Fatigue symptoms increased together with the functional inter-hemispheric imbalance of sensorimotor homologous areas activities at rest and during movement, in absence of any appreciable parenchymal asymmetries. This finding supports the development of compensative interventions that may revert these neuronal activity imbalances to relieve fatigue in MS.

  10. LocARNAscan: Incorporating thermodynamic stability in sequence and structure-based RNA homology search

    PubMed Central

    2013-01-01

    Background The search for distant homologs has become an import issue in genome annotation. A particular difficulty is posed by divergent homologs that have lost recognizable sequence similarity. This same problem also arises in the recognition of novel members of large classes of RNAs such as snoRNAs or microRNAs that consist of families unrelated by common descent. Current homology search tools for structured RNAs are either based entirely on sequence similarity (such as blast or hmmer) or combine sequence and secondary structure. The most prominent example of the latter class of tools is Infernal. Alternatives are descriptor-based methods. In most practical applications published to-date, however, the information contained in covariance models or manually prescribed search patterns is dominated by sequence information. Here we ask two related questions: (1) Is secondary structure alone informative for homology search and the detection of novel members of RNA classes? (2) To what extent is the thermodynamic propensity of the target sequence to fold into the correct secondary structure helpful for this task? Results Sequence-structure alignment can be used as an alternative search strategy. In this scenario, the query consists of a base pairing probability matrix, which can be derived either from a single sequence or from a multiple alignment representing a set of known representatives. Sequence information can be optionally added to the query. The target sequence is pre-processed to obtain local base pairing probabilities. As a search engine we devised a semi-global scanning variant of LocARNA’s algorithm for sequence-structure alignment. The LocARNAscan tool is optimized for speed and low memory consumption. In benchmarking experiments on artificial data we observe that the inclusion of thermodynamic stability is helpful, albeit only in a regime of extremely low sequence information in the query. We observe, furthermore, that the sensitivity is bounded in

  11. Structural investigation of a novel N-acetyl glucosamine binding chi-lectin which reveals evolutionary relationship with class III chitinases.

    PubMed

    Patil, Dipak N; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2013-01-01

    The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases.

  12. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination

    PubMed Central

    Kim, Keun P.; Weiner, Beth M.; Zhang, Liangran; Jordan, Amy; Dekker, Job; Kleckner, Nancy

    2010-01-01

    SUMMARY Meiotic recombination occurs between one chromatid of each maternal and paternal homolog (homolog bias) versus between sister chromatids (sister bias). Physical DNA analysis reveals that meiotic cohesin/axis component Rec8 promotes sister bias, likely via its cohesion activity. Two meiosis-specific axis components, Red1/Mek1kinase, counteract this effect. With this precondition satisfied, other molecules directly specify homolog bias per se. Rec8 also acts positively to maintain homolog bias during crossover recombination. These observations point to sequential release of double-strand break ends from association with their sister. Red1 and Rec8 are found to play distinct roles for sister cohesion, DSB formation and recombination progression kinetics. Also, the two components are enriched in spatially distinct domains of axial structure that develop prior to DSB formation. We propose that Red1 and Rec8 domains provide functionally complementary environments whereby inputs evolved from DSB repair and late-stage chromosome morphogenesis are integrated to give the complete meiotic chromosomal program. PMID:21145459

  13. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures

    SciTech Connect

    Chen, Zhucheng; Yang, Haijuan; Pavletich, Nikola P

    2008-07-08

    The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA-ssDNA and RecA-heteroduplex filaments. They show that ssDNA and ATP bind to RecA-RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP {gamma}-phosphate is sensed across the RecA-RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson-Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.

  14. Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties.

    PubMed

    Silva, Helton C; Bari, Alfa U; Rocha, Bruno Anderson M; Nascimento, Kyria S; Ponte, Edson L; Pires, Alana F; Delatorre, Plínio; Teixeira, Edson H; Debray, Henri; Assreuy, Ana Maria S; Nagano, Celso S; Cavada, Benildo S

    2013-10-01

    Parkia biglobosa (subfamily Mimosoideae), a typical tree from African savannas, possess a seed lectin that was purified by combination of ammonium sulfate precipitation and affinity chromatography on a Sephadex G-100 column. The P. biglobosa lectin (PBL) strongly agglutinated rabbit erythrocytes, an effect that was inhibited by d-mannose and d-glucose-derived sugars, especially α-methyl-d-mannopyranoside and N-acetyl-d-glucosamine. The hemagglutinating activity of PBL was maintained after incubation at a wide range of temperature and pH and also was independent of divalent cations. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, PBL exhibited an electrophoretic profile consisting of a single band with apparent molecular mass of 45 kDa. An analysis using electrospray ionization-mass spectrometry indicated that purified lectin possesses a molecular average mass of 47 562 ± 4 Da, and the analysis by gel filtration showed that PBL is a dimer in solution. The complete amino acid sequence of PBL, as determined using tandem mass spectrometry, consists of 443 amino acid residues. PBL is composed of a single non-glycosylated polypeptide chain of three tandemly arranged jacalin-related domains. Sequence heterogeneity was found in six positions, indicating that the PBL preparations contain highly homologous isolectins. PBL showed important antinociceptive activity associated to the inhibition of inflammatory process.

  15. Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties.

    PubMed

    Silva, Helton C; Bari, Alfa U; Rocha, Bruno Anderson M; Nascimento, Kyria S; Ponte, Edson L; Pires, Alana F; Delatorre, Plínio; Teixeira, Edson H; Debray, Henri; Assreuy, Ana Maria S; Nagano, Celso S; Cavada, Benildo S

    2013-10-01

    Parkia biglobosa (subfamily Mimosoideae), a typical tree from African savannas, possess a seed lectin that was purified by combination of ammonium sulfate precipitation and affinity chromatography on a Sephadex G-100 column. The P. biglobosa lectin (PBL) strongly agglutinated rabbit erythrocytes, an effect that was inhibited by d-mannose and d-glucose-derived sugars, especially α-methyl-d-mannopyranoside and N-acetyl-d-glucosamine. The hemagglutinating activity of PBL was maintained after incubation at a wide range of temperature and pH and also was independent of divalent cations. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, PBL exhibited an electrophoretic profile consisting of a single band with apparent molecular mass of 45 kDa. An analysis using electrospray ionization-mass spectrometry indicated that purified lectin possesses a molecular average mass of 47 562 ± 4 Da, and the analysis by gel filtration showed that PBL is a dimer in solution. The complete amino acid sequence of PBL, as determined using tandem mass spectrometry, consists of 443 amino acid residues. PBL is composed of a single non-glycosylated polypeptide chain of three tandemly arranged jacalin-related domains. Sequence heterogeneity was found in six positions, indicating that the PBL preparations contain highly homologous isolectins. PBL showed important antinociceptive activity associated to the inhibition of inflammatory process. PMID:23996489

  16. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.

    PubMed

    Grussendorf, Kelly A; Trezza, Christopher J; Salem, Alexander T; Al-Hashimi, Hikmat; Mattingly, Brendan C; Kampmeyer, Drew E; Khan, Liakot A; Hall, David H; Göbel, Verena; Ackley, Brian D; Buechner, Matthew

    2016-08-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  17. Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology

    PubMed Central

    Brown, JB; Akutsu, Tatsuya

    2009-01-01

    Background DNA repair is the general term for the collection of critical mechanisms which repair many forms of DNA damage such as methylation or ionizing radiation. DNA repair has mainly been studied in experimental and clinical situations, and relatively few information-based approaches to new extracting DNA repair knowledge exist. As a first step, automatic detection of DNA repair proteins in genomes via informatics techniques is desirable; however, there are many forms of DNA repair and it is not a straightforward process to identify and classify repair proteins with a single optimal method. We perform a study of the ability of homology and machine learning-based methods to identify and classify DNA repair proteins, as well as scan vertebrate genomes for the presence of novel repair proteins. Combinations of primary sequence polypeptide frequency, secondary structure, and homology information are used as feature information for input to a Support Vector Machine (SVM). Results We identify that SVM techniques are capable of identifying portions of DNA repair protein datasets without admitting false positives; at low levels of false positive tolerance, homology can also identify and classify proteins with good performance. Secondary structure information provides improved performance compared to using primary structure alone. Furthermore, we observe that machine learning methods incorporating homology information perform best when data is filtered by some clustering technique. Analysis by applying these methodologies to the scanning of multiple vertebrate genomes confirms a positive correlation between the size of a genome and the number of DNA repair protein transcripts it is likely to contain, and simultaneously suggests that all organisms have a non-zero minimum number of repair genes. In addition, the scan result clusters several organisms' repair abilities in an evolutionarily consistent fashion. Analysis also identifies several functionally unconfirmed

  18. Prediction of the three-dimensional structure of human interleukin-7 by homology modeling.

    PubMed

    Kroemer, R T; Doughty, S W; Robinson, A J; Richards, W G

    1996-06-01

    The three-dimensional structure of human interleukin (IL)-7 has been predicted based on homology to human IL-2, IL-4, granulocyte-macrophage colony stimulating factor and growth hormone. The model has a topology common to other cytokines and displays a unique disulfide pattern. Knowledge of the tertiary structure of IL-7 has implications for analysis of key binding regions, suggestions for mutagenesis experiments and design of (ant)agonists. In this context, the model is discussed and compared with other cytokine structures. PMID:8862549

  19. A non-canonical DNA structure enables homologous recombination in various genetic systems.

    PubMed

    Masuda, Tokiha; Ito, Yutaka; Terada, Tohru; Shibata, Takehiko; Mikawa, Tsutomu

    2009-10-30

    Homologous recombination, which is critical to genetic diversity, depends on homologous pairing (HP). HP is the switch from parental to recombinant base pairs, which requires expansion of inter-base pair spaces. This expansion unavoidably causes untwisting of the parental double-stranded DNA. RecA/Rad51-catalyzed ATP-dependent HP is extensively stimulated in vitro by negative supercoils, which compensates for untwisting. However, in vivo, double-stranded DNA is relaxed by bound proteins and thus is an unfavorable substrate for RecA/Rad51. In contrast, Mhr1, an ATP-independent HP protein required for yeast mitochondrial homologous recombination, catalyzes HP without the net untwisting of double-stranded DNA. Therefore, we questioned whether Mhr1 uses a novel strategy to promote HP. Here, we found that, like RecA, Mhr1 induced the extension of bound single-stranded DNA. In addition, this structure was induced by all evolutionarily and structurally distinct HP proteins so far tested, including bacterial RecO, viral RecT, and human Rad51. Thus, HP includes the common non-canonical DNA structure and uses a common core mechanism, independent of the species of HP proteins. We discuss the significance of multiple types of HP proteins. PMID:19729448

  20. Structure- and Sequence-Based Function Prediction for Non-Homologous Proteins

    PubMed Central

    Sael, Lee; Chitale, Meghana; Kihara, Daisuke

    2012-01-01

    The structural genomics projects have been accumulating an increasing number of protein structures, many of which remain functionally unknown. In parallel effort to experimental methods, computational methods are expected to make a significant contribution for functional elucidation of such proteins. However, conventional computational methods that transfer functions from homologous proteins do not help much for these uncharacterized protein structures because they do not have apparent structural or sequence similarity with the known proteins. Here, we briefly review two avenues of computational function prediction methods, i.e. structure-based methods and sequence-based methods. The focus is on our recently developments of local structure-based methods and sequence-based methods, which can effectively extract function information from distantly related proteins. Two structure-based methods, Pocket-Surfer and Patch-Surfer, identify similar known ligand binding sites for pocket regions in a query protein without using global protein fold similarity information. Two sequence-based methods, PFP and ESG, make use of weakly similar sequences that are conventionally discarded in homology based function annotation. Combined together with experimental methods we hope that computational methods will make leading contribution in functional elucidation of the protein structures. PMID:22270458

  1. Plant as a plenteous reserve of lectin

    PubMed Central

    Hivrale, AU; Ingale, AG

    2013-01-01

    Lectins are clusters of glycoproteins of nonimmune foundation that combine specifically and reversibly to carbohydrates, mainly the sugar moiety of glycoconjugates, resulting in cell agglutination and precipitation of glycoconjugates. They are universally distributed in nature, being established in plants, fungi, viruses, bacteria, crustacea, insects, and animals, but leguminacae plants are rich source of lectins. The present review reveals the structure, biological properties, and application of plant lectins. PMID:24084524

  2. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  3. Glycan and lectin biosensors.

    PubMed

    Belický, Štefan; Katrlík, Jaroslav; Tkáč, Ján

    2016-06-30

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  4. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    SciTech Connect

    Griffin, Philip J.; Holt, Adam P.; Tsunashima, Katsuhiko; Sangoro, Joshua R.; Kremer, Friedrich; Sokolov, Alexei P.

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.

  5. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.

    PubMed

    Meier, Armin; Söding, Johannes

    2015-10-01

    Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite. PMID:26496371

  6. Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri.

    PubMed

    Lopes-Ferreira, Mônica; Magalhães, Geraldo Santana; Fernandez, Jorge Hernandez; Junqueira-de-Azevedo, Inácio de Loiola M; Le Ho, Paulo; Lima, Carla; Valente, Richard H; Moura-da-Silva, Ana Maria

    2011-06-01

    Lectins are glycan-binding receptors that recognize glycan epitopes on foreign pathogens and in the host systems. They can be involved in functions that include innate immunity, development, immune regulation and homeostasis. Several lectins have been purified and characterized from fish species. In this work, using cation-exchange chromatography, a galactose-specific lectin belonging to the family of C-type lectins was isolated from the venom of the Brazilian venomous fish Thalassophryne nattereri. Nattectin is a basic, non-glycosilated, 15 kDa monomeric protein. It exhibits hemagglutination activity that is independent of Ca(2+). We also demonstrated a lectin activity for Nattectin in the innate immune system, especially in neutrophil mobilization in mice, indicating that marine organisms are source of immunomodulator agents.

  7. PALI-a database of Phylogeny and ALIgnment of homologous protein structures.

    PubMed

    Balaji, S; Sujatha, S; Kumar, S S; Srinivasan, N

    2001-01-01

    PALI (release 1.2) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of homologous protein domains in various families. The data set of homologous protein structures has been derived by consulting the SCOP database (release 1.50) and the data set comprises 604 families of homologous proteins involving 2739 protein domain structures with each family made up of at least two members. Each member in a family has been structurally aligned with every other member in the same family (pairwise alignment) and all the members in the family are also aligned using simultaneous super-position (multiple alignment). The structural alignments are performed largely automatically, with manual interventions especially in the cases of distantly related proteins, using the program STAMP (version 4.2). Every family is also associated with two dendrograms, calculated using PHYLIP (version 3.5), one based on a structural dissimilarity metric defined for every pairwise alignment and the other based on similarity of topologically equivalent residues. These dendrograms enable easy comparison of sequence and structure-based relationships among the members in a family. Structure-based alignments with the details of structural and sequence similarities, superposed coordinate sets and dendrograms can be accessed conveniently using a web interface. The database can be queried for protein pairs with sequence or structural similarities falling within a specified range. Thus PALI forms a useful resource to help in analysing the relationship between sequence and structure variation at a given level of sequence similarity. PALI also contains over 653 'orphans' (single member families). Using the web interface involving PSI_BLAST and PHYLIP it is possible to associate the sequence of a new protein with one of the families in PALI and generate a phylogenetic tree combining the query sequence and proteins of known 3-D structure. The

  8. Vesicular stomatitis virus NS proteins: structural similarity without extensive sequence homology.

    PubMed Central

    Gill, D S; Banerjee, A K

    1985-01-01

    The complete nucleotide sequence of the NS mRNA of vesicular stomatitis virus (New Jersey serotype) was established from two cDNA clones spanning the entire coding region of the mRNA. The gene is 856 nucleotides long and can code for a polypeptide of 274 amino acids. Comparison with the nucleotide sequence of the NS gene of the Indiana serotype revealed only 41% sequence homology. The deduced amino acid sequences of the NS proteins were only 32% homologous, with no identical stretches of more than five amino acids. However, at the C-terminal domain there was a conserved region of 21 amino acids with greater than 90% homology. Surprisingly, relative hydropathicity plots also demonstrated the presence of a large number of hydrophilic amino acids sequestered similarly over the N-terminal half of the protein. In addition, the total number of serine and threonine residues, presumptive phosphorylation sites, was similar and included seven serine and three threonine residues located at identical positions. It appears that during divergent evolution of these two vesicular stomatitis virus serotypes from a common ancestor, considerable mutation occurred in the main body of the gene but the overall structure of the protein was retained. The function of the NS protein in relation to the evolution of the two viruses is discussed. Images PMID:2989560

  9. Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom.

    PubMed

    Mendonça-Franqueiro, Elaine de Paula; Alves-Paiva, Raquel de Melo; Sartim, Marco Aurélio; Callejon, Daniel Roberto; Paiva, Helder Henrique; Antonucci, Gilmara Ausech; Rosa, José César; Cintra, Adélia Cristina Oliveira; Franco, João José; Arantes, Eliane Candiani; Dias-Baruffi, Marcelo; Sampaio, Suely Vilela

    2011-03-01

    Snake venom lectins have been studied in regard to their chemical structure and biological functions. However, little is known about lectins isolated from Bothrops atrox snake venom. We report here the isolation and partial functional and biochemical characterization of an acidic glycan-binding protein called galatrox from this venom. This lectin was purified by affinity chromatography using a lactosyl-sepharose column, and its homogeneity and molecular mass were evaluated by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The purified galatrox was homogeneous and characterized as an acidic protein (pI 5.2) with a monomeric and dimeric molecular mass of 16.2 and 32.5 kDa, respectively. Alignment of N-terminal and internal amino acid sequences of galatrox indicated that this protein exhibits high homology to other C-type snake venom lectins. Galatrox showed optimal hemagglutinating activity at a concentration of 100 μg/ml and this effect was drastically inhibited by lactose, ethylenediaminetetraacetic acid, and heating, which confirmed galatrox's lectin activity. While galatrox failed to induce the same level of paw edema or mast cell degranulation as B. atrox crude venom, galatrox did alter cellular viability, which suggested that galatrox might contribute to venom toxicity by directly inducing cell death. PMID:21297119

  10. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    SciTech Connect

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.; Garboczi, David N.

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.

  11. Binding of T-antigen disaccharides to Artocarpus hirsuta lectin and jacalin are energetically different.

    PubMed

    Gaikwad, Sushama M; Khan, M Islam

    2006-01-01

    The thermodynamics of binding of Me-alpha(-GalNAc, Gal-beta-1-3GalNAc-alpha-O-Me (T-antigen-alpha), Gal-beta-1-3GalNAc and Gal-alpha-1-6Glc (mellibiose) to Artocarpus hirsuta lectin was studied using fluorescence spectroscopy. The binding affinities of the saccharides are in the order Gal-beta-1-3GalNAc-alpha-O-Me > Me-alpha-GalNAc > Me-alpha-Gal > Gal-beta-1-3GalNAc > Gal-alpha-1-6Glc. The binding affinities were comparable to those for jacalin. However, binding of the saccharides to the A. hirsuta lectin was not affected as strongly by temperature as observed in jacalin and the trend was found to be reversed. Values for AH and AS were found to be positive in A. hirsuta lectin-disaccharide binding despite similar binding affinities. Thus, with 99% structural and 96% sequence homology, with similar sugar specificity and affinity, the energetics of the disaccharide binding of the two lectins seem to be different. Me-alpha-GalNAc binding to A. hirsuta lectin is enthalpically driven, because the association constant decreases with increasing temperature. However, the binding of the T-antigen disaccharides and mellibiose disaccharides to the lectin is entropically driven. The difference in the molecular associations in the packing and variation of the C-terminal length of the beta chain of the A. hirsuta lectin could be reflected in the different disaccharide binding energetics.

  12. Homology Modeling: Generating Structural Models to Understand Protein Function and Mechanism

    NASA Astrophysics Data System (ADS)

    Ramachandran, Srinivas; Dokholyan, Nikolay V.

    Geneticists and molecular and cell biologists routinely uncover new proteins important in specific biological processes/pathways. However, either the molecular functions or the functional mechanisms of many of these proteins are unclear due to a lack of knowledge of their atomic structures. Yet, determining experimental structures of many proteins presents technical challenges. The current methods for obtaining atomic-resolution structures of biomolecules (X-ray crystallography and NMR spectroscopy) require pure preparations of proteins at concentrations much higher than those at which the proteins exist in a physiological environment. Additionally, NMR has size limitations, with current technology limited to the determination of structures of proteins with masses of up to 15 kDa. Due to these reasons, atomic structures of many medically and biologically important proteins do not exist. However, the structures of these proteins are essential for several purposes, including in silico drug design [1], understanding the effects of disease mutations [2], and designing experiments to probe the functional mechanisms of proteins. Comparative modeling has gained importance as a tool for bridging the gap between sequence and structure space, allowing researchers to build structural models of proteins that are difficult to crystallize or for which structure determination by NMR spectroscopy is not tractable. Comparative modeling, or homology modeling, exploits the fact that two proteins whose sequences are evolutionarily connected display similar structural features [3]. Thus, the known structure of a protein (template) can be used to generate a molecular model of the protein (query) whose experimental structure is notknown.

  13. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications.

    PubMed

    Tsai, Henry P; Holliday, Casey M

    2015-06-01

    Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and

  14. Conservation of polyproline II helices in homologous proteins: implications for structure prediction by model building.

    PubMed Central

    Adzhubei, A. A.; Sternberg, M. J.

    1994-01-01

    Left-handed polyproline II (PPII) helices commonly occur in globular proteins in segments of 4-8 residues. This paper analyzes the structural conservation of PPII-helices in 3 protein families: serine proteinases, aspartic proteinases, and immunoglobulin constant domains. Calculations of the number of conserved segments based on structural alignment of homologous molecules yielded similar results for the PPII-helices, the alpha-helices, and the beta-strands. The PPII-helices are consistently conserved at the level of 100-80% in the proteins with sequence identity above 20% and RMS deviation of structure alignments below 3.0 A. The most structurally important PPII segments are conserved below this level of sequence identity. These results suggest that the PPII-helices, in addition to the other 2 secondary structure classes, should be identified as part of structurally conserved regions in proteins. This is supported by similar values for the local RMS deviations of the aligned segments for the structural classes of PPII-helices, alpha-helices, and beta-strands. The PPII-helices are shown to participate in supersecondary elements such as PPII-helix/alpha-helix. The conservation of PPII-helices depends on the conservation of a supersecondary element as a whole. PPII-helices also form links, possibly flexible, in the interdomain regions. The role of the PPII-helices in model building by homology is 2-fold; they serve as additional conserved elements in the structure allowing improvement of the accuracy of a model and provide correct chain geometry for modeling of the segments equivalenced to them in a target sequence. The improvement in model building is demonstrated in 2 test studies. PMID:7756993

  15. Structure of a Membrane-Embedded Prenyltransferase Homologous to UBIAD1

    PubMed Central

    Liu, Shian; Bai, Yonghong; Lockless, Steve W.; Zhou, Ming

    2014-01-01

    Membrane-embedded prenyltransferases from the UbiA family catalyze the Mg2+-dependent transfer of a hydrophobic polyprenyl chain onto a variety of acceptor molecules and are involved in the synthesis of molecules that mediate electron transport, including Vitamin K and Coenzyme Q. In humans, missense mutations to the protein UbiA prenyltransferase domain-containing 1 (UBIAD1) are responsible for Schnyder crystalline corneal dystrophy, which is a genetic disease that causes blindness. Mechanistic understanding of this family of enzymes has been hampered by a lack of three-dimensional structures. We have solved structures of a UBIAD1 homolog from Archaeoglobus fulgidus, AfUbiA, in an unliganded form and bound to Mg2+ and two different isoprenyl diphosphates. Functional assays on MenA, a UbiA family member from E. coli, verified the importance of residues involved in Mg2+ and substrate binding. The structural and functional studies led us to propose a mechanism for the prenyl transfer reaction. Disease-causing mutations in UBIAD1 are clustered around the active site in AfUbiA, suggesting the mechanism of catalysis is conserved between the two homologs. PMID:25051182

  16. Lectin microarrays for glycomic analysis.

    PubMed

    Gupta, Garima; Surolia, Avadhesha; Sampathkumar, Srinivasa-Gopalan

    2010-08-01

    Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glyco-code. Several tools are being developed for glycan profiling based on chromatography, mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins. PMID:20726799

  17. Lectin microarrays for glycomic analysis.

    PubMed

    Gupta, Garima; Surolia, Avadhesha; Sampathkumar, Srinivasa-Gopalan

    2010-08-01

    Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glyco-code. Several tools are being developed for glycan profiling based on chromatography, mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.

  18. Insights into carbohydrate recognition by Narcissus pseudonarcissus lectin: the crystal structure at 2 A resolution in complex with alpha1-3 mannobiose.

    PubMed

    Sauerborn, M K; Wright, L M; Reynolds, C D; Grossmann, J G; Rizkallah, P J

    1999-07-01

    Carbohydrate recognition by monocot mannose-binding lectins was studied via the crystal structure determination of daffodil (Narcissus pseudonarcissus) lectin. The lectin was extracted from daffodil bulbs, and crystallised in the presence of alpha-1,3 mannobiose. Molecular replacement methods were used to solve the structure using the partially refined model of Hippeastrum hybrid agglutinin as a search model. The structure was refined at 2.0 A resolution to a final R -factor of 18.7 %, and Rfreeof 26.7 %. The main feature of the daffodil lectin structure is the presence of three fully occupied binding pockets per monomer, arranged around the faces of a triangular beta-prism motif. The pockets have identical topology, and can bind mono-, di- or oligosaccharides. Strand exchange forms tightly bound dimers, and higher aggregation states are achieved through hydrophobic patches on the surface, completing a tetramer with internal 222-symmetry. There are therefore 12 fully occupied binding pockets per tetrameric cluster. The tetramer persists in solution, as shown with small-angle X-ray solution scattering. Extensive sideways and out-of-plane interactions between tetramers, some mediated via the ligand, make up the bulk of the lattice contacts.A fourth binding site was also observed. This is unique and has not been observed in similar structures. The site is only partially occupied by a ligand molecule due to the much lower binding affinity. A comparison with the Galanthus nivalis agglutinin/mannopentaose complex suggests an involvement of this site in the recognition mechanism for naturally occurring glycans.

  19. Secondary structure and 3D homology modeling of swine leukocyte antigen class 2 (SLA-2) molecules.

    PubMed

    Gao, Feng-Shan; Xu, Chong-bo; Long, Yi-hou; Xia, Chun

    2009-01-01

    No information to date is available to elucidate the structure of swine leukocyte antigen class I (SLA-I) molecule which is comprised by a heavy chain of SLA-I non-covalently associated with a light chain, beta(2)-microglobulin (beta(2)m) proteins. Presently, one of SLA-I gene SLA-2 and beta(2)m gene were expressed as soluble maltose binding proteins (MBP-proteins) in a pMAL-p2X/Escherichia coli TB1 system and identified by western blotting with anti-MBP polyclonal antibodies. The expressed proteins MBP-SLA-2 and MBP-beta(2)m were purified on amylose affinity columns followed by DEAE-Sepharose. The purified products were cleaved by Factor Xa, respectively, and the interest of proteins SLA-2 and beta(2)m were purified on amylose affinity columns followed by separation from MBP on DEAE-Sepharose. The secondary structures of SLA-2 and beta(2)m were analyzed by circular dichroism (CD) spectrophotometry. The three-dimensional (3D) structure of their peptide-binding domain (PBD) was modeled-based sequence homology. The content of the alpha-helix, beta-sheet, turn, and random coil in the SLA-2 protein were 76, 95, 36, and 67aa, respectively. In the 98aa of beta(2)m, the contents of the alpha-helix, beta-sheet, turn, and random coil were 0, 45, 8, and 45aa, respectively. The SLA-2 protein displayed a typical alpha-helix structure while beta(2)m protein displayed a typical beta-sheet structure. Homology modeling of the SLA-2 and beta(2)m proteins demonstrated similarities with the structure of human and mouse MHC (major histocompatibility complex) class I proteins.

  20. Structural homology of complement protein C6 with other channel-forming proteins of complement.

    PubMed Central

    Chakravarti, D N; Chakravarti, B; Parra, C A; Muller-Eberhard, H J

    1989-01-01

    The amino acid sequence of the amino-terminal half of the complement protein C6 has been found to show overall structural homology with the homologous regions of the channel-forming proteins C7, C8 alpha, C8 beta, and C9. In addition, two specific cysteine-rich segments common to the amino-terminal regions of C7, C8 alpha, C8 beta, and C9 also occur in their expected positions in C6, suggesting functional significance. Two cDNA clones encoding C6 were isolated from a human liver library in the bacteriophage vector lambda gt11. The predicted protein sequence contains an apparent initiation methionine and a putative signal peptide of 21 residues, as well as a site for N-glycosylation at residue 303. The sequence of the C6 protein reported here has 47-52% similarity with C7, C8 alpha, C8 beta, and C9, as well as 31-38% similarity with thrombospondin, thrombomodulin, and low density lipoprotein receptor. The sequence data have been interpreted by using computer algorithms for estimation of average hydrophobicity and secondary structure. PMID:2468158

  1. Structural analysis of N-linked oligosaccharide of mitogenic lectin-B from the roots of pokeweed (Phytolacca americana).

    PubMed

    Kimura, Y; Yamaguchi, K; Funatsu, G

    1996-03-01

    The structure of an asparagine (N-) linked oligosaccharide of pokeweed lectin-B (PL-B) and the amino acid sequences around two glycosylation sites were identified. The pyridylamino (PA) oligosaccharide prepared from PL-B was eluted as a single peak on both reversed-phase (RP-) HPLC and size-fractionation (SF-) HPLC, and its structure was estimated to be Man alpha 1-->6(Man alpha 1-->3)(Xyl beta 1-->2) Man beta 1-->4GlcNAc beta 1-->4(Fuc alpha 1-->3)GlcNAc by a combination of component analysis, successive exoglycosidase digestions, IS-MS analysis, and 500 MHz 1H-NMR. Two tryptic glycopeptides were isolated from the reduced and S-pyridylethylated PL-B after gel filtration followed by RP-HPLC, indicating the presence of two glycosylation sites in PL-B. The amino acid sequences around the two glycosylation sites were determined to be Cys-Gly-Val-Asp-Phe-Gly-Asn(CHO)-Arg.

  2. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement.

    PubMed

    Mortensen, Sofia; Kidmose, Rune T; Petersen, Steen V; Szilágyi, Ágnes; Prohászka, Zoltan; Andersen, Gregers R

    2015-06-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our structural studies are probably involved in the assembly of the classical pathway C3/C5 convertases and C4b binding to regulators.

  3. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques.

    PubMed

    Zhu, Feifei; Trinidad, Jonathan C; Clemmer, David E

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides. PMID:25840811

  4. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    NASA Astrophysics Data System (ADS)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  5. Homolog Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    PubMed Central

    Chen, Yuhang; Hu, Lei; Punta, Marco; Bruni, Renato; Hillerich, Brandan; Kloss, Brian; Rost, Burkhard; Love, James; Siegelbaum, Steven A.; Hendrickson, Wayne A.

    2012-01-01

    Summary The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating exchange of water vapor and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. We determined the crystal structure of a bacterial homolog of SLAC1 at 1.20Å resolution, and we have used structure-inspired mutagenesis to analyze the conductance properties of SLAC1 channels. SLAC1 is a symmetric trimer composed from quasi-symmetric subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features suggest a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics suggest that selectivity among different anions is largely a function of the energetic cost of ion dehydration. PMID:20981093

  6. The Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens

    SciTech Connect

    Geisbrecht, B V; Hamaoka, B Y; Perman, B; Zemla, A; Leahy, D J

    2005-10-14

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 {angstrom} resolution, respectively. These structures reveal a core fold that is comprised of an {alpha}-helix lying diagonally across a five-stranded, mixed {beta}-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the {beta}-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  7. Ramachandran analysis of conserved glycyl residues in homologous proteins of known structure.

    PubMed

    Lakshmi, Balasubramanian; Sinduja, Chandrasekaran; Archunan, Govind; Srinivasan, Narayanaswamy

    2014-06-01

    High conservation of glycyl residues in homologous proteins is fairly frequent. It is commonly understood that glycine tends to be highly conserved either because of its unique Ramachandran angles or to avoid steric clash that would arise with a larger side chain. Using a database of aligned 3D structures of homologous proteins we identified conserved Gly in 288 alignment positions from 85 families. Ninety-six of these alignment positions correspond to conserved Gly residue with (φ, ψ) values allowed for non-glycyl residues. Reasons for this observation were investigated by in-silico mutation of these glycyl residues to Ala. We found in 94% of the cases a short contact exists between the C(β) atom of the introduced Ala with the atoms which are often distant in the primary structure. This suggests the lack of space even for a short side chain thereby explaining high conservation of glycyl residues even when they adopt (φ, ψ) values allowed for Ala. In 189 alignment positions, the conserved glycyl residues adopt (φ, ψ) values which are disallowed for Ala. In-silico mutation of these Gly residues to Ala almost always results in steric hindrance involving C(β) atom of Ala as one would expect by comparing Ramachandran maps for Ala and Gly. Rare occurrence of the disallowed glycyl conformations even in ultrahigh resolution protein structures are accompanied by short contacts in the crystal structures and such disallowed conformations are not conserved in the homologues. These observations raise the doubt on the accuracy of such glycyl conformations in proteins. PMID:24687432

  8. Two structurally identical mannose-specific jacalin-related lectins display different effects on human T lymphocyte activation and cell death.

    PubMed

    Benoist, Hervé; Culerrier, Raphaël; Poiroux, Guillaume; Ségui, Bruno; Jauneau, Alain; Van Damme, Els J M; Peumans, Willy J; Barre, Annick; Rougé, Pierre

    2009-07-01

    Plant lectins displaying similar single sugar-binding specificity and identical molecular structure might present various biological effects. To explore this possibility, the effects on human lymphocytes of two mannose-specific and structurally closely related lectins, Morniga M from Morus nigra and artocarpin from Artocarpus integrifolia were investigated. In silico analysis revealed that Morniga M presents a more largely open carbohydrate-binding cavity than artocarpin, probably allowing interactions with a broader spectrum of carbohydrate moieties. In vitro, Morniga M interacted strongly with the lymphocyte surface and was uptaken quickly by cells. Morniga M and artocarpin triggered the proliferation and activation of human T and NK lymphocytes. A minority of B lymphocytes was activated in artocarpin-treated culture, whereas Morniga M favored the emergence of CD4+ CD8+ T lymphocytes. Moreover, cell death occurred in activated PBMC, activated T lymphocytes, and Jurkat T leukemia cells incubated with Morniga M only. The biological effects of both lectins were dependent on carbohydrate recognition. The Morniga M-induced cell death resulted, at least in part, from caspase-dependent apoptosis and FADD-dependent receptor-mediated cell death. Finally, Morniga M, but not artocarpin, triggered AICD of T lymphocytes. In conclusion, both lectins trigger lymphocyte activation, but only Morniga M induces cell death. In spite of similar in vitro mannose-binding specificities and virtually identical structure, only Morniga M probably interacts with carbohydrate moieties bound to molecules able to induce cell death. The present data suggest that subtle alterations in N-glycans can distinguish activation and cell death molecules at the lymphocyte surface.

  9. Infer Metagenomic Abundance and Reveal Homologous Genomes Based on the Structure of Taxonomy Tree.

    PubMed

    Qiu, Yu-Qing; Tian, Xue; Zhang, Shihua

    2015-01-01

    Metagenomic research uses sequencing technologies to investigate the genetic biodiversity of microbiomes presented in various ecosystems or animal tissues. The composition of a microbial community is highly associated with the environment in which the organisms exist. As large amount of sequencing short reads of microorganism genomes obtained, accurately estimating the abundance of microorganisms within a metagenomic sample is becoming an increasing challenge in bioinformatics. In this paper, we describe a hierarchical taxonomy tree-based mixture model (HTTMM) for estimating the abundance of taxon within a microbial community by incorporating the structure of the taxonomy tree. In this model, genome-specific short reads and homologous short reads among genomes can be distinguished and represented by leaf and intermediate nodes in the taxonomy tree, respectively. We adopt an expectation-maximization algorithm to solve this model. Using simulated and real-world data, we demonstrate that the proposed method is superior to both flat mixture model and lowest common ancestry-based methods. Moreover, this model can reveal previously unaddressed homologous genomes.

  10. Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog

    PubMed Central

    Premkumar, Lakshmanane; Greenblatt, Harry M.; Bageshwar, Umesh K.; Savchenko, Tatyana; Gokhman, Irena; Sussman, Joel L.; Zamir, Ada

    2005-01-01

    Protein molecular adaptation to drastically shifting salinities was studied in dCA II, an α-type carbonic anhydrase (EC 4.2.1.1) from the exceptionally salt-tolerant unicellular green alga Dunaliella salina. The salt-inducible, extracellular dCA II is highly salt-tolerant and thus differs from its mesophilic homologs. The crystal structure of dCA II, determined at 1.86-Å resolution, is globally similar to other α-type carbonic anhydrases except for two extended α-helices and an added Na-binding loop. Its unusual electrostatic properties include a uniformly negative surface electrostatic potential of lower magnitude than that observed in the highly acidic halophilic proteins and an exceptionally low positive potential at a site adjoining the catalytic Zn2+ compared with mesophilic homologs. The halotolerant dCA II also differs from typical halophilic proteins in retaining conformational stability and solubility in low to high salt concentrations. The crucial role of electrostatic features in dCA II halotolerance is strongly supported by the ability to predict the unanticipated halotolerance of the murine CA XIV isozyme, which was confirmed biochemically. A proposal for the functional significance of the halotolerance of CA XIV in the kidney is presented. PMID:15894606

  11. Structure solution with ARCIMBOLDO using fragments derived from distant homology models.

    PubMed

    Sammito, Massimo; Meindl, Kathrin; de Ilarduya, Iñaki M; Millán, Claudia; Artola-Recolons, Cecilia; Hermoso, Juan A; Usón, Isabel

    2014-09-01

    Molecular replacement, one of the general methods used to solve the crystallographic phase problem, relies on the availability of suitable models for placement in the unit cell of the unknown structure in order to provide initial phases. ARCIMBOLDO, originally conceived for ab initio phasing, operates at the limit of this approach, using small, very accurate fragments such as polyalanine α-helices. A distant homolog may contain accurate building blocks, but it may not be evident which sub-structure is the most suitable purely from the degree of conservation. Trying out all alternative possibilities in a systematic way is computationally expensive, even if effective. In the present study, the solution of the previously unknown structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli, is described. The asymmetric unit contains a dimer of this 194 amino acid protein. The closest available homolog was the catalytic domain of Slt70 (PDB code 1QTE). Originally, this template was used omitting contiguous spans of aminoacids and setting as many ARCIMBOLDO runs as models, each aiming to locate two copies sequentially with PHASER. Fragment trimming against the correlation coefficient prior to expansion through density modification and autotracing in SHELXE was essential. Analysis of the figures of merit led to the strategy to optimize the search model against the experimental data now implemented within ARCIMBOLDO-SHREDDER (http://chango.ibmb.csic.es/SHREDDER). In this strategy, the initial template is systematically shredded, and fragments are scored against each unique solution of the rotation function. Results are combined into a score per residue and the template is trimmed accordingly.

  12. Theoretical model of the three-dimensional structure of a disease resistance gene homolog encoding resistance protein in Vigna mungo.

    PubMed

    Basak, Jolly; Bahadur, Ranjit P

    2006-10-01

    Plant disease resistance (R) genes, the key players of innate immunity system in plants encode 'R' proteins. 'R' protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any 'R' proteins is available as yet. We have reported a 'R' gene homolog, the 'VMYR1', encoding 'R' protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1' protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any 'R' proteins.

  13. Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy.

    PubMed Central

    Fushman, D; Cahill, S; Lemmon, M A; Schlessinger, J; Cowburn, D

    1995-01-01

    The pleckstrin homology (PH) domain is a recognition motif thought to be involved in signal-transduction pathways controlled by a variety of cytoplasmic proteins. Assignments of nearly all 1H, 13C, and 15N resonances of the PH domain from dynamin have been obtained from homonuclear and heteronuclear NMR experiments. The secondary structure has been elucidated from the pattern of nuclear Overhauser enhancements, from 13C chemical shift deviations, and from observation of slowly exchanging amide hydrogens. The secondary structure contains one alpha-helix and eight beta-strands, seven of which are arranged in two contiguous, antiparallel beta-sheets. The structure is monomeric, in contrast to the well-defined intimate dimerization of the crystal structure of this molecule. Residues possibly involved in ligand binding are in apparently flexible loops. Steady-state 15N(1H) nuclear Overhauser effect measurements indicate unequivocally the boundaries of this PH domain, and the structured portion of the domain appears to be more extended to the C terminus than previously suggested for other PH domains. Images Fig. 3 PMID:7846058

  14. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    SciTech Connect

    Veluraja, K.; Vennila, K.N.; Umamakeshvari, K.; Jasmine, A.; Velmurugan, D.

    2011-03-25

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.

  15. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.

    PubMed

    Merritt, Ethan A; Arakaki, Tracy L; Gillespie, Robert; Napuli, Alberto J; Kim, Jessica E; Buckner, Frederick S; Van Voorhis, Wesley C; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Hol, Wim G J

    2011-05-01

    Tryptophanyl-tRNA synthetase (TrpRS) is an essential enzyme that is recognizably conserved across all forms of life. It is responsible for activating and attaching tryptophan to a cognate tRNA(Trp) molecule for use in protein synthesis. In some eukaryotes this original core function has been supplemented or modified through the addition of extra domains or the expression of variant TrpRS isoforms. The three TrpRS structures from pathogenic protozoa described here represent three illustrations of this malleability in eukaryotes. The Cryptosporidium parvum genome contains a single TrpRS gene, which codes for an N-terminal domain of uncertain function in addition to the conserved core TrpRS domains. Sequence analysis indicates that this extra domain, conserved among several apicomplexans, is related to the editing domain of some AlaRS and ThrRS. The C. parvum enzyme remains fully active in charging tRNA(Trp) after truncation of this extra domain. The crystal structure of the active, truncated enzyme is presented here at 2.4Å resolution. The Trypanosoma brucei genome contains separate cytosolic and mitochondrial isoforms of TrpRS that have diverged in their respective tRNA recognition domains. The crystal structure of the T. brucei cytosolic isoform is presented here at 2.8Å resolution. The Entamoeba histolytica genome contains three sequences that appear to be TrpRS homologs. However one of these, whose structure is presented here at 3.0Å resolution, has lost the active site motifs characteristic of the Class I aminoacyl-tRNA synthetase catalytic domain while retaining the conserved features of a fully formed tRNA(Trp) recognition domain. The biological function of this variant E. histolytica TrpRS remains unknown, but, on the basis of a completely conserved tRNA recognition region and evidence for ATP but not tryptophan binding, it is tempting to speculate that it may perform an editing function. Together with a previously reported structure of an unusual Trp

  16. MRFy: Remote Homology Detection for Beta-Structural Proteins Using Markov Random Fields and Stochastic Search.

    PubMed

    Daniels, Noah M; Gallant, Andrew; Ramsey, Norman; Cowen, Lenore J

    2015-01-01

    We introduce MRFy, a tool for protein remote homology detection that captures beta-strand dependencies in the Markov random field. Over a set of 11 SCOP beta-structural superfamilies, MRFy shows a 14 percent improvement in mean Area Under the Curve for the motif recognition problem as compared to HMMER, 25 percent improvement as compared to RAPTOR, 14 percent improvement as compared to HHPred, and a 18 percent improvement as compared to CNFPred and RaptorX. MRFy was implemented in the Haskell functional programming language, and parallelizes well on multi-core systems. MRFy is available, as source code as well as an executable, from http://mrfy.cs.tufts.edu/.

