NASA Astrophysics Data System (ADS)
McNary, Christopher P.; Armentrout, P. B.
2017-09-01
Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer was performed on protonated hydrazine and its perdeuterated variant. The dominant dissociation pathways observed were endothermic homolytic and heterolytic cleavages of the N-N bond. The data were analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies. Comparison with literature thermochemistry demonstrates that both channels behave non-adiabatically. Heterolytic bond cleavage yields NH2+ + NH3 products, but the NH2+ fragment is in the spin-restricted excited 1A1 state and not in the spin-forbidden ground 3B1 state, whereas homolytic bond cleavage leads to dissociation to the NH3+ + NH2 product asymptote with NH2 in its excited 2A1 state rather than the energetically favored 2B1 state. The rationale for the non-adiabatic behavior observed in the homolytic bond cleavage is revealed by detailed theoretical calculations of the relevant potential energy surfaces and the relevant occupied valence molecular orbitals. These calculations suggest that the non-adiabatic behavior results from conservation of the σ and π character of the binding and lone pair electrons on the nitrogen atoms.
Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A
2015-11-15
The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.
Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion
Bronner, Christopher; Marangoni, Tomas; Rizzo, Daniel J.; ...
2017-08-08
Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors formore » chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.« less
Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja
2014-10-29
Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol).
NASA Astrophysics Data System (ADS)
Lyon, Yana A.; Beran, Gregory; Julian, Ryan R.
2017-07-01
Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers.
Wang, Guoqiang; Zhang, Honglin; Zhao, Jiyang; Li, Wei; Cao, Jia; Zhu, Chengjian; Li, Shuhua
2016-05-10
Density functional theory (DFT) investigations revealed that 4-cyanopyridine was capable of homolytically cleaving the B-B σ bond of diborane via the cooperative coordination to the two boron atoms of the diborane to generate pyridine boryl radicals. Our experimental verification provides supportive evidence for this new B-B activation mode. With this novel activation strategy, we have experimentally realized the catalytic reduction of azo-compounds to hydrazine derivatives, deoxygenation of sulfoxides to sulfides, and reduction of quinones with B2 (pin)2 at mild conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P
2015-01-01
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782
Bond dissociation enthalpies of a pinoresinol lignin model compound
Thomas Elder
2014-01-01
ABSTRACT: The pinoresinol unit is one of the principal interunit linkages in lignin. As such, its chemistry and properties are of major importance in understanding the behavior or the polymer. This work examines the homolytic cleavage of the pinoresinol system, representing the initial step in thermal degradation. The bond dissociation enthalpy of this reaction has...
Yamagaki, Tohru; Watanabe, Takehiro; Tanaka, Masaki; Sugahara, Kohtaro
2014-01-01
Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M - H](-)) and the sugar-unit lost fragment ions ([M - Sugar - H](-)). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral hydrogen radical (H*), and/or with the homolytic cleavage of the glycosidic bond, such as [M - H* - H](-), [M - Sugar - H* - H](-), and [M - Sugar - 2H* - H](-). It was revealed that the hydrogen radical removes from the phenolic hydroxy groups on the flavonoids, not from the sugar moiety, because the flavonoid backbones themselves absorb the laser. The glycosyl positions depend on the extent of the hydrogen radical removals and that of the homolytic cleavage of the glycosidic bonds. Flavonoid mono-glycoside isomers were distinguished according to their TOF MS and tandem mass spectra.
Hirao, Hajime; Li, Feifei; Que, Lawrence; Morokuma, Keiji
2011-01-01
It has recently been shown that the nonheme oxoiron(IV) species supported by the 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane ligand (TMC) can be generated in near-quantitative yield by reacting [FeII(TMC)(OTf)2] with a stoichiometric amount of H2O2 in CH3CN in the presence of 2,6-lutidine (Li, F.; England, J.; Que L., Jr. J. Am. Chem. Soc. 2010, 132, 2134–2135). This finding has major implications for O–O bond cleavage events in both Fenton chemistry and nonheme iron enzymes. To understand the mechanism of this process, especially the intimate details of the O–O bond cleavage step, a series of density functional theory (DFT) calculations and analyses have been carried out. Two distinct reaction paths (A and B) were identified. Path A consists of two principal steps: (1) coordination of H2O2 to Fe(II) and (2) a combination of partial homolytic O–O bond cleavage and proton-coupled electron transfer (PCET). The latter combination renders the rate-limiting O–O cleavage effectively a heterolytic process. Path B proceeds via a simultaneous homolytic O–O bond cleavage of H2O2 and Fe–O bond formation. This is followed by H-abstraction from the resultant Fe(III)–OH species by an •OH radical. Calculations suggest that path B is plausible in the absence of base. However, once 2,6-lutidine is added to the reacting system, the reaction barrier is lowered and more importantly the mechanistic path switches to path A, where 2,6-lutidine plays an essential role as an acid-base catalyst in a manner similar to how the distal histidine or glutamate residue assists in Compound I formation in heme peroxidases. The reaction was found to proceed predominantly on the quintet spin state surface, and a transition to the triplet state, the experimentally known ground state for the TMC-oxoiron(IV) species, occurs in the last stage of the oxoiron(IV) formation process. PMID:21678930
Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea
2017-01-01
We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.
A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids
NASA Astrophysics Data System (ADS)
Cardozo, Karina H. M.; Vessecchi, Ricardo; Carvalho, Valdemir M.; Pinto, Ernani; Gates, Paul J.; Colepicolo, Pio; Galembeck, Sérgio E.; Lopes, Norberto P.
2008-06-01
In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the OC bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms.
Byer, Amanda S; Yang, Hao; McDaniel, Elizabeth C; Kathiresan, Venkatesan; Impano, Stella; Pagnier, Adrien; Watts, Hope; Denler, Carly; Vagstad, Anna; Piel, Jörn; Duschene, Kaitlin S; Shepard, Eric M; Shields, Thomas P; Scott, Lincoln G; Lilla, Edward A; Yokoyama, Kenichi; Broderick, William E; Hoffman, Brian M; Broderick, Joan B
2018-06-28
Radical S-adenosyl-L-methionine (SAM) en-zymes comprise a vast superfamily catalyzing diverse reactions essential to all life through ho-molytic SAM cleavage to liberate the highly-reactive 5-deoxyadenosyl radical (5-dAdo•). Our recent observation of a catalytically compe-tent organometallic intermediate Ω that forms dur-ing reaction of the radical SAM (RS) enzyme py-ruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an in-termediate under a variety of mixing order condi-tions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double reso-nance spectroscopy establish that Ω involves an Fe-C5 bond between 5-dAdo• and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (co-enzyme B12) cofactor used to initiate radical reac-tions via a 5'-dAdo• intermediate. Generation of a 5'-dAdo• intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However coenzyme B12 is involved in enzymes catalyzing of only a small number (~12) of distinct reactions, while the RS superfamily has more than 100,000 distinct se-quences and over 80 reaction types character-ized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.
Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light.
Vennekate, Hendrik; Schwarzer, Dirk; Torres-Alacan, Joel; Krahe, Oliver; Filippou, Alexander C; Neese, Frank; Vöhringer, Peter
2012-05-14
The ultrafast photo-induced primary processes of the iron-(III) azido complex, [Fe(III)N(3)(cyclam-acetato)] PF(6) (1), in acetonitrile solution at room temperature were studied using femtosecond spectroscopy with ultraviolet (UV) excitation and mid-infrared (MIR) detection. Following the absorption of a 266 nm photon, the complex undergoes an internal conversion back to the electronic doublet ground state at a time scale below 2 ps. Subsequently, the electronic ground state vibrationally cools with a characteristic time constant of 13 ps. A homolytic bond cleavage was also observed by the appearance of ground state azide radicals, which were identified by their asymmetric stretching vibration at 1659 cm(-1). The azide radical recombines in a geminate fashion with the iron containing fragment within 20 ps. The cage escape leading to well separated fragments after homolytic Fe-N bond breakage was found to occur with a quantum yield of 35%. Finally, non-geminate recombination at nanosecond time scales was seen to further reduce the photolytic quantum yield to below 20% at a wavelength of 266 nm. This journal is © the Owner Societies 2012
A comparison of flavonoid glycosides by electrospray tandem mass spectrometry
NASA Astrophysics Data System (ADS)
March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.
2006-01-01
A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.
Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface.
Minitti, Michael P; Zhang, Yao; Rosenberg, Martin; Brogaard, Rasmus Y; Deb, Sanghamitra; Sølling, Theis I; Weber, Peter M
2012-01-19
We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.
Thermal decomposition pathways of ethane
NASA Astrophysics Data System (ADS)
Gordon, Mark S.; Truong, Thanh N.; Pople, John A.
1986-10-01
The alternate thermal decomposition pathways for ethane in its ground state have been investigated, using ab initio electronic structure calculations. Single-point energies were obtained at the full MP4/6-311 G ∗∗ level, using 6-31 G ∗ geometries for reactant, products, and transition states. The thermodynamically favored products are ethylene and molecular hydrogen, but a very large barrier (130 kcal/mol) is found for the direct 1,2-elimination of hydrogen. When calculated barriers are taken into account, the lowest-energy process is the homolytic cleavage of the C-C bond to form two methyl radicals.
Gas-phase conformation-specific photofragmentation of proline-containing peptide ions.
Kim, Tae-Young; Valentine, Stephen J; Clemmer, David E; Reilly, James P
2010-08-01
Singly-protonated proline-containing peptides with N-terminal arginine are photodissociated with vacuum ultraviolet (VUV) light in an ESI linear ion trap/orthogonal-TOF (LIT/o-TOF). When proline is the nth residue from the N-terminus, unusual b(n) + 2 and a(n) + 2 ions are observed. Their formation is explained by homolytic cleavage of the C(alpha)-C bond in conjunction with a rearrangement of electrons and an amide hydrogen. The latter is facilitated by a proline-stabilized gas-phase peptide conformation. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Homolytic substitution at phosphorus for C–P bond formation in organic synthesis
2013-01-01
Summary Organophosphorus compounds are important in organic chemistry. This review article covers emerging, powerful synthetic approaches to organophosphorus compounds by homolytic substitution at phosphorus with a carbon-centered radical. Phosphination reagents include diphosphines, chalcogenophosphines and stannylphosphines, which bear a weak P–heteroatom bond for homolysis. This article deals with two transformations, radical phosphination by addition across unsaturated C–C bonds and substitution of organic halides. PMID:23843922
Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.; ...
2016-06-29
Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.
Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less
Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee
2017-04-06
Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.
Zang, L; Rodgers, M A
1999-10-01
The oxidation of tryptophan photosensitized by PtCl6(2-) has been investigated in aqueous solutions at different pH using nanosecond laser flash photolysis. Cationic and neutral radicals of tryptophan were detected at pH 2.8 and 8.5, respectively. The generation of the radical was attributed to oxidation by Cl2- that was formed from the homolytic bond cleavage in the excited state of PtCl6(2-). The bimolecular rate constant derived from the kinetics analysis, 2.8 +/- 0.2 x 10(9) M-1 s-1, is in good agreement with the value obtained in earlier pulse radiolysis studies. Both the cationic and neutral radicals decayed by second-order kinetics, consistent with the dimerization process.
Li, Zhi; Pierri, Agustin E; Huang, Po-Ju; Wu, Guang; Iretskii, Alexei V; Ford, Peter C
2017-06-05
We describe a new strategy for triggering the photochemical release of caged carbon monoxide (CO) in aerobic media using long-wavelength visible and near-infrared (NIR) light. The dinuclear rhenium-manganese carbonyl complexes (CO) 5 ReMn(CO) 3 (L), where L = phenanthroline (1), bipyridine (2), biquinoline (3), or phenanthrolinecarboxaldehyde (4), each show a strong metal-metal-bond-to-ligand (σ MM → π L *) charge-transfer absorption band at longer wavelengths. Photolysis with deep-red (1 and 2) or NIR (3 and 4) light leads to homolytic cleavage of the Re-Mn bonds to give mononuclear metal radicals. In the absence of trapping agents, these radicals primarily recombine to reform dinuclear complexes. In oxygenated media, however, the radicals react with dioxygen to form species much more labile toward CO release via secondary thermal and/or photochemical reactions. Conjugation of 4, with an amine-terminated poly(ethylene glycol) oligomer, gives a water-soluble derivative with similar photochemistry. In this context, we discuss the potential applications of these dinuclear complexes as visible/NIR-light-photoactivated CO-releasing moieties (photoCORMs).
Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing
2012-11-26
We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.
Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.
Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S
2017-09-28
High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .
NASA Astrophysics Data System (ADS)
Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun
2016-05-01
Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co3O4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H2 dissociation on Co3O4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co3O4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of Osbnd H bond is a crucial factor for the hydrogenation reaction which involves the breakage of Osbnd H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of Osbnd H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.
Nam, Wonwoo; Kim, Inwoo; Lim, Mi Hee; Choi, Hye Jin; Lee, Je Seung; Jang, Ho G
2002-05-03
The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.
Expanded Definition of the Oxidation State
ERIC Educational Resources Information Center
Loock, Hans-Peter
2011-01-01
A proposal to define the oxidation state of an atom in a compound as the hypothetical charge of the corresponding atomic ion that is obtained by heterolytically cleaving its bonds such that the atom with the higher electronegativity in a bond is allocated all electrons in the bond. Bonds between like atoms are cleaved homolytically. This…
Reversible capture and release of Cl 2 and Br 2 with a redox-active metal–organic framework
Tulchinsky, Yuri; Hendon, Christopher H.; Lomachenko, Kirill A.; ...
2017-03-28
Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II) ions in a robust azolate metal-organic framework (MOF) to produce stable and safe-to-handle Co(III) materials featuring terminal Co(III)-halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III)-halogen bonds, reduction to Co(II), and concomitantmore » release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. Finally, these results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases.« less
NASA Astrophysics Data System (ADS)
Kulikova, Natalia; Baker, Michael; Gabryelski, Wojciech
2009-12-01
Collision induced dissociation of protonated N-nitrosodimethylamine (NDMA) and isotopically labeled N-nitrosodimethyl-d6-amine (NDMA-d6) was investigated by sequential ion trap mass spectrometry to establish mechanisms of gas phase reactions leading to intriguing products of this potent carcinogen. The fragmentation of (NDMA + H+) occurs via two dissociation pathways. In the alkylation pathway, homolytic cleavage of the N-O bond of N-dimethyl, N'-hydroxydiazenium ion generates N-dimethyldiazenium distonic ion which reacts further by a CH3 radical loss to form methanediazonium ion. Both methanediazonium ion and its precursor are involved in ion/molecule reactions. Methanediazonium ion showed to be capable of methylating water and methanol molecules in the gas phase of the ion trap and N-dimethyldiazenium distonic ion showed to abstract a hydrogen atom from a solvent molecule. In the denitrosation pathway, a tautomerization of N-dimethyl, N'-hydroxydiazenium ion to N-nitrosodimethylammonium intermediate ion results in radical cleavage of the N-N bond of the intermediate ion to form N-dimethylaminium radical cation which reacts further through [alpha]-cleavage to generate N-methylmethylenimmonium ion. Although the reactions of NDMA in the gas phase are different to those for enzymatic conversion of NDMA in biological systems, each activation method generates the same products. We will show that collision induced dissociation of N-nitrosodiethylamine (NDEA) and N-nitrosodipropylamine (NDPA) is also a feasible approach to gain information on formation, stability, and reactivity of alkylating agents originating from NDEA and NDPA. Investigating such biologically relevant, but highly reactive intermediates in the condensed phase is hampered by the short life-times of these transient species.
NASA Astrophysics Data System (ADS)
Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.
2018-05-01
It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.
Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.
Irikura, Karl K
2013-03-14
The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature. When the O-atom donor is a nitramine, a nitrosamine is formed along with the aminoxyl radical. Reactions of aminoxyl radicals can lead readily to the "oxy-s-triazine" product (as the s-triazine N-oxide) observed mass-spectrometrically by Behrens and co-workers. In addition to forming aminoxyl radicals, the initial aminyl radical can catalyze loss of HONO from RDX.
Yokoyama, Atsutoshi; Cho, Kyung-Bin
2013-01-01
The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [CrIII(14-TMC)(O2)(Cl)]+, with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [CrIV(14-TMC)(O)(Cl)]+, via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from EPR spectroscopy, computational chemistry, and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [CrIII(14-TMC)(NO2)(Cl)]+. The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924
Cracking and reformation of saturated hydrocarbons by ultrasound in the presence of water
NASA Technical Reports Server (NTRS)
Prudhomme, M. R. O.; Lefort, J.
1974-01-01
The exposure of saturated hydrocarbons to ultrasound (800 kHz, 6 W/sq cm) in the presence of water results in: (1) cleavage of the carbon chain, producing saturated and unsaturated hydrocarbons with a lower number of carbons than the initial hydrocarbon (cracking); and (2) recombination after cleavage, producing saturated and unsaturated hydrocarbons with a higher number of carbons than the initial hydrocarbon (reformation). The addition of argon facilitates these phenomena. The effects are attributed to a homolytic (radical) mechanism occurring within the cavitation bubbles under the effects of microsparks.
Horitani, Masaki; Byer, Amanda S; Shisler, Krista A; Chandra, Tilak; Broderick, Joan B; Hoffman, Brian M
2015-06-10
Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S-C5' bond, which creates the highly reactive 5'-deoxyadenosyl radical (5'-dAdo•), the same radical generated by homolytic Co-C bond cleavage in B12 radical enzymes. The SAM surrogate S-3',4'-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of (13)C, (2)H, and (15)N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 "tames" the 5'-dAdo• radical, preventing it from carrying out harmful side reactions: this "free radical" in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S-C5' bond, thereby enabling the 5'-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ∼0.6 Å toward the target and ∼1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5' radical, with "van der Waals control" of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature.
Horitani, Masaki; Byer, Amanda S.; Shisler, Krista A.; Chandra, Tilak; Broderick, Joan B.; Hoffman, Brian M.
2015-01-01
Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S–C5′ bond, which creates the highly reactive 5′-deoxyadenosyl radical (5′-dAdo•), the same radical generated by homolytic Co–C bond cleavage in B12 radical enzymes. The SAM surrogate S-3′,4′-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of 13C, 2H, and 15N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 “tames” the 5′-dAdo• radical, preventing it from carrying out harmful side reactions: this “free radical” in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S–C5′ bond, thereby enabling the 5′-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ~0.6 Å toward the target and ~1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5′ radical, with “van der Waals control” of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature. PMID:25923449
Distinct hydroxy-radical-induced damage of 3'-uridine monophosphate in RNA: a theoretical study.
Zhang, Ru bo; Eriksson, Leif A
2009-01-01
RNA strand scission and base release in 3'-uridine monophosphate (UMP), induced by OH radical addition to uracil, is studied at the DFT B3LYP/6-31+G(d,p) level in the gas phase and in solution. In particular, the mechanism of hydrogen-atom transfer subsequent to radical formation, from C2' on the sugar to the C6 site on the base, is explored. The barriers of (C2'-)H2'(a) abstraction by the C6 radical site range from 11.2 to 20.0 kcal mol(-1) in the gas phase and 14.1 to 21.0 kcal mol(-1) in aqueous solution, indicating that the local surrounding governs the hydrogen-abstraction reaction in a stereoselective way. The calculated N1-C1' (N1-glycosidic bond) and beta-phosphate bond strengths show that homolytic and heterolytic bond-breaking processes are largely favored in each case, respectively. The barrier for beta-phosphate bond rupture is approximately 3.2-4.0 kcal mol(-1) and is preferred by 8-12 kcal mol(-1) over N1-glycosidic bond cleavage in both the gas phase and solution. The beta-phosphate bond-rupture reactions are exothermal in the gas phase and solution, whereas N1-C1' bond-rupture reactions require both solvation and thermal corrections at 298 K to be energetically favored. The presence of the ribose 2'-OH group and its formation of low-barrier hydrogen bonds with oxygen atoms of the 3'-phosphate linkage are highly important for hydrogen transfer and the subsequent bond-breakage reactions.
Density functional theory study of the concerted pyrolysis mechanism for lignin models
Thomas Elder; Ariana Beste
2014-01-01
ABSTRACT: Studies on the pyrolysis mechanisms of lignin model compounds have largely focused on initial homolytic cleavage reactions. It has been noted, however, that concerted mechanisms may also account for observed product formation. In the current work, the latter processes are examined and compared to the former, by the application of density functional theory...
NASA Astrophysics Data System (ADS)
Zhang, Xiaoping; Li, Fei; Lv, Huiqing; Wu, Yanqing; Bian, Gaofeng; Jiang, Kezhi
2013-06-01
Formation of radical fragments from even-electron ions is an exception to the "even-electron rule". In this work, ferulic acid (FA) and isoferulic acid (IFA) were used as the model compounds to probe the fragmentation mechanisms and the isomeric effects on homolytic cleavage. Elimination of methyl radical and CO2 are the two competing reactions observed in the CID-MS of [FA - H]- and [IFA - H]-, of which losing methyl radical violates the "even-electron rule". The relative intensity of their product ions is significantly different, and thereby the two isomeric compounds can be differentiated by tandem MS. Theoretical calculations indicate that both the singlet-triplet gap and the excitation energy decrease in the transient structures, as the breaking C-O bond is lengthened. The methyl radical elimination has been rationalized as the intramolecular electronic excitation of a transient structure with an elongating C-O bond. The potential energy diagrams, completed by the addition of the energy barrier of the radical elimination, have provided a reasonable explanation of the different CID-MS behaviors of [FA - H]- and [IFA - H]-.
Molle, Thibaut; Clémancey, Martin; Latour, Jean-Marc; Kathirvelu, Velavan; Sicoli, Giuseppe; Forouhar, Farhad; Mulliez, Etienne; Gambarelli, Serge; Atta, Mohamed
2016-07-01
Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.
In-crystal reaction cycle of a toluene-bound diiron hydroxylase
NASA Astrophysics Data System (ADS)
Acheson, Justin F.; Bailey, Lucas J.; Brunold, Thomas C.; Fox, Brian G.
2017-03-01
Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.
Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico
2011-03-07
Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.
Liu, Wei-Zhong; Bordwell, Frederick G.
1996-07-12
The oxidation potentials of 19 nitrogen bases (abbreviated as B: six primary amines, five secondary amines, two tertiary amines, three anilines, pyridine, quinuclidine, and 1,4-diazabicyclo[2,2,2]octane), i.e., E(ox)(B) values in dimethyl sulfoxide (DMSO) and/or acetonitrile (AN), have been measured. Combination of these E(ox)(B) values with the acidity values of the corresponding acids (pK(HB)(+)) in DMSO and/or AN using the equation: BDE(HB)(+) = 1.37pK(HB)(+) + 23.1 E(ox)(B) + C (C equals 59.5 kcal/mol in AN and 73.3 kcal/mol in DMSO) gave estimates of solution phase homolytic bond dissociation energies of H-B(+) bonds. Gas-phase BDE values of H-B(+) bonds were estimated from updated proton affinities (PA) and adiabatic ionization potentials (aIP) using the equation, BDE(HB(+))(g) = PA + aIP - 314 kcal/mol. The BDE(HB)(+) values estimated in AN were found to be 5-11 kcal/mol higher than the corresponding gas phase BDE(HB(+))(g) values. These bond-strengthening effects in solution are interpreted as being due to the greater solvation energy of the HB(+) cation than that of the B(+*) radical cation.
Conrad, Karen S; Jordan, Christopher D; Brown, Kenneth L; Brunold, Thomas C
2015-04-20
5'-deoxyadenosylcobalamin (coenzyme B12, AdoCbl) serves as the cofactor for several enzymes that play important roles in fermentation and catabolism. All of these enzymes initiate catalysis by promoting homolytic cleavage of the cofactor's Co-C bond in response to substrate binding to their active sites. Despite considerable research efforts, the role of the lower axial ligand in facilitating Co-C bond homolysis remains incompletely understood. In the present study, we characterized several derivatives of AdoCbl and its one-electron reduced form, Co(II)Cbl, by using electronic absorption and magnetic circular dichroism spectroscopies. To complement our experimental data, we performed computations on these species, as well as additional Co(II)Cbl analogues. The geometries of all species investigated were optimized using a quantum mechanics/molecular mechanics method, and the optimized geometries were used to compute absorption spectra with time-dependent density functional theory. Collectively, our results indicate that a reduction in the basicity of the lower axial ligand causes changes to the cofactor's electronic structure in the Co(II) state that replicate the effects seen upon binding of Co(II)Cbl to Class I isomerases, which replace the lower axial dimethylbenzimidazole ligand of AdoCbl with a protein-derived histidine (His) residue. Such a reduction of the basicity of the His ligand in the enzyme active site may be achieved through proton uptake by the catalytic triad of conserved residues, DXHXGXK, during Co-C bond homolysis.
Ab initio calculations of the effects of H+ and NH4+ on the initial decomposition of HMX.
Wang, Luoxin; Tuo, Xinlin; Yi, Changhai; Wang, Xiaogong
2008-10-01
In this work, the effects of H(+) and NH(4)(+) on the initial decomposition of HMX were investigated on the basis of the B3P86/6-31G** and B3LYP/6-31G* calculations. Three initial decomposition pathways including the N-NO(2) bond fission, HONO elimination and C-N bond dissociation were considered for the complexes formed by HMX with H(+) (PHMX1 and PHMX2) or with NH(4)(+) (AHMX). We found that H(+) and NH(4)(+) did not evidently induce the HMX to trigger the N-NO(2) heterolysis because the energy barrier of N-NO(2) heterolysis was found to be higher than the bond dissociation energy of N-NO(2) homolytic cleavage. Meanwhile, the transition state barriers of the HONO elimination from the complexes were found to be similar to that from the isolated HMX, which means that the HONO elimination reaction of HMX was not affected by the H(+) and NH(4)(+). As for the ring-opening reaction of HMX due to the C-N bond dissociation, the calculated potential energy profile showed that the energy of the complex (AHMX) went uphill along the C-N bond length and no transition state existed on the curve. However, the transition state energy barriers of C-N bond dissociation were calculated to be only 5.0 kcal/mol and 5.5 kcal/mol for the PHMX1 and PHMX2 complexes, respectively, which were much lower than the C-N bond dissociation energy of isolated HMX. Moreover, among the three initial decomposition reactions, the C-N bond dissociation was also the most energetically favorable pathway for the PHMX1 and PHMX2. Our calculation results showed that the H(+) can significantly promote the initial thermal decomposition of C-N bond of HMX, which, however, is influenced by NH(4)(+) slightly.
Coggins, Michael K.; Martin-Diaconescu, Vlad; DeBeer, Serena; Kovacs, Julie A.
2013-01-01
Manganese–peroxos are proposed as key intermediates in a number of important biochemical and synthetic transformations. Our understanding of the structural, spectroscopic, and reactivity properties of these metastable species is limited, however, and correlations between these properties have yet to be established experimentally. Herein we report the crystallographic structures of a series of structurally related metastable Mn(III)–OOR compounds, and examine their spectroscopic and reactivity properties. The four reported Mn(III)–OOR compounds extend the number of known end-on Mn(III)–(η1-peroxos) to six. The ligand backbone is shown to alter the metal–ligand distances and modulate the electronic properties key to bonding and activation of the peroxo. The mechanism of thermal decay of these metastable species is examined via variable-temperature kinetics. Strong correlations between structural (O–O and Mn⋯Npy,quin distances), spectroscopic (E(πv*(O–O) → Mn CT band), νO–O), and kinetic (ΔH‡ and ΔS‡) parameters for these complexes provide compelling evidence for rate-limiting O–O bond cleavage. Products identified in the final reaction mixtures of Mn(III)–OOR decay are consistent with homolytic O–O bond scission. The N-heterocyclic amines and ligand backbone (Et vs Pr) are found to modulate structural and reactivity properties, and O–O bond activation is shown, both experimentally and theoretically, to track with metal ion Lewis acidity. The peroxo O–O bond is shown to gradually become more activated as the N-heterocyclic amines move closer to the metal ion causing a decrease in π-donation from the peroxo πv*(O–O) orbital. The reported work represents one of very few examples of experimentally verified relationships between structure and function. PMID:23432090
Coggins, Michael K; Martin-Diaconescu, Vlad; DeBeer, Serena; Kovacs, Julie A
2013-03-20
Manganese-peroxos are proposed as key intermediates in a number of important biochemical and synthetic transformations. Our understanding of the structural, spectroscopic, and reactivity properties of these metastable species is limited, however, and correlations between these properties have yet to be established experimentally. Herein we report the crystallographic structures of a series of structurally related metastable Mn(III)-OOR compounds, and examine their spectroscopic and reactivity properties. The four reported Mn(III)-OOR compounds extend the number of known end-on Mn(III)-(η(1)-peroxos) to six. The ligand backbone is shown to alter the metal-ligand distances and modulate the electronic properties key to bonding and activation of the peroxo. The mechanism of thermal decay of these metastable species is examined via variable-temperature kinetics. Strong correlations between structural (O-O and Mn···N(py,quin) distances), spectroscopic (E(πv*(O-O) → Mn CT band), ν(O-O)), and kinetic (ΔH(‡) and ΔS(‡)) parameters for these complexes provide compelling evidence for rate-limiting O-O bond cleavage. Products identified in the final reaction mixtures of Mn(III)-OOR decay are consistent with homolytic O-O bond scission. The N-heterocyclic amines and ligand backbone (Et vs Pr) are found to modulate structural and reactivity properties, and O-O bond activation is shown, both experimentally and theoretically, to track with metal ion Lewis acidity. The peroxo O-O bond is shown to gradually become more activated as the N-heterocyclic amines move closer to the metal ion causing a decrease in π-donation from the peroxo πv*(O-O) orbital. The reported work represents one of very few examples of experimentally verified relationships between structure and function.
Girod, Marion; Phan, Trang N T; Charles, Laurence
2008-08-01
Electrospray ionization tandem mass spectrometry has been used to characterize the microstructure of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer, called SG1-capped PEO-b-PS. The main dissociation route of co-oligomers adducted with lithium or silver cation was observed to proceed via the homolytic cleavage of a C-ON bond, aimed at undergoing reversible homolysis during nitroxide mediated polymerization. This cleavage results in the elimination of the terminal SG1 end-group as a radical, inducing a complete depolymerization process of the PS block from the so-formed radical cation. These successive eliminations of styrene molecules allowed a straightforward determination of the PS block size. An alternative fragmentation pathway of the radical cation was shown to provide structural information on the junction group between the two blocks. Proposed dissociation mechanisms were supported by accurate mass measurements. Structural information on the SG1 end-group could be reached from weak abundance fragment ions detected in the low m/z range of the MS/MS spectrum. Amongst fragments typically expected from PS dissociation, only beta ions were produced. Moreover, specific dissociation of the PEO block was not observed to occur in MS/MS, suggesting that these rearrangement reactions do not compete effectively with dissociations of the odd-electron fragment ions. Information about the PEO block length and the initiated end-group were obtained in MS(3) experiments.
Hull, Emily A; West, Aaron C; Pestovsky, Oleg; Kristian, Kathleen E; Ellern, Arkady; Dunne, James F; Carraher, Jack M; Bakac, Andreja; Windus, Theresa L
2015-02-28
Transition metal complexes (NH3)5CoX(2+) (X = CH3, Cl) and L(H2O)MX(2+), where M = Rh or Co, X = CH3, NO, or Cl, and L is a macrocyclic N4 ligand are examined by both experiment and computation to better understand their electronic spectra and associated photochemistry. Specifically, irradiation into weak visible bands of nitrosyl and alkyl complexes (NH3)5CoCH3(2+) and L(H2O)M(III)X(2+) (X = CH3 or NO) leads to photohomolysis that generates the divalent metal complex and ˙CH3 or ˙NO, respectively. On the other hand, when X = halide or NO2, visible light photolysis leads to dissociation of X(-) and/or cis/trans isomerization. Computations show that visible bands for alkyl and nitrosyl complexes involve transitions from M-X bonding orbitals and/or metal d orbitals to M-X antibonding orbitals. In contrast, complexes with X = Cl or NO2 exhibit only d-d bands in the visible, so that homolytic cleavage of the M-X bond requires UV photolysis. UV-Vis spectra are not significantly dependent on the structure of the equatorial ligands, as shown by similar spectral features for (NH3)5CoCH3(2+) and L(1)(H2O)CoCH3(2+).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Emily A.; West, Aaron C.; Pestovsky, Oleg
2015-01-22
In this paper, transition metal complexes (NH 3) 5CoX2 + (X = CH 3, Cl) and L(H 2O)MX 2+, where M = Rh or Co, X = CH 3, NO, or Cl, and L is a macrocyclic N 4 ligand are examined by both experiment and computation to better understand their electronic spectra and associated photochemistry. Specifically, irradiation into weak visible bands of nitrosyl and alkyl complexes (NH 3) 5CoCH 3 2+ and L(H 2O)M IIIX 2+ (X = CH 3 or NO) leads to photohomolysis that generates the divalent metal complex and ˙CH3 or ˙NO, respectively. On the othermore » hand, when X = halide or NO 2, visible light photolysis leads to dissociation of X – and/or cis/trans isomerization. Computations show that visible bands for alkyl and nitrosyl complexes involve transitions from M–X bonding orbitals and/or metal d orbitals to M–X antibonding orbitals. In contrast, complexes with X = Cl or NO 2 exhibit only d–d bands in the visible, so that homolytic cleavage of the M–X bond requires UV photolysis. UV-Vis spectra are not significantly dependent on the structure of the equatorial ligands, as shown by similar spectral features for (NH 3) 5CoCH 3 2+ and L 1(H 2O)CoCH 3 2+.« less
Plaga, W; Frank, R; Knappe, J
1988-12-15
Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.
Mechanism for Si–Si Bond Rupture in Single Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haixing; Kim, Nathaniel T.; Su, Timothy A.
The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si–Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si–Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si–Si bond is ruptured using an applied voltage. We investigate this voltage induced Si–Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation ofmore » molecular vibrational modes by tunneling electrons leads to homolytic Si–Si bond rupture.« less
Mechanism for Si-Si Bond Rupture in Single Molecule Junctions.
Li, Haixing; Kim, Nathaniel T; Su, Timothy A; Steigerwald, Michael L; Nuckolls, Colin; Darancet, Pierre; Leighton, James L; Venkataraman, Latha
2016-12-14
The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si-Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si-Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si-Si bond is ruptured using an applied voltage. We investigate this voltage induced Si-Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation of molecular vibrational modes by tunneling electrons leads to homolytic Si-Si bond rupture.
Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin
2015-02-01
We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.
Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biscardi, J.; Bowden, P.T.; Durante, V.A.
The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mildmore » selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).« less
Novak, Jurica; Prlj, Antonio; Basarić, Nikola; Corminboeuf, Clémence; Došlić, Nađa
2017-06-16
The computational analysis of the isomer- and conformer-dependent photochemistry of 1- and 2-naphthols and their microsolvated water clusters is motivated by their very different excited state reactivities. We present evidence that 1- and 2-naphthol follow distinct excited state deactivation pathways. The deactivation of 2-naphthols, 2-naphthol water clusters, as well as of the anti conformer of 1-naphthol is mediated by the optically dark 1 πσ* state. The dynamics of the 1 πσ* surface leads to the homolytic cleavage of the OH bond. On the contrary, the excited state deactivation of syn 1-naphthol and 1-naphthol water clusters follows an uncommon reaction pathway. Upon excitation to the bright 1 ππ*(L a ) state, a highly specific excited state hydrogen transfer (ESHT) to carbon atoms C8 and C5 takes place, yielding 1,8- and 1,5-naphthoquinone methides. The ESHT pathway arises from the intrinsic electronic properties of the 1 ππ*(L a ) state of 1-naphthols. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Stevens, Amy E.; Beauchamp, J. L.
1981-03-01
ICR trapped ion techniques are used to examine the kinetics of proton transfer from MnH + (formed as a fragment ion from HMn (CO) 5 by electron impact) to bases of varying strength. Deprotonation is rapid with bases whose proton affinity exceeds 196±3 kcal mol -1. This value for PA (Mn) yields the homolytic bond dissociation energy D0(Mn +-H) = 53±5 kcal mol -1.
Molt, Robert W; Watson, Thomas; Lotrich, Victor F; Bartlett, Rodney J
2011-02-10
The geometries, harmonic frequencies, elec-tronic excitation levels, and energetic orderings of various conformers of RDX have been computed at the ab initio MP2 and CCSD(T) levels, providing more reliable results than have been previously obtained. We observe that the various local minimum-energy conformers are all competitive for being the absolute minimum and that, at reasonable temperatures, several conformers will appreciably contribute to the population of RDX. As a result, we have concluded that any mechanistic study to investigate thermal decomposition can reasonably begin from any one of the cyclohexane conformers of RDX. As such, it is necessary to consider the transition states for each RDX conformer to gauge what the activation energy is. Homolytic bond dissociation has long been speculated to be critical to detonation; we report here the most accurate estimates of homolytic BDEs yet calculated, likely to be accurate within 3 kcal mol(-1). The differences in energy for homolytic BDEs among all the possible RDR conformers are again small, such that most all of the conformers can reasonably be speculated as the next step in the mechanism starting from the RDR radical.
Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu
2017-01-01
More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304
Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO 2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Danda P.; Yoon, Yeohoon; Li, Zhenjun
2013-11-26
The conversion of diols on partially reduced TiO 2(110) at low coverage was studied using variable-temperature scanning tunneling microscopy, temperature programmed desorption and density functional theory calculations. We find, that below ~230 K, ethane-1,2-diol and propane-1,3-diol molecules adsorb predominantly on five-fold coordinated Ti5c atoms. The dynamic equilibrium between molecularly bound and dissociated species resulting from O-H bond scission and reformation is observed. As the diols start to diffuse on the Ti5c rows above ~230 K, they dissociate irreversibly upon encountering bridging oxygen (O b) vacancy (VO’s) defects. Two dissociation pathways, one via O-H and the other via C-O bond scissionmore » leading to identical surface intermediates, hydroxyalkoxy, O b-(CH 2)n-OH (n = 2, 3) and bridging hydroxyl, HO b, are seen. For O-H bond scission, the O b-(CH 2)n-OH is found on the position of the original VO, while for C-O scission it is found on the adjacent Ob site. Theoretical calculations suggest that the observed mixture of C-O/O-H bond breaking processes are a result of the steric factors enforced upon the diols by the second OH group that is bound to a Ti5c site. At room temperature, rich dissociation/reformation dynamics of the second, Ti5c-bound O-H leads to the formation of dioxo, Ob-(CH 2)n-OTi, species. Above ~400 K, both O b-(CH 2)n-OH and Ob-(CH 2)n-OTi species convert into a new intermediate, that is centered on Ob row. Combined experimental and theoretical evidence shows that this intermediate is most likely a new dioxo, O b-(CH 2) 2-Ob, species. Further annealing leads to sequential C-Ob bond cleavage and alkene desorption above ~ 500 K. Simulations find that the sequential C-O bond breaking process follows a homolytic diradical pathway with the first C-O bond breaking event accompanied by a non-adiabatic electron transfer within the TiO 2(110) substrate.« less
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry
ERIC Educational Resources Information Center
Fridgen, Travis D.
2008-01-01
This article deals with the rather complicated if not incorrect way that the strengths of binary acids are rationalized to students in many classrooms owing to the way it is presented in first-year chemistry textbooks. The common explanations, which use the homolytic bond dissociation energy as a rationalization of the trend in acid strengths when…
Attygalle, Athula B; Ruzicka, Josef; Varughese, Deepu; Bialecki, Jason B; Jafri, Sayed
2007-09-01
Collision-induced dissociation (CID) mass spectra of anions derived from several hydroxyphenyl carbaldehydes and ketones were recorded and mechanistically rationalized. For example, the spectrum of m/z 121 ion of deprotonated ortho-hydroxybenzaldehyde shows an intense peak at m/z 93 for a loss of carbon monoxide attributable to an ortho-effect mediated by a charge-directed heterolytic fragmentation mechanism. In contrast, the m/z 121 ion derived from meta and para isomers undergoes a charge-remote homolytic cleavage to eliminate an *H and form a distonic anion radical, which eventually loses CO to produce a peak at m/z 92. In fact, for the para isomer, this two-step homolytic mechanism is the most dominant fragmentation pathway. The spectrum of the meta isomer on the other hand, shows two predominant peaks at m/z 92 and 93 representing both homolytic and heterolytic fragmentations, respectively. (18)O-isotope-labeling studies confirmed that the oxygen in the CO molecule that is eliminated from the anion of meta-hydroxybenzaldehyde originates from either the aldehydic or the phenolic group. In contrast, anions of ortho-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde, both of which show two consecutive CO eliminations, specifically lose the carbonyl oxygen first, followed by that of the phenolic group. Anions from 2-hydroxyphenyl alkyl ketones lose a ketene by a hydrogen transfer predominantly from the alpha position. Interestingly, a very significant charge-remote 1,4-elimination of a H(2) molecule was observed from the anion derived from 2,4-dihydroxybenzaldehyde. For this mechanism to operate, a labile hydrogen atom should be available on the hydroxyl group adjacent to the carbaldehyde functionality.
Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence
Allen, Robert C.
2015-01-01
Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2) facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (1O2 *) is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism. PMID:26783542
Bioactivities of volatile components from Nepalese Artemisia species.