  17. Homology modeling studies of yeast Mitogen-Activated Protein Kinases (MAPKS): structural motifs as a basis for specificity.

    PubMed

    Smith, D L; Nilar, S H

    2010-06-01

    Mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction. It is the objective of this communication to demonstrate that insight into protein-protein interactions in the Common Docking motif of yeast mitogen-activated protein kinases can be obtained based on homology models. Homology models for four yeast MAPKs, FUS3, KSS1, HOG1 and MPK1 were built based on the X-ray structures of active and inactive rat ERK2. The structural motifs required for the basis of specificity were rationalized based on these structures. PMID:19995338

  18. CancerLectinDB: a database of lectins relevant to cancer.

    PubMed

    Damodaran, Deepa; Jeyakani, Justin; Chauhan, Alok; Kumar, Nirmal; Chandra, Nagasuma R; Surolia, Avadhesha

    2008-04-01

    The role of lectins in mediating cancer metastasis, apoptosis as well as various other signaling events has been well established in the past few years. Data on various aspects of the role of lectins in cancer is being accumulated at a rapid pace. The data on lectins available in the literature is so diverse, that it becomes difficult and time-consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. Not only do the lectins vary significantly in their individual functional roles, but they are also diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities and specificities as well as their potential applications. An organization of these seemingly independent data into a common framework is essential in order to achieve effective use of all the data towards understanding the roles of different lectins in different aspects of cancer and any resulting applications. An integrated knowledge base (CancerLectinDB) together with appropriate analytical tools has therefore been developed for lectins relevant for any aspect of cancer, by collating and integrating diverse data. This database is unique in terms of providing sequence, structural, and functional annotations for lectins from all known sources in cancer and is expected to be a useful addition to the number of glycan related resources now available to the community. The database has been implemented using MySQL on a Linux platform and web-enabled using Perl-CGI and Java tools. Data for individual lectins pertain to taxonomic, biochemical, domain architecture, molecular sequence and structural details as well as carbohydrate specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value for various studies on lectin cancer biology. CancerLectinDB can be accessed through

  19. Comprehensive list of lectins: origins, natures, and carbohydrate specificities.

    PubMed

    Kobayashi, Yuka; Tateno, Hiroaki; Ogawa, Haruko; Yamamoto, Kazuo; Hirabayashi, Jun

    2014-01-01

    More than 100 years have passed since the first lectin ricin was discovered. Since then, a wide variety of lectins (lect means "select" in Latin) have been isolated from plants, animals, fungi, bacteria, as well as viruses, and their structures and properties have been characterized. At present, as many as 48 protein scaffolds have been identified as functional lectins from the viewpoint of three-dimensional structures as described in this chapter. In this chapter, representative 53 lectins are selected, and their major properties that include hemagglutinating activity, mitogen activity, blood group specificity, molecular weight, metal requirement, and sugar specificities are summarized as a comprehensive table. The list will provide a practically useful, comprehensive list for not only experienced lectin users but also many other non-expert researchers, who are not familiar to lectins and, therefore, have no access to advanced lectin biotechnologies described in other chapters. PMID:25117264

  20. Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes.

    SciTech Connect

    Morgado, L.; Bruix, M.; Orshonsky, V.; Londer, Y. Y.; Duke, N. E. C.; Yang, X.; Pokkuluri, P. R.; Schiffer, M.; Salgueiro, C. A.; Biosciences Division; Univ. Nova de Lisboa; Insti. de Quimica-Fisica

    2008-09-01

    The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (1) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (2) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.

  1. Fungal Rtt109 Histone Acetyltransferase is an Unexpected Structural Homolog of Metazoan p300/CBP

    SciTech Connect

    Tang,Y.; Holbert, M.; Wurtele, H.; Meeth, K.; Rocha, W.; Gharib, M.; Jiang, E.; Thibault, P.; Verreault, A.; et al

    2008-01-01

    Rtt109, also known as KAT11, is a recently characterized fungal-specific histone acetyltransferase (HAT) that modifies histone H3 lysine 56 (H3K56) to promote genome stability. Rtt109 does not show sequence conservation with other known HATs and depends on association with either of two histone chaperones, Asf1 or Vps75, for HAT activity. Here we report the X-ray crystal structure of an Rtt109-acetyl coenzyme A complex and carry out structure-based mutagenesis, combined with in vitro biochemical studies of the Rtt109-Vps75 complex and studies of Rtt109 function in vivo. The Rtt109 structure reveals noteworthy homology to the metazoan p300/CBP HAT domain but exhibits functional divergence, including atypical catalytic properties and mode of cofactor regulation. The structure reveals a buried autoacetylated lysine residue that we show is also acetylated in the Rtt109 protein purified from yeast cells. Implications for understanding histone substrate and chaperone binding by Rtt109 are discussed.

  2. Crystal Structure of the Murine Cytomegalovirus MHC-I Homolog m144

    SciTech Connect

    Natarajan,K.; Hicks, A.; Mans, J.; Robinson, H.; Guan, R.; Mariuzza, R.; Margulies, D.

    2006-01-01

    Large DNA viruses of the herpesvirus family produce proteins that mimic host MHC-I molecules as part of their immunoevasive strategy. The m144 glycoprotein, expressed by murine cytomegalovirus, is thought to be an MHC-I homolog whose expression prolongs viral survival in vivo by preventing natural killer cell activation. To explore the structural basis of this m144 function, we have determined the three-dimensional structure of an m144/{beta}2-microglobulin ({beta}2m) complex at 1.9 {angstrom} resolution. This structure reveals the canonical features of MHC-I molecules including readily identifiable {alpha}1, {alpha}2, and {alpha}3 domains. A unique disulfide bond links the {alpha}1 helix to the {beta}-sheet floor, explaining the known thermal stability of m144. Close juxtaposition of the {alpha}1 and {alpha}2 helices and the lack of critical residues that normally contribute to anchoring the peptide N and C termini eliminates peptide binding. A region of 13 amino acid residues, corresponding to the amino-terminal portion of the {alpha}2 helix, is missing in the electron density map, suggesting an area of structural flexibility that may be involved in ligand binding.

  3. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis).

    PubMed

    Hasan, Imtiaj; Gerdol, Marco; Fujii, Yuki; Rajia, Sultana; Koide, Yasuhiro; Yamamoto, Daiki; Kawsar, Sarkar M A; Ozeki, Yasuhiro

    2016-01-01

    MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic "mytilectin family" in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5' end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5'UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3'UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels.

  4. Analysis of Structural MtrC Models Based on Homology with the Crystal Structure of MtrF

    SciTech Connect

    Edwards, Marcus; Fredrickson, Jim K.; Zachara, John M.; Richardson, David; Clarke, Thomas A.

    2012-12-01

    The outer-membrane decahaem cytochrome MtrC is part of the transmembrane MtrCAB complex required for mineral respiration by Shewanella oneidensis. MtrC has significant sequence similarity to the paralogous decahaem cytochrome MtrF, which has been structurally solved through X-ray crystallography. This now allows for homology-based models of MtrC to be generated. The structure of these MtrC homology models contain ten bis-histidine-co-ordinated c-type haems arranged in a staggered cross through a four-domain structure. This model is consistent with current spectroscopic data and shows that the areas around haem 5 and haem 10, at the termini of an octahaem chain, are likely to have functions similar to those of the corresponding haems in MtrF. The electrostatic surfaces around haem 7, close to the β-barrels, are different in MtrF and MtrC, indicating that these haems may have different potentials and interact with substrates differently.

  5. Structural characterization of inhibitors with selectivity against members of a homologous enzyme family.

    PubMed

    Pavlovsky, Alexander G; Liu, Xuying; Faehnle, Christopher R; Potente, Nina; Viola, Ronald E

    2012-01-01

    The aspartate biosynthetic pathway provides essential metabolites for many important biological functions, including the production of four essential amino acids. As this critical pathway is only present in plants and microbes, any disruptions will be fatal to these organisms. An early pathway enzyme, l-aspartate-β-semialdehyde dehydrogenase, produces a key intermediate at the first branch point of this pathway. Developing potent and selective inhibitors against several orthologs in the l-aspartate-β-semialdehyde dehydrogenase family can serve as lead compounds for antibiotic development. Kinetic studies of two small molecule fragment libraries have identified inhibitors that show good selectivity against l-aspartate-β-semialdehyde dehydrogenases from two different bacterial species, Streptococcus pneumoniae and Vibrio cholerae, despite the presence of an identical constellation of active site amino acids in this homologous enzyme family. Structural characterization of enzyme-inhibitor complexes have elucidated different modes of binding between these structurally related enzymes. This information provides the basis for a structure-guided approach to the development of more potent and more selective inhibitors.

  6. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure

    PubMed Central

    Coleman, Annette W.

    2007-01-01

    For evolutionary comparisons, phylogenetics and evaluation of potential interbreeding taxa of a species, various loci have served for animals and plants and protistans. One [second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA] is highly suitable for all. Its sequence is species specific. It has already been used extensively and very successfully for plants and some protistans, and a few animals (where historically, the mitochondrial genes have dominated species studies). Despite initial impressions that ITS2 is too variable, it has proven to provide useful biological information at higher taxonomic levels, even across all eukaryotes, thanks to the conserved aspects of its transcript secondary structure. The review of all eukaryote groups reveals that ITS2 is expandable, but always retains in its RNA transcript a common core structure of two helices with hallmark characteristics important for ribosomal RNA processing. This aspect of its RNA transcript secondary structure can rescue difficult alignment problems, making the ITS2 a more powerful tool for phylogenetics. Equally important, the recognition of eukaryote-wide homology regions provides extensive and detailed information to test experimental studies of ribosomal rRNA processing. PMID:17459886

  7. Structural Characterization of Inhibitors with Selectivity against Members of a Homologous Enzyme Family

    SciTech Connect

    Pavlovsky, Alexander G.; Liu, Xuying; Faehnle, Christopher R.; Potente, Nina; Viola, Ronald E.

    2013-01-31

    The aspartate biosynthetic pathway provides essential metabolites for many important biological functions, including the production of four essential amino acids. As this critical pathway is only present in plants and microbes, any disruptions will be fatal to these organisms. An early pathway enzyme, L-aspartate-{beta}-semialdehyde dehydrogenase, produces a key intermediate at the first branch point of this pathway. Developing potent and selective inhibitors against several orthologs in the L-aspartate-{beta}-semialdehyde dehydrogenase family can serve as lead compounds for antibiotic development. Kinetic studies of two small molecule fragment libraries have identified inhibitors that show good selectivity against L-aspartate-{beta}-semialdehyde dehydrogenases from two different bacterial species, Streptococcus pneumoniae and Vibrio cholerae, despite the presence of an identical constellation of active site amino acids in this homologous enzyme family. Structural characterization of enzyme-inhibitor complexes have elucidated different modes of binding between these structurally related enzymes. This information provides the basis for a structure-guided approach to the development of more potent and more selective inhibitors.

  8. The HHpred interactive server for protein homology detection and structure prediction.

    PubMed

    Söding, Johannes; Biegert, Andreas; Lupas, Andrei N

    2005-07-01

    HHpred is a fast server for remote protein homology detection and structure prediction and is the first to implement pairwise comparison of profile hidden Markov models (HMMs). It allows to search a wide choice of databases, such as the PDB, SCOP, Pfam, SMART, COGs and CDD. It accepts a single query sequence or a multiple alignment as input. Within only a few minutes it returns the search results in a user-friendly format similar to that of PSI-BLAST. Search options include local or global alignment and scoring secondary structure similarity. HHpred can produce pairwise query-template alignments, multiple alignments of the query with a set of templates selected from the search results, as well as 3D structural models that are calculated by the MODELLER software from these alignments. A detailed help facility is available. As a demonstration, we analyze the sequence of SpoVT, a transcriptional regulator from Bacillus subtilis. HHpred can be accessed at http://protevo.eb.tuebingen.mpg.de/hhpred.

  9. Conservation of structural fluctuations in homologous protein kinases and its implications on functional sites.

    PubMed

    Kalaivani, Raju; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2016-07-01

    Our aim is to explore the similarities in structural fluctuations of homologous kinases. Gaussian Network Model based Normal Mode Analysis was performed on 73 active conformation structures in Ser/Thr/Tyr kinase superfamily. Categories of kinases with progressive evolutionary divergence, viz. (i) Same kinase with many crystal structures, (ii) Within-Subfamily, (iii) Within-Family, (iv) Within-Group, and (v) Across-Group, were analyzed. We identified a flexibility signature conserved in all kinases involving residues in and around the catalytic loop with consistent low-magnitude fluctuations. However, the overall structural fluctuation profiles are conserved better in closely related kinases (Within-Subfamily and Within-family) than in distant ones (Within-Group and Across-Group). A substantial 65.4% of variation in flexibility was not accounted by variation in sequences or structures. Interestingly, we identified substructural residue-wise fluctuation patterns characteristic of kinases of different categories. Specifically, we recognized statistically significant fluctuations unique to families of protein kinase A, cyclin-dependent kinases, and nonreceptor tyrosine kinases. These fluctuation signatures localized to sites known to participate in protein-protein interactions typical of these kinase families. We report for the first time that residues characterized by fluctuations unique to the group/family are involved in interactions specific to the group/family. As highlighted for Src family, local regions with differential fluctuations are proposed as attractive targets for drug design. Overall, our study underscores the importance of consideration of fluctuations, over and above sequence and structural features, in understanding the roles of sites characteristic of kinases. Proteins 2016; 84:957-978. © 2016 Wiley Periodicals, Inc. PMID:27028938

  10. Assembly scaffold NifEN: A structural and functional homolog of the nitrogenase catalytic component.

    PubMed

    Fay, Aaron W; Blank, Michael A; Rebelein, Johannes G; Lee, Chi Chung; Ribbe, Markus W; Hedman, Britt; Hodgson, Keith O; Hu, Yilin

    2016-08-23

    NifEN is a biosynthetic scaffold for the cofactor of Mo-nitrogenase (designated the M-cluster). Previous studies have revealed the sequence and structural homology between NifEN and NifDK, the catalytic component of nitrogenase. However, direct proof for the functional homology between the two proteins has remained elusive. Here we show that, upon maturation of a cofactor precursor (designated the L-cluster) on NifEN, the cluster species extracted from NifEN is spectroscopically equivalent and functionally interchangeable with the native M-cluster extracted from NifDK. Both extracted clusters display nearly indistinguishable EPR features, X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS) spectra and reconstitution activities, firmly establishing the M-cluster-bound NifEN (designated NifEN(M)) as the only protein other than NifDK to house the unique nitrogenase cofactor. Iron chelation experiments demonstrate a relocation of the cluster from the surface to its binding site within NifEN(M) upon maturation, which parallels the insertion of M-cluster into an analogous binding site in NifDK, whereas metal analyses suggest an asymmetric conformation of NifEN(M) with an M-cluster in one αβ-half and an empty cluster-binding site in the other αβ-half, which led to the proposal of a stepwise assembly mechanism of the M-cluster in the two αβ-dimers of NifEN. Perhaps most importantly, NifEN(M) displays comparable ATP-independent substrate-reducing profiles to those of NifDK, which establishes the M-cluster-bound αβ-dimer of NifEN(M) as a structural and functional mimic of one catalytic αβ-half of NifDK while suggesting the potential of this protein as a useful tool for further investigations of the mechanistic details of nitrogenase. PMID:27506795

  11. Review of crystalline structures of some selected homologous series of rod-like molecules capable of forming liquid crystalline phases.

    PubMed

    Zugenmaier, Peter

    2011-01-01

    The crystal structures of four homologous series of rod-like molecules are reviewed, two of which form hydrogen bonds and two with a symmetric chemical constitution. Many of the compounds investigated turn into liquid crystalline phases upon temperature increase. It is of valuable interest to know possible conformations and possible packing arrangements as prerequisites to model liquid crystalline structures. The hydrogen bonds of homologous series of pure 4-(ω-hydroxyalkyloxy)-4'-hydroxybiphenyl (HnHBP, n the alkyloxy tail length) are realized through head to tail arrangements of the hydroxyl groups and crystallize except one compound in chiral space groups without the molecules containing any asymmetric carbon. The hydrogen bonds of the homologous series of 4-substituted benzoic acids with various lengths of the tail provide dimers through strong polar bonding of adjacent carboxyl groups and thus provide the stiff part of a mesogenic unit prerequisite for liquid crystalline phases. The homologous series of dialkanoyloxybiphenyls (BP-n, n = 1, 19), of which nine compounds could be crystallized, show liquid crystalline behavior for longer alkane chain lengths, despite the high mobility of the alkane chain ends already detectable in the crystal phase. A single molecule, half a molecule or two half molecules form the asymmetric unit in a centrosymmetric space group. The homologous series of 1,4-terephthalidene-bis-N-(4'-n-alkylaniline) (TBAA-n) exhibit a large variety of packing arrangements in the crystalline state, with or without relying on the symmetry center within the molecules. PMID:22174604

  12. Homology modelling and protein structure based functional analysis of five cucumovirus coat proteins.

    PubMed

    Gellért, Akos; Salánki, Katalin; Náray-Szabó, Gábor; Balázs, Ervin

    2006-03-01

    Coat proteins (CP) of five cucumovirus isolates, Cucumber mosaic virus (CMV) strains R, M and Trk7, Tomato aspermy virus (TAV) strain P and Peanut stunt virus (PSV) strain Er, were constructed by homology modelling. The X-ray structure of the Fny-CMV CP subunit B was used as a template. Models of cucumovirus CPs were built by the MODELLER program. Model refinements were carried out using the Kollman molecular mechanical force field. Models were analyzed by the PROCHECK programs. Electrostatic potential calculations were applied to all models and functional site search was performed with the PROSITE software, a web based tool for searching biologically significant sites. Symptom determinants published up to the present were compared with the PROSITE hits in the light of 3D models and electrostatic information. In all cases, we analyzed the effect of mutations on the structure, electrostatic potential patterns and function of CPs, respectively. We found that high flexibility of the betaE-alphaEF loop starting with the residue 129 is required, but it is not sufficient for the symptom appearance. Furthermore, phosphorylation of the CP is prospective to be important in the host response mechanism. All analyzed mutations were related to the modifications of the predicted phosphorylation sites. Based on our conclusions we predicted the infectivity of the examined viruses.

  13. Fruit-specific lectins from banana and plantain.

    PubMed

    Peumans, W J; Zhang, W; Barre, A; Houlès Astoul, C; Balint-Kurti, P J; Rovira, P; Rougé, P; May, G D; Van Leuven, F; Truffa-Bachi, P; Van Damme, E J

    2000-09-01

    One of the predominant proteins in the pulp of ripe bananas (Musa acuminata L.) and plantains (Musa spp.) has been identified as a lectin. The banana and plantain agglutinins (called BanLec and PlanLec, respectively) were purified in reasonable quantities using a novel isolation procedure, which prevented adsorption of the lectins onto insoluble endogenous polysaccharides. Both BanLec and PlanLec are dimeric proteins composed of two identical subunits of 15 kDa. They readily agglutinate rabbit erythrocytes and exhibit specificity towards mannose. Molecular cloning revealed that BanLec has sequence similarity to previously described lectins of the family of jacalin-related lectins, and according to molecular modelling studies has the same overall fold and three-dimensional structure. The identification of BanLec and PlanLec demonstrates the occurrence of jacalin-related lectins in monocot species, suggesting that these lectins are more widespread among higher plants than is actually believed. The banana and plantain lectins are also the first documented examples of jacalin-related lectins, which are abundantly present in the pulp of mature fruits but are apparently absent from other tissues. However, after treatment of intact plants with methyl jasmonate, BanLec is also clearly induced in leaves. The banana lectin is a powerful murine T-cell mitogen. The relevance of the mitogenicity of the banana lectin is discussed in terms of both the physiological role of the lectin and the impact on food safety.

  14. Lectindb: a plant lectin database.

    PubMed

    Chandra, Nagasuma R; Kumar, Nirmal; Jeyakani, Justin; Singh, Desh Deepak; Gowda, Sharan B; Prathima, M N

    2006-10-01

    Lectins, a class of carbohydrate-binding proteins, are now widely recognized to play a range of crucial roles in many cell-cell recognition events triggering several important cellular processes. They encompass different members that are diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities, and specificities as well as their larger biological roles and potential applications. It is not surprising, therefore, that the vast amount of experimental data on lectins available in the literature is so diverse, that it becomes difficult and time consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. To achieve an effective use of all the data toward understanding the function and their possible applications, an organization of these seemingly independent data into a common framework is essential. An integrated knowledge base ( Lectindb, http://nscdb.bic.physics.iisc.ernet.in ) together with appropriate analytical tools has therefore been developed initially for plant lectins by collating and integrating diverse data. The database has been implemented using MySQL on a Linux platform and web-enabled using PERL-CGI and Java tools. Data for each lectin pertain to taxonomic, biochemical, domain architecture, molecular sequence, and structural details as well as carbohydrate and hence blood group specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value not only for basic studies in lectin biology but also for basic studies in pursuing several applications in biotechnology, immunology, and clinical practice, using these molecules.

  15. Structural homologies with ATP- and folate-binding enzymes in the crystal structure of folylpolyglutamate synthetase

    PubMed Central

    Sun, Xiaolin; Bognar, Andrew L.; Baker, Edward N.; Smith, Clyde A.

    1998-01-01

    Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-Å resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Ω loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates. PMID:9618466

  16. Nitrogenase and Homologs

    PubMed Central

    2014-01-01

    Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes. PMID:25491285

  17. Crystal structures of the Dab homology domains of mouse disabled 1 and 2.

    PubMed

    Yun, Mikyung; Keshvara, Lakhu; Park, Cheon-Gil; Zhang, Yong-Mei; Dickerson, J Bradley; Zheng, Jie; Rock, Charles O; Curran, Tom; Park, Hee-Won

    2003-09-19

    Disabled (Dab) 1 and 2 are mammalian homologues of Drosophila DAB. Dab1 is a key cytoplasmic mediator in Reelin signaling that controls cell positioning in the developing central nervous system, whereas Dab2 is an adapter protein that plays a role in endocytosis. DAB family proteins possess an amino-terminal DAB homology (DH) domain that is similar to the phosphotyrosine binding/phosphotyrosine interaction (PTB/PI) domain. We have solved the structures of the DH domains of Dab2 (Dab2-DH) and Dab1 (Dab1-DH) in three different ligand forms, ligand-free Dab2-DH, the binary complex of Dab2-DH with the Asn-Pro-X-Tyr (NPXY) peptide of amyloid precursor protein (APP), and the ternary complex of Dab1-DH with the APP peptide and inositol 1,4,5-trisphosphate (Ins-1,4,5-P3, the head group of phosphatidylinositol-4,5-diphosphate (PtdIns-4,5-P2)). The similarity of these structures suggests that the rigid Dab DH domain maintains two independent pockets for binding of the APP/lipoprotein receptors and phosphoinositides. Mutagenesis confirmed the structural determinants specific for the NPXY sequence and PtdIns-4,5-P2 binding. NMR spectroscopy confirmed that the DH domain binds to Ins-1,4,5-P3 independent of the NPXY peptides. These findings suggest that simultaneous interaction of the rigid DH domain with the NPXY sequence and PtdIns-4,5-P2 plays a role in the attachment of Dab proteins to the APP/lipoprotein receptors and phosphoinositide-rich membranes.

  18. The amino acid sequence of mitogenic lectin-B from the roots of pokeweed (Phytolacca americana).

    PubMed

    Yamaguchi, K; Yurino, N; Kino, M; Ishiguro, M; Funatsu, G

    1997-04-01

    The complete amino acid sequence of pokeweed lectin-B (PL-B) has been analyzed by first sequencing seven lysylendopeptidase peptides derived from the reduced and S-pyridylethylated PL-B and then connecting them by analyzing the arginylendopeptidase peptides from the reduced and S-carboxymethylated PL-B. PL-B consists of 295 amino acid residues and two oligosaccharides linked to Asn96 and Asn139, and has a molecular mass of 34,493 Da. PL-B is composed of seven repetitive chitin-binding domains having 48-79% sequence homology with each other. Twelve amino acid residues including eight cysteine residues in these domains are absolutely conserved in all other chitin-binding domains of plant lectins and class I chitinases. Also, it was strongly suggested that the extremely high hemagglutinating and mitogenic activities of PL-B may be ascribed to its seven-domain structure.

  19. Modulation of MICAL Monooxygenase Activity by its Calponin Homology Domain: Structural and Mechanistic Insights

    PubMed Central

    Alqassim, Saif S.; Urquiza, Mauricio; Borgnia, Eitan; Nagib, Marc; Amzel, L. Mario; Bianchet, Mario A.

    2016-01-01

    MICALs (Molecule Interacting with CasL) are conserved multidomain enzymes essential for cytoskeletal reorganization in nerve development, endocytosis, and apoptosis. In these enzymes, a type-2 calponin homology (CH) domain always follows an N-terminal monooxygenase (MO) domain. Although the CH domain is required for MICAL-1 cellular localization and actin-associated function, its contribution to the modulation of MICAL activity towards actin remains unclear. Here, we present the structure of a fragment of MICAL-1 containing the MO and the CH domains—determined by X-ray crystallography and small angle scattering—as well as kinetics experiments designed to probe the contribution of the CH domain to the actin-modification activity. Our results suggest that the CH domain, which is loosely connected to the MO domain by a flexible linker and is far away from the catalytic site, couples F-actin to the enhancement of redox activity of MICALMO-CH by a cooperative mechanism involving a trans interaction between adjacently bound molecules. Binding cooperativity is also observed in other proteins regulating actin assembly/disassembly dynamics, such as ADF/Cofilins. PMID:26935886

  20. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    SciTech Connect

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.

  1. The lipopolysaccharide structures of Salmonella enterica serovar Typhimurium and Neisseria gonorrhoeae determine the attachment of human mannose-binding lectin to intact organisms.

    PubMed

    Devyatyarova-Johnson, M; Rees, I H; Robertson, B D; Turner, M W; Klein, N J; Jack, D L

    2000-07-01

    Mannose-binding lectin (MBL) is an important component of the innate immune system. It binds to the arrays of sugars commonly presented by microorganisms and activates the complement system independently of antibody. Despite detailed knowledge of the stereochemical basis of MBL binding, relatively little is known about how bacterial surface structures influence binding of the lectin. Using flow cytometry, we have measured the binding of MBL to a range of mutants of Salmonella enterica serovar Typhimurium and Neisseria gonorrhoeae which differ in the structure of expressed lipopolysaccharide (LPS). For both organisms, the possession of core LPS structures led to avid binding of MBL, which was abrogated by the addition of O antigen (Salmonella serovar Typhimurium) or sialic acid (N. gonorrhoeae). Truncation of the LPS within the core led to lower levels of MBL binding. It was not possible to predict the magnitude of MBL binding from the identity of the LPS terminal sugar alone, indicating that the three-dimensional disposition of LPS molecules is probably also of importance in determining MBL attachment. These results further support the hypothesis that LPS structure is a major determinant of MBL binding.

  2. LECTINPred: web Server that Uses Complex Networks of Protein Structure for Prediction of Lectins with Potential Use as Cancer Biomarkers or in Parasite Vaccine Design.

    PubMed

    Munteanu, Cristian R; Pedreira, Nieves; Dorado, Julián; Pazos, Alejandro; Pérez-Montoto, Lázaro G; Ubeira, Florencio M; González-Díaz, Humberto

    2014-04-01

    Lectins (Ls) play an important role in many diseases such as different types of cancer, parasitic infections and other diseases. Interestingly, the Protein Data Bank (PDB) contains +3000 protein 3D structures with unknown function. Thus, we can in principle, discover new Ls mining non-annotated structures from PDB or other sources. However, there are no general models to predict new biologically relevant Ls based on 3D chemical structures. We used the MARCH-INSIDE software to calculate the Markov-Shannon 3D electrostatic entropy parameters for the complex networks of protein structure of 2200 different protein 3D structures, including 1200 Ls. We have performed a Linear Discriminant Analysis (LDA) using these parameters as inputs in order to seek a new Quantitative Structure-Activity Relationship (QSAR) model, which is able to discriminate 3D structure of Ls from other proteins. We implemented this predictor in the web server named LECTINPred, freely available at http://bio-aims.udc.es/LECTINPred.php. This web server showed the following goodness-of-fit statistics: Sensitivity=96.7 % (for Ls), Specificity=87.6 % (non-active proteins), and Accuracy=92.5 % (for all proteins), considering altogether both the training and external prediction series. In mode 2, users can carry out an automatic retrieval of protein structures from PDB. We illustrated the use of this server, in operation mode 1, performing a data mining of PDB. We predicted Ls scores for +2000 proteins with unknown function and selected the top-scored ones as possible lectins. In operation mode 2, LECTINPred can also upload 3D structural models generated with structure-prediction tools like LOMETS or PHYRE2. The new Ls are expected to be of relevance as cancer biomarkers or useful in parasite vaccine design.

  3. Recombinant form of human wild type mannan-binding lectin (MBL/A) but not its structural variant (MBL/C) promotes phagocytosis of zymosan by activating complement.

    PubMed

    Rajagopalan, Rema; Nyaundi, Takazvida; Salvi, Veena P; Rawal, Nenoo

    2010-09-01

    Mannan-binding lectin (MBL) mediates innate immune responses, such as activation of the complement lectin pathway and phagocytosis, to help fight infections. In the present study, employing recombinant forms of human MBL (rMBL), the role of wild type MBL (rMBL/A) and its structural variant rMBL/C in mediating THP-1 phagocytosis of fluorescent-labeled zymosan was examined and compared to MBL purified from human plasma (pMBL/A). Flow cytometric analyses revealed that opsonization of zymosan with rMBL/A and pMBL/A (0.5-30microg/ml) resulted in a 1.9- and 2.7-fold enhancement in its uptake by THP-1 cells in the presence of serum that was depleted of both MBL and the classical pathway component, C1q (MBL/C1q Dpl serum). In contrast, no enhancement in phagocytosis was observed when zymosan was opsonized with rMBL/C. Addition of MBL monoclonal antibody, EDTA, or mannan to the opsonization reaction mixture inhibited THP-1 phagocytosis of pMBL/A opsonized zymosan. Heat inactivation of MBL/C1q Dpl serum abolished the 2-fold increase in phagocytosis and in the absence of serum the direct opsonic activity of MBL did not contribute significantly to the uptake of zymosan into THP-1 cells. Activation products of complement components C3 and C4 were deposited on zymosan opsonized with pMBL/A and rMBL/A but not rMBL/C indicating that MBL-mediated phagocytosis of zymosan requires activation of the complement lectin pathway. The findings imply that impaired MBL-mediated phagocytosis may put individuals homozygous for the mutant allele MBL/C but not wild type MBL/A at increased risk to infections such as yeast. PMID:20579738

  4. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types.

    PubMed

    Terada, Daiki; Kawai, Fumihiro; Noguchi, Hiroki; Unzai, Satoru; Hasan, Imtiaj; Fujii, Yuki; Park, Sam-Yong; Ozeki, Yasuhiro; Tame, Jeremy R H

    2016-01-01

    MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt's lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects. PMID:27321048

  5. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types

    PubMed Central

    Terada, Daiki; Kawai, Fumihiro; Noguchi, Hiroki; Unzai, Satoru; Hasan, Imtiaj; Fujii, Yuki; Park, Sam-Yong; Ozeki, Yasuhiro; Tame, Jeremy R. H.

    2016-01-01

    MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt’s lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects. PMID:27321048

  6. Galactose-specific seed lectins from Cucurbitaceae.

    PubMed

    Swamy, Musti J; Marapakala, Kavitha; Sultan, Nabil Ali M; Kenoth, Roopa

    2015-01-01

    Lectins, the carbohydrate binding proteins have been studied extensively in view of their ubiquitous nature and wide-ranging applications. As they were originally found in plant seed extracts, much of the work on them was focused on plant seed lectins, especially those from legume seeds whereas much less attention was paid to the lectins from other plant families. During the last two decades many studies have been reported on lectins from the seeds of Cucurbitaceae species. The main focus of the present review is to provide an overview of the current knowledge on these proteins, especially with regard to their physico-chemical characterization, interaction with carbohydrates and hydrophobic ligands, 3-dimensional structure and similarity to type-II ribosome inactivating proteins. The future outlook of research on these galactose-specific proteins is also briefly considered.

  7. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis).

    PubMed

    Hasan, Imtiaj; Gerdol, Marco; Fujii, Yuki; Rajia, Sultana; Koide, Yasuhiro; Yamamoto, Daiki; Kawsar, Sarkar M A; Ozeki, Yasuhiro

    2016-01-01

    MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic "mytilectin family" in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5' end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5'UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3'UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels. PMID:27187419

  8. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis)

    PubMed Central

    Hasan, Imtiaj; Gerdol, Marco; Fujii, Yuki; Rajia, Sultana; Koide, Yasuhiro; Yamamoto, Daiki; Kawsar, Sarkar M. A.; Ozeki, Yasuhiro

    2016-01-01

    MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic “mytilectin family” in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5′ end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5′UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3′UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels. PMID:27187419

  9. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    PubMed Central

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-01-01

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Availability and implementation: Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx. Contact: xin.gao@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307635

  10. 3-D Structure of Arcade Type Flares Deduced from Soft X-Ray Observations of a Homologous Flare Series

    NASA Astrophysics Data System (ADS)

    Morita, S.; Uchida, Y.; Hirose, S.

    2002-01-01

    In the solar flare problems, no ultimate model that matches observations has been established. One of the reasons for this is due to the restrictions in the observational data lacking information about the third dimension. Thus, many researchers have tried to get information about the three dimensional (3-D) coronal structures by using various techniques or ideas; like movie analysis, calculations using vector or line-of-sight components of photospheric magnetic data, and etc.. In the near future, a mission named STEREO which will obtain information about the 3-D coronal structures from two satellites, is planned. In the present paper, we noted the homology in a homologous flare series of February 1992. We derived a 3-D coronal structures by making use of the images obtained from the three different sight-lines at some common phases in them with Yohkoh SXT. The result of this analysis has made it clear that the so-called ``cusped arcade'' at the maximum phase in the well-known 1992 February 21 flare is, contrary to the general views, an ``elongated arch'' seen with a shallow oblique angle. It is not the ``flare arcade'' seen axis-on as widely conceived. This elongated arch coincides roughly with a diagonal of the main body of the "soft X-ray arcade" that came up later. The magnetic structure causing the flare as a whole turned out in this analysis to be a structure with quadruple magnetic sources. The relative locations of these four characteristic sources stayed almost the same throughout the period of this homologous flare series, determining the fundamental shape of this homologous series. We also examined the corresponding features for other similar events, also using information from other satellites, and will report the results.

  11. Structure and Function Analysis of Nucleocapsid Protein of Tomato Spotted Wilt Virus Interacting with RNA Using Homology Modeling*

    PubMed Central

    Li, Jia; Feng, Zhike; Wu, Jianyan; Huang, Ying; Lu, Gang; Zhu, Min; Wang, Bi; Mao, Xiang; Tao, Xiaorong

    2015-01-01

    The nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) plays key roles in assembling genomic RNA into ribonucleoprotein (RNP), which serves as a template for both viral gene transcription and genome replication. However, little is known about the molecular mechanism of how TSWV N interacts with genomic RNA. In this study, we demonstrated that TSWV N protein forms a range of higher ordered oligomers. Analysis of the RNA binding behavior of N protein revealed that no specific oligomer binds to RNA preferentially, instead each type of N oligomer is able to bind RNA. To better characterize the structure and function of N protein interacting with RNA, we constructed homology models of TSWV N and N-RNA complexes. Based on these homology models, we demonstrated that the positively charged and polar amino acids in its predicted surface cleft of TSWV N are critical for RNA binding. Moreover, by N-RNA homology modeling, we found that the RNA component is deeply embedded in the predicted protein cleft; consistently, TSWV N-RNA complexes are relatively resistant to digestion by RNase. Collectively, using homology modeling, we determined the RNA binding sites on N and found a new protective feature for N protein. Our findings also provide novel insights into the molecular details of the interaction of TSWV N with RNA components. PMID:25540203

  12. Structure of the N-linked oligosaccharides from tridacnin, a lectin found in the haemolymph of the giant clam Hippopus hippopus.

    PubMed

    Puanglarp, N; Oxley, D; Currie, G J; Bacic, A; Craik, D J; Yellowlees, D

    1995-09-15

    Tridacnin, a glycoprotein lectin, was isolated from the symbiotic marine clam Hippopus hippopus and the structure of its major N-glycan chains determined. Tridacnin contains only N-linked glycans which were quantitatively cleaved by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Following purification by anion-exchange HPLC, the structures of the oligosaccharides were established using a combination of electrospray ionisation mass spectrometry, 1H-NMR spectroscopy and linkage analysis. The N-glycans are primarily of the oligomannose type but, in addition, some contain a novel 6-O-Me group on the terminal mannose residue of the chain. The N-glycan chains had the following structures. [formula: see text

  13. Using Single Lectins to Enrich Glycoproteins in Conditioned Media.

    PubMed

    Sethi, Manveen K; Fanayan, Susan

    2015-08-03

    Lectins are sugar-binding proteins that can recognize and bind to carbohydrates conjugated to proteins and lipids. Coupled with mass spectrometry technologies, lectin affinity chromatography is becoming a popular approach for identification and quantification of glycoproteins in complex samples such as blood, tumor tissues, and cell lines. Given the commercial availability of a large number of lectins that recognize diverse sugar structures, it is now possible to isolate and study glycoproteins for biological and medical research. This unit provides a general guide to single-lectin-based enrichment of glycoproteins from serum-free conditioned media. Due to the unique carbohydrate specificity of most lectins and the complexity of the samples, optimization steps may be required to evaluate different elution buffers and methods as well as binding conditions, for each lectin, for optimal recovery of bound glycoproteins.

  14. Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families.

    PubMed

    Torrance, James W; Bartlett, Gail J; Porter, Craig T; Thornton, Janet M

    2005-04-01

    Catalytic site structure is normally highly conserved between distantly related enzymes. As a consequence, templates representing catalytic sites have the potential to succeed at function prediction in cases where methods based on sequence or overall structure fail. There are many methods for searching protein structures for matches to structural templates, but few validated template libraries to use with these methods. We present a library of structural templates representing catalytic sites, based on information from the scientific literature. Furthermore, we analyse homologous template families to discover the diversity within families and the utility of templates for active site recognition. Templates representing the catalytic sites of homologous proteins mostly differ by less than 1A root mean square deviation, even when the sequence similarity between the two proteins is low. Within these sets of homologues there is usually no discernible relationship between catalytic site structure similarity and sequence similarity. Because of this structural conservation of catalytic sites, the templates can discriminate between matches to related proteins and random matches with over 85% sensitivity and predictive accuracy. Templates based on protein backbone positions are more discriminating than those based on side-chain atoms. These analyses show encouraging prospects for prediction of functional sites in structural genomics structures of unknown function, and will be of use in analyses of convergent evolution and exploring relationships between active site geometry and chemistry. The template library can be queried via a web server at and is available for download.

  15. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA.

    PubMed Central

    Nomura, M; Yates, J L; Dean, D; Post, L E

    1980-01-01

    Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding region on 16S rRNA and a region of the mRNA where S7 acts as a translational repressor. Similarly, there is structural homology between one of the reported S4 binding regions on 16S rRNA and the mRNA target site for S4. The observed homology supports the concept that regulation by repressor r proteins is based on competition between rRNA and mRNA for these proteins and that the same structural features and of the r proteins are used in their interactions with both rRNA and mRNA. PMID:7012833

  16. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA.

    PubMed

    Nomura, M; Yates, J L; Dean, D; Post, L E

    1980-12-01

    Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding region on 16S rRNA and a region of the mRNA where S7 acts as a translational repressor. Similarly, there is structural homology between one of the reported S4 binding regions on 16S rRNA and the mRNA target site for S4. The observed homology supports the concept that regulation by repressor r proteins is based on competition between rRNA and mRNA for these proteins and that the same structural features and of the r proteins are used in their interactions with both rRNA and mRNA.

  17. In Silico Study to Develop a Lectin-Like Protein from Mushroom Agaricus bisporus for Pharmaceutical Application

    PubMed Central

    Ismaya, Wangsa Tirta; Yunita; Damayanti, Sophi; Wijaya, Caroline; Tjandrawinata, Raymond R.; Retnoningrum, Debbie Sofie; Rachmawati, Heni

    2016-01-01

    A lectin-like protein of unknown function designated as LSMT was recently discovered in the edible mushroom Agaricus bisporus. The protein shares high structural similarity to HA-33 from Clostridium botulinum (HA33) and Ricin-B-like lectin from the mushroom Clitocybe nebularis (CNL), which have been developed as drug carrier and anti-cancer, respectively. These homologous proteins display the ability to penetrate the intestinal epithelial cell monolayer, and are beneficial for oral administration. As the characteristics of LSMT are unknown, a structural study in silico was performed to assess its potential pharmaceutical application. The study suggested potential binding to target ligands such as HA-33 and CNL although the nature, specificity, capacity, mode, and strength may differ. Further molecular docking experiments suggest that interactions between the LSMT and tested ligands may take place. This finding indicates the possible use of the LSMT protein, initiating new research on its use for pharmaceutical purposes. PMID:27110510

  18. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function.

    PubMed

    Ramakrishnan, Gayatri; Ochoa-Montaño, Bernardo; Raghavender, Upadhyayula S; Mudgal, Richa; Joshi, Adwait G; Chandra, Nagasuma R; Sowdhamini, Ramanathan; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better

  19. Are vicilins another major class of legume lectins?

    PubMed

    Ribeiro, Ana C; Monteiro, Sara V; Carrapiço, Belmira M; Ferreira, Ricardo B

    2014-01-01

    Legume lectins comprise a structurally related, Ca/Mn-dependent, widespread, abundant and well characterized lectin family when compared to the large number of lectins from other sources described in the literature. Strangely enough, no specific function has been assigned to them aside from a possible role in storage and/or defense. Using a recent and fine-tuned methodology capable of specific lectin identification, β-conglutin, Vicia faba vicilin and β-lathyrin, the vicilin storage globulins from Lupinus albus, V. faba and Lathyrus sativus, respectively, were shown to be capable of affinity binding to thoroughly washed erythrocyte membranes and of specific elution with appropriate sugars. Based on this evidence and on sparse data published in the literature, a second family of legume lectins is proposed: the 7S family of storage proteins from leguminous seeds, or family II of legume lectins. These lectins are also structurally related, widespread and well characterized. In addition, they self-aggregate in a Ca/Mg, electrostatic dependent manner and are even more abundant than the family I of legume lectins. Using the same evidence, reserve and defense roles may be attributed to family II of legume lectins.