Satyal, Prabodh; Paudel, Prajwal; Kafle, Ananad; Pokharel, Suraj K; Lamichhane, Bimala; Dosoky, Noura S; Moriarity, Debra M; Setzer, William N
2012-12-01
The essential oils from the leaves of Artemisia dubia, A. indica, and A. vulgaris growing wild in Nepal were obtained by hydrodistillation and analyzed by GC-MS. The major components in A. dubia oil were chrysanthenone (29.0%), coumarin (18.3%), and camphor (16.4%). A. indica oil was dominated by ascaridole (15.4%), isoascaridole (9.9%), trans-p-mentha-2,8-dien-1-ol (9.7%), and trans-verbenol (8.4%). The essential oil of Nepalese A. vulgaris was rich in alpha-thujone (30.5%), 1,8-cineole (12.4%), and camphor (10.3%). The essential oils were screened for phytotoxic activity against Lactuca sativa (lettuce) and Lolium perenne (perennial ryegrass) using both seed germination and seedling growth, and all three Artemisia oils exhibited notable allelopathic activity. A. dubia oil showed in-vitro cytotoxic activity on MCF-7 cells (100% kill at 100 microg/mL) and was also marginally antifungal against Aspergillus niger (MIC = 313 microg/mL). DFT calculations (B3LYP/6-31G*) revealed thermal decomposition of ascaridole to be energetically accessible at hydrodistillation and GC conditions, but these are spin-forbidden processes. If decomposition does occur, it likely proceeds by way of homolytic peroxide bond cleavage rather than retro-Diels-Alder elimination of molecular oxygen.
Mazarin, Michael; Phan, Trang N T; Charles, Laurence
2008-12-01
Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.
Lioe, Hadi; Laskin, Julia; Reid, Gavin E; O'Hair, Richard A J
2007-10-25
The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes are much slower compared to amide bond cleavage, explaining why these selective bond cleavages are not observed if fragmentation is performed under mobile proton conditions. This study further affirms that fragmentation of peptide ions in the gas phase are predominantly governed by entropic effects.
Zhang, Xian-Man; Fry, Albert J.; Bordwell, Frederick G.
1996-06-14
Equilibrium acidities (pK(HA)) of six P-(para-substituted benzyl)triphenylphosphonium (p-GC(6)H(4)CH(2)PPh(3)(+)) cations, P-allyltriphenylphosphonium cation, P-cinnamyltriphenylphosphonium cation, and As-(p-cyanobenzyl)triphenylarsonium cation, together with the oxidation potentials [E(ox)(A(-))] of their conjugate anions (ylides) have been measured in dimethyl sulfoxide (DMSO) solution. The acidifying effects of the alpha-triphenylphosphonium groups on the acidic C-H bonds in toluene and propene were found to be ca 25 pK(HA) units (34 kcal/mol). Introduction of an electron-withdrawing group such as 4-NO(2), 4-CN, or 4-Br into the para position of the benzyl ring in p-GC(6)H(4)CH(2)PPh(3)(+) cations resulted in an additional acidity increase, but introduction of the 4-OEt electron-donating group decreases the acidity. The equilibrium acidities of p-GC(6)H(4)CH(2)PPh(3)(+) cations were nicely linearly correlated with the Hammett sigma(-) constants of the substituents (G) with a slope of 4.78 pK(HA) units (R(2) = 0.992) (Figure 1). Reversible oxidation potentials of the P-(para-substituted benzyl)triphenylphosphonium ylides were obtained by fast scan cyclic voltammetry. The homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bonds in these cations, estimated by combining their equilibrium acidities with the oxidation potentials of their corresponding conjugate anions, showed that the alpha-Ph(3)P(+) groups have negligible stabilizing or destabilizing effects on the adjacent radicals. The equilibrium acidity of As-(p-cyanobenzyl)triphenylarsonium cation is 4 pK(HA) units weaker than that of P-(p-cyanobenzyl)triphenylphosphonium cation, but the BDE of the acidic C-H bond in As-(p-cyanobenzyl)triphenylarsonium cation is ca 2 kcal/mol higher than that in P-(p-cyanobenzyl)triphenylphosphonium cation.
NASA Astrophysics Data System (ADS)
Rožman, Marko
2016-01-01
Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.
Degueil-Castaing; Moutet; Maillard
2000-06-30
Homolytically induced decompositions of unsaturated peroxyacetals, synthesized from aldehydes, gave alkoxyalkoxyl radicals that yielded alkyl radicals by rapid beta-scission. The latter radicals could react with several types of "transfer agents" to smoothly bring about homolytic decarbonylative functional group transformations of aldehydes into halides, hydrocarbons, xanthates, alkanenitriles, 2-alkyl-3-chloromaleic anhydrides, 1-phenylalk-1-ynes, and ethyl 2-alkylpropenoates.
Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng
2017-09-13
Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.
Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya
2013-12-01
In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.
Chen, Yue; Sakaki, Shigeyoshi
2017-04-03
The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (N ∧ N) 2 (1) {N ∧ N = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.
Infrared Spectrum and UV-Induced Photochemistry of Matrix-Isolated 5-Hydroxyquinoline.
Kuş, Nihal; Sagdinc, Seda; Fausto, Rui
2015-06-18
The structure, infrared spectrum, and photochemistry of 5-hydroxyquinoline (5HQ) were studied by matrix isolation infrared spectroscopy, complemented by theoretical calculations performed at the DFT(B3LYP)/6-311++G(d,p) level of approximation. According to the calculations, the trans conformer of 5HQ (with the OH group pointing to the opposite direction of the pyridine ring of the molecule) is more stable than the cis form (by ∼8.8 kJ mol(-1)). The main factors determining the relative stability of the two conformers were rationalized through natural bond orbital (NBO) and charge density analyses. The compound was trapped in solid nitrogen at 10 K, and its infrared spectra registered and interpreted, showing the sole presence in the matrix of the more stable trans conformer. Broadband in situ UV irradiations (λ ≥ 288 nm and λ ≥ 235 nm) allowed for the observation of different chemical transformations, which started by excitation to the S1 state of 5HQ, followed by homolytic cleavage of the O-H bond, and subsequent reattachment of the H atom to the 5HQ radical to form quinolin-5(6H)-one and quinolin-5(8H)-one. The first of these two quinolinones was found to convert to open-ring isomeric ketenes, especially when irradiation was performed at higher energy, whereas the second is rather stable under the used experimental conditions. As a whole, the observed photochemistry of matrix-isolated 5HQ closely matches those previously reported for phenol and thiophenol. A detailed mechanistic interpretation for the observed photochemical processes is here proposed, which received support from time-dependent DFT calculations.
Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex
Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo
2012-01-01
Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical reactions in which this iron(III)–peroxo complex is cleanly converted to the iron(III)–hydroperoxo complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)–hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via homolytic O–O bond cleavage of the iron(III)–hydroperoxo species. All three of these iron species—the three most biologically relevant iron–oxygen intermediates—have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)–hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)–oxo complex in C–H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)–hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes. PMID:22031443
Ge, Ni-Na; Wei, Yong-Kai; Song, Zhen-Fei; Chen, Xiang-Rong; Ji, Guang-Fu; Zhao, Feng; Wei, Dong-Qing
2014-07-24
Molecular dynamics simulations in conjunction with multiscale shock technique (MSST) are performed to study the initial chemical processes and the anisotropy of shock sensitivity of the condensed-phase HMX under shock loadings applied along the a, b, and c lattice vectors. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. Our results show that there is a difference between lattice vector a (or c) and lattice vector b in the response to a shock wave velocity of 11 km/s, which is investigated through reaction temperature and relative sliding rate between adjacent slipping planes. The response along lattice vectors a and c are similar to each other, whose reaction temperature is up to 7000 K, but quite different along lattice vector b, whose reaction temperature is only up to 4000 K. When compared with shock wave propagation along the lattice vectors a (18 Å/ps) and c (21 Å/ps), the relative sliding rate between adjacent slipping planes along lattice vector b is only 0.2 Å/ps. Thus, the small relative sliding rate between adjacent slipping planes results in the temperature and energy under shock loading increasing at a slower rate, which is the main reason leading to less sensitivity under shock wave compression along lattice vector b. In addition, the C-H bond dissociation is the primary pathway for HMX decomposition in early stages under high shock loading from various directions. Compared with the observation for shock velocities V(imp) = 10 and 11 km/s, the homolytic cleavage of N-NO2 bond was obviously suppressed with increasing pressure.
NASA Astrophysics Data System (ADS)
Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.
2014-10-01
Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant-derived particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhone River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.
Microbial cleavage of organic C-S bonds
Kilbane, J.J. II.
1994-10-25
A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.
Microbial cleavage of organic C-S bonds
Kilbane, II, John J.
1994-01-01
A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.
Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi
2018-02-16
A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing
2013-07-19
A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.
Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N
2016-11-16
Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.
Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.
To, Ching Tat; Chan, Kin Shing
2017-07-18
The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium(II) porphyrin metalloradical and rhodium(III) porphyrin hydroxide are very reactive to activate the aliphatic carbon-carbon bonds. Recently, we successfully demonstrated the rhodium porphyrin catalyzed reduction or oxidation of aliphatic carbon-carbon bonds using water as the reductant or oxidant, respectively, in the absence of sacrificial reagents and neutral conditions. This Account presents our contribution in this domain. First, we describe the chemistry of equilibria among the reactive rhodium porphyrin complexes in oxidation states from Rh(I) to Rh(III). Then, we present the serendipitous discovery of the carbon-carbon bond activation reaction and subsequent developments in our laboratory. These aliphatic carbon-carbon bond activation reactions can generally be divided into two categories according to the reaction type: (i) homolytic radical substitution of a carbon(sp 3 )-carbon(sp 3 ) bond with a rhodium(II) porphyrin metalloradical and (ii) σ-bond metathesis of a carbon-carbon bond with a rhodium(III) porphyrin hydroxide. Finally, representative examples of catalytic carbon-carbon bond hydrogenation and oxidation through strategic design are covered. The progress in this area broadens the chemistry of rhodium porphyrin complexes, and these transformations are expected to find applications in organic synthesis.
Checler, F; Vincent, J P; Kitabgi, P
1983-08-01
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.
Ab Initio energetics of SiO bond cleavage.
Hühn, Carolin; Erlebach, Andreas; Mey, Dorothea; Wondraczek, Lothar; Sierka, Marek
2017-10-15
A multilevel approach that combines high-level ab initio quantum chemical methods applied to a molecular model of a single, strain-free SiOSi bridge has been used to derive accurate energetics for SiO bond cleavage. The calculated SiO bond dissociation energy and the activation energy for water-assisted SiO bond cleavage of 624 and 163 kJ mol -1 , respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H 2 O-assisted SiO bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero-point vibrational contribution is in the range of -5 to 19 kJ mol -1 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palumbo, Fabrizio
Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore tomore » the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis. • Photochemical and EPR studies support generation of aryl radicals by C-Cl cleavage. • The aminoalkyl side chain of metabolites modulates the photo(geno)toxic potential.« less
NASA Astrophysics Data System (ADS)
Satoh, Tetsuya; Miura, Masahiro
Aromatic compounds having oxygen-containing substituents such as phenols, phenyl ketones, benzyl alcohols, and benzoic acids undergo regioselective arylation and vinylation via C-H bond cleavage in the presence of transition-metal catalysts. The latter two substrates are also arylated and vinylated via C-C bond cleavage accompanied by liberation of ketones and CO2, respectively. Coordination of their anionic oxygen to the metal center is the key to activate the inert bonds effectively and regioselectively. The recent progress of these oxygen-directed reactions is summarized herein.
NASA Astrophysics Data System (ADS)
Warncke, Kurt
2009-03-01
Challenges to the understanding of how protein structure and dynamics contribute to catalysis in enzymes, and the use of time-resolved electron paramagnetic resonance (EPR) spectroscopic techniques to address the challenges, are examined in the context of the coenzyme B12-dependent enzyme, ethanolamine ammonia-lyase (EAL), from Salmonella typhimurium. EAL conducts the homolytic cleavage of the coenzyme cobalt-carbon bond, intraprotein radical migration (5-6 å), and hydrogen atom transfers, which enable the core radical-mediated rearrangement reaction. Thermodynamic and activation parameters are measured in two experimental systems, which were developed to isolate sub-sequences from the multi-step catalytic cycle, as follows: (1) A dimethylsulfoxide (DMSO)/water cryosolvent system is used to prepare the kinetically-arrested enzyme/coenzyme/substrate ternary complex in fluid solution at 230 K.[1] Temperature-step initiated cobalt-carbon bond cleavage and radical pair separation to form the Co(II)-substrate radical pair are monitored by using time-resolved, full-spectrum EPR spectroscopy (234<=T<=250 K).[1] (2) The Co(II)-substrate radical pair is cryotrapped in frozen aqueous solution at T<150 K, and then promoted to react by a temperature step. The reaction of the substrate radical along the native pathway to form the diamagnetic bound products is monitored by using time-resolved, full-spectrum EPR spectroscopy (187<=T<=217 K).[2] High temporal resolution is achieved, because the reactions are dramatically slowed at the low temperatures, relative to the initiation and spectrum acquistion times. The results are combined with high resolution structures of the reactant centers, obtained by pulsed-EPR spectroscopies,[3] and the protein, obtained by structural proteomics[4] and EPR and electron spin echo envelope modulation (ESEEM) in combination with site directed mutagenesis,[5] to approach a molecular level description of protein contributions to catalysis in EAL. [4pt] [1] Wang, M. & Warncke, K. J. Am. Chem. Soc. 2008, 130, 4846. [0pt] [2] Chen, Z. and Warncke, K. Biophys. J. 2008, 95 (December) [0pt] [3] Canfield, J. M. and Warncke, K. J. Phys. Chem. B 2002, 106, 8831. [0pt] [4] Sun, L. and Warncke, K. Proteins 2006, 64, 308. [0pt] [5] Sun, L., Groover, O., Canfield, J. M., and Warncke, K. Biochemistry 2008, 47, 5523.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changjun; Sun, Junming; Brown, Heather M.
Aqueous-phase hydrodeoxygenation of sugar and sugar-derived molecules can be used to produce a range of alkanes and oxygenates. In this paper, we have identified the reaction intermediates and reaction chemistry for the aqueous-phase hydrodeoxygenation of sorbitol over a bifunctional catalyst (Pt/SiO2–Al2O3) that contains both metal (Pt) and acid (SiO2–Al2O3) sites. A wide variety of reactions occur in this process including Csingle bondC bond cleavage, Csingle bondO bond cleavage, and hydrogenation reactions. The key Csingle bondC bond cleavage reactions include: retro-aldol condensation and decarbonylation, which both occur on metal catalytic sites. Dehydration is the key Csingle bondO bond cleavage reaction andmore » occurs on acid catalytic sites. Sorbitol initially undergoes dehydration and ring closure to produce cyclic C6 molecules or retro-aldol condensation reactions to produce primarily C3 polyols. Isosorbide is the major final product from sorbitol dehydration. Isosorbide then undergoes ring opening hydrogenation reactions and a dehydration/hydrogenation step to form 1,2,6-hexanetriol. The hexanetriol is then converted into hexanol and hexane by dehydration/hydrogenation. Smaller oxygenates are produced by Csingle bondC bond cleavage. These smaller oxygenates undergo dehydration/hydrogenation reactions to produce alkanes from C1–C5. The results from this paper suggest that hydrodeoxygenation chemistry can be tuned to make a wide variety of products from biomass-derived oxygenates.« less
ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen
Tiedt, Oliver; Mergelsberg, Mario; Boll, Kerstin; Müller, Michael; Adrian, Lorenz; Jehmlich, Nico; von Bergen, Martin
2016-01-01
ABSTRACT Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. PMID:27507824
Elder, Thomas
2007-11-01
The calculation of Young's modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in response to linear strain. At larger levels of strain, bond rupture is evidenced by abrupt changes in energy, structure, and charge. Based on the current calculations, the bond scission may be occurring through a homolytic reaction between aliphatic carbon atoms. These results may have implications in the reactivity of lignin especially when subjected to processing methods that place large mechanical forces on the structure.
NASA Astrophysics Data System (ADS)
Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.
2015-03-01
Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhône River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrestrial higher-plant contribution to the particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhône River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Higher-plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of mammal or human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.
Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide.
Škalamera, Đani; Antol, Ivana; Mlinarić-Majerski, Kata; Vančik, Hrvoj; Phillips, David Lee; Ma, Jiani; Basarić, Nikola
2018-04-20
The photochemical reactivity of 2-hydroxymethylphenol (1) was investigated experimentally by photochemistry under cryogenic conditions, by detecting reactive intermediates by IR spectroscopy, and by using nanosecond and femtosecond transient absorption spectroscopic methods in solution at room temperature. In addition, theoretical studies were performed to facilitate the interpretation of the experimental results and also to simulate the reaction pathway to obtain a better understanding of the reaction mechanism. The main finding of this work is that photodehydration of 1 takes place in an ultrafast adiabatic photochemical reaction without any clear intermediate, delivering quinone methide (QM) in the excited state. Upon photoexcitation to a higher vibrational level of the singlet excited state, 1 undergoes vibrational relaxation leading to two photochemical pathways, one by which synchronous elimination of H 2 O gives QM 2 in its S 1 state and the other by which homolytic cleavage of the phenolic O-H bond produces a phenoxyl radical (S 0 ). Both are ultrafast processes that occur within a picosecond. The excited state of QM 2 (S 1 ) probably deactivates to S 0 through a conical intersection to give QM 2 (S 0 ), which subsequently delivers benzoxete 4. Elucidation of the reaction mechanisms for the photodehydration of phenols by which QMs are formed is important to tune the reactivity of QMs with DNA and proteins for the potential application of QMs in medicine as therapeutic agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
2016-05-23
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Zhao, Yongyu; Bordwell, Frederick G.
1996-09-20
Cleavage of radical anions, HA(*)(-), have been considered to give either H(*) + A(-) (path a) or H(-) + A(*) (path b), and factors determining the preferred mode of cleavage have been discussed. It is conceivable that cleavage to give a proton and a radical dianion, HA(*)(-) right harpoon over left harpoon H(+) + A(*)(2)(-) (path c), might also be feasible. A method, based on a thermodynamic cycle, to estimate the bond dissociation free energy (BDFE) by path c has been devised. Comparison of the BDFEs for cleavage of the radical anions derived from 24 nitroaromatic OH, SH, NH, and CH acids by paths a, b, c has shown that path c is favored thermodynamically.
Mo(CO)/sub 6/-promoted reductive cleavage of the carbon-sulfur bond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luh, T.Y.; Wong, C.S.
1985-12-13
In order to study the reductive cleavage of carbon-sulfur bonds by Mo(CO/sub 6/, various organosulfur compounds are reacted with Mo(CO)/sub 6/ in THF. Results of these experiments demonstrate that benzylic-, aryl-, or ..cap alpha..-acyl-activated carbon-sulfur bonds are reduced by treatment with Mo(CO)/sub 6/. 1 table.
Method for metabolizing carbazole in petroleum
Kayser, Kevin J.; Kilbane, II, John J.
2005-09-13
A method for selective cleavage of C--N bonds genes that encode for at least one enzyme suitable for conversion of carbazole to 2-aminobiphenyl-2,3-diol are combined with a gene encoding an amidase suitable for selectively cleaving a C--N bond in 2-aminobiphenyl-2,3-diol, forming an operon that encodes for cleavage of both C--N bonds of said carbazole. The operon is inserted into a host culture which, in turn, is contacted with the carbazole, resulting in selective cleavage of both C--N bonds of the carbazole. Also disclosed is a new microorganism that expresses a carbazole degradation trait constitutively and a method for degrading carbazole employing this microorganism.
Facile scission of isonitrile carbon–nitrogen triple bond using a diborane(4) reagent
Asakawa, Hiroki; Lee, Ka-Ho; Lin, Zhenyang; Yamashita, Makoto
2014-01-01
Transition metal reagents and catalysts are generally effective to cleave all three bonds (one σ and two π) in a triple bond despite its high bonding energy. Recently, chemistry of single-bond cleavage by using main-group element compounds is rapidly being developed in the absence of transition metals. However, the cleavage of a triple bond using non-transition-metal compounds is less explored. Here we report that an unsymmetrical diborane(4) compound could react with carbon monoxide and tert-butyl isonitrile at room temperature. In the latter case, the carbon–nitrogen triple bond was completely cleaved in the absence of transition metal as confirmed by X-ray crystallographic analysis, 13C NMR spectroscopy with 13C labelling and DFT calculations. The DFT calculations also revealed the detailed reaction mechanism and indicated that the key for the carbon–nitrogen triple-bond cleavage could be attributed to the presence of nucleophilic nitrogen atom in one of the intermediates. PMID:24967910
Li, Feifei; Meier, Katlyn K; Cranswick, Matthew A; Chakrabarti, Mrinmoy; Van Heuvelen, Katherine M; Münck, Eckard; Que, Lawrence
2011-05-18
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted. © 2011 American Chemical Society
Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been themore » focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.« less
Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K
2017-03-17
A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Matsunaga, Nikita; Rogers, Donald W; Zavitsas, Andreas A
2003-04-18
Contrary to other recent reports, Pauling's original electronegativity equation, applied as Pauling specified, describes quite accurately homolytic bond dissociation enthalpies of common covalent bonds, including highly polar ones, with an average deviation of +/-1.5 kcal mol(-1) from literature values for 117 such bonds. Dissociation enthalpies are presented for more than 250 bonds, including 79 for which experimental values are not available. Some previous evaluations of accuracy gave misleadingly poor results by applying the equation to cases for which it was not derived and for which it should not reproduce experimental values. Properly interpreted, the results of the equation provide new and quantitative insights into many facets of chemistry such as radical stabilities, factors influencing reactivity in electrophilic aromatic substitutions, the magnitude of steric effects, conjugative stabilization in unsaturated systems, rotational barriers, molecular and electronic structure, and aspects of autoxidation. A new corollary of the original equation expands its applicability and provides a rationale for previously observed empirical correlations. The equation raises doubts about a new bonding theory. Hydrogen is unique in that its electronegativity is not constant.
Metal-organic framework catalysts for selective cleavage of aryl-ether bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Stavila, Vitalie
The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.
Ethylene decomposition over Pt(100): A mechanism study from first principle calculation
NASA Astrophysics Data System (ADS)
Wang, Yuchun; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua
2016-12-01
First principle based density functional theory was used to calculate the complete step-by-step decomposition network of ethylene (C2H4) over Pt(100) as a model for understanding the carbon deposition of olefin hydrocarbon over transition metal surface. We discussed the structural and energetic properties of all the Csbnd H and Csbnd C bond cleavage reactions in order to fully understand the formation pathway of carbon monomer. It is easier for Csbnd H bond cleavage reactions to take place, as the activation barrier of these reactions is relatively lower than that of Csbnd C bond cleavage as a whole. However, vinyl (CH2CH) is likely to be the precursor of Csbnd C bond scission, as the activation barrier of Csbnd C bond cleavage reaction of CH2CH is much lower than that of CH2CH dehydrogenation and the reaction is exothermic by 0.15 eV. CC was another form of depositional carbon on Pt(100), as it is easy to form but difficult to decompose. Finally we proposed six possible routes of carbon monomer formation.
Zhang, Rui; Newcomb, Martin
2010-01-01
Conspectus High-valent transition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time-scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 × 103 M−1 s−1 for a corrole-iron(V)-oxo species and 1.6 × 106 M−1 s−1 for the putative tetramesitylporphyrin-iron(V)-oxo perchlorate species. The latter rate constant is 25,000 times larger than that for oxidation of cis-cyclooctene by iron(IV)-oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)-oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin-iron(V)-oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme-thiolate enzymes that are capable of oxidizing unactivated carbon-hydrogen bonds in substrates so rapidly that iron-oxo intermediates have not been detected under physiological conditions. PMID:18278877
Zhang, Rui; Newcomb, Martin
2008-03-01
High-valenttransition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 x 10(3) M(-1) s(-1) for a corrole-iron(V)-oxo species and 1.6 x 10(6) M(-1) s(-1) for the putative tetramesitylporphyrin-iron(V)-oxo perchlorate species. The latter rate constant is 25,000 times larger than that for oxidation of cis-cyclooctene by iron(IV)-oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)-oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin-iron(V)-oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme-thiolate enzymes that are capable of oxidizing unactivated carbon-hydrogen bonds in substrates so rapidly that iron-oxo intermediates have not been detected under physiological conditions.
Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.
Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf
2016-01-01
The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes, putatively via dehydrogenases. The thermophilic sulfate reducer strain TD3 forms n-alkylsuccinates during growth with n-alkanes or crude oil, which, based on the observed patterns of homologs, do not derive from a terminal activation of n-alkanes. © 2016 S. Karger AG, Basel.
Condensed tannins: A novel rearrangement of procyanidins and prodelphinidins in thiolytic cleavage
G. Wayne McGraw; Jan P. Steynberg; Richard W. Hemingway
1993-01-01
Conditions commonly used for the thiolytic cleavage of interflavanoid bonds of condensed tannins also result in cleavage of the C4 to C10 bond of flavan units. Subsequenet lectrophilic attack of the C4 carbocation on the C2' or C6' of the B-ring, and loss of phloroglucinol (the A-ring), result in the formation of a mixture of 1,3-dithiobenzyl-2,4,s,6-...
Gardner, Qurra-tul-Ann Afza; Younas, Hooria; Akhtar, Muhammad
2013-01-01
Human M-proinsulin was cleaved by trypsin at the R(31)R(32)-E(33) and K(64)R(65)-G(66) bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K(59)R(60)-G(61) bond but at the B/C junction cleavage occurred at the R(31)R(32)-E(33) as well as the R(31)-R(32)E(33) bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the k(cat.)/K(m) values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02±0.08×10(5)s(-1)M(-1)) and the cleavage of the K(29)-T(30) bond of M-insulin-RR (1.3±0.07×10(5)s(-1)M(-1)). However, the K(29)-T(30) bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (k(cat.)/K(m) values around 1000s(-1)M(-1)). Hence, as the biosynthetic path follows the sequence; proinsulin→insulin-RR→insulin, the K(29)-T(30) bond becomes shielded, exposed then shielded again respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Cho, Dae Won; Parthasarathi, Ramakrishnan; Pimentel, Adam S; Maestas, Gabriel D; Park, Hea Jung; Yoon, Ung Chan; Dunaway-Mariano, Debra; Gnanakaran, S; Langan, Paul; Mariano, Patrick S
2010-10-01
Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.
Heurich, Tobias; Qu, Zheng-Wang; Kunzmann, Robert; Schnakenburg, Gregor; Engeser, Marianne; Nožinović, Senada; Streubel, Rainer
2018-04-25
A combined theoretical and experimental study on the formation and reactivity of a P-OTEMP (P-bound TEMPO (TEMPO=2,2,6,6-tetramethyl-piperidin-1-oxyl)) substituted 1,3,2-diazaphospholane W(CO) 5 complex is presented, including DFT-based mechanistic details. The complex possesses a thermally labile O-N bond that cleaves homolytically yielding the transient 1,3,2-diazaphospholane-2-oxyl complex [(CO) 5 W(R 2 PO . )], which acts as a radical initiator for styrene polymerization under ambient conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nicolaou, K C; Adsool, Vikrant A; Hale, Christopher R H
2010-04-02
PhI(OAc)(2) in the presence of OsO(4) (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with alpha-hydroxy ketones as byproduct. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO(4) (cat.), 2,6-lutidine, and PhI(OAc)(2).
Photoinduced Cobalt(III)-Trifluoromethyl Bond Activation Enables Arene C-H Trifluoromethylation.
Harris, Caleb F; Kuehner, Christopher S; Bacsa, John; Soper, Jake D
2018-01-26
Visible-light capture activates a thermodynamically inert Co III -CF 3 bond for direct C-H trifluoromethylation of arenes and heteroarenes. New trifluoromethylcobalt(III) complexes supported by a redox-active [OCO] pincer ligand were prepared. Coordinating solvents, such as MeCN, afford green, quasi-octahedral [( S OCO)Co III (CF 3 )(MeCN) 2 ] (2), but in non-coordinating solvents the complex is red, square pyramidal [( S OCO)Co III (CF 3 )(MeCN)] (3). Both are thermally stable, and 2 is stable in light. But exposure of 3 to low-energy light results in facile homolysis of the Co III -CF 3 bond, releasing . CF 3 radical, which is efficiently trapped by TEMPO . or (hetero)arenes. The homolytic aromatic substitution reactions do not require a sacrificial or substrate-derived oxidant because the Co II by-product of Co III -CF 3 homolysis produces H 2 . The photophysical properties of 2 and 3 provide a rationale for the disparate light stability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Checler, F; Emson, P C; Vincent, J P; Kitabgi, P
1984-11-01
It was shown previously that the tridecapeptide neurotensin is inactivated by rat brain synaptic membranes and that one of the primary inactivating cleavages occurs at the Pro10-Try11 peptide bond, leading to the formation of NT1-10 and NT11-13. The present study was designed to investigate the possibility that this cleavage was catalyzed by proline endopeptidase and/or endopeptidase 24.11 (enkephalinase). Purified rat brain synaptic membranes were found to contain a N-benzyloxycarbonyl-Gly-Pro-4-methyl-coumarinyl-7-amide-hydrolyzin g activity that was markedly inhibited (93%) by the proline endopeptidase inhibitor N-benzyloxycarbonyl-Pro-Prolinal and partially blocked (25%) by an antiproline endopeptidase antiserum. In contrast, the cleavage of neurotensin at the Pro10-Tyr11 bond by synaptic membranes was not affected by N-benzyloxycarbonyl-Pro-Prolinal and the antiserum. When the conversion of NT1-10 to NT1-8 by angiotensin converting enzyme was blocked by captopril and when the processing of NT11-13 by aminopeptidase(s) was inhibited by bestatin, it was found that thiorphan, a potent endopeptidase 24.11 inhibitor, partially decreased the formation of NT1-10 and NT11-13 by synaptic membranes. (1) proline endopeptidase, although it is present in synaptic membranes, is not involved in the cleavage of neurotensin at the Pro10-Tyr11 bond; (2) endopeptidase 24.11 only partially contributes to this cleavage; (3) there exists in rat brain synaptic membranes a peptidase different from proline endopeptidase and endopeptidase 24.11 that is mainly responsible for inactivating neurotensin by cleaving at the Pro10-Tyr11 bond.
Asakawa, Daiki
2013-01-01
The matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) of peptides and glycans was studied using an oxidizing chemical, 5-nitrosalicylic acid (5-NSA) as the matrix. The use of 5-NSA for the MALDI-ISD of peptides and glycans promoted fragmentation pathways involving “hydrogen-deficient” radical precursors. Hydrogen abstraction from peptides resulted in the production of a “hydrogen-deficient” peptide radical that contained a radical site on the amide nitrogen in the peptide backbone with subsequent radical-induced cleavage at the Cα–C bonds. Cleavage at the Cα–C bond leads to the production of an a•/x fragment pair and the radical a• ions then undergo further hydrogen abstraction to form a ions after Cα–C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα–C bond cleavage does not occur at this site. Alternatively, the specific cleavage of CO−N bonds leads to a b•/y fragment pair at Xxx−Pro which occurs via hydrogen abstraction from the Cα−H in the Pro residue. In contrast, “hydrogen-deficient” glycan radicals were generated by hydrogen abstraction from hydroxyl groups in glycans. Both glycosidic and cross-ring cleavages occurred as the result of the degradation of “hydrogen-deficient” glycan radicals. Cross-ring cleavage ions are potentially useful in linkage analysis, one of the most critical steps in the characterization of glycans. Moreover, isobaric glycans could be distinguished by structure specific ISD ions, and the molar ratio of glycan isomers in a mixture can be estimated from their fragment ions abundance ratios. MALDI-ISD with 5-NSA could be a useful method for the sequencing of peptides including the location of post-translational modifications, identification and semi-quantitative analysis of mixtures of glycan isomers. PMID:24860709
Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho
2016-11-15
Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6 M -1 s -1 for UDMH and 5 × 10 5 M -1 s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9 M -1 s -1 and 3.4 × 10 9 M -1 s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.
Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.
Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika
2016-03-04
Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.
Nicolaou, K. C.; Adsool, Vikrant A.; Hale, Christopher R. H.
2010-01-01
PhI(OAc)2 in the presence of OsO4 (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with α-hydroxy ketones as by-products. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO4 (cat.), 2,6-lutidine, and PhI(OAc)2. PMID:20192259
Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie
2013-03-07
It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.
Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael
2014-12-22
ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Renrong; Zhang, Mei; Zhang, Junliang
2011-12-28
A novel, efficient, highly regioselective Sc(OTf)(3)-catalyzed [3+2] cycloaddition of electron-rich alkynes with donor-acceptor oxiranes via highly chemoselective C-C bond cleavage under mild conditions was developed. This journal is © The Royal Society of Chemistry 2011
Jung, Hyung Hoon; Floreancig, Paul E.
2009-01-01
A series of monodeuterated benzylic and allylic ethers were subjected to oxidative carbon–hydrogen bond cleavage to determine the impact of structural variation on intramolecular kinetic isotope effects in DDQ-mediated cyclization reactions. These values are compared to the corresponding intermolecular kinetic isotope effects that were accessed through subjecting mixtures of non-deuterated and dideuterated substrates to the reaction conditions. The results indicate that carbon–hydrogen bond cleavage is rate determining and that a radical cation is most likely a key intermediate in the reaction mechanism. PMID:20640173
Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.
Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen
2016-02-04
A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.
Zhang, Yuewei; Yang, Fengzhi; Zheng, Lianyou; Dang, Qun; Bai, Xu
2014-12-05
A sequence of C-O bond cleavage and redox reactions in oxa-bridged azepines was realized under acid promoted conditions. This protocol provides an atom-economical and straightforward approach to access benzo[b]azepin-5(2H)-ones in high yields. The formal synthesis of tolvaptan was achieved by exploiting this new transformation.
Preparation of water-soluble magnetic nanocrystals using aryl diazonium salt chemistry.
Griffete, Nébéwia; Herbst, Frédéric; Pinson, Jean; Ammar, Souad; Mangeney, Claire
2011-02-16
A novel and facile methodology for the in situ surface functionalization of Fe(3)O(4) nanoparticles is proposed, based on the use of aryl diazonium salts chemistry. The grafting reaction involves the formation of diazoates in a basic medium. These species are unstable and dediazonize along a homolytic pathway to give aryl radicals which further react with the Fe(3)O(4) NPs during their formation and stop their growth. Advantages of the present approach rely not only on the simplicity, rapidity, and efficiency of the procedure but also on the formation of strong Fe(3)O(4)-aryl surface bonds, highly suitable for further applications.
Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin
Echelman, Daniel J.; Lee, Alex Q.; Fernández, Julio M.
2017-01-01
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. PMID:28348083
Development and application of bond cleavage reactions in bioorthogonal chemistry.
Li, Jie; Chen, Peng R
2016-03-01
Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.
Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage.
Wu, Xinxin; Zhu, Chen
2018-06-01
Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C-C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C-F, C-Cl, C-Br, C-N, C-S, C-Se, C-C, etc.) has been achieved by using the ring-opening strategy. Mechanistically, the C-C cleavage of cyclobutanols can be involved in two pathways: (a) transition-metal catalyzed β-carbon elimination; (b) radical-mediated 'radical clock'-type ring opening. The recent advances of our group for the ring-opening functionalization of tertiary cycloalkanols are described in this account. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.
2017-10-01
Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.
Mayfield, Jeffrey A.; Blanc, Béatrice; Rodgers, Kenton R.; Lukat-Rodgers, Gudrun S.; DuBois, Jennifer L.
2015-01-01
Heme-containing chlorite dismutases (Clds) catalyze a highly unusual O–O bond forming reaction. The O–O cleaving reactions of hydrogen peroxide and peracetic acid (PAA) with the Cld from Dechloromonas aromatica (DaCld) were studied to better understand the Cl–O cleavage of the natural substrate and subsequent O–O bond formation. While reactions with H2O2 resulted in slow destruction of the heme, at acidic pH, heterolytic cleavage of the O–O bond of PAA cleanly yielded the ferryl porphyrin cation radical (Compound I). At alkaline pH, the reaction proceeds more rapidly and the first observed intermediate is a ferryl heme. Freezequench EPR confirmed that the latter has an uncoupled protein-based radical, indicating that Compound I is the first intermediate formed at all pH values and that radical migration is faster at alkaline pH. These results suggest by analogy that two-electron Cl–O bond cleavage to yield a ferryl-porphyrin cation radical is the most likely initial step in O–O bond formation from chlorite. PMID:24001266
Zhang, Chun; Feng, Peng; Jiao, Ning
2013-10-09
The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.
Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok
2011-02-01
RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S
2011-04-15
New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.
Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi
2011-06-03
The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.
NASA Astrophysics Data System (ADS)
Bell, William; McQueen, A. Ewan D.; Walton, John C.; Foster, Douglas F.; Cole-Hamilton, David J.; Hails, Janet E.
1992-02-01
The new tellurium alkyls, dihex-5-enyltellurium and dipent-4-enyltellurium have been prepared and pyrolysed in the gas and liquid phases. in the liquid phase, at 200°C some decomposition occurs but the main isolated products are the tellurium alkyls, bis(cyclopentylmethyl)tellurium and 2-methyltelluracyclopentane respectively. A further product, cyclopentylmethylhex-5-enyltellurium is observed as an intermediate in the rearrangement of dihex-5-enyltellurium, whilst (2-telluracyclopentylmethyl)pent-4-enyltellurium together with pent-1-ene and 1,4-pentadiene is obtained from dipent-4-enyltellurium. These products are interpreted as providing direct evidence for initial homolytic cleavage of the Te-C bonds followed by cyclisation of some of the formed radicals and radical chain reactions. In the gas phase, at 500°C similar products to those obtained in the liquid phase are formed from dipent-4-enyltellurium, although not compounds containing more than one Te atom. Dihex-5-enyltellurium, however, decomposes completely in the gas phase at 700°C to give a mixture of hydrocarbons. Substantial quantities of methylcyclopentane and methylenecyclopentane again confirm that a free radical pathway makes a major contribution to the mechanism. The origin of the other products, especially cyclohexene (the major C 6 product) and cyclohexane is also interpreted in terms of a free radical mechanism leading to the 6-tellurahex-1-enyl radical which cyclises to give the 3-telluracycloheptylradical. This radical rearranges to cyclohexyl Te· which in turn acts as the source of cyclohexene and cyclohexane by H· abstraction or addition. There is little evidence that mechanisms other than free radical operate for decomposition of these metal alkyls.
Maiti, Krishnendu; Sen, Pratik K; Barik, Anil K; Pal, Biswajit
2018-06-21
The oxidation of l-serine by chloro and chlorohydroxo complexes of gold(III) was spectrophotometrically investigated in acidic buffer media in the absence and presence of the anionic surfactant sodium dodecyl sulfate (SDS). The oxidation rate decreases with increase in either [H + ] or [Cl - ]. Gold(III) complex species react with the zwitterionic form of serine to yield acetaldehyde (principal reaction product) through oxidative decarboxylation and subsequent deamination processes. A reaction pathway involving one electron transfer from serine to Au(III) followed by homolytic cleavage of α-C-C bond with the concomitant formation of iminic cation intermediate has been proposed where Au(III) is initially reduced to Au(II). The surfactant in the submicellar region exhibits a catalytic effect on the reaction rate at [SDS] ≤ 4 mM; however, in the postmicellar region an inhibitory effect was prominent at [SDS] ≥ 4 mM. The catalytic effect below the critical micelle concentration (cmc) may be attributable to the electrostatic attraction between serine and SDS that, in turn, enhances the nucleophilicity of the carboxylate ion of the amino acid. The inhibition effect beyond cmc has been explained by considering the distribution of the reactant species between the aqueous and the micellar pseudophases that restricts the close association of the reactant species. The thermodynamic parameters Δ H 0 and Δ S 0 associated with the binding between serine and SDS micelle were calculated to be -14.4 ± 2 kJ mol -1 and -6.3 ± 0.5 J K -1 mol -1 , respectively. Water structure rearrangement and micelle-substrate binding play instrumental roles during the transfer of the reactant species from aqueous to micellar pseudophase.
The radical SAM protein HemW is a heme chaperone.
Haskamp, Vera; Karrie, Simone; Mingers, Toni; Barthels, Stefan; Alberge, François; Magalon, Axel; Müller, Katrin; Bill, Eckhard; Lubitz, Wolfgang; Kleeberg, Kirstin; Schweyen, Peter; Bröring, Martin; Jahn, Martina; Jahn, Dieter
2018-02-16
Radical S -adenosylmethionine (SAM) enzymes exist in organisms from all kingdoms of life, and all of these proteins generate an adenosyl radical via the homolytic cleavage of the S-C(5') bond of SAM. Of particular interest are radical SAM enzymes, such as heme chaperones, that insert heme into respiratory enzymes. For example, heme chaperones insert heme into target proteins but have been studied only for the formation of cytochrome c -type hemoproteins. Here, we report that a radical SAM protein, the heme chaperone HemW from bacteria, is required for the insertion of heme b into respiratory chain enzymes. As other radical SAM proteins, HemW contains three cysteines and one SAM coordinating an [4Fe-4S] cluster, and we observed one heme per subunit of HemW. We found that an intact iron-sulfur cluster was required for HemW dimerization and HemW-catalyzed heme transfer but not for stable heme binding. A bacterial two-hybrid system screen identified bacterioferritins and the heme-containing subunit NarI of the respiratory nitrate reductase NarGHI as proteins that interact with HemW. We also noted that the bacterioferritins potentially serve as heme donors for HemW. Of note, heme that was covalently bound to HemW was actively transferred to a heme-depleted, catalytically inactive nitrate reductase, restoring its nitrate-reducing enzyme activity. Finally, the human HemW orthologue radical SAM domain-containing 1 (RSAD1) stably bound heme. In conclusion, our findings indicate that the radical SAM protein family HemW/RSAD1 is a heme chaperone catalyzing the insertion of heme into hemoproteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Kamachi, Takashi; Lee, Yong-Min; Nishimi, Tomonori; Cho, Jaeheung; Yoshizawa, Kazunari; Nam, Wonwoo
2008-12-18
A copper(II) complex bearing a pentadentate ligand, [Cu(II)(N4Py)(CF(3)SO(3))(2)] (1) (N4Py = N,N-bis(2-pyridylmethyl)bis(2-pyridyl)methylamine), was synthesized and characterized with various spectroscopic techniques and X-ray crystallography. A mononuclear Cu(II)-hydroperoxo complex, [Cu(II)(N4Py)(OOH)](+) (2), was then generated in the reaction of 1 and H(2)O(2) in the presence of base, and the reactivity of the intermediate was investigated in the oxidation of various substrates at -40 degrees C. In the reactivity studies, 2 showed a low oxidizing power such that 2 reacted only with triethylphosphine but not with other substrates such as thioanisole, benzyl alcohol, 1,4-cyclohexadiene, cyclohexene, and cyclohexane. In theoretical work, we have conducted density functional theory (DFT) calculations on the epoxidation of ethylene by 2 and a [Cu(III)(N4Py)(O)](+) intermediate (3) at the B3LYP level. The activation barrier is calculated to be 39.7 and 26.3 kcal/mol for distal and proximal oxygen attacks by 2, respectively. This result indicates that the direct ethylene epoxidation by 2 is not a plausible pathway, as we have observed in the experimental work. In contrast, the ethylene epoxidation by 3 is a downhill and low-barrier process. We also found that 2 cannot be a precursor to 3, since the homolytic cleavage of the O-O bond of 2 is very endothermic (i.e., 42 kcal/mol). On the basis of the experimental and theoretical results, we conclude that a mononuclear Cu(II)-hydroperoxo species bearing a pentadentate N5 ligand is a sluggish oxidant in oxygenation reactions.
Yurkerwich, Kevin; Quinlivan, Patrick J.; Rong, Yi
2015-01-01
The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg–C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg–C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg–SePh/Hg–X groups rather than metathesis of the Hg–R/Hg–R groups. PMID:26644634
Yurkerwich, Kevin; Quinlivan, Patrick J; Rong, Yi; Parkin, Gerard
2016-01-08
The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg-C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg-C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199 Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg-SePh/Hg-X groups rather than metathesis of the Hg-R/Hg-R groups.
Transition Metal-Mediated and -Catalyzed C-F Bond Activation via Fluorine Elimination.
Fujita, Takeshi; Fuchibe, Kohei; Ichikawa, Junji
2018-06-28
Activation of carbon-fluorine (C-F) bonds is an important topic in synthetic organic chemistry recently. Among the methods for C-F bond cleavage, metal mediated and catalyzed β- or α-fluorine elimination proceeds under mild conditions compared with oxidative addition of C-F bond. The β- or α-fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations via these elimination processes (C-F bond cleavage), which are typically preceded by carbon-carbon (or carbon-heteroatom) bond formation, have been remarkably developed as C-F bond activation methods in the past five years. In this minireview, we summarize the applications of transition metal-mediated and -catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective for early studies and from a systematic perspective for recent studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tobisu, Mamoru; Imoto, Shinya; Ito, Sana; Chatani, Naoto
2010-07-16
To demonstrate the utility of isocyanides in catalytic C-H bond functionalization reactions, a palladium-catalyzed cyclocoupling reaction of 2-halobiaryls with isocyanides was developed. The reaction afforded an array of fluorenone imine derivatives via the cleavage of a C-H bond at the 2'-position of 2-halobiaryls. The use of 2,6-disubstituted phenyl isocyanide was crucial for this catalytic cyclocoupling reaction to proceed. The reaction was applicable to heterocyclic and vinylic substrates, allowing the construction of a wide range of ring system. The large kinetic isotope effect observed (k(H)/k(D) = 5.3) indicates that C-H bond activation was the turnover-limiting step in this catalysis.
Electron attachment-induced DNA single-strand breaks at the pyrimidine sites
Gu, Jiande; Wang, Jing; Leszczynski, Jerzy
2010-01-01
To elucidate the contribution of pyrimidine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced C3′–O3′, and C5′–O5′ σ bond as well as N-glycosidic bond breaking of 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate were performed using the B3LYP/DZP++ approach. The base-centered radical anions are electronically stable enough to assure that either the C–O or glycosidic bond breaking processes might compete with the electron detachment and yield corresponding radical fragments and anions. In the gas phase, the computed glycosidic bond breaking activation energy (24.1 kcal/mol) excludes the base release pathway. The low-energy barrier for the C3′–O3′ σ bond cleavage process (∼6.0 kcal/mol for both cytidine and thymidine) suggests that this reaction pathway is the most favorable one as compared to other possible pathways. On the other hand, the relatively low activation energy barrier (∼14 kcal/mol) for the C5′–O5′ σ bond cleavage process indicates that this bond breaking pathway could be possible, especially when the incident electrons have relatively high energy (a few electronvolts). The presence of the polarizable medium greatly increases the activation energies of either C–O σ bond cleavage processes or the N-glycosidic bond breaking process. The only possible pathway that dominates the LEE-induced DNA single strands in the presence of the polarizable surroundings (such as in an aqueous solution) is the C3′–O3′ σ bond cleavage (the relatively low activation energy barrier, ∼13.4 kcal/mol, has been predicted through a polarizable continuum model investigation). The qualitative agreement between the ratio for the bond breaks of C5′–O5′, C3′–O3′ and N-glycosidic bonds observed in the experiment of oligonucleotide tetramer CGAT and the theoretical sequence of the bond breaking reaction pathways have been found. This consistency between the theoretical predictions and the experimental observations provides strong supportive evidences for the base-centered radical anion mechanism of the LEE-induced single-strand bond breaking around the pyrimidine sites of the DNA single strands. PMID:20430827
Song, Xian-Rong; Qiu, Yi-Feng; Song, Bo; Hao, Xin-Hua; Han, Ya-Ping; Gao, Pin; Liu, Xue-Yuan; Liang, Yong-Min
2015-02-20
A novel BF3·Et2O-promoted tandem reaction of easily prepared 2-propynolphenols/anilines and trimethylsilyl azide is developed to give C2-alkenylated benzoxazoles and benzimidazoles in moderate to good yields. Most reactions could be accomplished in 30 min at room temperature. This tandem process involves a Csp-Csp2 bond cleavage and a C-N bond formation. Moreover, both tertiary and secondary propargylic alcohols with diverse functional groups were tolerated under the mild conditions.
Verification of RDX Photolysis Mechanism
1999-11-01
which re-addition of HN02 was proposed to yield a hydroxydiazo intermediate that then decomposed to an alcohol . This sequence is shown for...various organic products such as alcohols , or undergo carbon- nitrogen (C-N) bond cleavage (Noller 1965). This reaction is sufficiently quanti...carbon-centered functional group such as the alcohol shown below, or C-N bond cleavage. 42 CERL TR 99/93 N02 N02 No2 ^Nv. N ’ ( ^| H2
Illenberger, Eugen; Meinke, Martina C
2014-08-21
The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.
Stille coupling via C-N bond cleavage
NASA Astrophysics Data System (ADS)
Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu
2016-09-01
Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C-N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R-NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C-N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics.
Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH 3 Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Papri; Heiden, Zachariah M.; Wiedner, Eric S.
We report ammonia oxidation by homolytic cleavage of all three H atoms from a Mo-15NH3 complex using the 2,4,6-tri-tert-butylphenoxyl radical to afford a Mo-alkylimido (Mo=15NR) complex (R = 2,4,6-tri-t-butylcyclohexa-2,5-dien-1-one). Reductive cleavage of Mo=15NR generates a terminal Mo≡N nitride, and a [Mo-15NH]+ complex is formed by protonation. Computational analysis describes the energetic profile for the stepwise removal of three H atoms from the Mo-15NH3 complex and the formation of Mo=15NR. Acknowledgment. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Re-search Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Officemore » of Basic Energy Sciences. EPR and mass spectrometry experiments were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. The authors thank Dr. Eric D. Walter and Dr. Rosalie Chu for assistance in performing EPR and mass spectroscopy analysis, respectively. Computational resources provided by the National Energy Re-search Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific North-west National Laboratory is operated by Battelle for the U.S. DOE.« less
Tandem MS Analysis of Selenamide-Derivatized Peptide Ions
NASA Astrophysics Data System (ADS)
Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao
2011-09-01
Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen ( m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.
Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.
Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S
2009-11-04
(PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.
Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang
2017-10-04
The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.
Neurotensin-metabolizing peptidases in rat fundus plasma membranes.
Checler, F; Barelli, H; Kwan, C Y; Kitabgi, P; Vincent, J P
1987-08-01
The mechanisms by which neurotensin (NT) was inactivated by rat fundus plasma membranes were characterized. Primary inactivating cleavages occurred at the Arg8-Arg9, Pro10-Tyr11, and Ile12-Leu13 peptidyl bonds. Hydrolysis at the Arg8-Arg9 bond was fully abolished by the use of N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanine-p- aminobenzoate, a result indicating the involvement at this site of a recently purified soluble metallopeptidase. Hydrolysis of the Pro10-Tyr11 bond was totally resistant to N-benzyloxycarbonyl-prolyl-prolinal and thiorphan, an observation suggesting that the peptidase responsible for this cleavage was different from proline endopeptidase and endopeptidase 24.11 and might correspond to a NT-degrading neutral metallopeptidase recently isolated from rat brain synaptic membranes. The enzyme acting at the Ile12-Leu13 bond has not yet been identified. Secondary cleavages occurring on NT degradation products were mainly generated by bestatin-sensitive aminopeptidases and post-proline dipeptidyl aminopeptidase. The content in NT-metabolizing peptidases present in rat fundus plasma membranes is compared with that previously established for purified rat brain synaptic membranes.
Masuda, Kengo; Sakiyama, Norifumi; Tanaka, Rie; Noguchi, Keiichi; Tanaka, Ken
2011-05-11
It has been established that a cationic rhodium(I)/(R)-H(8)-BINAP or (R)-Segphos complex catalyzes two modes of enantioselective cyclizations of γ-alkynylaldehydes with acyl phosphonates via C-P or C-H bond cleavage. The ligands of the Rh(I) complexes and the substitutents of both γ-alkynylaldehydes and acyl phosphonates control these two different pathways. © 2011 American Chemical Society
C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.
Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu
2013-04-17
We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.
Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.
Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla
2009-10-07
The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.
Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C
2015-03-01
We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20) spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.
Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver
2015-09-07
Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahba, Haytham M.; Stevenson, Michael J.; Mansour, Ahmed
2017-01-03
The organomercurial lyase MerB has the unique ability to cleave carbon–Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon–Hg bond cleavage. However, the role of each residue in carbon–metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding ismore » to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.« less
Bond strengths of toluenes, anilines, and phenols: to hammett or not.
Pratt, Derek A; DiLabio, Gino A; Mulder, Peter; Ingold, K U
2004-05-01
The Hammett equation correlates the effects of Y on many different chemical properties of YC(6)H(4)ZX families of compounds. One of the most surprising is that the Z-X bond dissociation enthalpy (BDE), a homolytic property, can be correlated for some 4-YC(6)H(4)ZX families with electrophilic substituent constants, sigma(p)(+)(Y), which were largely derived from the rates of the heterolytic S(N)1 solvolyses of para-substituted cumyl chlorides. Although there is no Hammett correlation of the C-X BDEs in 4-YC(6)H(4)CH(2)X (X = H, halide, OPh) families, there are good correlations of N-X BDEs with sigma(p)(+)(Y) in 4-YC(6)H(4)NHX (X = H, CH(3), OH, F) and excellent correlations of O-X BDEs with sigma(p)(+)(Y) in 4-YC(6)H(4)OX (X = H, CH(3), CH(2)Ph) families. The reasons for this varied behavior are discussed.
Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons.
Huber, G W; Shabaker, J W; Dumesic, J A
2003-06-27
Hydrogen (H2) was produced by aqueous-phase reforming of biomass-derived oxygenated hydrocarbons at temperatures near 500 kelvin over a tin-promoted Raney-nickel catalyst. The performance of this non-precious metal catalyst compares favorably with that of platinum-based catalysts for production of hydrogen from ethylene glycol, glycerol, and sorbitol. The addition of tin to nickel decreases the rate of methane formation from C-O bond cleavage while maintaining the high rates of C-C bond cleavage required for hydrogen formation.
Shan, Junjun; Liu, Jilei; Li, Mengwei; ...
2017-12-29
Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Junjun; Liu, Jilei; Li, Mengwei
Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less
Hu, Feng; Lalancette, Roger; Szostak, Michal
2016-04-11
Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the nature of carbon-hydrogen bond activation at rhodium and related reactions.
Jones, William D
2005-06-27
Over the past 20 years, substantial progress has been made in the understanding of the activation of C-H and other strong bonds by reactive metal complexes in low oxidation states. This paper will present an overview of the use of pentamethylcyclopentadienyl and trispyrazolylborate rhodium complexes for the activation of arene and alkane C-H bonds. Insights into bond strengths, kinetic and thermodynamic selectivities, and the nature of the intermediates involved will be reviewed. The role of eta-2 arene complexes will be shown to be critical to the C-H activation reactions. Some information about the fleeting alkane sigma-complexes will also be presented. In addition, use of these complexes with thiophenes has shown the ability to cleave C-S bonds. Mechanistic information has been obtained indicating coordination through sulfur prior to cleavage. Relevant examples of nickel-based C-S cleavage will also be given.
Failure mechanisms in wood joints bonded with urea-formaldehyde adhesives
B.H. River; R.O. Ebewele; G.E. Myers
1994-01-01
Wood joints bonded with urea-formaldehyde (UF) are weakened by cyclic swelling and shrinking. To study the failure mechanisms in UF-bonded joints, specimens were bonded with unmodified, modified (amine), or phenol formaldehyde adhesive and subjected to accelerated aging. Modification of the adhesive properties increased the cleavage fracture toughness and shear...
Electrochemistry-Assisted Top-Down Characterization of Disulfide-Containing Proteins
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D.; Chen, Hao
2013-01-01
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then online ionized into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs. 73 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs. 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research. PMID:22448817
Electrochemistry-assisted top-down characterization of disulfide-containing proteins.
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D; Chen, Hao
2012-04-17
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.
Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO
NASA Astrophysics Data System (ADS)
Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.
2001-05-01
The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.
Easy access to a cyclic key intermediate for the synthesis of trisporic acids and related compounds.
González-Delgado, José A; Escobar, Gustavo; Arteaga, Jesús F; Barrero, Alejandro F
2014-02-03
The synthesis of a cyclohexane skeleton possessing different oxygenated functional groups at C-3, C-8 and C-9, and a D1,6-double bond has been accomplished in 10 steps with an overall 17% yield. This compound is a key intermediate for access to a wide range of compounds of the bioactive trisporoid family. The synthetic sequence consists of the preparation of a properly functionalized epoxygeraniol derivative, and its subsequent stereoselective cyclization mediated by Ti(III). This last step implies a domino process that starts with a homolytic epoxide opening followed by a radical cyclization and regioselective elimination. This concerted process gives access to the cyclohexane moiety with stereochemical control of five of its six carbon atoms.
Li, He; Schopfer, Lawrence M; Nachon, Florian; Froment, Marie-Thérèse; Masson, Patrick; Lockridge, Oksana
2007-11-01
Some organophosphorus compounds are toxic because they inhibit acetylcholinesterase (AChE) by phosphylation of the active site serine, forming a stable conjugate: Ser-O-P(O)-(Y)-(XR) (where X can be O, N, or S and Y can be methyl, OR, or SR). The inhibited enzyme can undergo an aging process, during which the X-R moiety is dealkylated by breaking either the P-X or the X-R bond depending on the specific compound, leading to a nonreactivatable enzyme. Aging mechanisms have been studied primarily using AChE. However, some recent studies have indicated that organophosphate-inhibited butyrylcholinesterase (BChE) may age through an alternative pathway. Our work utilized matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry to study the aging mechanism of human BChE inhibited by dichlorvos, echothiophate, diisopropylfluorophosphate (DFP), isomalathion, soman, sarin, cyclohexyl sarin, VX, and VR. Inhibited BChE was aged in the presence of H2O18 to allow incorporation of (18)O, if cleavage was at the P-X bond. Tryptic-peptide organophosphate conjugates were identified through peptide mass mapping. Our results showed no aging of VX- and VR-treated BChE at 25 degrees C, pH 7.0. However, BChE inhibited by dichlorvos, echothiophate, DFP, soman, sarin, and cyclohexyl sarin aged exclusively through O-C bond cleavage, i.e., the classical X-R scission pathway. In contrast, isomalathion aged through both X-R and P-X pathways; the main aged product resulted from P-S bond cleavage and a minor product resulted from O-C and/or S-C bond cleavage.
Ab initio simulations of bond breaking in sulfur crosslinked isoprene oligomer units
NASA Astrophysics Data System (ADS)
Gehrke, Sascha; Alznauer, Hans Tobias; Karimi-Varzaneh, Hossein Ali; Becker, Jörg August
2017-12-01
Sulfur crosslinked polyisoprene (rubber) is used in important material components for a number of technical tasks (e.g., in tires and sealings). If mechanical stress, like tension or shear, is applied on these material components, the sulfur crosslinks suffer from homolytic bond breaking. In this work, we have simulated the bond breaking mechanism of sulfur crosslinks between polyisoprene chains using Car-Parrinello molecular dynamic simulations and investigated the maximum forces which can be resisted by the crosslinks. Small model systems with crosslinks formed by chains of N = 1 to N = 6 sulfur atoms have been simulated with the slow growth-technique, known from the literature. The maximum force can be thereby determined from the calculated energies as a function of strain (elongation). The stability of the crosslink under strain is quantified in terms of the maximum force that can be resisted by the system before the crosslink breaks. As shown by our simulations, this maximum force decreases with the sulfur crosslink length N in a step like manner. Our findings indicate that in bridges with N = 1, 2, and 3 sulfur atoms predominantly, carbon-sulfur bonds break, while in crosslinks with N > 3, the breaking of a sulfur-sulfur bond is the dominant failure mechanism. The results are explained within a simple chemical bond model, which describes how the delocalization of the electrons in the generated radicals can lower their electronic energy and decrease the activation barriers. It is described which of the double bonds in the isoprene units are involved in the mechanochemistry of crosslinked rubber.
Reactions involving the heterolytic cleavage of carbon-element σ-bonds by Grignard reagents
NASA Astrophysics Data System (ADS)
Polivin, Yurii N.; Karakhanov, Robert A.; Postnov, Victor N.
1990-03-01
The reactions involving the heterolysis of the C-O, C-C, C-N, C-S, C-Cl, etc. bonds by organomagnesium compounds are examined and the nature of this interesting phenomenon is analysed. On the basis of the analysis of the characteristic features of the cleavage under discussion, it is shown that the heterolysis of the carbon-element bond is, firstly, a general reaction for all classes of organic compounds (provided that two conditions are observed: the substrate molecule must fragment into two stable species — a carbonium ion and an anion — and the strength of the Lewis acid properties should be adequate for the occurrence of the above reaction) and, secondly, the heterolysis of the carbon-element bond is one of the independent pathways in the reactions of the Grignard reagents. The bibliography includes 158 references.
Hellmann, Benjamin J; Kamps, Ina; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W
2010-09-21
The reaction of 2-lithio-1,3,5-trimethyl-1,3,5-triazacyclohexane with YCp(2)Cl leads to the formation of a donor-functionalised mono-anionic amide ligand, 1,3,5-trimethyl-2-(methylamidomethyl)-1,3,5-triazacyclohexane, bonded to the YCp(2) unit. The reaction involves a cleavage of the 1,3,5-triazacyclohexane ring and such a cleavage is also observed in the analogous reaction with (Me(3)C)(2)GaCl, where a MeN[double bond, length as m-dash]CH(-) fragment is formed. No such cleavage occurs in the reaction of the related dilithiated bicyclic bis(3-methyl-1,3-diazacyclohex-1-yl)methane with YCpCl(2).3thf, which affords a mixed lithium-yttrium organyl.
Ren, Hui; Yu, Weiting; Salciccioli, Michael; Chen, Ying; Huang, Yulin; Xiong, Ke; Vlachos, Dionisios G; Chen, Jingguang G
2013-05-01
Which cleavage do you prefer? With a combination of density functional theory (DFT) calculations, surface science studies, and reactor evaluations, Mo(2)C is identified as a highly selective HDO catalyst to selectively convert biomass-derived oxygenates to unsaturated hydrocarbons through selective C-O bond scissions without C-C bond cleavage. This provides high-value HDO products for utilization as feedstocks for chemicals and fuels; this also reduces the overall consumption of H2 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao
2014-09-24
An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.
Unifying Principles of the Reductive Covalent Graphene Functionalization.
Abellán, Gonzalo; Schirowski, Milan; Edelthalhammer, Konstantin F; Fickert, Michael; Werbach, Katharina; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas
2017-04-12
Covalently functionalized graphene derivatives were synthesized via benchmark reductive routes using graphite intercalation compounds (GICs), in particular KC 8 . We have compared the graphene arylation and alkylation of the GIC using 4-tert-butylphenyldiazonium and bis(4-(tert-butyl)phenyl)iodonium salts, as well as phenyl iodide, n-hexyl iodide, and n-dodecyl iodide, as electrophiles in model reactions. We have put a particular focus on the evaluation of the degree of addition and the bulk functionalization homogeneity (H bulk ). For this purpose, we have employed statistical Raman spectroscopy (SRS), and a forefront characterization tool using thermogravimetric analysis coupled with FT-IR, gas chromatography, and mass spectrometry (TGA/FT-IR/GC/MS). The present study unambiguously shows that the graphene functionalization using alkyl iodides leads to the best results, in terms of both the degree of addition and the H bulk . Moreover, we have identified the reversible character of the covalent addition chemistry, even at temperatures below 200 °C. The thermally induced addend cleavage proceeds homolytically, which allows for the detection of dimeric cleavage products by TGA/FT-IR/GC/MS. This dimerization points to a certain degree of regioselectivity, leading to a low sheet homogeneity (H sheet ). Finally, we developed this concept by performing the reductive alkylation reaction in monolayer CVD graphene films. This work provides important insights into the understanding of basic principles of reductive graphene functionalization and will serve as a guide in the design of new graphene functionalization concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran, Renjith; Sarma, Manabendra, E-mail: msarma@iitg.ernet.in
2014-09-14
Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π{sup *} orbital of the base to the σ{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed aftermore » impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided.« less
Adenosylcobinamide methyl phosphate as a pseudocoenzyme for diol dehydrase.
Ishida, A; Toraya, T
1993-02-16
Adenosylcobinamide methyl phosphate, a novel analog of adenosylcobalamin lacking the nucleotide loop moiety, was synthesized. It did not show detectable coenzymic activity but behaved as a strong competitive inhibitor against AdoCbl with relatively high affinity (Ki = 2.5 microM). When apoenzyme was incubated at 37 degrees C with this analog in the presence of substrate, the Co-C bond of the analog was almost completely and irreversibly cleaved within 10 min, forming an enzyme-bound Co(II)-containing species. The cleavage was not observed in the absence of substrate. The Co-C bond cleavage in the presence of substrate was not catalytic but stoichiometric, implying that the Co-C bond of the analog undergoes activation when the analog binds to the active site of the enzyme. 5'-Deoxyadenosine was the only product derived from the adenosyl group of the analog upon the Co-C bond cleavage. Apoenzyme did not undergo modification during this process. Therefore, it seems likely that adenosylcobinamide methyl phosphate acts as a pseudocoenzyme or a potent suicide coenzyme. Since adenosylcobinamide neither functions as coenzyme nor binds tightly to apoenzyme, it can be concluded that the phosphodiester moiety of the nucleotide loop of adenosylcobalamin is essential for tight binding to apoenzyme and therefore for subsequent activation of the Co-C bond and catalysis. It is also evident that the nucleotide loop is obligatory for the normal progress of catalytic cycle.
Effects of flexibility of the α2 chain of type I collagen on collagenase cleavage.
Mekkat, Arya; Poppleton, Erik; An, Bo; Visse, Robert; Nagase, Hideaki; Kaplan, David L; Brodsky, Barbara; Lin, Yu-Shan
2018-05-12
Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage. To investigate MMP-1 cleavage, recombinant homotrimers were constructed with sequences from the MMP cleavage regions of human collagen chains inserted into a host bacterial collagen protein system. All triple-helical constructs were cleaved by MMP-1, with α2(I) homotrimers cleaved efficiently at a rate similar to that seen for α1(II) and α1(III) homotrimers, while α1(I) homotrimers were cleaved at a much slower rate. The introduction of destabilizing Gly to Ser mutations within the human collagenase susceptible region of the α2(I) chain did not interfere with MMP-1 cleavage. Molecular dynamics simulations indicated a greater degree of transient hydrogen bond breaking in α2(I) homotrimers compared with α1(I) homotrimers at the MMP-1 cleavage site, and showed an extensive disruption of hydrogen bonding in the presence of a Gly to Ser mutation, consistent with chymotrypsin digestion results. This study indicates that α2(I) homotrimers are susceptible to MMP-1, proves that the presence of an α1(I) chain is not a requirement for α2(I) cleavage, and supports the importance of local unfolding of α2(I) in collagenase cleavage. Copyright © 2018. Published by Elsevier Inc.
Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Susan K; Gordon, John C; Thorn, David L
2009-01-01
The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress hasmore » been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A), 2-phenoxyethanol (B), and 1,2-diphenyl-2-methoxyethanol (C) (Figure 1). Reaction of (dipic)V{sup V}(O)O{sup i}Pr (1a) or (dipic)V{sup v}(O)OEt (lb) with A, B, or C in acetonitrile yielded new vanadium(V) complexes where the alcohol-ether ligand was bound in a chelating fashion. From the reaction of 1b with pinacol monomethyl ether (A) in acetonitrile solution, (dipic)V{sup v}(O)(pinOMe) (2) (PinOMe = 2,3-dimethyl-3-methoxy-2-butanoxide) was isolated in 61 % yield. Reaction of 1b with 2-phenoxyethanol (B) in acetonitrile gave the new complex (dipic)V{sup v}(O)(OPE) (3) (OPE = 2-phenoxyethoxide), which was isolated in 76% yield. In a similar fashion, 1a reacted with 1,2-diphenyl-2-methoxyethanol (C) to give (dipic)V(O)(DPME) (4) (DPME = 1,2-diphenyl-2-methoxyethoxide), which was isolated in 39% yield. Complexes 2, 3, and 4 were characterized by {sup 1}H NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Compared to the previously reported vanadium(V) pinacolate complex (dipic)V(O)(pinOH) the X-ray structure of complex 2 reveals a slightly shorter V = O bond, 1.573(2) {angstrom} vs 1.588(2) {angstrom} for the pinOH structure. Complexes 3 and 4 display similar vanadium oxo bond distances of 1.568(2) {angstrom} and 1.576(2) {angstrom}, respectively. All three complexes show longer bonds to the ether-oxygen trans to the oxo (2.388(2) {angstrom} for 2, 2.547(2) {angstrom} for 3, and 2.438(2) {angstrom} for 4) than to the hydroxy-oxygen in the pinOH structure (2.252(2) {angstrom}).« less
NMR and enzymology of modified DNA/protein interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, M.A.
1994-12-31
We have found distinct DNA structure and base dynamics precisely at the TpA cleavage site in the TTTAAA AHA III endonuclease restriction sequence. Hence, the unusual base stacking and mobility found in this sequence may be important to the mechanism of enzymatic cleavage of the phophodiester bond.
UV Photofragmentation Dynamics of Protonated Cystine: Disulfide Bond Rupture.
Soorkia, Satchin; Dehon, Christophe; Kumar, S Sunil; Pedrazzani, Mélanie; Frantzen, Emilie; Lucas, Bruno; Barat, Michel; Fayeton, Jacqueline A; Jouvet, Christophe
2014-04-03
Disulfide bonds (S-S) play a central role in stabilizing the native structure of proteins against denaturation. Experimentally, identification of these linkages in peptide and protein structure characterization remains challenging. UV photodissociation (UVPD) can be a valuable tool in identifying disulfide linkages. Here, the S-S bond acts as a UV chromophore and absorption of one UV photon corresponds to a σ-σ* transition. We have investigated the photodissociation dynamics of protonated cystine, which is a dimer of two cysteines linked by a disulfide bridge, at 263 nm (4.7 eV) using a multicoincidence technique in which fragments coming from the same fragmentation event are detected. Two types of bond cleavages are observed corresponding to the disulfide (S-S) and adjacent C-S bond ruptures. We show that the S-S cleavage leads to three different fragment ions via three different fragmentation mechanisms. The UVPD results are compared to collision-induced dissociation (CID) and electron-induced dissociation (EID) studies.
Characterization of CMPO and its radiolysis products by Direct Infusion ESI-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. S. Groenewold; G. Elias; B. J. Mincher
2012-09-01
Direct infusion electrospray ionization-mass spectrometry (ESI-MS) approaches were developed for rapid identification of octyl,phenyl,(N,N-(diisobutyl)carbamoylmethyl) phosphine oxide (CMPO) and impurity compounds formed during alpha and gamma irradiation experiments. CMPO is an aggressive Lewis base, and produces extremely abundant metal complex ions in the ESI-MS analysis that make identification of low abundance compounds that are less nucleophilic challenging. Radiolysis products were identified using several approaches including restricting ion trapping so as to exclude the abundant natiated CMPO ions, extraction of acidic products using aqueous NaOH, and extraction of basic products using HNO3. These approaches generated protonated, natiated and deprotonated species derived frommore » CMPO degradation products formed via radiolytic cleavages of several different bonds. Cleavages of the amide and methylene-phosphoryl bonds appear to be favored by both forms of irradiation, while alpha irradiation also appears to induce cleavage of the methylene-carbonyl bond. The degradation products observed are formed from recombination of the initially formed radicals with hydrogen, methyl, isopropyl and hydroxyl radicals that are derived either from CMPO, or the dodecane solvent.« less
Yang, Xiaohui; Li, Ning; Lin, Xuliang; Pan, Xuejun; Zhou, Yonghong
2016-11-09
The present study demonstrates that the concentrated lithium bromide (LiBr) solution with acid as catalyst was able to selectively cleave the β-O-4 aryl ether bond and lead to lignin depolymerization under mild conditions (e.g., in 60% LiBr with 0.3 M HCl at 110 °C for 2 h). Four industrial lignins from different pulping and biorefining processes, including softwood kraft lignin (SKL), hardwood kraft lignin (HKL), softwood ethanol organosolv lignin (EOL), and acid corncob lignin (ACL), were treated in the LiBr solution. The molecular weight, functional group, and interunit linkages of the lignins were characterized using GPC, FTIR, and NMR. The results indicated that the β-O-4 aryl ether bonds of the lignins were selectively cleaved, and both LiBr and HCl played crucial roles in catalyzing the cleavage of the ether bonds.
NASA Astrophysics Data System (ADS)
Jiang, Xuan-Feng; Huang, Hui; Chai, Yun-Feng; Lohr, Tracy Lynn; Yu, Shu-Yan; Lai, Wenzhen; Pan, Yuan-Jiang; Delferro, Massimiliano; Marks, Tobin J.
2017-02-01
Developing homogeneous catalysts that convert CS2 and COS pollutants into environmentally benign products is important for both fundamental catalytic research and applied environmental science. Here we report a series of air-stable dimeric Pd complexes that mediate the facile hydrolytic cleavage of both CS2 carbon-sulfur bonds at 25 °C to produce CO2 and trimeric Pd complexes. Oxidation of the trimeric complexes with HNO3 regenerates the dimeric starting complexes with the release of SO2 and NO2. Isotopic labelling confirms that the carbon and oxygen atoms of CO2 originate from CS2 and H2O, respectively, and reaction intermediates were observed by gas-phase and electrospray ionization mass spectrometry, as well as by Fourier transform infrared spectroscopy. We also propose a plausible mechanistic scenario based on the experimentally observed intermediates. The mechanism involves intramolecular attack by a nucleophilic Pd-OH moiety on the carbon atom of coordinated µ-OCS2, which on deprotonation cleaves one C-S bond and simultaneously forms a C-O bond. Coupled C-S cleavage and CO2 release to yield [(bpy)3Pd3(µ3-S)2](NO3)2 (bpy, 2,2‧-bipyridine) provides the thermodynamic driving force for the reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, J.W.; Birken, S.; Pileggi, N.F.
1989-11-28
Crystals suitable for X-ray diffraction studies at moderate resolution have been grown from two forms of human chorionic gonadotropin (hCG): HF-treated hCG and neuraminidase-treated hCG. The enzymatically desialylated form of hCG produced crystals that diffract to 2.8 {angstrom} as compared to the HF-treated hCG crystals that diffract to 3.0 {angstrom}. Although it was assumed that the high and heterogeneous carbohydrate content of the glycoprotein hormones inhibited their crystallization, this report suggests that it is the negatively charged surface sugars and neither the total carbohydrate content nor its heterogeneity which interferes with crystal formation. Chemical deglycosylation resulted in significantly increased proteinmore » degradation during crystal growth. Such peptide bond cleavages were observed to a much lesser extent in the crystals grown from neuraminidase-digested hCG. Sequence analysis of the HF-treated hCG crystals suggested that up to 45% of the molecules within the crystal had an acid-labile peptide bond cleaved. In contrast, the neuraminidase-treated hCG exhibited less than 9% of this type of cleavage. The manner in which hCG was treated prior to crystallization was found to be a very important factor in the extent of peptide bound cleavages occurring during crystal growth. HF treatment of glycoproteins may render glycoproteins more susceptible to peptide bond cleavage during crystal growth.« less
Kinetic Control in the Cleavage of Unsymmetrical Disilanes.
Hevesi, Làszlò; Dehon, Michael; Crutzen, Raphael; Lazarescu-Grigore, Adriana
1997-04-04
A series of 12 phenyl-substituted arylpentamethyldisilanes 1a-l have been synthesized in order to examine the regioselectivity of their nucleophilic Si,Si bond cleavage reactions under Still's conditions (MeLi/HMPA/0 degrees C). It has been found that the sensitivity of these reactions to the electronic effects of the substituents in the phenyl ring could be described by the Hammett-type equation log(k(A)/k(B)) = 0.4334 + 2.421(Sigmasigma); (correlation coefficient R = 0.983). The k(A)/k(B) ratio represents the relative rate of attack at silicon atom A (linked to the aryl ring) or at silicon atom B (away from the aryl ring) of the unsymmetrical disilanes. Thus, the present investigation shows that the earlier belief according to which the nucleophilic cleavage of unsymmetrical disilanes always produces the more stable silyl anionic species (thermodynamic control) should be abandoned, or at least seriously amended: kinetic factors appear to exert a primary influence on the regioselectivity of such reactions. Since the two major kinetic factors (i.e., electrophilic character of and steric hindrance at a given silicon atom) have opposite effects on the orientation of the reaction, it may happen that kinetic and thermodynamic control lead to the same result. For some of the unsymmetrical disilanes studied, the major reaction path was not the Si,Si bond cleavage; instead, Si-aryl bond breaking occurred, producing the corresponding aryl anions.
Simukova, N A; Yakovlev, D Y; Budowsky, E I
1975-01-01
The principal UV-induced (lambda = 2546nm) reaction of N4-hydroxy- and N4methoxycytidines and N6-methoxyadenosine in neutral aqueous solutions is cleavage of the exocyclic N-O bond with the respective formation of cytidine and adenosine. Quantum yields are 2.8x10(-3) and 2.2x10(-3) M/E for the first two compounds and 9.1x10(-3) M/E for N6-methoxyadenosine. PMID:1052542
Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage.
Ackermann, Lutz; Vicente, Rubén; Kapdi, Anant R
2009-01-01
The area of transition-metal-catalyzed direct arylation through cleavage of C-H bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents. In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations. Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations.
Sugiishi, Tsuyuka; Kimura, Akifumi; Nakamura, Hiroyuki
2010-04-21
Substitution reactions of propargylic amines proceed in the presence of copper(I) catalysts. Mechanistic studies showed that C(sp)-C(sp(3)) bond cleavage assisted by nitrogen lone-pair electrons is essential for the reaction, and the resulting iminium intermediates undergo amine exchange, aldehyde exchange, and alkyne addition reactions. Because iminium intermediates are key to aldehyde-alkyne-amine (A(3)) coupling reactions, this transformation is effective not only for reconstruction of propargylic amines but also for chiral induction of racemic compounds in the presence of chiral catalysts.
Reactions in trifluoroacetic acid (CF 3COOH) induced by low energy electron attachment
NASA Astrophysics Data System (ADS)
Langer, Judith; Stano, Michal; Gohlke, Sascha; Foltin, Victor; Matejcik, Stefan; Illenberger, Eugen
2006-02-01
Dissociative electron attachment to trifluoroacetic acid (CF 3COOH) is characterized by an intense low energy shape resonance located near 1 eV and a comparatively weaker core excited resonance located near 7 eV. The shape resonance decomposes into the fragment ions CF 3COO -, CF 2COO -, and CF2-. The underlying reactions include simple bond cleavage but also more complex sequences involving multiple bond cleavages, rearrangement in the precursor ion and formation of new molecules (HF, CO 2). The core excited resonance additionally decomposes into F -, CF3- and probably metastable CO2-.
Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins
NASA Astrophysics Data System (ADS)
Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak
2016-09-01
Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N-O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins.
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.
2016-11-01
Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R
2016-11-10
Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.
Reductive cleavage of the peptide bond
NASA Technical Reports Server (NTRS)
Holian, J.; Garrison, W. M.
1973-01-01
In many biological research efforts, long chain organic molecules are studied by breaking large molecules into smaller components. Cleavage technique of recent interest is the use of solvated electrons. These are formed when aqueous solutions are bombarded with gamma radiation. Solvated electron is very reactive and can reduce most any species present, even to form free radicals.
Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
Lavoie, Mathieu; Abou Elela, Sherif
2008-08-19
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.
Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît
2013-04-30
An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and in controlling their self-assembly, nanostructuration, and/or release.
NASA Astrophysics Data System (ADS)
Galeron, M. A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J. F.
2014-12-01
A number of lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France), with a main focus on phytosterols, such as sitosterol, desmosterol, brassicasterol and cholesterol. This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant derived particulate organic matter (POM) with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Specific sitosterol and cholesterol degradation products were quantified and used to estimate the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could play a role in the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea. Although sitosterol has been commonly used as a tracer of the terrestrial origin of POM in rivers, we show here that is it also found in phytoplankton, which highlights the need to use different tracers to determine the origin of POM in rivers. As part of the set of tracers we use, we have identified betulin to be an interesting candidate, although limited to a number of angiosperms species. Not only can we trace betulin to an unequivocal terrestrial origin, we also identified its specific degradation products, allowing us to trace the degradation state of angiosperm particulate debris in rivers, as well as the type of degradation undergone.
Rugor, Agnieszka; Wójcik-Augustyn, Anna; Niedzialkowska, Ewa; Mordalski, Stefan; Staroń, Jakub; Bojarski, Andrzej; Szaleniec, Maciej
2017-08-01
Steroid C25 dehydrogenase (S25DH) is a molybdenum-containing oxidoreductase isolated from the anaerobic Sterolibacterium denitrificans Chol-1S. S25DH is classified as 'EBDH-like' enzyme (EBDH, ethylbenzene dehydrogenase) and catalyzes the introduction of an OH group to the C25 atom of a sterol aliphatic side-chain. Due to its regioselectivity, S25DH is proposed as a catalyst in production of pharmaceuticals: calcifediol or 25-hydroxycholesterol. The aim of presented research was to obtain structural model of catalytic subunit α and investigate the reaction mechanism of the O 2 -independent tertiary carbon atom activation. Based on homology modeling and theoretical calculations, a S25DH α subunit model was for the first time characterized and compared to other S25DH-like isoforms. The molecular dynamics simulations of the enzyme-substrate complexes revealed two stable binding modes of a substrate, which are stabilized predominantly by van der Waals forces in the hydrophobic substrate channel. However, H-bond interactions involving polar residues with C3=O/C3-OH in the steroid ring appear to be responsible for positioning the substrate. These results may explain the experimental kinetic results which showed that 3-ketosterols are hydroxylated 5-10-fold faster than 3-hydroxysterols. The reaction mechanism was studied using QM:MM and QM-only cluster models. The postulated mechanism involves homolytic CH cleavage by the MoO ligand, giving rise to a radical intermediate with product obtained in an OH rebound process. The hypothesis was supported by kinetic isotopic effect (KIE) experiments involving 25,26,26,26-[ 2 H]-cholesterol (4.5) and the theoretically predicted intrinsic KIE (7.0-7.2). Finally, we have demonstrated that the recombinant S25DH-like isoform catalyzes the same reaction as S25DH. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Se; Wang, Zhuang
2017-11-11
The study of pollution due to combined antibiotics and metals is urgently needed. Photochemical processes are an important transformation pathway for antibiotics in the environment. The mechanisms underlying the effects of metal-ion complexation on the aquatic photochemical transformation of antibiotics in different dissociation forms are crucial problems in science, and beg solutions. Herein, we investigated the mechanisms of direct photolysis of norfloxacin (NOR) in different dissociation forms in water and metal ion Mg 2+ effects using quantum chemical calculations. Results show that different dissociation forms of NOR had different maximum electronic absorbance wavelengths (NOR 2+ < NOR⁰ < NOR⁺) and showed different photolysis reactivity. Analysis of transition states (TS) and reaction activation energies ( E a ) indicated NOR⁺ generally underwent loss of the piperazine ring (C10-N13 bond cleavage) and damage to piperazine ring (N13-C14 bond cleavage). For NOR 2+ , the main direct photolysis pathways were de-ethylation (N7-C8 bond cleavage) and decarboxylation (C2-C5 bond cleavage). Furthermore, the presence of Mg 2+ changed the order of the wavelength at maximum electronic absorbance (NOR⁺-Mg 2+ < NOR⁰-Mg 2+ < NOR 2+ -Mg 2+ ) and increased the intensities of absorbance peaks of all three dissociation species of NOR, implying that Mg 2+ played an important role in the direct photolysis of NOR⁰, NOR⁺, and NOR 2+ . The calculated TS results indicated that the presence of Mg 2+ increased E a for most direct photolysis pathways of NOR, while it decreased E a for some direct photolysis pathways such as the loss of the piperazine ring and the damage of the piperazine ring of NOR⁰ and the defluorination of NOR⁺.
Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.
Weber, U; Beier, H; Gross, H J
1996-06-15
The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.
Mechanistic Insights into Ring Cleavage and Contraction of Benzene over a Titanium Hydride Cluster.
Kang, Xiaohui; Luo, Gen; Luo, Lun; Hu, Shaowei; Luo, Yi; Hou, Zhaomin
2016-09-14
Carbon-carbon bond cleavage of benzene by transition metals is of great fundamental interest and practical importance, as this transformation is involved in the production of fuels and other important chemicals in the industrial hydrocracking of naphtha on solid catalysts. Although this transformation is thought to rely on cooperation of multiple metal sites, molecular-level information on the reaction mechanism has remained scarce to date. Here, we report the DFT studies of the ring cleavage and contraction of benzene by a molecular trinuclear titanium hydride cluster. Our studies suggest that the reaction is initiated by benzene coordination, followed by H2 release, C6H6 hydrometalation, repeated C-C and C-H bond cleavage and formation to give a MeC5H4 unit, and insertion of a Ti atom into the MeC5H4 unit with release of H2 to give a metallacycle product. The C-C bond cleavage and ring contraction of toluene can also occur in a similar fashion, though some details are different due to the presence of the methyl substituent. Obviously, the facile release of H2 from the metal hydride cluster to provide electrons and to alter the charge population at the metal centers, in combination with the flexible metal-hydride connections and dynamic redox behavior of the trimetallic framework, has enabled this unusual transformation to occur. This work has not only provided unprecedented insights into the activation and transformation of benzene over a multimetallic framework but it may also offer help in the design of new molecular catalysts for the activation and transformation of inactive aromatics.
Yang, Hua-Qing; Fu, Hong-Quan; Su, Ben-Fang; Xiang, Bo; Xu, Qian-Qian; Hu, Chang-Wei
2015-11-25
The catalytic mechanism of 2NO + 2CO → N2 + 2CO2 on Rh4 cluster has been systematically investigated on the ground and first excited states at the B3LYP/6-311+G(2d),SDD level. For the overall reaction of 2NO + 2CO → N2 + 2CO2, the main reaction pathways take place on the facet site rather than the edge site of the Rh4 cluster. The turnover frequency (TOF) determining transition states are characteristic of the second N-O bond cleavage with rate constant k4 = 1.403 × 10(11) exp (-181 203/RT) and the N-N bond formation for the intermediate N2O formation with rate constant k2 = 3.762 × 10(12) exp (-207 817/RT). The TOF-determining intermediates of (3)N(b)Rh4NO and (3)N(b)Rh4O(b)(NO) are associated with the nitrogen-atom molecular complex, which is in agreement with the experimental observation of surface nitrogen. On the facet site of Rh4 cluster, the formation of CO2 stems solely from the recombination of CO and O atom, while N2 originates partly from the recombination of two N atoms and partly from the decomposition of N2O. For the N-O bond cleavage or the synchronous N-O bond cleavage and C-O bond formation, the neutral Rh4 cluster exhibits better catalytic performance than the cationic Rh4(+) cluster. Alternatively, for N-N bond formation, the cationic Rh4(+) cluster possesses better catalytic performance than the neutral Rh4 cluster.
Ning, Ping; Song, Xin; Li, Kai; Wang, Chi; Tang, Lihong; Sun, Xin
2017-10-31
The competitive adsorption and reaction mechanism for the catalytic hydrolysis of carbonyl sulphide (COS) and carbon disulphide (CS 2 ) over Fe 2 O 3 cluster was investigated. Compared with experimental results, the theoretical study was used to further investigate the competitive adsorption and effect of H 2 S in the hydrolysis reaction of COS and CS 2 . Experimental results showed that Fe 2 O 3 cluster enhanced the catalytic hydrolysis effect. Meanwhile, H 2 S was not conducive to the hydrolysis of COS and CS 2 . Theoretical calculations indicated that the order of competitive adsorption on Fe 2 O 3 is as follows: H 2 O (strong) >CS 2 (medium) >COS (weak). In the hydrolysis process, the C=S bond cleavage occurs easier than C=O bond cleavage. The hydrolysis reaction is initiated via the migration of an H-atom, which triggers C=S bond cleavage and S-H bond formation. Additionally, we find the first step of CS 2 hydrolysis to be rate limiting. The presence of H 2 S increases the reaction energy barrier, which is not favourable for COS hydrolysis. Fe 2 O 3 can greatly decrease the maximum energy barrier, which decreases the minimum energy required for hydrolysis, making it relatively facile to occur. In general, the theoretical results were consistent with experimental results, which proved that the theoretical study was reliable.
Rhenium-Promoted C-C Bond-Cleavage Reactions of Internal Propargyl Alcohols.
Lee, Kui Fun; Bai, Wei; Sung, Herman H Y; Williams, Ian D; Lin, Zhenyang; Jia, Guochen
2018-06-07
The first examples of C-C bond cleavage reactions of internal propargyl alcohols to give vinylidene complexes are described. Treatment of [Re(dppm) 3 ]I with RC≡CC(OH)R'R'' (R=aryl, alkyl; C(OH)R'R''=C(OH)Ph 2, C(OH)Me 2 , C(OH)HPh, C(OH)H 2 ) produced the vinylidene complexes ReI(=C=CHR)(dppm) 2 with the elimination of C(O)R'R''. Computational studies support that the reactions proceed through a β-alkynyl elimination of alkoxide intermediates Re{OC(R')(R'')C≡CR}(dppm) 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate.
Stack, Douglas E
2015-09-10
Mechanistic insights into the reaction of an estrogen o-quinone with deoxyguanosine has been further investigated using high level density functional calculations in addition to the use of 4-hyroxycatecholestrone (4-OHE₁) regioselectivity labeled with deuterium at the C1-position. Calculations using the M06-2X functional with large basis sets indicate the tautomeric form of an estrogen-DNA adduct present when glycosidic bonds cleavage occurs is comprised of an aromatic A ring structure. This tautomeric form was further verified by use of deuterium labelling of the catechol precursor use to form the estrogen o-quinone. Regioselective deuterium labelling at the C1-position of the estrogen A ring allows discrimination between two tautomeric forms of a reaction intermediate either of which could be present during glycosidic bond cleavage. HPLC-MS analysis indicates a reactive intermediate with a m/z of 552.22 consistent with a tautomeric form containing no deuterium. This intermediate is consistent with a reaction mechanism that involves: (1) proton assisted Michael addition; (2) re-aromatization of the estrogen A ring; and (3) glycosidic bond cleavage to form the known estrogen-DNA adduct, 4-OHE₁-1-N7Gua.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ator, M.A.; Stubbe, J.; Spector, T.
1986-03-15
Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less
Trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110)
NASA Astrophysics Data System (ADS)
Kelly, D.; Weinberg, W. H.
1996-07-01
We have employed molecular beam techniques to investigate the molecular trapping and trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110) at low beam translational energies, Ei≤5 kcal/mol, and surface temperatures, Ts, from 85 to 1200 K. For Ts=85 K, C3H8 is molecularly adsorbed on Ir(110) with a trapping probability, ξ, equal to 0.94 at Ei=1.6 kcal/mol and ξ=0.86 at Ei=5 kcal/mol. At Ei=1.9 kcal/mol and Ts=85 K, ξ of C3D8 is equal to 0.93. From 150 K to approximately 700 K, the initial probabilities of dissociative chemisorption of propane decrease with increasing Ts. For Ts from 700 to 1200 K, however, the initial probability of dissociative chemisorption maintains the essentially constant value of 0.16. These observations are explained within the context of a kinetic model which includes both C-H (C-D) and C-C bond cleavage. Below 450 K propane chemisorption on Ir(110) arises essentially solely from C-H (C-D) bond cleavage, an unactivated mechanism (with respect to a gas-phase energy zero) for this system, which accounts for the decrease in initial probabilities of chemisorption with increasing Ts. With increasing Ts, however, C-C bond cleavage, the activation energy of which is greater than the desorption energy of physically adsorbed propane, increasingly contributes to the measured probability of dissociative chemisorption. The activation energies, referenced to the bottom of the physically adsorbed molecular well, for C-H and C-C bond cleavage for C3H8 on Ir(110) are found to be Er,CH=5.3±0.3 kcal/mol and Er,CC=9.9±0.6 kcal/mol, respectively. The activation energies for C-D and C-C bond cleavage for C3D8 on Ir(110) are 6.3±0.3 kcal/mol and 10.5±0.6 kcal/mol, respectively. The desorption activation energy of propane from Ir(110) is approximately 9.5 kcal/mol. These activation energies are compared to activation energies determined recently for ethane and propane adsorption on Ir(111), Ru(001), and Pt(110)-(1×2), and ethane activation on Ir(110).
DFT study on the interaction of TiO2 (001) surface with HCHO molecules
NASA Astrophysics Data System (ADS)
Wu, Guofei; Zhao, Cuihua; Guo, Changqing; Chen, Jianhua; Zhang, Yibing; Li, Yuqiong
2018-01-01
The interactions of formaldehyde (HCHO) molecule with TiO2 (001) surface were studied using density functional theory calculations. HCHO molecules are dissociated by the cleavage of Csbnd H bonds after adsorption on TiO2 surface. The strong interactions between HCHO melecules and TiO2 surface are largely attributed to the bonding of hydrogen of HCHO and oxygen of TiO2 surface, which is mainly from the hybridization of the H 1s, O 2p and O 2s. The newly formed Hsbnd O bonds cause the structure changes of TiO2 surface, and lead to the cleavage of Osbnd Ti bond of TiO2 surface. The Csbnd O bond that the dissociated remains of HCHO and newly formed Hsbnd O bond can be oxidized to form carbon dioxide and water in subsequent action by oxygen from the atomosphere. The charges transfer from HCHO to TiO2 surface, and the sum amount of the charges transferred from four HCHO molecules to TiO2 surface is bigger than that from one HCHO molecule to TiO2 surface due to the combined interaction of four HCHO molecules with TiO2 surface.
Covalent bond force profile and cleavage in a single polymer chain
NASA Astrophysics Data System (ADS)
Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges
2000-08-01
We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.
Schmid, Rochus; Basting, Daniel
2005-03-24
Experimental evidence suggests that the energy of activation for the first homolytic Ga-C bond fission of GaMe3 of Ea = 249 kJ/mol, measured by Jacko and Price in a hot-wall tube reactor, is affected by surface catalytic effects. In this contribution, the rate constant for this crucial step in the gas-phase pyrolysis of GaMe3 has been calculated by variational transition state theory. By a basis set extrapolation on the MP2/cc-pVXZ level and a correlation correction from CCSD(T)/cc-pVDZ level, a theoretical "best estimate" for the bond energy of Delta H(289K) = 327.2 kJ/mol was derived. For the VTST calculation on the B3LYP/cc-pVDZ level, the energies were corrected to reproduce this bond energy. Partition functions of the transitional modes were approximated by a hindered rotor approximation to be valid along the whole reaction coordinate defined by the Ga-C bond length. On the basis of the canonical transition state theory, reaction rates were determined using the maxima of the free energy Delta G++. An Arrhenius-type rate law was fitted to these rate constants, yielding an apparent energy of activation of Ea = 316.7 kJ/mol. The preexponential factor A = 3.13 x 10(16) 1/s is an order of magnitude larger than the experimental results because of a larger release of entropy at the transition state as compared to that of the unknown surface catalyzed mechanism.
Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko
2012-11-26
We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.
Qi, Zisong; Yu, Songjie; Li, Xingwei
2016-02-19
The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed.
Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N
2015-04-27
Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetics of acid-catalyzed cleavage of procyanindins
Richard W. Hemingway; Gerald W. McGraw
1983-01-01
Comparison of the rates of cleavage of isomeric procyanidin dimers in the presence of excess phenylmethane thiol and acetic acid showed that compounds with a C(4)-C(8) interflavanoid bond were cleaved more rapidly than their C(4)-C(6) linked isomers, that 2,3-cis isomers with an axial flavan substituent were cleaved more-rapidly than a 2,3-...
Targeting allosteric disulphide bonds in cancer.
Hogg, Philip J
2013-06-01
Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.
Forging C-C Bonds Through Decarbonylation of Aryl Ketones.
Somerville, Rosie J; Martin, Ruben
2017-06-06
The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.
2011-12-22
Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformatemore » inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.« less
Nucleic acids, proteins, and chirality
NASA Technical Reports Server (NTRS)
Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.
1984-01-01
The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.
Zheng, Xinxin; Guo, Rui
2018-01-01
We report a rhodium-catalyzed asymmetric formal intermolecular [4 + 2] cycloaddition reaction of 2-alkylenecyclobutanols with α,β-unsaturated cyclic ketones leading to synthetically useful trans-bicyclic molecules. Three consecutive stereogenic centers are formed in a highly enantio- and diastereoselective manner. Stepwise C–C bond cleavage and annulation are likely involved in the reaction pathway. Here, iPr-Duphos is the viable chiral ligand that promotes excellent enantio-control. PMID:29675233
Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid
NASA Astrophysics Data System (ADS)
Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco
2003-04-01
DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.
Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei
2016-09-19
Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.
2013-12-01
Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. Themore » observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.« less
Klvaňa, Martin; Bren, Urban; Florián, Jan
2016-12-29
Human X-family DNA polymerases β (Polβ) and λ (Polλ) catalyze the nucleotidyl-transfer reaction in the base excision repair pathway of the cellular DNA damage response. Using empirical valence bond and free-energy perturbation simulations, we explore the feasibility of various mechanisms for the deprotonation of the 3'-OH group of the primer DNA strand, and the subsequent formation and cleavage of P-O bonds in four Polβ, two truncated Polλ (tPolλ), and two tPolλ Loop1 mutant (tPolλΔL1) systems differing in the initial X-ray crystal structure and nascent base pair. The average calculated activation free energies of 14, 18, and 22 kcal mol -1 for Polβ, tPolλ, and tPolλΔL1, respectively, reproduce the trend in the observed catalytic rate constants. The most feasible reaction pathway consists of two successive steps: specific base (SB) proton transfer followed by rate-limiting concerted formation and cleavage of the P-O bonds. We identify linear free-energy relationships (LFERs) which show that the differences in the overall activation and reaction free energies among the eight studied systems are determined by the reaction free energy of the SB proton transfer. We discuss the implications of the LFERs and suggest pK a of the 3'-OH group as a predictor of the catalytic rate of X-family DNA polymerases.
Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiayue; Lu, Lu; Zhao, Chen
2014-03-01
Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO 2, the selective hydrogenolysis dominates for cleaving the C aliphatic-O bond. Catalyzed by themore » dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO 2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.« less
2016-01-01
Human X-family DNA polymerases β (Polβ) and λ (Polλ) catalyze the nucleotidyl-transfer reaction in the base excision repair pathway of the cellular DNA damage response. Using empirical valence bond and free-energy perturbation simulations, we explore the feasibility of various mechanisms for the deprotonation of the 3′-OH group of the primer DNA strand, and the subsequent formation and cleavage of P–O bonds in four Polβ, two truncated Polλ (tPolλ), and two tPolλ Loop1 mutant (tPolλΔL1) systems differing in the initial X-ray crystal structure and nascent base pair. The average calculated activation free energies of 14, 18, and 22 kcal mol–1 for Polβ, tPolλ, and tPolλΔL1, respectively, reproduce the trend in the observed catalytic rate constants. The most feasible reaction pathway consists of two successive steps: specific base (SB) proton transfer followed by rate-limiting concerted formation and cleavage of the P–O bonds. We identify linear free-energy relationships (LFERs) which show that the differences in the overall activation and reaction free energies among the eight studied systems are determined by the reaction free energy of the SB proton transfer. We discuss the implications of the LFERs and suggest pKa of the 3′-OH group as a predictor of the catalytic rate of X-family DNA polymerases. PMID:27992186
Takayama, Mitsuo
2012-01-01
The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908
Takayama, Mitsuo
2012-01-01
The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.
Specificity and kinetics of haloalkane dehalogenase.
Schanstra, J P; Kingma, J; Janssen, D B
1996-06-21
Haloalkane dehalogenase converts halogenated alkanes to their corresponding alcohols. The active site is buried inside the protein and lined with hydrophobic residues. The reaction proceeds via a covalent substrate-enzyme complex. This paper describes a steady-state and pre-steady-state kinetic analysis of the conversion of a number of substrates of the dehalogenase. The kinetic mechanism for the "natural" substrate 1,2-dichloroethane and for the brominated analog and nematocide 1,2-dibromoethane are given. In general, brominated substrates had a lower Km, but a similar kcat than the chlorinated analogs. The rate of C-Br bond cleavage was higher than the rate of C-Cl bond cleavage, which is in agreement with the leaving group abilities of these halogens. The lower Km for brominated compounds therefore originates both from the higher rate of C-Br bond cleavage and from a lower Ks for bromo-compounds. However, the rate-determining step in the conversion (kcat) of 1, 2-dibromoethane and 1,2-dichloroethane was found to be release of the charged halide ion out of the active site cavity, explaining the different Km but similar kcat values for these compounds. The study provides a basis for the analysis of rate-determining steps in the hydrolysis of various environmentally important substrates.
Activation of carbon-hydrogen bonds and dihydrogen by 1,2-CH-addition across metal-heteroatom bonds.
Webb, Joanna R; Burgess, Samantha A; Cundari, Thomas R; Gunnoe, T Brent
2013-12-28
The controlled conversion of hydrocarbons to functionalized products requires selective C-H bond cleavage. This perspective provides an overview of 1,2-CH-addition of hydrocarbons across d(0) transition metal imido complexes and compares and contrasts these to examples of analogous reactions that involve later transition metal amide, hydroxide and alkoxide complexes with d(6) and d(8) metals.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; Fahmey, M. A.; Hawash, M. A.; El-Habeeb, Abeer A.
2007-06-01
The buspirone drug is usually present as hydrochloride form of general formula C 21H 31N 5O 2·HCl, and of molecular weight (MW) = 421.96. It is an analgesic anxiolytic drug, which does not cause sedative or depression of central nervous system. In the present work it is investigated using electron impact mass spectral (EI-MS) fragmentation at 70 eV, in comparison with thermal analyses (TA) measurements (TG/DTG and DTA) and molecular orbital calculation (MOC). Semi-empirical MO calculation, PM3 procedure, has been carried out on buspirone both as neutral molecule (in TA) and the corresponding positively charged species (in MS). The calculated MOC parameters include bond length, bond order, particle charge distribution on different atoms and heats of formation. The fragmentation pathways of buspirone in EI-MS lead to the formation of important primary and secondary fragment ions. The mechanism of formation of some important daughter ions can be illuminated from comparing with that obtained using electrospray ESIMS/MS mode mass spectrometer through the accurate mass measurement determination. The losses of the intermediate aliphatic part (CH 2) 4 due to cleavage of N-C bond from both sides is the primary cleavage in both techniques (MS and TA). The PM3 provides a base for fine distinction among sites of initial bond cleavage and subsequent fragmentation of drug molecule in both TA and MS techniques; consequently the choice of the correct pathway of such fragmentation knowing this structural session of bonds can be used to decide the active sites of this drug responsible for its chemical, biological and medical reactivity.
NASA Astrophysics Data System (ADS)
Zhang, Riguang; Liu, Zhixue; Ling, Lixia; Wang, Baojun
2015-10-01
The perfect and defective surfaces of anatase TiO2 including (1 0 1) and (0 0 1) surfaces have been chosen to probe into the effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and initial dissociation step. Here, the results are obtained by density functional theory (DFT) calculation together with the periodic slab model. Our results show that the surface structure of anatase TiO2 can obviously affect the behavior of ethanol adsorption and the catalytic activity of its initial dissociation step; firstly, on the perfect and defective surfaces of anatase (1 0 1), ethanol dominantly exists in the form of molecule adsorption; however, ethanol is the dissociative adsorption on the hydroxylated anatase (0 0 1), and the coexistences of molecular and dissociation adsorption modes on the perfect anatase (0 0 1). On the other hand, the initial dissociation step of ethanol with molecule adsorption prefers to begin with its O-H bond cleavage leading to CH3CH2O and H species rather than the cleavage of its α-C-H, β-C-H, C-C and C-O bonds, namely, the preferable O-H bond cleavage for the initial dissociation step of ethanol is independent of the surface structure of anatase TiO2; however, the corresponding catalytic activity of ethanol initial dissociation step with the O-H bond cleavage on different anatase TiO2 surfaces is in the following order: hydroxylated (0 0 1) > perfect (0 0 1) > defective (1 0 1) > perfect (1 0 1), suggesting that the catalytic activity for the initial dissociation step of ethanol is sensitive to the surface structure of anatase TiO2, and the hydroxylated (0 0 1) is the most favorable surface. Among these surfaces, the most favorable product for the initial dissociation step of ethanol is CH3CH2O species.
Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase.
Wang, Wen-Juan; Wei, Wen-Jie; Liao, Rong-Zhen
2018-06-13
The reaction mechanism and chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase (2,4-QueD) have been investigated using the QM/MM approach. The protonation state of the Glu74 residue, a first-shell ligand of Ni, has been considered to be either neutral or deprotonated. QM/MM calculations predict that Glu74 must be deprotonated to rationalize the chemoselectivity and steer the 2,4-dioxygenolytic cleavage of quercetin, which harvests the experimentally-observed product, 2-protocatechuoylphloroglucinol carboxylic acid, coupled with the release of carbon monoxide. If the enzyme has a neutral Glu74 residue, the undesired 2,3-dioxygenolytic cleavage of quercetin becomes the dominant pathway, leading to the formation of α-keto acid. The calculations suggest that the reaction takes place via three major steps: (1) attack of the superoxide on the C2 of the substrate pyrone ring to generate a NiII-peroxide intermediate; (2) formation of the second C-O bond between C4 and the peroxide to produce a peroxide bridge; (3) simultaneous cleavage of the C2-C3, C3-C4, and O1-O2 bonds with the formation of 2-protocatechuoylphloroglucinol carboxylic acid and carbon monoxide. The third step was found to be rate-limiting, with a barrier of 17.4 kcal mol-1, which is in very good agreement with the experimental kinetic data. For the second C-O bond formation, an alternative pathway is that the peroxide attacks the C3 of the substrate pyrone ring, leading to the formation of a four-membered ring intermediate, which then undergoes concerted C2-C3 and O1-O2 bond cleavages to produce an α-keto acid. This pathway is associated with a barrier of 30.6 kcal mol-1, which is much higher than the major pathway. When Glu74 is protonated, the 2,3-dioxygenolytic pathway, however, has a lower barrier (21.8 kcal mol-1) than the 2,4-dioxygenolytic pathway.
[Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].
Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D
2011-01-01
The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.
The RNA-induced silencing complex is a Mg2+-dependent endonuclease.
Schwarz, Dianne S; Tomari, Yukihide; Zamore, Phillip D
2004-05-04
In the Drosophila and mammalian RNA interference (RNAi) pathways, target RNA destruction is catalyzed by the siRNA-guided, RNA-induced silencing complex (RISC). RISC has been proposed to be an siRNA-directed endonuclease, catalyzing cleavage of a single phosphodiester bond on the RNA target. Although 5' cleavage products are readily detected for RNAi in vitro, only 3' cleavage products have been observed in vivo. Proof that RISC acts as an endonuclease requires detection of both 5' and 3' cleavage products in a single experimental system. Here, we show that siRNA-programmed RISC generates both 5' and 3' cleavage products in vitro; cleavage requires Mg(2+), but not Ca(2+), and the cleavage product termini suggest a role for Mg(2+) in catalysis. Moreover, a single phosphorothioate in place of the scissile phosphate blocks cleavage; the phosphorothioate effect can be rescued by the thiophilic cation Mn(2+), but not by Ca(2+) or Mg(2+). We propose that during catalysis, a Mg(2+) ion is bound to the RNA substrate through a nonbridging oxygen of the scissile phosphate. The mechanism of endonucleolytic cleavage is not consistent with the mechanisms of the previously identified RISC nuclease, Tudor-SN. Thus, the RISC-component that mediates endonucleolytic cleavage of the target RNA remains to be identified.
Ureshino, Tomonari; Yoshida, Takuya; Kuninobu, Yoichiro; Takai, Kazuhiko
2010-10-20
The rhodium-catalyzed synthesis of silafluorenes from biphenylhydrosilanes is described. This highly efficient reaction proceeds via both Si-H and C-H bond activation, producing only H(2) as a side product. Using this method, a ladder-type bis-silicon-bridged p-terphenyl could also be synthesized.
Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf
2017-11-20
By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two-step reaction mechanism-1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom-shows that it mirrors acid-catalyzed ether cleavage in solution. The O-Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell-Evans-Polanyi principle. Electron rearrangement during C-O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular S N 2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.
Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias
2017-06-19
The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zucker, M; Seligsohn, U; Yeheskel, A; Mor-Cohen, R
2016-11-01
Essentials Reduction of three disulfide bonds in factor (F) XI enhances chromogenic substrate cleavage. We measured FXI activity upon reduction and identified a bond involved in the enhanced activity. Reduction of FXI augments FIX cleavage, probably by faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is responsible for FXI enhanced activation upon its reduction. Background Reduction of factor (F) XI by protein disulfide isomerase (PDI) has been shown to enhance the ability of FXI to cleave its chromogenic substrate. Three disulfide bonds in FXI (Cys118-Cys147, Cys362-Cys482, and Cys321-Cys321) are involved in this augmented activation. Objectives To characterize the mechanisms by which PDI enhances FXI activity. Methods FXI activity was measured following PDI reduction. Thiols that were exposed in FXI after PDI reduction were labeled with 3-(N-maleimidopropionyl)-biocytin (MPB) and detected with avidin. The rate of conversion of FXI to activated FXI (FXIa) following thrombin activation was assessed with western blotting. FXI molecules harboring mutations that disrupt the three disulfide bonds (C147S, C321S, and C482S) were expressed in cells. The antigenicity of secreted FXI was measured with ELISA, and its activity was assessed by the use of a chromogenic substrate. The effect of disulfide bond reduction was analyzed by the use of molecular dynamics. Results Reduction of FXI by PDI enhanced cleavage of both its chromogenic substrate, S2366, and its physiologic substrate, FIX, and resulted in opening of the Cys362-Cys482 bond. The rate of conversion of FXI to FXIa was increased following its reduction by PDI. C482S-FXI showed enhanced activity as compared with both wild-type FXI and C321S-FXI. MD showed that disruption of the Cys362-Cys482 bond leads to a broader thrombin-binding site in FXI. Conclusions Reduction of FXI by PDI enhances its ability to cleave FIX, probably by causing faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is involved in enhancing FXI activation following its reduction, possibly by increasing thrombin accessibility to FXI. © 2016 International Society on Thrombosis and Haemostasis.
Surface supported gold-organic hybrids: on-surface synthesis and surface directed orientation.
Zhang, Haiming; Franke, Jörn-Holger; Zhong, Dingyong; Li, Yan; Timmer, Alexander; Arado, Oscar Díaz; Mönig, Harry; Wang, Hong; Chi, Lifeng; Wang, Zhaohui; Müllen, Klaus; Fuchs, Harald
2014-04-09
The surface-assisted synthesis of gold-organic hybrids on Au (111) and Au (100) surfaces is repotred by thermally initiated dehalogenation of chloro-substituted perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs). Structures and surface-directed alignment of the Au-PBI chains are investigated by scanning tunnelling microscopy in ultra high vacuum conditions. Using dichloro-PBI as a model system, the mechanism for the formation of Au-PBI dimer is revealed with scanning tunnelling microscopy studies and density functional theory calculations. A PBI radical generated from the homolytic C-Cl bond dissociation can covalently bind a surface gold atom and partially pull it out of the surface to form stable PBI-Au hybrid species, which also gives rise to the surface-directed alignment of the Au-PBI chains on reconstructed Au (100) surfaces. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities
Miller, David C.; Tarantino, Kyle T.; Knowles, Robert R.
2016-01-01
Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter we aim to highlight the origins, development and evolution of PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups. PMID:27573270
Cationized Carbohydrate Gas-Phase Fragmentation Chemistry
NASA Astrophysics Data System (ADS)
Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.
2017-04-01
We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.
Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim
2014-01-01
The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464
Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Meng; Gutiérrez, Oliver Y.; Camaioni, Donald M.
Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.
Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning
2014-10-22
The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.
Cleavage of an amide bond by a ribozyme
NASA Technical Reports Server (NTRS)
Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)
1995-01-01
A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.
Dolle, Ashwini B; Jagadeesh, Narasimhappagari; Bhaumik, Suman; Prakash, Sunita; Biswal, Himansu S; Gowd, Konkallu Hanumae
2018-06-15
The modes of cleavage of lanthionine/methyllanthionine bridges under electron transfer dissociation (ETD) were investigated using synthetic and natural lantipeptides. Knowledge of the mass spectrometric fragmentation of lanthionine/methyllanthionine bridges may assist in the development of analytical methods for the rapid discovery of new lantibiotics. The present study strengthens the advantage of ETD in the characterization of posttranslational modifications of peptides and proteins. Synthetic and natural lantipeptides were obtained by desulfurization of peptide disulfides and cyanogen bromide digestion of the lantibiotic nisin, respectively. These peptides were subjected to electrospray ionization collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and ETD-MS/MS using an HCT ultra ETDII ion trap mass spectrometer. MS 3 CID was performed on the desired product ions to prove cleavage of the lanthionine/methyllanthionine bridge during ETD-MS/MS. ETD has advantages over CID in the cleavage of the side chain of lanthionine/methyllanthionine bridges. The cleavage of the N-Cα backbone peptide bond followed by C-terminal side chain of the lanthionine bridge results in formation of c •+ and z + ions. Cleavage at the preceding peptide bond to the C-terminal side chain of lanthionine/methyllanthionine bridges yields specific fragments with the cysteine/methylcysteine thiyl radical and dehydroalanine. ETD successfully cleaves the lanthionine/methyllanthionine bridges of synthetic and natural lantipeptides. Diagnostic fragment ions of ETD cleavage of lanthionine/methyllanthionine bridges are the N-terminal cysteine/methylcysteine thiyl radical and C-terminal dehydroalanine. Detection of the cysteine/methylcysteine thiyl radical and dehydroalanine in combined ETD-CID-MS may be used for the rapid identification of lantipeptide natural products. Copyright © 2018 John Wiley & Sons, Ltd.
Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M
2017-08-15
The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.
Jungen, Stefan; Chen, Peter
2018-05-16
Intramolecular, homolytic substitution reactions between iron (II) species and various trialkylsulfonium groups were directly observed in the gas phase upon collision induced dissociation. In spite of the notoriously low reduction potential of trialkylsulfonium species and the mismatched oxidation potential of iron (II), the reactions proceed at moderate collision energies, forming an alkyl radical as well as a thioether coordinated to the iron. In contrast to classical homolytic substitutions, the attacking radical is a "metalloradical", namely iron (II) that is oxidized to iron (III) during the reaction. With this process we demonstrate that the conceptually analogous, putative radical generation step in Radical S-Adenosyl Methionine Enzymes is possible and plausible. Further, we show that this kind of reaction only occurs in constrained systems with a defined geometry. Combining experimental measurements with DFT studies and NBO analyses allowed us to gain insights into the reactivity and transition states of these systems. Based on our findings, we challenge the notion of a collinear transition state in the radical generation step of Radical SAM Enzymes and propose it to be bent instead. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, W. F.; Tung, C. S.; Wang, H.; Tasayco, M. L.
2000-01-01
Inspection of high resolution three-dimensional (3D) structures from the protein database reveals an increasing number of cis-Xaa-Pro and cis-Xaa-Yaa peptide bonds. However, we are still far from being able to predict whether these bonds will remain cis upon single-site substitution of Pro or Yaa and/or cleavage of a peptide bond close to it in the sequence. We have chosen oxidized Escherichia coli thioredoxin (Trx), a member of the Trx superfamily with a single alpha/beta domain and cis P76 to determine the effect of single-site substitution and/or cleavage on this isomer. Standard two-dimensional (2D) NMR analysis were performed on cleaved Trx (1-73/74-108) and its P76A variant. Analysis of the NOE connectivities indicates remarkable similarity between the secondary and supersecondary structure of the noncovalent complexes and Trx. Analysis of the 2D version of the HCCH-TOCSY and HMQC-NOESY-HMQC and 13C-filtered HMQC-NOESY spectra of cleaved Trx with uniformly 13C-labeled 175 and P76 shows surprising conservation of both cis P76 and packing of 175 against W31. A similar NMR analysis of its P76A variant provides no evidence for cis A76 and shows only subtle local changes in both the packing of 175 and the interstrand connectivities between its most protected hydrophobic strands (beta2 and beta4). Indeed, a molecular simulation model for the trans P76A variant of Trx shows only subtle local changes around the substitution site. In conclusion, cleavage of R73 is insufficient to provoke cis/trans isomerization of P76, but cleavage and single-site substitution (P76A) favors the trans isomer. PMID:10739243
Burns, Brendan P.; Mendz, George L.; Hazell, Stuart L.
1998-01-01
The mechanism of resistance to N-phosphonoacetyl-l-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min−1 μl of cell water−1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-l-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique. PMID:9791105
Umehara, K; Kudo, S; Hirao, Y; Morita, S; Uchida, M; Odomi, M; Miyamoto, G
2000-08-01
The metabolism of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045), a new potent biguanide antiseptic, was investigated using rat and dog liver preparations to elucidate the mechanism of OPB-2045 metabolite formation, in which the octyl side chain is reduced to four, five, or six carbon atoms. Chemical structures of metabolites were characterized by 1H NMR, fast atom bombardment/mass spectrometry, and liquid chromatography/electrospray ionization-tandem mass spectrometry. Three main metabolites were observed during incubation of OPB-2045 with rat liver S9: 2-octanol (M-1), 3-octanol (M-2), and 4-octanol (M-3). In the incubation of OPB-2045 with dog liver S9, eight metabolites were observed, seven of which being M-1, M-2, M-3, 2-octanone (M-4), threo-2,3-octandiol (M-5), erythro-2,3-octandiol (M-6), and 1,2-octandiol (M-7). M-5 and M-6 were further biotransformed to a ketol derivative and C-C bond cleavage metabolite (hexanoic acid derivative), an in vivo end product, in the incubation with dog liver microsomes. The reactions required NADPH as a cofactor and were significantly inhibited by the various inhibitors of cytochrome P450 (i.e., CO, n-octylamine, SKF 525-A, metyrapone, and alpha-naphthoflavone). The results indicate that the degraded products of OPB-2045 are produced by C-C bond cleavage after monohydroxylation, dihydroxylation, and ketol formation at the site of the octyl side chain with possible involvement of cytochrome P450 systems. This aliphatic C-C bond cleavage by sequential oxidative reactions may play an important role in the metabolism of other drugs or endogenous compounds that possess aliphatic chains.
Chemical Stress Cracking of Acrylic Fibers.
1982-05-01
stress, high fiber permeability, moderate fibe orientation, and water- plasticization . The proposed mechanism for bond cleava e involves cyclization of...tensile stress, high fiber permeability, moderate fiber orientation, and water- plasticization . The proposed mechanism for bond cleavage involves...chemical composition, plasticization , and other factors. It will be shown that the etching behavior does not reflect underlying hetero- geneities in the
Brines, Lisa M.; Coggins, Michael K.; Poon, Penny Chaau Yan; Toledo, Santiago; Kaminsky, Werner; Kirk, Martin L.
2015-01-01
Understanding the metal ion properties that favor O−H bond formation versus cleavage should facilitate the development of catalysts tailored to promote a specific reaction, e.g., C−H activation or H2O oxidation. The first step in H2O oxidation involves the endothermic cleavage of a strong O−H bond (BDFE = 122.7 kcal/mol), promoted by binding the H2O to a metal ion, and by coupling electron transfer to proton transfer (PCET). This study focuses on details regarding how a metal ion’s electronic structure and ligand environment can tune the energetics of M(HO−H) bond cleavage. The synthesis and characterization of an Fe(II)−H2O complex, 1, that undergoes PCET in H2O to afford a rare example of a monomeric Fe(III)−OH, 7, is described. High-spin 7 is also reproducibly generated via the addition of H2O to {[FeIII(OMe2N4(tren))]2-(µ-O)}2+ (8). The O−H bond BDFE of Fe(II)−H2O (1) (68.6 kcal/mol) is calculated using linear fits to its Pourbaix diagram and shown to be 54.1 kcal/mol less than that of H2O and 10.9 kcal/mol less than that of [Fe(II)(H2O)6]2+. The O−H bond of 1 is noticeably weaker than the majority of reported Mn+(HxO−H) (M = Mn, Fe; n+ = 2+, 3+; x = 0, 1) complexes. Consistent with their relative BDFEs, Fe(II)−H2O (1) is found to donate a H atom to TEMPO•, whereas the majority of previously reported Mn+−O(H) complexes, including [MnIII(SMe2N4(tren))(OH)]+ (2), have been shown to abstract H atoms from TEMPOH. Factors responsible for the weaker O−H bond of 1, such as differences in the electron-donating properties of the ligand, metal ion Lewis acidity, and electronic structure, are discussed. PMID:25611075
PERFILS: a program for the quantitative treatment of footprinting data.
Salas, X; Portugal, J
1993-10-01
PERFILS, a computer program written in Borland TurboPascal, performs quantitative analysis of footprinting experiments using any IBM PC or compatible microcomputer. The program uses the height of the bands obtained from densitometric scanning of footprinting autoradiographs to calculate a differential cleavage plot. Such a plot displays, on a logarithmic scale, the difference of susceptibility of a DNA fragment to DNase I, or any other cleaving agent, in the presence of any ligand versus the sequence. PERFILS calculates the fractional cleavage values for control and ligand, giving a table of values for each internucleotidic bond and rendering the differential cleavage plot in only a few seconds.
Dano, Meisa; Elmeranta, Marjukka; Hodgson, David R W; Jaakkola, Juho; Korhonen, Heidi; Mikkola, Satu
2015-12-01
Cleavage of five different nucleoside diphosphosugars has been studied in the presence of Cu(2+) and Zn(2+) complexes. The results show that metal ion catalysts promote the cleavage via intramolecular transesterification whenever a neighbouring HO group can adopt a cis-orientation with respect to the phosphate. The HO group attacks the phosphate and two monophosphate products are formed. If such a nucleophile is not available, Cu(2+) complexes are able to promote a nucleophilic attack of an external nucleophile, e.g. a water molecule or metal ion coordinated HO ligand, on phosphate. With the Zn(2+) complex, this was not observed.
Perfluorinated Ligands in Organometallic Chemistry
1989-12-12
C49t00ooVER ,or C M’ AD"OV’~mDecember 12) 199IFinal 1/1/86 to 8/31/89C smuS. FUNOING NUMgIERS cJ Perfluorinated Ligands in Organometallic Chemistry 612...compounds, stabilized by tridentate perfluorinated ligands. Dinuclear rhodium complexes of OFCOT undergo a selective C-F bond activation reaction...hexafluorocyclooctatrieneyne ligand. Stereospecific cleavage of a fluorinated C-C bond,#-bond in perfluorocyclopropene by platinum and iridium complexes has been achieved
Leaving Group Ability Observably Affects Transition State Structure in a Single Enzyme Active Site.
Roston, Daniel; Demapan, Darren; Cui, Qiang
2016-06-15
A reaction's transition state (TS) structure plays a critical role in determining reactivity and has important implications for the design of catalysts, drugs, and other applications. Here, we explore TS structure in the enzyme alkaline phosphatase using hybrid Quantum Mechanics/Molecular Mechanics simulations. We find that minor perturbations to the substrate have major effects on TS structure and the way the enzyme stabilizes the TS. Substrates with good leaving groups (LGs) have little cleavage of the phosphorus-LG bond at the TS, while substrates with poor LGs have substantial cleavage of that bond. The results predict nonlinear free energy relationships for a single rate-determining step, and substantial differences in kinetic isotope effects for different substrates; both trends were observed in previous experimental studies, although the original interpretations differed from the present model. Moreover, due to different degrees of phosphorus-LG bond cleavage at the TS for different substrates, the LG is stabilized by different interactions at the TS: while a poor LG is directly stabilized by an active site zinc ion, a good LG is mainly stabilized by active site water molecules. Our results demonstrate the considerable plasticity of TS structure and stabilization in enzymes. Furthermore, perturbations to reactivity that probe TS structure experimentally (i.e., substituent effects) may substantially perturb the TS they aim to probe, and thus classical experimental approaches such as free energy relations should be interpreted with care.
Cao, Jun
2015-06-28
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π(*) transition induces a cleavage of the C-N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π(*) excitation of the imine chromophore results in a cleavage of the C-C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N-O bond cleavages on both S1((1)ππ(*)) and S2((1)nNπ(*)) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
NASA Astrophysics Data System (ADS)
Cao, Jun
2015-06-01
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π* transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π* excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S1(1ππ*) and S2(1nNπ*) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
Structure and photochemistry of a saccharyl thiotetrazole.