  20. Lectin genes in the Frankia alni genome.

    PubMed

    Pujic, Petar; Fournier, Pascale; Alloisio, Nicole; Hay, Anne-Emmanuelle; Maréchal, Joelle; Anchisi, Stéphanie; Normand, Philippe

    2012-01-01

    Frankia alni strain ACN14a's genome was scanned for the presence of determinants involved in interactions with its host plant, Alnus spp. One such determinant type is lectin, proteins that bind specifically to sugar motifs. The genome of F. alni was found to contain 7 such lectin-coding genes, five of which were of the ricinB-type. The proteins coded by these genes contain either only the lectin domain, or also a heat shock protein or a serine-threonine kinase domain upstream. These lectins were found to have several homologs in Streptomyces spp., and a few in other bacterial genomes among which none in Frankia EAN1pec and CcI3 and two in strain EUN1f. One of these F. alni genes, FRAAL0616, was cloned in E. coli, fused with a reporter gene yielding a fusion protein that was found to bind to both root hairs and to bacterial hyphae. This protein was also found to modify the dynamics of nodule formation in A. glutinosa, resulting in a higher number of nodules per root. Its role could thus be to permit binding of microbial cells to root hairs and help symbiosis to occur under conditions of low Frankia cell counts such as in pioneer situations. PMID:22159868

  1. Identification and characterization of a novel legume-like lectin cDNA sequence from the red marine algae Gracilaria fisheri.

    PubMed

    Suttisrisung, Sukanya; Senapin, Saengchan; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2011-12-01

    A legume-type lectin (L-Lectin) gene of the red algae Gracilaria fisheri (GFL) was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of GFL was 1714 bp and contained a 1542 bp open reading frame encoding 513 amino acids with a predicted molecular mass of 56.5 kDa. Analysis of the putative amino acid sequence with NCBI-BLAST revealed a high homology (30-68%) with legume-type lectins (L-lectin) from Griffithsia japonica, Clavispora lusitaniae, Acyrthosiphon pisum, Tetraodon nigroviridis and Xenopus tropicalis. Phylogenetic relationship analysis showed the highest sequence identity to a glycoprotein of the red algae Griffithsia japonica (68%) (GenBank number AAM93989). Conserved Domain Database analysis detected an N-terminal carbohydrate recognition domain (CRD), the characteristic of L-lectins, which contained two sugar binding sites and a metal binding site. The secondary structure prediction of GFL showed a beta-sheet structure, connected with turn and coil. The most abundant structural element of GFL was the random coil, while the alpha-helixes were distributed at the N- and C-termini, and 21 beta-sheets were distributed in the CRD. Computer analysis of three-dimensional structure showed a common feature of L-lectins of GFL, which included an overall globular shape that was composed of a beta-sandwich of two anti-parallel beta-sheets, monosaccharide binding sites, were on the top of the structure and in proximity with a metal binding site. Northern blot analysis using a DIG-labelled probe derived from a partial GFL sequence revealed a hybridization signal of (approx.) 1.7 kb consistent with the length of the full-length GFL cDNA identified by RACE. No detectable band was observed from control total RNA extracted from filamentous green algae.

  2. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra of the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.

  3. Histochemical demonstration of different types of poly-N-acetyllactosamine structures in human thyroid neoplasms using lectins and endo-beta-galactosidase digestion.

    PubMed

    Ito, N; Yokota, M; Kawahara, S; Nagaike, C; Morimura, Y; Hirota, T; Matsunaga, T

    1995-08-01

    Blood-group-related antigens expressed in papillary carcinomas and other types of neoplasm of the human thyroid glands have been shown to be carried by poly-N-acetyllactosamines containing a linear domain susceptible to endo-beta-galactosidase digestion. To make clear more precisely the backbone poly-N-acetyllactosamine structures, labelled lectins specific to different types of these structures and specific to core structures with beta 1-6GlcNAc branching of N- and O-linked glycoproteins were employed in conjunction with prior endo-beta-galactosidase digestion on formalin-fixed, paraffin-embedded neoplasms of the human thyroid glands. In papillary carcinomas, Datura stramonium agglutinin (DSA) and succinyl wheat germ agglutinin (Suc-WGA) reacted most consistently and frequently with papillary carcinomas from all the individuals examined. Pokeweed mitogen (PWM) likewise stained the cells of papillary carcinomas from all the individuals examined, but in some individuals the number of lectin-reactive cells were very small. Lycoperscion esculentum aggultinin (LEA), Solanum tuberosum agglutinin (STA), Phaseolus vulgaris agglutinin L (PHA-L) and Artocarpus integrifolia agglutinin (jacalin) similarly bound to the cancer cells from most of the individuals, and in these cases the number of reactive cells was usually much more restricted than was the case with DSA or PWM. In adenoma and other types of carcinoma, such as follicular carcinomas, these lectins specific to poly-N-acetyllactosamine exhibited slight or no reactivity with the cells, whereas PHA-L and jacalin similarly bound to the cells of adenomas and carcinomas from most of the individuals examined. Prior digestion with endo-beta-galactosidase completely eliminated or markedly reduced the reactivity with PWM and LEA in papillary carcinomas. Reactivity with DSA, Suc-WGA, STA, PHA-L and jacalin was slightly reduced or not at all affected by enzyme digestion. These results confirmed that poly

  4. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    PubMed

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs.

  5. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    PubMed

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs. PMID:25824951

  6. Chromosome 1 localization of the human alpha-L-fucosidase structural gene with a homologous site on chromosome 2.

    PubMed

    Fowler, M L; Nakai, H; Byers, M G; Fukushima, H; Eddy, R L; Henry, W M; Haley, L L; O'Brien, J S; Shows, T B

    1986-01-01

    Two cDNA clones coding for human alpha-L-fucosidase, one from the coding region and the other primarily from the 3' untranslated region, were used to map the location of the alpha-L-fucosidase gene. Southern filter analysis of somatic cell hybrid lines mapped the structural gene to the short arm of human chromosome 1, and in situ hybridization to chromosomes of human leukocytes further localized the homologous area to the 1p36.1----p34.1 region, with the most likely location being the distal region of 1p34. Further Southern filter analysis detected a second site of homology on chromosome 2. This alpha-L-fucosidase-like site has been designated FUCA1L.

  7. Plant Lectins: Wheat Defense Strategy Against Hessian Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce a variety of defense proteins, including lectins in response to attack by phytophagous insects. Ultrastructural studies reveal that binding to insect gut structures and resistance to proteolytic degradation by insect digestive enzymes are the two main prerequisites for the lectins to...

  8. Diversified Carbohydrate-Binding Lectins from Marine Resources

    PubMed Central

    Ogawa, Tomohisa; Watanabe, Mizuki; Naganuma, Takako; Muramoto, Koji

    2011-01-01

    Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families. PMID:22312473

  9. Transitive Homology-Guided Structural Studies Lead to Discovery of Cro Proteins With 40% Sequence Identify But Different Folds

    SciTech Connect

    Roessler, C.G.; Hall, B.M.; Anderson, W.J.; Ingram, W.M.; Roberts, S.A.; Montfort, W.R.; Cordes, M.H.J.

    2009-05-27

    Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a 'stepping-stone' method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and {lambda}. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and {lambda}. The domains show 40% sequence identity but differ by switching of {alpha}-helix to {beta}-sheet in a C-terminal region spanning {approx}25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization.

  10. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL

    PubMed Central

    2012-01-01

    Background In recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users. Results A simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-]BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models. Conclusions PyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool. Source code, installation instructions, video tutorials and a user's guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.html PMID:22536966

  11. Structural and Functional Studies of the Ras-Associating and Pleckstrin Homology Domains of Grb10 and Grb14

    SciTech Connect

    Depetris, R.; Wu, J; Hubbard, S

    2009-01-01

    Growth factor receptor-binding proteins Grb7, Grb10 and Grb14 are adaptor proteins containing a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region and a C-terminal Src-homology-2 domain. Previous structural studies showed that the Grb14 BPS region binds as a pseudosubstrate inhibitor in the tyrosine kinase domain of the insulin receptor to suppress insulin signaling. Here we report the crystal structure of the RA and PH domains of Grb10 at 2.6-A resolution. The structure reveals that these two domains, along with the intervening linker, form an integrated, dimeric structural unit. Biochemical studies demonstrated that Grb14 binds to activated Ras, which may serve as a timing mechanism for downregulation of insulin signaling. Our results illuminate the membrane-recruitment mechanisms not only of Grb7, Grb10 and Grb14 but also of MIG-10, Rap1-interacting adaptor molecule, lamellipodin and Pico, proteins involved in actin-cytoskeleton rearrangement that share a structurally related RA-PH tandem unit.

  12. Evolutionary analysis reveals collective properties and specificity in the C-type lectin and lectin-like domain superfamily.

    PubMed

    Ebner, Sharon; Sharon, Nathan; Ben-Tal, Nir

    2003-10-01

    Members of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily share a common fold and are involved in a variety of functions, such as generalized defense mechanisms against foreign agents, discrimination between healthy and pathogen-infected cells, and endocytosis and blood coagulation. In this work we used ConSurf, a computer program recently developed in our lab, to perform an evolutionary analysis of this superfamily in order to further identify characteristics of all or part of its members. Given a set of homologous proteins in the form of multiple sequence alignment (MSA) and an inferred phylogenetic tree, ConSurf calculates the conservation score in every alignment position, taking into account the relationships between the sequences and the physicochemical similarity between the amino acids. The scores are then color-coded onto the three-dimensional structure of one of the homologous proteins. We provide here and at http://ashtoret.tau.ac.il/ approximately sharon a detailed analysis of the conservation pattern obtained for the entire superfamily and for two subgroups of proteins: (a) 21 CTLs and (b) 11 heterodimeric CTLD toxins. We show that, in general, proteins of the superfamily have one face that is constructed mostly of conserved residues and another that is not, and we suggest that the former face is involved in binding to other proteins or domains. In the CTLs examined we detected a region of highly conserved residues, corresponding to the known calcium- and carbohydrate-binding site of the family, which is not conserved throughout the entire superfamily, and in the CTLD toxins we found a patch of highly conserved residues, corresponding to the known dimerization region of these proteins. Our analysis also detected patches of conserved residues with yet unknown function(s).

  13. Structure of Arabidopsis thaliana 5-methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    SciTech Connect

    Ku,S.; Cornell, K.; Howell, P.

    2007-01-01

    Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATP?S and MTR has been determined at 1.9 Angstroms resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATP?S analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

  14. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene.

    PubMed Central

    Aoyama, T; Sawamura, T; Furutani, Y; Matsuoka, R; Yoshida, M C; Fujiwara, H; Masaki, T

    1999-01-01

    We have reported the cDNA cloning of a modified low-density-lipoprotein (LDL) receptor, designated lectin-like oxidized LDL receptor-1 (LOX-1), which is postulated to be involved in endothelial dysfunction and the pathogenesis of atherosclerosis. Here, we determined the organization of the human LOX-1 gene, including the 5'-regulatory region. The 5'-regulatory region contained several potential cis-regulatory elements, such as GATA-2 binding element, c-ets-1 binding element, 12-O-tetradecanoylphorbol 13-acetate-responsive element and shear-stress-responsive elements, which may mediate the endothelium-specific and inducible expression of LOX-1. The major transcription-initiation site was found to be located 29 nucleotides downstream of the TATA box and 61 nucleotides upstream from the translation-initiation codon. The minor initiation site was found to be 5 bp downstream from the major site. Most of the promoter activity of the LOX-1 gene was ascribed to the region (-150 to -90) containing the GC and CAAT boxes. The coding sequence was divided into 6 exons by 5 introns. The first 3 exons corresponded to the different functional domains of the protein (cytoplasmic, transmembrane and neck domains), and the residual 3 exons encoded the carbohydrate-recognition domain similar to the case of other C-type lectin genes. The LOX-1 gene was a single-copy gene and assigned to the p12.3-p13.2 region of chromosome 12. Since the locus for a familial hypertension has been mapped to the overlapping region, LOX-1 might be the gene responsible for the hypertension. PMID:10085242

  15. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  16. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  17. Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses.

    PubMed Central

    Horzinek, M C; Lutz, H; Pedersen, N C

    1982-01-01

    Transmissible gastroenteritis virus of swine (TGEV), feline infectious peritonitis virus (FIPV), and canine coronavirus were studied with respect to their serological cross-reactivity in homologous and heterologous virus neutralization, immune precipitation of radiolabeled TGEV, electroblotting, and enzyme-linked immunosorbent assay using individual virion polypeptides prepared by polyacrylamide gel electrophoresis. TGEV was neutralized by feline anti-FIPV serum, and the reaction was potentiated by complement; heterologous neutralization involved antibody reacting with the peplomer protein (P), the envelope protein (E), and cellular (glycolipid) components incorporated into the TGEV membrane. Electrophoretic analysis of immune precipitates containing [35S]methionine-labeled disrupted TGEV and feline anti-FIPV antibody confirmed the reaction with the P and E polypeptides and showed the nucleocapsid protein (N) in addition. Electroblotting, followed by incubation with antibody, 125I-labeled protein A, and fluorography, disclosed cross-reactions between the three viruses at the N and E levels and revealed differences in the apparent molecular weights of the latter. Enzyme immunoassays performed with standard amounts of immobilized P, N, and E polypeptides of the three viruses showed recognition of the antigens by homologous and heterologous antibody to comparable degrees. These results indicate a close antigenic relationship between TGEV, FIPV, and canine coronavirus due to common determinants on the three major virion proteins. The taxonomic implications of these findings are discussed. Images PMID:6182101

  18. Bacteriophage Nf DNA region controlling late transcription: structural and functional homology with bacteriophage phi 29.

    PubMed

    Nuez, B; Salas, M

    1993-06-25

    The putative region for the control of late transcription of the Bacillus subtilis phage Nf has been identified by DNA sequence homology with the equivalent region of the evolutionary related phage phi 29. A similar arrangement of early and late promoters has been detected in the two phages, suggesting that viral transcription could be regulated in a similar way at late times of the infection. Transcription of late genes requires the presence of a viral early protein, gpF in phage Nf and p4 in phage phi 29, being the latter known to bind to a DNA region located upstream from the phage phi 29 late promoter. We have identified a DNA region located upstream from the putative late promoter of phage Nf that is probably involved in binding protein gpF. Furthermore, we show that the phage phi 29 protein p4 is able to bind to this region and activate transcription from the phage Nf putative late promoter. Sequence alignment has also revealed the existence of significant internal homology between the two early promoters contained in this region of each phage.

  19. Identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9.

    PubMed Central

    Yasugi, T; Howley, P M

    1996-01-01

    Ubiquitin conjugating enzymes (UBCs) are a family of proteins directly involved in ubiquitination of proteins. Ubiquitination is known to be involved in control of a variety of cellular processes, including cell proliferation, through the targeting of key regulatory proteins for degradation. The ubc9 gene of the yeast Saccharomyces cerevisiae (Scubc9) is an essential gene which is required for cell cycle progression and is involved in the degradation of S phase and M phase cyclins. We have identified a human homolog of Scubc9 (termed hubc9) using the two hybrid screen for proteins that interact with the human papillomavirus type 16 E1 replication protein. The hubc9 encoded protein shares a very high degree of amino acid sequence similarity with ScUBC9 and with the homologous hus5+ gene product of Schizosaccharomyces pombe. Genetic complementation experiments in a S.cerevisiae ubc9ts mutant reveal that hUBC9 can substitute for the function of ScUBC9 required for cell cycle progression. PMID:8668529

  20. Sugared biomaterial binding lectins: achievements and perspectives.

    PubMed

    Bojarová, P; Křen, V

    2016-07-19

    Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants. PMID:27075026

  1. Conserved protein YecM from Escherichia coli shows structural homology to metal-binding isomerases and oxygenases.

    SciTech Connect

    Zhang, R.; Duke, N.; Laskowski, R.; Evdokimova, E.; Skarina, T.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Univ. of Toronto; Univ. Health Network; Birbeck Coll.

    2003-01-01

    The crystal structure of protein YecM{sup 1} has been determined at 1.6 {angstrom} resolution as a part of the ongoing structural genomics initiative (http://www.mcsg.anl.gov). The YecM is a conserved, hypothetical Escherichia coli protein with sequence homologs found exclusively in bacteria, including Salmonella typhimunium, Yersinia pestis, Vibrio cholerae, Haemophilus influenza, and Pasteurella multocida. YecM (188 residues) shows also sequence similarity to proteins in COG database (http://www.ncbi.nlm.nih.gov/cgi-bin/COG/palox-?COG3102). YecM (Pfam-B domain 24546) was selected as a structural genomics target it shows no sequence similarity with proteins of known three-dimensional structure and therefore, may contain a previously unobserved field.

  2. Biotoxicity assays for fruiting body lectins and other cytoplasmic proteins.

    PubMed

    Künzler, Markus; Bleuler-Martinez, Silvia; Butschi, Alex; Garbani, Mattia; Lüthy, Peter; Hengartner, Michael O; Aebi, Markus

    2010-01-01

    Recent studies suggest that a specific class of fungal lectins, commonly referred to as fruiting body lectins, play a role as effector molecules in the defense of fungi against predators and parasites. Hallmarks of these fungal lectins are their specific expression in reproductive structures, fruiting bodies, and/or sclerotia and their synthesis on free ribosomes in the cytoplasm. Fruiting body lectins are released upon damage of the fungal cell and bind to specific carbohydrate structures of predators and parasites, which leads to deterrence, inhibition of growth, and development or even killing of these organisms. Here, we describe assays to assess the toxicity of such lectins and other cytoplasmic proteins toward three different model organisms: the insect Aedes aegypti, the nematode Caenorhabditis elegans, and the amoeba Acanthamoeba castellanii. All three assays are based on heterologous expression of the examined proteins in the cytoplasm of Escherichia coli and feeding of these recombinant bacteria to omnivorous and bacterivorous organisms. PMID:20816208

  3. Binding of the Wheat Germ Lectin to Cryptococcus neoformans Suggests an Association of Chitinlike Structures with Yeast Budding and Capsular Glucuronoxylomannan▿ †

    PubMed Central

    Rodrigues, Marcio L.; Alvarez, Mauricio; Fonseca, Fernanda L.; Casadevall, Arturo

    2008-01-01

    The capsule of Cryptococcus neoformans is a complex structure whose assembly requires intermolecular interactions to connect its components into an organized structure. In this study, we demonstrated that the wheat germ agglutinin (WGA), which binds to sialic acids and β-1,4-N-acetylglucosamine (GlcNAc) oligomers, can also bind to cryptococcal capsular structures. Confocal microscopy demonstrated that these structures form round or hooklike projections linking the capsule to the cell wall, as well as capsule-associated structures during yeast budding. Chemical analysis of capsular extracts by gas chromatography coupled to mass spectrometry and high-pH anion-exchange chromatography suggested that the molecules recognized by WGA were firmly associated with the cell wall. Enzymatic treatment, competition assays, and staining with chemically modified WGA revealed that GlcNAc oligomers, but not sialic acids, were the molecules recognized by the lectin. Accordingly, treatment of C. neoformans cells with chitinase released glucuronoxylomannan (GXM) from the cell surface and reduced the capsule size. Chitinase-treated acapsular cells bound soluble GXM in a modified pattern. These results indicate an association of chitin-derived structures with GXM and budding in C. neoformans, which may represent a new mechanism by which the capsular polysaccharide interacts with the cell wall and is rearranged during replication. PMID:18039942

  4. Identification, Characterization, and X-ray Crystallographic Analysis of a Novel Type of Mannose-Specific Lectin CGL1 from the Pacific Oyster Crassostrea gigas

    PubMed Central

    Unno, Hideaki; Matsuyama, Kazuki; Tsuji, Yoshiteru; Goda, Shuichiro; Hiemori, Keiko; Tateno, Hiroaki; Hirabayashi, Jun; Hatakeyama, Tomomitsu

    2016-01-01

    A novel mannose-specific lectin, named CGL1 (15.5 kDa), was isolated from the oyster Crassostrea gigas. Characterization of CGL1 involved isothermal titration calorimetry (ITC), glycoconjugate microarray, and frontal affinity chromatography (FAC). This analysis revealed that CGL1 has strict specificity for the mannose monomer and for high mannose-type N-glycans (HMTGs). Primary structure of CGL1 did not show any homology with known lectins but did show homology with proteins of the natterin family. Crystal structure of the CGL1 revealed a unique homodimer in which each protomer was composed of 2 domains related by a pseudo two-fold axis. Complex structures of CGL1 with mannose molecules showed that residues have 8 hydrogen bond interactions with O1, O2, O3, O4, and O5 hydroxyl groups of mannose. The complex interactions that are not observed with other mannose-binding lectins revealed the structural basis for the strict specificity for mannose. These characteristics of CGL1 may be helpful as a research tool and for clinical applications. PMID:27377186

  5. Identification, Characterization, and X-ray Crystallographic Analysis of a Novel Type of Mannose-Specific Lectin CGL1 from the Pacific Oyster Crassostrea gigas.

    PubMed

    Unno, Hideaki; Matsuyama, Kazuki; Tsuji, Yoshiteru; Goda, Shuichiro; Hiemori, Keiko; Tateno, Hiroaki; Hirabayashi, Jun; Hatakeyama, Tomomitsu

    2016-01-01

    A novel mannose-specific lectin, named CGL1 (15.5 kDa), was isolated from the oyster Crassostrea gigas. Characterization of CGL1 involved isothermal titration calorimetry (ITC), glycoconjugate microarray, and frontal affinity chromatography (FAC). This analysis revealed that CGL1 has strict specificity for the mannose monomer and for high mannose-type N-glycans (HMTGs). Primary structure of CGL1 did not show any homology with known lectins but did show homology with proteins of the natterin family. Crystal structure of the CGL1 revealed a unique homodimer in which each protomer was composed of 2 domains related by a pseudo two-fold axis. Complex structures of CGL1 with mannose molecules showed that residues have 8 hydrogen bond interactions with O1, O2, O3, O4, and O5 hydroxyl groups of mannose. The complex interactions that are not observed with other mannose-binding lectins revealed the structural basis for the strict specificity for mannose. These characteristics of CGL1 may be helpful as a research tool and for clinical applications. PMID:27377186

  6. Cloning and characterization of a monocot mannose-binding lectin from Crocus vernus (family Iridaceae).

    PubMed

    Van Damme, E J; Astoul, C H; Barre, A; Rougé, P; Peumans, W J

    2000-08-01

    The molecular structure and carbohydrate-binding activity of the lectin from bulbs of spring crocus (Crocus vernus) has been determined unambiguously using a combination of protein analysis and cDNA cloning. Molecular cloning revealed that the lectin called C. vernus agglutinin (CVA) is encoded by a precursor consisting of two tandemly arrayed lectin domains with a reasonable sequence similarity to the monocot mannose-binding lectins. Post-translational cleavage of the precursor yields two equally sized polypeptides. Mature CVA consists of two pairs of polypeptides and hence is a heterotetrameric protein. Surface plasmon resonance studies of the interaction of the crocus lectin with high mannose-type glycans showed that the lectin interacts specifically with exposed alpha-1,3-dimannosyl motifs. Molecular modelling studies confirmed further the close relationships in overall fold and three-dimensional structure of the mannose-binding sites of the crocus lectin and other monocot mannose-binding lectins. However, docking experiments indicate that only one of the six putative mannose-binding sites of the CVA protomer is active. These results can explain the weak carbohydrate-binding activity and low specific agglutination activity of the lectin. As the cloning and characterization of the spring crocus lectin demonstrate that the monocot mannose-binding lectins occur also within the family Iridaceae a refined model of the molecular evolution of this lectin family is proposed.

  7. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications.

    PubMed Central

    Bazan, J F; Fletterick, R J

    1988-01-01

    Proteases that are encoded by animal picornaviruses and plant como- and potyviruses form a related group of cysteine-active-center enzymes that are essential for virus maturation. We show that these proteins are homologous to the family of trypsin-like serine proteases. In our model, the active-site nucleophile of the trypsin catalytic triad, Ser-195, is changed to a Cys residue in these viral proteases. The other two residues of the triad, His-57 and Asp-102, are otherwise absolutely conserved in all the viral protease sequences. Secondary structure analysis of aligned sequences suggests the location of the component strands of the twin beta-barrel trypsin fold in the viral proteases. Unexpectedly, the 2a and 3c subclasses of viral cysteine proteases are, respectively, homologous to the small and large structural subclasses of trypsin-like serine proteases. This classification allows the molecular mapping of residues from viral sequences onto related tertiary structures; we precisely identify amino acids that are strong determinants of specificity for both small and large viral cysteine proteases. Images PMID:3186696

  8. Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket.

    PubMed

    Sablin, Elena P; Blind, Raymond D; Uthayaruban, Rubatharshini; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Ingraham, Holly A; Fletterick, Robert J

    2015-12-01

    The nuclear receptor LRH-1 (Liver Receptor Homolog-1, NR5A2) is a transcription factor that regulates gene expression programs critical for many aspects of metabolism and reproduction. Although LRH-1 is able to bind phospholipids, it is still considered an orphan nuclear receptor (NR) with an unknown regulatory hormone. Our prior cellular and structural studies demonstrated that the signaling phosphatidylinositols PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind and regulate SF-1 (Steroidogenic Factor-1, NR5A1), a close homolog of LRH-1. Here, we describe the crystal structure of human LRH-1 ligand binding domain (LBD) bound by PIP3 - the first phospholipid with a head group endogenous to mammals. We show that the phospholipid hormone binds LRH-1 with high affinity, stabilizing the receptor LBD. While the hydrophobic PIP3 tails (C16/C16) are buried inside the LRH-1 ligand binding pocket, the negatively charged PIP3 head group is presented on the receptor surface, similar to the phosphatidylinositol binding mode observed in the PIP3-SF-1 structure. Thus, data presented in this work reinforce our earlier findings demonstrating that signaling phosphatidylinositols regulate the NR5A receptors LRH-1 and SF-1. PMID:26416531

  9. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  10. Lectins: production and practical applications

    PubMed Central

    2010-01-01

    Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754

  11. Solution Structure and Sugar-Binding Mechanism of Mouse Latrophilin-1 RBL: a 7TM Receptor-Attached Lectin-Like Domain

    PubMed Central

    Vakonakis, Ioannis; Langenhan, Tobias; Prömel, Simone; Russ, Andreas; Campbell, Iain D.

    2008-01-01

    Summary Latrophilin-1 (Lat-1), a target receptor for α-Latrotoxin, is a putative G protein-coupled receptor implicated in synaptic function. The extracellular portion of Lat-1 contains a rhamnose binding lectin (RBL)-like domain of unknown structure. RBL domains, first isolated from the eggs of marine species, are also found in the ectodomains of other metazoan transmembrane proteins, including a recently discovered coreceptor of the neuronal axon guidance molecule SLT-1/Slit. Here, we describe a structure of this domain from the mouse Lat-1. RBL adopts a unique α/β fold with long structured loops important for monosaccharide recognition, as shown in the structure of a complex with L-rhamnose. Sequence alignments and mutagenesis show that residues important for carbohydrate binding are often absent in other receptor-attached examples of RBL, including the SLT-1/Slit coreceptor. We postulate that this domain class facilitates direct protein-protein interactions in many transmembrane receptors. PMID:18547526

  12. Lectins with anti-HIV activity: a review.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai

    2015-01-01

    Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed. PMID:25569520

  13. Lectins with anti-HIV activity: a review.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai

    2015-01-01

    Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.

  14. Gene cloning, homology comparison and analysis of the main functional structure domains of beta estrogen receptor in Jining Gray goat.

    PubMed

    Liu, Hai-gang; Li, Hong-mei; Wang, Shu-ying; Huang, Li-bo; Guo, Hui-jun

    2014-08-01

    To clarify the molecular evolution and characteristic of beta estrogen receptor (ERβ) gene in Jining Gray goat in China, the entire ERβ gene from Jining Gray goat ovary was amplified, identified and sequenced, and the gene sequences were compared with those of other animals. Functional structural domains and variations in DNA binding domains (DBD) and ligand binding domains (LBD) between Jining Gray goat and Boer goat were analyzed. The results indicate that the ERβ gene in Jining Gray goat includes a 1584bp sequence with a complete open-reading-frame (ORF), encoding a 527 amino acid (aa) receptor protein. Compared to other species, the nucleotide homology is 73.9-98.9% and the amino acid homology is 79.5-98.5%. The main antigenic structural domains lie from the 97th aa to the 286th aa and from the 403rd aa to the 527th aa. The hydrophilicity and the surface probability of the structural domains are distributed throughout a range of amino acids. There are two different amino acids in the DBD and three different amino acids in the LBD between Jining Gray and Boer goats, resulting in dramatically different spatial structures for ERβ protein. These differences may explain the different biological activities of ERβ between the two goat species. This study firstly acquired the whole ERβ gene sequence of Jining Gray goat with a complete open reading frame, and analyzed its gene evolutionary relationship and predicted its mainly functional structural domains, which may very help for further understanding the genome evolution and gene diversity of goat ERβ.

  15. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy.

    PubMed

    Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J; Rupasinghe, Sanjeewa G; Tang, Ming; Harris, Jason; Baudry, Jerome; Schuler, Mary A; Rienstra, Chad M

    2012-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  16. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    SciTech Connect

    Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J; Rupasinghe, Sanjeewa; Tang, Ming; Harris, Jason B; Baudry, Jerome Y; Schuler, Mary A; Rienstra, Chad M

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  17. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure.

    PubMed

    Yang, Darren; Boyer, Benjamin; Prévost, Chantal; Danilowicz, Claudia; Prentiss, Mara

    2015-12-01

    RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results.

  18. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure

    PubMed Central

    Yang, Darren; Boyer, Benjamin; Prévost, Chantal; Danilowicz, Claudia; Prentiss, Mara

    2015-01-01

    RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results. PMID:26384422

  19. Molecular structure and chromosomal mapping of the human homolog of the agouti gene

    SciTech Connect

    Kwon, H.Y.; Woychik, R.P.; Bultman, S.J. |; Loeffler, C.; Hansmann, I.; Chen, W.J.; Furdon, P.J.; Wilkison, W.; Powell, J.G.; Usala, A.L.

    1994-10-11

    The agouti (a) locus in mouse chromosome 2 normally regulates coat color pigmentation. The mouse agouti gene was recently cloned and shown to encode a distinctive 131-amino acid protein with a consensus signal peptide. Here the authors describe the cloning of the human homolog of the mouse agouti gene using an interspecies DNA-hybridization approach. Sequence analysis revealed that the coding region of the human agouti gene is 85% identical to the mouse gene and has the potential to encode a protein of 132 amino acids with a consensus signal peptide. Chromosomal assignment using somatic-cell-hybrid mapping panels and fluorescence in situ hybridization demonstrated that the human agouti gene maps to chromosome band 20q11.2. This result revealed that the human agouti gene is closely linked to several traits, including a locus called MODY (for maturity onset diabetes of the young) and another region that is associated with the development of myeloid leukemia. Initial expression studies with RNA from several adult human tissues showed that the human agouti gene is expressed in adipose tissue and testis.

  20. Structures of homologous composite transposons carrying cbaABC genes from Europe and North America.

    PubMed

    Di Gioia, D; Peel, M; Fava, F; Wyndham, R C

    1998-05-01

    IS1071 is a class II transposable element carrying a tnpA gene related to the transposase genes of the Tn3 family. Copies of IS1071 that are conserved with more than 99% nucleotide sequence identity have been found as direct repeats flanking a remarkable variety of catabolic gene sequences worldwide. The sequences of chlorobenzoate catabolic transposons found on pBRC60 (Tn5271) in Niagara Falls, N.Y., and on pCPE3 in Bologna, Italy, show that these transposons were formed from highly homologous IS1071 and cbaABC components (levels of identity, > 99.5 and > 99.3%, respectively). Nevertheless, the junction sequences between the IS1071L and IS1071R elements and the internal DNA differ by 41 and 927 bp, respectively, suggesting that these transposons were assembled independently on the two plasmids. The formation of the right junction in both transposons truncated an open reading frame for a putative aryl-coenzyme A ligase with sequence similarity to benzoate- and p-hydroxybenzoate-coenzyme A ligases of Rhodopseudomonas palustris. PMID:9572977

  1. Structures of Homologous Composite Transposons Carrying cbaABC Genes from Europe and North America

    PubMed Central

    Di Gioia, Diana; Peel, Michelle; Fava, Fabio; Wyndham, R. Campbell

    1998-01-01

    IS1071 is a class II transposable element carrying a tnpA gene related to the transposase genes of the Tn3 family. Copies of IS1071 that are conserved with more than 99% nucleotide sequence identity have been found as direct repeats flanking a remarkable variety of catabolic gene sequences worldwide. The sequences of chlorobenzoate catabolic transposons found on pBRC60 (Tn5271) in Niagara Falls, N.Y., and on pCPE3 in Bologna, Italy, show that these transposons were formed from highly homologous IS1071 and cbaABC components (levels of identity, >99.5 and >99.3%, respectively). Nevertheless, the junction sequences between the IS1071L and IS1071R elements and the internal DNA differ by 41 and 927 bp, respectively, suggesting that these transposons were assembled independently on the two plasmids. The formation of the right junction in both transposons truncated an open reading frame for a putative aryl-coenzyme A ligase with sequence similarity to benzoate- and p-hydroxybenzoate-coenzyme A ligases of Rhodopseudomonas palustris. PMID:9572977

  2. Homology between jacalin and artocarpin from jackfruit (Artocarpus integrifolia) seeds. Partial sequence and preliminary crystallographic studies of artocarpin.

    PubMed

    Suresh, S; Rani, P G; Pratap, J V; Sankaranarayana, R; Surolia, A; Vijayan, M

    1997-07-01

    Jacalin and artocarpin, the two lectins from jackfruit (Artocarpus integrifolia) seeds, have different physicochemical properties and carbohydrate-binding specificities. However, comparison of the partial amino-acid sequence of artocarpin with the known sequence of jacalin indicates close to 50% sequence identity. Artocarpin crystallizes in two forms, both monoclinic P2(1), with one and two tetramic molecules, respectively, in the asymmetric units of form I (a = 69.9, b = 73.7, c = 60.6 A and beta = 95.1 degrees ) and form II (a = 87.6, b = 72.2, c = 92.6 A and beta = 101.1 degrees ). Both the crystal structures have been solved by the molecular replacement method using the known structure of jacalin as the search model and one of them partially refined, confirming that the two lectins are indeed homologous.

  3. The use of lectin microarray for assessing glycosylation of therapeutic proteins

    PubMed Central

    Zhang, Lei; Luo, Shen; Zhang, Baolin

    2016-01-01

    ABSTRACT Glycans or carbohydrates attached to therapeutic glycoproteins can directly affect product quality, safety and efficacy, and therefore must be adequately analyzed and controlled throughout product life cycles. However, the complexity of protein glycosylation poses a daunting analytical challenge. In this study, we evaluated the utility of a lectin microarray for assessing protein glycans. Using commercial lectin chips, which contain 45 lectins toward distinct glycan structures, we were able to determine the lectin binding patterns of a panel of 15 therapeutic proteins, including 8 monoclonal antibodies. Lectin binding signals were analyzed to generate glycan profiles that were generally consistent with the known glycan patterns for these glycoproteins. In particular, the lectin-based microarray was found to be highly sensitive to variations in the terminal carbohydrate structures such as galactose versus sialic acid epitopes. These data suggest that lectin microarray could be used for screening glycan patterns of therapeutic glycoproteins. PMID:26918373

  4. Lectin domains at the frontiers of plant defense

    PubMed Central

    Lannoo, Nausicaä; Van Damme, Els J. M.

    2014-01-01

    Plants are under constant attack from pathogens and herbivorous insects. To protect and defend themselves, plants evolved a multi-layered surveillance system, known as the innate immune system. Plants sense their encounters upon perception of conserved microbial structures and damage-associated patterns using cell-surface and intracellular immune receptors. Plant lectins and proteins with one or more lectin domains represent a major part of these receptors. The whole group of plant lectins comprises an elaborate collection of proteins capable of recognizing and interacting with specific carbohydrate structures, either originating from the invading organisms or from damaged plant cell wall structures. Due to the vast diversity in protein structures, carbohydrate recognition domains and glycan binding specificities, plant lectins constitute a very diverse protein superfamily. In the last decade, new types of nucleocytoplasmic plant lectins have been identified and characterized, in particular lectins expressed inside the nucleus and the cytoplasm of plant cells often as part of a specific plant response upon exposure to different stress factors or changing environmental conditions. In this review, we provide an overview on plant lectin motifs used in the constant battle against pathogens and predators during plant defenses. PMID:25165467

  5. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    PubMed Central

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-01-01

    Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism. PMID:25004975

  6. Structural and electron-microscopic studies of jacalin from jackfruit (Artocarpus integrifolia) show that this lectin is a 65 kDa tetramer.

    PubMed

    Ruffet, E; Paquet, N; Frutiger, S; Hughes, G J; Jaton, J C

    1992-08-15

    The 133-amino-acid sequences of the alpha-subunit of jacalin (a lectin from Artocarpus integrifolia) and of the slightly larger alpha'-subunit were determined. The alpha'- and alpha-subunits, in the approximate ratio of 1:3, were found to be virtually identical in their primary structures, except for one valine for isoleucine substitution at position 113. Although both alpha'- and alpha-chains were glycosylated, the extent of glycosylation in the alpha'-chain was much greater than that in the alpha-subunit. In the alpha'-polypeptide, all molecules contained an N-linked oligosaccharide at position 74 and some contained sugar at position 43. The alpha- and alpha'-subunits were found to be strongly non-covalently associated with three distinct beta-subunits containing 20 amino acids each. Electron-microscopic visualization of native jacalin disclosed a structure composed of four alpha-type subunits with a clear-cut 4-fold symmetry. Analytical-ultracentrifugation studies of jacalin revealed an average molecular mass of 65 kDa, a value compatible with a tetrameric structure of the alpha(alpha')-subunits. The recalculated number of sugar-binding sites per jacalin molecule, given a molecular mass of 65 kDa, would yield 0.8 sites per alpha(alpha')-promoter, i.e. about twice the value previously determined [Appukutan & Basu (1985) FEBS Lett. 180, 331-334; Ahmed & Chatterjee (1989) J. Biol. Chem. 264, 9365-9372].

  7. Insights into animal and plant lectins with antimicrobial activities.

    PubMed

    Dias, Renata de Oliveira; Machado, Leandro Dos Santos; Migliolo, Ludovico; Franco, Octavio Luiz

    2015-01-05

    Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.

  8. Thermodynamic, kinetic, and electron microscopy studies of concanavalin A and Dioclea grandiflora lectin cross-linked with synthetic divalent carbohydrates.

    PubMed

    Dam, Tarun K; Oscarson, Stefan; Roy, René; Das, Sanjoy K; Pagé, Daniel; Macaluso, Frank; Brewer, C Fred

    2005-03-11

    The jack bean lectin concanavalin A (ConA) and the Dioclea grandiflora lectin (DGL) are highly homologous Man/Glc-specific members of the Diocleinae subtribe. Both lectins bind, cross-link, and precipitate with carbohydrates possessing multiple terminal nonreducing Man residues. The present study investigates the binding and cross-linking interactions of ConA and DGL with a series of synthetic divalent carbohydrates that possess spacer groups with increasing flexibility and length between terminal alpha-mannopyranoside residues. Isothermal titration microcalorimetry was used to determine the thermodynamics of binding of the two lectins to the divalent analogs, and kinetic light scattering and electron microscopy studies were used to characterize the cross-linking interactions of the lectins with the carbohydrates. The results demonstrated that divalent analogs with flexible spacer groups between the two terminal Man residues possess higher affinities for the two lectins as compared with those with inflexible spacer groups. Furthermore, despite their high degree of homology, ConA and DGL exhibit differences in their kinetics of cross-linking and precipitation with the divalent analogs. Electron microscopy shows the loss of organized cross-linked lattices of the two lectins with analogs possessing increased distance between the terminal Man residues. The loss of lattice patterns with the analogs is distinct for each lectin. These results have important implications for the interactions of lectins with multivalent carbohydrate receptors in biological systems.

  9. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac[alpha]2-6Gal[beta]1-4GlcNAc human-type influenza receptor

    SciTech Connect

    Kadirvelraj, Renuka; Grant, Oliver C.; Goldstein, Irwin J.; Winter, Harry C.; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J.

    2013-03-07

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Ac{alpha}2-6Gal{beta}. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 {angstrom}) in complex with a trisaccharide, whose sequence (Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Ac{alpha}2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.

  10. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Acα2-6Galβ1-4GlcNAc human-type influenza receptor

    PubMed Central

    Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J; Winter, Harry C; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J

    2011-01-01

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding. PMID:21436237

  11. The X-ray Crystal Structure of Mannose-binding Lectin-associated Serine Proteinase-3 Reveals the Structural Basis for Enzyme Inactivity Associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) Syndrome*

    PubMed Central

    Yongqing, Tang; Wilmann, Pascal G.; Reeve, Shane B.; Coetzer, Theresa H.; Smith, A. Ian; Whisstock, James C.; Pike, Robert N.; Wijeyewickrema, Lakshmi C.

    2013-01-01

    The mannose-binding lectin associated-protease-3 (MASP-3) is a member of the lectin pathway of the complement system, a key component of human innate and active immunity. Mutations in MASP-3 have recently been found to be associated with Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome, a severe developmental disorder manifested by cleft palate, intellectual disability, and skeletal abnormalities. However, the molecular basis for MASP-3 function remains to be understood. Here we characterize the substrate specificity of MASP-3 by screening against a combinatorial peptide substrate library. Through this approach, we successfully identified a peptide substrate that was 20-fold more efficiently cleaved than any other identified to date. Furthermore, we demonstrated that mutant forms of the enzyme associated with 3MC syndrome were completely inactive against this substrate. To address the structural basis for this defect, we determined the 2.6-Å structure of the zymogen form of the G666E mutant of MASP-3. These data reveal that the mutation disrupts the active site and perturbs the position of the catalytic serine residue. Together, these insights into the function of MASP-3 reveal how a mutation in this enzyme causes it to be inactive and thus contribute to the 3MC syndrome. PMID:23792966

  12. Lectin binding in meningiomas.

    PubMed

    Kleinert, R; Radner, H

    1987-01-01

    Forty-two meningiomas of different morphological sub-type were examined to determine their pattern of binding to 11 different lectins which characterize cell surface components such as carbohydrate residues. Histiocytic and xanthoma cells within meningiomas could be demonstrated with six different lectins: wheat germ agglutinin (WGA), peanut agglutinin (PNA) Bauhinia purpurea agglutinin (BPA), Helix pomatia agglutinin (HPA), Vicia fava agglutinin (VFA) and Soyabean agglutinin (SBA). Vascular elements including endothelial cells and intimal cells, bound Ulex europaeus agglutinin type 1 (UEA 1), WGA and HPA. The fibrous stroma in fibrous and fibroblastic meningiomas bound PNA, Laburnum alpinum agglutinin (LAA) and SBA. Tumour cells in meningotheliomatous meningiomas and some areas of anaplastic meningiomas bound Concanavalin A, PNA, LAA and VFA whereas tumour cells in fibrous and fibroblastic meningiomas bound BPA, LAA and VFA. Lectin binding has proved to be of value in detecting histiocytic and xanthoma cells together with vascular elements within meningiomas. In addition, the different lectin binding patterns allow different histological sub-types of meningioma to be distinguished although the biological significance of the binding patterns is unclear. PMID:3658105

  13. Structure and Protein-Protein Interaction Studies on Chlamydia trachomatis Protein CT670 (YscO Homolog)

    SciTech Connect

    Lorenzini, Emily; Singer, Alexander; Singh, Bhag; Lam, Robert; Skarina, Tatiana; Chirgadze, Nickolay Y.; Savchenko, Alexei; Gupta, Radhey S.

    2010-07-28

    Comparative genomic studies have identified many proteins that are found only in various Chlamydiae species and exhibit no significant sequence similarity to any protein in organisms that do not belong to this group. The CT670 protein of Chlamydia trachomatis is one of the proteins whose genes are in one of the type III secretion gene clusters but whose cellular functions are not known. CT670 shares several characteristics with the YscO protein of Yersinia pestis, including the neighboring genes, size, charge, and secondary structure, but the structures and/or functions of these proteins remain to be determined. Although a BLAST search with CT670 did not identify YscO as a related protein, our analysis indicated that these two proteins exhibit significant sequence similarity. In this paper, we report that the CT670 crystal, solved at a resolution of 2 {angstrom}, consists of a single coiled coil containing just two long helices. Gel filtration and analytical ultracentrifugation studies showed that in solution CT670 exists in both monomeric and dimeric forms and that the monomer predominates at lower protein concentrations. We examined the interaction of CT670 with many type III secretion system-related proteins (viz., CT091, CT665, CT666, CT667, CT668, CT669, CT671, CT672, and CT673) by performing bacterial two-hybrid assays. In these experiments, CT670 was found to interact only with the CT671 protein (YscP homolog), whose gene is immediately downstream of ct670. A specific interaction between CT670 and CT671 was also observed when affinity chromatography pull-down experiments were performed. These results suggest that CT670 and CT671 are putative homologs of the YcoO and YscP proteins, respectively, and that they likely form a chaperone-effector pair.

  14. New sensitive detection method for lectin hemagglutination using microscopy.

    PubMed

    Adamová, Lenka; Malinovská, Lenka; Wimmerová, Michaela

    2014-10-01

    The blood group system AB0 is determined by the composition of terminal oligosaccharides on red blood cells. Thanks to this structural feature, these groups can be recognized by saccharide-recognizing compounds. Lectins are proteins that are able to reversibly bind saccharide structures. They generally occur as multimers and are known as hemagglutination agents. Hemagglutination is a process in which blood cells are cross-linked via multivalent molecules. Apart from lectins, hemagglutination can also be caused by antibodies or viruses. A hemagglutination assay is commonly used for the detection of multivalent molecules that recognize blood cells, in order to search for their sugar specificity. It is traditionally performed on a microtiter plate, where the lectin solution is serially diluted and the lowest concentration of lectin causing agglutination is detected. This experimental set-up is utilized further for testing lectin specificity via a hemagglutination inhibition assay. We have developed a new way of detecting hemagglutination using microscopy, which was tested on purified lectins as well as cell lysates. Hemagglutination was performed on a microscope slide directly and detected using a microscope. Comparison with the standard hemagglutination assay using microtiter plates revealed that microscopic approach is faster and more robust and allows fast determination of lectin activities immediately in bacterial cytosols.

  15. Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium.

    PubMed

    Van Damme, E J; Barre, A; Verhaert, P; Rougé, P; Peumans, W J

    1996-11-18

    cDNA clones encoding the mitogenic mannose/maltose-specific lectin from the rhizomes of hedge bindweed (Calystegia sepium) have been isolated and sequenced. Comparison of the deduced amino acid sequence and the molecular weight of the lectin subunit as determined by mass spectrometry indicated that the mature protein comprises the entire open reading frame of the cDNA, which implies that the primary translation product contains no signal peptide and is not proteolytically processed. Searches in the databases revealed sequence homology with the previously described lectins from the taxonomically unrelated Moraceae species Artocarpus integrifolia and Maclura pomifera.

  16. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell crosspresentation of dead cell-associated antigens

    PubMed Central

    Iborra, Salvador; Yamada, Yurika; Huotari, Jatta; Schulz, Oliver; Ahrens, Susan; Kjær, Svend; Way, Michael; Sancho, David; Namba, Keiichi; Reis e Sousa, Caetano

    2016-01-01

    Summary DNGR-1 is a C-type lectin receptor that binds F-actin exposed by dying cells and facilitates cross-presentation of dead cell-associated antigens by dendritic cells. Here we present the structure of DNGR-1 bound to F-actin at 7.7 Å resolution. Unusually for F-actin binding proteins, the DNGR-1 ligand binding domain contacts three actin subunits helically arranged in the actin filament, bridging over two protofilaments, as well as two neighboring actin subunits along one protofilament. Mutation of residues predicted to mediate ligand binding led to loss of DNGR-1-dependent cross-presentation of dead cell-associated antigens, formally demonstrating that the latter depends on F-actin recognition. Notably, DNGR-1 has relatively modest affinity for F-actin but multivalent interactions allow a marked increase in binding strength. Our findings shed light on modes of actin binding by cellular proteins and reveal how extracellular detection of cytoskeletal components by dedicated receptors allows immune monitoring of loss of cellular integrity. PMID:25979418

  17. Lectin-like molecules in transcriptome of Littorina littorea hemocytes.

    PubMed

    Gorbushin, Alexander M; Borisova, Elena A

    2015-01-01

    The common periwinkle Littorina littorea was introduced in the list of models for comparative immunobiology as a representative of phylogenetically important taxon Caenogastropoda. Using Illumina sequencing technology, we de novo assembled the transcriptome of Littorina littorea hemocytes from 182 million mRNA-Seq pair-end 100 bp reads into a total of 15,526 contigs clustered in 4472 unigenes. The transcriptome profile was analyzed for presence of carbohydrate-binding molecules in a variety of architectural contexts. Hemocytes' repertoire of lectin-like proteins bearing conserved carbohydrate-recognition domains (CRDs) is highly diversified, including 11 of 15 lectin families earlier described in animals, as well as the novel members of lectin family found for the first time in mollusc species. The new molluscan lineage-specific domain combinations were confirmed by cloning and sequencing, including the fuco-lectin related molecules (FLReMs) composed of N-terminal region with no sequence homology to any known protein, a middle Fucolectin Tachylectin-4 Pentaxrin (FTP) domain, and a C-terminal epidermal growth factor (EGF) repeat region. The repertoire of lectin-like molecules is discussed in terms of their potential participation in the receptor phase of immune response. In total, immune-associated functions may be attributed to 70 transcripts belonging to 6 lectin families. These lectin-like genes show low overlap between species of invertebrates, suggesting relatively rapid evolution of immune-associated genes in the group. The repertoire provides valuable candidates for further characterization of the gene functions in mollusc immunity. PMID:25451301

  18. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III

    SciTech Connect

    Hlouchova, Klara; Barinka, Cyril; Konvalinka, Jan; Lubkowski, Jacek

    2009-10-23

    Glutamate carboxypeptidase III (GCPIII) is a metalloenzyme that belongs to the transferrin receptor/glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) superfamily. GCPIII has been studied mainly because of its evolutionary relationship to GCPII, an enzyme involved in a variety of neuropathologies and malignancies, such as glutamatergic neurotoxicity and prostate cancer. Given the potential functional and pharmacological overlap between GCPIII and GCPII, studies addressing the structural and physiological properties of GCPIII are crucial for obtaining a deeper understanding of the GCPII/GCPIII system. In the present study, we report high-resolution crystal structures of the human GCPIII ectodomain in a 'pseudo-unliganded' state and in a complex with: (a) L-glutamate (a product of hydrolysis); (b) a phosphapeptide transition state mimetic, namely (2S,3'S)-{l_brace}[(3'-amino-3'-carboxy-propyl)-hydroxyphosphinoyl]methyl{r_brace}-pentanedioic acid; and (c) quisqualic acid, a glutamate biostere. Our data reveal the overall fold and quaternary arrangement of the GCPIII molecule, define the architecture of the GCPIII substrate-binding cavity, and offer an experimental evidence for the presence of Zn{sup 2+} ions in the bimetallic active site. Furthermore, the structures allow us to detail interactions between the enzyme and its ligands and to characterize the functional flexibility of GCPIII, which is essential for substrate recognition. A comparison of these GCPIII structures with the equivalent GCPII complexes reveals differences in the organization of specificity pockets, in surface charge distribution, and in the occupancy of the co-catalytic zinc sites. The data presented here provide information that should prove to be essential for the structurally-aided design of GCPIII-specific inhibitors and might comprise guidelines for future comparative GCPII/GCPIII studies.

  19. Structural characterization of MepB from Staphylococcus aureus reveals homology to endonucleases

    PubMed Central

    Agah, Sayeh; Poulos, Sandra; Banchs, Christian; Faham, Salem

    2014-01-01

    The MepRAB operon in Staphylococcus aureus has been identified to play a role in drug resistance. Although the functions of MepA and MepR are known, little information is available on the function of MepB. Here we report the X-ray structure of MepB to 2.1 Å revealing its structural similarity to the PD-(D/E)XK family of endonucleases. We further show that MepB binds DNA and RNA, with a higher affinity towards RNA and single stranded DNA than towards double stranded DNA. Notably, the PD-(D/E)XK catalytic active site residues are not conserved in MepB. MepB's association with a drug resistance operon suggests that it plays a role in responding to antimicrobials. This role is likely carried out through MepB's interactions with nucleic acids. PMID:24501097

  20. Optimized method for TAG protein homology modeling: In silico and experimental structural characterization.

    PubMed

    Tomar, Jyoti Singh; Peddinti, Rama Krishna

    2016-07-01

    The DNA glycosylases cleave CN glycosyl bond to release a free base and generate abasic sites concurrently. Function and structure of these enzymes in the pathogenic bacterium Acinetobacter baumannii and its closely related species are not well characterized. Inhibition of TAG enzyme is a promising drug design strategy against A. baumannii. Here optimized molecular modeling approaches were used to provide a structural scaffold of TAG. The recombinant TAG protein was expressed and purified to determine oligomeric state using size exclusion chromatography, which showed the existence of TAG protein as monomer (mwt ∼21kDa). Secondary structure and substrate binding were analyzed using CD are in good agreement with the in silico predictions. Near UV-CD spectrum shows the involvement of Tyr residues in substrate recognition. Molecular docking studies were performed to understand the molecular recognition interactions and this knowledge was used to identify the potent inhibitors using virtual screening. Residues crucial for DNA holding and enzyme catalysis are reconfirmed by the in silico mutational studies. PMID:27017978

  1. Homology, homoplasy, novelty, and behavior.

    PubMed

    Hall, Brian K

    2013-01-01

    Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous). PMID:22711423

  2. Development and Applications of the Lectin Microarray.

    PubMed

    Hirabayashi, Jun; Kuno, Atsushi; Tateno, Hiroaki

    2015-01-01

    The lectin microarray is an emerging technology for glycomics. It has already found maximum use in diverse fields of glycobiology by providing simple procedures for differential glycan profiling in a rapid and high-throughput manner. Since its first appearance in the literature in 2005, many application methods have been developed essentially on the same platform, comprising a series of glycan-binding proteins immobilized on an appropriate substrate such as a glass slide. Because the lectin microarray strategy does not require prior liberation of glycans from the core protein in glycoprotein analysis, it should encourage researchers not familiar with glycotechnology to use glycan analysis in future work. This feasibility should provide a broader range of experimental scientists with good opportunities to investigate novel aspects of glycoscience. Applications of the technology include not only basic sciences but also the growing fields of bio-industry. This chapter describes first the essence of glycan profiling and the basic fabrication of the lectin microarray for this purpose. In the latter part the focus is on diverse applications to both structural and functional glycomics, with emphasis on the wide applicability now available with this new technology. Finally, the importance of developing advanced lectin engineering is discussed.

  3. A mushroom lectin from ascomycete Cordyceps militaris.

    PubMed

    Jung, Eui Cha; Kim, Ki Don; Bae, Chan Hyung; Kim, Ju Cheol; Kim, Dae Kyong; Kim, Ha Hyung

    2007-05-01

    A mushroom lectin has been purified from ascomycete Cordyceps militaris, which is one of the most popular mushrooms in eastern Asia used as a nutraceutical and in traditional Chinese medicine. This lectin, designated CML, exhibited hemagglutination activity in mouse and rat erythrocytes, but not in human ABO erythrocytes. SDS-PAGE of CML revealed a single band with a molecular mass of 31.0 kDa under both nonreducing and reducing conditions that was stained by silver nitrate, and a 31.4 kDa peak in a Superdex-200 HR gel-filtration column. The hemagglutination activity was inhibited by sialoglycoproteins, but not in by mono- or disaccharides, asialoglycoproteins, or de-O-acetylated glycoprotein. The activity was maximal at pH 6.0-9.1 and at temperatures below 50 degrees C. Circular dichroism spectrum analysis revealed that CML comprises 27% alpha-helix, 12% beta-sheets, 29% beta-turns, and 32% random coils. Its binding specificity and secondary structure are similar to those of a fungal lectin from Arthrobotrys oligospora. However, the N-terminal amino acid sequence of CML differs greatly from those of other lectins. CML exhibits mitogenic activity against mouse splenocytes. PMID:17306462

  4. Lectins stain cells differentially in the coral, Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Farah, Yael

    2014-01-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis.

  5. Lectins stain cells differentially in the coral, Montipora capitata.

    PubMed

    Work, Thierry M; Farah, Yael

    2014-03-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis. PMID:24518620

  6. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    ERIC Educational Resources Information Center

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  7. Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis.

    PubMed

    Léger, Psylvia; Tetard, Marilou; Youness, Berthe; Cordes, Nicole; Rouxel, Ronan N; Flamand, Marie; Lozach, Pierre-Yves

    2016-06-01

    Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment. PMID:26990254

  8. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2014-01-01

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study.

  9. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    SciTech Connect

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  10. THE STRUCTURES OF COILED-COIL DOMAINS FROM TYPE THREE SECRETION SYSTEM TRANSLOCATORS REVEAL HOMOLOGY TO PORE-FORMING TOXINS

    PubMed Central

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-01-01

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SS) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) which is responsible for over one million deaths per year. The Shigella type III secretion apparatus (T3SA) is comprised of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 Å and 2.8 Å limiting resolution, respectively. These newly identified domains are comprised of extended length (114 Å in IpaB and 71 Å in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably colicin Ia. This suggests that these mechanistically-separate and functionally-distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events. PMID:22321794

  11. Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens).

    PubMed

    Du, J; Foissac, X; Carss, A; Gatehouse, A M; Gatehouse, J A

    2000-04-01

    The mannose-specific snowdrop lectin [Galanthus nivalis agglutinin (GNA)] displays toxicity to the rice brown planthopper Nilaparvata lugens. A 26kDa GNA-binding polypeptide from N. lugens midgut was identified by lectin blotting and affinity chromatography, and characterized by N-terminal sequencing. This polypeptide is the most abundant binding protein for GNA in the N. lugens midgut. A cDNA (fersub2) encoding this protein was isolated from an N. lugens cDNA library. The deduced amino acid sequence shows significant homology to ferritin subunits from Manduca sexta and other arthropods, plants and vertebrates, and contains a putative N-glycosylation site. Native ferritin was purified from whole insects as a protein of more than 400kDa in size and characterized biochemically. Three subunits of 20, 26 and 27kDa were released from the native complex. The 26kDa subunit binds GNA, and its N-terminal sequence was identical to that of fersub2. A second cDNA (fersub1), exhibiting strong homology with dipteran ferritin, was identified as an abundant cDNA in an N. lugens midgut-specific cDNA library, and could encode the larger ferritin subunit. The fersub1 cDNA carries a stem-loop structure (iron-responsive element) upstream from the start codon, similar to structures that have been shown to play a role in the control of ferritin synthesis in other insects.

  12. First-principles study of homologous series of layered Bi-Sb-Te-Se and Sn-O structures

    NASA Astrophysics Data System (ADS)

    Govaerts, Kirsten

    In the first part of the thesis, we present a systematic study of the stable layered structures at T = 0 K for the Bi-Sb-Te-Se system by means of a combination of the Cluster Expansion (CE) method and first-principles electronic structure calculations. In order to account for the existence of long-periodic layered structures and the strong structural relaxations we have developed a one-dimensional CE with occupation variables explicitly accounting for the fact that Bi or Sb atoms are part of an even or odd number of layers. For the binary systems A1-xQx (A = Sb, Bi; Q = Te, Se) the resulting (meta)stable structures are the homologous series (A2) n(A2Q3)m built up from successive bilayers A 2 and quintuple units A2Q3. The Bi1-xSb x system is found to be an almost ideal solution. The CE for the ternary Bi-Sb-Te system not only reproduces the binary stable structures but also finds stable ternary layered compounds with an arbitrary stacking of Sb 2Te3, Bi2Te3 and Te-Bi-Te-Sb-Te quintuple units, optionally separated by mixed Bi/Sb bilayers. We also investigate the electronic properties of the newly found ground state structures, and in particular the effect of Bi bilayers on the electronic structure of the topological insulator Bi2Se3. Due to the charge transfer from the Bi bilayers to the quintuple layers, the top- and bottom-surface Dirac cones shift down in energy. Also the Rashba-split conduction band states shift down, resulting in a new Dirac cone. The bands of the additional Bi bilayer are just ordinary Rashba-split states originating from the dipole built up by the charge transfer. These results offer new insight in experimental results, where cones are not always correctly identified. In a second part of the thesis, we investigate the Sn-O system. First we show that a combination of current van der Waals-corrected functionals and many-body calculations within the GW approximation provide accurate values for both structural and electronic properties of Sn

  13. Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain.

    PubMed

    Shimada, Atsushi; Yamaguchi, Atsuko; Kohda, Daisuke

    2016-01-29

    FCHo1, FCHo2, and SGIP1 are key regulators of clathrin-mediated endocytosis. Their μ homology domains (μHDs) interact with the C-terminal region of an endocytic scaffold protein, Eps15, containing fifteen Asp-Pro-Phe (DPF) motifs. Here, we show that the high-affinity μHD-binding site in Eps15 is a region encompassing six consecutive DPF motifs, while the minimal μHD-binding unit is two consecutive DPF motifs. We present the crystal structures of the SGIP1 μHD in complex with peptides containing two DPF motifs. The peptides bind to a novel ligand-binding site of the μHD, which is distinct from those of other distantly related μHD-containing proteins. The two DPF motifs, which adopt three-dimensional structures stabilized by sequence-specific intramotif and intermotif interactions, are extensively recognized by the μHD and are both required for binding. Thus, consecutive and singly scattered DPF motifs play distinct roles in μHD binding.

  14. The NMDA Receptor NR1 C1 Region Bound to Calmodulin: Structural Insights into Functional Differences between Homologous Domains

    SciTech Connect

    Ataman, Zeynep Akyol; Gakhar, Lokesh; Sorensen, Brenda R.; Hell, Johannes W.; Shea, Madeline A.

    2008-09-17

    Calmodulin (CaM) regulates tetrameric N-methyl-D-aspartate receptors (NMDARs) by binding tightly to the C0 and C1 regions of its NR1 subunit. A crystal structure (2HQW; 1.96 {angstrom}) of calcium-saturated CaM bound to NR1C1 (peptide spanning 875-898) showed that NR1 S890, whose phosphorylation regulates membrane localization, was solvent protected, whereas the endoplasmic reticulum retention motif was solvent exposed. NR1 F880 filled the CaM C-domain pocket, whereas T886 was closest to the N-domain pocket. This 1-7 pattern was most similar to that in the CaM-MARCKS complex. Comparison of CaM-ligand wrap-around conformations identified a core tetrad of CaM C-domain residues (FLMM{sub C}) that contacted all ligands consistently. An identical tetrad of N-domain residues (FLMM{sub N}) made variable sets of contacts with ligands. This CaM-NR1C1 structure provides a foundation for designing mutants to test the role of CaM in NR1 trafficking as well as insights into how the homologous CaM domains have different roles in molecular recognition.

  15. Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper.

    PubMed

    Peters, Sander A; Bargsten, Joachim W; Szinay, Dóra; van de Belt, José; Visser, Richard G F; Bai, Yuling; de Jong, Hans

    2012-08-01

    We have analysed the structural homology in euchromatin regions of tomato, potato and pepper with special attention for the long arm of chromosome 2 (2L). Molecular organization and colinear junctions were delineated using multi-color BAC FISH analysis and comparative sequence alignment. We found large-scale rearrangements including inversions and segmental translocations that were not reported in previous comparative studies. Some of the structural rearrangements are specific for the tomato clade, and differentiate tomato from potato, pepper and other Solanaceous species. Although local gene vicinity is largely preserved, there are many small-scale synteny perturbations. Gene adjacency in the aligned segments was frequently disrupted for 47% of the ortholog pairs as a result of gene and LTR retrotransposon insertions, and occasionally by single gene inversions and translocations. Our data also suggests that long distance intra-chromosomal rearrangements and local gene rearrangements have evolved frequently during speciation in the Solanum genus, and that small changes are more prevalent than large-scale differences. The occurrence of sonata and harbinger transposable elements and other repeats near or at junction breaks is considered in the light of repeat-mediated rearrangements and a reconstruction scenario for an ancestral 2L topology is discussed.

  16. Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper.

    PubMed

    Peters, Sander A; Bargsten, Joachim W; Szinay, Dóra; van de Belt, José; Visser, Richard G F; Bai, Yuling; de Jong, Hans

    2012-08-01

    We have analysed the structural homology in euchromatin regions of tomato, potato and pepper with special attention for the long arm of chromosome 2 (2L). Molecular organization and colinear junctions were delineated using multi-color BAC FISH analysis and comparative sequence alignment. We found large-scale rearrangements including inversions and segmental translocations that were not reported in previous comparative studies. Some of the structural rearrangements are specific for the tomato clade, and differentiate tomato from potato, pepper and other Solanaceous species. Although local gene vicinity is largely preserved, there are many small-scale synteny perturbations. Gene adjacency in the aligned segments was frequently disrupted for 47% of the ortholog pairs as a result of gene and LTR retrotransposon insertions, and occasionally by single gene inversions and translocations. Our data also suggests that long distance intra-chromosomal rearrangements and local gene rearrangements have evolved frequently during speciation in the Solanum genus, and that small changes are more prevalent than large-scale differences. The occurrence of sonata and harbinger transposable elements and other repeats near or at junction breaks is considered in the light of repeat-mediated rearrangements and a reconstruction scenario for an ancestral 2L topology is discussed. PMID:22463056

  17. A crystal structure-guided rational design switching non-carbohydrate inhibitors' specificity between two β-GlcNAcase homologs

    PubMed Central

    Liu, Tian; Guo, Peng; Zhou, Yong; Wang, Jing; Chen, Lei; Yang, Huibin; Qian, Xuhong; Yang, Qing

    2014-01-01

    Selective inhibition of function-specific β-GlcNAcase has great potential in terms of drug design and biological research. The symmetrical bis-naphthalimide M-31850 was previously obtained by screening for specificity against human glycoconjugate-lytic β-GlcNAcase. Using protein-ligand co-crystallization and molecular docking, we designed an unsymmetrical dyad of naphthalimide and thiadiazole, Q2, that changes naphthalimide specificity from against a human glycoconjugate-lytic β-GlcNAcase to against insect and bacterial chitinolytic β-GlcNAcases. The crystallographic and in silico studies reveal that the naphthalimide ring can be utilized to bind different parts of these enzyme homologs, providing a new starting point to design specific inhibitors. Moreover, Q2-induced closure of the substrate binding pocket is the structural basis for its 13-fold increment in inhibitory potency. Q2 is the first non-carbohydrate inhibitor against chitinolytic β-GlcNAcases. This study provides a useful example of structure-based rationally designed inhibitors as potential pharmaceuticals or pesticides. PMID:25155420

  18. Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain

    NASA Astrophysics Data System (ADS)

    Shimada, Atsushi; Yamaguchi, Atsuko; Kohda, Daisuke

    2016-01-01

    FCHo1, FCHo2, and SGIP1 are key regulators of clathrin-mediated endocytosis. Their μ homology domains (μHDs) interact with the C-terminal region of an endocytic scaffold protein, Eps15, containing fifteen Asp-Pro-Phe (DPF) motifs. Here, we show that the high-affinity μHD-binding site in Eps15 is a region encompassing six consecutive DPF motifs, while the minimal μHD-binding unit is two consecutive DPF motifs. We present the crystal structures of the SGIP1 μHD in complex with peptides containing two DPF motifs. The peptides bind to a novel ligand-binding site of the μHD, which is distinct from those of other distantly related μHD-containing proteins. The two DPF motifs, which adopt three-dimensional structures stabilized by sequence-specific intramotif and intermotif interactions, are extensively recognized by the μHD and are both required for binding. Thus, consecutive and singly scattered DPF motifs play distinct roles in μHD binding.

  19. Crystal structure of a Gammadelta T-cell Receptor Specific for the Human MHC class I Homolog MICA

    SciTech Connect

    B Xu; J Pizarro; M Holmes; C McBeth; V Groh; T Spies; R Strong

    2011-12-31

    {gamma}{delta} T cells play important roles in bridging innate and adaptive immunity, but their recognition mechanisms remain poorly understood. Human {gamma}{delta} T cells of the V{sub {delta}}1 subset predominate in intestinal epithelia and respond to MICA and MICB (MHC class I chain-related, A and B; MIC) self-antigens, mediating responses to tumorigenesis or viral infection. The crystal structure of an MIC-reactive V{sub {delta}}1 {gamma}{delta} T-cell receptor (TCR) showed expected overall structural homology to antibodies, {alpha}{beta}, and other {gamma}{delta} TCRs, but complementary determining region conformations and conservation of V{sub {delta}}1 use revealed an uncharacteristically flat potential binding surface. MIC, likewise, serves as a ligand for the activating immunoreceptor natural killer group 2, D (NKG2D), also expressed on {gamma}{delta} T cells. Although MIC recognition drives both the TCR-dependent stimulatory and NKG2D-dependent costimulatory signals necessary for activation, interaction analyses showed that MIC binding by the two receptors was mutually exclusive. Analysis of relative binding kinetics suggested sequential recognition, defining constraints for the temporal organization of {gamma}{delta} T-cell/target cell interfaces.

  20. Immobilized glycosylated Fmoc-amino acid for SPR: comparative studies of lectin-binding to linear or biantennary diLacNAc structures.

    PubMed

    Nakamura, Kosuke; Sakagami, Hiromi; Asanuma-Date, Kimie; Nagasawa, Nao; Nakahara, Yoshiaki; Akiyama, Hiroshi; Ogawa, Haruko

    2013-12-15

    A method to immobilize glycan-linked amino acids with protected α-amino groups, which are key intermediates to produce the desired neoglycoprotein, to a Biacore sensor chip was developed and its utility for interaction analyses was demonstrated. Two types of diN-acetyllactosamine (diLacNAc)-containing glycans, a core 2 hexasaccharide involving linear diLacNAc that is O-linked to N-(9-fluorenyl)methoxycarbonyl (Fmoc)-Thr and a biantennary diLacNAc that is N-linked to Fmoc-Asn, were used as ligands. For immobilization, the free carboxyl groups of the amino acid residues were activated with EDC/NHS, then reacted with the ethylenediamine-derivatized carboxymethyldextran sensor chip to obtain the desired ligand concentrations. Interactions of the ligands with five plant lectins were analyzed by surface plasmon resonance, and the bindings were compared. The resonance unit of each lectin was corrected by subtracting that of the reference cell on which the Fmoc-Thr-core 1 or Fmoc-Asn was immobilized as a ligand. The carbohydrate specificities of interactions were verified by preincubating lectins with their respective inhibitory sugar before injection. By steady state analysis, the Lycopersicon esculentum lectin showed a 27-fold higher affinity to linear diLacNAc than to biantennary diLacNAc, while Datura stramonium and Solanum tuberosum lectins both showed low Ka,apps of 10(6)M(-1) for these two ligands. In contrast, Ricinus communis agglutinin-120 showed a 3.2-fold higher Ka,app to biantennary LacNAc than to linear diLacNAc. A lectin purified from Pleurocybella porrigens mushroom interacted at the high affinity of 10(8)M(-1) with both linear and biantennary diLacNAcs, which identified it as a unique probe. This method provides a useful and sensitive system to analyze interactions by simulating the glycans on the cell surface. PMID:24211369

  1. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models.

    PubMed

    Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok

    2014-01-01

    Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.

  2. Domain structures and molecular evolution of class I and class II major histocompatibility gene complex (MHC) products deduced from amino acid and nucleotide sequence homologies

    NASA Astrophysics Data System (ADS)

    Ohnishi, Koji

    1984-12-01

    Domain structures of class I and class II MHC products were analyzed from a viewpoint of amino acid and nucleotide sequence homologies. Alignment statistics revealed that class I (transplantation) antigen H chains consist of four mutually homologous domains, and that class II (HLA-DR) antigen β and α chains are both composed of three mutually homologous ones. The N-terminal three and two domains of class I and class II (both β and α) gene products, respectively, all of which being ˜90 residues long, were concluded to be homologous to β2-microglobulin (β2M). The membraneembedded C-terminal shorter domains of these MHC products were also found to be homologous to one another and to the third domain of class I H chains. Class I H chains were found to be more closely related to class II α chains than to class II β chains. Based on these findings, an exon duplication history from a common ancestral gene encoding a β2M-like primodial protein of one-domain-length up to the contemporary MHC products was proposed.

  3. The O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators.

    PubMed Central

    Hartings, H; Maddaloni, M; Lazzaroni, N; Di Fonzo, N; Motto, M; Salamini, F; Thompson, R

    1989-01-01

    The structure of the zein regulatory gene Opaque 2 of Zea mays has been determined by sequence analysis of genomic and cDNA clones. The size of O2 mRNA is 1751 bp [poly(A) tail not included] containing a major open reading frame (ORF) of 1380 bp preceded by three short ORFs of 3, 21 and 20 amino acid residues. The main ORF comprises 1362 bp and is composed of six exons ranging in size from 465 to 61 bp and five introns of 678 bp to 83 bp. A putative protein 454 amino acids long was derived by the theoretical translation of the genomic sequences corresponding to exons. The opaque 2 protein contains a domain similar to the leucine zipper motif identified in DNA binding proteins of animal protooncogenes such as fos, jun and myc, and in the transcriptional activators GCN4 and C/EBP. The region of 30 amino acid residues next to the leucine repeats towards the N terminus is rich in basic amino acids and is also homologous to a domain present in fos, jun and GCN4. Moreover, in the carboxy terminal region an amino acid motif closely resembling a metal binding domain is present. Images PMID:2479535

  4. Isolation and immunological characterization of a novel Cladosporium herbarum allergen structurally homologous to the alpha/beta hydrolase fold superfamily.

    PubMed

    Rid, Raphaela; Onder, Kamil; Hawranek, Thomas; Laimer, Martin; Bauer, Johann W; Holler, Claudia; Simon-Nobbe, Birgit; Breitenbach, Michael

    2010-03-01

    Because the ascomycete Cladosporium herbarum embodies one of the most important, world-wide occurring fungal species responsible for eliciting typical IgE-mediated hypersensitivity reactions ranging from rhinitis and ocular symptoms to severe involvement of the lower respiratory tract, a more comprehensive definition of its detailed allergen repertoire is unquestionably of critical medical as well as therapeutic significance. By screening a C. herbarum cDNA library with IgE antibodies pooled from 3 mold-reactive sera, we were able to identify, clone and affinity-purify a novel allergen candidate (29.9 kDa) exhibiting considerable (three-dimensional) homology to the alpha/beta hydrolase fold superfamily. The latter covers a collection of hydrolytic enzymes of widely differing phylogenetic origin as well as catalytic activity (operating in countless biological contexts) that in general exhibit only little sequence similarity yet show a remarkable conservation of structural topology. Our present study (i) characterizes recombinant non-fusion C. herbarum hydrolase as a natively folded, minor mold allergen that displays a prevalence of IgE reactivity of approximately 17% in our in vitro immunoblot experiments, (ii) proposes the existence of several putative (speculatively cross-reactive) ascomycete orthologues as determined via genome-wide in silico predictions, and (iii) finally implies that C. herbarum hydrolase could be included in forthcoming minimal testing sets when fungal allergy is suspected.

  5. Toxicity and binding profile of lectins from the Genus canavalia on brine shrimp.

    PubMed

    Arruda, Francisco Vassiliepe Sousa; Melo, Arthur Alves; Vasconcelos, Mayron Alves; Carneiro, Romulo Farias; Barroso-Neto, Ito Liberato; Silva, Suzete Roberta; Pereira-Junior, Francisco Nascimento; Nagano, Celso Shiniti; Nascimento, Kyria Santiago; Teixeira, Edson Holanda; Saker-Sampaio, Silvana; Sousa Cavada, Benildo; Sampaio, Alexandre Holanda

    2013-01-01

    Lectins are sugar-binding proteins widely distributed in nature with many biological functions. Although many lectins have a remarkable biotechnological potential, some of them can be cytotoxic. Thus, the aim of this study was to assess the toxicity of five lectins, purified from seeds of different species of Canavalia genus. In order to determine the toxicity, assays with Artemia nauplii were performed. In addition, a fluorescence assay was carried out to evaluate the binding of lectins to Artemia nauplii. In order to verify the relationship between the structure of lectins and their cytotoxic effect, structural analysis was carried out to evaluate the volume of the carbohydrate recognition domain (CRD) of each lectin. The results showed that all lectins exhibited different toxicities and bound to a similar area in the digestive tract of Artemia nauplii. Concerning the structural analysis, differences in spatial arrangement and volume of CRD may explain the variation of the toxicity exhibited by each lectin. To this date, this is the first study that establishes a link between toxicity and structure of CRD from Diocleinae lectins. PMID:24380079

  6. Toxicity and Binding Profile of Lectins from the Genus Canavalia on Brine Shrimp

    PubMed Central

    Arruda, Francisco Vassiliepe Sousa; Melo, Arthur Alves; Vasconcelos, Mayron Alves; Carneiro, Romulo Farias; Barroso-Neto, Ito Liberato; Silva, Suzete Roberta; Pereira-Junior, Francisco Nascimento; Nagano, Celso Shiniti; Nascimento, Kyria Santiago; Teixeira, Edson Holanda; Saker-Sampaio, Silvana; Sousa Cavada, Benildo; Sampaio, Alexandre Holanda

    2013-01-01

    Lectins are sugar-binding proteins widely distributed in nature with many biological functions. Although many lectins have a remarkable biotechnological potential, some of them can be cytotoxic. Thus, the aim of this study was to assess the toxicity of five lectins, purified from seeds of different species of Canavalia genus. In order to determine the toxicity, assays with Artemia nauplii were performed. In addition, a fluorescence assay was carried out to evaluate the binding of lectins to Artemia nauplii. In order to verify the relationship between the structure of lectins and their cytotoxic effect, structural analysis was carried out to evaluate the volume of the carbohydrate recognition domain (CRD) of each lectin. The results showed that all lectins exhibited different toxicities and bound to a similar area in the digestive tract of Artemia nauplii. Concerning the structural analysis, differences in spatial arrangement and volume of CRD may explain the variation of the toxicity exhibited by each lectin. To this date, this is the first study that establishes a link between toxicity and structure of CRD from Diocleinae lectins. PMID:24380079

  7. Crystal structure of a Legionella pneumophila ecto -triphosphate diphosphohydrolase, a structural and functional homolog of the eukaryotic NTPDases.

    PubMed

    Vivian, Julian P; Riedmaier, Patrice; Ge, Honghua; Le Nours, Jérôme; Sansom, Fiona M; Wilce, Matthew C J; Byres, Emma; Dias, Manisha; Schmidberger, Jason W; Cowan, Peter J; d'Apice, Anthony J F; Hartland, Elizabeth L; Rossjohn, Jamie; Beddoe, Travis

    2010-02-10

    Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.

  8. Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases

    SciTech Connect

    Vivian, Julian P.; Riedmaier, Patrice; Ge, Honghua; Le Nours, Jérôme; Sansom, Fiona M.; Wilce, Matthew C.J.; Byres, Emma; Dias, Manisha; Schmidberger, Jason W.; Cowan, Peter J.; d'Apice, Anthony J.F.; Hartland, Elizabeth L.; Rossjohn, Jamie; Beddoe, Travis

    2010-04-19

    Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.

  9. Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds.

    PubMed

    Carvalho, Aline de Souza; da Silva, Márcia Vanusa; Gomes, Francis Soares; Paiva, Patrícia Maria Guedes; Malafaia, Carolina Barbosa; da Silva, Tulio Diego; Vaz, Antônio Fernando de Melo; da Silva, Alexandre Gomes; Arruda, Isabel Renata de Souza; Napoleão, Thiago Henrique; Carneiro-da-Cunha, Maria das Graças; Correia, Maria Tereza dos Santos

    2015-04-01

    Apuleia leiocarpa is a tree found in Caatinga that has great value in the timber industry. Lectins are carbohydrate-binding proteins with several biotechnological applications. This study shows the isolation, characterization, and antibacterial activity of A. leiocarpa seed lectin (ApulSL). The lectin was chromatographically isolated from a crude extract (in 150 mM NaCl) by using a chitin column. ApulSL adsorbed to the matrix and was eluted using 1.0 M acetic acid. Native ApulSL was characterized as a 55.8-kDa acidic protein. SDS-PAGE showed three polypeptide bands, whereas two-dimensional electrophoresis revealed four spots. The peptides detected by MALDI TOF/TOF did not show sufficient homology (<30%) with the database proteins. Circular dichroism spectroscopy suggested a disordered conformational structure, and fluorescence spectrum showed the presence of tyrosine residues in the hydrophobic core. The hemagglutinating activity of ApulSL was present even after heating to 100 °C, was Mn(2+)-dependent, and inhibited by N-acetylglucosamine, D(-)-arabinose, and azocasein. ApulSL demonstrated bacteriostatic and bactericide effects on gram-positive and gram-negative species, being more effective against three varieties of Xanthomonas campestris (MIC ranging from 11.2 to 22.5 μg/mL and MBC of 22.5 μg/mL). The results of this study reinforce the importance of biochemical prospecting of Caatinga by revealing the antibacterial potential of ApulSL. PMID:25668321

  10. Isolation and analysis of mannose/trehalose/maltose specific lectin from jack bean with antibruchid activity.

    PubMed

    Shanmugavel, Sakthivelkumar; Velayutham, Veeramani; Kamalanathan, Tamilarasan; Periasamy, Mullainadhan; Munusamy, Arumugam; Sundaram, Janarthanan

    2016-10-01

    A lectin with insecticidal property against the stored product pest, Callosobruchus maculatus was successfully isolated from the seeds of Canavalia virosa using standard affinity chromatography. The isolated molecule typically behaved like a lectin in its characteristics. It agglutinated indicator red blood cells (RBC) in its native as well as enzyme treated conditions. The enzyme treated RBC types exhibited a very high hemagglutination (HA) titre values and this property of isolated molecule behaved like arcelin, the lectin-like molecules reported from several species of Phaseolus. As a characteristic feature of a lectin, the isolated molecule effectively inhibited the agglutination of indicator RBC types with simple and complex carbohydrates including glycoproteins. This nature of the isolated molecule also relate with characteristic feature of arcelin isoforms in inhibiting HA activity with complex glycoproteins as reported in many studies. Most interestingly, the present study disclosed trehalose as a potent inhibitor of C. virosa lectin. Therefore, feeding insect pests on the lectin like arcelin could serve as antibiosis factor/anti-insect activity. The molecular characteristics of this isolated molecule and its mass studies too revealed its homology with arcelin, arcelin-1, 2 and 6 isoforms of P. vulgaris and lectin from Canavalia cathartica, C. lineata and C. brasiliensis. PMID:27238584

  11. Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).

    PubMed

    Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho

    2015-11-01

    Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.

  12. Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).

    PubMed

    Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho

    2015-11-01

    Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase. PMID:26304129

  13. Antifungal activity of lectins against yeast of vaginal secretion

    PubMed Central

    Gomes, Bruno Severo; Siqueira, Ana Beatriz Sotero; de Cássia Carvalho Maia, Rita; Giampaoli, Viviana; Teixeira, Edson Holanda; Arruda, Francisco Vassiliepe Sousa; do Nascimento, Kyria Santiago; de Lima, Adriana Nunes; Souza-Motta, Cristina Maria; Cavada, Benildo Sousa; Porto, Ana Lúcia Figueiredo

    2012-01-01

    Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256μg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health. PMID:24031889

  14. Chemical modification studies of Artocarpus lakoocha lectin artocarpin.

    PubMed

    Chowdhury, S; Ahmed, H; Chatterjee, B P

    1991-05-01

    The effect of chemical modification on an anti T-like lectin, artocarpin isolated from Artocarpus lakoocha seeds was investigated in order to identify the type of amino acids involved in its agglutinating activity. Modification of carboxyl groups, arginine and lysine residues, did not affect the lectin activity. However, modification of tryptophan, tyrosine and histidine residues led to a complete loss of its activity, indicating the involvement of these amino acids in the saccharide-binding ability. A protection was observed in the presence of inhibitory sugar. A marked decrease in the fluorescence emission was found when the tryptophan residues of lectin were modified. The circular dichroism spectra showed the presence of an identical pattern of conformation in the native and modified lectin, indicating that the loss in activity was due to modification only. The effect of pronase on artocarpin showed loss of activity whereas papain and trypsin had no effect. The specific activity of artocarpin remained unaltered on treatment with glycosidases but remarkable increase in the activity (of the same) was observed with xylanase treatment. Immunodiffusion studies with chemically modified lectin showed no gross structural changes, indicating that the group specific modifying agents did not alter the antigenic sites of the modified lectin.