Ismael, A; Borba, A; Henriques, M S C; Paixão, J A; Fausto, R; Cristiano, M L S
2015-01-02
The molecular structure and photochemistry of 5-thiosaccharyl-1-methyltetrazole (TSMT) were studied by means of matrix-isolation FTIR spectroscopy, X-ray crystallography, and theoretical calculations. The calculations predicted two conformers of TSMT that differ in energy by more than 15 kJ mol(-1). The infrared spectrum of TSMT isolated in solid argon was fully assigned on the basis of the spectrum calculated (O3LYP/6-311++G(3df,3pd)) for the most stable conformer. In the crystal, TSMT molecules were found to assume the same conformation as for the isolated molecule, with each molecule forming four hydrogen bonds with three neighboring molecules, leading to a network of TSMT oligomers. Upon UV (λ = 265 nm) irradiation of the matrix-isolated TSMT, two photodegradation pathways were observed, both arising from cleavage of the tetrazolyl ring. Pathway a involves cleavage of the N1-N2 and N3-N4 bonds with extrusion of N2, leading to photostable diazirine and thiocarbodiimide derivatives. The photostability of the photoproduced diazirine under the conditions used precluded its rearrangement to the nitrile imine, as reported for 5-phenyltetrazole by Bégué et al. ( J. Am. Chem. Soc. 2012 , 134 , 5339 ). Pathway b involves cleavage of the C5-N1 and N4-N3 bonds, leading to a thiocyanate and methyl azide, the latter undergoing subsequent fragmentation to give CNH.
Photochemical transformation of azoxystrobin in aqueous solutions.
Boudina, A; Emmelin, C; Baaliouamer, A; Païssé, O; Chovelon, J M
2007-07-01
The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.
Xue, Xiaoguang; Wu, Jin; Ricklin, Daniel; Forneris, Federico; Di Crescenzio, Patrizia; Schmidt, Christoph Q; Granneman, Joke; Sharp, Thomas H; Lambris, John D; Gros, Piet
2017-08-01
The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.
METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will bemore » to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.« less
Basavappa, R.; Syed, R.; Flore, O.; Icenogle, J. P.; Filman, D. J.; Hogle, J. M.
1994-01-01
The crystal structure of the P1/Mahoney poliovirus empty capsid has been determined at 2.9 A resolution. The empty capsids differ from mature virions in that they lack the viral RNA and have yet to undergo a stabilizing maturation cleavage of VP0 to yield the mature capsid proteins VP4 and VP2. The outer surface and the bulk of the protein shell are very similar to those of the mature virion. The major differences between the 2 structures are focused in a network formed by the N-terminal extensions of the capsid proteins on the inner surface of the shell. In the empty capsids, the entire N-terminal extension of VP1, as well as portions corresponding to VP4 and the N-terminal extension of VP2, are disordered, and many stabilizing interactions that are present in the mature virion are missing. In the empty capsid, the VP0 scissile bond is located some 20 A away from the positions in the mature virion of the termini generated by VP0 cleavage. The scissile bond is located on the rim of a trefoil-shaped depression in the inner surface of the shell that is highly reminiscent of an RNA binding site in bean pod mottle virus. The structure suggests plausible (and ultimately testable) models for the initiation of encapsidation, for the RNA-dependent autocatalytic cleavage of VP0, and for the role of the cleavage in establishing the ordered N-terminal network and in generating stable virions. PMID:7849583
NASA Astrophysics Data System (ADS)
Konda, Chiharu; Londry, Frank A.; Bendiak, Brad; Xia, Yu
2014-08-01
A systematic approach is described that can pinpoint the stereo-structures (sugar identity, anomeric configuration, and location) of individual sugar units within linear oligosaccharides. Using a highly modified mass spectrometer, dissociation of linear oligosaccharides in the gas phase was optimized along multiple-stage tandem dissociation pathways (MSn, n = 4 or 5). The instrument was a hybrid triple quadrupole/linear ion trap mass spectrometer capable of high-efficiency bidirectional ion transfer between quadrupole arrays. Different types of collision-induced dissociation (CID), either on-resonance ion trap or beam-type CID could be utilized at any given stage of dissociation, enabling either glycosidic bond cleavages or cross-ring cleavages to be maximized when wanted. The approach first involves optimizing the isolation of disaccharide units as an ordered set of overlapping substructures via glycosidic bond cleavages during early stages of MSn, with explicit intent to minimize cross-ring cleavages. Subsequently, cross-ring cleavages were optimized for individual disaccharides to yield key diagnostic product ions ( m/ z 221). Finally, fingerprint patterns that establish stereochemistry and anomeric configuration were obtained from the diagnostic ions via CID. Model linear oligosaccharides were derivatized at the reducing end, allowing overlapping ladders of disaccharides to be isolated from MSn. High confidence stereo-structural determination was achieved by matching MSn CID of the diagnostic ions to synthetic standards via a spectral matching algorithm. Using this MSn ( n = 4 or 5) approach, the stereo-structures, anomeric configurations, and locations of three individual sugar units within two pentasaccharides were successfully determined.
Heo, Jinsol; Kim, Se Hyeuk
2013-01-01
Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669
Cholecystokinin-converting enzymes in brain.
Malesci, A; Straus, E; Yalow, R S
1980-01-01
Crude extracts of porcine cerebral cortical tissue convert cholecystokinin (CCK) to its COOH-terminal fragments, the dodecapeptide (CCK-12) and the octapeptide (CCK-8). The Sephadex G-75 void volume eluate of the crude extract cleaves the arginine-isoleucine bond and effects conversion only to CCK-12; the Sephadex G-50 void volume eluate of the same extract cleaves the arginine-aspartate bond as well, so that both CCK-12 and CCK-8 are end products. Thus, there are at least two enzymes; the one involved in the conversion to CCK-12 is of larger molecular radius than the other. The Km for the cleavage of CCK at the arginine-isoleucine bond by the Sephadex G-75 void volume eluate enzyme is 1.1 X 10(-6) M; the Km for trypsin cleavage of the same bond is 4.7 x 10(-6) M. The lower Vmax for the brain enzyme (1.5 x 10(-11) mol/min per g of extract) compared with trypsin (66 x 10(-11) mol/min per g of trypsin) simply reflects the lesser degree of purify of the brain extract than of the highly purified trypsin. Images PMID:6987659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, B.
1994-05-01
In work prior to the inception of this project, the authors observed that mixtures of phenolic materials and polyalkoxyaromatic molecules were appreciably more effective in catalyzing the decompositions of di-2-naphthyl ether and of di-1-naphthyl sulfide in tetralin solutions at 450{degrees}C than were the phenols by themselves, even though the polyalkoxyaromatic molecules, in the absence of phenolic co- catalysts, show essentially no catalytic activity. This was of appreciable interest in coal research because dinapthyl ether and dinapthyl sulfide have been employed as model compounds for coals in studies aimed at cleaving ether and sulfide bonds similar to those in coals. Themore » authors proposed (R. K. Sharma, K. P. Raman, and B. Miller) that the mixed catalysts used in these studies catalyze cleavages of ether and sulfide bonds by means of a mechanism involving electron transfer from the polyalkoxyaromatics to the substrates, which are activated as electron acceptors by hydrogen bonding to phenols. Since phenols themselves are electron donors, they also proposed that the well known effects of phenols in catalyzing the conversion of coals are due to similar electron transfer mechanisms.« less
Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi
2012-01-01
The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.
Chelation-assisted carbon-hydrogen and carbon-carbon bond activation by transition metal catalysts.
Jun, Chul-Ho; Moon, Choong Woon; Lee, Dae-Yon
2002-06-03
Herein we describe the chelation-assisted C-H and C-C bond activation of carbonyl compounds by Rh1 catalysts. Hydroacylation of olefins was accomplished by utilizing 2-amino-3-picoline as a chelation auxiliary. The same strategy was employed for the C-C bond activation of unstrained ketones. Allylamine 24 was devised as a synthon of formaldehyde. Hydroiminoacylation of alkynes with allylamine 24 was applied to the alkyne cleavage by the aid of cyclohexylamine.
Peng, Shiyong; Liu, Suna; Zhang, Sai; Cao, Shengyu; Sun, Jiangtao
2015-10-16
Polyheteroaromatic compounds are potential optoelectronic conjugated materials due to their electro- and photochemical properties. Transition-metal-catalyzed multiple C-H activation and sequential oxidative annulation allows rapidly assembling of those compounds from readily available starting materials. A rhodium-catalyzed cascade oxidative annulation of β-enamino esters or 4-aminocoumarins with internal alkynes is described to access those compounds, featuring multiple C-H/N-H bond cleavages and sequential C-C/C-N bond formations in one pot.
Photoredox Catalysis for the Generation of Carbon Centered Radicals.
Goddard, Jean-Philippe; Ollivier, Cyril; Fensterbank, Louis
2016-09-20
Radical chemistry has witnessed over the last decades important advances that have positioned it as a methodology of choice in synthetic chemistry. A number of great attributes such as specific reactivities, the knowledge of the kinetics of most elementary processes, the functional group tolerance, and the possibility to operate cascade sequences are clearly responsible for this craze. Nevertheless, at the end of the last century, radical chemistry appeared plagued by several hurdles to overcome such as the use of environmentally problematic mediators or the impossibility of scale up. While the concept of photocatalysis was firmly established in the coordination chemistry community, its diffusion in organic synthetic chemistry remained sporadic for decades until the end of the 2000s with the breakthrough merging of organocatalysis and photocatalysis by the MacMillan group and contemporary reports by the groups of Yoon and Stephenson. Since then, photoredox catalysis has enjoyed particularly active and intense developments. It is now the topic of a still increasing number of publications featuring various applications from asymmetric synthesis, total synthesis of natural products, and polymerization to process (flow) chemistry. In this Account, we survey our own efforts in this domain, focusing on the elaboration of new photocatalytic pathways that could lead to the efficient generation of C-centered functionalized alkyl and aryl radicals. Both reductive and oxidative manifolds are accessible through photoredox catalysis, which has guided us along these lines in our projects. Thus, we studied the photocatalytic reduction of onium salts such as sulfoniums and iodoniums for the production of the elusive aryl radical intermediates. Progressing to more relevant chemistry for synthesis, we examined the cleavage of C-O and the C-Br bonds for the generation of alkyl C-centered radicals. Activated epoxides could serve as valuable substrates of a photocatalyzed variant of the Nugent-RajanBabu-Gansäuer homolytic cleavage of epoxides. Using imidazole based carbamates, we could also devise the first photocatalyzed Barton-McCombie deoxygenation reaction. Finally, bromophenylacetate can be reduced using the [Au2(μ-dppm)2]Cl2 photocatalyst under UVA or visible-light. This was used for the initiation of the controlled atom transfer radical polymerization of methacrylates and acrylates in solution or laminate. Our next endeavors concerned the photocatalyzed oxidation of stabilized carbanions such as enolates of 1,3-dicarbonyl substrates, trifluoroborates, and more extensively bis-catecholato silicates. Because of their low oxidation potentials, the later have proved to be exquisite sources of radical entities, which can be engaged in diverse intermolecular reactions such as vinylation, alkynylation, and conjugate additions. The bis-catecholato silicates were also shown to behave as excellent partners of dual photoredox-nickel catalysis leading in an expeditious manner to libraries of cross coupling products.
Thornton, Peter; Sevalle, Jean; Deery, Michael J; Fraser, Graham; Zhou, Ye; Ståhl, Sara; Franssen, Elske H; Dodd, Roger B; Qamar, Seema; Gomez Perez-Nievas, Beatriz; Nicol, Louise Sc; Eketjäll, Susanna; Revell, Jefferson; Jones, Clare; Billinton, Andrew; St George-Hyslop, Peter H; Chessell, Iain; Crowther, Damian C
2017-10-01
We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding. Peptidomimetic protease inhibitors highlighted a possible cleavage site, and mass spectrometry confirmed that shedding occurred predominantly at the H157-S158 peptide bond for both wild-type and H157Y human TREM2 and for the wild-type murine orthologue. Crucially, we also show that the Alzheimer's disease-associated H157Y TREM2 variant was shed more rapidly than wild type from HEK293 cells, possibly by a novel, batimastat- and ADAM10-siRNA-independent, sheddase activity. These insights offer new therapeutic targets for modulating the innate immune response in Alzheimer's and other neurological diseases. © 2017 MedImmune Ltd. Published under the terms of the CC BY 4.0 license.
METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane III
The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will bemore » to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage pathway. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum.« less
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
2002-01-01
The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG < -3.5 kcal/mol), reversible (deltaG between +/-3.5 kcal/mol), or unfavorable (deltaG > +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the functional group class (i.e., oxidation state) of participating groups that in turn is contingent on prior reactions and precursors in the synthetic pathway.
NASA Astrophysics Data System (ADS)
Weber, Arthur L.
2002-08-01
The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (ΔG) were estimated for four types of reactions of biochemical importance - carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (ΔG < -3.5 kcal/mol), reversible (ΔG between +/-3.5 kcal/mol), or unfavorable (ΔG > +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the functional group class (i.e., oxidation state) of participating groups that in turn is contingent on prior reactions and precursors in the synthetic pathway.
Li, Xianwei; Xu, Yanli; Wu, Wanqing; Jiang, Chang; Qi, Chaorong; Jiang, Huanfeng
2014-06-23
A regio- and stereoselective synthesis of sulfones and thioethers by means of Cu(I)-catalyzed aerobic oxidative N-S bond cleavage of sulfonyl hydrazides, followed by cross-coupling reactions with alkenes and aromatic compounds to form the C sp 2-S bond, is described herein. N2 and H2O are the byproducts of this transformation, thus offering an environmentally benign process with a wide range of potential applications in organic synthesis and medicinal chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman
2013-01-01
Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion in aqueous media. Biological implications of the minor free radical pathway are discussed in the context of ONOO− detection, using the boronate probes. PMID:21434648
NASA Technical Reports Server (NTRS)
Weber, Arthur L.; Fonda, Mark (Technical Monitor)
2001-01-01
The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies were estimated for four types reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed that (1) when carbon-carbon bond cleavage involves two different types of functional groups, transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) the energy of carbon-carbon bond transformation is strongly dependent on the type of functional group that donates the shared electron-pair during cleavage, and the group that accepts the shared electron-pair during synthesis, and (3) the energetics of C-C bond transformation is determined primarily by the half-reaction energies of the couples: carbonyl/carboxylic acid, carboxylic acid/carbon dioxide, alcohol/carbonyl, and hydrocarbon/alcohol. The energy of hydrogen-transfer between carbon groups was found to depend on the functional group class of both the hydrogen-donor and hydrogen-acceptor. From these and other observations we concluded that the chemistry of the origin of metabolism (and to a lesser degree modem metabolism) is strongly constrained by the (1) limited disproportionation energy of organic substrates that can be dissipated in a few irreversible reactions, (2) the energy-dominance of few half-reaction couples in carbon-carbon bond transformation that establishes whether a chemical reaction is energetically irreversible, reversible or unfeasible, and (3) the dependence of the transformation-energy on the oxidation state of carbon groups (functional group type) which is contingent on prior reactions in the synthetic pathway.
Adams, Richard D; Dhull, Poonam; Tedder, Jonathan D
2018-06-14
The reaction of Re 2 (CO) 8 (μ-C 6 H 5 )(μ-H) (1) with thiophene in CH 2 Cl 2 at 40 °C yielded the new compound Re 2 (CO) 8 (μ-η 2 -SC 4 H 3 )(μ-H) (2), which contains a bridging σ-π-coordinated thienyl ligand formed by the activation of the C-H bond at the 2 position of the thiophene. Compound 2 exhibits dynamical activity on the NMR time scale involving rearrangements of the bridging thienyl ligand. The reaction of compound 2 with a second 1 equiv of 1 at 45 °C yielded the doubly metalated product [Re 2 (CO) 8 (μ-H)] 2 (μ-η 2 -2,3-μ-η 2 -4,5-C 4 H 2 S) (3), formed by the activation of the C-H bond at the 5 position of the thienyl ligand in 2. Heating 3 in a hexane solvent to reflux transformed it into the ring-opened compound Re(CO) 4 [μ-η 5 -η 2 -SCC(H)C(H)C(H)][Re(CO) 3 ][Re 2 (CO) 8 (μ-H)] (4) by the loss of one CO ligand. Compound 4 contains a doubly metalated 1-thiapentadienyl ligand formed by the cleavage of one of the C-S bonds. When heated to reflux (125 °C) in an octane solvent in the presence of H 2 O, the new compound Re(CO) 4 [η 5 -μ-η 2 -SC(H)C(H)C(H)C(H)]Re(CO) 3 (5) was obtained by cleavage of the Re 2 (CO) 8 (μ-H) group from 4 with formation of the known coproduct [Re(CO) 3 (μ 3 -OH)] 4 . All new products were characterized by single-crystal X-ray diffraction analyses.
Blackbody infrared radiative dissociation of oligonucleotide anions.
Klassen, J S; Schnier, P D; Williams, E R
1998-11-01
The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [d(A)7(2-), d(AATTAAT)2-, d(TTAATTA)2-, and d(CCGGCCG)2-] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5') phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)7(2-), d(AATTAAT)2-, and d(TTAATTA)2- has an average activation energy (Ea) of approximately 1.0 eV and a preexponential factor (A) of 10(10) s-1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2-. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 +/- 0.03 eV and A = 10(13.3 +/- 0.3) s-1. No loss of thymine was observed for mixed adenine-thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)7(2-) over a 600 s reaction delay at 207 degrees C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors < or = 10(13) s-1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction.
Blackbody Infrared Radiative Dissociation of Oligonucleotide Anions
Klassen, John S.; Schnier, Paul D.; Williams, Evan R.
2005-01-01
The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [ d(A)72-, d(AATTAAT)2−, d(TTAATTA)2−, and d(CCGGCCG)2−] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5′) phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)72-, d(AATTAAT)2−, and d(TTAATTA)2− has an average activation energy (Ea) of ~1.0 eV and a preexponential factor (A) of 1010 s−1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2−. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 ± 0.03 eV and A = 1013.3±0.3 s−1. No loss of thymine was observed for mixed adenine–thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)72- over a 600 s reaction delay at 207 °C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors ≤1013 s−1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction. PMID:9794082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker D.
Herein we describe the C–O cleavage of phenol and cyclohexanol over Rh(111) and Rh(211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C–O bond cleavage of cyclohexanol is easier than that of phenol and that Rh(211) is more active than Rh(111) for both reactions. This indicates that phenol will react mainly following a pathway of initial hydrogenation to cyclohexanol followed by hydrodeoxygenation to cyclohexane. In conclusion, we show that there is a general relationship between the transition state and the final state of both C–O cleavage reactions,more » and that this relationship is the same for Rh(111) and Rh(211).« less
Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.
Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald
2017-09-12
We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.
Zhu, Xiao-Qing; Liu, Qiao-Yun; Chen, Qiang; Mei, Lian-Rui
2010-02-05
A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C=N pi-bond in the imines were estimated. The polarity of the C=N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manolopoulou, Marika; Guo, Qing; Malito, Enrico
Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in itsmore » initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jun, E-mail: caojunbnu@mail.bnu.edu.cn
2015-06-28
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed intomore » 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.« less
Li, Hui; Wallace, Adam F; Sun, Mingjing; Reardon, Patrick; Jaisi, Deb P
2018-02-06
Glyphosate is the active ingredient of the common herbicide Roundup. The increasing presence of glyphosate and its byproducts has raised concerns about its potential impact on the environment and human health. In this research, we investigated abiotic pathways of glyphosate degradation as catalyzed by birnessite under aerobic and neutral pH conditions to determine whether certain pathways have the potential to generate less harmful intermediate products. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) were utilized to identify and quantify reaction products, and density functional theory (DFT) calculations were used to investigate the bond critical point (BCP) properties of the C-N bond in glyphosate and Mn(IV)-complexed glyphosate. We found that sarcosine, the commonly recognized precursor to glycine, was not present at detectable levels in any of our experiments despite the fact that its half-life (∼13.6 h) was greater than our sampling intervals. Abiotic degradation of glyphosate largely followed the glycine pathway rather than the AMPA (aminomethylphosphonic acid) pathway. Preferential cleavage of the phosphonate adjacent C-N bond to form glycine directly was also supported by our BCP analysis, which revealed that this C-N bond was disproportionately affected by the interaction of glyphosate with Mn(IV). Overall, these results provide useful insights into the potential pathways through which glyphosate may degrade via relatively benign intermediates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris
Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the secondmore » coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.« less
NASA Astrophysics Data System (ADS)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo
2018-04-01
The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...
2018-04-10
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
Chain registry and load-dependent conformational dynamics of collagen.
Teng, Xiaojing; Hwang, Wonmuk
2014-08-11
Degradation of fibrillar collagen is critical for tissue maintenance. Yet, understanding collagen catabolism has been challenging partly due to a lack of atomistic picture for its load-dependent conformational dynamics, as both mechanical load and local unfolding of collagen affect its cleavage by matrix metalloproteinase (MMP). We use molecular dynamics simulation to find the most cleavage-prone arrangement of α chains in a collagen triple helix and find amino acids that modulate stability of the MMP cleavage domain depending on the chain registry within the molecule. The native-like state is mechanically inhomogeneous, where the cleavage site interfaces a stiff region and a locally unfolded and flexible region along the molecule. In contrast, a triple helix made of the stable glycine-proline-hydroxyproline motif is uniformly flexible and is dynamically stabilized by short-lived, low-occupancy hydrogen bonds. These results provide an atomistic basis for the mechanics, conformation, and stability of collagen that affect catabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
NASA Astrophysics Data System (ADS)
Kim, Dong Young; Park, Hosang; Choi, Woon Ih; Roy, Basab; Seo, Jinah; Park, Insun; Kim, Jin Hae; Park, Jong Hwan; Kang, Yoon-Sok; Koh, Meiten
2017-07-01
Tris(trimethylsilyl) phosphite (P(OSi(CH3)3)3) is a multifunctional electrolyte additive for scavenging HF and forming a cathode electrolyte interphase (CEI). Systematic analysis of the HF reaction pathways and redox potentials of P(OSi(CH3)3)3, OP(OSi(CH3)3)3, P(OSiF3)3, and OP(OSiF3)3, and their reaction products, using ab initio calculations allowed us to elucidate the operating mechanism of P(OSi(CH3)3)3 and verify the rules that determine its HF reaction pathways and electrochemical stability. While Osbnd Si cleavage is the predominant HF scavenging pathway for P(OSi(CH3)3)3, Osbnd P cleavage is stabilized by replacing CH3 with an electron-withdrawing group. Thus, P(OSiF3)3 scavenges HF mainly through Osbnd P cleavage to produce PF3, which has high oxidation stability. However, the Osbnd Si cleavage pathway produces P(OSi(CH3)3)2OH, P(OSi(CH3)3) (OH)2, and P(OH)3 sequentially, along with Si(CH3)3F. These PO3 systems, which are oxidized earlier than carbonate solutions and form tightly bonded units following oxidation, act as seed units for compact CEI growth. Moreover, the HF scavenging ability of PO3 systems is maintained during oxidation until all Osbnd Si bonds are broken. As a strategy for developing additives with enhanced functionality, modifying P(OSi(CH3)3)3 by replacing CH3 with an electron-donating group to exclusively utilize the Osbnd Si cleavage pathway for HF scavenging is recommended.
Ananvoranich, S; Lafontaine, D A; Perreault, J P
1999-01-01
Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808
Heterobimetallic Ti/Co Complexes That Promote Catalytic N-N Bond Cleavage.
Wu, Bing; Gramigna, Kathryn M; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2015-11-16
Treatment of the tris(phosphinoamide) titanium precursor ClTi(XylNP(i)Pr2)3 (1) with CoI2 leads to the heterobimetallic complex (η(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2(μ-Cl)CoI (2). One-electron reduction of 2 affords (η(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2CoI (3), which can be reduced by another electron under dinitrogen to generate the reduced diamagnetic complex (THF)Ti(XylNP(i)Pr2)3CoN2 (4). The removal of the dinitrogen ligand from 4 under vacuum affords (THF)Ti(XylNP(i)Pr2)3Co (5), which features a Ti-Co triple bond. Treatment of 4 with hydrazine or methyl hydrazine results in N-N bond cleavage and affords the new diamagnetic complexes (L)Ti(XylNP(i)Pr2)3CoN2 (L = NH3 (6), MeNH2 (7)). Complexes 4, 5, and 6 have been shown to catalyze the disproportionation of hydrazine into ammonia and dinitrogen gas through a mechanism involving a diazene intermediate.
An Unusual Carbon-Carbon Bond Cleavage Reaction During Phosphinothricin Biosynthesis
Cicchillo, Robert M.; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T.; Li, Gongyong; Nair, Satish K.; van der Donk, Wilfred A.; Metcalf, William W.
2010-01-01
Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture1. One such compound, phosphinothricin tripeptide (PTT), contains the unusual amino acid phosphinothricin (PT) attached to two alanine residues (Fig. 1). Synthetic PT (glufosinate) is a component of two top-selling herbicides (Basta® and Liberty®), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during PTT biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP) (Fig. 1)2. Reported here are the in vitro reconstitution of this unprecedented C(sp3)-C(sp3) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-heme iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalyzed by the 2-His-1-carboxylate mononuclear non-heme iron family of enzymes. PMID:19516340
Individual breathing reactions measured in hemoglobin by hydrogen exchange methods.
Englander, S W; Calhoun, D B; Englander, J J; Kallenbach, N R; Liem, R K; Malin, E L; Mandal, C; Rogero, J R
1980-01-01
Protein hydrogen exchange is generally believed to register some aspects of internal protein dynamics, but the kind of motion at work is not clear. Experiments are being done to identify the determinants of protein hydrogen exchange and to distinguish between local unfolding and accessibility-penetration mechanisms. Results with small molecules, polynucleotides, and proteins demonstrate that solvent accessibility is by no means sufficient for fast exchange. H-exchange slowing is quite generally connected with intramolecular H-bonding, and the exchange process depends pivotally on transient H-bond cleavage. At least in alpha-helical structures, the cooperative aspect of H-bond cleavage must be expressed in local unfolding reactions. Results obtained by use of a difference hydrogen exchange method appear to provide a direct measurement of transient, cooperative, local unfolding reactions in hemoglobin. The reality of these supposed coherent breathing units is being tested by using the difference H-exchange approach to tritium label the units one at a time and then attempting to locate the tritium by fragmenting the protein, separating the fragments, and testing them for label. Early results demonstrate the feasibility of this approach. PMID:7248462
Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase
Abergel, Rebecca J.; de Jong, Wibe A.; Deblonde, Gauthier J. -P.; ...
2017-10-11
Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U 6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidence d by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theorymore » (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Here, combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.« less
Madec, Lénaïc; Robert, Donatien; Moreau, Philippe; Bayle-Guillemaud, Pascale; Guyomard, Dominique; Gaubicher, Joël
2013-08-07
Molecular grafting of p-nitrobenzene diazonium salt at the surface of (Li)FePO4-based materials was thoroughly investigated. The grafting yields obtained by FTIR, XPS, and elemental analysis for core shell LiFePO4-C are found to be much higher than the sum of those associated with either the LiFePO4 core or the carbon shell alone, thereby revealing a synergistic effect. Electrochemical, XRD, and EELS experiments demonstrate that this effect stems from the strong participation of the LiFePO4 core that delivers large amounts of electrons to the carbon substrate at a constant energy, above the Fermi level of the diazonium salt. Correspondingly large multilayer anisotropic structures that are associated with outstanding grafting yields could be observed from TEM experiments. Results therefore constitute strong evidence of a grafting mechanism where homolytic cleavage of the N2(+) species occurs together with the formation and grafting of radical nitro-aryl intermediates. Although the oxidation and concomitant Li deintercalation of LiFePO4 grains constitute the main driving force of the functionalization reaction, EFTEM EELS mapping shows a striking lack of spatial correlation between grafted grains and oxidized ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei
Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevantmore » step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H-insertion steps in the aqueous phase, unlike those in the vapor phase, during the hydrogenation of acetic acid on Ru clusters.« less
A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds
NASA Astrophysics Data System (ADS)
Sadasivam, K.; Kumaresan, R.
2011-03-01
The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen
2018-03-28
Crystal structures of two bacterial metal (Zn) dependent D-fructose 1,6-bisphosphate (FBP) aldolases in complex with substrate, analogues, and triose-P reaction products were determined to 1.5-2.0 Å resolution. The ligand complexes cryotrapped in native or mutant H. pylori aldolase crystals enabled a novel mechanistic description of FBP C 3 -C 4 bond cleavage. The reaction mechanism uses active site remodelling during the catalytic cycle implicating relocation of the Zn cofactor that is mediated by conformational changes of active site loops. Substrate binding initiates conformational changes, triggered upon P 1 -phosphate binding, which liberates the Zn chelating His180, allowing it to act as a general base for the proton abstraction at the FBP C 4 -hydroxyl group. A second zinc chelating His83 hydrogen bonds the substrate C 4 - hydroxyl group and assists cleavage by stabilizing the developing negative charge during proton abstraction. Cleavage is concerted with relocation of the metal cofactor from an interior to a surface exposed site, thereby stabilizing the nascent enediolate form. Conserved residue Glu142 is essential for protonation of the enediolate form, prior to product release. A D-tagatose 1,6-bisphosphate enzymatic complex reveals how His180 mediated proton abstraction controls stereospecificity of the cleavage reaction. Recognition and discrimination of the reaction products, dihydroxyacetone-P and D-glyceraldehyde-3-P, occurs via charged hydrogen bonds between hydroxyl groups of the triose-Ps and conserved residues, Asp82 and Asp255, respectively, and are crucial aspects of the enzyme's role in gluconeogenesis. Conformational changes in mobile loops β5-α7 and β6-α8 (containing catalytic residues Glu142 and His180, respectively) drive active site remodelling enabling the relocation of the metal cofactor. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
van Loo, Bert; Schober, Markus; Valkov, Eugene; Heberlein, Magdalena; Bornberg-Bauer, Erich; Faber, Kurt; Hyvönen, Marko; Hollfelder, Florian
2018-03-30
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (k cat /K M =4.8×10 3 s -1 M -1 ) as well as arylsulfate 4-nitrophenyl sulfate (k cat /K M =12s -1 M -1 ). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H 2 18 O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
The dehydroalanine effect in the fragmentation of ions derived from polypeptides
Pilo, Alice L.; Peng, Zhou; McLuckey, Scott A.
2016-01-01
The fragmentation of peptides and proteins upon collision-induced dissociation (CID) is highly dependent on sequence and ion type (e.g. protonated, deprotonated, sodiated, odd electron, etc.). Some amino acids, for example aspartic acid and proline, have been found to enhance certain cleavages along the backbone. Here, we show that peptides and proteins containing dehydroalanine, a non-proteinogenic amino acid with an unsaturated side-chain, undergo enhanced cleavage of the N—Cα bond of the dehydroalanine residue to generate c- and z-ions. Because these fragment ion types are not commonly observed upon activation of positively charged even-electron species, they can be used to identify dehydroalanine residues and localize them within the peptide or protein chain. While dehydroalanine can be generated in solution, it can also be generated in the gas phase upon CID of various species. Oxidized S-alkyl cysteine residues generate dehydroalanine upon activation via highly efficient loss of the alkyl sulfenic acid. Asymmetric cleavage of disulfide bonds upon collisional activation of systems with limited proton mobility also generates dehydroalanine. Furthermore, we show that gas-phase ion/ion reactions can be used to facilitate the generation of dehydroalanine residues via, for example, oxidation of S-alkyl cysteine residues and conversion of multiply-protonated peptides to radical cations. In the latter case, loss of radical side-chains to generate dehydroalanine from some amino acids gives rise to the possibility for residue-specific backbone cleavage of polypeptide ions. PMID:27484024
Transition metal catalyzed manipulation of non-polar carbon–hydrogen bonds for synthetic purpose
MURAI, Shinji
2011-01-01
The direct addition of ortho C–H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitriles, and aldehydes to olefins and acetylenes can be achieved with the aid of transition metal catalysts. The ruthenium catalyzed reaction is usually highly efficient and useful as a general synthetic method. The coordination to the metal center by a heteroatom in a directing group such as carbonyl and imino groups in aromatic compounds is the key step in this process. Mechanistically, the reductive elimination to form a C–C bond is the rate-determining step, while the C–H bond cleavage step is not. PMID:21558759
Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu
2009-01-01
Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.
Using ambient ozone for assignment of double bond position in unsaturated lipids.
Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J
2012-03-07
Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.
Kwong, M. Y.; Harris, R. J.
1994-01-01
Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891
NASA Astrophysics Data System (ADS)
Yang, Jianlei; Wang, Guofeng; Jiao, Xueyan; Gu, Yibin; Liu, Qing; Li, You
2018-05-01
Spark plasma sintering (SPS) technology was used to current-assisted bond extruded Ti-22Al-25Nb alloy. The effects of bonding temperature (920-980 °C) and bonding time (10-30 min) on the microstructure evolution and shear strength of this alloy were investigated systematically. The temperature distribution in the specimen during the current-assisted bonding process was also analyzed by numerical simulation. It is noted that the highest temperature was obtained at the bonding interface. As the bonding temperature and bonding time increased, the voids in the interface shrank increasingly until they vanished. A complete metallurgical bonding interface could be produced at 960 °C/20 min/10 MPa, exhibiting the highest shear strength of 269.3 MPa. In addition, the shear strength of the bonded specimen depended on its interfacial microstructure. With increased bonding temperature, the fracture mode transformed from the intergranular fracture at the bonding interface to the cleavage fracture in the substrate.
Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.
2017-08-14
An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less
New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials.
Baloch, Marya; Ben Youcef, Hicham; Li, Chunmei; Garcia-Calvo, Oihane; Rodriguez, Lide M; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel
2016-11-23
Two new cathode materials based on redox organosulfur polymers were synthesized and investigated for rechargeable lithium batteries as a proof-of-concept study. These cathodes offered good cycling performance owing to the absence of polysulfide solubility, which plagues Li/S systems. Herein, an aliphatic polyamine or a conjugated polyazomethine was used as the base to tether the redox-active species. The activity comes from the cleavage and formation of S-S or N-S bonds, which is made possible by the rigid conjugated backbone. The synthesized polymers were characterized through FTIR spectroscopy and thermogravimetric analysis (TGA). Galvanostatic measurements were performed to evaluate the discharge/charge cycles and characterize the performance of the lithium-based cells, which displayed initial discharge capacities of approximately 300 mA h g -1 at C/5 over 100 cycles with approximately 98 % Coulombic efficiency. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.
An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less
Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R
2015-09-01
The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.
Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao
2016-03-18
The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu
2006-09-18
A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.
Lin, Ching Yeh; Coote, Michelle L; Gennaro, Armando; Matyjaszewski, Krzysztof
2008-09-24
High-level ab initio molecular orbital calculations are used to study the thermodynamics and electrochemistry relevant to the mechanism of atom transfer radical polymerization (ATRP). Homolytic bond dissociation energies (BDEs) and standard reduction potentials (SRPs) are reported for a series of alkyl halides (R-X; R = CH 2CN, CH(CH 3)CN, C(CH 3) 2CN, CH 2COOC 2H 5, CH(CH 3)COOCH 3, C(CH 3) 2COOCH 3, C(CH 3) 2COOC 2H 5, CH 2Ph, CH(CH 3)Ph, CH(CH 3)Cl, CH(CH 3)OCOCH 3, CH(Ph)COOCH 3, SO 2Ph, Ph; X = Cl, Br, I) both in the gas phase and in two common organic solvents, acetonitrile and dimethylformamide. The SRPs of the corresponding alkyl radicals, R (*), are also examined. The computational results are in a very good agreement with the experimental data. For all alkyl halides examined, it is found that, in the solution phase, one-electron reduction results in the fragmentation of the R-X bond to the corresponding alkyl radical and halide anion; hence it may be concluded that a hypothetical outer-sphere electron transfer (OSET) in ATRP should occur via concerted dissociative electron transfer rather than a two-step process with radical anion intermediates. Both the homolytic and heterolytic reactions are favored by electron-withdrawing substituents and/or those that stabilize the product alkyl radical, which explains why monomers such as acrylonitrile and styrene require less active ATRP catalysts than vinyl chloride and vinyl acetate. The rate constant of the hypothetical OSET reaction between bromoacetonitrile and Cu (I)/TPMA complex was estimated using Marcus theory for the electron-transfer processes. The estimated rate constant k OSET = approximately 10 (-11) M (-1) s (-1) is significantly smaller than the experimentally measured activation rate constant ( k ISET = approximately 82 M (-1) s (-1) at 25 degrees C in acetonitrile) for the concerted atom transfer mechanism (inner-sphere electron transfer, ISET), implying that the ISET mechanism is preferred. For monomers bearing electron-withdrawing groups, the one-electron reduction of the propagating alkyl radical to the carbanion is thermodynamically and kinetically favored over the one-electron reduction of the corresponding alkyl halide unless the monomer bears strong radical-stabilizing groups. Thus, for monomers such as acrylates, catalysts favoring ISET over OSET are required in order to avoid chain-breaking side reactions.
New Approaches to the Synthesis of Novel Organosilanes.
1983-10-01
through" electrode composed of RVC ( reticulated vitreous carbon ), a highly conductive sponge of carbonized material. Both of these flow systems...effective in promoting silicon- carbon bond cleavage and reformation to give cyclic and cage compounds readily and in good yields: (tA*3-9)(CŖ). n 2-S...silicon to carbon bonds and has broad based applications in research and industrial labs. The increase in reaction rate and yield with ultrasonic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung
The addition of Lewis or Brönsted acids (LA = Zn(OTf) 2, B(C 6F 5) 3, HBAr F, TFA) to the high-valent manganese–oxo complex Mn V(O)(TBP 8Cz) results in the stabilization of a valence tautomer Mn IV(O-LA)(TBP 8Cz •+). The Zn II and B(C 6F 5) 3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–N avemore » = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn–O bond length is elongated compared to the Mn V(O) starting material (Mn–O = 1.55 Å). The reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H substrates was examined, and it was found that H • abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a Mn IV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the Mn IV(O-LA)(TBP 8Cz •+) valence tautomer as compared to the MnV(O) valence tautomer when LA = Zn II, B(C 6F 5) 3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of k H/ k D = 25–27 was observed for LA = B(C 6F 5) 3 and HBAr F, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex Mn IV(O–H)(tpfc •+) recently reported.« less
Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung; ...
2016-09-30
The addition of Lewis or Brönsted acids (LA = Zn(OTf) 2, B(C 6F 5) 3, HBAr F, TFA) to the high-valent manganese–oxo complex Mn V(O)(TBP 8Cz) results in the stabilization of a valence tautomer Mn IV(O-LA)(TBP 8Cz •+). The Zn II and B(C 6F 5) 3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–N avemore » = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn–O bond length is elongated compared to the Mn V(O) starting material (Mn–O = 1.55 Å). The reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H substrates was examined, and it was found that H • abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a Mn IV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the Mn IV(O-LA)(TBP 8Cz •+) valence tautomer as compared to the MnV(O) valence tautomer when LA = Zn II, B(C 6F 5) 3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of k H/ k D = 25–27 was observed for LA = B(C 6F 5) 3 and HBAr F, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex Mn IV(O–H)(tpfc •+) recently reported.« less
Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L.; Rao, V. Ashutosh
2016-01-01
We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2 kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5 Angstrom from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685
Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh
2016-05-01
We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Qing; Manolopoulou, Marika; Bian, Yao
2010-02-11
Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} bymore » human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.« less
Tittmann, Kai
2014-12-01
Nature has evolved different strategies for the reversible cleavage of ketose phosphosugars as essential metabolic reactions in all domains of life. Prominent examples are the Schiff-base forming class I FBP and F6P aldolase as well as transaldolase, which all exploit an active center lysine to reversibly cleave the C3-C4 bond of fructose-1,6-bisphosphate or fructose-6-phosphate to give two 3-carbon products (aldolase), or to shuttle 3-carbon units between various phosphosugars (transaldolase). In contrast, transketolase and phosphoketolase make use of the bioorganic cofactor thiamin diphosphate to cleave the preceding C2-C3 bond of ketose phosphates. While transketolase catalyzes the reversible transfer of 2-carbon ketol fragments in a reaction analogous to that of transaldolase, phosphoketolase forms acetyl phosphate as final product in a reaction that comprises ketol cleavage, dehydration and phosphorolysis. In this review, common and divergent catalytic principles of these enzymes will be discussed, mostly, but not exclusively, on the basis of crystallographic snapshots of catalysis. These studies in combination with mutagenesis and kinetic analysis not only delineated the stereochemical course of substrate binding and processing, but also identified key catalytic players acting at the various stages of the reaction. The structural basis for the different chemical fates and lifetimes of the central enamine intermediates in all five enzymes will be particularly discussed, in addition to the mechanisms of substrate cleavage, dehydration and ring-opening reactions of cyclic substrates. The observation of covalent enzymatic intermediates in hyperreactive conformations such as Schiff-bases with twisted double-bond linkages in transaldolase and physically distorted substrate-thiamin conjugates with elongated substrate bonds to be cleaved in transketolase, which probably epitomize a canonical feature of enzyme catalysis, will be also highlighted. Copyright © 2014 Elsevier Inc. All rights reserved.
Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiayue; Zhao, Chen; Mei, Donghai
2014-01-01
A novel route for cleaving the C-O aryl ether bonds of p-substituted H-, CH 3-, and OH- diphenyl ethers has been explored over Ni/SiO 2 catalysts at very mild conditions. The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H 2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H 2 pressure. In contrast tomore » diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC 6H 4O* (adsorbed), which is then cleaved to phenol (C 6H 5O* with added H*) and H 2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC 6H 4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO 2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h -1) > diphenyl ether (26 h -1) > di-p-tolyl ether (1.3 h -1), in line with the increasing apparent activation energies, ranging from 93 kJ∙mol -1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ∙mol -1) to di-p-tolyl ether (105 kJ∙mol -1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Karim, Ayman M.; Wang, Yong
2012-02-16
The strong Mo-O bond strength provides promising reactivity of Mo-based catalysts for the deoxygenation of biomass-derived oxygenates. Combining the novel dimer saddle point searching method with periodic spin-polarized density functional theory calculations, we investigated the reaction pathways of a acetaldehyde decomposition on the clean Mo(110) surface. Two reaction pathways were identified, a selective deoxygenation and a nonselective fragmentation pathways. We found that acetaldehyde preferentially adsorbs at the pseudo 3-fold hollow site in the η2(C,O) configuration on Mo(110). Among four possible bond (β-C-H, γ-C-H, C-O and C-C) cleavages, the initial decomposition of the adsorbed acetaldehyde produces either ethylidene via the C-Omore » bond scission or acetyl via the β-C-H bond scission while the C-C and the γ-C-H bond cleavages of acetaldehyde leading to the formation of methyl (and formyl) and formylmethyl are unlikely. Further dehydrogenations of ethylidene into either ethylidyne or vinyl are competing and very facile with low activation barriers of 0.24 and 0.31 eV, respectively. Concurrently, the formed acetyl would deoxygenate into ethylidyne via the C-O cleavage rather than breaking the C-C or the C-H bonds. The selective deoxygenation of acetaldehyde forming ethylene is inhibited by relatively weaker hydrogenation capability of the Mo(110) surface. Instead, the nonselective pathway via vinyl and vinylidene dehydrogenations to ethynyl as the final hydrocarbon fragment is kinetically favorable. On the other hand, the strong interaction between ethylene and the Mo(110) surface also leads to ethylene decomposition instead of desorption into the gas phase. This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and supported by the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Yamaguchi, Kizashi; Shoji, Mitsuo; Isobe, Hiroshi; Yamanaka, Shusuke; Kawakami, Takashi; Yamada, Satoru; Katouda, Michio; Nakajima, Takahito
2018-03-01
Possible mechanisms for water cleavage in oxygen evolving complex (OEC) of photosystem II (PSII) have been investigated based on broken-symmetry (BS) hybrid DFT (HDFT)/def2 TZVP calculations in combination with available XRD, XFEL, EXAFS, XES and EPR results. The BS HDFT and the experimental results have provided basic concepts for understanding of chemical bonds of the CaMn4O5 cluster in the catalytic site of OEC of PSII for elucidation of the mechanism of photosynthetic water cleavage. Scope and applicability of the hybrid DFT (HDFT) methods have been examined in relation to relative stabilities of possible nine intermediates such as Mn-hydroxide, Mn-oxo, Mn-peroxo, Mn-superoxo, etc., in order to understand the O-O (O-OH) bond formation in the S3 and/or S4 states of OEC of PSII. The relative stabilities among these intermediates are variable, depending on the weight of the Hartree-Fock exchange term of HDFT. The Mn-hydroxide, Mn-oxo and Mn-superoxo intermediates are found to be preferable in the weak, intermediate and strong electron correlation regimes, respectively. Recent different serial femtosecond X-ray (SFX) results in the S3 state are investigated based on the proposed basic concepts under the assumption of different water-insertion steps for water cleavage in the Kok cycle. The observation of water insertion in the S3 state is compatible with previous large-scale QM/MM results and previous theoretical proposal for the chemical equilibrium mechanism in the S3 state . On the other hand, the no detection of water insertion in the S3 state based on other SFX results is consistent with previous proposal of the O-OH (or O-O) bond formation in the S4 state . Radical coupling and non-adiabatic one-electron transfer (NA-OET) mechanisms for the OO-bond formation are examined using the energy diagrams by QM calculations and by QM(UB3LYP)/MM calculations . Possible reaction pathways for the O-O and O-OH bond formations are also investigated based on two water-inlet pathways for oxygen evolution in OEC of PSII. Future perspectives are discussed in relation to post HDFT calculations of the energy diagrams for elucidation of the mechanism of water oxidation in OEC of PSII.
Challand, Martin R.; Martins, Filipa T.; Roach, Peter L.
2010-01-01
Thiazole synthase in Escherichia coli is an αβ heterodimer of ThiG and ThiH. ThiH is a tyrosine lyase that cleaves the Cα–Cβ bond of tyrosine, generating p-cresol as a by-product, to form dehydroglycine. This reactive intermediate acts as one of three substrates for the thiazole cyclization reaction catalyzed by ThiG. ThiH is a radical S-adenosylmethionine (AdoMet) enzyme that utilizes a [4Fe-4S]+ cluster to reductively cleave AdoMet, forming methionine and a 5′-deoxyadenosyl radical. Analysis of the time-dependent formation of the reaction products 5′-deoxyadenosine (DOA) and p-cresol has demonstrated catalytic behavior of the tyrosine lyase. The kinetics of product formation showed a pre-steady state burst phase, and the involvement of DOA in product inhibition was identified by the addition of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase to activity assays. This hydrolyzed the DOA and changed the rate-determining step but, in addition, substantially increased the uncoupled turnover of AdoMet. Addition of glyoxylate and ammonium inhibited the tyrosine cleavage reaction, but the reductive cleavage of AdoMet continued in an uncoupled manner. Tyrosine analogues were incubated with ThiGH, which showed a strong preference for phenolic substrates. 4-Hydroxyphenylpropionic acid analogues allowed uncoupled AdoMet cleavage but did not result in further reaction (Cα–Cβ bond cleavage). The results of the substrate analogue studies and the product inhibition can be explained by a mechanistic hypothesis involving two reaction pathways, a product-forming pathway and a futile cycle. PMID:19923213
Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A
2013-12-01
Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.
The chemical structure of macromolecular fractions of a sulfur-rich oil
NASA Astrophysics Data System (ADS)
Richnow, Hans H.; Jenisch, Angela; Michaelis, Walter
1993-06-01
A selective stepwise chemical degradation has been developed for structural studies of highmolecularweight (HMW) fractions of sulfur-rich oils. The degradation steps are: (i) desulfurization (ii) cleavage of oxygen-carbon bonds (iii) oxidation of aromatic structural units. After each step, the remaining macromolecular matter was subjected to the subsequent reaction. This degradation scheme was applied to the asphaltene, the resin and a macromolecular fraction of low polarity (LPMF) of the Rozel Point oil. Total amounts of degraded low-molecular-weight compounds increased progressively in the order asphaltene < resin < LPMF. Desulfurization yielded mainly phytane, steranes and triterpanes. Oxygen-carbon bond cleavage resulted in hydrocarbon fractions predominated by n-alkanes and acyclic isoprenoids. The oxidation step afforded high amounts of linear carboxylic acids in the range of C 11 to C 33. The released compounds provide a more complete picture of the molecular structure of the oil fractions than previously available. Labelling experiments with deuterium atoms allowed to characterize the site of bonding and the type of linkage for the released compounds. Evidence is presented that subunits of the macromolecular network are attached simultaneously by oxygen and sulfur (n-alkanes, hopanes) or by sulfur and aromatic units ( n-alkanes, steranes).
Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Mahon, Mary F; Molloy, Kieran C
2010-05-17
Hydrolysis of the mixed-ligand dimethyltin(ethoxy)ethanesulfonate, [Me(2)Sn(OEt)(OSO(2)Et)](n) (1a) in moist hexane proceeds via disproportionation and partial cleavage of Sn-C and S-C bonds to afford a novel oxo-/hydroxo- organotin cluster of the composition [(Me(2)Sn)(MeSn)(4)(OSO(2)Et)(2)(OH)(4)(O)(2)(SO(3))(2)] (1) bearing both mono- and dimethyltin fragments and in situ generated sulfite (SO(3)(2-)) anion in the structural framework. On the other hand, similar reactions with analogous mixed ligand diorganotin precursors, [R(2)Sn(OR(1))(OSO(2)R(1))](n) (R = n-Bu, R(1) = Et (2a); R = Et, R(1) = Me (3a)), result in the formation of tetranuclear diorganotin clusters, [{(n-Bu(2)Sn)(2)(OH)(OSO(2)Et)}O](2) (2) and [(Et(2)Sn)(4)(OH)(O)(2)(OSO(2)Me)(3)] (3), respectively. The activation of the Sn-C or S-C bond is not observed in these cases. These findings provide a preliminary insight into the unusual reactivity of 1a under hydrolytic conditions.
Amide-Directed Photoredox Catalyzed C-C Bond Formation at Unactivated sp3 C-H Bonds
Chu, John C. K.; Rovis, Tomislav
2017-01-01
Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds allow scientists to access molecules which would otherwise be inaccessible and to develop more efficient syntheses of complex molecules.1,2 Herein we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for the selective C-C bond formation at single C-H bonds in molecules that contain a multitude of seemingly indifferentiable such bonds. Selectivity arises through a relayed photoredox catalyzed oxidation of an N-H bond. We anticipate our findings to serve as a starting point for functionalization at inert C-H bonds through a hydrogen atom transfer strategy. PMID:27732580
Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi
2016-08-19
Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins
2013-10-01
acids. These sites constitute a variable environment, with the effect of mutations largely isolated to effects on interactions with the P4 side chain. 2...desires to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only...first five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus
Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins
2012-10-14
effect of mutations largely isolated to effects on interactions with the P4 side chain. 2) Most mutations at some sites (e.g. 126, 128) decrease...to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only ground...five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus of the
Bonded half planes containing an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksogan, O.
1973-01-01
The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.
Shimodaira, Shingo; Asano, Yuki; Arai, Kenta; Iwaoka, Michio
2017-10-24
Selenoglutathione (GSeH) is a selenium analogue of naturally abundant glutathione (GSH). In this study, this water-soluble small tripeptide was synthesized in a high yield (up to 98%) as an oxidized diselenide form, i.e., GSeSeG (1), by liquid-phase peptide synthesis (LPPS). Obtained 1 was applied to the investigation of the glutathione peroxidase (GPx)-like catalytic cycle. The important intermediates, i.e., GSe - and GSeSG, besides GSeO 2 H were characterized by 77 Se NMR spectroscopy. Thiol exchange of GSeSG with various thiols, such as cysteine and dithiothreitol, was found to promote the conversion to GSe - significantly. In addition, disproportionation of GSeSR to 1 and RSSR, which would be initiated by heterolytic cleavage of the Se-S bond and catalyzed by the generated selenolate, was observed. On the basis of these redox behaviors, it was proposed that the heterolytic cleavage of the Se-S bond can be facilitated by the interaction between the Se atom and an amino or aromatic group, which is present at the GPx active site. On the other hand, when a catalytic amount of 1 was reacted with scrambled 4S species of RNase A in the presence of NADPH and glutathione reductase, native protein was efficiently regenerated, suggesting a potential use of 1 to repair misfolded proteins through reduction of the non-native SS bonds.
NASA Astrophysics Data System (ADS)
Osada, Mitsumasa; Toyoshima, Katsunori; Mizutani, Takakazu; Minami, Kimitaka; Watanabe, Masaru; Adschiri, Tadafumi; Arai, Kunio
2003-03-01
UV-visible spectra of quinoline was measured in sub- and supercritical water (25 °C
Guo, Xunmin; Liu, Zheyun; Song, Qinhua; Wang, Lijuan; Zhong, Dongping
2015-02-26
Many biomimetic chemical systems for repair of UV-damaged DNA showed very low repair efficiency, and the molecular origin is still unknown. Here, we report our systematic characterization of the repair dynamics of a model compound of indole-thymine dimer adduct in three solvents with different polarity. By resolving all elementary steps including three electron-transfer processes and two bond-breaking and bond-formation dynamics with femtosecond resolution, we observed the slow electron injection in 580 ps in water, 4 ns in acetonitrile, and 1.38 ns in dioxane, the fast back electron transfer without repair in 120, 150, and 180 ps, and the slow bond splitting in 550 ps, 1.9 ns, and 4.5 ns, respectively. The dimer bond cleavage is clearly accelerated by the solvent polarity. By comparing with the biological repair machine photolyase with a slow back electron transfer (2.4 ns) and a fast bond cleavage (90 ps), the low repair efficiency in the biomimetic system is mainly determined by the fast back electron transfer and slow bond breakage. We also found that the model system exists in a dynamic heterogeneous C-clamped conformation, leading to a stretched dynamic behavior. In water, we even identified another stacked form with ultrafast cyclic electron transfer, significantly reducing the repair efficiency. Thus, the comparison of the repair efficiency in different solvents is complicated and should be cautious, and only the dynamics by resolving all elementary steps can finally determine the total repair efficiency. Finally, we use the Marcus electron-transfer theory to analyze all electron-transfer reactions and rationalize all observed electron-transfer dynamics.
NASA Astrophysics Data System (ADS)
Chen, Wen; Gamache, Eric; Rosenman, David J.; Xie, Jian; Lopez, Maria M.; Li, Yue-Ming; Wang, Chunyu
2014-01-01
The high Aβ42/Aβ40 production ratio is a hallmark of familial Alzheimer’s disease, which can be caused by mutations in the amyloid precursor protein (APP). The C-terminus of Aβ is generated by γ-secretase cleavage within the transmembrane domain of APP (APPTM), a process that is primed by an initial ɛ-cleavage at either T48 or L49, resulting in subsequent production of Aβ42 or Aβ40, respectively. Here we solve the dimer structures of wild-type APPTM (AAPTM WT) and mutant APPTM (FAD mutants V44M) with solution NMR. The right-handed APPTM helical dimer is mediated by GXXXA motif. From the NMR structural and dynamic data, we show that the V44M and V44A mutations can selectively expose the T48 site by weakening helical hydrogen bonds and increasing hydrogen-deuterium exchange rate (kex). We propose a structural model in which FAD mutations (V44M and V44A) can open the T48 site γ-secretase for the initial ɛ-cleavage, and consequently shift cleavage preference towards Aβ42.
Čabart, Pavel; Jin, Huiyan; Li, Liangtao; Kaplan, Craig D
2014-01-01
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn2+ stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF. PMID:25764335
Zhao, F; Stein, D J; Paborji, M; Cash, P W; Root, B J; Wei, Z; Knupp, C J
2001-01-01
BMS-196843 (Oncostatin M) is a therapeutic recombinant protein in development. Scale-up process changes led to unexpected instability of the bulk drug substance solution during storage. A product with an apparent higher MW than the parent protein was observed by the size-exclusion chromatography (SEC). This study was aimed to fully characterize the product and to identify a solution to stabilize the protein. SEC, SDS-PAGE, tryptic mapping, and N-terminal sequencing were performed to characterize the unknown product. The effect of pH, temperature, bulk concentration, and immobilized trypsin inhibitor on the degradation rate was studied to elucidate the mechanism and to identify stabilization strategies. Despite the apparent high MW indicated initially by SEC, the unknown was characterized to be a degradation product resulted from a backbone cleavage between residues Arg145-Gly146. The resulting fragments from the backbone cleavage were, however, still linked through an intramolecular disulfide bond. Thus, the final product had a more open structure with an increased hydrodynamic radius compared to the parent protein, which explains the initial SEC results. The site-specific backbone cleavage was suspected to be catalyzed by trypsin-like protease impurities in the bulk solution. The bulk drug substance solution was subsequently treated with immobilized soybean trypsin inhibitor, and the degradation rate was significantly reduced. Furthermore, increasing the solution pH from 5 to 8 led to an increase in the degradation rate, which was consistent with the expected pH dependency of trypsin activity. In addition, the effect of bulk concentration also supported the involvement of protease impurities rather than a spontaneous peptide bond hydrolysis reaction. Trace trypsin-like protease impurities led to an unusual site-specific backbone cleavage of BMS-196854. The proteolytic degradation can be minimized by treating the bulk solution with immobilized soybean trypsin inhibitor and/or controlling the solution pH and storage temperature.
Rogerson, Fraser M; Stanton, Heather; East, Charlotte J; Golub, Suzanne B; Tutolo, Leonie; Farmer, Pamela J; Fosang, Amanda J
2008-06-01
To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.
Simon, E S; Papoulias, P G; Andrews, P C
2013-07-30
In protein studies that employ tandem mass spectrometry the manipulation of protonated peptide fragmentation through exclusive dissociation pathways may be preferred in some applications over the comprehensive amide backbone fragmentation that is typically observed. In this study, we characterized the selective cleavage of the side-chain Cζ-Nε bond of peptides with ortho-hydroxybenzyl-aminated lysine residues. Internal lysyl residues of representative peptides were derivatized via reductive amination with ortho-hydroxybenzaldehyde. The modified peptides were analyzed using collision-induced dissociation (CID) on an Orbitrap tandem mass spectrometer. Theoretical calculations using computational methods (density functional theory) were performed to investigate the potential dissociation mechanisms for the Cζ-Nε bond of the derivatized lysyl residue resulting in the formation of the observed product ions. Tandem mass spectra of the derivatized peptide ions exhibit product peaks corresponding to selective cleavage of the side-chain Cζ-Nε bond that links the derivative to lysine. The ortho-hydroxybenzyl derivative is released either as a neutral moiety [C7H6O1] or as a carbocation [C7H7O1](+) through competing pathways (retro-Michael versus Carbocation Elimination (CCE), respectively). The calculated transition state activation barriers indicate that the retro-Michael pathway is kinetically favored over CCE and both are favored over amide cleavage. The application of ortho-hydroxybenzyl amination is a promising peptide derivatization scheme for promoting selective dissociation pathways in the tandem mass spectrometry of protonated peptides. This can be implemented in the rational development of peptide reactive reagents for applications that may benefit from selective fragmentation paths (including crosslinking or MRM reagents). Copyright © 2013 John Wiley & Sons, Ltd.
Zhu, Wenyou; Liu, Yongjun; Zhang, Rui
2015-01-01
Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nagoshi, Keishiro; Yamakoshi, Mariko; Sakamoto, Kenya; Takayama, Mitsuo
2018-04-01
Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M - H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M - Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M - Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M - Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M - Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M - Hα + H]·+ and the amide nitrogen-centered radical ions [M - HN + H]·+, while ab initio calculations indicate that the formation of [M - Hα + H]·+ is energetically most favorable. [Figure not available: see fulltext.
Decomposition of amino diazeniumdiolates (NONOates): molecular mechanisms.
Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V
2014-12-01
Although diazeniumdiolates (X[N(O)NO](-)) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO](-), where R=N(C2H5)2 (1), N(C3H4NH2)2 (2), or N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO](-) group with the apparent pKa and decomposition rate constants of 4.6 and 1 s(-1) for 1; 3.5 and 0.083 s(-1) for 2; and 3.8 and 0.0033 s(-1) for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~10(-7), for 1) undergoes the NN heterolytic bond cleavage (kd~10(7) s(-1) for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH<2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO](-) group. Copyright © 2014 Elsevier Inc. All rights reserved.
Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms
Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.
2014-08-23
Although diazeniumdiolates (X[N(O)NO] -) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R 2N[N(O)NO] -, where R = —N(C 2H 5) 2(1), —N(C 3H 4NH 2) 2(2), or —N(C 2H 4NH 2) 2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO] - group with the apparent pKa and decomposition ratemore » constants of 4.6 and 1 s -1 for 1; 3.5 and 0.083 s -1 for 2; and 3.8 and 0.0033 s -1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R 2N(H)N(O)NO tautomer (population ~ 10 -7, for 1) undergoes the N—N heterolytic bond cleavage (k d ~ 107 s -1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO] - group.« less
Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.
Ackermann, Lutz
2014-02-18
To improve the atom- and step-economy of organic syntheses, researchers would like to capitalize upon the chemistry of otherwise inert carbon-hydrogen (C-H) bonds. During the past decade, remarkable progress in organometallic chemistry has set the stage for the development of increasingly viable metal catalysts for C-H bond activation reactions. Among these methods, oxidative C-H bond functionalizations are particularly attractive because they avoid the use of prefunctionalized starting materials. For example, oxidative annulations that involve sequential C-H and heteroatom-H bond cleavages allow for the modular assembly of regioselectively decorated heterocycles. These structures serve as key scaffolds for natural products, functional materials, crop protecting agents, and drugs. While other researchers have devised rhodium or palladium complexes for oxidative alkyne annulations, my laboratory has focused on the application of significantly less expensive, yet highly selective ruthenium complexes. This Account summarizes the evolution of versatile ruthenium(II) complexes for annulations of alkynes via C-H/N-H, C-H/O-H, or C-H/N-O bond cleavages. To achieve selective C-H bond functionalizations, we needed to understand the detailed mechanism of the crucial C-H bond metalation with ruthenium(II) complexes and particularly the importance of carboxylate assistance in this process. As a consequence, our recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones, isoquinolines, indoles, pyrroles, or α-pyrones. Most of these reactions used Cu(OAc)2·H2O, which not only acted as the oxidant but also served as the essential source of acetate for the carboxylate-assisted ruthenation manifold. Notably, the ruthenium(II)-catalyzed oxidative annulations also occurred under an ambient atmosphere of air with cocatalytic amounts of Cu(OAc)2·H2O. Moreover, substrates displaying N-O bonds served as "internal oxidants" for the syntheses of isoquinolones and isoquinolines. Detailed experimental mechanistic studies have provided strong support for a catalytic cycle that relies on initial carboxylate-assisted C-H bond ruthenation, followed by coordinative insertion of the alkyne, reductive elimination, and reoxidation of the thus formed ruthenium(0) complex.
Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker D.; ...
2016-07-22
Herein we describe the C–O cleavage of phenol and cyclohexanol over Rh(111) and Rh(211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C–O bond cleavage of cyclohexanol is easier than that of phenol and that Rh(211) is more active than Rh(111) for both reactions. This indicates that phenol will react mainly following a pathway of initial hydrogenation to cyclohexanol followed by hydrodeoxygenation to cyclohexane. In conclusion, we show that there is a general relationship between the transition state and the final state of both C–O cleavage reactions,more » and that this relationship is the same for Rh(111) and Rh(211).« less
NASA Astrophysics Data System (ADS)
Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu
2017-06-01
Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.
Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2017-09-01
Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.
Han, Xun; Floreancig, Paul E
2014-10-06
Spiroacetals can be formed through a one-pot sequence of a hetero-Diels-Alder reaction, an oxidative carbon-hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit which is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016-02-02
Bartlett, Nigel G. J. Richards, Robert W. Molt, Alison M. Lecher. Facile Csp2 Csp2 bond cleavage in oxalic acid -derived radicals: Implications for...sway a strong bond link in oxalate can be broken by manganese containing enzymes. The intermediate steps involved the formation of either a radical or...catalysis by oxalate decarboxylase, Journal of the American Chemical Society, (03 2015): 3248. doi: 10.1021/ja510666r Erik Deumens, Victor F. Lotrich
An In Situ Directing Group Strategy for Chiral Anion Phase-Transfer Fluorination of Allylic Alcohols
2015-01-01
An enantioselective fluorination of allylic alcohols under chiral anion phase-transfer conditions is reported. The in situ generation of a directing group proved crucial for achieving effective enantiocontrol. In the presence of such a directing group, a range of acyclic substrates underwent fluorination to afford highly enantioenriched α-fluoro homoallylic alcohols. Mechanistic studies suggest that this transformation proceeds through a concerted enantiodetermining transition state involving both C–F bond formation and C–H bond cleavage. PMID:25203796
Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface.
Ryu, Ja-Hyoung; Park, Soojin; Kim, Bokyung; Klaikherd, Akamol; Russell, Thomas P; Thayumanavan, S
2009-07-29
We have prepared functionalized nanoporous thin films from a polystyrene-block-polyethylene oxide block copolymer, which was made cleavable due to the intervening disulfide bond. The cleavage reaction of the disulfide bond leaves behind free thiol groups inside the nanopores of polystyrene thin film. This nanoporous thin film can be used as a template for generating gold nanoring structures. This strategy can provide a facile method to form a highly ordered array of biopolymer or metal-polymer composite structures.
The electronic structure of oriented poly[2-methoxy-5-(2'-ethyl-hexyloxy)- 1,4-phenylene-vinylene
NASA Astrophysics Data System (ADS)
Chambers, D. K.; Karanam, S.; Qi, D.; Selmic, S.; Losovyj, Y. B.; Rosa, L. G.; Dowben, P. A.
2005-02-01
Poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) adopts a preferential orientation on indium tin oxide. Although the basic building block of this polymer provides a negligible overall point-group symmetry, the polymer MEH-PPV packs with sufficient order to exhibit band structure. The polymer is fragile with bond cleavage evident following both argon-ion impact and ultraviolet radiation, but annealing leads to the restoration of much of the bond order.
SEA domain autoproteolysis accelerated by conformational strain: energetic aspects.
Sandberg, Anders; Johansson, Denny G A; Macao, Bertil; Härd, Torleif
2008-04-04
A subclass of proteins with the SEA (sea urchin sperm protein, enterokinase, and agrin) domain fold exists as heterodimers generated by autoproteolytic cleavage within a characteristic G(-1)S+1VVV sequence. Autoproteolysis occurs by a nucleophilic attack of the serine hydroxyl on the vicinal glycine carbonyl followed by an N-->O acyl shift and hydrolysis of the resulting ester. The reaction has been suggested to be accelerated by the straining of the scissile peptide bond upon protein folding. In an accompanying article, we report the mechanism; in this article, we provide further key evidence and account for the energetics of coupled protein folding and autoproteolysis. Cleavage of the GPR116 domain and that of the MUC1 SEA domain occur with half-life (t((1/2))) values of 12 and 18 min, respectively, with lowering of the free energy of the activation barrier by approximately 10 kcal mol(-1) compared with uncatalyzed hydrolysis. The free energies of unfolding of the GPR116 and MUC1 SEA domains were measured to approximately 11 and approximately 15 kcal mol(-1), respectively, but approximately 7 kcal mol(-1) of conformational energy is partitioned as strain over the scissile peptide bond in the precursor to catalyze autoproteolysis by substrate destabilization. A straining energy of approximately 7 kcal mol(-1) was measured by using both a pre-equilibrium model to analyze stability and cleavage kinetics data obtained with the GPR116 SEA domain destabilized by core mutations or urea addition, as well as the difference in thermodynamic stabilities of the MUC1 SEA precursor mutant S1098A (with a G(-1)A+1VVV motif) and the wild-type protein. The results imply that cleavage by N-->O acyl shift alone would proceed with a t((1/2)) of approximately 2.3 years, which is too slow to be biochemically effective. A subsequent review of structural data on other self-cleaving proteins suggests that conformational strain of the scissile peptide bond may be a common mechanism of autoproteolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Hebert, Sebastien P.; Cha, Jin K.; Brash, Alan R.; Schlegel, H. Bernhard
2016-01-01
The cyclopentane core is ubiquitous among a large number of biologically relevant natural products. Cyclopentenones have been shown to be versatile intermediates for the stereoselective preparation of highly substituted cyclopentane derivatives. Allene oxides are oxygenated fatty acids which are involved in the pathways of cyclopentenone biosynthesis in plants and marine invertebrates; however, their cyclization behavior is not well understood. Recent work by Brash and co-workers (J. Biol. Chem. 2013, 288, 20797) revealed an unusual cyclization property of the 9(S)-HPODE-derived allene oxides: the previously unreported 10Z-isomer cyclizes to a cis-dialkylcyclopentenone in hexane/isopropyl alcohol (100:3,v/v), but the known 10E-isomer does not yield cis-cyclopentenone under the same conditions. The mechanism for cyclization has been investigated for unsubstituted and methyl substituted vinyl allene oxide using a variety of methods including CASSCF, ωB97xD, and CCSD(T) and basis sets up to cc-pVTZ. The lowest energy pathway proceeds via homolytic cleavage of the epoxide ring, formation of an oxyallyl diradical, which closes readily to a cyclopropanone intermediate. The cyclopropanone opens to the requisite oxyallyl which closes to the experimentally observed product, cis-cyclopentenone. The calculations show that the open shell, diradical pathway is lower in energy than the closed shell reactions of allene oxide to cyclopropanone, and cyclopropanone to cyclopentenone. PMID:26976802
Positions of disulfide bonds in rye (Secale cereale) seed chitinase-a.
Yamagami, T; Funatsu, G; Ishiguro, M
2000-06-01
The positions of disulfide bonds of rye seed chitinase-a (RSC-a) were identified by the isolation of disulfide-containing peptides produced with enzymatic and/or chemical cleavages of RSC-a, followed by sequencing them. An unequivocal assignment of disulfide bonds in this enzyme was as follows: Cys3-Cysl8, Cys12-Cys24, Cys15-Cys42, Cys17-Cys31, and Cys35-Cys39 in the chitin-binding domain (CB domain), Cys82-Cys144, Cys156-Cys164, and Cys282-Cys295 in the catalytic domain (Cat domain), and Cys263 was a free form.
Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.
Irani, Seema; Naowarojna, Nathchar; Tang, Yang; Kathuria, Karan R; Wang, Shu; Dhembi, Anxhela; Lee, Norman; Yan, Wupeng; Lyu, Huijue; Costello, Catherine E; Liu, Pinghua; Zhang, Yan Jessie
2018-05-17
Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing
2017-08-03
We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.
Husarcíková, Jana; Voß, Hauke; Domínguez de María, Pablo; Schallmey, Anett
2018-05-04
Lignin is the major aromatic biopolymer in nature, and it is considered a valuable feedstock for the future supply of aromatics. Hence, its valorisation in biorefineries is of high importance, and various chemical and enzymatic approaches for lignin depolymerisation have been reported. Among the enzymes known to act on lignin, β-etherases offer the possibility for a selective cleavage of the β-O-4 aryl ether bonds present in lignin. These enzymes, together with glutathione lyases, catalyse a reductive, glutathione-dependent ether bond cleavage displaying high stereospecificity. β-Etherases and glutathione lyases both belong to the superfamily of glutathione transferases, and several structures have been solved recently. Additionally, different approaches for their application in lignin valorisation have been reported in the last years. This review gives an overview on the current knowledge on β-etherases and glutathione lyases, their biochemical and structural features, and critically discusses their potential for application in biorefineries.
Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution.
Lin, Weixiong; Tian, Jing; Ren, Jie; Xu, Pingting; Dai, Yongkang; Sun, Shuiyu; Wu, Chun
2016-01-01
Aniline aerofloat (dianilinodithiophosphoric acid (C6H5NH)2PSSH) is a widely used phosphorodithioic organic flotation collector that contains aniline groups and dithiophosphate groups. In the present study, sodium hypochlorite solution was used to oxidize aniline aerofloat. The effect of operational parameters and optimum oxidation conditions on aniline aerofloat was studied, and the oxidation pathway of aniline aerofloat was proposed by analyzing its main oxidation intermediates. The results showed that NaOCl concentration had a significant influence on aniline aerofloat oxidation and at 100 mg/L aniline aerofloat, 84.54% was removed under the following optimal conditions: NaOCl concentration = 1.25 g/L, pH = 4, and reaction time = 60 min. The main reaction of aniline aerofloat by NaOCl included N-P bond cleavage, aniline group oxidation, aniline group chlorination, and dithiophosphate group oxidation. The initial reaction was the N-P bond cleavage and the anilines and dithiophosphate was further oxidized to other intermediates by five parallel reaction pathways.
Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng
2014-02-24
An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Chenjie; Ding, Weiwei; Shen, Tao; Tang, Chenglun; Sun, Chenguo; Xu, Shichao; Chen, Yong; Wu, Jinglan; Ying, Hanjie
2015-05-22
A series of metallo-deuteroporphyrins derived from hemin were prepared as models of the cytochrome P450 enzyme. With the aid of the highly active Co(II) deuteroporphyrin complex, the catalytic oxidation system was applied for the oxidation of several lignin model compounds, and high yields of monomeric products were obtained under mild reaction conditions. It was found that the modified cobalt deuteroporphyrin that has no substituents at the meso sites but does have the disulfide linkage in the propionate side chains at the β sites exhibited much higher activity and stability than the synthetic tetraphenylporphyrin. The changes in the propionate side chains can divert the reactivity of cobalt deuteroporphyrins from the typical CC bond cleavage to CO bond cleavage. Furthermore, this novel oxidative system can convert enzymolysis lignin into depolymerized products including a significant portion of well-defined aromatic monomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The preparation and application of white graphene
NASA Astrophysics Data System (ADS)
Zhou, Chenghong
2014-12-01
In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.
Narula, Gagandeep; Tse-Dinh, Yuk-Ching
2012-01-01
Bacterial and archaeal topoisomerase I display selectivity for a cytosine base 4 nt upstream from the DNA cleavage site. Recently, the solved crystal structure of Escherichia coli topoisomerase I covalently linked to a single-stranded oligonucleotide revealed that R169 and R173 interact with the cytosine base at the −4 position via hydrogen bonds while the phenol ring of Y177 wedges between the bases at the −4 and the −5 position. Substituting R169 to alanine changed the selectivity of the enzyme for the base at the −4 position from a cytosine to an adenine. The R173A mutant displayed similar sequence selectivity as the wild-type enzyme, but weaker cleavage and relaxation activity. Mutation of Y177 to serine or alanine rendered the enzyme inactive. Although mutation of each of these residues led to different outcomes, R169, R173 and Y177 work together to interact with a cytosine base at the −4 position to facilitate DNA cleavage. These strictly conserved residues might act after initial substrate binding as a Molecular Ruler to form a protein–DNA complex with the scissile phosphate positioned at the active site for optimal DNA cleavage by the tyrosine hydroxyl nucleophile to facilitate DNA cleavage in the reaction pathway. PMID:22833607
Structural basis for activation of the complement system by component C4 cleavage
Kidmose, Rune T.; Laursen, Nick S.; Dobó, József; Kjaer, Troels R.; Sirotkina, Sofia; Yatime, Laure; Sottrup-Jensen, Lars; Thiel, Steffen; Gál, Péter; Andersen, Gregers R.
2012-01-01
An essential aspect of innate immunity is recognition of molecular patterns on the surface of pathogens or altered self through the lectin and classical pathways, two of the three well-established activation pathways of the complement system. This recognition causes activation of the MASP-2 or the C1s serine proteases followed by cleavage of the protein C4. Here we present the crystal structures of the 203-kDa human C4 and the 245-kDa C4⋅MASP-2 substrate⋅enzyme complex. When C4 binds to MASP-2, substantial conformational changes in C4 are induced, and its scissile bond region becomes ordered and inserted into the protease catalytic site in a manner canonical to serine proteases. In MASP-2, an exosite located within the CCP domains recognizes the C4 C345C domain 60 Å from the scissile bond. Mutations in C4 and MASP-2 residues at the C345C–CCP interface inhibit the intermolecular interaction and C4 cleavage. The possible assembly of the huge in vivo enzyme–substrate complex consisting of glycan-bound mannan-binding lectin, MASP-2, and C4 is discussed. Our own and prior functional data suggest that C1s in the classical pathway of complement activated by, e.g., antigen–antibody complexes, also recognizes the C4 C345C domain through a CCP exosite. Our results provide a unified structural framework for understanding the early and essential step of C4 cleavage in the elimination of pathogens and altered self through two major pathways of complement activation. PMID:22949645
Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu
2018-02-14
Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...
2017-10-22
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
2002-01-01
There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.
Switching "on" and "off" the adhesion in stimuli-responsive elastomers.
Kaiser, S; Radl, S V; Manhart, J; Ayalur-Karunakaran, S; Griesser, T; Moser, A; Ganser, C; Teichert, C; Kern, W; Schlögl, S
2018-03-28
The present work aims at the preparation of dry adhesives with switchable bonding properties by using the reversible nature of the [4πs+4πs] cycloaddition of anthracenes. Photo-responsive hydrogenated carboxylated nitrile butadiene rubber with photo-responsive pendant anthracene groups is prepared by one-pot synthesis. The formation of 3D networks relies on the photodimerization of the anthracene moieties upon UV exposure (λ > 300 nm). Controlled cleavage of the crosslink sites is achieved by either deep UV exposure (λ = 254 nm) or thermal dissociation at 70 °C. The kinetics of the optical and thermal cleavage routes are compared in thin films using UV-vis spectroscopy and their influence on the reversibility of the network is detailed. Going from thin films to free standing samples the modulation of the network structure and thermo-mechanical properties over repeated crosslinking and cleavage cycles are characterized by low-field NMR spectroscopy and dynamic mechanical analysis. The applicability of the stimuli-responsive networks as adhesives with reversible bonding properties is demonstrated. The results evidence that the reversibility of the crosslinking reaction enables a controlled switching "on" and "off" of adhesion properties. The recovery of the adhesion force amounts to 75 and 80% for photo- and thermal dissociation, respectively. Spatial control of adhesion properties is evidenced by adhesion force mapping experiments of photo-patterned films.
Wu, Lianming; Liu, David Q; Vogt, Frederick G
2006-01-01
Fragmentation mechanisms of trans-1,4-diphenyl-2-butene-1,4-dione were studied using a variety of mass spectrometric techniques. The major fragmentation pathways occur by various rearrangements by loss of H(2)O, CO, H(2)O and CO, and CO(2). The other fragmentation pathways via simple alpha cleavages were also observed but accounted for the minor dissociation channels in both a two-dimensional (2-D) linear ion trap and a quadrupole time-of-flight (Q-TOF) mass spectrometer. The elimination of CO(2) (rather than CH(3)CHO or C(3)H(8)), which was confirmed by an exact mass measurement using the Q-TOF instrument, represented a major fragmentation pathway in the 2-D linear ion trap mass spectrometer. However, the elimination of H(2)O and CO becomes more competitive in the beam-type Q-TOF instrument. The loss of CO is observed in both the MS(2) experiment of m/z 237 and the MS(3) experiment of m/z 219 but via the different transition states. The data suggest that the olefinic double bond in protonated trans-1,4-diphenyl-2-butene-1,4-dione plays a key role in stabilizing the rearrangement transition states and increasing the bond dissociation (cleavage) energy to give favorable rearrangement fragmentation pathways. Copyright (c) 2006 John Wiley & Sons, Ltd.
Benkovičová, Monika; Wen, Dan; Plutnar, Jan; Čížková, Martina; Eychmüller, Alexander; Michl, Josef
2017-05-18
The formation of self-assembled monolayers on surfaces is often likely to be accompanied by the formation of byproducts, whose identification holds clues to the reaction mechanism but is difficult due to the minute amounts produced. We now report a successful identification of self-assembly byproducts using gold aerogel with a large specific surface area, a procedure likely to be applicable generally. Like a thin gold layer on a flat substrate, the aerogel surface is alkylated with n-butyl-d 9 groups upon treatment with a solution of tetra-n-butylstannane-d 36 under ambient conditions. The reaction byproducts accumulate in the mother liquor in amounts sufficient for GC-MS analysis. In chloroform solvent, they are butene-d 8 , butane-d 10 , octane-d 18 , and tributylchlorostannane-d 27 . In hexane, they are the same except that tributylchlorostannane-d 27 is replaced with hexabutyldistannane-d 54 . The results are compatible with an initial homolytic dissociation of a C-Sn bond on the gold surface, followed by known radical processes.
An enantioselective route to alpha-methyl carboxylic acids via metal and enzyme catalysis.
Norinder, Jakob; Bogár, Krisztián; Kanupp, Lisa; Bäckvall, Jan-E
2007-11-22
Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.
Recognition and cleavage of corn defense chitinases by fungal polyglycine hydrolases
USDA-ARS?s Scientific Manuscript database
Polyglycine hydrolases are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn. Polyglycine hydrolases are novel proteins in terms of activity and sequence. The objective of the study is to und...
On the dissociation and conformation of gas-phase methonium ions.
Gross, Deborah S; Williams, Evan R
1996-12-20
The dissociation pathways of both doubly and singly charged methonium ions, (CH(3))(3)N(+) -(CH(2))(n)-(+)N(CH(3))(3)·X(-) (n = 6,10; X = Br, I, and OAc), are measured using blackbody infrared radiative dissociation (BIRD) and SORI-CAD in a Fourier transform mass spectrometer. SORI-CAD of the doubly charged decamethonium ions results primarily in the formation of even electron ions by hydrogen rearrangements. In contrast, homolytic bond cleavage to form two odd electron ions is highly favored in the hexamethonium ion, presumably due to increased Coulomb repulsion in this ion. For BIRD of the singly charged salts, ions are mass selected and dissociated by heating the vacuum chamber to elevated temperatures. Under the low pressure conditions of our experiment, energy is transferred from the chamber walls to the ions by the absorption of blackbody radiation. From the temperature dependence of the unimolecular rate constants for dissociation, Arrhenius activation energies in the zero-pressure limit are obtained. The primary dissociation pathways correspond to counterion substitution reactions which result in loss of N(CH(3))(3) and CH(3)X. For hexamethonium and decamethonium with X = Br or I, the branching ratios for these pathways differ dramatically; the ratio of loss of N(CH(3))(3) and CH(3)Br is 3.8 and 0.4 for hexamethonium and decamethonium bromide, respectively. The hexamethonium acetate salt has a branching ratio of 0.1. The Arrhenius activation energies for hexamethonium (Br or I) and decamethonium (Br or I) are 0.9 and 1.0 eV, respectively. This value for hexamethonium acetate is 0.6 eV. Molecular dynamics simulations and Monte Carlo conformation searching are used to obtain the lowest energy structures of hexamethonium and decamethonium bromide. These calculations indicate that the methonium ion folds around the counterion to form a cyclic salt-bridge structure in which both quaternary nitrogens interact with the oppositely charged counterion. The significantly different branching ratios observed for these ions is attributed to the large change in orientation of the counterion with respect to the ammonium centers as the number of methylene groups in these ions increases. Similar ion conformational differences appear to explain the fragmentation for the OAc counter ion as well.
On the dissociation and conformation of gas-phase methonium ions
Gross, Deborah S.
2005-01-01
The dissociation pathways of both doubly and singly charged methonium ions, (CH3)3N+ –(CH2)n–+N(CH3)3·X− (n = 6,10; X = Br, I, and OAc), are measured using blackbody infrared radiative dissociation (BIRD) and SORI–CAD in a Fourier transform mass spectrometer. SORI–CAD of the doubly charged decamethonium ions results primarily in the formation of even electron ions by hydrogen rearrangements. In contrast, homolytic bond cleavage to form two odd electron ions is highly favored in the hexamethonium ion, presumably due to increased Coulomb repulsion in this ion. For BIRD of the singly charged salts, ions are mass selected and dissociated by heating the vacuum chamber to elevated temperatures. Under the low pressure conditions of our experiment, energy is transferred from the chamber walls to the ions by the absorption of blackbody radiation. From the temperature dependence of the unimolecular rate constants for dissociation, Arrhenius activation energies in the zero-pressure limit are obtained. The primary dissociation pathways correspond to counterion substitution reactions which result in loss of N(CH3)3 and CH3X. For hexamethonium and decamethonium with X = Br or I, the branching ratios for these pathways differ dramatically; the ratio of loss of N(CH3)3 and CH3Br is 3.8 and 0.4 for hexamethonium and decamethonium bromide, respectively. The hexamethonium acetate salt has a branching ratio of 0.1. The Arrhenius activation energies for hexamethonium (Br or I) and decamethonium (Br or I) are 0.9 and 1.0 eV, respectively. This value for hexamethonium acetate is 0.6 eV. Molecular dynamics simulations and Monte Carlo conformation searching are used to obtain the lowest energy structures of hexamethonium and decamethonium bromide. These calculations indicate that the methonium ion folds around the counterion to form a cyclic salt-bridge structure in which both quaternary nitrogens interact with the oppositely charged counterion. The significantly different branching ratios observed for these ions is attributed to the large change in orientation of the counterion with respect to the ammonium centers as the number of methylene groups in these ions increases. Similar ion conformational differences appear to explain the fragmentation for the OAc counter ion as well. PMID:16479265
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-05-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-01-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.
2013-01-01
Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579
Lustemberg, Pablo G.; Ramírez, Pedro J.; Liu, Zongyuan; ...
2016-10-27
The results of core-level photoemission indicate that Ni-CeO 2(111) surfaces with small or medium coverages of nickel are able to activate methane at 300 K, producing adsorbed CH x and CO x (x = 2, 3) groups. Calculations based on density functional theory predict a relatively low activation energy of 0.6–0.7 eV for the cleavage of the first C–H bond in the adsorbed methane molecule. Ni and O centers of ceria work in a cooperative way in the dissociation of the C–H bond at room temperature, where a low Ni loading is crucial for the catalyst activity and stability. Themore » strong electronic perturbations in the Ni nanoparticles produced by the ceria supports of varying natures, such as stoichiometric and reduced, result in a drastic change in their chemical properties toward methane adsorption and dissociation as well as the dry reforming of methane reaction. Lastly, the coverage of Ni has a drastic effect on the ability of the system to dissociate methane and catalyze the dry re-forming process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustemberg, Pablo G.; Ramírez, Pedro J.; Liu, Zongyuan
The results of core-level photoemission indicate that Ni-CeO 2(111) surfaces with small or medium coverages of nickel are able to activate methane at 300 K, producing adsorbed CH x and CO x (x = 2, 3) groups. Calculations based on density functional theory predict a relatively low activation energy of 0.6–0.7 eV for the cleavage of the first C–H bond in the adsorbed methane molecule. Ni and O centers of ceria work in a cooperative way in the dissociation of the C–H bond at room temperature, where a low Ni loading is crucial for the catalyst activity and stability. Themore » strong electronic perturbations in the Ni nanoparticles produced by the ceria supports of varying natures, such as stoichiometric and reduced, result in a drastic change in their chemical properties toward methane adsorption and dissociation as well as the dry reforming of methane reaction. Lastly, the coverage of Ni has a drastic effect on the ability of the system to dissociate methane and catalyze the dry re-forming process.« less
Xu, Kai; Wei, Dong-Qing; Chen, Xiang-Rong; Ji, Guang-Fu
2014-10-01
The Car-Parrinello molecular dynamics simulation was applied to study the thermal decomposition of solid phase nitromethane under gradual heating and fast annealing conditions. In gradual heating simulations, we found that, rather than C-N bond cleavage, intermolecular proton transfer is more likely to be the first reaction in the decomposition process. At high temperature, the first reaction in fast annealing simulation is intermolecular proton transfer leading to CH3NOOH and CH2NO2, whereas the initial chemical event at low temperature tends to be a unimolecular C-N bond cleavage, producing CH3 and NO2 fragments. It is the first time to date that the direct rupture of a C-N bond has been reported as the first reaction in solid phase nitromethane. In addition, the fast annealing simulations on a supercell at different temperatures are conducted to validate the effect of simulation cell size on initial reaction mechanisms. The results are in qualitative agreement with the simulations on a unit cell. By analyzing the time evolution of some molecules, we also found that the time of first water molecule formation is clearly sensitive to heating rates and target temperatures when the first reaction is an intermolecular proton transfer.
Catabolism of gastrin releasing peptide and substance P by gastric membrane-bound peptidases.
Bunnett, N W; Kobayashi, R; Orloff, M S; Reeve, J R; Turner, A J; Walsh, J H
1985-01-01
The catabolism of two gastric neuropeptides, the C-terminal decapeptide of gastrin releasing peptide-27 (GRP10) and substance P (SP), by membrane-bound peptidases of the porcine gastric corpus and by porcine endopeptidase-24.11 ("enkephalinase") has been investigated. GRP10 was catabolized by gastric muscle peptidases (specific activity 1.8 nmol min-1 mg-1 protein) by hydrolysis of the His8-Leu9 bond and catabolism was inhibited by phosphoramidon (I50 approx. 10(-8) M), a specific inhibitor of endopeptidase-24.11. The same bond in GRP10 was cleaved by purified endopeptidase-24.11, and hydrolysis was equally sensitive to inhibition by phosphoramidon. SP was catabolized by gastric muscle peptidases (specific activity 1.7 nmol min-1 mg-1 protein) by hydrolysis of the Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10 bonds, which is identical to the cleavage of SP by purified endopeptidase-24.11. The C-terminal cleavage of GRP10 and SP would inactivate the peptides. It is concluded that a membrane-bound peptidase in the stomach wall catabolizes and inactivates GRP10 and SP and that, in its specificity and sensitivity to phosphoramidon, this peptidase resembles endopeptidase-24.11.
A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers
Yang, Youdi; Li, Shaopeng; Han, Buxing
2018-01-01
Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C–O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies. PMID:29795781
2014-01-01
Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C–N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C–O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the nX → π*C=O (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C–N/C–O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions. PMID:24460078
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Overbury, Steven H.
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces
Beste, Ariana; Overbury, Steven H.
2016-03-09
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces.
Beste, Ariana; Overbury, Steven H
2016-04-21
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed product selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.
Bruña, Sonia; González-Vadillo, Ana Mª; Ferrández, Marta; Perles, Josefina; Montero-Campillo, M Merced; Mó, Otilia; Cuadrado, Isabel
2017-09-12
The formation of a family of silicon- and siloxane-bridged multiferrocenyl derivatives carrying different functional groups attached to silicon, including Fc 2 (CH 3 ) 3 C(CH 2 ) 2 SiCH[double bond, length as m-dash]CH 2 (5), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)SiCH[double bond, length as m-dash]CH 2 (6), Fc 2 (OH)SiCH[double bond, length as m-dash]CH 2 (7), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-Si(O-CH[double bond, length as m-dash]CH 2 )Fc 2 (8) and Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-SiFc 3 (9) is described. Silyl vinyl ether molecules 6, 8 and 9 and the heteroleptic vinylsilane 5 resulted from the competing metathesis reaction of lithioferrocene (FcLi), CH 2 [double bond, length as m-dash]CH-OLi or (CH 3 ) 3 C(CH 2 ) 2 Li with the corresponding multifunctional chlorosilane, Cl 3 SiCH[double bond, length as m-dash]CH 2 or Cl 3 Si-O-SiCl 3 . The last two organolithium species have been likely formed in situ by fragmentation of the tetrahydrofuran solvent. Diferrocenylvinyloxyvinylsilane 6 is noteworthy since it represents a rare example of a redox-active silyl mononomer in which two different C[double bond, length as m-dash]C polymerisable groups are directly connected to silicon. The molecular structures of the silicon-containing multiferrocenyl species 5, 6, 8 and 9 have been investigated by single-crystal X-ray diffraction studies, demonstrating the capture and storage processes of two ring fragments resulting from the cleavage of cyclic THF in redox-active and stable crystalline organometallic compounds. From electrochemical studies we found that by changing the anion of the supporting electrolyte from [PF 6 ] - to [B(C 6 F 5 ) 4 ] - , the redox behaviour of tetrametallic disiloxane 8 can be switched from a poorly resolved multistep redox process to four consecutive well-separated one-electron oxidations, corresponding to the sequential oxidation of the four ferrocenyl moieties.
Iodide-catalyzed synthesis of N-nitrosamines via C-N cleavage of nitromethane.
Zhang, Jie; Jiang, Jiewen; Li, Yuling; Wan, Xiaobing
2013-11-15
An iodide-catalyzed process to synthesize N-nitrosamines has been developed using TBHP as the oxidant. The mild catalytic system succeeded in cleaving the carbon-nitrogen bond in nitromethane. This methodology uses commercially available, inexpensive catalysts and oxidants and has a wide substrate scope and operational simplicity.
Heme-Containing Metal-Organic Frameworks for the Oxidative Degradation of Chemical Warfare Agents
2016-04-14
stability of the oxo without sacrificing its inherent reactivity, we have synthesized a new framework featuring fluorinated groups in the ortho...especially suitable for the degradation of electrophilic phosphorous center, leading to the cleavage of P-S or P-O bond present in VX nerve agents
Electronic modules easily separated from heat sink
NASA Technical Reports Server (NTRS)
1965-01-01
Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.
Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.
The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement withmore » theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3).« less
Lountos, George T; Austin, Brian P; Nallamsetty, Sreedevi; Waugh, David S
2009-01-01
Crystal structures of cleaved and uncleaved forms of the YscU cytoplasmic domain, an essential component of the type III secretion system (T3SS) in Yersinia pestis, have been solved by single-wavelength anomolous dispersion and refined with X-ray diffraction data extending up to atomic resolution (1.13 Å). These crystallographic studies provide structural insights into the conformational changes induced upon auto-cleavage of the cytoplasmic domain of YscU. The structures indicate that the cleaved fragments remain bound to each other. The conserved NPTH sequence that contains the site of the N263-P264 peptide bond cleavage is found on a β-turn which, upon cleavage, undergoes a major reorientation of the loop away from the catalytic N263, resulting in altered electrostatic surface features at the site of cleavage. Additionally, a significant conformational change was observed in the N-terminal linker regions of the cleaved and noncleaved forms of YscU which may correspond to the molecular switch that influences substrate specificity. The YscU structures determined here also are in good agreement with the auto-cleavage mechanism described for the flagellar homolog FlhB and E. coli EscU. PMID:19165725
Cheng, Y D; Lin, S Y
2000-03-01
A novel Fourier transform infrared (FT-IR) microspectrophotometer equipped with differential scanning calorimetry (DSC) was used to investigate the kinetics of intramolecular cyclization of aspartame (APM) sweetener in the solid state under isothermal conditions. The thermal-dependent changes in the peak intensity of IR spectra at 1543, 1283, and 1259 cm(-1) were examined to explore the reaction. The results support that the intramolecular cyclization process in APM proceeded in three steps: the methoxyl group of ester was first thermolyzed to release methanol, then an acyl cation was attacked by the lone pair of electrons available on nitrogen by an S(N)1 pathway, and finally ring-closure occurred. The intramolecular cyclization of APM determined by this microscopic FT-IR/DSC system was found to follow zero-order kinetics after a brief induction period. The bond cleavage energy (259.38 kJ/mol) of thermolysis for the leaving group of -OCH(3), the bond conversion energy (328.88 kJ/mol) for the amide II NH band to DKP NH band, and the CN bond formation energy (326.93 kJ/mol) of cyclization for the DKP in the APM molecule were also calculated from the Arrhenius equation. The total activation energy of the DKP formation via intramolecular cyclization was 261.33 kJ/mol, calculated by the above summation of the bond energy of cleavage, conversion, and formation, which was near to the value determined by the DSC or TGA method. This indicates that the microscopic FT-IR/DSC system is useful as a potential tool not only to investigate the degradation mechanism of drugs in the solid state but also to directly predict the bond energy of the reaction.
Nachon, Florian; Asojo, Oluwatoyin A; Borgstahl, Gloria E O; Masson, Patrick; Lockridge, Oksana
2005-02-01
Organophosphorus poisons (OP) bind covalently to the active-site serine of cholinesterases. The inhibited enzyme can usually be reactivated with powerful nucleophiles such as oximes. However, the covalently bound OP can undergo a suicide reaction (termed aging) yielding nonreactivatable enzyme. In human butyrylcholinesterase (hBChE), aging involves the residues His438 and Glu197 that are proximal to the active-site serine (Ser198). The mechanism of aging is known in detail for the nerve gases soman, sarin, and tabun as well as the pesticide metabolite isomalathion. Aging of soman- and sarin-inhibited acetylcholinesterase occurs by C-O bond cleavage, whereas that of tabun- and isomalathion-inhibited acetylcholinesterase occurs by P-N and P-S bond cleavage, respectively. In this work, the crystal structures of hBChE inhibited by the ophthalmic reagents echothiophate (nonaged and aged) and diisopropylfluorophosphate (aged) were solved and refined to 2.1, 2.25, and 2.2 A resolution, respectively. No appreciable shift in the position of the catalytic triad histidine was observed between the aged and nonaged conjugates of hBChE. This absence of shift contrasts with the aged and nonaged crystal structures of Torpedo californica acetylcholinesterase inhibited by the nerve agent VX. The nonaged hBChE structure shows one water molecule interacting with Glu197 and the catalytic triad histidine (His438). Interestingly, this water molecule is ideally positioned to promote aging by two mechanisms: breaking either a C-O bond or a P-O bond. Pesticides and certain stereoisomers of nerve agents are expected to undergo aging by breaking the P-O bond.
Świerszcz, Iwona; Skurski, Piotr; Simons, Jack
2012-02-23
Ab initio electronic structure calculations were performed on a doubly charged polypeptide model H(+)-Lys(Ala)(19)-CO-CH(NH(2))-CH(2)-SS-CH(2)-(NH(2))CH-CO-(Ala)(19)-Lys-H(+) consisting of a C-terminal protonated Lys followed by a 19-Ala α-helix with a 20th Ala-like unit whose side chain is linked by a disulfide bond to a corresponding Ala-like unit connected to a second 19-Ala α-helix terminated by a second C-terminal-protonated Lys. The Coulomb potentials arising from the two charged Lys residues and dipole potentials arising from the two oppositely directed 72 D dipoles of the α-helices act to stabilize the SS bond's σ* orbital. The Coulomb potentials provide stabilization of 1 eV, while the two large dipoles generate an additional 4 eV. Such stabilization allows the SS σ* orbital to attach an electron and thereby generate disulfide bond cleavage products. Although calculations are performed only on SS bond cleavage, discussion of N-C(α) bond cleavage caused by electron attachment to amide π* orbitals is also presented. The magnitudes of the stabilization energies as well as the fact that they arise from Coulomb and dipole potentials are supported by results on a small model system consisting of a H(3)C-SS-CH(3) molecule with positive and negative fractional point charges to its left and right designed to represent (i) two positive charges ca. 32 Å distant (i.e., the two charged Lys sites of the peptide model) and (ii) two 72 D dipoles (i.e., the two α-helices). Earlier workers suggested that internal dipole forces in polypeptides could act to guide incoming free electrons (i.e., in electron capture dissociation (ECD)) toward the positive end of the dipole and thus affect the branching ratios for cleaving various bonds. Those workers argued that, because of the huge mass difference between an anion donor and a free electron, internal dipole forces would have a far smaller influence over the trajectory of a donor (i.e., in electron transfer dissociation (ETD)). The present findings suggest that, in addition to their effects on guiding electron or donor trajectories, dipole potentials (in combination with Coulomb potentials) also alter the energies of SS σ* and amide π* orbitals, which then affects the ability of these orbitals to bind an electron. Thus, both by trajectory-guiding and by orbital energy stabilization, Coulomb and dipole potentials can have significant influences on the branching ratios of ECD and ETC in which disulfide or N-C(α) bonds are cleaved. © 2012 American Chemical Society
Vincent, B; Vincent, J P; Checler, F
1996-02-12
We have purified and characterized human brain endopeptidase 3.4.24.16. The enzyme behaved as a 72 kDa protein and belonged to the metalloprotease family. Human endopeptidase 3.4.24.16 cleaved neurotensin at a unique site at the Pro10-Tyr11 bond, leading to the formation of neurotensin(1-10) and neurotensin(11-13). The kinetic parameters displayed by human endopeptidase 3.4.24.16 towards a series of natural neuropeptides indicated that bradykinin was the most efficiently proteolysed. Angiotensin I, dynorphins 1-8 and 1-9 and substance P also behaved as good substrates while neuromedin N, angiotensin II, leucine and methionine enkephalin and neurokinin A resisted degradation by human endopeptidase 3.4.24.16. We have purified the porcine counterpart of endopeptidase 3.4.24.16 and compared its ability to cleave neurotensin with that of the enzyme from human origin. It appeared that, besides a major production of neurotensin(1-10), an additional formation of neurotensin(1-8) was observed with the pig enzyme, suggesting a cleavage of neurotensin not only at the Pro10-Tyr11 bond but also at the Arg8-Arg9 peptidyl bond. The latter cleavage appeared reminiscent of endopeptidase 3.4.24.15 since this peptidase was reported to cleave neurotensin at the Arg8-Arg9 bond. Our study indicated that neurotensin(1-10) formation by porcine endopeptidase 3.4.24.16 could be potently blocked with the selective endopeptidase 3.4.24.16 dipeptide inhibitor Pro-Ile without interfering with neurotensin(1-8) formation. By contrast, the formation of the latter product was highly potentiated by dithiothreitol and inhibited by the endopeptidase 3.4.24.15 inhibitor Cpp-Ala-Ala-Tyr-pAB, two effects that were not observed for neurotensin(1-10) production. Altogether, our results indicate that porcine endopeptidase 3.4.24.16 cleaves neurotensin at a unique site, leading to the formation of neurotensin(1-10) and that the production of neurotensin(1-8) is due to contaminating endopeptidase 3.4.24.15.
Teranishi, Ryoma; Matsuki, Ryota; Yuba, Eiji; Harada, Atsushi; Kono, Kenji
2016-01-01
For the delivery of doxorubicin (DOX), pH and redox dual responsive hollow nanocapsules were prepared through the stabilization of polymer vesicles, which spontaneously formed from polyamidoamine dendron-poly(l-lysine) (PAMAM dendron-PLL), by the introduction of disulfide (SS) bonds between PLLs. The SS-bonded nanocapsules exhibited a very slow release of DOX under an extracellular environment because the cationic PLL membrane acted as an electrostatic barrier against the protonated DOX molecules. However, increasing the glutathione concentration to the intracellular level facilitated the immediate release of DOX through the collapse of nanocapsules by the spontaneous cleavage of SS bonds. SS-bonded nanocapsules also escaped from the endosome by the buffering effect of PAMAM dendrons, and DOX delivery into the cytoplasm was achieved. Furthermore, DOX molecules delivered by SS-bonded nanocapsules exhibited an effective in vitro anticancer effect to HeLa cells. PMID:28042818
Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal
2016-09-02
Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.
Challa, Chandrasekhar; Varughese, Sunil; Suresh, Cherumuttathu H; Lankalapalli, Ravi S
2017-08-18
A transformation of the unstrained phenol substituted 3,3'-diindolylmethanes (DIPMs) to 2,3'-diindolylketones (DIKs) by double C-C single bond cleavage with associated rearrangements, triggered by phenyliodine(III) diacetate (PIDA), is reported. Density functional theory studies reveal a mechanism involving multiple "charge-switching" steps by synergistic involvement of the two indole units with overall low activation energy. The indole 'charge-switching' mechanism in DIPMs was further extended toward synthesis of a natural product motif cyclohepta[b]indole from biaryl appended DIBM.
Jia, Xiao Dong; Liu, Xiaofei; Yuan, Yu; Li, Pengfei; Hou, Wentao; He, Kaixuan
2018-06-03
A radical cation salt-initiated phosphorylation of N-benzylanilines was realized through the aerobic oxidation of sp3 C-H bond, providing a series of α-aminophosphonates in high yields. The investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C-H bond was involved in the rate-determining step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baiady, Nardeen; Padala, Prasanth; Mashahreh, Bayan; Cohen-Kfir, Einav; Todd, Emily A.; Du Pont, Kelly E.; Berndsen, Christopher E.; Wiener, Reuven
2016-01-01
The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys63-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys63-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys63-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage. PMID:26601948
Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2016-10-04
Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shintani, Ryo; Takatsu, Keishi; Hayashi, Tamio
2008-03-20
A nonenzymatic kinetic resolution of tertiary homoallyl alcohols has been developed through a rhodium-catalyzed retro-allylation reaction under simple conditions. Selectivity factors of up to 12 have been achieved by employing (R)-H8-binap as the ligand, and the reaction can be conducted on a preparative scale.
Phenanthridine synthesis through iron-catalyzed intramolecular N-arylation of O-acetyl oxime.
Deb, Indubhusan; Yoshikai, Naohiko
2013-08-16
O-Acetyl oximes derived from 2'-arylacetophenones undergo N-O bond cleavage/intramolecular N-arylation in the presence of a catalytic amount of iron(III) acetylacetonate in acetic acid. In combination with the conventional cross-coupling or directed C-H arylation, the reaction offers a convenient route to substituted phenanthridines.
Catalytic routes and oxidation mechanisms in photoreforming of polyols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang
2016-12-01
Photocatalytic reforming of biomass-derived oxygenates leads to H 2 generation and evolution of CO 2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO 2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C 3–C 6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonylmore » group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.« less
From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.
Picart, Pere; de María, Pablo Domínguez; Schallmey, Anett
2015-01-01
The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Glutathione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45-60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable) low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples.
From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization
Picart, Pere; de María, Pablo Domínguez; Schallmey, Anett
2015-01-01
The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Glutathione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45–60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable) low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples. PMID:26388858
NASA Astrophysics Data System (ADS)
Cao, Wenjin; Hewage, Dilrukshi; Yang, Dong-Sheng
2018-05-01
La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.
Subsite mapping of enzymes. Application of the depolymerase computer model to two alpha-amylases.
Allen, J D; Thoma, J A
1976-01-01
In the preceding paper (Allen and Thoma, 1976) we developed a depolymerase computer model, which uses a minimization routine to establish a subsite map for a depolymerase. In the present paper we show how the model is applied to experimental data for two alpha-amylases. Michaelis parameters and bond-cleavage frequencies for substrates of chain lengths up to twelve glucosyl units have been reported for Bacillus amyloliquefaciens, and a subsite map has been proposed for this enzyme [Thoma et al. (1971) J. Biol. Chem. 246, 5621-5635]. By applying the computer model to the experimental data, we have arrived at a ten-subsite map. We find that a significant improvement in this map is achieved by allowing the hydrolytic rate coefficient to vary as a function of the number of occupied subsites comprising the enzyme-binding region. The bond-cleavage frequencies, the enzyme is found to have eight subsites. A partial subsite map is arrived at, but the entire binding region cannot be mapped because Michaelis parameters are complicated by transglycosylation reactions. The hydrolytic rate coefficients for this enzyme are not constant. PMID:999630
NASA Astrophysics Data System (ADS)
Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen
2017-07-01
γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.
[Cleavage time for a hydrogen bond under a load].
Bespalov, S V; Tolpygo, K B
1993-01-01
Statistics of the hydrogen bond formation and break in a bundle of actin and myosin filaments realizing the attractive force in the sarcomere of a muscle is studied. Purely mechanical problem of the attractive-force formation and motion of myosin heads and action globules under their action is supplemented by accounting for the irreversible processes: 1. Thermal de-excitation of the latter in the chain of hydrogen bond during the elementary act of the ATP energy use resulting in fixing the extended actin filament. 2. Break of the hydrogen bonds, realizing this fixing, due to thermal fluctuations for the time tau. The average life-time turns out to be the order of time necessary for the movement of z-membrane sarcomere for the value of action filament extension delta 1, which is necessary for the process of muscle contraction to be continued.
Wang, Pengcheng; Williams, Renee T.; Guerrero, Candace R.; Ji, Debin; Wang, Yinsheng
2014-01-01
Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O2, N3 and O4) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3′-O3′ bond, the incorporation of an alkyl group to the O2 position and, to a much lesser extent, the O4 position, but not the N3 position of thymine, led to facile cleavage of the C3′-O3′ bond on the 3′ side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation. PMID:24664806
Isaac, R Elwyn; Johnson, Erik C; Audsley, Neil; Shirras, Alan D
2007-12-01
Recent studies have firmly established pigment dispersing factor (PDF), a C-terminally amidated octodecapeptide, as a key neurotransmitter regulating rhythmic circadian locomotory behaviours in adult Drosophila melanogaster. The mechanisms by which PDF functions as a circadian peptide transmitter are not fully understood, however; in particular, nothing is known about the role of extracellular peptidases in terminating PDF signalling at synapses. In this study we show that PDF is susceptible to hydrolysis by neprilysin, an endopeptidase that is enriched in synaptic membranes of mammals and insects. Neprilysin cleaves PDF at the internal Ser7-Leu8 peptide bond to generate PDF1-7 and PDF8-18. Neither of these fragments were able to increase intracellular cAMP levels in HEK293 cells cotransfected with the Drosophila PDF receptor cDNA and a firefly luciferase reporter gene, confirming that such cleavage results in PDF inactivation. The Ser7-Leu8 peptide bond was also the principal cleavage site when PDF was incubated with membranes prepared from heads of adult Drosophila. This endopeptidase activity was inhibited by the neprilysin inhibitors phosphoramidon (IC(50,) 0.15 micromol l(-1)) and thiorphan (IC(50,) 1.2 micromol l(-1)). We propose that cleavage by a member of the Drosophila neprilysin family of endopeptidases is the most likely mechanism for inactivating synaptic PDF and that neprilysin might have an important role in regulating PDF signals within circadian neural circuits.
Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism
Evans, W. C.; Fernley, H. N.; Griffiths, E.
1965-01-01
1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used. PMID:14342521
The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme
Díaz-Sánchez, Violeta; F. Estrada, Alejandro; Limón, M. Carmen; Al-Babili, Salim
2013-01-01
The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products. PMID:23893079
Abundance and reactivity of dibenzodioxocins in softwood lignin.
Argyropoulos, Dimitris S; Jurasek, Lubo; Kristofová, Lívia; Xia, Zhicheng; Sun, Yujun; Palus, Ernest
2002-02-13
To define the abundance and comprehend the reactivity of dibenzodioxocins in lignin, model compound studies, specific degradation experiments on milled wood lignin, and molecular modeling calculations have been performed. Quantitative (31)P NMR measurements of the increase of biphenolic hydroxyl groups formed after a series of alkaline degradations in the presence of hydrosulfide anions (kraft conditions) showed the presence of 3.7 dibenzodioxocin rings/100 C9 units in milled wood lignin. The DFRC degradation protocol (Derivatization Followed by Reductive Cleavage) was chosen as an independent means to estimate their abundance. Initial experiments with a dibenzodioxocin model compound, trans-6,7-dihydro-7-(4-hydroxy-3-methoxyphenyl)-4,9-dimethoxy-2,11-dipropyldibenzo[e,g][1,4]dioxocin-6-ylmethanol, showed that it is not cleaved under DFRC conditions, but rather it isomerizes into a cyclic oxepine structure. Steric effects precluded this isomerization from occurring when DFRC was applied to milled wood lignin. Instead, monoacetylated biphenolic moieties were released and quantified by (31)P NMR, at 4.3 dibenzodioxocin rings/100 C9 units. The dibenzodioxocin content in residual lignins isolated from kraft pulps delignified to various degrees showed that during pulp delignification, the initial rate of dibenzodioxocin removal was considerably greater than the cleavage rate of arylglycerol-beta-aryl ether bonds. The activation energy for the degradation of dibenzodioxocins under kraft conditions in milled wood lignin was 96 +/- 9 kJ/mol, similar to that of arylglycerol-beta-aryl ether bond cleavage.
Mitchell, Lorna J; Moody, Christopher J
2014-11-21
Alcohols are converted into to their corresponding carbonyl compounds using catalytic amounts of 1,4-hydroquinone with a copper nanoparticle electron transfer mediator with oxygen as the terminal oxidant in acetone as solvent under visible light irradiation. These conditions employing biorenewable hydroquinone as reagent were developed from initial experiments using stoichiometric amounts of 1,4-benzoquinone as oxidant. A range of benzylic and aliphatic primary and secondary alcohols are oxidized, affording the corresponding aldehydes or ketones in moderate to excellent yields. The methodology is also applicable to the oxidative degradation of lignin model compounds that undergo C-C bond cleavage to give simple aromatic compounds.
Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.
Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark
2015-03-21
Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.
Schnier, P D; Klassen, J S; Strittmatter, E F; Williams, E R
1998-09-23
The dissociation kinetics of a series of complementary and noncomplementary DNA duplexes, (TGCA)(2) (3-), (CCGG)(2) (3-), (AATTAAT)(2) (3-), (CCGGCCG)(2) (3-), A(7)*T(7) (3-), A(7)*A(7) (3-), T(7)*T(7) (3-), and A(7)*C(7) (3-) were investigated using blackbody infrared radiative dissociation in a Fourier transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Activation energies range from 1.2 to 1.7 eV, and preexponential factors range from 10(13) to 10(19) s(-1). Dissociation of the duplexes results in cleavage of the noncovalent bonds and/or cleavage of covalent bonds leading to loss of a neutral nucleobase followed by backbone cleavage producing sequence-specific (a - base) and w ions. Four pieces of evidence are presented which indicate that Watson-Crick (WC) base pairing is preserved in complementary DNA duplexes in the gas phase: i. the activation energy for dissociation of the complementary dimer, A(7)*T(7) (3-), to the single strands is significantly higher than that for the related noncomplementary A(7)*A(7) (3-) and T(7)*T(7) (3-) dimers, indicating a stronger interaction between strands with a specific base sequence, ii. extensive loss of neutral adenine occurs for A(7)*A(7) (3-) and A(7)*C(7) (3-) but not for A(7)*T(7) (3-) consistent with this process being shut down by WC hydrogen bonding, iii. a correlation is observed between the measured activation energy for dissociation to single strands and the dimerization enthalpy (-DeltaH(d)) in solution, and iv. molecular dynamics carried out at 300 and 400 K indicate that WC base pairing is preserved for A(7)*T(7) (3-) duplex, although the helical structure is essentially lost. In combination, these results provide strong evidence that WC base pairing can exist in the complete absence of solvent.
Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J
2017-06-01
Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.
Zechel, David L.; Jochimsen, Bjarne
2014-01-01
SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043
NASA Astrophysics Data System (ADS)
Frankfater, Cheryl; Jiang, Xuntian; Hsu, Fong-Fu
2018-05-01
Charge remote fragmentation (CRF) elimination of CnH2n+2 residues along the aliphatic tail of long chain fatty acid is hall mark of keV high-energy CID fragmentation process. It is an important fragmentation pathway leading to structural characterization of biomolecules by CID tandem mass spectrometry. In this report, we describe MALDI LIFT TOF-TOF mass spectrometric approach to study a wide variety of fatty acids (FAs), which were derivatized to N-(4-aminomethylphenyl) pyridinium (AMPP) derivative, and desorbed as M+ ions by laser with or without matrix. The high-energy MALDI LIFT TOF-TOF mass spectra of FA-AMPP contain fragment ions mainly deriving from CRF cleavages of CnH2n+2 residues, as expected. These ions together with ions from specific cleavages of the bond(s) involving the functional group within the molecule provide more complete structural identification than those produced by low-energy CID/HCD using a linear ion-trap instrument. However, this LIFT TOF-TOF mass spectrometric approach inherits low sensitivity, a typical feature of high-energy CID tandem mass spectrometry. Because of the lack of unit mass precursor ion selection with sufficient sensitivity of the current LIFT TOF-TOF technology, product ion spectra from same chain length fatty acids with difference in one or two double bonds in a mixture are not distinguishable.
Chymase Cleavage of Stem Cell Factor Yields a Bioactive, Soluble Product
NASA Astrophysics Data System (ADS)
Longley, B. Jack; Tyrrell, Lynda; Ma, Yongsheng; Williams, David A.; Halaban, Ruth; Langley, Keith; Lu, Hsieng S.; Schechter, Norman M.
1997-08-01
Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.
Chang, J Y
1985-09-02
alpha-Thrombin cleavage of 30 polypeptide hormones and their derivatives were analysed by quantitative amino-terminal analysis. The polypeptides included secretin, vasoactive intestinal polypeptide, cholecystokinin fragment, dynorphin A, somatostatins, gastrin-releasing peptide, calcitonins and human parathyroid hormone fragment. Most of them were selected mainly on the ground that they contain sequence structures homologous to the well known tripeptide substrates of alpha-thrombin. All selected polypeptides have one single major cleavage site and both Arg-Xaa and Lys-Xaa bonds were found to be selectively cleaved by alpha-thrombin. Under fixed conditions (1 nmol polypeptide/0.5 NIH unit alpha-thrombin in 20 microliters of 50 mM ammonium bicarbonate at 25 degrees C), the time required for 50% cleavage ranges from less than 1 min to longer than 24 h. Heparin invariably enhanced thrombin cleavage on all polypeptide analysed. The optimum cleavage site for alpha-thrombin has the structures of (a) P4-P3-Pro-Arg-P1'-P2', where P3 and P4 are hydrophobic amino acid and P1', P2' are nonacidic amino acids and (b) P2-Arg-P1', where P2 or P1' are Gly. The requirement for hydrophobic P3 and P4 was further demonstrated by the drastic decrease of thrombin cleavage rates in both gastrin-releasing peptide and calcitonins after chemical removal of hydrophobic P3 and P4 residues. The requirement for nonacidic P1' and P2' residues was demonstrated by the drastic increase of thrombin cleavage rates in both calcitonin and parathyroid hormone fragments, after specific chemical modification of acidic P1' and P2' residues. These findings confirm the importance of hydrophobic P2-P4 residues for thrombin specificity and provide new evidence to indicate that apolar P1' and P2' residues are also crucial for thrombin specificity. It is concluded that specific cleavage of polypeptides by alpha-thrombin can be reasonably predicted and that chemical modification can be a useful tool in enhancing thrombin cleavage.
The role of disulfide bond in hyperthermophilic endocellulase.
Kim, Han-Woo; Ishikawa, Kazuhiko
2013-07-01
The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.
Structural Determinants of Autoproteolysis of the Haemophilus influenzae Hap Autotransporter▿
Kenjale, Roma; Meng, Guoyu; Fink, Doran L.; Juehne, Twyla; Ohashi, Tomoo; Erickson, Harold P.; Waksman, Gabriel; St. Geme, Joseph W.
2009-01-01
Haemophilus influenzae is a gram-negative bacterium that initiates infection by colonizing the upper respiratory tract. The H. influenzae Hap autotransporter protein mediates adherence, invasion, and microcolony formation in assays with respiratory epithelial cells and presumably facilitates colonization. The serine protease activity of Hap is associated with autoproteolytic cleavage and extracellular release of the HapS passenger domain, leaving the Hapβ C-terminal domain embedded in the outer membrane. Cleavage occurs most efficiently at the LN1036-37 peptide bond and to a lesser extent at three other sites. In this study, we utilized site-directed mutagenesis, homology modeling, and assays with a peptide library to characterize the structural determinants of Hap proteolytic activity and cleavage specificity. In addition, we used homology modeling to predict the S1, S2, and S4 subsite residues of the Hap substrate groove. Our results indicate that the P1 and P2 positions at the Hap cleavage sites are critical for cleavage, with leucine preferred over larger hydrophobic residues or other amino acids in these positions. The substrate groove is formed by L263 and N274 at the S1 subsite, R264 at the S2 subsite, and E265 at the S4 subsite. This information may facilitate design of approaches to block Hap activity and interfere with H. influenzae colonization. PMID:19687208
Hydride affinity scale of various substituted arylcarbeniums in acetonitrile.
Zhu, Xiao-Qing; Wang, Chun-Hua
2010-12-23
Combined with the integral equation formalism polarized continuum model (IEFPCM), the hydride affinities of 96 various acylcarbenium ions in the gas phase and CH(3)CN were estimated by using the B3LYP/6-31+G(d)//B3LYP/6-31+G(d), B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d), and BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) methods for the first time. The results show that the combination of the BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) method and IEFPCM could successfully predict the hydride affinities of arylcarbeniums in MeCN with a precision of about 3 kcal/mol. On the basis of the calculated results from the BLYP method, it can be found that the hydride affinity scale of the 96 arylcarbeniums in MeCN ranges from -130.76 kcal/mol for NO(2)-PhCH(+)-CN to -63.02 kcal/mol for p-(Me)(2)N-PhCH(+)-N(Me)(2), suggesting most of the arylcarbeniums are good hydride acceptors. Examination of the effect of the number of phenyl rings attached to the carbeniums on the hydride affinities shows that the increase of the hydride affinities takes place linearly with increasing number of benzene rings in the arylcarbeniums. Analyzing the effect of the substituents on the hydride affinities of arylcarbeniums indicates that electron-donating groups decrease the hydride affinities and electron-withdrawing groups show the opposite effect. The hydride affinities of arylcarbeniums are linearly dependent on the sum of the Hammett substituent parameters σ(p)(+). Inspection of the correlation of the solution-phase hydride affinities with gas-phase hydride affinities and aqueous-phase pK(R)(+) values reveals a remarkably good correspondence of ΔG(H(-)A)(R(+)) with both the gas-phase relative hydride affinities only if the α substituents X have no large electron-donating or -withdrawing properties and the pK(R)(+) values even though the media are dramatically different. The solution-phase hydride affinities also have a linear relationship with the electrophilicity parameter E, and this dependence can certainly serve as one of the most effective ways to estimate the new E values from ΔG(H(-)A)(R(+)) or vice versa. Combining the hydride affinities and the reduction potentials of the arylcarbeniums, we obtained the bond homolytic dissociation Gibbs free energy changes of the C-H bonds in the corresponding hydride adducts in acetonitrile, ΔG(HD)(RH), and found that the effects of the substituent on ΔG(HD)(RH) are very small. Simple thermodynamic analytic platforms for the three C-H cleavage modes were constructed. It is evident that the present work would be helpful in understanding the nature of the stabilities of the carbeniums and mechanisms of the hydride transfers between carbeniums and other hydride donors.
NASA Astrophysics Data System (ADS)
Xie, Tianyan
1994-01-01
Photochemical study of the dechlorination of four model compounds, 4,5-dichloroguaiacol, 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol, and tetrachloroguaiacol in aqueous solutions under UV radiation was conducted using ArF (193 nm) and KrF (248 nm) excimer laser to explore the response of chlorinated phenolics present in the E_1 effluent from conventional chlorine bleaching of softwood kraft pulp towards photo-oxidation processes. Kinetic study show that the overall dechlorination reaction follow the first order rate law. The factors affecting the dechlorination were investigated. The quantum yield of chloride ion formation was found to be dependent on pH of the reaction mixture, and orignal chlorine content of the compounds. The effect of the substituents on the aromatic ring on the reactivity of the compounds was studied. The mechanism for the dechlorination was proposed involving homolytic photo-dissociation, heterolytic cleavage of carbon-chlorine bonds and substitution reactions of hydroxyl radicals. It was found that the dechlorination under formation to chloride is influenced by the amount of organically bound chlorine in the starting material. Dechlorination reaction favors high pH. Guaiacols more easily undergo dechlorination than phenols. Four fractions of high relative molecular-mass chloro-organics or polychlorinated oxylignin (PCOL) were isolated from an E_1 effluent by combination of ultrafiltration, and purified by repeated precipitation. The fractions were analysed by classical functional group analysis and spectrophotometric methods. The analytical data indicated that the major structural differences between PCOL fractions and kraft lignin preparations are with regard to the content of founctional groups such as carboxyl content, methoxyl and hydroxyl contents. In addition, IR, ^1H and ^{13 }C NMR spectral analyses revealed an almost complete absence of absorption attributable to aromatic structures in PCOLs. These results and others led to the conclusion that the PCOL fractions are comprised mainly of non-aromatic lignin oxidation products containing a considerable amount of organically bound chlorine as well as unsaturated aliphatic carbon bonded to either oxygen or chlorine. The PCOL fractions were subjected to 193 nm UV -Excimer laser photolysis in presence and absence of oxygen with and without hydrogen peroxide. Kinetic study showed that they readily undergo dechlorination and decolorization on UV ArF-excimer laser (193 nm) photolysis under both oxygen and nitrogen atmosphere. About 60% dechlorination could be achieved by 3 hours irradiation. However, the relative molecular-mass of the PCOL fractions were not changed during the photolysis. Addition of small amount (2-8% w/w) of hydrogen peroxide lead to a signifiant reduction of color and relative molecular-mass. Thus, hydrogen peroxide play very important role in degradation and decolorization of PCOLs. The possible reaction mechanism for the UV-Excimer laser photolysis of PCOLs are discussed on the basis of the observed results.