  15. Characterization of cDNA encoding mouse homolog of fission yeast dhp1+ gene: structural and functional conservation.

    PubMed Central

    Shobuike, T; Sugano, S; Yamashita, T; Ikeda, H

    1995-01-01

    The dhp1+ gene of Schizosaccharomyces pombe is a homolog of Saccharomyces cerevisiae HKE1/RAT1/TAP1 gene that is involved in RNA metabolism such as RNA trafficking and RNA synthesis. dhp1+ is also related to S. cerevisiae DST2 (SEP1) that encodes a DNA strand exchange protein required for sporulation and homologous recombination in S.cerevisiae. We isolated several clones of Dhm1, a mouse homolog of dhp1+, from mouse spermatocyte cDNA library and determined its nucleotide sequence. The Dhm1 gene consists of an open reading frame predicting a protein with 947 amino acids and molecular weight of 107,955. Northern blot analysis revealed that Dhm1 is transcribed at high level in testis, liver and kidney. The predicted product of Dhm1 (Dhm1p) has a significant homology with Dhp1p, Hke1p/Rat1p/Tap1p and Dst2p. In particular, Dhm1p, Dhp1p and Hke1p/Rat1p/Tap1p share strong similarity at the two regions of their N- and C-terminal parts. The Dhm1 gene on a multicopy plasmid rescued the temperature-sensitivity of dhp1ts and lethality of dhp1 null mutation, suggesting that Dhm1 is a mouse homolog of S.pombe dhp1+ and functions similarly in mouse as dhp1+. Images PMID:7885830

  16. Molecular cloning and characterization of multiple isoforms of the snowdrop (Galanthus nivalis L.) lectin.

    PubMed

    Van Damme, E J; De Clercq, N; Claessens, F; Hemschoote, K; Peeters, B; Peumans, W J

    1991-12-01

    Screening of a copy-DNA (cDNA) library constructed from RNA isolated from young developing ovaries of snowdrop (Galanthus nivalis) resulted in the isolation of five lectin clones which clearly differed from each other with regard to their nucleotide sequence and deduced amino-acid sequence. Sequence comparison between the coding regions of different lectin cDNAs revealed the highest homology between lectin clones LECGNA 3 and LECGNA 5, showing 96.4% and 93.6% similarity at the nucleotide level and at the deduced amino-acid level, respectively, whereas lectin clones LECGNA 1 and LECGNA 3 showed the lowest homology of 81.6% and 68.6% for the nucleotide sequence and the amino-acid sequence, respectively. Only very few lectin cDNA clones containing a polyadenylated tail could be isolated. Moreover all these cDNA clones were derived from isolectin 3 and showed some variability within the length of the 3' untranslated region. The major transcription initiation site was located 30 bases upstream from the AUG codon as could be deduced from primer-extension analysis. Taking into account the small 5' untranslated region of the lectin clones, the size of the lectin mRNA, which is approx. 780 nucleotides as determined by Northern blot analysis, is in good agreement with the length of the cDNA clones isolated. Besides the ovary tissue, both the leaf and the flower tissue were also shown to express the lectin mRNA in a flowering snowdrop plant.

  17. Analysis of meiotic chromosome structure and behavior in Robertsonian heterozygotes of Ellobius tancrei (Rodentia, Cricetidae): a case of monobrachial homology

    PubMed Central

    Matveevsky, Sergey; Bakloushinskaya, Irina; Tambovtseva, Valentina; Romanenko, Svetlana; Kolomiets, Oxana

    2015-01-01

    Abstract Synaptonemal complex (SC) chains were revealed in semisterile intraspecific F1 hybrids of Ellobius tancrei Blasius, 1884 (2n = 49, NF=56 and 2n=50, NF=56), heterozygous for Robertsonian (Rb) translocations. Chains were formed by Rb submetacentrics with monobrachial homology. Chromosome synapsis in spermatocytes of these hybrids was disturbed, apparently because of the problematic release of the chromosomes from the SC chains. These hybrids suffer from low fertility, and our data support the opinion that this is because a formation of Rb metacentrics with monobrachial homology within different races of the same species might be an initial event for the divergence of chromosomal forms. PMID:26752380

  18. Comparative analyses of IgA1 binding lectins from seeds of six distinct clones of Artocarpus integer.

    PubMed

    Hashim, O H; Gendeh, G S; Jaafar, M I

    1993-01-01

    Purified lectins from seeds of six distinct clones of Artocarpus integer (lectin C) were shown to be structurally and functionally similar. All lectins comprised of two types of non-covalently-linked subunits with apparent M(r) of 13,300 and 16,000. The lectins appeared to interact with several human serum proteins, with the predominance of the IgA1 and C1 inhibitor molecules. Interaction was not detected with IgA2, IgD, IgG and IgM. The lectin Cs were also shown to precipitate monkey, sheep, rabbit, cat, hamster, rat and guinea-pig serum. Due to their uniform properties, lectin C may provide better alternative to the Artocarpus heterophyllus lectin, jacalin, for use in future investigations.

  19. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies

    PubMed Central

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V.; Pavlyukovets, Vladimir A.; Blumberg, Peter M.; Choi, Sun

    2012-01-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rTRPV1. We experimentally evaluated by mutational analysis the contribution of residues of rat TRPV1 (rTRPV1) contributing to ligand binding by the prototypical TRPV1 agonists capsaicin and resiniferatoxin. We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands. PMID:21448716

  20. Cloning and characterization of the lectin cDNA clones from onion, shallot and leek.

    PubMed

    Van Damme, E J; Smeets, K; Engelborghs, I; Aelbers, H; Balzarini, J; Pusztai, A; van Leuven, F; Goldstein, I J; Peumans, W J

    1993-10-01

    Characterization of the lectins from onion (Allium cepa), shallot (A. ascalonicum) and leek (A. porrum) has shown that these lectins differ from previously isolated Alliaceae lectins not only in their molecular structure but also in their ability to inhibit retrovirus infection of target cells. cDNA libraries constructed from poly(A)-rich RNA isolated from young shoots of onion, shallot and leek were screened for lectin cDNA clones using colony hybridization. Sequence analysis of the lectin cDNA clones from these three species revealed a high degree of sequence similarity both at the nucleotide and at the amino acid level. Apparently the onion, shallot and leek lectins are translated from mRNAs of ca. 800 nucleotides. The primary translation products are preproproteins (ca. 19 kDa) which are converted into the mature lectin polypeptides (12.5-13 kDa) after post-translational modifications. Southern blot analysis of genomic DNA has shown that the lectins are most probably encoded by a family of closely related genes which is in good agreement with the sequence heterogeneity found between different lectin cDNA clones of one species.

  1. Functional recombinants designed from a fetuin/asialofetuin-specific marine algal lectin, rhodobindin.

    PubMed

    Han, Jong Won; Jung, Min Gui; Shim, Eun Young; Shim, Jun Bo; Kim, Young Min; Kim, Gwang Hoon

    2015-04-01

    Plant lectins have attracted much attention for biomedical applications including targeted drug delivery system and therapy against tumors and microbial infections. The main problem of using lectins as a biomedical tool is a batch-to-batch variation in isoforms content. The production of lectins using recombination tools has the advantage of obtaining high amounts of proteins with more precise properties, but there are only a handful of functional recombinant lectins presently available. A fetuin/asialo-fetuin specific lectin, Rhodobindin, has unique tandem repeats structure which makes it useful in exploiting for recombinant lectin. We developed three functional recombinant lectins using E. coli expression system: one from full cDNA sequence and two from fragmentary sequences of Rhodobindin. Hemagglutinating activity and solubility of the recombinant lectins were highest at OD 0.7 cell concentration at 20 °C. The optimized process developed in this study was suitable for the quality-controlled production of high amounts of soluble recombinant lectins. PMID:25871294

  2. Functional Recombinants Designed from a Fetuin/Asialofetuin-Specific Marine Algal Lectin, Rhodobindin

    PubMed Central

    Han, Jong Won; Jung, Min Gui; Shim, Eun Young; Shim, Jun Bo; Kim, Young Min; Kim, Gwang Hoon

    2015-01-01

    Plant lectins have attracted much attention for biomedical applications including targeted drug delivery system and therapy against tumors and microbial infections. The main problem of using lectins as a biomedical tool is a batch-to-batch variation in isoforms content. The production of lectins using recombination tools has the advantage of obtaining high amounts of proteins with more precise properties, but there are only a handful of functional recombinant lectins presently available. A fetuin/asialo-fetuin specific lectin, Rhodobindin, has unique tandem repeats structure which makes it useful in exploiting for recombinant lectin. We developed three functional recombinant lectins using E. coli expression system: one from full cDNA sequence and two from fragmentary sequences of Rhodobindin. Hemagglutinating activity and solubility of the recombinant lectins were highest at OD 0.7 cell concentration at 20 °C. The optimized process developed in this study was suitable for the quality-controlled production of high amounts of soluble recombinant lectins. PMID:25871294

  3. 3D Structure Prediction of Human β1-Adrenergic Receptor via Threading-Based Homology Modeling for Implications in Structure-Based Drug Designing

    PubMed Central

    Ul-Haq, Zaheer; Saeed, Maria; Halim, Sobia Ahsan; Khan, Waqasuddin

    2015-01-01

    Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein. PMID:25860348

  4. 3D structure prediction of human β1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing.

    PubMed

    Ul-Haq, Zaheer; Saeed, Maria; Halim, Sobia Ahsan; Khan, Waqasuddin

    2015-01-01

    Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein. PMID:25860348

  5. Use of lectins in immunohematology

    PubMed Central

    Gorakshakar, Ajit C.; Ghosh, Kanjaksha

    2016-01-01

    Lectins are carbohydrate binding proteins present in seeds of many plants, especially corals and beans, in fungi and bacteria, and in animals. Apart from their hemagglutinating property, a wide range of functions have been attributed to them. Their importance in the area of immunohematology is immense. They are used to detect specific red cell antigens, to activate different types of lymphocytes, in order to resolve problems related to polyagglutination and so on. The introduction of advanced biotechnological tools generates new opportunities to exploit the properties of lectins, which were not used earlier. Stem cell research is a very important area in transplant medicine. Certain lectins detect surface markers of stem cell. Hence, they are used to understand the developmental biology of stem cells. The role of various lectins in the areas of transfusion and transplant medicine is discussed in detail in this review. PMID:27011665

  6. A review of fish lectins.

    PubMed

    Ng, Tzi Bun; Fai Cheung, Randy Chi; Wing Ng, Charlene Cheuk; Fang, Evandro Fei; Wong, Jack Ho

    2015-01-01

    Lectins have been reported from various tissues of a diversity of fish species including Japanese eel, conger eel, electric eel, bighead carp, gibel carp, grass carp, Arabian Gulf catfish, channel catfish, blue catfish, catfish, pike perch, perch, powan, zebrafish, toxic moray, cobia fish, steelhead trout, Japanese trout, Atlantic salmon, chinook salmon, olive rainbow smelt, rainbow smelt, white-spotted charr, tilapia, blue gourami, ayu, Potca fish, Spanish mackerel, gilt head bream, tench, roach, rudd, common skate, and sea lamprey. The tissues from which the lectins were isolated comprise gills, eggs, electric organ, stomach, intestine, and liver. Lectins have also been isolated from skin, mucus serum, and plasma. The lectins differ in molecular weight, number of subunits, glycosylation, sugar binding specificity and amino acid sequence. Their activities include antimicrobial, antitumor, immunoregulatory and a role in development. PMID:25929869

  7. Use of lectins in immunohematology.

    PubMed

    Gorakshakar, Ajit C; Ghosh, Kanjaksha

    2016-01-01

    Lectins are carbohydrate binding proteins present in seeds of many plants, especially corals and beans, in fungi and bacteria, and in animals. Apart from their hemagglutinating property, a wide range of functions have been attributed to them. Their importance in the area of immunohematology is immense. They are used to detect specific red cell antigens, to activate different types of lymphocytes, in order to resolve problems related to polyagglutination and so on. The introduction of advanced biotechnological tools generates new opportunities to exploit the properties of lectins, which were not used earlier. Stem cell research is a very important area in transplant medicine. Certain lectins detect surface markers of stem cell. Hence, they are used to understand the developmental biology of stem cells. The role of various lectins in the areas of transfusion and transplant medicine is discussed in detail in this review.

  8. Characterisation of Jack fruit lectin.

    PubMed

    Arslan, M I; Chulavatnatol, M

    2000-04-01

    Jack fruit (Artocarpus Heterophyllus) seed extract contains a lectin termed Jack fruit lectin (JFL) which possesses diversed biological properties. A detailed analysis of its properties has been lacking. The present investigation was initiated to study the detail properties of JFL. After extraction and purification on affigel galactosamine-agarose column, JFL was subjected to ND-PAGE. Several different charged species from ND-PAGE upon SDS-PAGE gave rise to two dissimilar trimeric subunit at 12.5 and 15.0 KDa and retain biological activity. It was possible to elute the subunit bands separately from polyacrylamide gel to investigate their biological activity. Each subunit was found to be retained the lectin activity. Agglutinating activity of smaller subunit was found to be more, may be due to the greater amount of the subunit. This also suggests that each unit of trimeric JFL have similar lectin activity.

  9. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  10. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.

    PubMed

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L

    2012-11-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. PMID:23088412

  11. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways.

    PubMed

    Moeller, Ralf; Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L

    2012-11-01

    The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior.

  12. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides

    PubMed Central

    2015-01-01

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  13. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  14. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.

  15. Innovation by homologous recombination.

    PubMed

    Trudeau, Devin L; Smith, Matthew A; Arnold, Frances H

    2013-12-01

    Swapping fragments among protein homologs can produce chimeric proteins with a wide range of properties, including properties not exhibited by the parents. Computational methods that use information from structures and sequence alignments have been used to design highly functional chimeras and chimera libraries. Recombination has generated proteins with diverse thermostability and mechanical stability, enzyme substrate specificity, and optogenetic properties. Linear regression, Gaussian processes, and support vector machine learning have been used to model sequence-function relationships and predict useful chimeras. These approaches enable engineering of protein chimeras with desired functions, as well as elucidation of the structural basis for these functions.

  16. Structural Studies of Apo Nosl, an Accessory Protein of the Nitrous Oxide Reductase System: Insights from Structural Homology with MerB, a Mercury Resistance Protein

    SciTech Connect

    Taubner, Lara M.; McGuirl, Michele A.; Dooley, David M.; Copie, Valerie

    2006-09-19

    The formation of the unique catalytic tetranuclear copper cluster (CuZ) of nitrous oxide reductase, N2OR, requires the coexpression of a multiprotein assembly apparatus encoded by the nosDFYL operon. NosL, one of the proteins encoded by this transcript, is a 20 kDa lipoprotein of the periplasm that has been shown to bind copper(I), although its function has yet to be detemined. Cu(I) EXAFS data collected on the holo protein demonstrated that features of the copper binding site are consistent with a role for this protein as a metallochaperone, a class of metal ion transporters involved in metal resistance, homeostasis, and metallocluster biosynthesis. To test this hypothesis and to gain insight into other potential functional roles for this protein in the N2OR system, the three-dimensional solution structure of apo NosL has been solved by solution NMR methods. The structure of apo NosL consists of two relatively independent homologous domains that adopt an unusual topology.

  17. FeatureMap3D--a tool to map protein features and sequence conservation onto homologous structures in the PDB.

    PubMed

    Wernersson, Rasmus; Rapacki, Kristoffer; Staerfeldt, Hans-Henrik; Sackett, Peter Wad; Mølgaard, Anne

    2006-07-01

    FeatureMap3D is a web-based tool that maps protein features onto 3D structures. The user provides sequences annotated with any feature of interest, such as post-translational modifications, protease cleavage sites or exonic structure and FeatureMap3D will then search the Protein Data Bank (PDB) for structures of homologous proteins. The results are displayed both as an annotated sequence alignment, where the user-provided annotations as well as the sequence conservation between the query and the target sequence are displayed, and also as a publication-quality image of the 3D protein structure with the selected features and sequence conservation enhanced. The results are also returned in a readily parsable text format as well as a PyMol (http://pymol.sourceforge.net/) script file, which allows the user to easily modify the protein structure image to suit a specific purpose. FeatureMap3D can also be used without sequence annotation, to evaluate the quality of the alignment of the input sequences to the most homologous structures in the PDB, through the sequence conservation colored 3D structure visualization tool. FeatureMap3D is available at: http://www.cbs.dtu.dk/services/FeatureMap3D/. PMID:16845115

  18. Purification and characterization of a novel beta-D-galactosides-specific lectin from Clitoria ternatea.

    PubMed

    Naeem, Aabgeena; Haque, Shabirul; Khan, Rizwan Hasan

    2007-09-01

    A lectin present in seeds of Clitoria ternatea agglutinated trypsin-treated human B erythrocytes. The sugar specificity assay indicated that lectin belongs to Gal/Gal NAc-specific group. Hence the lectin, designated C. ternatea agglutinin (CTA), was purified by the combination of acetic acid precipitation, salt fractionation and affinity chromatography. HPLC gel filtration, SDS-polyacrylamide gel electrophoresis and mass spectrometry indicated that the native lectin is composed of two identical subunits of molecular weight 34.7 kDa associated by non covalent bonds. The N-terminal sequence of CTA shared homology with Glycine max and Pisum sativum. Complete sequence was also found to be homologous to S-64 protein of Glycine max, suggesting that CTA probably exhibits both hemagglutination and probably sugar uptake activity. The carbohydrate binding specificity of the lectin was investigated by quantitative turbidity measurements, and percent inhibition assays. Based on these assays, we conclude that CTA binds beta-D: -galactosides, and also may has an extended specificity towards non-reducing terminal Neu5Acalpha2,6Gal. PMID:17514413

  19. The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads.

    PubMed

    Nam, Ki Hyun; Kim, Soo-Jin; Priyadarshi, Amit; Kim, Hyun Sook; Hwang, Kwang Yeon

    2009-11-13

    The esterase/lipase family (EC 3.1.1.3/EC 3.1.1.1) represents a diverse group of hydrolases that catalyze the cleavage of ester bonds and are widely distributed in animals, plants and microorganisms. Among these enzymes, hormone-sensitive lipases, play a critical role in the regulation of rodent fat cell lipolysis and are regarded as adipose tissue-specific enzymes. Recently, we reported the structural and biological characterization of EstE5 from the metagenome library [K.H. Nam, M.Y. Kim, S.J. Kim, A. Priyadarshi, W.H. Lee, K.Y. Hwang, Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase, Biochem. Biophys. Res. Commun. 379 (2009) 553-556]. The structure of this protein revealed that it belongs to the HSL-family. Here, we report the inhibition of the activity of the HSL-homolog EstE5 protein as determined by the use of esterase/lipase inhibitors. Our results revealed that the EstE5 protein is significantly inhibited by PMSF. In addition, this is the first study to identify the crystal structures of EstE5-PMSF at 2.4 and 2.5A among the HSL-homolog structures. This structural configuration is similar to that adopted when serine proteases are inhibited by PMSF. The results presented here provide valuable information regarding the properties of the HSL-family.

  20. Novel animal defenses against predation: a snail egg neurotoxin combining lectin and pore-forming chains that resembles plant defense and bacteria attack toxins.

    PubMed

    Dreon, Marcos Sebastián; Frassa, María Victoria; Ceolín, Marcelo; Ituarte, Santiago; Qiu, Jian-Wen; Sun, Jin; Fernández, Patricia E; Heras, Horacio

    2013-01-01

    Although most eggs are intensely predated, the aerial egg clutches from the aquatic snail Pomacea canaliculata have only one reported predator due to unparalleled biochemical defenses. These include two storage-proteins: ovorubin that provides a conspicuous (presumably warning) coloration and has antinutritive and antidigestive properties, and PcPV2 a neurotoxin with lethal effect on rodents. We sequenced PcPV2 and studied whether it was able to withstand the gastrointestinal environment and reach circulation of a potential predator. Capacity to resist digestion was assayed using small-angle X-ray scattering (SAXS), fluorescence spectroscopy and simulated gastrointestinal proteolysis. PcPV2 oligomer is antinutritive, withstanding proteinase digestion and displaying structural stability between pH 4.0-10.0. cDNA sequencing and protein domain search showed that its two subunits share homology with membrane attack complex/perforin (MACPF)-like toxins and tachylectin-like lectins, a previously unknown structure that resembles plant Type-2 ribosome-inactivating proteins and bacterial botulinum toxins. The protomer has therefore a novel AB toxin combination of a MACPF-like chain linked by disulfide bonds to a lectin-like chain, indicating a delivery system for the former. This was further supported by observing PcPV2 binding to glycocalix of enterocytes in vivo and in culture, and by its hemaggutinating, but not hemolytic activity, which suggested an interaction with surface oligosaccharides. PcPV2 is able to get into predator's body as evidenced in rats and mice by the presence of circulating antibodies in response to sublethal oral doses. To our knowledge, a lectin-pore-forming toxin has not been reported before, providing the first evidence of a neurotoxic lectin in animals, and a novel function for ancient and widely distributed proteins. The acquisition of this unique neurotoxic/antinutritive/storage protein may confer the eggs a survival advantage, opening new

  1. Lectin binding in the anterior segment of the bovine eye.

    PubMed

    Tuori, A; Virtanen, I; Uusitalo, H

    1994-10-01

    Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2) N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Helix aspersa agglutinin (HAA), Psophocarpus tetragonolobus agglutinin (PTA), Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4), Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) and Ricinus communis agglutinin (RCA-I)); (4) L-fucose group (Ulex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to

  2. Structural insights into a novel interkingdom signaling circuit by cartography of the ligand-binding sites of the homologous quorum sensing LuxR-family.

    PubMed

    Covaceuszach, Sonia; Degrassi, Giuliano; Venturi, Vittorio; Lamba, Doriano

    2013-01-01

    Recent studies have identified a novel interkingdom signaling circuit, via plant signaling molecules, and a bacterial sub-family of LuxR proteins, bridging eukaryotes and prokaryotes. Indeed pivotal plant-bacteria interactions are regulated by the so called Plant Associated Bacteria (PAB) LuxR solo regulators that, although closely related to the quorum sensing (QS) LuxR family, do not bind or respond to canonical quorum sensing N-acyl homoserine lactones (AHLs), but only to specific host plant signal molecules. The large body of structural data available for several members of the QS LuxR family complexed with different classes of ligands (AHLs and other compounds), has been exploited to dissect the cartography of their regulatory domains through structure-based multiple sequence alignments, structural superimposition and a comparative analysis of the contact residues involved in ligand binding. In the absence of experimentally determined structures of members of the PAB LuxR solos subfamily, an homology model of its prototype OryR is presented, aiming to elucidate the architecture of its ligand-binding site. The obtained model, in combination with the cartography of the regulatory domains of the homologous QS LuxRs, provides novel insights into the 3D structure of its ligand-binding site and unveils the probable molecular determinants responsible for differences in selectivity towards specific host plant signal molecules, rather than to canonical QS compounds.

  3. Prevalence of the F-type lectin domain.

    PubMed

    Bishnoi, Ritika; Khatri, Indu; Subramanian, Srikrishna; Ramya, T N C

    2015-08-01

    F-type lectins are fucolectins with characteristic fucose and calcium-binding sequence motifs and a unique lectin fold (the "F-type" fold). F-type lectins are phylogenetically widespread with selective distribution. Several eukaryotic F-type lectins have been biochemically and structurally characterized, and the F-type lectin domain (FLD) has also been studied in the bacterial proteins, Streptococcus mitis lectinolysin and Streptococcus pneumoniae SP2159. However, there is little knowledge about the extent of occurrence of FLDs and their domain organization, especially, in bacteria. We have now mined the extensive genomic sequence information available in the public databases with sensitive sequence search techniques in order to exhaustively survey prokaryotic and eukaryotic FLDs. We report 437 FLD sequence clusters (clustered at 80% sequence identity) from eukaryotic, eubacterial and viral proteins. Domain architectures are diverse but mostly conserved in closely related organisms, and domain organizations of bacterial FLD-containing proteins are very different from their eukaryotic counterparts, suggesting unique specialization of FLDs to suit different requirements. Several atypical phylogenetic associations hint at lateral transfer. Among eukaryotes, we observe an expansion of FLDs in terms of occurrence and domain organization diversity in the taxa Mollusca, Hemichordata and Branchiostomi, perhaps coinciding with greater emphasis on innate immune strategies in these organisms. The naturally occurring FLDs with diverse domain organizations that we have identified here will be useful for future studies aimed at creating designer molecular platforms for directing desired biological activities to fucosylated glycoconjugates in target niches. PMID:25943580

  4. Prevalence of the F-type lectin domain.

    PubMed

    Bishnoi, Ritika; Khatri, Indu; Subramanian, Srikrishna; Ramya, T N C

    2015-08-01

    F-type lectins are fucolectins with characteristic fucose and calcium-binding sequence motifs and a unique lectin fold (the "F-type" fold). F-type lectins are phylogenetically widespread with selective distribution. Several eukaryotic F-type lectins have been biochemically and structurally characterized, and the F-type lectin domain (FLD) has also been studied in the bacterial proteins, Streptococcus mitis lectinolysin and Streptococcus pneumoniae SP2159. However, there is little knowledge about the extent of occurrence of FLDs and their domain organization, especially, in bacteria. We have now mined the extensive genomic sequence information available in the public databases with sensitive sequence search techniques in order to exhaustively survey prokaryotic and eukaryotic FLDs. We report 437 FLD sequence clusters (clustered at 80% sequence identity) from eukaryotic, eubacterial and viral proteins. Domain architectures are diverse but mostly conserved in closely related organisms, and domain organizations of bacterial FLD-containing proteins are very different from their eukaryotic counterparts, suggesting unique specialization of FLDs to suit different requirements. Several atypical phylogenetic associations hint at lateral transfer. Among eukaryotes, we observe an expansion of FLDs in terms of occurrence and domain organization diversity in the taxa Mollusca, Hemichordata and Branchiostomi, perhaps coinciding with greater emphasis on innate immune strategies in these organisms. The naturally occurring FLDs with diverse domain organizations that we have identified here will be useful for future studies aimed at creating designer molecular platforms for directing desired biological activities to fucosylated glycoconjugates in target niches.

  5. Structural Characterization of the E2 Domain of APL-1, a Caenorhabditis elegans Homolog of Human Amyloid Precursor Protein, and Its Heparin Binding Site*

    PubMed Central

    Hoopes, James T.; Liu, Xuying; Xu, Xiaomeng; Demeler, Borries; Folta-Stogniew, Ewa; Li, Chris; Ha, Ya

    2010-01-01

    The amyloid β-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1. PMID:19906646

  6. Structural Characterization of the E2 Domain of APL-1, a C. Elegans Homolog of Human Amyloid Precursor Protein, and its Heparin Binding Site

    SciTech Connect

    Hoopes, J.; Liu, X; Xu, X; Demeler, B; Folta-Stogniew, E; Li, C; Ha, Y

    2010-01-01

    The amyloid {beta}-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.

  7. Mitogenic activity of new lectins from seeds of wild Artocarpus species from Vietnam.

    PubMed

    Blasco, E; Ngoc, L D; Aucouturier, P; Preud'Homme, J L; Barra, A

    1996-05-01

    Proliferative response of human peripheral blood mononuclear cells (PBMC) stimulated by new lectins purified from seeds of differents Artocarpus species from Vietnam (A. asperulus, A. heterophyllus, A. masticata, A. melinoxylus, A. parva and A. petelotii) was studied and compared to those of the lectin jacalin purified from jackfruit (A. heterophyllus) seeds collected in the island La Réunion. All lectins stimulated human PBMC to proliferate, with a variable efficiency of the mitogenic activity. Phenotypic analysis of cells recovered after 7 day-cultures showed that these lectins mostly stimulated CD4+ T lymphocytes. These results suggest that these lectins from different Artocarpus species are similar in terms of their mitogenic activity although their structural features are not identical.

  8. Isolation and partial characterization of a lectin from Artocarpus incisa L. seeds.

    PubMed

    Moreira, R A; Castelo-Branco, C C; Monteiro, A C; Tavares, R O; Beltramini, L M

    1998-04-01

    A lectin was isolated from the saline extract of Artocarpus incisa seed by affinity chromatography on cross-linked Adenanthera pavonina galactomannan in 0.15 M NaCl. The lectin was also retained in a D-gal-agarose resin and had no requirements for divalent metal cations (Ca2+ and Mn2+) for activity. The lectin contains 2.1% of carbohydrate and is characterized by high contents of acidic and hydroxylated amino acids. The lectin presented two protein bands in SDS-PAGE, with M(r) 15.5 and 12 kDa, respectively, and contains no alpha-helix, 64% antiparallel beta-sheet and 21% parallel beta-sheet/beta-turn. When submitted to gel filtration in Superose 12 R (FPLC) and Superdex 75 HR 5/5 (HPLC) columns, the lectin showed an M(r) of 48-49 kDa, suggesting a tetrameric structure.

  9. Antinutritional properties of plant lectins.

    PubMed

    Vasconcelos, Ilka M; Oliveira, José Tadeu A

    2004-09-15

    Lectins are carbohydrate binding (glyco)proteins which are ubiquitous in nature. In plants, they are distributed in various families and hence ingested daily in appreciable amounts by both humans and animals. One of the most nutritionally important features of plant lectins is their ability to survive digestion by the gastrointestinal tract of consumers. This allows the lectins to bind to membrane glycosyl groups of the cells lining the digestive tract. As a result of this interaction a series of harmful local and systemic reactions are triggered placing this class of molecules as antinutritive and/or toxic substances. Locally, they can affect the turnover and loss of gut epithelial cells, damage the luminal membranes of the epithelium, interfere with nutrient digestion and absorption, stimulate shifts in the bacterial flora and modulate the immune state of the digestive tract. Systemically, they can disrupt lipid, carbohydrate and protein metabolism, promote enlargement and/or atrophy of key internal organs and tissues and alter the hormonal and immunological status. At high intakes, lectins can seriously threaten the growth and health of consuming animals. They are also detrimental to numerous insect pests of crop plants although less is presently known about their insecticidal mechanisms of action. This current review surveys the recent knowledge on the antinutritional/toxic effects of plant lectins on higher animals and insects. PMID:15302522

  10. Cell surface lectin-binding glycoconjugates on marine planktonic protists.

    PubMed

    Roberts, Emily C; Zubkov, Mikhail V; Martin-Cereceda, Mercedes; Novarino, Gianfranco; Wootton, Emma C

    2006-12-01

    Carbohydrate-protein interactions appear to play an important role in the phagocytosis of microbial prey by free-living protozoa. The present study utilizes FITC-labelled plant lectins to investigate the presence and localization of cell surface glycoconjugates on live and fixed planktonic protists (Dunaliella primolecta, Oxyrrhis marina, Goniomonas amphinema, Paraphysomonas vestita and Euplotes vannus). With live flagellate preparations, lectins primarily bound to external cell surfaces, with minimal internal staining observed. In contrast, cell fixation permeabilized cell membranes, allowing lectins to bind to internal structures, such as nuclear membranes and food vacuoles, interfering with the characterization of cell surface glycoconjugates. The method developed to label cell surface sugar moieties of live planktonic protists successfully overcomes the problems associated with fixation, and thus provides a useful protocol for future studies on protistan cell surface carbohydrate characterization.

  11. C-type lectins do not act as functional receptors for filovirus entry into cells

    SciTech Connect

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu; Marzi, Andrea; Ebihara, Hideki; Irimura, Tatsuro; Feldmann, Heinz; Takada, Ayato

    2010-12-03

    Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  12. Crystal Structure of the Cytoplasmic N-Terminal Domain of Subunit I, a Homolog of Subunit a, of V-ATPase

    SciTech Connect

    Srinivasan, Sankaranarayanan; Vyas, Nand K.; Baker, Matthew L.; Quiocho, Florante A.

    2012-02-27

    Subunit 'a' is associated with the membrane-bound (VO) complex of eukaryotic vacuolar H{sup +}-ATPase acidification machinery. It has also been shown recently to be involved in diverse membrane fusion/secretory functions independent of acidification. Here, we report the crystal structure of the N-terminal cytosolic domain from the Meiothermus ruber subunit 'I' homolog of subunit a. The structure is composed of a curved long central {alpha}-helix bundle capped on both ends by two lobes with similar {alpha}/{beta} architecture. Based on the structure, a reasonable model of its eukaryotic subunit a counterpart was obtained. The crystal structure and model fit well into reconstructions from electron microscopy of prokaryotic and eukaryotic vacuolar H{sup +}-ATPases, respectively, clarifying their orientations and interactions and revealing features that could enable subunit a to play a role in membrane fusion/secretion.

  13. The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase.

    PubMed

    Lerner, D R; Raikhel, N V

    1992-06-01

    Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain. PMID:1375935

  14. Effect of lectins from Diocleinae subtribe against oral Streptococci.

    PubMed

    Cavalcante, Theodora Thays Arruda; Anderson Matias da Rocha, Bruno; Alves Carneiro, Victor; Vassiliepe Sousa Arruda, Francisco; Fernandes do Nascimento, Antônia Sâmia; Cardoso Sá, Nairley; do Nascimento, Kyria Santiago; Sousa Cavada, Benildo; Holanda Teixeira, Edson

    2011-01-01

    Surface colonization is an essential step in biofilm development. The ability of oral pathogens to adhere to tooth surfaces is directly linked with the presence of specific molecules at the bacterial surface that can interact with enamel acquired pellicle ligands. In light of this, the aim of this study was to verify inhibitory and antibiofilm action of lectins from the Diocleinaesubtribe against Streptococcus mutans and Streptococcus oralis. The inhibitory action against planctonic cells was assessed using lectins from Canavaliaensi formis (ConA), Canavalia brasiliensis (ConBr), Canavalia maritima (ConM), Canavalia gladiata (CGL) and Canavalia boliviana (ConBol). ConBol, ConBr and ConM showed inhibitory activity on S. mutans growth. All lectins, except ConA, stimulated significantly the growth of S. oralis. To evaluate the effect on biofilm formation, clarified saliva was added to 96-well, flat-bottomed polystyrene plates, followed by the addition of solutions containing 100 or 200 µg/mL of the selected lectins. ConBol, ConM and ConA inhibited the S. mutans biofilms. No effects were found on S. oralis biofilms. Structure/function analysis were carried out using bioinformatics tools. The aperture and deepness of the CRD (Carbohydrate Recognition Domain) permit us to distinguish the two groups of Canavalia lectins in accordance to their actions against S. mutans and S. oralis. The results found provide a basis for encouraging the use of plant lectins as biotechnological tools in ecological control and prevention of caries disease. PMID:21525793

  15. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models.

    PubMed

    Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok

    2014-01-01

    Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research. PMID:23828036

  16. Isolation and characterization of a novel lectin with mitogenic activity from Pleurotus ferulae.

    PubMed

    Xu, Cheng-Jian; Wang, Yue-Xiang; Niu, Bo-Nan; Liu, Bing; Li, Ying-Biao; Wang, Xue-Ming; Lu, Shi-Ling

    2014-07-01

    Lectins are the tools for the determination of sugar chain structure. Recently, lectin arrays have become a popular new technology; therefore, lectins with specific sugar-binding properties are required. The objective of the study was to isolate a novel lectin from Pleurotus ferulae mushrooms and characterize its various biological activities. A novel lectin was extracted with deionized water, precipitated from the aqueous extract using 75% saturated (NH4)2SO4, and subjected on DEAE-cellulose followed by affinity chromatography on sepharose-6B. The activity was tested using hemagglutination assays, and carbohydrate-binding specificity was determined by glycan microarray analysis. Its effects on the mitogenic activity of mouse splenocytes were determined by MTT assay. The novel lectin was adsorbed on ion-exchange chromatography DEAE-cellulose and shown as a band with the molecular mass of 17.5 kDa on a SDS-PAGE and as a single 35.0-kDa peak in gel filtration on Superdex G-75. The hemagglutinating activity of the lectin was inhibited by D-glucose, lactose, D-galactose, and galactosamine. The lectin was stable on 60°C. The hemagglutinating activity of lectin was reduced by 50% at 70°C. At 80°C, it was further reduced to 6.25% of its original activity. The hemagglutinating activity was the highest at pH 6-9. Moreover, its hemagglutinating activity was inhibited by Mg2+ and Ca2+ ions. The lectin isolated from P. ferulae in the current study possessed highly potent hemagglutinating and proliferative activities toward mouse splenocytes. PMID:25016256

  17. MMBL proteins: from lectin to bacteriocin.

    PubMed

    Ghequire, Maarten G K; Loris, Remy; De Mot, René

    2012-12-01

    Arguably, bacteriocins deployed in warfare among related bacteria are among the most diverse proteinacous compounds with respect to structure and mode of action. Identification of the first prokaryotic member of the so-called MMBLs (monocot mannose-binding lectins) or GNA (Galanthus nivalis agglutinin) lectin family and discovery of its genus-specific killer activity in the Gram-negative bacteria Pseudomonas and Xanthomonas has added yet another kind of toxin to this group of allelopathic molecules. This novel feature is reminiscent of the protective function, on the basis of antifungal, insecticidal, nematicidal or antiviral activity, assigned to or proposed for several of the eukaryotic MMBL proteins that are ubiquitously distributed among monocot plants, but also occur in some other plants, fish, sponges, amoebae and fungi. Direct bactericidal activity can also be effected by a C-type lectin, but this is a mammalian protein that limits mucosal colonization by Gram-positive bacteria. The presence of two divergent MMBL domains in the novel bacteriocins raises questions about task distribution between modules and the possible role of carbohydrate binding in the specificity of target strain recognition and killing. Notably, bacteriocin activity was also demonstrated for a hybrid MMBL protein with an accessory protease-like domain. This association with one or more additional modules, often with predicted peptide-hydrolysing or -binding activity, suggests that additional bacteriotoxic proteins may be found among the diverse chimaeric MMBL proteins encoded in prokaryotic genomes. A phylogenetic survey of the bacterial MMBL modules reveals a mosaic pattern of strongly diverged sequences, mainly occurring in soil-dwelling and rhizosphere bacteria, which may reflect a trans-kingdom acquisition of the ancestral genes. PMID:23176516

  18. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene

    SciTech Connect

    Durkin, M.E.; Chung, A.E.; Wewer, U.M.

    1995-03-20

    Entactin is a widespread basement membrane protein of 150 kDa that binds to type IV collagen and laminin. The complete exon-intron structure of the mouse entactin gene has been determined from {lambda} genomic DNA clones. The gene spans at least 65 kb and contains 20 exons. The exon organization of the mouse entactin gene closely corresponds to the organization of the polypeptide into distinct structural and functional domains. The two amino-terminal globular domains are encoded by three exons each. Single exons encode the two protease-sensitive, O-glycosylated linking regions. The six EGF-like repeats and the single thyroglobulin-type repeat are each encoded by separate exons. The carboxyl-terminal half of entactin displays sequence homology to the growth factor-like region of the low-density lipoprotein receptor, and in both genes this region is encoded by eight exons. The positions of four introns are also conserved in the homologous region of the two genes. These observations suggest that the entactin gene has evolved via exon shuffling. Finally, several sequence polymorphisms useful for gene linkage analysis were found in the 3{prime} noncoding region of the last exon. 52 refs., 8 figs.

  19. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    SciTech Connect

    Goetz, R.; Dover, K; Laezza, F; Shtraizent, N; Huang, X; Tchetchik, D; Eliseenkova, A; Goldfarb, M; Mohammadi, M; et. al.

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel binding in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.

  20. Genes for the Major Structural Components of Thermotogales Species' Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs

    SciTech Connect

    Petrus, Amanda K.; Swithers, Kristen S.; Ranjit, Chaman R.; Wu, Si; Brewer, Heather M.; Gogarten, J. Peter; Pasa-Tolic, Ljiljana; Noll, Kenneth M.

    2012-06-29

    The unifying structural characteristic of members of the bacterial order Thermotogales is an unusual cell envelope that includes a loose-fitting sheath around each cell, often called a toga. Only two toga-associated structural proteins have been identified in Thermotoga maritima: the anchor protein OmpA1 (previously termed Ompα) and the porin OmpB (previously termed Ompβ). The gene encoding OmpA (ompA1) was assigned in the genome sequence to TM0477, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. Here we identify the ompB gene as TM0476, determined by LC/MS/MS analysis of the native OmpB protein purified from T. maritima cells. The purified OmpB had β-sheet secondary structure as determined by circular dichroism. Analysis of the sequence of ompB product shows it has porin characteristics including a carboxy terminus anchoring motif and a porin-specific amino acid composition. Orthologs of ompB were found in the genomes of some, but not all, Thermotogales. Those without orthologs have putative analogs. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one to three OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1(TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.

  1. Molecular cloning of a human macrophage lectin specific for galactose

    SciTech Connect

    Cherayil, B.J.; Chairovitz, S.; Wong, C.; Pillai, S. Harvard Medical School, Boston )

    1990-09-01

    The murine Mac-2 protein is a galactose- and IgE-binding lectin secreted by inflammatory macrophages. The authors describe here the cloning an dcharacterization of cDNA representing the human homolog of Mac-2 (hMac-2). The amino acid sequence derived from the hMac-2 cDNA indicates that the protein is evolutionarily highly conserved, with 85% of its amino acid residues being similar to those in the murine homolog. This conservation is especially marked in the carboxyl-terminal lectin domain. The amino-terminal half of the protein is less conserved but still contains the repetitive proline-glycine-rich motif seen in the mouse protein. hMac-2 synthesized in vitro is recognized by the M3/38 monoclonal antibody to Mac-2 and binds to the desialylated glycoprotein asialofetuin and to laminin, a major component of basement membranes. These findings are discussed in the context of the potential functions of hMac-2.

  2. Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects.

    PubMed

    Zotti, Moises João; Christiaens, Olivier; Rougé, Pierre; Grutzmacher, Anderson Dionei; Zimmer, Paulo Dejalma; Smagghe, Guy

    2012-04-01

    In insects, the process of molting and metamorphosis are mainly regulated by a steroidal hormone 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) that specifically bind to the ecdysone receptor ligand-binding domain (EcR-LBD). Currently, several synthetic non-steroidal ecdysone agonists, including tebufenozide, are commercially available as insecticides. Tebufenozide exerts its activity by binding to the 20E-binding site and thus activating EcR permanently. It appears that subtle differences in the architecture among LBDs may underpin the differential binding affinity of tebufenozide across taxonomic orders. In brief, first we demonstrated the harmlessness of tebufenozide towards Chrysoperla externa (Ce). Then, a molecular analysis of EcR-LBD of two neuropteran insects Chrysoperla carnea and Ce was presented. Finally, we constructed a chrysopid in silico homology model docked ponasterone A (PonA) and tebufenozide into the binding pocket and analyzed the amino acids indentified as critical for binding to PonA and tebufenozide. Due to a restrict extent in the cavity at the bottom of the ecdysone-binding pocket a steric clash occurred upon docking of tebufenozide. The absence of harm biological effect and the docking results suggest that tebufenozide is prevented of any deleterious effects on chrysopids.

  3. The human homolog of Escherichia coli endonuclease V is a nucleolar protein with affinity for branched DNA structures.

    PubMed

    Fladeby, Cathrine; Vik, Erik Sebastian; Laerdahl, Jon K; Gran Neurauter, Christine; Heggelund, Julie E; Thorgaard, Eirik; Strøm-Andersen, Pernille; Bjørås, Magnar; Dalhus, Bjørn; Alseth, Ingrun

    2012-01-01

    Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3' of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3'-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription.

  4. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs

    SciTech Connect

    Shanklin, J.; Somerville, C. )

    1991-03-15

    Stearoyl-acyl-carrier-protein (ACP) desaturase was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the {Delta}{sup 9} desaturase is developmentally regulated.

  5. Amino acid sequence and domain structure of entactin. Homology with epidermal growth factor precursor and low density lipoprotein receptor

    PubMed Central

    1988-01-01

    Entactin (nidogen), a 150-kD sulfated glycoprotein, is a major component of basement membranes and forms a highly stable noncovalent complex with laminin. The complete amino acid sequence of mouse entactin has been derived from sequencing of cDNA clones. The 5.9-kb cDNA contains a 3,735-bp open reading frame followed by a 3'- untranslated region of 2.2 kb. The open reading frame encodes a 1,245- residue polypeptide with an unglycosylated Mr of 136,500, a 28-residue signal peptide, two Asn-linked glycosylation sites, and two potential Ca2+-binding sites. Analysis of the deduced amino acid sequence predicts that the molecule consists of two globular domains of 70 and 36 kD separated by a cysteine-rich domain of 28 kD. The COOH-terminal globular domain shows homology to the EGF precursor and the low density lipoprotein receptor. Entactin contains six EGF-type cysteine-rich repeat units and one copy of a cysteine-repeat motif found in thyroglobulin. The Arg-Gly-Asp cell recognition sequence is present in one of the EGF-type repeats, and a synthetic peptide from the putative cell-binding site of entactin was found to promote the attachment of mouse mammary tumor cells. PMID:3264556

  6. The Human Homolog of Escherichia coli Endonuclease V Is a Nucleolar Protein with Affinity for Branched DNA Structures

    PubMed Central

    Laerdahl, Jon K.; Gran Neurauter, Christine; Heggelund, Julie E.; Thorgaard, Eirik; Strøm-Andersen, Pernille; Bjørås, Magnar; Dalhus, Bjørn; Alseth, Ingrun

    2012-01-01

    Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3′ of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3′-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription. PMID:23139746

  7. Object-oriented persistent homology

    NASA Astrophysics Data System (ADS)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data.

  8. Artocarpin is a polyspecific jacalin-related lectin with a monosaccharide preference for mannose.

    PubMed

    Barre, Annick; Peumans, Willy J; Rossignol, Michel; Borderies, Gisèle; Culerrier, Raphaël; Van Damme, Els J M; Rougé, Pierre

    2004-01-01

    A reinvestigation of the carbohydrate-binding properties revealed that artocarpin, a previously described mannose-specific lectin from jackfruit (Artocarpus integrifolia) seeds, behaves as a polyspecific lectin. Surface plasmon resonance hapten inhibition experiments demonstrated that artocarpin readily interacted with a wide range of monosaccharides covering galactose, N-acetylgalactosamine, mannose, glucose, sialic acid and N-acetylmuramic acid. Molecular docking confirmed this unexpected ability of artocarpin to interact with structurally different sugars. The biological significance of the polyspecificity of the lectin is discussed in terms of the broadening of the range of potential target glycans present on the surface of plant phytopathogens or predators.

  9. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs.

    PubMed

    Shanklin, J; Somerville, C

    1991-03-15

    Stearoyl-acyl-carrier-protein (ACP) desaturase (EC 1.14.99.6) was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was no detectable identity between the deduced amino acid sequences of the castor delta 9-stearoyl-ACP desaturase and either the delta 9-stearoyl-CoA desaturase from rat or yeast or the delta 12 desaturase from Synechocystis, suggesting that these enzymes may have evolved independently. However, there was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the delta 9 desaturase is developmentally regulated.

  10. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs.

    PubMed Central

    Shanklin, J; Somerville, C

    1991-01-01

    Stearoyl-acyl-carrier-protein (ACP) desaturase (EC 1.14.99.6) was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was no detectable identity between the deduced amino acid sequences of the castor delta 9-stearoyl-ACP desaturase and either the delta 9-stearoyl-CoA desaturase from rat or yeast or the delta 12 desaturase from Synechocystis, suggesting that these enzymes may have evolved independently. However, there was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the delta 9 desaturase is developmentally regulated. Images PMID:2006187

  11. Lectins as markers for blood grouping.

    PubMed

    Khan, Fauzia; Khan, Rizwan H; Sherwani, Asma; Mohmood, Sameena; Azfer, Md A

    2002-12-01

    Lectins are unique proteins of varying biological importance. They are characterized by specific binding to carbohydrate residues, whether monosaccharides, disaccharides or polysaccharides. The sugar heads on the surface of the erythrocyte specify the different blood groups. Lectins, as an antigenic determinant of blood group, have come to be an important tool in the identification of different blood groups. A handful of lectins may be considered excellent reagents for anti-A, anti-B, anti-N etc, but the anti-A and anti-M are not yet regarded as commercially suitable antisera. Lectin from Vicia cracca has been proved to be a good anti-A, lectin from Dolichus biflorus can be used as anti-A1, and lectin from Griffonia simplicifolia as anti-B. Lectin from Vicia graminea is said to be a good typing reagent as Anti-N. On the other hand, the lectins involved in polyagglutination are absolutely essential as the reagent of choice and these cannot as yet be replaced by antibodies of any kind. Erythrocytes with exposed cryptantigens are significantly more sensitive to agglutination by certain lectins than by polyclonal antibodies. Peanut agglutinin (PNA), Polybrene, and Glycine max lectins are frequently used for the identification of different cryptantigens. The application of lectins as an anti-B reagent has proven to be as useful as human polyclonal or mouse monoclonal antibodies. Besides their specificity, lectins are excellent reagents because of their lower cost and indigenous production. The importance of various lectins used as markers for blood grouping is discussed.

  12. Urtica dioica agglutinin. A superantigenic lectin from stinging nettle rhizome.

    PubMed

    Galelli, A; Truffa-Bachi, P

    1993-08-15

    Urtica dioica agglutinin (UDA) is an unusual plant lectin that differs from all other known plant lectins with respect to its molecular structure and its extremely low specific agglutination activity. We recently reported that this small lectin (8.5 kDa) is a T cell mitogen distinguishable from classical T cell lectin mitogens by its ability to discriminate a particular population of CD4+ and CD8+ T cells as well as its capacity to induce an original pattern of T cell activation and cytokine production. The mechanism by which UDA activates T cells was investigated and compared with the conventional T cell mitogen Con A and the known superantigen staphylococcal enterotoxin B. Our data show that T cell proliferation induced by UDA is strictly dependent on AC expressing MHC class II molecules but is not MHC restricted. This proliferation can be partially inhibited by anti-I-A or anti-I-E mAb and completely blocked by a mAb recognizing monomorphic determinants on the Ia molecule. UDA indeed binds to specific carbohydrate structures present on class II molecules. UDA-induced T cell stimulation is dependent on TCR recognition of the unprocessed intact molecule in association with various Ia molecules. T cell response to UDA is clonally expressed and correlates with particular TCR V beta gene families usage. This stimulation leads to a sixfold enrichment of V beta 8.3+ T cells within 3 days. Therefore, UDA appears to use the same molecular mechanism as structurally unrelated bacterial or retroviral superantigens and we propose that this lectin is a superantigen. UDA, which is not a pathogenicity factor, could provide a useful probe for the analysis of T cell activation by superantigens. PMID:8345184

  13. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    PubMed Central

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  14. Primary structure of a Thomsen-Friedenreich-antigen-specific lectin, jacalin [Artocarpus integrifolia (jack fruit) agglutinin]. Evidence for the presence of an internal repeat.

    PubMed

    Mahanta, S K; Sanker, S; Rao, N V; Swamy, M J; Surolia, A

    1992-05-15

    Jacalin [Artocarpus integrifolia (jack fruit) agglutinin] is made up of two types of chains, heavy and light, with M(r) values of 16,200 +/- 1200 and 2090 +/- 300 respectively (on the basis of gel-permeation chromatography under denaturing conditions). Its complete amino acid sequence was determined by manual degradation using a 4-dimethylaminoazobenzene 4'-isothiocyanate double-coupling method. Peptide fragments for sequence analysis were obtained by chemical cleavages of the heavy chain with CNBr, hydroxylamine hydrochloride and iodosobenzoic acid and enzymic cleavage with Staphylococcus aureus proteinase. The peptides were purified by a combination gel-permeation and reverse-phase chromatography. The light chains, being only 20 residues long, could be sequenced without fragmentation. Amino acid analyses and carboxypeptidase-Y-digestion C-terminal analyses of the subunits provided supportive evidence for their sequence. Computer-assisted alignment of the jacalin heavy-chain sequence failed to show sequence similarity to that of any lectin for which the complete sequence is known. Analyses of the sequence showed the presence of an internal repeat spanning residues 7-64 and 76-130. The internal repeat was found to be statistically significant.

  15. Lectin cDNA and transgenic plants derived therefrom

    SciTech Connect

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  16. NMR Structure of Lipoprotein YxeF from Bacillus subtilis Reveals a Calycin Fold and Distant Homology with the Lipocalin Blc from Escherichia coli

    PubMed Central

    Xiao, Rong; Acton, Thomas B.; Sathyamoorthy, Bharathwaj; Dey, Fabian; Fischer, Markus; Skerra, Arne; Rost, Burkhard; Montelione, Gaetano T.; Szyperski, Thomas

    2012-01-01

    The soluble monomeric domain of lipoprotein YxeF from the Gram positive bacterium B. subtilis was selected by the Northeast Structural Genomics Consortium (NESG) as a target of a biomedical theme project focusing on the structure determination of the soluble domains of bacterial lipoproteins. The solution NMR structure of YxeF reveals a calycin fold and distant homology with the lipocalin Blc from the Gram-negative bacterium E.coli. In particular, the characteristic β-barrel, which is open to the solvent at one end, is extremely well conserved in YxeF with respect to Blc. The identification of YxeF as the first lipocalin homologue occurring in a Gram-positive bacterium suggests that lipocalins emerged before the evolutionary divergence of Gram positive and Gram negative bacteria. Since YxeF is devoid of the α-helix that packs in all lipocalins with known structure against the β-barrel to form a second hydrophobic core, we propose to introduce a new lipocalin sub-family named ‘slim lipocalins’, with YxeF and the other members of Pfam family PF11631 to which YxeF belongs constituting the first representatives. The results presented here exemplify the impact of structural genomics to enhance our understanding of biology and to generate new biological hypotheses. PMID:22693626

  17. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses

    PubMed Central

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies – a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. DOI: http://dx.doi.org/10.7554/eLife.11795.001 PMID:26673077

  18. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses.

    PubMed

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-12-16

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses.

  19. The alpha and beta subunits of phosphorylase kinase are homologous: cDNA cloning and primary structure of the beta subunit.

    PubMed Central

    Kilimann, M W; Zander, N F; Kuhn, C C; Crabb, J W; Meyer, H E; Heilmeyer, L M

    1988-01-01

    We have cloned cDNA molecules encoding the beta subunit of phosphorylase kinase (ATP:phosphorylase-b phosphotransferase; EC 2.7.1.38) from rabbit fast-twitch skeletal muscle and have determined the complete primary structure of the polypeptide by a combination of peptide and DNA sequencing. In the mature beta subunit, the initial methionine is replaced by an acetyl group. The subunit is composed of 1092 amino acids and has a calculated molecular mass of 125,205 Da. Alignment of its sequence with the alpha subunit of phosphorylase kinase reveals extensive regions of homology, but each molecule also possesses unique sequences. Two of the three phosphorylation sites known for the beta subunit and all seven phosphorylation sites known for the alpha subunit are located in these unique domains. Images PMID:3200826

  20. Solution Structure of the PAS Domain of a Thermophilic YybT Protein Homolog Reveals a Potential Ligand-binding Site*

    PubMed Central

    Tan, Edward; Rao, Feng; Pasunooti, Swathi; Pham, Thi Huong; Soehano, Ishin; Turner, Mark S.; Liew, Chong Wai; Lescar, Julien; Pervushin, Konstantin; Liang, Zhao-Xun

    2013-01-01

    The Bacillus subtilis protein YybT (or GdpP) and its homologs were recently established as stress signaling proteins that exert their biological effect by degrading the bacterial messenger cyclic di-AMP. YybT homologs contain a small Per-ARNT-Sim (PAS) domain (∼80 amino acids) that can bind b-type heme with 1:1 stoichiometry despite the small size of the domain and the lack of a conserved heme iron-coordinating residue. We determined the solution structure of the PAS domain of GtYybT from Geobacillus thermodenitrificans by NMR spectroscopy to further probe its function. The solution structure confirms that PASGtYybT adopts the characteristic PAS fold composed of a five-stranded antiparallel β sheet and a few short α-helices. One α-helix and three central β-strands of PASGtYybT are noticeably shorter than those of the typical PAS domains. Despite the small size of the protein domain, a hydrophobic pocket is formed by the side chains of nonpolar residues stemming from the β-strands and α-helices. A set of residues in the vicinity of the pocket and in the C-terminal region at the dimeric interface exhibits perturbed NMR parameters in the presence of heme or zinc protoporphyrin. Together, the results unveil a compact PAS domain with a potential ligand-binding pocket and reinforce the view that the PASYybT domains function as regulatory domains in the modulation of cellular cyclic di-AMP concentration. PMID:23504327

  1. Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone

    NASA Astrophysics Data System (ADS)

    Pal, Sanjima; Jadhav, Mahesh; Weyhermüller, Thomas; Patil, Yogesh; Nethaji, M.; Kasabe, Umesh; Kathawate, Laxmi; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

    2013-10-01

    Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, {n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P21 space group, while L-6 in P21/c space group. Molecules of L-4 and L-8 from polymeric chains through Csbnd H⋯O and Nsbnd H⋯O close contacts. L-6 is a dimer formed by Nsbnd H⋯O interaction. Slipped π-π stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = L-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity.

  2. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin

    PubMed Central

    Taniguchi, Reiya; Kato, Hideaki E.; Font, Josep; Deshpande, Chandrika N.; Wada, Miki; Ito, Koichi; Ishitani, Ryuichiro; Jormakka, Mika; Nureki, Osamu

    2015-01-01

    In vertebrates, the iron exporter ferroportin releases Fe2+ from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin. PMID:26461048

  3. A simple micro-method for determining precise oligosaccharidic specificity of mannose-binding lectins.

    PubMed

    Debray, Henri; Coddeville, Bernadette; Bomfim, Liezelotte R; Ramos, Márcio V

    2009-12-01

    A simple and inexpensive method was developed to rapidly define the specificity of mannose-specific lectins toward oligomannoside-type structures. The method involved the interaction of a mixture of N-[(14)C]-acetylated glycoasparagines, prepared by exhaustive pronase digestion of bovine pancreatic ribonuclease B and N-[(14)C]-acetylation with [(14)C]-acetic anhydride and containing all the possible oligomannoside-type N-glycans, with the lectin immobilized on Sepharose-4B. After exhaustive desalting, the obtained fractions were separated by high-performance thin-layer chromatography on silica gel plates and visualized by autoradiography with intensifying screen. As an example of the usefulness of this method, the fine specificity of artocarpin, the mannose-specificity lectin isolated from seeds of jackfruit (Artocarpus integrifolia) toward oligomannoside-type structures is presented. On the basis of such a determination, the best oligomannosidic ligand recognized by a mannose-specific lectin can be selected for studies of crystal structures of the lectin in complex with the defined ligand. Furthermore, some of these immobilized lectins, after definition of their precise specificities with the method, could represent valuable tools for the fractionation and characterization of oligomannose-type structures, present in complex mixtures.

  4. Structure analysis of new homologous compounds Ga2O3(ZnO)m (m = integer) by high-resolution analytical transmission electron microscopy.

    PubMed

    Li; Bando; Nakamura; Kurashima; Kimizuka

    1999-06-01

    The crystal structure of a new homologous compound series, Ga(2)O(3)(ZnO)(m) (m = integer), is determined by high-resolution lattice imaging and high spatial resolution energy-dispersive X-ray spectroscopy (EDS) analysis in a field-emission analytical transmission electron microscope. This work was carried out mainly on the compound with m = 9 (digallium nonazinc dodecaoxide), which belongs to the orthorhombic system and has lattice constants a(o) = 0.33, b(o) = 2.0 and c(o) = 3.4 nm. From the extinction rules three possible space groups are selected and from them a unique space group is assigned as noncentrosymmetric Cmc2(1) (No. 36) on the basis of structural requirements. Ga(2)O(3)(ZnO)(m) is a layered structure consisting of Ga-O and m + 1 Ga/Zn-O layers stacked alternately along the c axis. It is shown that the structure of Ga(2)O(3)(ZnO)(m) differs from that of M(2)O(3)(ZnO)(m) (M = In, Fe; m = integer) reported previously. In Ga(2)O(3)(ZnO)(m) the Ga atoms occupy the tetrahedral sites in the Ga-O layers, whereas the M atoms in the M-O layers occupy the octahedral sites in M(2)O(3)(ZnO)(m) (M = In, Fe).

  5. Interaction of Campylobacter jejuni and Campylobacter coli with lectins and blood group antibodies.

    PubMed Central

    Wong, K H; Skelton, S K; Feeley, J C

    1985-01-01

    Lectins and blood group antibodies were used to probe the surface structures of Campylobacter jejuni and Campylobacter coli. Of the 29 strains tested, there were distinct reaction patterns. The lectin-reactive and blood group antibody-reactive sites on the bacterial surface were distinguishable from the heat-stable (lipopolysaccharide) antigenic determinants. The interactions were strain specific. The reactive sites were stable with respect to culture media and passage and may be useful as additional markers for strain characterization. PMID:2410445

  6. An experimentally tested scenario for the structural evolution of eukaryotic Cys2His2 zinc fingers from eubacterial ros homologs.

    PubMed

    Netti, Fortuna; Malgieri, Gaetano; Esposito, Sabrina; Palmieri, Maddalena; Baglivo, Ilaria; Isernia, Carla; Omichinski, James G; Pedone, Paolo V; Lartillot, Nicolas; Fattorusso, Roberto

    2013-07-01

    The exact evolutionary origin of the zinc finger (ZF) domain is unknown, as it is still not clear from which organisms it was first derived. However, the unique features of the ZF domains have made it very easy for evolution to tinker with them in a number of different manners, including their combination, variation of their number by unequal crossing-over or tandem duplication and tuning of their affinity for specific DNA sequence motifs through point substitutions. Classical Cys2His2 ZF domains as structurally autonomous motifs arranged in multiple copies are known only in eukaryotes. Nonetheless, a single prokaryotic Cys2His2 ZF domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens and recently characterized. The present work focuses on the evolution of the classical ZF domains with the goal of trying to determine whether eukaryotic ZFs have evolved from the prokaryotic Ros-like proteins. Our results, based on computational and experimental data, indicate that a single insertion of three amino acids in the short loop that separates the β-sheet from the α-helix of the Ros protein is sufficient to induce a structural transition from a Ros like to an eukaryotic-ZF like structure. This observation provides evidence for a structurally plausible and parsimonious scenario of fold evolution, giving a structural basis to the hypothesis of a horizontal gene transfer (HGT) from bacteria to eukaryotes. PMID:23576569

  7. Lectins and their application to clinical microbiology.

    PubMed Central

    Slifkin, M; Doyle, R J

    1990-01-01

    Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603

  8. The complete amino acid sequence of lectin-C from the roots of pokeweed (Phytolacca americana).

    PubMed

    Yamaguchi, K; Mori, A; Funatsu, G

    1995-07-01

    The complete amino acid sequence of pokeweed lectin-C (PL-C) consisting of 126 residues has been determined. PL-C is an acidic simple protein with molecular mass of 13,747 Da and consists of three cysteine-rich domains with 51-63% homology. PL-C shows homology to chitin-binding proteins such as wheat germ agglutinin, and all eight cysteine residues in the three domains of PL-C are completely conserved in all other chitin-binding domains.

  9. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog

    SciTech Connect

    Cuneo, Matthew J.; Tian, Yaji; Allert, Malin; Hellinga, Homme W.

    2008-10-27

    We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 {angstrom} resolution. We find that tteRBP is significantly more stable ({sup app}T{sub m} value {approx} 102 C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) ({sup app}T{sub m} value {approx} 56 C). The tteRBP has essentially the identical backbone conformation (0.41 {angstrom} RMSD of 235/271 C{sub {alpha}} positions and 0.65 {angstrom} RMSD of 270/271 C{sub {alpha}} positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities.

  10. Determining structure and function of steroid dehydrogenase enzymes by sequence analysis, homology modeling, and rational mutational analysis.

    PubMed

    Duax, William L; Thomas, James; Pletnev, Vladimir; Addlagatta, Anthony; Huether, Robert; Habegger, Lukas; Weeks, Charles M

    2005-12-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, approximately 300 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown and to determine their three-dimensional structure and mechanism of action. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including cofactor preference, catalytic residues, and substrate specificity. Human type 1 3beta-hydroxysteroid dehydrogenase isomerase (3beta-HSDI) has 30% sequence identity with a human UDP galactose 4-epimerase (UDPGE), a SCOR family enzyme for which an X-ray structure has been reported. Both UDPGE and 3-HSDI appear to trace their origins back to bacterial 3alpha,20beta-HSD. Combining three-dimensional structural information and sequence data on the 3alpha,20beta-HSD, UDPGE, and 3beta-HSDI subfamilies with mutational analysis, we were able to identify the residues critical to the dehydrogenase function of 3-HSDI. We also identified the residues most probably responsible for the isomerase activity of 3beta-HSDI. We test our predictions by specific mutations based on sequence analysis and our structure-based model.

  11. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study

    NASA Astrophysics Data System (ADS)

    Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D.

    2014-02-01

    In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1-xQx (A =Sb, Bi; Q =Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 00.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T ≠0 K but with an ordered structure of alternating Bi and Sb layers for x =0.5 at T =0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3,Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.

  12. Determining Structure and Function of Steroid Dehydrogenase Enzymes by Sequence Analysis, Homology Modeling, and Rational Mutational Analysis

    PubMed Central

    DUAX, WILLIAM L.; THOMAS, JAMES; PLETNEV, VLADIMIR; ADDLAGATTA, ANTHONY; HUETHER, ROBERT; HABEGGER, LUKAS; WEEKS, CHARLES M.

    2006-01-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, ~300 have been characterized functionally, and the three-dimensional crystal structures of ~40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown and to determine their three-dimensional structure and mechanism of action. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30–40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including cofactor preference, catalytic residues, and substrate specificity. Human type 1 3β-hydroxysteroid dehydrogenase isomerase (3β-HSDI) has 30% sequence identity with a human UDP galactose 4-epimerase (UDPGE), a SCOR family enzyme for which an X-ray structure has been reported. Both UDPGE and 3-HSDI appear to trace their origins back to bacterial 3α,20β-HSD. Combining three-dimensional structural information and sequence data on the 3α,20β-HSD, UDPGE, and 3β-HSDI subfamilies with mutational analysis, we were able to identify the residues critical to the dehydrogenase function of 3-HSDI. We also identified the residues most probably responsible for the isomerase activity of 3β-HSDI. We test our predictions by specific mutations based on sequence analysis and our structure-based model. PMID:16467263

  13. Genes for the Major Structural Components of Thermotogales Species’ Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs

    SciTech Connect

    Petrus, Amanda K.; Swithers, Kristen S.; Ranjit, Chaman R.; Wu, Si; Brewer, Heather M.; Gogarten, J Peter; Pasa-Tolic, Ljiljana; Noll, Kenneth M.

    2012-06-29

    The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompa) and the porin OmpB (or Ompb). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant b-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had b-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.

  14. Conjugation, number of Dewar resonance structures (DSs) in homologous polyzethrene and related conjugated polycyclic hydrocarbon series, and kinked versus straight

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray

    2015-11-01

    Kinked polyzethrenes are more stable than linear polyzethrenes making them better candidates as materials for organic electronic devices (e.g., organic field effect transistors, nonlinear optics, and semiconductors) because of their greater singlet biradical properties. For series of molecules constructed by successive attachment of a given aufbau unit, we are able to derive analytical or recursion expressions relating certain properties. For example, starting with a few known number of Dewar resonance structures (DSs) for such a series, one is often able to derive analytical or recursion expressions for these DS values by our method of successive differences which then lead to either constant or Fibonacci numbers, respectively. The increasing order of π-electronic stability of isomers with the same number of Kekulé structures (K) is determined by their increasing number of DSs. Kinked polycyclic conjugated polyenes with a single classical structure (i.e., K = 1) are more conjugated and stable than their straight polycyclic isomers with a single classical structure.

  15. Structural investigation and homology modeling studies of native and truncated forms of alpha-amylases from Sclerotinia sclerotiorum.

    PubMed

    Ben Abdelmalek, Imen; Urdaci, Maria Camino; Ben Ali, Mamdouh; Denayrolles, Muriel; Chaignepain, Stephane; Limam, Ferid; Bejar, Samir; Marzouki, Mohamed Nejib

    2009-11-01

    The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes for the degradation of plant polysaccharide material. Two alpha-amylases designated as ScAmy54 and ScAmy43 were biochemically characterized and predicted to play an important role in starch degradation. Those enzymes produce specific oligosaccharides, essentially maltotriose, that have a considerable commercial interest. The primary structures of the two enzymes were analyzed by N-terminal sequencing, MALDI-TOF mass spectrometry, and cDNA cloning, and implied that the two proteins have the same N-terminal catalytic domain and ScAmy43 was produced from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. The result of genomic analysis suggested that the two enzymes originated from the same alpha-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during the S. sclerotiorum cultivation. The structural gene of ScAmy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 amino acids. ScAmy54 exhibited high amino acid identity to other liquefying fungal alpha-amylases, essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3D structure of 2guy from A. niger as template. ScAmy54 with three domains A, B, and C, including the well-known (beta/alpha)8-barrel motif in domain A, has a typical structure of the alpha-amylase family. ScAmy43 composed only of domains A and B constitutes a smallest fungal alpha-amylase with only a catalytic domain.

  16. Differential expression of skin mucus C-type lectin in two freshwater eel species, Anguilla marmorata and Anguilla japonica.

    PubMed

    Tsutsui, Shigeyuki; Yoshinaga, Tatsuki; Komiya, Kaoru; Yamashita, Hiroka; Nakamura, Osamu

    2016-08-01

    Two types of lactose-specific lectins, galectin (AJL-1) and C-type lectin (AJL-2), were previously identified in the mucus of adult Anguilla japonica. Here, we compared the expression profiles of these two homologous lectins at the adult and juvenile stages between the tropical eel Anguilla marmorata and the temperate eel A. japonica. Only one lectin, predicted to be an orthologue of AJL-1 by LC-MS/MS, was detected in the mucus of adult A. marmorata. We also found that an orthologous gene to AJL-2 was expressed at very low levels, or not at all, in the skin of adult A. marmorata. However, we detected the gene expression of an AJL-2-orthologue in the skin of juvenile A. marmorata, and a specific antibody also detected the lectin in the juvenile fish epidermis. These findings suggest that expression profiles of mucosal lectins vary during development as well as between species in the Anguilla genus.

  17. Differential expression of skin mucus C-type lectin in two freshwater eel species, Anguilla marmorata and Anguilla japonica.

    PubMed

    Tsutsui, Shigeyuki; Yoshinaga, Tatsuki; Komiya, Kaoru; Yamashita, Hiroka; Nakamura, Osamu

    2016-08-01

    Two types of lactose-specific lectins, galectin (AJL-1) and C-type lectin (AJL-2), were previously identified in the mucus of adult Anguilla japonica. Here, we compared the expression profiles of these two homologous lectins at the adult and juvenile stages between the tropical eel Anguilla marmorata and the temperate eel A. japonica. Only one lectin, predicted to be an orthologue of AJL-1 by LC-MS/MS, was detected in the mucus of adult A. marmorata. We also found that an orthologous gene to AJL-2 was expressed at very low levels, or not at all, in the skin of adult A. marmorata. However, we detected the gene expression of an AJL-2-orthologue in the skin of juvenile A. marmorata, and a specific antibody also detected the lectin in the juvenile fish epidermis. These findings suggest that expression profiles of mucosal lectins vary during development as well as between species in the Anguilla genus. PMID:27026508

  18. A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime.

    PubMed

    Tsutsui, Shigeyuki; Komatsu, Yukie; Sugiura, Takaya; Araki, Kyosuke; Nakamura, Osamu

    2011-11-01

    The present study reports a new type of skin mucus lectin found in catfish Silurus asotus. The lectin exhibited calcium-dependent mannose-binding activity. When mannose eluate from chromatography with mannose-conjugated agarose was analysed by SDS-PAGE, the lectin appeared as a single 35-kDa band. Gel filtration showed that the lectin forms monomers and dimers. A 1216-bp cDNA sequence obtained by RACE-PCR from the skin encoded a 308 amino acid secretory protein with homology to mammalian and fish intelectins. RT-PCR demonstrated that the lectin gene was expressed in the gill, kidney and skin. Subsequent sequencing revealed the presence of an isoform in the gills. Antiserum detected the intelectin protein in club cells in the skin and gill, renal tubules and blood plasma. Although intelectin gene expression was not induced by in vivo bacterial stimulation, the intelectin showed agglutination activity against the pathogenic bacterium Aeromonas salmonicida, suggesting that the lectin plays an important role in self-defence against bacteria in the skin surface of the catfish. These findings represent one of the few examples of characterization and functional analysis of a fish intelectin protein.

  19. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  20. Structural and functional characterization of salmon STAT1, STAT2 and IRF9 homologs sheds light on interferon signaling in teleosts

    PubMed Central

    Sobhkhez, Mehrdad; Skjesol, Astrid; Thomassen, Ernst; Tollersrud, Linn Greiner; Iliev, Dimitar B.; Sun, Baojian; Robertsen, Børre; Jørgensen, Jorunn B.

    2014-01-01

    Mammalian IRF9 and STAT2, together with STAT1, form the ISGF3 transcription factor complex, which is critical for type I interferon (IFN)-induced signaling, while IFNγ stimulation is mediated by homodimeric STAT1 protein. Teleost fish are known to possess most JAK and STAT family members, however, description of their functional activity in lower vertebrates is still scarce. In the present study we have identified two different STAT2 homologs and one IRF9 homolog from Atlantic salmon (Salmo salar). Both proteins have domain-like structures with functional motifs that are similar to higher vertebrates, suggesting that they are orthologs to mammalian STAT2 and IRF9. The two identified salmon STAT2s, named STAT2a and STAT2b, showed high sequence identity but were divergent in their transactivation domain (TAD). Like STAT1, ectopically expressed STAT2a and b were shown to be tyrosine phosphorylated by type I IFNs and, interestingly, also by IFNγ. Microscopy analyses demonstrated that STAT2 co-localized with STAT1a in the cytoplasm of unstimulated cells, while IFNa1 and IFNγ stimulation seemed to favor their nuclear localization. Overexpression of STAT2a or STAT2b together with STAT1a activated a GAS-containing reporter gene construct in IFNγ-stimulated cells. The highest induction of GAS promoter activation was found in IFNγ-stimulated cells transfected with IRF9 alone. Taken together, these data suggest that salmon STAT2 and IRF9 may have a role in IFNγ-induced signaling and promote the expression of GAS-driven genes in bony fish. Since mammalian STAT2 is primarily an ISGF3 component and not involved in IFNγ signaling, our finding features a novel role for STAT2 in fish. PMID:25379383

  1. Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog.

    PubMed

    Jaehme, Michael; Guskov, Albert; Slotboom, Dirk Jan

    2014-11-01

    PnuC transporters catalyze cellular uptake of the NAD+ precursor nicotinamide riboside (NR) and belong to a large superfamily that includes the SWEET sugar transporters. We present a crystal structure of Neisseria mucosa PnuC, which adopts a highly symmetrical fold with 3+1+3 membrane topology not previously observed in any protein. The high symmetry of PnuC with a single NR bound in the center suggests a simple alternating-access translocation mechanism. PMID:25291599

  2. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    SciTech Connect

    Thompson, Andrew J.; Cuskin, Fiona; Spears, Richard J.; Dabin, Jerome; Turkenburg, Johan P.; Gilbert, Harry J.; Davies, Gideon J.

    2015-02-01

    A high-resolution structure of a noncanonical α-mannanase relevant to human health and nutrition has been solved via heavy-atom phasing of a selenomethionine derivative. The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α){sub 6}-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76.

  3. Exploring 3D structure of human gonadotropin hormone receptor at antagonist state using homology modeling, molecular dynamic simulation, and cross-docking studies.

    PubMed

    Sakhteman, Amirhossein; Khoddami, Minasadat; Negahdaripour, Manica; Mehdizadeh, Arash; Tatar, Mohsen; Ghasemi, Younes

    2016-09-01

    Human gonadotropin hormone receptor, a G-protein coupled receptor, is the target of many medications used in fertility disorders. Obtaining more structural information about the receptor could be useful in many studies related to drug design. In this study, the structure of human gonadotropin receptor was subjected to homology modeling studies and molecular dynamic simulation within a DPPC lipid bilayer for 100 ns. Several frames were thereafter extracted from simulation trajectories representing the receptor at different states. In order to find a proper model of the receptor at the antagonist state, all frames were subjected to cross-docking studies of some antagonists with known experimental values (Ki). Frame 194 revealed a reasonable correlation between docking calculated energy scores and experimental activity values (|r| = 0.91). The obtained correlation was validated by means of SSLR and showed the presence of no chance correlation for the obtained model. Different structural features reported for the receptor, such as two disulfide bridges and ionic lock between GLU90 and LYS 121 were also investigated in the final model.

  4. Structure of C-terminal fragment of merozoite surface protein-1 from Plasmodium vivax determined by homology modeling and molecular dynamics refinement.

    PubMed

    Serrano, María Luisa; Pérez, Hilda A; Medina, J D

    2006-12-15

    One current vaccine candidate against Plasmodium vivax targeting asexual blood stage is the major merozoite surface protein-1 of P. vivax (PvMSP-1). Vaccine trials with PvMSP-1(19) and PvMSP-1(33) have succeeded in protecting monkeys and a large proportion of individuals, naturally exposed to P. vivax transmission, develop specific antibodies to PvMSP-1(19). This study presents a model for the three-dimensional structure of the C-terminal 19kDa fragment of P. vivax MSP-1 determined by means of homology modeling and molecular dynamics refinement. The structure proved to be consistent with MSP-1(19) of known crystal or solution structures. The presence of a main binding pocket, well suited for protein-protein interactions, was determined by CASTp. Corrections reported to the sequence of PvMSP-1(19) Belem strain were also inspected. Our model is currently used as a basis to understand antibody interactions with PvMSP-1(19).

  5. The nuclear membrane-associated honeycomb structure of the unicellular organism Amoeba proteus: on the search for homologies with the nuclear lamina of metazoa.

    PubMed

    Schmidt, M; Grossmann, U; Krohne, G

    1995-07-01

    In the protozoon Amoeba proteus, a complex and highly organized structure with the morphology of a honeycomb is associated with the nucleoplasmic surface of the nuclear membrane. We have tested whether this structure exhibits similarity to the nuclear lamina of metazoic organisms. First, we have shown that the honeycomb layer is composed of 3 to 5 nm thick protein fibrils resistant to treatment with detergent, high salt, and digestion with nucleases, thus possessing properties typical for karyoskeletal elements. However, in contrast to the meshwork of lamin filaments in somatic cells of metazoic organisms, the honeycomb layer is not tightly anchored to the nucleoplasmic side of pore complexes, or to the inner nuclear membrane. Second, in microinjection experiments we investigated whether fluorescently labeled lamins of Xenopus laevis (lamins A and LI) and Drosophila melanogaster (lamin Dmo) were able to associate in vivo with the Amoeba proteus honeycomb structure. In microinjected amoeba these three lamins were efficiently transported into the nucleus, but did not associate with the nuclear envelope. Our results suggest that the Amoeba proteus nuclear envelope, including the honeycomb layer, does not contain proteins exhibiting high homologies to lamins of metazoan species thus preventing the localized assembly of microinjected lamins along the nuclear periphery.

  6. Exploring 3D structure of human gonadotropin hormone receptor at antagonist state using homology modeling, molecular dynamic simulation, and cross-docking studies.

    PubMed

    Sakhteman, Amirhossein; Khoddami, Minasadat; Negahdaripour, Manica; Mehdizadeh, Arash; Tatar, Mohsen; Ghasemi, Younes

    2016-09-01

    Human gonadotropin hormone receptor, a G-protein coupled receptor, is the target of many medications used in fertility disorders. Obtaining more structural information about the receptor could be useful in many studies related to drug design. In this study, the structure of human gonadotropin receptor was subjected to homology modeling studies and molecular dynamic simulation within a DPPC lipid bilayer for 100 ns. Several frames were thereafter extracted from simulation trajectories representing the receptor at different states. In order to find a proper model of the receptor at the antagonist state, all frames were subjected to cross-docking studies of some antagonists with known experimental values (Ki). Frame 194 revealed a reasonable correlation between docking calculated energy scores and experimental activity values (|r| = 0.91). The obtained correlation was validated by means of SSLR and showed the presence of no chance correlation for the obtained model. Different structural features reported for the receptor, such as two disulfide bridges and ionic lock between GLU90 and LYS 121 were also investigated in the final model. PMID:27561920

  7. A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326

    PubMed Central

    Luthra, Amit; Anand, Arvind; Hawley, Kelly L.; LeDoyt, Morgan; La Vake, Carson J.; Caimano, Melissa J.; Cruz, Adriana R.; Salazar, Juan C.

    2015-01-01

    ABSTRACT We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu593 → Gln593) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a “structure-to-pathogenesis” approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. IMPORTANCE Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog

  8. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies.

    PubMed

    Sabotič, Jerica; Ohm, Robin A; Künzler, Markus

    2016-01-01

    Fruiting bodies or sporocarps of dikaryotic (ascomycetous and basidiomycetous) fungi, commonly referred to as mushrooms, are often rich in entomotoxic and nematotoxic proteins that include lectins and protease inhibitors. These protein toxins are thought to act as effectors of an innate defense system of mushrooms against animal predators including fungivorous insects and nematodes. In this review, we summarize current knowledge about the structures, target molecules, and regulation of the biosynthesis of the best characterized representatives of these fungal defense proteins, including galectins, beta-trefoil-type lectins, actinoporin-type lectins, beta-propeller-type lectins and beta-trefoil-type chimerolectins, as well as mycospin and mycocypin families of protease inhibitors. We also present an overview of the phylogenetic distribution of these proteins among a selection of fungal genomes and draw some conclusions about their evolution and physiological function. Finally, we present an outlook for future research directions in this field and their potential applications in medicine and crop protection.

  9. Identification of C-type lectin-domain proteins (CTLDPs) in silkworm Bombyx mori.

    PubMed

    Rao, Xiang-Jun; Shahzad, Toufeeq; Liu, Su; Wu, Peng; He, Yan-Ting; Sun, Wei-Jia; Fan, Xiang-Yun; Yang, Yun-Fan; Shi, Qiao; Yu, Xiao-Qiang

    2015-12-01

    C-type lectins (CTLs) represent a large family of proteins that can bind carbohydrate moieties normally in a calcium-dependent manner. CTLs play important roles in mediating cell adhesion and the recognition of pathogens in the immune system. In the present study, we have identified 23 CTL genes in domestic silkworm Bombyx mori. CTL-domain proteins (CTLDPs) are classified into three groups based on the number of carbohydrate-recognition domains (CRDs) and the domain architectures. These include twelve CTL-S (Single-CRD), six immulectins (Dual-CRD) and five CTL-X (CRD with other domains). We studied their phylogenetic features, analyzed the conserved residues, predicted tertiary structures, and examined the tissue expression profile and immune inducibility. Through bioinformatics analysis, we have putatively identified ten secretory and two cytoplasmic CTL-S; four secretory and two cytoplasmic immulectins; one secretory, one cytoplasmic and three transmembrane forms of CTL-X. Most B. mori CTLDPs form monophyletic groups with orthologs from Lepidoptera, Diptera, Coleoptera and Hymenoptera species. Immulectins of B. mori and Manduca sexta evolved from common ancestor genes perhaps due to gene duplication events of CTL-S ancestor genes. Homology modeling revealed that the overall structures of B. mori CTL domains are analogous to those of humans with a variable loop region. We examined the expression profile of CTLDP genes in naïve and immune-stimulated tissues. The expression and induction of CTLDP genes were related to the tissues and microorganisms. Together, our gene identification, sequence comparison, phylogenetic analysis, homology modeling and expression analysis laid a good foundation for the further studies of B. mori CTLDPs and comparative genomics.

  10. Identification of C-type lectin-domain proteins (CTLDPs) in silkworm Bombyx mori.

    PubMed

    Rao, Xiang-Jun; Shahzad, Toufeeq; Liu, Su; Wu, Peng; He, Yan-Ting; Sun, Wei-Jia; Fan, Xiang-Yun; Yang, Yun-Fan; Shi, Qiao; Yu, Xiao-Qiang

    2015-12-01

    C-type lectins (CTLs) represent a large family of proteins that can bind carbohydrate moieties normally in a calcium-dependent manner. CTLs play important roles in mediating cell adhesion and the recognition of pathogens in the immune system. In the present study, we have identified 23 CTL genes in domestic silkworm Bombyx mori. CTL-domain proteins (CTLDPs) are classified into three groups based on the number of carbohydrate-recognition domains (CRDs) and the domain architectures. These include twelve CTL-S (Single-CRD), six immulectins (Dual-CRD) and five CTL-X (CRD with other domains). We studied their phylogenetic features, analyzed the conserved residues, predicted tertiary structures, and examined the tissue expression profile and immune inducibility. Through bioinformatics analysis, we have putatively identified ten secretory and two cytoplasmic CTL-S; four secretory and two cytoplasmic immulectins; one secretory, one cytoplasmic and three transmembrane forms of CTL-X. Most B. mori CTLDPs form monophyletic groups with orthologs from Lepidoptera, Diptera, Coleoptera and Hymenoptera species. Immulectins of B. mori and Manduca sexta evolved from common ancestor genes perhaps due to gene duplication events of CTL-S ancestor genes. Homology modeling revealed that the overall structures of B. mori CTL domains are analogous to those of humans with a variable loop region. We examined the expression profile of CTLDP genes in naïve and immune-stimulated tissues. The expression and induction of CTLDP genes were related to the tissues and microorganisms. Together, our gene identification, sequence comparison, phylogenetic analysis, homology modeling and expression analysis laid a good foundation for the further studies of B. mori CTLDPs and comparative genomics. PMID:26187302

  11. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    PubMed Central

    Thompson, Andrew J.; Cuskin, Fiona; Spears, Richard J.; Dabin, Jerome; Turkenburg, Johan P.; Gilbert, Harry J.; Davies, Gideon J.

    2015-01-01

    The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α)6-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76. PMID:25664752

  12. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action

    SciTech Connect

    Baram, David; Pyetan, Erez; Sittner, Assa; Auerbach-Nevo, Tamar; Bashan, Anat; Yonath, Ada

    2010-07-13

    Trigger factor (TF), the first chaperone in eubacteria to encounter the emerging nascent chain, binds to the large ribosomal subunit in the vicinity of the protein exit tunnel opening and forms a sheltered folding space. Here, we present the 3.5-{angstrom} crystal structure of the physiological complex of the large ribosomal subunit from the eubacterium Deinococcus radiodurans with the N-terminal domain of TF (TFa) from the same organism. For anchoring, TFa exploits a small ribosomal surface area in the vicinity of proteins L23 and L29, by using its 'signature motif' as well as additional structural elements. The molecular details of TFa interactions reveal that L23 is essential for the association of TF with the ribosome and may serve as a channel of communication with the nascent chain progressing in the tunnel. L29 appears to induce a conformational change in TFa, which results in the exposure of TFa hydrophobic patches to the opening of the ribosomal exit tunnel, thus increasing its affinity for hydrophobic segments of the emerging nascent polypeptide. This observation implies that, in addition to creating a protected folding space for the emerging nascent chain, TF association with the ribosome prevents aggregation by providing a competing hydrophobic environment and may be critical for attaining the functional conformation necessary for chaperone activity.

  13. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences.

    PubMed Central

    Murzin, A G

    1993-01-01

    A novel folding motif has been observed in four different proteins which bind oligonucleotides or oligosaccharides: staphylococcal nuclease, anticodon binding domain of asp-tRNA synthetase and B-subunits of heat-labile enterotoxin and verotoxin-1. The common fold of the four proteins, which we call the OB-fold, has a five-stranded beta-sheet coiled to form a closed beta-barrel. This barrel is capped by an alpha-helix located between the third and fourth strands. The barrel-helix frameworks can be superimposed with r.m.s. deviations of 1.4-2.2 A, but no similarities can be observed in the corresponding alignment of the four sequences. The nucleotide or sugar binding sites, known for three of the four proteins, are located in nearly the same position in each protein: on the side surface of the beta-barrel, where three loops come together. Here we describe the determinants of the OB-fold, based on an analysis of all four structures. These proposed determinants explain how very different sequences adopt the OB-fold. They also suggest a reinterpretation of the controversial structure of gene 5 ssDNA binding protein, which exhibits some topological and functional similarities with the OB-fold proteins. PMID:8458342

  14. Lectin-based glycomics: how and when was the technology born?

    PubMed

    Hirabayashi, Jun

    2014-01-01

    Lectin-based glycomics is an emerging, comprehensive technology in the post-genome sciences. The technique utilizes a panel of lectins, which is a group of biomolecules capable of deciphering "glycocodes," with a novel platform represented by a lectin microarray. The method enables multiple glycan-lectin interaction analyses to be made so that differential glycan profiling can be performed in a rapid and sensitive manner. This approach is in clear contrast to another advanced technology, mass spectrometry, which requires prior glycan liberation. Although the lectin microarray cannot provide definitive structures of carbohydrates and their attachment sites, it gives useful clues concerning the characteristic features of glycoconjugates. These include differences not only in terminal modifications (e.g., sialic acid (Sia) linkage, types of fucosylation) but also in higher ordered structures in terms of glycan density, depth, and direction composed for both N- and O-glycans. However, before this technique began to be implemented in earnest, many other low-throughput methods were utilized in the late twentieth century. In this chapter, the author describes how the current lectin microarray technique has developed based on his personal experience. PMID:25117239

  15. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    PubMed

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated.

  16. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome

    PubMed Central

    Li, Yan; Ng, Hui Qi; Li, Qingxin; Kang, CongBao

    2016-01-01

    The human ether-à-go-go related gene (hERG) channel is crucial for the cardiac action potential by contributing to the fast delayed-rectifier potassium current. Mutations in the hERG channel result in type 2 long QT syndrome (LQT2). The hERG channel contains a cyclic nucleotide-binding homology domain (CNBHD) and this domain is required for the channel gating though molecular interactions with the eag domain. Here we present solution structure of the CNBHD of the hERG channel. The structural study reveals that the CNBHD adopts a similar fold to other KCNH channels. It is self-liganded and it contains a short β-strand that blocks the nucleotide-binding pocket in the β-roll. Folding of LQT2-related mutations in this domain was shown to be affected by point mutation. Mutations in this domain can cause protein aggregation in E. coli cells or induce conformational changes. One mutant-R752W showed obvious chemical shift perturbation compared with the wild-type, but it still binds to the eag domain. The helix region from the N-terminal cap domain of the hERG channel showed unspecific interactions with the CNBHD. PMID:27025590

  17. Sequence-structure-function relationships of a tRNA (m7G46) methyltransferase studied by homology modeling and site-directed mutagenesis.

    PubMed

    Purta, Elzbieta; van Vliet, Françoise; Tricot, Catherine; De Bie, Lara G; Feder, Marcin; Skowronek, Krzysztof; Droogmans, Louis; Bujnicki, Janusz M

    2005-05-15

    The Escherichia coli TrmB protein and its Saccharomyces cerevisiae ortholog Trm8p catalyze the S-adenosyl-L-methionine-dependent formation of 7-methylguanosine at position 46 (m7G46) in tRNA. To learn more about the sequence-structure-function relationships of these enzymes we carried out a thorough bioinformatics analysis of the tRNA:m7G methyltransferase (MTase) family to predict sequence regions and individual amino acid residues that may be important for the interactions between the MTase and the tRNA substrate, in particular the target guanosine 46. We used site-directed mutagenesis to construct a series of alanine substitutions and tested the activity of the mutants to elucidate the catalytic and tRNA-recognition mechanism of TrmB. The functional analysis of the mutants, together with the homology model of the TrmB structure and the results of the phylogenetic analysis, revealed the crucial residues for the formation of the substrate-binding site and the catalytic center in tRNA:m7G MTases.

  18. Amino acid sequence homologies in the hard keratins of birds and reptiles, and their implications for molecular structure and physical properties.

    PubMed

    Fraser, R D Bruce; Parry, David A D

    2014-12-01

    Avian and reptilian epidermal appendages such as feathers, claws and scales exhibit a filament-matrix texture. Previous studies have established that both components reside within the same single-chain molecule. In the present study the homology in a wide range of aligned sequences is used to gain insights into the structure and function of the molecular segments associated with the filament and with the matrix. The notion that all molecules contain a β-rich 34-residue segment associated with the framework of the filament is reinforced by the present study. In addition, the residues involved in the polymerization of the molecules to form filaments are identified. In the Archosaurs (birds, crocodiles and turtles), and the Squamates (snakes and lizards) segments rich in glycine and tyrosine can be identified in the C-terminal domain. In Rhynocephalians (tuataras) and Squamates a similar segment is inserted at a specific point in the N-terminal domain. In some Archosaurian appendages (both avian and reptilian) segments rich in charged residues and cysteine are found in the N-terminal domain. The likely effect of these segments will be to soften the tissue without compromising its insolubility. The structure and role of the various molecular segments identified in this study and the way in which they might manifest themselves in terms of the physical properties of the particular epidermal appendage in which they appear are also discussed.

  19. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    PubMed

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. PMID:24621654

  20. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    PubMed

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members.

  1. Structurally homologous binding of plant calmodulin isoforms to the calmodulin-binding domain of vacuolar calcium-ATPase.

    PubMed

    Yamniuk, Aaron P; Vogel, Hans J

    2004-02-27

    The discovery that plants contain multiple calmodulin (CaM) isoforms having variable sequence identity to mammalian CaM has sparked a flurry of new questions regarding the intracellular role of Ca(2+) regulation in plants. To date, the majority of research in this field has focused on the differential enzymatic regulation of various mammalian CaM-dependent enzymes by the different plant CaM isoforms. However, there is comparatively little information on the structural recognition of target enzymes found exclusively in plant cells. Here we have used a variety of spectroscopic techniques, including nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopy, to study the interactions of the most conserved and most divergent CaM isoforms from soybean, SCaM-1, and SCaM-4, respectively, with a synthetic peptide derived from the CaM-binding domain of cauliflower vacuolar calcium-ATPase. Despite their sequence divergence, both SCaM-1 and SCaM-4 interact with the calcium-ATPase peptide in a similar calcium-dependent, stoichiometric manner, adopting an antiparallel binding orientation with an alpha-helical peptide. The single Trp residue is bound in a solvent-inaccessible hydrophobic pocket on the C-terminal domain of either protein. Thermodynamic analysis of these interactions using isothermal titration calorimetry demonstrates that the formation of each calcium-SCaM-calcium-ATPase peptide complex is driven by favorable binding enthalpy and is very similar to the binding of mammalian CaM to the CaM-binding domains of myosin light chain kinases and calmodulin-dependent protein kinase I.

  2. Variable domain structure of {kappa}IV human light chain len : high homology to the murine light chain McPC603.

    SciTech Connect

    Huang, D.-B.; Chang, C.-H.; Ainsworth, C.; Johnson, G.; Solomon, A.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center

    1997-12-01

    Antibody light chains of the {kappa} subgroup are the predominant light chain component in human immune responses and are used almost exclusively in the antibody repertoire of mice. Human {kappa} light chains comprise four subgroups. To date, all crystallographic studies of human {kappa} light chains were carried out on proteins of the {kappa}I subgroup. The light chain produced by multiple myeloma patient Len, was of the {kappa}IV subgroup, it differed by only one residue from the germ-line gene encoded protein. The variable domain fragment of the light chain was crystallized from ammonium sulfate in space group C222{sub 1}. The crystal structure was determined by molecular replacement and refined at 1.95 Angstrom resolution to an R-factor of 0.15. Protein Len has six additional residues in its CDR1 segment compared to the {kappa}I proteins previously characterized. The {kappa}IV variable domain. Len, differs in only 23 of 113 residues from murine {kappa} light chain McPC603. The RMS deviation upon superimposing their {alpha}-carbons was 0.69 Angstrom. The CDR1 segment of the human and murine variable domains have the same length and conformation although their amino acid sequences differ in 5 out of 17 residues. Structural features were identified that could account for the significantly higher stability of the human {kappa}IV protein relative to its murine counterpart. This human {kappa}IV light chain structure is the closest human homolog to a murine light chain and can be expected to facilitate detailed structural comparisons necessary for effective humanization of murine antibodies.

  3. Structure and function of an archaeal homolog of survival protein E (SurEalpha): an acid phosphatase with purine nucleotide specificity.

    PubMed

    Mura, Cameron; Katz, Jonathan E; Clarke, Steven G; Eisenberg, David

    2003-03-01

    The survival protein E (SurE) family was discovered by its correlation to stationary phase survival of Escherichia coli and various repair proteins involved in sustaining this and other stress-response phenotypes. In order to better understand this ancient and well-conserved protein family, we have determined the 2.0A resolution crystal structure of SurEalpha from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (Pae). This first structure of an archaeal SurE reveals significant similarities to and differences from the only other known SurE structure, that from the eubacterium Thermatoga maritima (Tma). Both SurE monomers adopt similar folds; however, unlike the Tma SurE dimer, crystalline Pae SurEalpha is predominantly non-domain swapped. Comparative structural analyses of Tma and Pae SurE suggest conformationally variant regions, such as a hinge loop that may be involved in domain swapping. The putative SurE active site is highly conserved, and implies a model for SurE bound to a potential substrate, guanosine-5'-monophosphate (GMP). Pae SurEalpha has optimal acid phosphatase activity at temperatures above 90 degrees C, and is less specific than Tma SurE in terms of metal ion requirements. Substrate specificity also differs between Pae and Tma SurE, with a more specific recognition of purine nucleotides by the archaeal enzyme. Analyses of the sequences, phylogenetic distribution, and genomic organization of the SurE family reveal examples of genomes encoding multiple surE genes, and suggest that SurE homologs constitute a broad family of enzymes with phosphatase-like activities.

  4. Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous Nostoc H-NOX domain complexes

    PubMed Central

    Kumar, Vijay; Martin, Faye; Hahn, Michael G.; Schaefer, Martina; Stamler, Jonathan S.; Stasch, Johannes-Peter; van den Akker, Focco

    2013-01-01

    The soluble guanylyl cyclase (sGC) is an important receptor for nitric oxide (NO). Nitric oxide activates sGC several hundred fold to generate cGMP from GTP. Because of sGC’s salutary roles in cardiovascular physiology, it has received substantial attention as a drug target. The heme domain of sGC is key to its regulation as it not only contains the NO activation site but also harbors sites for NO-independent sGC activators as well an S-nitrosylation site (β1 C122) involved in desensitization. Here we report the crystal structure of the activator BAY 60-2770 bound to the Nostoc H-NOX domain that is homologous to sGC. The structure reveals that BAY 60-2770 has displaced the heme and acts as a heme mimetic via carboxylate-mediated interactions with the conserved YxSxR motif as well as hydrophobic interactions. Comparisons with the previously determined BAY 58-2667 bound structure reveals that BAY 60-2770 is more ordered in its hydrophobic tail region. sGC activity assays demonstrate that BAY 60-2770 has about 10% higher fold maximal stimulation compared to BAY 58-2667. S-nitrosylation of the BAY 60-2770 substituted Nostoc H-NOX domain causes subtle changes in the vicinity of the S-nitrosylated C122 residue. These shifts could impact the adjacent YxSxR motif and αF helix and as such potentially inhibit either heme incorporation or NO-activation of sGC and thus provide a structural basis for desensitization. PMID:23614626

  5. Homology, convergence and parallelism.

    PubMed

    Ghiselin, Michael T

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  6. Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity.

    PubMed Central

    Jung, E; Fucini, P; Stewart, M; Noegel, A A; Schleicher, M

    1996-01-01

    Comitin is a 24 kDa actin-binding protein from Dictyostelium discoideum that is located primarily on Golgi and vesicle membranes. We have probed the molecular basis of comitin's interaction with both actin and membranes using a series of truncation mutants obtained by expressing the appropriate cDNA in Escherichia coli. Comitin dimerizes in solution; its principle actin-binding activity is located between residues 90 and 135. The N-terminal 135 'core' residues of comitin contain a 3-fold sequence repeat that is homologous to several monocotyledon lectins and which retains key residues that determine these lectins' three-dimensional structure and mannose binding. These repeats of comitin appear to mediate its interaction with mannose residues in glycoproteins or glycolipids on the cytoplasmic surface of membrane vesicles from D.discoideum, and comitin can be released from membranes with mannose. Our data indicate that comitin binds to vesicle membranes via mannose residues and, by way of its interaction with actin, links these membranes to the cytoskeleton. Images PMID:8635456

  7. Immunological evidence for structural homology between Drosophila melanogaster (S14), rabbit liver (S12), Saccharomyces cerevisiae (S25), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomal proteins.

    PubMed

    Chooi, W Y; Otaka, E

    1984-11-01

    Specific antibodies directed against Drosophila melanogaster acidic ribosomal protein S14 were used in a comparative study of eucaryotic and procaryotic ribosomes by immunoblotting and enzyme-linked immunosorbent assays. Common antigenic determinants and, thus, structural homology were found between D. melanogaster, Saccharomyces cerevisiae (S25), rabbit liver (S12), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomes.

  8. Annotation and genetic diversity of the chicken collagenous lectins.

    PubMed

    Hamzić, Edin; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand; Juul-Madsen, Helle Risdahl

    2015-06-01

    Collectins and ficolins are multimeric proteins present in various tissues and are actively involved in innate immune responses. In chickens, six different collagenous lectins have been characterized so far: mannose-binding lectin (MBL), surfactant protein A (SP-A), collectin 10 (COLEC10), collectin 11 (COLEC11), collectin 12 (COLEC12), lung lectin (LL) and one ficolin (FCN). However, the structural and functional features of the chicken collectins and ficolin are still not fully understood. Therefore, the aims of this study were: (i) to make an overview of the genetic structure and function of chicken collectins and the ficolin, (ii) to investigate the variation in the chicken collectins and the ficolin gene in different chicken populations, and (iii) to assess the presence of MBL gene variants in different chicken populations. We performed comparative genomic analysis using publically available data. The obtained results showed that collectins and ficolins have conserved protein sequences and gene structure across all vertebrate groups and this is especially notable for COLEC10, COLEC11 and COLEC12. For the purpose of studying the genetic variation, 179 animals from 14 populations were genotyped using 31 SNPs covering five genomic regions. The obtained results revealed low level of heterozygosity in the collagenous lectins except for the COLEC12 gene and the LL-SPA-MBL region compared to heterozygosity at neutral microsatellite markers. In addition, the MBL gene variants were assessed in different chicken populations based on the polymorphisms in the promoter region. We observed 10 previously identified MBL variants with A2/A8 and A4 as the most frequent alleles.

  9. Interactions with lectins and agglutination profiles of clinical, food, and environmental isolates of Listeria.

    PubMed Central

    Facinelli, B; Giovanetti, E; Casolari, C; Varaldo, P E

    1994-01-01

    On the basis of preliminary trials with 14 collection strains of Listeria, five lectins (Canavalia ensiformis, concanavalin A; Griffonia simplicifolia lectin I; Helix pomatia agglutinin; Ricinus communis agglutinin; and Triticum vulgaris wheat germ agglutinin) were selected to set up a microtiter agglutination assay. The lectin agglutination profiles of 174 clinical, food, and environmental strains of Listeria monocytogenes, Listeria innocua, and Listeria seeligeri were investigated. Data on the standard determination of the antigenic structure were available for clinical strains; nonclinical isolates were assigned to serogroup 1 or 4 with commercial antisera. The listeria-lectin interaction was related to serological type rather than species; in particular, the strains assigned to serogroup 1 or belonging to serovars 1/2a, 1/2b, 1/2c, 3a, 3b, and 7 were never agglutinated by G. simplicifolia lectin I. The five-lectin set proved to be capable of detecting differences between serologically identical isolates of L. monocytogenes. Of the 150 isolates of this species, 144 were distributed over 15 different lectin agglutination profiles and 6 autoagglutinated, the overall typeability being 96%. However, the profiles encountered among L. monocytogenes isolates were not randomly distributed. With strains assigned to serogroup 1 or belonging to serovars 1/2a, 1/2b, 1/2c, and 3b, the clinical isolates fell into only two of the eight patterns recorded overall; with strains of serogroup 4 and serovar 4b, food and environmental isolates were distributed over eight of the nine patterns found in total, while clinical isolates were distributed over five patterns. In a comparative study of 15 epidemiologically relevant isolates of L. monocytogenes from five distinct outbreaks, strains with identical phage types and/or DNA fingerprints displayed identical lectin profiles. The heterogeneity of agglutination profiles may form the basis of a new approach to L. monocytogenes typing

  10. Galactose-binding lectin from the seeds of champedak (Artocarpus integer): sequences of its subunits and interactions with human serum O-glycosylated glycoproteins.

    PubMed

    Abdul Rahman, Mariati; Anuar Karsani, Saiful; Othman, Iekhsan; Shafinaz Abdul Rahman, Puteri; Haji Hashim, Onn

    2002-07-26

    Our group has previously reported the isolation, partial characterisation, and application of a Galbeta1-3GalNAc- and IgA1-reactive lectin from the seeds of champedak (Artocarpus integer). In the present study, we have subjected the purified lectin to reverse-phase high performance liquid chromatography and sequenced its subunits. Determination of the N-terminal sequence of the first 47 residues of the large subunit demonstrated at least 95% homology to the N-terminal sequence of the alpha chains of a few other galactose-binding Artocarpus lectins. The two smaller subunits of the lectin, each comprised of 21 amino acid residues, demonstrated minor sequence variability. Their sequences were generally comparable to the beta chains of the other galactose-binding Artocarpus lectins. When used to probe human serum glycopeptides that were separated by two-dimensional gel electrophoresis, the lectin demonstrated strong apparent interactions with glycopeptides of IgA1, hemopexin, alpha2-HS glycoprotein, alpha1-antichymotrypsin, and a few unknown glycoproteins. Immobilisation of the lectin to Sepharose generated an affinity column that may be used to isolate the O-glycosylated serum glycoproteins.

  11. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity.

    PubMed

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G; Meldal, Morten; Holmér, Andreas P; Blixt, Ola; Cló, Emiliano; Levery, Steven B; Clausen, Henrik; Wandall, Hans H

    2011-09-16

    UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence specificity, whereas the primary function of the lectin domain is to increase affinity to previously glycosylated substrates. Whether the lectin domain also has peptide sequence selectivity has remained unclear. Using a glycopeptide array with a library of synthetic and recombinant glycopeptides based on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate an additional level of complexity in the initiation step of O-glycosylation by GalNAc-Ts.

  12. Homology, limbs, and genitalia.

    PubMed

    Minelli, Alessandro

    2002-01-01

    Similarities in genetic control between the main body axis and its appendages have been generally explained in terms of genetic co-option. In particular, arthropod and vertebrate appendages have been explained to invoke a common ancestor already provided with patterned body outgrowths or independent recruitment in limb patterning of genes or genetic cassettes originally used for purposes other than axis patterning. An alternative explanation is that body appendages, including genitalia, are evolutionarily divergent duplicates (paramorphs) of the main body axis. However, are all metazoan limbs and genitalia homologous? The concept of body appendages as paramorphs of the main body axis eliminates the requirement for the last common ancestor of limb-bearing animals to have been provided with limbs. Moreover, the possibility for an animal to express complex organs ectopically demonstrates that positional and special homology may be ontogenetically and evolutionarily uncoupled. To assess the homology of animal genitalia, we need to take into account three different sets of mechanisms, all contributing to their positional and/or special homology and respectively involved (1) in the patterning of themain body axis, (2) in axis duplication, followed by limb patterning mechanisms diverging away from those still patterning the main body axis (axis paramorphism), and (3) in controlling the specification of sexual/genital features, which often, but not necessarily, come into play by modifying already developed and patterned body appendages. This analysis demonstrates that a combinatorial approach to homology helps disentangling phylogenetic and ontogenetic layers of homology.

  13. Mechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1.

    PubMed

    Wang, Shuo; Linde, Miles H; Munde, Manoj; Carvalho, Victor D; Wilson, W David; Poon, Gregory M K

    2014-08-01

    ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.

  14. Structural insights into the ATP binding pocket of the anaplastic lymphoma kinase by site-directed mutagenesis, inhibitor binding analysis, and homology modeling.

    PubMed

    Gunby, Rosalind H; Ahmed, Shaheen; Sottocornola, Roberta; Gasser, Marc; Redaelli, Sara; Mologni, Luca; Tartari, Carmen J; Belloni, Valentina; Gambacorti-Passerini, Carlo; Scapozza, Leonardo

    2006-09-21

    Anaplastic lymphoma kinase (ALK) is a valid target for anticancer therapy; however, potent ALK inhibitors suitable for clinical use are lacking. Because the majority of described kinase inhibitors bind in the ATP pocket of the kinase domain, we have characterized this pocket in ALK using site-directed mutagenesis, inhibition studies, and molecular modeling. Mutation of the gatekeeper residue, a key structural determinant influencing inhibitor binding, rendered the fusion protein, NPM/ALK, sensitive to inhibition by SKI-606 in the nanomolar range, while PD173955 inhibited the NPM/ALK mutant at micromolar concentrations. In contrast, both wild type and mutant NPM/ALK were insensitive to imatinib. Computer modeling indicated that docking solutions obtained with a homology model representing the intermediate conformation of the ALK kinase domain reflected closely experimental data. The good agreement between experimental and virtual results indicate that the ALK molecular models described here are useful tools for the rational design of ALK selective inhibitors. In addition, 4-phenylamino-quinoline compounds may have potential as templates for ALK inhibitors. PMID:16970400

  15. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential

    PubMed Central

    Lusvarghi, Sabrina; Bewley, Carole A.

    2016-01-01

    Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin’s antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin. PMID:27783038

  16. Purification and characterization of three mitogenic lectins from the roots of pokeweed (Phytolacca americana).

    PubMed

    Kino, M; Yamaguchi, K; Umekawa, H; Funatsu, G

    1995-04-01

    Three mitogenic lectins, designated PL-A, PL-B, and PL-C, were purified from the roots of pokeweed (Phytolacca americana) using Q-Sepharose column chromatography followed by gel filtration on Sephadex G-75, hydrophobic chromatography on Butyl-Toyopearl, and FPLC on a Mono-Q column. PL-A, PL-B, and PL-C are acidic proteins having isoelectric points of 4.35 and their apparent molecular masses were 22, 48, and 21 kDa by SDS-polyacrylamide gel electrophoresis in the presence of 2-mercaptoethanol, respectively. The three lectins have similar amino acid compositions rich in half-cystine and similar N-terminal sequences, indicating that they are homologous proteins. Identical sequences of N-terminal regions and six corresponding tryptic peptides in PL-A and PL-B suggested that PL-A may be an N-terminal half fragment of PL-B. Although all of three lectins have mitogenic activities, PL-B is a mitogenic lectin with the most potent hemagglutinating and mitogenic activities, and PL-C has almost no hemagglutinating activity.

  17. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica.

    PubMed Central

    Chadee, K; Petri, W A; Innes, D J; Ravdin, J I

    1987-01-01

    Establishment of adherence by Entamoeba histolytica is mediated by a 170-kD Gal/GalNAc inhibitable lectin and is required for cytolysis and phagocytosis of mammalian target cells. We studied the biochemical mechanisms of the in vitro interaction between rat and human colonic mucins and axenic E. histolytica trophozoites. Crude mucus prevented amebic adherence to Chinese hamster ovary (CHO) cells by up to 70%. Purification of the colonic mucins by Sepharose 4B chromatography, nuclease digestion, and cesium chloride gradient centrifugation resulted in a 1,000-fold enrichment of the inhibitory mucins. Purified rat mucin inhibited amebic adherence to and cytolysis of homologous rat colonic epithelial cells. Oxidation and enzymatic cleavage of rat mucin Gal and GalNAc residues completely abrogated mucin inhibition of amebic adherence. The binding of rat 125I-mucin to amebae was galactose specific, saturable, reversible, and pH dependent. A monoclonal antibody specific for the 170-kD amebic Gal/GalNAc lectin completely inhibited the binding of rat 125I-mucin. Rat mucin bound to Affigel affinity purified the amebic lectin from conditioned medium. Colonic mucin glycoproteins act as an important host defense by binding to the parasite's adherence lectin, thus preventing amebic attachment to and cytolysis of host epithelial cells. Images PMID:2890655

  18. Purification and characterization of a novel lectin from a freshwater cyanobacterium, Oscillatoria agardhii.

    PubMed

    Sato, Y; Murakami, M; Miyazawa, K; Hori, K

    2000-02-01

    In the survey of 14 species of laboratory-cultured cyanobacteria for hemagglutinins, we newly detected the activity in two species, Oscillatoria agardhii, strain NIES-204, and Phormidium foveolarum, strain NIES-503. From the extract of O. agardhii, which showed the highest activity with trypsin-treated erythrocytes of rabbit, a lectin was purified to homogeneity by the combination of precipitation with (NH4)2SO4, gel filtration, hydrophobic chromatography and reverse phase chromatography. The purified lectin, designated OAA, was a monomeric protein with an apparent molecular weight of 13,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 16,000 on gel filtration. The amino acid composition was rich in glycine and acidic amino acids. The hemagglutination activity was inhibited by glycoproteins such as yeast mannan, but not by any of the monosaccharides tested. The activity was stable over a wide range of pH (4-11) and at a high temperature of 80 degrees C, and independent on the presence of divalent cations. The features of OAA resembled those of many of lectins from marine macroalgae. The sequence of amino-terminal residues of OAA was determined as ALYNVENQWGGSSAPWNEGG, which was highly homologous to those of lectins from macroalgae of the genus Eucheuma and that of a myxobacterium Myxococcus xanthus hemagglutinin. PMID:10817903

  19. Structural Insight into Tetrameric hTRPV1 from Homology Modeling, Molecular Docking, Molecular Dynamics Simulation, Virtual Screening, and Bioassay Validations

    PubMed Central

    Feng, Zhiwei; Pearce, Larry V.; Xu, Xiaomeng; Yang, Xiaole; Yang, Peng; Blumberg, Peter M.; Xie, Xiang-Qun

    2015-01-01

    The transient receptor potential vanilloid type 1 (TRPV1) is a heat-activated cation channel protein, which contributes to inflammation, acute and persistent pain. Antagonists of human TRPV1 (hTRPV1) represent a novel therapeutic approach for the treatment of pain. Developing various antagonists of hTRPV1, however, has been hindered by the unavailability of a 3D structure of hTRPV1. Recently, the 3D structures of rat TRPV1 (rTRPV1) in the presence and absence of ligand have been reported as determined by cryo-EM. rTRPV1 shares 85.7% sequence identity with hTRPV1. In the present work, we constructed and reported the 3D homology tetramer model of hTRPV1 based on the cryo-EM structures of rTRPV1. Molecular dynamics (MD) simulations, energy minimizations, and prescreen were applied to select and validate the best model of hTRPV1. The predicted binding pocket of hTRPV1 consists of two adjacent monomers subunits, which were congruent with the experimental rTRPV1 data and the cyro-EM structures of rTRPV1. The detailed interactions between hTRPV1 and its antagonists or agonists were characterized by molecular docking, which helped us to identify the important residues. Conformational changes of hTRPV1 upon antagonist/agonist binding were also explored by MD simulation. The different movements of compounds led to the different conformational changes of monomers in hTRPV1, indicating that TRPV1 works in a concerted way, resembling some other channel proteins such as aquaporins. We observed that the selective filter was open when hTRPV1 bound with an agonist during MD simulation. For the lower gate of hTRPV1, we observed large similarities between hTRPV1 bound with antagonist and with agonist. A five-point pharmacophore model based on several antagonists was established, and the structural model was used to screen in silico for new antagonists for hTRPV1. By using the 3D TRPV1 structural model above, the pilot in silico screening has begun to yield promising hits with

  20. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations.

    PubMed

    Feng, Zhiwei; Pearce, Larry V; Xu, Xiaomeng; Yang, Xiaole; Yang, Peng; Blumberg, Peter M; Xie, Xiang-Qun

    2015-03-23

    The transient receptor potential vanilloid type 1 (TRPV1) is a heat-activated cation channel protein, which contributes to inflammation, acute and persistent pain. Antagonists of human TRPV1 (hTRPV1) represent a novel therapeutic approach for the treatment of pain. Developing various antagonists of hTRPV1, however, has been hindered by the unavailability of a 3D structure of hTRPV1. Recently, the 3D structures of rat TRPV1 (rTRPV1) in the presence and absence of ligand have been reported as determined by cryo-EM. rTRPV1 shares 85.7% sequence identity with hTRPV1. In the present work, we constructed and reported the 3D homology tetramer model of hTRPV1 based on the cryo-EM structures of rTRPV1. Molecular dynamics (MD) simulations, energy minimizations, and prescreen were applied to select and validate the best model of hTRPV1. The predicted binding pocket of hTRPV1 consists of two adjacent monomers subunits, which were congruent with the experimental rTRPV1 data and the cyro-EM structures of rTRPV1. The detailed interactions between hTRPV1 and its antagonists or agonists were characterized by molecular docking, which helped us to identify the important residues. Conformational changes of hTRPV1 upon antagonist/agonist binding were also explored by MD simulation. The different movements of compounds led to the different conformational changes of monomers in hTRPV1, indicating that TRPV1 works in a concerted way, resembling some other channel proteins such as aquaporins. We observed that the selective filter was open when hTRPV1 bound with an agonist during MD simulation. For the lower gate of hTRPV1, we observed large similarities between hTRPV1 bound with antagonist and with agonist. A five-point pharmacophore model based on several antagonists was established, and the structural model was used to screen in silico for new antagonists for hTRPV1. By using the 3D TRPV1 structural model above, the pilot in silico screening has begun to yield promising hits with

  1. The mannose-specific bulb lectin from Galanthus nivalis (snowdrop) binds mono- and dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 A and 3.0 A resolution.

    PubMed

    Hester, G; Wright, C S

    1996-10-01

    Galanthus nivalis agglutinin (GNA, a 50 kDa tetramer) is a mannose-specific lectin of the Amaryllidaceae family of bulb lectins. Crystal structures of GNA complexed with methyl-alpha-D-mannose (MeMan) and mannose-alpha 1,3-D-mannose-alpha-OMe (MeMan-2) have been determined and analyzed in terms of internal structural symmetry and saccharide binding. The final model of the 2.29 A orthorhombic methyl-alpha-Man complex refined with an R-factor of 0.167 (all data) includes 12 bound sugar ligands and 327 water molecules. The four independent subunits (A, B, C and D) of the 222 tetramer and the three four-stranded beta-sheets (I,II and III) that constitute each subunit compare closely (r.m.s. delta = < 1.0 A). The 12 bound methyl-alpha-Man molecules refined with B-factors < 22 A2 and occupancies in the range of 0.5 to 1.0. The highest occupied site is located in beta-sheet I (site 1), where interactions from the dimer-related subunit contribute to complex stabilization. These subunit pairs (A-D and B-C) associate tightly with a buried surface area of 1738 A2 and 33 interchain hydrogen bonds resulting from C-terminal strand exchange. In comparison, the A-B and C-D subunit pairs have narrow interfaces (476 A2) and no direct H-bond contacts. The 3.0 A structure of the cubic Man-alpha 1,3-Man-OMe complex, determined by molecular replacement and refined with X-PLOR using NCS constraints and density modification methods, is less well ordered due to a high crystal solvent content (68%). Complexed disaccharide is responsible for the most crucial lattice contacts, which involve only one of the two independent subunits (A). The second subunit (C) shows a high degree of flexibility (Bav = 41.7 A2). The complete disaccharide molecule is visible in both subunits at site 3, which is the only extended site. The ligand is oriented with its reducing end positioned in the specificity pocket. The non-reducing manose is in contact through hydrogen bonding with a charged subsite (D37-K38) on

  2. Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists.

    PubMed

    Rai, Brajesh K; Tawa, Gregory J; Katz, Alan H; Humblet, Christine

    2010-02-01

    G Protein-Coupled Receptors (GPCRs) are integral membrane proteins that play important role in regulating key physiological functions, and are targets of about 50% of all recently launched drugs. High-resolution experimental structures are available only for very few GPCRs. As a result, structure-based drug design efforts for GPCRs continue to rely on in silico modeling, which is considered to be an extremely difficult task especially for these receptors. Here, we describe Gmodel, a novel approach for building 3D atomic models of GPCRs using a normal mode-based refinement of homology models. Gmodel uses a small set of relevant low-frequency vibrational modes derived from Random Elastic Network model to efficiently sample the large-scale receptor conformation changes and generate an ensemble of alternative models. These are used to assemble receptor-ligand complexes by docking a known active into each of the alternative models. Each of these is next filtered using restraints derived from known mutation and binding affinity data and is refined in the presence of the active ligand. In this study, Gmodel was applied to generate models of the antagonist form of histamine 3 (H3) receptor. The validity of this novel modeling approach is demonstrated by performing virtual screening (using the refined models) that consistently produces highly enriched hit lists. The models are further validated by analyzing the available SAR related to classical H3 antagonists, and are found to be in good agreement with the available experimental data, thus providing novel insights into the receptor-ligand interactions.

  3. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  4. Novel Animal Defenses against Predation: A Snail Egg Neurotoxin Combining Lectin and Pore-Forming Chains That Resembles Plant Defense and Bacteria Attack Toxins

    PubMed Central

    Ceolín, Marcelo; Ituarte, Santiago; Qiu, Jian-Wen; Sun, Jin; Fernández, Patricia E.; Heras, Horacio

    2013-01-01

    Although most eggs are intensely predated, the aerial egg clutches from the aquatic snail Pomacea canaliculata have only one reported predator due to unparalleled biochemical defenses. These include two storage-proteins: ovorubin that provides a conspicuous (presumably warning) coloration and has antinutritive and antidigestive properties, and PcPV2 a neurotoxin with lethal effect on rodents. We sequenced PcPV2 and studied whether it was able to withstand the gastrointestinal environment and reach circulation of a potential predator. Capacity to resist digestion was assayed using small-angle X-ray scattering (SAXS), fluorescence spectroscopy and simulated gastrointestinal proteolysis. PcPV2 oligomer is antinutritive, withstanding proteinase digestion and displaying structural stability between pH 4.0–10.0. cDNA sequencing and protein domain search showed that its two subunits share homology with membrane attack complex/perforin (MACPF)-like toxins and tachylectin-like lectins, a previously unknown structure that resembles plant Type-2 ribosome-inactivating proteins and bacterial botulinum toxins. The protomer has therefore a novel AB toxin combination of a MACPF-like chain linked by disulfide bonds to a lectin-like chain, indicating a delivery system for the former. This was further supported by observing PcPV2 binding to glycocalix of enterocytes in vivo and in culture, and by its hemaggutinating, but not hemolytic activity, which suggested an interaction with surface oligosaccharides. PcPV2 is able to get into predator’s body as evidenced in rats and mice by the presence of circulating antibodies in response to sublethal oral doses. To our knowledge, a lectin-pore-forming toxin has not been reported before, providing the first evidence of a neurotoxic lectin in animals, and a novel function for ancient and widely distributed proteins. The acquisition of this unique neurotoxic/antinutritive/storage protein may confer the eggs a survival advantage, opening new

  5. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold.

    PubMed

    Sankaranarayanan, R; Sekar, K; Banerjee, R; Sharma, V; Surolia, A; Vijayan, M

    1996-07-01

    Jacalin, a tetrameric two-chain lectin (66,000 Mr) from jackfruit seeds, is highly specific for the tumour associated T-antigenic disaccharide. The crystal structure of jacalin with methyl-alpha-D-galactose reveals that each subunit has a three-fold symmetric beta-prism fold made up of three four-stranded beta-sheets. The lectin exhibits a novel carbohydrate-binding site involving the N terminus of the alpha-chain which is generated through a post-translational modification involving proteolysis, the first known instance where such a modification has been used to confer carbohydrate specificity. This new lectin fold may be characteristic of the Moraceae plant family. The structure provides an explanation for the relative affinities of the lectin for galactose derivatives and provides insights into the structural basis of its T-antigen specificity.

  6. Activity, stability, and structure of metagenome-derived LC11-RNase H1, a homolog of Sulfolobus tokodaii RNase H1

    PubMed Central

    Nguyen, Tri-Nhan; Angkawidjaja, Clement; Kanaya, Eiko; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2012-01-01

    Metagenome-derived LC11-RNase H1 is a homolog of Sulfolobus tokodaii RNase H1 (Sto-RNase H1). It lacks a C-terminal tail, which is responsible for hyperstabilization of Sto-RNase H1. Sto-RNase H1 is characterized by its ability to cleave not only an RNA/DNA hybrid but also a double-stranded RNA (dsRNA). To examine whether LC11-RNase H1 also exhibits both RNase H and dsRNase activities, LC11-RNase H1 was overproduced in Escherichia coli, purified, and characterized. LC11-RNase H1 exhibited RNase H activity with similar metal ion preference, optimum pH, and cleavage mode of substrate with those of Sto-RNase H1. However, LC11-RNase H1 did not exhibit dsRNase activity at any condition examined. LC11-RNase H1 was less stable than Sto-RNases H1 and its derivative lacking the C-terminal tail (Sto-RNase H1ΔC6) by 37 and 13°C in Tm, respectively. To understand the structural bases for these differences, the crystal structure of LC11-RNase H1 was determined at 1.4 Å resolution. The LC11-RNase H1 structure is highly similar to the Sto-RNase H1 structure. However, LC11-RNase H1 has two grooves on protein surface, one containing the active site and the other containing DNA-phosphate binding pocket, while Sto-RNase H1 has one groove containing the active site. In addition, LC11-RNase H1 contains more cavities and buried charged residues than Sto-RNase H1. We propose that LC11-RNase H1 does not exhibit dsRNase activity because dsRNA cannot fit to the two grooves on protein surface and that LC11-RNase H1 is less stable than Sto-RNase H1ΔC6 because of the increase in cavity volume and number of buried charged residues. PMID:22389131

  7. First evidence of protein G-binding protein in the most primitive vertebrate: serum lectin from lamprey (Lampetra japonica).

    PubMed

    Xue, Zhuang; Pang, Yue; Liu, Xin; Zheng, Zhen; Xiao, Rong; Jin, Minli; Han, Yinglun; Su, Peng; Lv, Li; Wang, Jihong; Li, QingWei

    2013-12-01

    The intelectins, a recently identified subgroup of extracellular animal lectins, are glycan-binding receptors that recognize glycan epitopes on foreign pathogens in host systems. Here, we have described NPGBP (novel protein G-binding protein), a novel serum lectin found in the lamprey, Lampetra japonica. RT-PCR yielded a 1005 bp cDNA sequence from the lamprey liver encoding a 334 amino acid secretory protein with homology to mammalian and aquatic organism intelectins. Gene expression analyses showed that the NPGBP gene was expressed in the blood, intestines, kidney, heart, gill, liver, adipose tissue and gonads. NPGBP was isolated by protein G-conjugated agarose immunoprecipitation, and SDS-PAGE analyses showed that NPGBP migrated as a specific band (∼35 and ∼124 kDa under reducing and non-reducing conditions, respectively). These results suggested that NPGBP forms monomers and tetramers. NPGBP gene expression was induced by in vivo bacterial stimulation, and NPGBP showed different agglutination activities against pathogenic Gram-positive bacteria, Gram-negative bacteria and fungi. The induction of NPGBP suggested that it plays an important role in defense against microorganisms in the internal circulation system of the lamprey. When incubated with an unrelated antibody, the specific binding between NPGBP and protein G was competitively inhibited, indicating that NPGBP and the Fc region of Ig bind to the same site on protein G. We thus assume that the tertiary structure of NPGBP is similar to that of the Fc region of Ig. Additionally, NPGBP can effectively promote endothelial cell mitosis. These findings suggest that NPGBP plays a role in the immune defense against microorganisms, and this study represents one of the few examples of the characterization and functional analysis of an aquatic organism intelectin.

  8. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus.

    PubMed

    Gardères, Johan; Domart-Coulon, Isabelle; Marie, Arul; Hamer, Bojan; Batel, Renato; Müller, Werner E G; Bourguet-Kondracki, Marie-Lise

    2016-10-01

    Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria. PMID:27113336

  9. Molecular cloning and expression analysis of a F-type lectin gene from Japanese sea perch (Lateolabrax japonicus).

    PubMed

    Qiu, Lihua; Lin, Liansheng; Yang, Keng; Zhang, Hanhua; Li, Jianzhu; Zou, Falin; Jiang, Shigui

    2011-08-01

    The techniques of homology cloning and anchored PCR were used to clone the fucose-binding lectin (F-type lectin) gene from Japanese sea perch (Lateolabrax Japonicus). The full-length cDNA of sea perch F-lectin (JspFL) contained a 5' untranslated region (UTR) of 39 bp, an ORF of 933 bp encoding a polypeptide of 310 amino acids with an estimated molecular mass of 10.82 kDa and a 3' UTR of 332 bp. The searches for nucleotides and protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of JspFL was homological to the Fucose-binding lectin in other fish species. In the JspFL deduced amino acid sequence, two tandem domains that exhibit the eel carbohydrate-recognition sequence motif were found. The temporal expressions of gene in the different tissues were measured by real-time PCR. And the mRNA expressions of the gene were constitutively expressed in tissues including spleen, head-kidney, liver, gill, and heart. The JspFL expression in spleen was different during the stimulated time point, 2 h later the expression level became up-regulated, and 6 h later the expression level became down-regulated. The result indicated that JspFL was constitutive and inducible expressed and could play a critical role in the host-pathogen interaction.

  10. Artocarpus hirsuta lectin. Differential modes of chemical and thermal denaturation.

    PubMed

    Gaikwad, Sushama M; Gurjar, Madhura M; Khan, M Islam

    2002-03-01

    Unfolding, inactivation and dissociation of the lectin from Artocarpus hirsuta seeds were studied by chemical (guanidine hydrochloride, GdnHCl) and thermal denaturation. Conformational transitions were monitored by intrinsic fluorescence and circular dichroism. The gradual red shift in the emission maxima of the native protein from 335 to 356 nm, change in the ellipticity at 218 nm and simultaneous decrease in the sugar binding activity were observed with increasing concentration of GdnHCl in the pH range between 4.0 and 9.0. The unfolding and inactivation by GdnHCl were partially reversible. Gel filtration of the lectin in presence of 1-6 m GdnHCl showed that the protein dissociates reversibly into partially unfolded dimer and then irreversibly into unfolded inactive monomer. Thermal denaturation was irreversible. The lectin loses activity rapidly above 45 degrees C. The exposure of hydrophobic patches, distorted secondary structure and formation of insoluble aggregates of the thermally inactivated protein probably leads to the irreversible denaturation.

  11. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  12. Rapid affinity-purification and physicochemical characterization of pumpkin (Cucurbita maxima) phloem exudate lectin.

    PubMed

    Narahari, Akkaladevi; Swamy, Musti J

    2010-04-21

    The chito-oligosaccharide-specific lectin from pumpkin (Cucurbita maxima) phloem exudate has been purified to homogeneity by affinity chromatography on chitin. After SDS/PAGE in the presence of 2-mercaptoethanol, the pumpkin phloem lectin yielded a single band corresponding to a molecular mass of 23.7 kDa, whereas ESI-MS (electrospray ionization MS) gave the molecular masses of the subunit as 24645 Da. Analysis of the CD spectrum of the protein indicated that the secondary structure of the lectin consists of 9.7% alpha-helix, 35.8% beta-sheet, 22.5% beta-turn and 32.3% unordered structure. Saccharide binding did not significantly affect the secondary and tertiary structures of the protein. The haemagglutinating activity of pumpkin phloem lectin was mostly unaffected in the temperature range 4-70 degrees C, but a sharp decrease was seen between 75 and 85 degrees C. Differential scanning calorimetric and CD spectroscopic studies suggest that the lectin undergoes a co-operative thermal unfolding process centred at approx. 81.5 degrees C, indicating that it is a relatively stable protein.

  13. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection.

    PubMed

    Patnaik, Bharat Bhusan; Patnaik, Hongray Howrelia; Seo, Gi Won; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2014-10-01

    Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection. PMID:24755285

  14. Patterns of sperm-specific histone variation in sea stars and sea urchins: primary structural homologies in the N-terminal region of spermatogenic H1.

    PubMed

    Massey, C B; Watts, S A

    1992-04-15

    An electrophoretic characterization of histones from pyloric caeca, testes, and sperm of Asterias vulgaris revealed a sperm/testes-specific variant of histone H1 significantly larger than its somatic counterpart from pyloric caeca. Additional proteins were observed in H1 regions of acetic acid-urea polyacrylamide gels in testicular extracts. Sperm or testis-specific variants of H2B observed in sea urchins were not found in the sea star. Evidence presented suggests that sperm- or testes-specific H1 species of intermediate mobility may arise from a single, slow-migrating H1 species (SpH1). Although an increase in nonspecific DNA binding by nuclear proteins must occur during the process of spermatogenesis, different organisms exhibit various patterns of sperm-specific protein mediating differential binding during the process. Sperm-specific variants of both H1 and H2B histones are observed in sea urchins, while the only variant observed in sea stars during spermatogenesis is SpH1. Sequencing of the N-terminus of SpH1 from A. vulgaris revealed a repeating tetrapeptide in residues 3-6 and 8-11 (Ser-Pro-Arg-Lys and Ser-Pro-Lys-Lys, respectively), homologous to repeats in the N-termini of sperm-specific H1s from sea urchins. Primary structure within critical, variable regions of molecules responsible for nonspecific DNA binding appear conserved in many organisms. The occurrence of repeating tetrapeptides in SpH1 and other DNA binding proteins suggests that such domains may function similarly in various chromatins undergoing regulated or reversible condensation. PMID:1583456

  15. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection.

    PubMed

    Patnaik, Bharat Bhusan; Patnaik, Hongray Howrelia; Seo, Gi Won; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2014-10-01

    Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection.

  16. Patterns of sperm-specific histone variation in sea stars and sea urchins: primary structural homologies in the N-terminal region of spermatogenic H1.

    PubMed

    Massey, C B; Watts, S A

    1992-04-15

    An electrophoretic characterization of histones from pyloric caeca, testes, and sperm of Asterias vulgaris revealed a sperm/testes-specific variant of histone H1 significantly larger than its somatic counterpart from pyloric caeca. Additional proteins were observed in H1 regions of acetic acid-urea polyacrylamide gels in testicular extracts. Sperm or testis-specific variants of H2B observed in sea urchins were not found in the sea star. Evidence presented suggests that sperm- or testes-specific H1 species of intermediate mobility may arise from a single, slow-migrating H1 species (SpH1). Although an increase in nonspecific DNA binding by nuclear proteins must occur during the process of spermatogenesis, different organisms exhibit various patterns of sperm-specific protein mediating differential binding during the process. Sperm-specific variants of both H1 and H2B histones are observed in sea urchins, while the only variant observed in sea stars during spermatogenesis is SpH1. Sequencing of the N-terminus of SpH1 from A. vulgaris revealed a repeating tetrapeptide in residues 3-6 and 8-11 (Ser-Pro-Arg-Lys and Ser-Pro-Lys-Lys, respectively), homologous to repeats in the N-termini of sperm-specific H1s from sea urchins. Primary structure within critical, variable regions of molecules responsible for nonspecific DNA binding appear conserved in many organisms. The occurrence of repeating tetrapeptides in SpH1 and other DNA binding proteins suggests that such domains may function similarly in various chromatins undergoing regulated or reversible condensation.

  17. Differential binding properties of Gal/GalNAc specific lectins available for characterization of glycoreceptors.

    PubMed

    Wu, A M; Song, S C; Sugii, S; Herp, A

    1997-01-01

    Differentiating the binding properties of applied lectins should facilitate the selection of lectins for characterization of glycoreceptors on the cell surface. Based on the binding specificities studied by inhibition assays of lectin-glycan interactions, over twenty Gal and/or GalNAc specific lectins have been divided into eight groups according to their specificity for structural units (lectin determinants), which are the disaccharide as all or part of the determinants and of GalNAc alpha 1-->Ser (Thr) of the peptide chain. A scheme of codes for lectin determinants is illustrated as follows: (1) F (GalNAc alpha 1-->3GalNAc), Forssman specific disaccharide--Dolichos biflorus (DBL), Helix pomatia (HPL) and Wistaria floribunda (WFL) lectins. (2) A (GalNAc alpha 1-->3 Gal), blood group A specific disaccharide--Codium fragile subspecies tomentosoides (CFT), Soy bean (SBL), Vicia villosa-A4 (VVL-A4), and Wistaria floribunda (WFL) lectins. (3) Tn (GalNAc alpha 1-->Ser (Thr) of the protein core)--Vicia villosa B4 (VVL-B4), Salvia sclarea (SSL), Maclura pomifera (MPL), Bauhinia purpurea alba (BPL) and Artocarpus integrifolia (Jacalin, AIL). (4) T (Gal beta 1-->3GalNAc), the mucin type sugar sequences on the human erythrocyte membrane(T alpha), T antigen or the disaccharides at the terminal nonreducing end of gangliosides (T beta)--Peanut (PNA), Bauhinia purpurea alba (BPL), Maclura pomifera (MPL), Sophora japonica (SJL), Artocarpus lakoocha (Artocarpin) lectins and Abrus precatorius agglutinin (APA).(5) I and II (Gal beta 1-->3(4)GlcNAc)--the disaccharide residue at the nonreducing end of the carbohydrate chains derived from either N- or O-glycosidic linkage--Ricinus communis agglutinin (RCA1), Datura stramonium (TAL, Thorn apple), Erythrina cristagalli (ECL, Coral tree), and Geodia cydonium (GCL). (6) B (Gal alpha 1-->3Gal), human blood group B specific disaccharide--Griffonia(Banderiaea) simplicifolia B4 (GSI-B4). (7) E (Gal alpha 1-->4Gal), receptors for pathogenic E

  18. Identification and molecular structure analysis of a new noncoding RNA, a sbRNA homolog, in the silkworm Bombyx mori genome.

    PubMed

    Duarte Junior, Francisco Ferreira; de Lima Neto, Quirino Alves; Rando, Fabiana Dos Santos; de Freitas, Douglas Vinícius Bassalobre; Pattaro Júnior, José Renato; Polizelli, Lorena Gomes; Munhoz, Roxelle Ethienne Ferreira; Seixas, Flavio Augusto Vicente; Fernandez, Maria Aparecida

    2015-03-01

    The small noncoding group of RNAs called stem-bulge RNAs (sbRNAs), first reported in Caenorhabditis elegans, is described as molecules homologous to the Y RNAs, a specific class of noncoding RNAs that is present in vertebrates. This homology indicates the possibility of the existence of sbRNAs in other invertebrate organisms. In this work, we used bioinformatic tools and conserved sequences of sbRNAs from C. Elegans and Y RNAs to search for homologous sbRNA sequences in the Bombyx mori genome. This analysis led to the discovery of one noncoding gene, which was translated into RNA segments and comparatively analysed with segments from human and hamster Y RNAs and C. elegans sbRNAs in molecular dynamic simulations. This gene represents the first evidence for a new sbRNA-like noncoding RNA, the BmsbRNA gene, in this Lepidoptera genome.

  19. A lectin gene encodes the alpha-amylase inhibitor of the common bean.

    PubMed Central

    Moreno, J; Chrispeels, M J

    1989-01-01

    An alpha-amylase inhibitor that inhibits insect and mammalian alpha-amylases but not plant alpha-amylases, is present in seeds of the common bean (Phaseolus vulgaris). We have purified the alpha-amylase inhibitor by using a selective heat treatment in acidic medium and affinity chromatography with porcine pancreas alpha-amylase coupled to agarose. Under sodium dodecyl sulfate gel electrophoresis, the purified inhibitor gave rise to five bands with mobilities corresponding to molecular masses ranging from 14 to 19 kDa. N-terminal sequencing (up to 15 amino acids) of the polypeptides obtained from these bands resulted in only two different sequences matching two stretches of the amino acid sequence deduced from an already described lectin gene [Hoffman, L. M. (1984) J. Mol. Appl. Gen. 2,447-453]. This gene is different from but closely related to the genes that code for phytohemagglutinin, the major lectin of bean. Further evidence based on amino acid composition, identification of a precursor, and recognition of the product of the gene (expressed in Escherichia coli) by an anti-alpha-amylase inhibitor serum confirms that the inhibitor is encoded by this or a closely related lectin gene. This finding assigns a biological function, which has been described at the molecular level, to a plant lectin gene product and supports the defense role postulated for seed lectins. The lack of homology with other families of enzyme inhibitors suggests that this may be the first member of a new family of plant enzyme inhibitors. Images PMID:2682631

  20. Anti-inflammatory and antinociceptive activity of chitin-binding lectin from Canna limbata seeds.

    PubMed

    Araújo, Theolyta S; Teixeira, Claudener S; Falcão, Maria A P; Junior, Vanir R Pinto; Santiago, Mayara Quiroz; Benevides, Raquel G; Delatorre, Plínio; Martins, Jorge L; Alexandre-Moreira, Magna S; Cavada, Benildo S; Campesatto, Eliane A; Rocha, Bruno A M

    2013-12-01

    Lectins are a structurally heterogeneous group of proteins or glycoproteins with at least one noncatalytic domain binding reversibly to a specific mono- or oligosaccharide. Monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins. In this study, we evaluated anti-inflammatory and antinociceptive effects of monocot lectin from the Canna limbata seeds (CLL). To accomplish this, CLL was purified and subjected to pharmacological assays: abdominal writhing induced by acetic acid, formalin, hot plate and Zymosan A-induced peritonitis tests. The CLL was purified by chromatographic chitin column, and the relative mass of 21 kDa observed in electrophoresis was confirmed by electrospray mass spectrometry, which also revealed that purified CLL consists of a dimer having a weight of 49,676 Da. The CLL showed nociceptive activity in the acetic acid test as well as peripheral antinociceptive response. The CLL also showed anti-inflammatory effect with the reduction of inflammation in the formalin test and neutrophil migration into the peritoneal cavity. This is the first report of anti-inflammatory activity for a monocot lectin, and it suggests a new pharmacological tool to understand inflammatory and antinociceptive processes mediated through lectins.

  1. pH-dependent aggregation of oligomeric Artocarpus hirsuta lectin on thermal denaturation.

    PubMed

    Gaikwad, Sushama M; Islam Khan, M

    2003-11-14

    The pH dependence of the activity, aggregation, and secondary structure of Artocarpus hirsuta lectin was studied using intrinsic and extrinsic fluorescence, light scattering, and circular dichroism. The lectin is more stable in the neutral and acidic than in the alkaline pH range, which is also reflected in the binding constants of the lectin to methyl alpha-galactopyranoside (me alpha-gal). The aggregation of the protein due to heat denaturation is prevented at both extremes of pH. The binding of hydrophobic dye to the lectin takes place at pH 1-2, which increases with increasing temperature. The exposure of hydrophobic patches at pH 1 is reversible. The secondary structure of the lectin is intact in the pH range of 1-8 and is distorted above pH 9. Aggregation of the protein due to heat denaturation is also prevented in the presence of guanidine hydrochloride (GdnHCl).

  2. Structures of MART-126/27-35Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition

    SciTech Connect

    Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K; Powell, Jr., Daniel J.; Johnson, Laura A; Restifo, Nicholas P; Baker, Brian M

    2008-09-17

    Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.

  3. Inactivation and fragmentation of lectin from Bothrops leucurus snake venom by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Nunes, E. S.; Souza, M. A. A.; Vaz, A. F. M.; Coelho, L. C. B. B.; Aguiar, J. S.; Silva, T. G.; Guarnieri, M. C.; Melo, A. M. M. A.; Oliva, M. L. V.; Correia, M. T. S.

    2012-04-01

    Gamma radiation alters the molecular structure of biomolecules and is able to mitigate the action of snake venoms and their isolated toxins. The effect of γ-radiation on the folding of Bothrops lecurus venom lectin was measured by a hemagglutinating assay, intrinsic and bis-ANS fluorescence. Intrinsic and bis-ANS fluorescence analyses indicated that irradiation caused unfolding followed by aggregation of the lectin. Our results suggest that irradiation can lead to significant changes in the protein structure, which may promote the loss of its binding property and toxic action.

  4. An unusual anti-H lectin inhibited by milk from individuals with the Bombay phenotype.

    PubMed

    Joshi, S R; Vasantha, K; Robb, J S

    2005-01-01

    There are several lectins with anti-H specificity but few of them serve as useful reagents. An anti-H lectin, extracted from the seeds of the plant Momordica dioica Roxb. ex willd., was tested for its hemagglutination and inhibition properties, using standard serologic methods and panel RBCs, serum, saliva, milk, and oligosaccharides purified from milk. The extract displayed strongest agglutination with group O RBCs and was weakest with group A1B RBCs in a spectrum of O>A2>B>A2B>A1>A1B; the extract failed to react with the RBCs from 25 individuals with the Bombay (Oh) phenotype and was inhibited by H secretor saliva, hence it was characterized as anti-H. However, its inhibition by milk samples from five mothers with the Bombay phenotype called into question its specificity as anti-H. The lectin reacted as strongly with group O ii (adult) RBCs as with normal OI RBCs, ruling out its specificity as anti-HI. Hemagglutination inhibition was observed with 2'-fucosyllactose (Type 2 H) and lacto-N-fucopentose-I (Type 1 H), suggesting that the binding of the lectin had preference for H structures. However, inhibition by N-acetyllactosamine, lacto-Ntetraose, and lacto-N-neotetraose suggested that the lectin also recognized unsubstituted terminal beta-linked galactose units. The hemagglutinin property in the present lectin showed an unusual anti-H specificity. The lectin was inhibited by milk from Bombay phenotype individuals and certain milk oligosaccharides not specific for the H antigen.

  5. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    SciTech Connect

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  6. Backbone and side chain NMR assignment, along with the secondary structure prediction of RRM2 domain of La protein from a lower eukaryote exhibiting identical structural organization with its human homolog.

    PubMed

    Argyriou, Aikaterini I; Chasapis, Christos T; Apostolidi, Maria; Konstantinidou, Parthena; Stathopoulos, Constantinos; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    The La protein (Lupus antigen), a key mediator during biogenesis of RNA polymerase III transcripts, contains a characteristic La motif and one or two RNA recognition motif (RRM) domains, depending on the organism of origin. The RRM1 domain is conserved in higher eukaryotes and located in the N-terminal region, whereas the C-terminal RRM2 domain is absent in most lower eukaryotes and its specific role remains, so far, uncharacterized. Here, we present the backbone and side-chain assignment of the (1)H, (13)C and (15)N resonances of RRM2 of La protein from Dictyostelium discoideum. Interestingly, the La protein in this lower eukaryote, exhibits high homology to its human counterpart. Moreover, it contains two RRM domains, instead of one, raising questions on its evolutionary origin and the putative role of RRM2 in vivo. We also provide its secondary structure as predicted by the TALOS+ online tool.

  7. Mannan-Binding Lectin in Cardiovascular Disease

    PubMed Central

    Cedzyński, Maciej

    2014-01-01

    Cardiovascular disease remains the leading cause of mortality and morbidity worldwide so research continues into underlying mechanisms. Since innate immunity and its potent component mannan-binding lectin have been proven to play an important role in the inflammatory response during infection and ischaemia-reperfusion injury, attention has been paid to its role in the development of cardiovascular complications as well. This review provides a general outline of the structure and genetic polymorphism of MBL and its role in inflammation/tissue injury with emphasis on associations with cardiovascular disease. MBL appears to be involved in the pathogenesis of atherosclerosis and, in consequence, coronary artery disease and also inflammation and tissue injury after myocardial infarction and heart transplantation. The relationship between MBL and disease is rather complex and depends on different genetic and environmental factors. That could be why the data obtained from animal and clinical studies are sometimes contradictory proving not for the first time that innate immunity is a “double-edge sword,” sometimes beneficial and, at other times disastrous for the host. PMID:24877121

  8. Epidemiological characterization of Neisseria gonorrhoeae by lectins.

    PubMed Central

    Schalla, W O; Whittington, W L; Rice, R J; Larsen, S A

    1985-01-01

    A total of 101 isolates of penicillinase-producing and non-penicillinase-producing Neisseria gonorrhoeae with known nutritional requirements, plasmid content, and serovars, were examined for lectin agglutination patterns. These isolates were from outbreaks in Georgia, California, Hawaii, and Pennsylvania. Cell suspensions made from 16- to 18-h cultures were mixed with 14 different lectins, and the resultant agglutination patterns were classified as agglutination groups. Among the 101 isolates tested, 24 different agglutination groups were demonstrated. Of the organisms tested, 55% were located in 3 of the 24 groups, and 86% of the isolates reacted with the lectins Trichosanthes kinlowii, Griffonia simplicifolia I, peanut agglutinin, soybean agglutinin, potato agglutinin, and wheat germ agglutinin. One isolate did not react with peanut or potato agglutinin, five isolates lacked reactivity with potato agglutinin, and six isolates did not react with wheat germ agglutinin. Of the wheat germ-negative isolates, four were from Pennsylvania and were identical with regard to auxotype, plasmid content, serovar, and lectin group. The other two wheat germ-negative isolates were from California and were unrelated by the same criteria to the four Pennsylvania isolates and to each other. Among the isolates tested, there were no differences in lectin groups with regard to the sex of the patient. In the Georgia collection, agglutination with one lectin group was confined to isolates of serogroup IA. This association was not observed for the other geographic areas. Some isolates showing identical auxotype, plasmid content, and serovars could be differentiated based on lectin agglutination patterns, whereas other isolates were identical by all testing criteria. PMID:3930560

  9. Chemical Lectinology: Tools for Probing the Ligands and Dynamics of Mammalian Lectins In Vivo

    PubMed Central

    Belardi, Brian; Bertozzi, Carolyn R.

    2015-01-01

    Summary The importance and complexity associated with the totality of glycan structures, i.e. the glycome, has garnered significant attention from chemists and biologists alike. However, what is lacking from this biochemical picture is how cells, tissues, and organisms interpret glycan patterns and translate this information into appropriate responses. Lectins, glycan-binding proteins, are thought to bridge this gap by decoding the glycome and dictating cell fate based on the underlying chemical identities and properties of the glycome. Yet, our understanding of the in vivo ligands and function for most lectins is still incomplete. This review focuses on recent advances in chemical tools to study the specificity and dynamics of mammalian lectins in live cells. A picture emerges of lectin function that is highly sensitive to its organization, which in turn drastically shapes immunity and cancer progression. We hope this review will inspire biologists to make use of these new techniques and stimulate chemists to continue developing innovative approaches to probe lectin biology in vivo. PMID:26256477

  10. Binding of porphyrins by the tumor-specific lectin, jacalin [Jack fruit (Artocarpus integrifolia) agglutinin].

    PubMed

    Komath, S S; Bhanu, K; Maiya, B G; Swamy, M J

    2000-08-01

    Jacalin (Artocarpus integrifolia agglutinin) specifically recognizes the tumor-associated T-antigenic disaccharide structure, Gal beta13GalNAc. Porphyrins and their derivatives are currently used as photosensitizers in photodynamic therapy to treat malignant tumors. In this study, the interaction of several free base porphyrins and their metal derivatives with jacalin is investigated by absorption and fluorescence spectroscopy. Each lectin subunit was found to bind one porphyrin molecule and the association constants were estimated to be in the range of 2.4 x 10(3) M(-1) to 1.3 x 10(5) M(-1) at room temperature for the interaction of different porphyrins with jacalin. These values are in the same range as those obtained for the interaction of monosaccharides to jacalin. Both free lectin and lectin saturated with the specific saccharide were found to bind different porphyrins with comparable binding strength indicating that porphyrin binding takes place at a site different from the sugar binding site. Further, both anionic and cationic porphyrins were found to interact with the lectin with comparable affinity, clearly indicating that the charge on the porphyrin does not play any role in the binding process and that most likely the interaction is mediated by hydrophobic forces. These results suggest that jacalin and other lectins may potentially be useful for targeted delivery of porphyrins to tumor tissues in photodynamic therapy.

  11. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential.

    PubMed

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C; Müller, Werner E G

    2015-08-07

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.

  12. On the hodological criterion for homology

    PubMed Central

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  13. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo.

  14. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  15. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  16. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  17. Crystallization and preliminary X-ray diffraction analysis of the lectin from Dioclea rostrata Benth seeds

    SciTech Connect

    Delatorre, Plínio; Nascimento, Kyria Santiago; Melo, Luciana Magalhães; Souza, Emmanuel Prata de; Rocha, Bruno Anderson Matias da; Benevides, Raquel G.; Oliveira, Taiana Maia de; Bezerra, Gustavo Arruda; Bezerra, Maria Júlia Barbosa; Cunha, Rodrigo Maranguape Silva da; Cunha, Francisco Assis Bezerra da; Freire, Valder Nogueira; Cavada, Benildo Sousa

    2006-02-01

    D. rostrata lectin was crystallized by hanging-drop vapor diffusion. The crystal belongs to the orthorhombic space group I222 and diffracted to 1.87 Å resolution. Lectins from the Diocleinae subtribe (Leguminosae) are highly similar proteins that promote various biological activities with distinctly differing potencies. The structural basis for this experimental data is not yet fully understood. Dioclea rostrata lectin was purified and crystallized by hanging-drop vapour diffusion at 293 K. The crystal belongs to the orthorhombic space group I222, with unit-cell parameters a = 61.51, b = 88.22, c = 87.76 Å. Assuming the presence of one monomer per asymmetric unit, the solvent content was estimated to be about 47.9%. A complete data set was collected at 1.87 Å resolution.

  18. An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae).

    PubMed Central

    Zhu, K; Huesing, J E; Shade, R E; Bressan, R A; Hasegawa, P M; Murdock, L L

    1996-01-01

    Griffonia simplicifolia II, an N-acetylglucosamine-specific legume lectin, has insecticidal activity when fed to the cowpea weevil, Callosobruchus maculatus (F.). A cDNA clone encoding G. simplicifolia II was isolated from a leaf cDNA library, sequenced, and expressed in a bacterial expression system. The recombinant protein exhibited N-acetylglucosamine-binding and insecticidal activity against cowpea weevil, indicating that glycosylation and multimeric structure are not required for these properties. These results support the hypothesis that genes of the legume lectin gene family encode proteins that function in plant defense against herbivores. PMID:8587982

  19. Comparative Analysis of Homology Models of the Ah Receptor Ligand Binding Domain: Verification of Structure-Function Predictions by Site-Directed Mutagenesis of a Non-Functional AHR†

    PubMed Central

    Fraccalvieri, Domenico; Soshilov, Anatoly A.; Karchner, Sibel I.; Franks, Diana G.; Pandini, Alessandro; Bonati, Laura; Hahn, Mark E.; Denison, Michael S.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity and response have been observed, the structural determinants responsible have not been determined and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of sixteen AHRs from twelve mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, His388) that reduce the internal space available to TCDD. Mutagenesis of two of these residues in zfAhR1a to those present in zfAHR2 (Y296H, T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue to examine species specific differences in AHR responsiveness. PMID:23286227

  20. Determination of sugar specificity of jackfruit lectin by a simple sugar-lectin binding assay using microtiter plate.

    PubMed

    Wetprasit, N; Chulavatnatol, M

    1997-06-01

    Sugar-lectin binding assay was developed as a simple method which employed direct coating of microtiter plate with galactose-binding lectins. Biotin-galactose conjugate was used to bind to the immobilized lectins. The bound conjugate was then detected using streptavidin-horseradish peroxidase. Using the assay in conjunction with various competing carbohydrates, jackfruit lectin from Artocarpus heterophyllus was found to be specific for alpha-anomer of galactoside with an aromatic residue.

  1. Exquisite binding specificity of Sclerotium rolfsii lectin toward TF-related O-linked mucin-type glycans.

    PubMed

    Chachadi, Vishwanath B; Inamdar, Shashikala R; Yu, Lu-Gang; Rhodes, Jonathan M; Swamy, Bale M

    2011-01-01

    Sclerotium rolfsii lectin (SRL), a secretory protein from the soil borne phytopathogenic fungus Sclerotium rolfsii, has shown in our previous studies to bind strongly to the oncofetal Thomson-Friedenreich carbohydrate (Galβ1-3GalNAc-ser/thr, T or TF) antigen. TF antigen is widely expressed in many types of human cancers and the strong binding of SRL toward such a cancer-associated carbohydrate structure led us to characterize the carbohydrate binding specificity of SRL. Glycan array analysis, which included 285 glycans, shows exclusive binding of SRL to the O-linked mucin type but not N-linked glycans and amongst the mucin type O-glycans, lectin recognizes only mucin core 1, core 2 and weakly core 8 but not to other mucin core structures. It binds with high specificity to "α-anomers" but not the "β-anomers" of the TF structure. The axial C4-OH group of GalNAc and C2-OH group of Gal is both essential for SRL interaction with TF disaccharide, and substitution on C3 of galactose by sulfate or sialic acid or N-acetylglucosamine, significantly enhances the avidity of the lectin. SRL differs in its binding to TF structures compared to other known TF-binding lectins such as the Arachis hypogea (peanut) agglutinin, Agaricus bisporus (mushroom) lectin, Jackfruit, Artocarpus integrifolia (jacalin) and Amaranthus caudatus (Amaranthin) lectin. Thus, SRL has unique carbohydrate-binding specificity toward TF-related O-linked carbohydrate structures. Such a binding specificity will make this lectin a very useful tool in future structural as well as functional analysis of the cellular glycans in cancer studies.

  2. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures.

    PubMed

    Chandrasekaran, E V; Xue, Jun; Xia, Jie; Khaja, Siraj D; Piskorz, Conrad F; Locke, Robert D; Neelamegham, Sriram; Matta, Khushi L

    2016-10-01

    Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate

  3. HOVERGEN: a database of homologous vertebrate genes.

    PubMed Central

    Duret, L; Mouchiroud, D; Gouy, M

    1994-01-01

    Comparison of homologous genes is a major step for many studies related to genome structure, function or evolution. Similarity search programs easily find genes homologous to a given sequence. However, only very tedious manual procedures allow the retrieval of all sets of homologous genes sequenced for a given set of species. Moreover, this search often generates errors due to the complexity of data to be managed simultaneously: phylogenetic trees, alignments, taxonomy, sequences and related information. HOVERGEN helps to solve these problems by integrating all this information. HOVERGEN corresponds to GenBank sequences from all vertebrate species, with some data corrected, clarified, or completed, notably to address the problem of redundancy. Coding sequences have been classified in gene families. Protein multiple alignments and phylogenetic trees have been calculated for each family. Sequences and related information have been structured in an ACNUC database which permits complex selections. A graphical interface has been developed to visualize and edit trees. Genes are displayed in color, according to their taxonomy. Users have directly access to all information attached to sequences and to multiple alignments simply by clicking on genes. This graphical tool gives thus a rapid and simple access to all data necessary to interpret homology relationships between genes. HOVERGEN allows the user to easily select sets of homologous vertebrate genes, and thus is particularly useful for comparative sequence analysis, or molecular evolution studies. Images PMID:8036164

  4. Purification and characterization of Dolichos lablab lectin.

    PubMed

    Mo, H; Meah, Y; Moore, J G; Goldstein, I J

    1999-02-01

    The mannose/glucose-binding Dolichos lablab lectin (designated DLL) has been purified from seeds of Dolichos lablab (hyacinth bean) to electrophoretic homogeneity by affinity chromatography on an ovalbumin-Sepharose 4B column. The purified lectin gave a single symmetric protein peak with an apparent molecular mass of 67 kDa on gel filtration chromatography, and five bands ranging from 10 kDa to 22 kDa upon SDS-PAGE. N-Terminal sequence analysis of these bands revealed subunit heterogeneity due to posttranslational proteolytic truncation at different sites mostly at the carboxyl terminus. The carbohydrate binding properties of the purified lectin were investigated by three different approaches: hemagglutination inhibition assay, quantitative precipitation inhibition assay, and ELISA. On the basis of these studies, it is concluded that the Dolichos lablab lectin has neither an extended carbohydrate combining site, nor a hydrophobic binding site adjacent to it. The carbohydrate combining site of DLL appears to most effectively accommodate a nonreducing terminal alpha-d-mannosyl unit, and to be complementary to the C-3, C-4, and C-6 equatorial hydroxyl groups of alpha-d-mannopyranosyl and alpha-d-glucopyranosyl residues. DLL strongly precipitates murine IgM but not IgG, and the recent finding that this lectin interacts specifically with NIH 3T3 fibroblasts transfected with the Flt3 tyrosine kinase receptor and preserves human cord blood stem cells and progenitors in a quiescent state for prolonged periods in culture, make this lectin a valuable tool in biomedical research. PMID:9949194

  5. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    PubMed

    Wang, Kevin; Peng, Eric D; Huang, Amy S; Xia, Dong; Vermont, Sarah J; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M; Bradley, Peter J

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins.

  6. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    PubMed

    Wang, Kevin; Peng, Eric D; Huang, Amy S; Xia, Dong; Vermont, Sarah J; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M; Bradley, Peter J

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins. PMID:26950937

  7. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography

    PubMed Central

    Wang, Kevin; Peng, Eric D.; Huang, Amy S.; Xia, Dong; Vermont, Sarah J.; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M.; Bradley, Peter J.

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins. PMID:26950937

  8. Diversity of lectins in Macrobrachium rosenbergii and their expression patterns under spiroplasma MR-1008 stimulation.

    PubMed

    Zhu, Huanxi; Du, Jie; Hui, Kai-Min; Liu, Peng; Chen, Jing; Xiu, Yunji; Yao, Wei; Wu, Ting; Meng, Qingguo; Gu, Wei; Ren, Qian; Wang, Wen

    2013-08-01

    Lectins play important roles in crustacean innate immunity through recognition of foreign pathogens. In this study, 20 lectins including C-type lectins [dual-carbohydrate recognition domain (CRD) type and single-CRD type], L-type lectin, and lectin with low-density lipoprotein class A (LDLa) domain were identified from the freshwater prawn Macrobrachium rosenbergii. The tissue distribution and expression patterns of these lectins under spiroplasma strain MR-1008 challenge were investigated. Most of the lectins were found to be mainly distributed in the hepatopancreas. Lectin5, Lectin14, Lectin17, and Lectin18 exhibited the highest expression level in the hemocytes, nerve, intestine, and heart, respectively. MrLec1 to MrLec6 (dual-CRD lectins) in the hepatopancreas were up-regulated by spiroplasma challenge. Single-CRD lectins reached the highest level at 72 h after spiroplasma challenge. Lectin9 and Lectin15 both belong to L-type lectins. At post-spiroplasma challenge, Lectin9 expression was up-regulated, whereas Lectin15 expression was down-regulated. Lectin11 with LDLa domain showed the highest level after 12 h Lectin18 and Lectin20, namely, CD209, were also up-regulated by spiroplasma challenge. Lectin14, a C-type lectin, quickly reached the highest level after 2 h Lectin16 showed the highest level after 72 h Lectin5 reached the highest level in cultured hemocytes after 6 h Lectin17 in the intestine and Lectin14 in the nerve were slightly up-regulated after 6 and 2 h, respectively. Our research results indicate that lectins may play important roles in early or late immune responses against spiroplasma challenge.

  9. Isothermal titration calorimetric and computational studies on the binding of chitooligosaccharides to pumpkin (Cucurbita maxima) phloem exudate lectin.

    PubMed

    Narahari, Akkaladevi; Singla, Hitesh; Nareddy, Pavan Kumar; Bulusu, Gopalakrishnan; Surolia, Avadhesha; Swamy, Musti J

    2011-04-14

    The interaction of chitooligosaccharides [(GlcNAc)(2-6)] with pumpkin phloem exudate lectin (PPL) was investigated by isothermal titration calorimetry and computational methods. The dimeric PPL binds to (GlcNAc)(3-5) with binding constants of 1.26-1.53 × 10(5) M(-1) at 25 °C, whereas chitobiose exhibits approximately 66-fold lower affinity. Interestingly, chitohexaose shows nearly 40-fold higher affinity than chitopentaose with a binding constant of 6.16 × 10(6) M(-1). The binding stoichiometry decreases with an increase in the oligosaccharide size from 2.26 for chitobiose to 1.08 for chitohexaose. The binding reaction was essentially enthalpy driven with negative entropic contribution, suggesting that hydrogen bonds and van der Waals' interactions are the main factors that stabilize PPL-saccharide association. The three-dimensional structure of PPL was predicted by homology modeling, and binding of chitooligosaccharides was investigated by molecular docking and molecular dynamics simulations, which showed that the protein binding pocket can accommodate up to three GlcNAc residues, whereas additional residues in chitotetraose and chitopentaose did not exhibit any interactions with the binding pocket. Docking studies with chitohexaose indicated that the two triose units of the molecule could interact with different protein binding sites, suggesting formation of higher order complexes by the higher oligomers of GlcNAc by their simultaneous interaction with two protein molecules.

  10. Role of Lectins in Plant-Microorganism Interactions

    PubMed Central

    Pueppke, Steven G.; Bauer, Wolfgang D.; Keegstra, Kenneth; Ferguson, Ardene L.

    1978-01-01

    Three different assay procedures have been used to quantitate the levels of soybean (Glycine max [L.] Merr.) lectin in various tissues of soybean plants. The assays used were a standard hemagglutination assay, a radioimmunoassay, and an isotope dilution assay. Most of the lectin in seeds was found in the cotyledons, but lectin was also detected in the embryo axis and the seed coat. Soybean lectin was present in all of the tissues of young seedlings, but decreased as the plants matured and was not detectable in plants older than 2 to 3 weeks. Soybean lectin isolated from seeds of several soybean varieties were identical when compared by several methods. PMID:16660384

  11. Mannose-binding lectin (MBL) mutants are susceptible to matrix metalloproteinase proteolysis: potential role in human MBL deficiency.

    PubMed

    Butler, Georgina S; Sim, Derek; Tam, Eric; Devine, Dana; Overall, Christopher M

    2002-05-17

    Mannose-binding lectin (MBL) plays a critical role in innate immunity. Point mutations in the collagen-like domain (R32C, G34D, or G37E) of MBL cause a serum deficiency, predisposing patients to infections and diseases such as rheumatoid arthritis. We examined whether MBL mutants show enhanced susceptibility to proteolysis by matrix metalloproteinases (MMPs), which are important mediators in inflammatory tissue destruction. Human and rat MBL were resistant to proteolysis in the native state but were cleaved selectively within the collagen-like domain by multiple MMPs after heat denaturation. In contrast, rat MBL with mutations homologous to those of the human variants (R23C, G25D, or G28E) was cleaved efficiently without denaturation in the collagen-like domain by MMP-2 and MMP-9 (gelatinases A and B) and MMP-14 (membrane type-1 MMP), as well as by MMP-1 (collagenase-1), MMP-8 (neutrophil collagenase), MMP-3 (stromelysin-1), neutrophil elastase, and bacterial collagenase. Sites and order of cleavage of the rat MBL mutants for MMP-2 and MMP-9 were: Gly(45)-Lys(46) --> Gly(51)-Ser(52) --> Gly(63)-Gln(64) --> Asn(80)-Met(81) which differed from that of MMP-14, Gly(39)-Leu(40) --> Asn(80)-Met(81), revealing that the MMPs were not functionally interchangeable. These sites were homologous to those cleaved in denatured human MBL. Hence, perturbation of the collagen-like structure of MBL by natural mutations or by denaturation renders MBL susceptible to MMP cleavage. MMPs are likely to contribute to MBL deficiency in individuals with variant alleles and may also be involved in clearance of MBL and modulation of the host response in normal individuals.

  12. A Secreted Protein with Plant-Specific Cysteine-Rich Motif Functions as a Mannose-Binding Lectin That Exhibits Antifungal Activity1[W

    PubMed Central

    Miyakawa, Takuya; Hatano, Ken-ichi; Miyauchi, Yumiko; Suwa, You-ichi; Sawano, Yoriko; Tanokura, Masaru

    2014-01-01

    Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family. PMID:25139159

  13. Stability junction at a common mutation site in the collagenous domain of the mannose binding lectin.

    PubMed

    Mohs, Angela; Li, Yingjie; Doss-Pepe, Ellen; Baum, Jean; Brodsky, Barbara

    2005-02-15

    Missense mutations in the collagen triple-helix that replace one of the required Gly residues in the (Gly-Xaa-Yaa)(n)() repeating sequence have been implicated in various disorders. Although most hereditary collagen disorders are rare, a common occurrence of a Gly replacement mutation is found in the collagenous domain of mannose binding lectin (MBL). A Gly --> Asp mutation at position 54 in MBL is found at a frequency as high as 30% in certain populations and leads to increased susceptibility to infections. The structural and energetic consequences of this mutation are investigated by comparing a triple-helical peptide containing the N-terminal Gly-X-Y units of MBL with the homologous peptide containing the Gly to Asp replacement. The mutation leads to a loss of triple-helix content but only a small decrease in the stability of the triple-helix (DeltaT(m) approximately 2 degrees C) and no change in the calorimetric enthalpy. NMR studies on specifically labeled residues indicate the portion of the peptide C-terminal to residue 54 is in a highly ordered triple-helix in both peptides, while residues N-terminal to the mutation site have a weak triple-helical signal in the parent peptide and are completely disordered in the mutant peptide. These results suggest that the N-terminal triplet residues are contributing little to the stability of this peptide, a hypothesis confirmed by the stability and enthalpy of shorter peptides containing only the region C-terminal to the mutation site. The Gly to Asp replacement at position 54 in MBL occurs at the boundary of a highly stable triple-helix region and a very unstable sequence. The junctional position of this mutation minimizes its destabilizing effect, in contrast with the significant destabilization seen for Gly replacements in peptides modeling collagen diseases.

  14. Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers.

    PubMed

    Dai, Zhi; Zhou, Jian; Qiu, Shuang-Jian; Liu, Yin-Kun; Fan, Jia

    2009-09-01

    More and more new diagnostic biomarkers of hepatocellular carcinoma (HCC) have been found in association with advances in the standardization of 2-DE coupled with MS analysis. However, the diagnosis of HCC is still detected in the late stages of the disease, when treatment options are limited and prognosis is poor. The glycosylation of proteins is known to change in tumor cells during the development of HCC as the result of alterations in the levels of glycosyltransferases, such as increased fucosylation of Golgi Protein 73 and alpha-fetoprotein. These structural changes can influence the function or physiochemical properties of a protein, resulting in abnormal cancer cell behavior. Therefore, identification of HCC-related glycoprotein markers and analysis of glycan structural alterations might assist in the early detection of HCC. Here, we summarize lectin-based glycoproteomic strategies for the discovery of relevant biomarkers of HCC. The carbohydrate-binding specificities of different lectins offer a biological affinity approach that complements existing MS capabilities. These strategies involve the enrichment of glycoproteins or glycopeptides by lectins, followed by releasing carbohydrates with peptide-N-glycosidase F or reductive beta-elimination. The obtained glycopeptides are then identified by automated MS/MS and structural analysis of glycans is performed through modern methods such as quadrupole IT-TOF, MALDI-TOF/TOF and lectin microarray. These strategies will lead to faster and more clinically adaptable tests with greater sensitivity and specificity.

  15. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP.

    PubMed

    Lay, Fung T; Schirra, Horst Joachim; Scanlon, Martin J; Anderson, Marilyn A; Craik, David J

    2003-01-01

    NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an alpha-helix and a triple-stranded antiparallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized alphabeta motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure-activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP.

  16. Purification, crystallization and preliminary structural characterization of the N-terminal region of the human formin-homology protein FHOD1

    SciTech Connect

    Schulte, Antje Rak, Alexey; Pylypenko, Ole