Lenz, Stefan A P; Kohout, Johnathan D; Wetmore, Stacey D
2016-12-22
Despite the inherent stability of glycosidic linkages in nucleic acids that connect the nucleobases to sugar-phosphate backbones, cleavage of these bonds is often essential for organism survival. The current study uses DFT (B3LYP) to provide a fundamental understanding of the hydrolytic deglycosylation of the natural RNA nucleosides (A, C, G, and U), offers a comparison to DNA hydrolysis, and examines the effects of acid, base, or simultaneous acid-base catalysis on RNA deglycosylation. By initially examining HCOO - ···H 2 O mediated deglycosylation, the barriers for RNA hydrolysis were determined to be 30-38 kJ mol -1 higher than the corresponding DNA barriers, indicating that the 2'-OH group stabilizes the glycosidic bond. Although the presence of HCOO - as the base (i.e., to activate the water nucleophile) reduces the barrier for uncatalyzed RNA hydrolysis (i.e., unactivated H 2 O nucleophile) by ∼15-20 kJ mol -1 , the extreme of base catalysis as modeled using a fully deprotonated water molecule (i.e., OH - nucleophile) decreases the uncatalyzed barriers by up to 65 kJ mol -1 . Acid catalysis was subsequently examined by selectively protonating the hydrogen-bond acceptor sites of the RNA nucleobases, which results in an up to ∼80 kJ mol -1 barrier reduction relative to the corresponding uncatalyzed pathway. Interestingly, the nucleobase proton acceptor sites that result in the greatest barrier reductions match sites typically targeted in enzyme-catalyzed reactions. Nevertheless, simultaneous acid and base catalysis is the most beneficial way to enhance the reactivity of the glycosidic bonds in RNA, with the individual effects of each catalytic approach being weakened, additive, or synergistic depending on the strength of the base (i.e., degree of water nucleophile activation), the nucleobase, and the hydrogen-bonding acceptor site on the nucleobase. Together, the current contribution provides a greater understanding of the reactivity of the glycosidic bond in natural RNA nucleosides, and has fundamental implications for the function of RNA-targeting enzymes.
Laha, Joydev K; Sharma, Shubhra; Kirar, Seema; Banerjee, Uttam C
2017-09-15
A de novo design and synthesis of N-heteroaryl-fused vinyl sultams as templates for programming chemical reactions on vinyl sultam periphery or (hetero)aryl ring is described. The key features include rational designing and sustainable synthesis of the template, customized reactions of vinyl sultams at C═C bond or involving N-S bond cleavage, and reactions on the periphery of the heteroaryl ring for late-stage diversification. The simple, easy access to the template coupled with opportunities for the synthesis of diversely functionalized heterocyles from a single template constitutes a rare study in contemporary organic synthesis.
Visible-Light-Promoted Metal-Free Aerobic Oxidation of Primary Amines to Acids and Lactones.
Cheng, Xiaokai; Yang, Bo; Hu, Xingen; Xu, Qing; Lu, Zhan
2016-12-05
A unique metal-free aerobic oxidation of primary amines via visible light photocatalytic double carbon-carbon bonds cleavage and multi carbon-hydrogen bonds oxidation was observed. Aerobic oxidation of primary amines could be controlled to afford acids by using dioxane with 18 W CFL, and lactones by using DMF with 8 W green LEDs, respectively. A plausible mechanism was proposed based on control experiments. This observation showed direct evidences for the fragmentation in the aerobic oxidation of aliphatic primary amines. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kadyrov, A. A.; Rokhlin, E. M.
1988-09-01
In this review we survey the methods for the preparation of derivatives of fluoroalkenylphosphonic acid and their reactions. The main methods for obtaining these compounds are based on the reactions of fluoroolefins with phosphites and also on the elimination of halogens, hydrogen halides and alkyl halides from fluoroalkylphosphonates or fluorine-containing phosphorus ylides. The chemical properties of fluoroalkenylphosphonates are due to the combined effect of the fluorine atoms and the phosphonate group. Their reactions with different reagents leads to modifications of the phosphonate group, addition to the C=C bond, replacement of the vinyl halogen atom, and cleavage of the C-P bond. The bibliography includes 96 references.
Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Auf dem Keller, Ulrich; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M
2016-06-01
The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yingying; Triscari, Joseph M.; Tseng, George C.
Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides,more » a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s). Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and should be useful in algorithm development that employs improved models to predict fragment ion intensities.« less
Lévesque, Dominique; Reymond, Cédric; Perreault, Jean-Pierre
2012-01-01
The HDV ribozyme’s folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U23 and G28 nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U23 and G28 can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction. PMID:22768274
Ucisik, Melek N; Bevilacqua, Philip C; Hammes-Schiffer, Sharon
2016-07-12
The recently discovered twister ribozyme is thought to utilize general acid-base catalysis in its self-cleavage mechanism, but the roles of nucleobases and metal ions in the mechanism are unclear. Herein, molecular dynamics simulations of the env22 twister ribozyme are performed to elucidate the structural and equilibrium dynamical properties, as well as to examine the role of Mg(2+) ions and possible candidates for the general base and acid in the self-cleavage mechanism. The active site region and the ends of the pseudoknots were found to be less mobile than other regions of the ribozyme, most likely providing structural stability and possibly facilitating catalysis. A purported catalytic Mg(2+) ion and the closest neighboring Mg(2+) ion remained chelated and relatively immobile throughout the microsecond trajectories, although removal of these Mg(2+) ions did not lead to any significant changes in the structure or equilibrium motions of the ribozyme on the microsecond time scale. In addition, a third metal ion, a Na(+) ion remained close to A1(O5'), the leaving group atom, during the majority of the microsecond trajectories, suggesting that it might stabilize the negative charge on A1(O5') during self-cleavage. The locations of these cations and their interactions with key nucleotides in the active site suggest that they may be catalytically relevant. The P1 stem is partially melted at its top and bottom in the crystal structure and further unwinds in the trajectories. The simulations also revealed an interconnected network comprised of hydrogen-bonding and π-stacking interactions that create a relatively rigid network around the self-cleavage site. The nucleotides involved in this network are among the highly conserved nucleotides in twister ribozymes, suggesting that this interaction network may be important to structure and function.
Bashir, Sajid; Giannakopulos, Anastassios E; Derrick, Peter J; Critchley, Peter; Bottrill, Andrew; Padley, Henry J
2004-01-01
In the first part of this study fragmentation patterns from a range of dextran oligomers (containing 4-20 anhydroglucose units) were compared in three different methods of analysis coupled with matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry. Collision-induced-dissociation (CID), prompt in-source decay (ISD) and post-source decay (PSD) all caused cleavage of the glycosidic bonds. Both CID and to a lesser extent ISD caused further cleavage of pyranose rings of the individual sugar residues. There was very little cleavage of pyranose rings detected in the PSD spectrum. Derivatisation of the reducing end-groups of the oligodextrans with 1-phenyl-3-methyl-5-pyrazolone (PMP) restricted cleavage in the MALDI mass spectrometer to the non-reducing end, and further it enabled the saccharides to be separated by HPLC so that a single chain length could be examined as a standard. Maltoheptaose was also used as a standard. In the second part of the study prompt ISD-MALDI mass spectrometry was used to compare the fragmentation of three oligoglucans, dextran, maltodextrin and gamma cyclodextrin, that have different linkages and different secondary structure. The results showed that the degree of fragmentation correlated with the degree of freedom in the saccharide chains in solution determined by NMR. Dextran the most random conformation was fragmented most whereas there was little evidence of any fragments, not even glycosidic bond breakage from cyclodextrin, even when the laser power was increased considerably. The fragmentation pattern of maltodextrin was intermediate. The patterns of fragmentation produced by MALDI mass spectrometry, particularly where standards are available to calibrate the spectrum and the energy of the laser is controlled, can be used to predict the type of linkage present.
Bayat, Parisa; Lesage, Denis; Cole, Richard B
2018-05-29
The dissolution mechanism of oligosaccharides in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl), a solvent used for cellulose dissolution, and the capabilities of low-energy collision induced dissociation (low-energy CID), collision induced dissociation (CID) and higher-energy collision dissociation (HCD) for structural analysis of carbohydrates were investigated. Comparing the spectra obtained using three techniques shows that, generally, when working with mono-lithiated sugars, CID spectra provide more structurally informative fragments, and glycosidic bond cleavage is the main pathway. However, when working with di-lithiated sugars, HCD spectra can be more informative providing predominately cross-ring cleavage fragments. This is because HCD is a non-resonant activation technique and it allows a higher amount of energy to be deposited in a short time, giving access to more endothermic decomposition pathways as well as consecutive fragmentations. The difference in preferred dissociation pathways of mono-lithiated and di-lithiated sugars indicates that the presence of the second lithium strongly influences the relative rate constants for cross-ring cleavages (rearrangement) vs. direct glycosidic bond cleavages, and disfavors the latter. Regarding the dissolution mechanism of sugars in DMAc/LiCl, CID and HCD experiments on di-lithiated and tri-lithiated sugars reveal that intensities of product ions containing two Li + or three Li + , respectively, are higher than those bearing only one Li + . In addition, comparing the fragmentation spectra (both HCD and CID) of LiCl adducted lithiated sugar and NaCl adducted sodiated sugar shows that while, in the latter case, loss of NaCl is dominant, in the former case, loss of HCl occurs preferentially. The compiled evidence implies that there is a strong and direct interaction between lithium and the saccharide during the dissolution process in the DMAc/LiCl solvent system. This article is protected by copyright. All rights reserved.
2015-01-01
The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid–base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-cleavage, are utilized to elucidate the mechanism, particularly the role of G40. Our calculations suggest that an external base deprotonates either G40(N1) or possibly A-1(O2′), which would be followed by proton transfer from G40(N1) to A-1(O2′). After this initial deprotonation, A-1(O2′) starts attacking the phosphate as a hydroxyl group, which is hydrogen-bonded to deprotonated G40, concurrent with G40(N1) moving closer to the hydroxyl group and directing the in-line attack. Proton transfer from A-1(O2′) to G40 is concomitant with attack of the scissile phosphate, followed by the remainder of the cleavage reaction. A mechanism in which an external base does not participate, but rather the proton transfers from A-1(O2′) to a nonbridging oxygen during nucleophilic attack, was also considered but deemed to be less likely due to its higher effective free energy barrier. The calculated rate constant for the favored mechanism is in agreement with the experimental rate constant measured at biological Mg2+ ion concentration. According to these calculations, catalysis is optimal when G40 has an elevated pKa rather than a pKa shifted toward neutrality, although a balance among the pKa’s of A-1, G40, and the nonbridging oxygen is essential. These results have general implications, as the hammerhead, hairpin, and twister ribozymes have guanines at a similar position as G40. PMID:25526516
Rodrigo, María J.; Alquézar, Berta; Al-Babili, Salim
2013-01-01
Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8′-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7′,8′ double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. PMID:24006419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.
2015-05-18
Rapid and selective formal hydrogenolysis of aliphatic ester RC(O)O–R' linkages is achieved by a tandem homogeneous metal triflate + supported palladium catalytic system. The triflate catalyzes the mildly exothermic, turnover-limiting O–R' cleavage process, whereas the exothermic hydrogenation of the intermediate alkene further drives the overall reaction to completion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.
2015-06-01
Rapid and selective formal hydrogenolysis of aliphatic ester RC(O)O-R' linkages is achieved by a tandem homogeneous metal triflate + supported palladium catalytic system. The triflate catalyzes the mildly exothermic, turnover-limiting O-R' cleavage process, whereas the exothermic hydrogenation of the intermediate alkene further drives the overall reaction to completion.
ERIC Educational Resources Information Center
Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.
2015-01-01
A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…
Computational Study of Low-Temperature Catalytic C-C Bond Activation of Alkanes for Portable Power
2013-06-05
inhibiting the reaction. We found that Fluorinated phosphines are sufficiently π-accepting to satisfy this role. In our next step, we wanted to determine...of butane by Sen’s catalyst, Chepaikin et al. [5] proposed that CH cleavage occurs first. But the resulting catalyst fragment “X” is so electrophilic
Asymmetric NHC-catalyzed redox α-amination of α-aroyloxyaldehydes.
Taylor, James E; Daniels, David S B; Smith, Andrew D
2013-12-06
Asymmetric α-amination through an N-heterocyclic carbene (NHC)-catalyzed redox reaction of α-aroyloxyaldehydes with N-aryl-N-aroyldiazenes to form α-hydrazino esters with high enantioselectivity (up to 99% ee) is reported. The hydrazide products are readily converted into enantioenriched N-aryl amino esters through samarium(II) iodide mediated N-N bond cleavage.
Complete localization of disulfide bonds in GM2 activator protein.
Schütte, C. G.; Lemm, T.; Glombitza, G. J.; Sandhoff, K.
1998-01-01
Lysosomal degradation of ganglioside GM2 by hexosaminidase A requires the presence of a small, non-enzymatic cofactor, the GM2-activator protein (GM2AP). Lack of functional protein leads to the AB variant of GM2-gangliosidosis, a fatal lysosomal storage disease. Although its possible mode of action and functional domains have been discussed frequently in the past, no structural information about GM2AP is available so far. Here, we determine the complete disulfide bond pattern of the protein. Two of the four disulfide bonds present in the protein were open to classical determination by enzymatic cleavage and mass spectrometry. The direct localization of the remaining two bonds was impeded by the close vicinity of cysteines 136 and 138. We determined the arrangement of these disulfide bonds by MALDI-PSD analysis of disulfide linked peptides and by partial reduction, cyanylation and fragmentation in basic solution, as described recently (Wu F, Watson JT, 1997, Protein Sci 6:391-398). PMID:9568910
Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun
2018-03-26
Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interaction of benzene thiol and thiolate with small gold clusters.
Letardi, Sara; Cleri, Fabrizio
2004-06-01
We studied the interaction between benzene thiol and thiolate molecules, and gold clusters made of 1 to 3 atoms, by means of ab initio density functional theory in the local density approximation. We find that the thiolate is energetically more stable than the thiol, however the process of detachment of H from the thiol appears to be possibly mediated by the intermediate step of H chemisorption on Au. Cleavage of the S-H bond is accompanied by a 90 degrees rotation of the molecule around the S-Au bond, showing a strong steric specificity. Such a rotation is induced by the relative energy shift of the S atom p orbitals with respect to the benzene pi ring and the Au d orbitals. By analyzing the correlation of the bond energy, bond lengths, and HOMO-LUMO gap with the number of S-Au bonds, we find that the thiolate S atom appears to prefer a low-coordination condition on Au clusters. (c) 2004 American Institute of Physics.
Initiation reactions in acetylene pyrolysis
Zador, Judit; Fellows, Madison D.; Miller, James A.
2017-05-10
In gas-phase combustion systems the interest in acetylene stems largely from its role in molecular weight growth processes. The consensus is that above 1500 K acetylene pyrolysis starts mainly with the homolytic fission of the C–H bond creating an ethynyl radical and an H atom. However, below ~1500 K this reaction is too slow to initiate the chain reaction. It has been hypothesized that instead of dissociation, self-reaction initiates this process. Nevertheless, rigorous theoretical or direct experimental evidence is lacking, to an extent that even the molecular mechanism is debated in the literature. In this work we use rigorous abmore » initio transition-state theory master equation methods to calculate pressure- and temperature-dependent rate coefficients for the association of two acetylene molecules and related reactions. We establish the role of vinylidene, the high-energy isomer of acetylene in this process, compare our results with available experimental data, and assess the competition between the first-order and second-order initiation steps. As a result, we also show the effect of the rapid isomerization among the participating wells and highlight the need for time-scale analysis when phenomenological rate coefficients are compared to observed time scales in certain experiments.« less
Turnover capacity of Coprinus cinereus peroxidase for phenol and monosubstituted phenols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitken, M.D.; Heck, P.E.
Coprinus cinereus peroxidase (CIP) and other peroxidases are susceptible to mechanism-based inactivation during the oxidation of phenolic substrates. The turnover capacity of CIP was quantified for phenol and 11 monosubstituted phenols under conditions in which enzyme inactivation by mechanisms involving hydrogen peroxide alone were minimized. Turnover capacities varied by nearly 2 orders of magnitude, depending on the substituent. On a mass basis, the enzyme consumption corresponding to the lowest turnover capacities is considerable and may influence the economic feasibility of proposed industrial applications of peroxidases. Within a range of substituent electronegativity values, molar turnover capacities correlated well (r{sup 2} =more » 0.89) with substituent effects quantified by radical {sigma} values and semiquantitatively with homolytic O-H bond dissociation energies of the phenolic substrates, suggesting that phenoxyl radical intermediates are probably involved in the suicide inactivation of CIP. The correlation range in each case did not include phenols with highly electron-withdrawing (nitro and cyano) substituents because they are not oxidized by CIP, nor phenols with highly electron-donating (hydroxy and amino) substituents because they led to virtually complete inactivation of the enzyme with minimal substrate removal.« less
Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methanemore » oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waidmann, Christopher R.; Miller, Alexander J.; Ng, Cheuk-Wa A.
Studies in proton-coupled electron transfer (PCET) often require the combination of an outer-sphere oxidant and a base, to remove an electron and a proton. A common problem is the incompatibility of the oxidant and the base, because the former is electron deficient and the latter electron rich. We have tested a variety of reagents and report a number of oxidant/base combinations that are compatible and therefore potentially useful as PCET reagents. A formal bond dissociation free energy (BDFE) for a reagent combination is defined by the redox potential of the oxidant and pKa of the base. This is a formalmore » BDFE because no X-H bond is homolytically cleaved, but it is a very useful way to categorize the H• accepting ability of an oxidant/base PCET pair. Formal BDFEs of stable oxidant/base combinations range from 71 to at least 100 kcal mol-1. Effects of solvent, concentration, temperature, and counterions on the stability of the oxidant/base combinations are discussed. Possible extensions to related reductant/acid combinations are mentioned. We gratefully acknowledge the financial support of the U.S. National Science Foundation Center for Enabling New Technologies through Catalysis, the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry (for a fellowship to A.J.M.M.), the U.S. National Institutes of Health (grant GM-50422), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
Thomas Rosenau; Thomas Elder; Antje Potthast; Sixta Herbert; Paul Kosma
2003-01-01
Homolytic (radical) reactions in the system cellulose / N-methylmorpholine-N-oxide (NMMO, 1) involve a primary, nitrogen-centered cation radical (2), and two secondary, carbon-centered radical species (3, 4). Radical formation &om NMMO is strongly promoted by transition metal ions.
Meng, Guangrong; Szostak, Michal
2016-06-15
The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().
Antibodies Against Three Forms of Urokinase
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.; Atassi, M. Zouhair
2007-01-01
Antibodies that bind to preselected regions of the urokinase molecule have been developed. These antibodies can be used to measure small quantities of each of three molecular forms of urokinase that could be contained in microsamples or conditioned media harvested from cultures of mammalian cells. Previously available antibodies and assay techniques do not yield both clear distinctions among, and measurements of, all three forms. Urokinase is a zymogen that is synthesized in a single-chain form, called ScuPA, which is composed of 411 amino acid residues (see figure). ScuPA has very little enzyme activity, but it can be activated in two ways: (1) by cleavage of the peptide bond lysine 158/isoleucine 159 and the loss of lysine 158 to obtain the high molecular-weight (HMW) form of the enzyme or (2) by cleavage of the bond lysine 135/lysine 136 to obtain the low-molecular-weight (LMW) form of the enzyme. The antibodies in question were produced in mice and rabbits by use of peptides as immunogens. The peptides were selected to obtain antibodies that bind to regions of ScuPA that include the lysine 158/isoleucine 159 and the lysine 135/lysine 136 bonds. The antibodies include monoclonal and polyclonal ones that yield indications as to whether either of these bonds is intact. The polyclonal antibodies include ones that preferentially bind to the HMW or LMW forms of the urokinase molecule. The monoclonal antibodies include ones that discriminate between the ScuPA and the HMW form. A combination of these molecular-specific antibodies will enable simultaneous assays of the ScuPA, HMW, and LMW forms in the same specimen of culture medium.
OH cleavage from tyrosine: debunking a myth
Bury, Charles S.; Carmichael, Ian; Garman, Elspeth F.
2017-01-01
During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C—O bond cleavagemore » in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr –OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr –OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr –OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr –OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Also presented are systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to disulfide bonds or hydrogen bond interactions. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported.« less
Butler, William T
2008-01-01
In this brief review, I recount events and scientific endeavors in which I have been privileged to participate. The descriptive information includes discovery and characterization of hydroxylysine glycosides from collagen, isolation of dentin sialoprotein (DSP), investigations on dentin phosphoprotein (DPP), and the discovery of a single gene for both DSP and DPP that requires posttranslational proteolytic cleavage of the parent DSPP molecule to generate the two fragments. Finally, I address our unexpected finding of fragments of DMP1 in bone extracts. These fragments are from the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) regions of DMP1. Our studies showed that, similar to DSPP, DMP1 is proteolytically processed by cleavages at X-Asp bonds.
Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.
Ngo, Anh H; Bose, Sohini; Do, Loi H
2018-03-23
This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A theoretical investigation of the (0001) covellite surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaspari, Roberto, E-mail: roberto.gaspari@iit.it; Manna, Liberato; Cavalli, Andrea
2014-07-28
We report on the properties of the (0001) covellites surfaces, which we investigate by periodic slab density functional theory calculations. The absolute surface energies have been computed for all bulk terminations, showing that surfaces terminated by the flat CuS layer are associated with the lowest surface energy. Cleavage is predicted to occur across the [0001] interlayer Cu–S bond. The surfaces obtained by lowest energy cleavage are analyzed in terms of the atomic vertical relaxation, workfunction, and surface band structure. Our study predicts the presence of a shallow p{sub z}-derived surface state located 0.26 eV below the Fermi level, which ismore » set to play an important role in the surface reactivity of covellite.« less
Riddlestone, Ian M; Rajabi, Nasir A; Lowe, John P; Mahon, Mary F; Macgregor, Stuart A; Whittlesey, Michael K
2016-09-07
Reaction of [Ru(IPr)2(CO)H]BAr(F)4 with ZnEt2 forms the heterobimetallic species [Ru(IPr)2(CO)ZnEt]BAr(F)4 (2), which features an unsupported Ru-Zn bond. 2 reacts with H2 to give [Ru(IPr)2(CO)(η(2)-H2)(H)2ZnEt]BAr(F)4 (3) and [Ru(IPr)2(CO)(H)2ZnEt]BAr(F)4 (4). DFT calculations indicate that H2 activation at 2 proceeds via oxidative cleavage at Ru with concomitant hydride transfer to Zn. 2 can also activate hydridic E-H bonds (E = B, Si), and computed mechanisms for the facile H/H exchange processes observed in 3 and 4 are presented.
Aliwarga, Theresa; Raccor, Brianne S; Lemaitre, Rozenn N; Sotoodehnia, Nona; Gharib, Sina A; Xu, Libin; Totah, Rheem A
2017-11-01
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid (AA) oxidation that have important cardioprotective and signaling properties. AA is an ω-6 polyunsaturated fatty acid (PUFA) that is prone to autoxidation. Although hydroperoxides and isoprostanes are major autoxidation products of AA, EETs are also formed from the largely overlooked peroxyl radical addition mechanism. While autoxidation yields both cis- and trans-EETs, cytochrome P450 (CYP) epoxygenases have been shown to exclusively catalyze the formation of all regioisomer cis-EETs, on each of the double bonds. In plasma and red blood cell (RBC) membranes, cis- and trans-EETs have been observed, and both have multiple physiological functions. We developed a sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay that separates cis- and trans- isomers of EETs and applied it to determine the relative distribution of cis- vs. trans-EETs in reaction mixtures of AA subjected to free radical oxidation in benzene and liposomes in vitro. We also determined the in vivo distribution of EETs in several tissues, including human and mouse heart, and RBC membranes. We then measured EET levels in heart and RBC of young mice compared to old. Formation of EETs in free radical reactions of AA in benzene and in liposomes exhibited time- and AA concentration-dependent increase and trans-EET levels were higher than cis-EETs under both conditions. In contrast, cis-EET levels were overall higher in biological samples. In general, trans-EETs increased with mouse age more than cis-EETs. We propose a mechanism for the non-enzymatic formation of cis- and trans-EETs involving addition of the peroxyl radical to one of AA's double bonds followed by bond rotation and intramolecular homolytic substitution (S H i). Enzymatic formation of cis-EETs by cytochrome P450 most likely occurs via a one-step concerted mechanism that does not allow bond rotation. The ability to accurately measure circulating EETs resulting from autoxidation or enzymatic reactions in plasma and RBC membranes will allow for future studies investigating how these important signaling lipids correlate with heart disease outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, Joanne; Nunberg, Jack H.
2007-03-01
The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although positionmore » - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease.« less
Jakubiec, Anna; Drugeon, Gabrièle; Camborde, Laurent; Jupin, Isabelle
2007-01-01
Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus belonging to the alphavirus-like supergroup, encodes its nonstructural replication proteins as a 206K precursor with domains indicative of methyltransferase (MT), proteinase (PRO), NTPase/helicase (HEL), and polymerase (POL) activities. Subsequent processing of 206K generates a 66K protein encompassing the POL domain and uncharacterized 115K and 85K proteins. Here, we demonstrate that TYMV proteinase mediates an additional cleavage between the PRO and HEL domains of the polyprotein, generating the 115K protein and a 42K protein encompassing the HEL domain that can be detected in plant cells using a specific antiserum. Deletion and substitution mutagenesis experiments and sequence comparisons indicate that the scissile bond is located between residues Ser879 and Gln880. The 85K protein is generated by a host proteinase and is likely to result from nonspecific proteolytic degradation occurring during protein sample extraction or analysis. We also report that TYMV proteinase has the ability to process substrates in trans in vivo. Finally, we examined the processing of the 206K protein containing native, mutated, or shuffled cleavage sites and analyzed the effects of cleavage mutations on viral infectivity and RNA synthesis by performing reverse-genetics experiments. We present evidence that PRO/HEL cleavage is critical for productive virus infection and that the impaired infectivity of PRO/HEL cleavage mutants is due mainly to defective synthesis of positive-strand RNA. PMID:17686855
Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand
ERIC Educational Resources Information Center
Roecker, Lee
2008-01-01
A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…
Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby
2012-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...
Peter E. Laks; Richard W. Hemingway; Anthony H. Conner
1987-01-01
Reactions of polymeric procyanidins with phloroglucinol at pH 12.0 and temperatures of 23 or 50°C gave epicatechin-(4β)-phloroglucinol (7), by cleavage of the interflavanoid bond between procyanidin units with subsequent addition of phloroglucinol, and (+)-catechin from the terminal unit. The phloroglucinol adduct (7) rearranged to an enolic form of 8-(3,4-...
Hatakeyama, Takuji; Kondo, Yoshiyuki; Fujiwara, Yu-Ichi; Takaya, Hikaru; Ito, Shingo; Nakamura, Eiichi; Nakamura, Masaharu
2009-03-14
A catalytic amount of 1,2-bis(diphenylphosphino)benzene (DPPBz) achieves selective cleavage of sp(3)-carbon-halogen bond in the iron-catalysed cross-coupling between polyfluorinated arylzinc reagents and alkyl halides, which was unachievable with a stoichiometric modifier such as TMEDA; the selective iron-catalysed fluoroaromatic coupling provides easy and practical access to polyfluorinated aromatic compounds.
Zhang, Zhiguo; Li, Junlong; Zhang, Guisheng; Ma, Nana; Liu, Qingfeng; Liu, Tongxin
2015-07-02
An efficient and convenient iron-catalyzed protocol has been developed for the synthesis of substituted pyrrolo[1,2-a]quinoxalines from 1-(N-arylpyrrol-2-yl)ethanone O-acetyl oximes through N-O bond cleavage and intramolecular directed C-H arylation reactions in acetic acid.
Methods to Increase the Metabolic Stability of (18)F-Radiotracers.
Kuchar, Manuela; Mamat, Constantin
2015-09-03
The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of (18)F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [(18)F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.
Rayala, Ramanjaneyulu; Giuglio-Tonolo, Alain; Broggi, Julie; Terme, Thierry; Vanelle, Patrice; Theard, Patricia; Médebielle, Maurice; Wnuk, Stanislaw F
2016-04-21
Studies directed toward the oxidative and reductive desulfurization of readily available 2'- S -aryl-2'-thiouridine derivatives were investigated with the prospect to functionalize the C2'-position of nucleosides. The oxidative desulfurization-difluorination strategy was successful on 2-(arylthio)alkanoate surrogates, while extension of the combination of oxidants and fluoride sources was not an efficient fluorination protocol when applied to 2'- S -aryl-2'-thiouridine derivatives, resulting mainly in C5-halogenation of the pyrimidine ring and C2'-monofluorination without desulfurization. Cyclic voltammetry of 2'-arylsulfonyl-2'-deoxyuridines and their 2'-fluorinated analogues showed that cleavage of the arylsulfone moiety could occur, although at relatively high cathodic potentials. While reductive-desulfonylation of 2'-arylsulfonyl-2'-deoxyuridines with organic electron donors (OEDs) gave predominantly base-induced furan type products, chemical (OED) and electrochemical reductive-desulfonylation of the α-fluorosulfone derivatives yielded the 2'-deoxy-2'-fluorouridine and 2',3'-didehydro-2',3'-dideoxy-2'-fluorouridine derivatives. These results provided good evidence of the generation of a C2'-anion through carbon-sulfur bond cleavage, opening new horizons for the reductive-functionalization approaches in nucleosides.
Rayala, Ramanjaneyulu; Giuglio-Tonolo, Alain; Broggi, Julie; Terme, Thierry; Vanelle, Patrice; Theard, Patricia; Médebielle, Maurice; Wnuk, Stanislaw F.
2016-01-01
Studies directed toward the oxidative and reductive desulfurization of readily available 2'-S-aryl-2'-thiouridine derivatives were investigated with the prospect to functionalize the C2'-position of nucleosides. The oxidative desulfurization-difluorination strategy was successful on 2-(arylthio)alkanoate surrogates, while extension of the combination of oxidants and fluoride sources was not an efficient fluorination protocol when applied to 2'-S-aryl-2'-thiouridine derivatives, resulting mainly in C5-halogenation of the pyrimidine ring and C2'-monofluorination without desulfurization. Cyclic voltammetry of 2'-arylsulfonyl-2'-deoxyuridines and their 2'-fluorinated analogues showed that cleavage of the arylsulfone moiety could occur, although at relatively high cathodic potentials. While reductive-desulfonylation of 2'-arylsulfonyl-2'-deoxyuridines with organic electron donors (OEDs) gave predominantly base-induced furan type products, chemical (OED) and electrochemical reductive-desulfonylation of the α-fluorosulfone derivatives yielded the 2'-deoxy-2'-fluorouridine and 2',3'-didehydro-2',3'-dideoxy-2'-fluorouridine derivatives. These results provided good evidence of the generation of a C2'-anion through carbon-sulfur bond cleavage, opening new horizons for the reductive-functionalization approaches in nucleosides. PMID:27019535
Carrasco, Javier; López-Durán, David; Liu, Zongyuan; Duchoň, Tomáš; Evans, Jaime; Senanayake, Sanjaya D; Crumlin, Ethan J; Matolín, Vladimir; Rodríguez, José A; Ganduglia-Pirovano, M Verónica
2015-03-23
Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photo-triggered solvent-free metamorphosis of polymeric materials.
Honda, Satoshi; Toyota, Taro
2017-09-11
Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.
Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence
2012-10-01
Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.
NASA Astrophysics Data System (ADS)
Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.
2007-03-01
With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.
Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; ...
2015-03-23
Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore » support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Omar R.; Herbert, Bruce; Kuo, Li-Jung
2012-09-05
Fundamental knowledge of how biochars develop surface-charge and resistance to environmental degradation (or recalcitrance) is crucial to their production for customized applications or, understanding their functions in the environment. Two-dimensional perturbation-based correlation infrared spectroscopy (2D-PCIS) was used to study the biochar formation process in three taxonomically-different plant biomass, under oxygen-limited conditions along a heat-treatment-temperature gradient (HTT; 200-650 oC). Results from 2D-PCIS pointed to the systematic, HTT-induced defragmenting of lignocellulose H-bonding network, and demethylenation/demethylation, oxidation or dehydroxylation/dehydrogenation of lignocellulose fragments as the primary reactions controlling biochar properties along the HTT gradient. The cleavage of OH O-type H-bonds, oxidation of free primarymore » hydroxyls (HTT≤500 oC), and their subsequent dehydrogenation/dehydroxylation (HTT>500 oC) controlled surface charge on the biochars; while the dehydrogenation of methylene groups, which yielded increasingly condensed structures (R-CH2-R →R=CH-R →R=C=R), controlled biochar recalcitrance. Variations in biochar properties across plant biomass type were attributable to taxa-specific transformations. For example, apparent inefficiencies in the cleavage of wood-specific H-bonds, and their subsequent oxidation to carboxyls, lead to lower surface charge in wood biochars (compared to grass biochars). Both non-taxa and taxa-specific transformations highlighted by 2D-PCIS could have significant implications for biochar functioning in fire-impacted or biochar-amended systems.« less
Key binding and susceptibility of NS3/4A serine protease inhibitors against hepatitis C virus.
Meeprasert, Arthitaya; Hannongbua, Supot; Rungrotmongkol, Thanyada
2014-04-28
Hepatitis C virus (HCV) causes an infectious disease that manifests itself as liver inflammation, cirrhosis, and can lead to the development of liver cancer. Its NS3/4A serine protease is a potent target for drug design and development since it is responsible for cleavage of the scissile peptide bonds in the polyprotein important for the HCV life cycle. Herein, the ligand-target interactions and the binding free energy of the four current NS3/4A inhibitors (boceprevir, telaprevir, danoprevir, and BI201335) were investigated by all-atom molecular dynamics simulations with three different initial atomic velocities. The per-residue free energy decomposition suggests that the key residues involved in inhibitor binding were residues 41-43, 57, 81, 136-139, 155-159, and 168 in the NS3 domain. The van der Waals interactions yielded the main driving force for inhibitor binding at the protease active site for the cleavage reaction. In addition, the highest number of hydrogen bonds was formed at the reactive P1 site of the four studied inhibitors. Although the hydrogen bond patterns of these inhibitors were different, their P3 site was most likely to be recognized by the A157 backbone. Both molecular mechanic (MM)/Poisson-Boltzmann surface area and MM/generalized Born surface area approaches predicted the relative binding affinities of the four inhibitors in a somewhat similar trend to their experimentally derived biological activities.
Oxidative Addition and Reductive Elimination at Main-Group Element Centers.
Chu, Terry; Nikonov, Georgii I
2018-04-11
Oxidative addition and reductive elimination are key steps in a wide variety of catalytic reactions mediated by transition-metal complexes. Historically, this reactivity has been considered to be the exclusive domain of d-block elements. However, this paradigm has changed in recent years with the demonstration of transition-metal-like reactivity by main-group compounds. This Review highlights the substantial progress achieved in the past decade for the activation of robust single bonds by main-group compounds and the more recently realized activation of multiple bonds by these elements. We also discuss the significant discovery of reversible activation of single bonds and distinct examples of reductive elimination at main-group element centers. The review consists of three major parts, starting with oxidative addition of single bonds, proceeding to cleavage of multiple bonds, and culminated by the discussion of reversible bond activation and reductive elimination. Within each subsection, the discussion is arranged according to the type of bond being cleaved or formed and considers elements from the left to the right of each period and down each group of the periodic table. The majority of results discussed in this Review come from the past decade; however, earlier reports are also included to ensure completeness.
NASA Astrophysics Data System (ADS)
Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.
2017-09-01
We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Muthukrishnan, A.; Sangaranarayanan, M. V.; Boyarskiy, V. P.; Boyarskaya, I. A.
2010-04-01
The reductive cleavage of carbon-chlorine bonds in 2,4-dichlorobiphenyl (PCB-7) is investigated using the convolution potential sweep voltammetry and quantum chemical calculations. The potential dependence of the logarithmic rate constant is non-linear which indicates the validity of Marcus-Hush theory of quadratic activation-driving force relationship. The ortho-chlorine of the 2,4-dichlorobiphenyl gets reduced first as inferred from the quantum chemical calculations and bulk electrolysis. The standard reduction potentials pertaining to the ortho-chlorine of 2,4-dichlorobiphenyl and that corresponding to para chlorine of the 4-chlorobiphenyl have been estimated.
Catalytic carbide formation at aluminium-carbon interfaces
NASA Technical Reports Server (NTRS)
Maruyama, B.; Rabenberg, L.; Ohuchi, F. S.
1990-01-01
X-ray photoelectron spectroscopy investigations of the reaction of several monolayer-thick films of aluminum with glassy carbon substrates are presented. The influence of molecular oxygen and water vapor on the rate of reaction is examined. It is concluded that water vapor catalyzed the formation of aluminum carbide from aluminum and carbon by forming active sites which weakened carbon-carbon bonds at the glassy carbon surface, thus assisting their cleavage. The rate of carbide formation for undosed and molecular oxygen-dosed examples was less as neither metallic aluminum nor oxygen-formed alumina could bond to the carbon atom with sufficient strength to dissociate it quickly.
Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.
Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique
2014-09-24
In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally.
Anisotropic Tribological Properties of Silicon Carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.
Detection of OH on photolysis of styrene oxide at 193 nm in gas phase
NASA Astrophysics Data System (ADS)
Kumar, Awadhesh; SenGupta, Sumana; Pushpa, K. K.; Naik, P. D.; Bajaj, P. N.
2006-10-01
Photodissociation of styrene oxide at 193 nm in gas phase generates OH, as detected by laser-induced fluorescence technique. Under similar conditions, OH was not observed from ethylene and propylene oxides, primarily because of their low absorption cross-sections at 193 nm. Mechanism of OH formation involves first opening of the three-membered ring from the ground electronic state via cleavage of either of two C sbnd O bonds, followed by isomerization to enolic forms of phenylacetaldehyde and acetophenone, and finally scission of the C sbnd OH bond of enols. Ab initio molecular orbital calculations support the proposed mechanism.
A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping
2017-11-09
In order to understand the pyrolysis mechanism of β- O -4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β- O -4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β- O -4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β- O -4 type lignin dimers.
Gurry, Michael; Aldabbagh, Fawaz
2016-04-28
Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates.
A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers
Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping
2017-01-01
In order to understand the pyrolysis mechanism of β-O-4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β-O-4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β-O-4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β-O-4 type lignin dimers. PMID:29120350
NASA Astrophysics Data System (ADS)
Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong
2005-09-01
A quantitative kinetic model has been proposed to simulate the large D and 13C isotope enrichments observed in individual n-alkanes (C 13-C 21) during artificial thermal maturation of a North Sea crude oil under anhydrous, closed-system conditions. Under our experimental conditions, average n-alkane δ 13C values increase by ˜4‰ and δD values increase by ˜50‰ at an equivalent vitrinite reflectance value of 1.5%. While the observed 13C-enrichment shows no significant dependence on hydrocarbon chain length, thermally induced D-enrichment increases with increasing n-alkane carbon number. This differential fractionation effect is speculated to be due to the combined effect of the greater extent of thermal cracking of higher molecular weight, n-alkanes compared to lower molecular weight homologues, and the generation of isotopically lighter, lower molecular weight compounds. This carbon-number-linked hydrogen isotopic fractionation behavior could form the basis of a new maturity indicator to quantitatively assess the extent of oil cracking in petroleum reservoirs. Quantum mechanical calculations of the average change in enthalpy (ΔΔH ‡) and entropy (ΔΔS ‡) as a result of isotopic substitution in n-alkanes undergoing homolytic cleavage of C-C bonds lead to predictions of isotopic fractionation that agree quite well with our experimental results. For n-C 20 ( n-icosane), the changes in enthalpy are calculated to be ˜1340 J mol -1 (320 cal mol -1) and 230 J mol -1 (55 cal mol -1) for D-H and 13C- 12C, respectively. Because the enthalpy term associated with hydrogen isotope fractionation is approximately six times greater than that for carbon, variations in δD values for individual long-chain hydrocarbons provide a highly sensitive measure of the extent of thermal alteration experienced by the oil. Extrapolation of the kinetic model to typical geological heating conditions predicts significant enrichment in 13C and D for n-icosane at equivalent vitrinite reflectance values corresponding to the onset of thermal cracking of normal alkanes. The experimental and theoretical results of this study have significant implications for the use of compound-specific hydrogen isotope data in petroleum geochemical and paleoclimatological studies. However, there are many other geochemical processes that will significantly affect observed hydrogen isotopic compositions (e.g., biodegradation, water washing, isotopic exchange with water and minerals) that must also be taken into consideration.
Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho
2008-02-01
The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic components using a hydrogen-bonded self-assembled system as a catalyst support. This catalyst-recovery system provides a homogeneous phase at high temperature during the reaction and a heterogeneous phase at room temperature after the reaction. The product could be separated conveniently from the self-assembly support system by decanting the upper layer. The immobilized catalysts of both 2-aminopyridine and rhodium metal species sustained high catalytic activity for up to the eight catalytic reactions. In conclusion, the successful incorporation of an organocatalytic cycle into a transition metal catalyzed reaction led us to find MOCC for C-H and C-C bond activation. In addition, the hydrogen-bonded self-assembled support has been developed for an efficient and effective recovery system of homogeneous catalysts and could be successful in immobilizing both metal and organic catalysts.
Subramanian, Sundar Raman; Singam, Ettayapuram Ramaprasad Azhagiya; Berinski, Michael; Subramanian, Venkatesan; Wade, Rebecca C
2016-08-25
Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed.