Science.gov

Sample records for homopolar linear synchronous

  1. Computer-aided design studies of the homopolar linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Dawson, G. E.; Eastham, A. R.; Ong, R.

    1984-09-01

    The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.

  2. Comparisons between designs for single-sided linear electric motors: Homopolar synchronous and induction

    NASA Astrophysics Data System (ADS)

    Nondahl, T. A.; Richter, E.

    1980-09-01

    A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.

  3. Effects of pole flux distribution in a homopolar linear synchronous machine

    NASA Astrophysics Data System (ADS)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  4. Disc-geometry homopolar synchronous machine

    NASA Astrophysics Data System (ADS)

    Evans, P. D.; Eastham, J. F.

    1980-09-01

    Results of an experimental and theoretical investigation of a disc-geometry homopolar synchronous machine with field excitation on the primary side are presented. The unlaminated mild-steel rotor contains no windings and is brushless. The prototype machine produces approximately 7.5 kW of mechanical output at 3000 rev/min, with a product of power factor and efficiency greater than 0.7. The construction of the stator core is unusual and incorporates both laminated and unlaminated portions. The magnetic circuit is also arranged to minimize the axial force between the stator and rotor. A novel rotor design which achieves a reduced quadrature-axis reactance is shown experimentally to be superior to the conventional homopolar rotor.

  5. Linear Synchronous Motor Repeatability Tests

    SciTech Connect

    Ward, C.R.

    2002-10-18

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility.

  6. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    NASA Astrophysics Data System (ADS)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  7. Long Pulse Homopolar Generator

    DTIC Science & Technology

    1988-08-01

    AD-A205 452 AFWAL-TR-88-2045 LONG PULSE HOMOPOLAR GENERATOR Edward A. Knoth David P. Bauer lAP Research, Inc. 2763 Culver Avenue Dayton OH 45429-3723...TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. 61101F ILIR P3 01 11. TITLE (include Security Classiflcation) Long Pulse Homopolar Generator 12. PERSONAL...FIELD GROUP SUB-GROUP C6 6; y .- o- , -, ’, - 20 07 homopolar , high current, high power, high speed, generator, 19. ABIT!CT (Contkwe on rer if =ray and

  8. Output Synchronization of Nonidentical Linear Multiagent Systems.

    PubMed

    Wu, Yuanqing; Su, Hongye; Shi, Peng; Lu, Renquan; Wu, Zheng-Guang

    2017-01-01

    In this paper, the problem of output synchronization is investigated for the heterogeneous network with an uncertain leader. It is assumed that parameter perturbations influence the nonidentical linear agents, whose outputs are controlled to track the output of an uncertain leader. Based on the hierarchical structure of the communication graph, a novel control scheme is proposed to guarantee the output synchronization. As there exist parameter uncertainties in the models of the agents, the internal model principle is used to gain robustness versus plant parameter uncertainties. Furthermore, as the precise model of the leader is also not available, the adaptive control principle is adopted to tune the parameters in the local controllers. The developed new technique is able to simultaneously handle uncertainties in the follower parameters as well as the leader parameters. The agents in the upper layers will be treated as the exosystems of the agents in the lower layers. The local controllers are constructed in a sequential order. It is shown that the output synchronization can be achieved globally asymptotically and locally exponentially. Finally, a simulation example is given to illustrate the effectiveness and potential of the theoretic results obtained.

  9. Synchronization for linear singularly perturbed complex networks with coupling delays

    NASA Astrophysics Data System (ADS)

    Cai, Chenxiao; Xu, Jing; Liu, Yurong; Zou, Yun

    2015-02-01

    This paper is concerned with the synchronization problem about linear singularly perturbed complex network system with coupling delay. The sufficient delay-dependent conditions for the synchronization of the network are established by introducing an equivalent network system with the Lyapunov stability theory. These conditions, which are formulated in terms of linear matrix inequalities, can be solved efficiently by the LMI toolbox of MATLAB. A simulation example is provided to show the validity of the proposed the synchronization conditions of the whole network.

  10. Multi-synchronization of chaos via linear output feedback strategy

    NASA Astrophysics Data System (ADS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2009-01-01

    Multi-synchronization of chaotic systems based on the master-slave scheme as an extension of the dual synchronization problem is introduced. It is assumed that the only information available from the master systems is a linear combination of their state vectors. The design procedure for multi-synchronization through output feedback strategy is described and the sufficient condition is given. The performance of the proposed algorithm is numerically examined by applying it to the Chen-Lorenz-Rossler and the Duffing-Van der Pol chaotic systems. Simulation results show the effectiveness of the proposed scheme.

  11. Chaos pass filter: linear response of synchronized chaotic systems.

    PubMed

    Zeeb, Steffen; Kestler, Johannes; Kanter, Ido; Kinzel, Wolfgang

    2013-04-01

    The linear response of synchronized time-delayed chaotic systems to small external perturbations, i.e., the phenomenon of chaos pass filter, is investigated for iterated maps. The distribution of distances, i.e., the deviations between two synchronized chaotic units due to external perturbations on the transferred signal, is used as a measure of the linear response. It is calculated numerically and, for some special cases, analytically. Depending on the model parameters this distribution has power law tails in the region of synchronization leading to diverging moments of distances. This is a consequence of multiplicative and additive noise in the corresponding linear equations due to chaos and external perturbations. The linear response can also be quantified by the bit error rate of a transmitted binary message which perturbs the synchronized system. The bit error rate is given by an integral over the distribution of distances and is calculated analytically and numerically. It displays a complex nonmonotonic behavior in the region of synchronization. For special cases the distribution of distances has a fractal structure leading to a devil's staircase for the bit error rate as a function of coupling strength. The response to small harmonic perturbations shows resonances related to coupling and feedback delay times. A bidirectionally coupled chain of three units can completely filter out the perturbation. Thus the second moment and the bit error rate become zero.

  12. Fault Tolerant Homopolar Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  13. Optimum linear synchronous motor design for high speed ground transportation

    NASA Astrophysics Data System (ADS)

    Azukizawa, T.

    1983-10-01

    This paper decribes fundamental concepts pertinent to designing an optimum linear synchronous motor as the propulsion system for high speed ground transportation. The complicated interactions between the key parameters are systematically arranged to show what is essential to determine these parameters. Some important guideposts to determine these parameters are obtained. Particularly, 0.7 tau sub s - 0.75 tau sub s long superconducting magnets are recommended (tau sub s: pole pitch). Also, a control method for economical linear synchronous motor operation is discussed.

  14. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    SciTech Connect

    Coffey, H.T.

    1992-12-31

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  15. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  16. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  17. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  19. Homopolar Motor and Brush Development Studies

    DTIC Science & Technology

    2005-08-01

    FUNDING NUMBERS Final Report- Homopolar Motor and Brush Development Studies Office of Naval Research Contract #N0001 4-04-1-0064 Contract # N00014-04-1-0064...superconducting homopolar motors . This report surveys prior data, reports, papers, and other studies that relate to superconducting homopolar motors . It also...subject. 14. SUBJECT TERMS 15. NUMBER OF PAGES Homopolar motors , generators, electric ship, brush polarity, superconducting materials, 72 unipolar or

  20. Design and simulation of HTS bulk linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Matsumoto, H.

    2002-10-01

    A new type high temperature superconducting (HTS) bulk linear synchronous motor (LSM) theory is proposed by authors which is based on an idea of considering the pinning force as a synchronizing one in using current-carrying-armature-winding instead of permanent magnets. Electromagnetic force which HTS bulk produces depends on strongly the space distribution of an applied magnetic field under field cooling. LSM thrust force distribution on HTS bulk which is essentially different from that on a permanent magnet. It is generally difficult to design HTS bulk LSM. This paper presents a design of HTS bulk LSM by the finite element method (FEM) and its dynamics simulation of propulsion motion. Dynamics simulation is carried out using an instantaneous-maximum-thrust-force control method proposed here which is based on an analytical formula of LSM thrust force derived from the FEM capable of modeling HTS bulk.

  1. Homopolar Transformer for Conversion of Electrical Energy

    DTIC Science & Technology

    1998-10-13

    electrical current Hows through a conductor situated in a magnetic field during rotation of the machine rotor. In L the case of a homopolar motor ...10, incorporated within a homopolar machine 12 corresponding for example to the motor or generator disclosed in U.S. Pat. No. 3,657,580 to Doyle. The...During operation of the homopolar machine 12 as a motor , a voltage source 16 connected to the stator terminals 26 and 28 causes a current to flow

  2. Homopolar Transformer for Conversion of Electrical Energy

    DTIC Science & Technology

    1997-08-14

    machine rotor. In the case of a 14 homopolar motor , the current will develop a force perpendicular to the direction of its flow 15 through the conductor...reference numeral 10, incorporated within a homopolar 14 machine 12 corresponding for example to the motor or generator disclosed in U.S. Patent No...current flow. During 3 operation of the homopolar machine 12 as a motor , a voltage source 16 connected to the stator 5 terminals 26 and 28 causes a

  3. Non-linear power spectra in the synchronous gauge

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui; Gong, Jinn-Ouk; Biern, Sang Gyu E-mail: hr@kasi.re.kr E-mail: jinn-ouk.gong@apctp.org

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented in the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.

  4. The high voltage homopolar generator

    NASA Astrophysics Data System (ADS)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  5. Homopolar motor with dual rotors

    DOEpatents

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  6. Homopolar motor with dual rotors

    DOEpatents

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  7. Five-megajoule homopolar upgrade

    SciTech Connect

    Bullion, T.M.; Zowarka, R.C.; Aanstoos, T.A.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1981-01-01

    The five-megajoule homopolar generator (5-MJ HPG) designed and built in 1974 by the Center for Eelctromechanics at the University of Texas at Austin (CEM-UT) was the result of an engineering feasibility study that examined alternate means of pulsed energy storage for controlled thermonuclear fusion experiments. The machine proved very reliable and useful in a variety of applications, notably pulsed resistance welding, and was modified in 1978 to improve its flexibility and ease of maintenance. CEM-UT is now completing a major upgrading of this HPG to a hydraulically motored, 10-MJ, 47-V, 1.02-MA device capable of welding large-section, high-carbon railroad rail. This report considers the design and fabrication of the new rotor, shaft, brush mechanisms, field coil, making switch, busbar system, and control system, as well as the addition of the 31-MPa (4500 psi) hydraulic motoring system. Future applications of the 10-MJ HPG are also discussed.

  8. Dual Synchronization of Fractional-Order Chaotic Systems via a Linear Controller

    PubMed Central

    Xiao, Jian; Ma, Zhen-zhen; Yang, Ye-hong

    2013-01-01

    The problem of the dual synchronization of two different fractional-order chaotic systems is studied. By a linear controller, we realize the dual synchronization of fractional-order chaotic systems. Finally, the proposed method is applied for dual synchronization of Van der Pol-Willis systems and Van der Pol-Duffing systems. The numerical simulation shows the accuracy of the theory. PMID:24163612

  9. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.

    PubMed

    Minati, Ludovico

    2015-12-01

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  10. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2015-12-15

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  11. A linear model for characterization of synchronization frequencies of neural networks.

    PubMed

    Lv, Peili; Hu, Xintao; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming

    2014-02-01

    The synchronization frequency of neural networks and its dynamics have important roles in deciphering the working mechanisms of the brain. It has been widely recognized that the properties of functional network synchronization and its dynamics are jointly determined by network topology, network connection strength, i.e., the connection strength of different edges in the network, and external input signals, among other factors. However, mathematical and computational characterization of the relationships between network synchronization frequency and these three important factors are still lacking. This paper presents a novel computational simulation framework to quantitatively characterize the relationships between neural network synchronization frequency and network attributes and input signals. Specifically, we constructed a series of neural networks including simulated small-world networks, real functional working memory network derived from functional magnetic resonance imaging, and real large-scale structural brain networks derived from diffusion tensor imaging, and performed synchronization simulations on these networks via the Izhikevich neuron spiking model. Our experiments demonstrate that both of the network synchronization strength and synchronization frequency change according to the combination of input signal frequency and network self-synchronization frequency. In particular, our extensive experiments show that the network synchronization frequency can be represented via a linear combination of the network self-synchronization frequency and the input signal frequency. This finding could be attributed to an intrinsically-preserved principle in different types of neural systems, offering novel insights into the working mechanism of neural systems.

  12. Westinghouse programs in pulsed homopolar power supplies

    NASA Technical Reports Server (NTRS)

    Litz, D. C.; Mullan, E.

    1984-01-01

    This document details Westinghouse's ongoing study of homopolar machines since 1929 with the major effort occurring in the early 1970's to the present. The effort has enabled Westinghouse to develop expertise in the technology required for the design, fabrication and testing of such machines. This includes electrical design, electromagnetic analysis, current collection, mechanical design, advanced cooling, stress analysis, transient rotor performance, bearing analysis and seal technology. Westinghouse is using this capability to explore the use of homopolar machines as pulsed power supplies for future systems in both military and commercial applications.

  13. The circular form of the linear superconducting machine for marine propulsion

    NASA Astrophysics Data System (ADS)

    Rakels, J. H.; Mahtani, J. L.; Rhodes, R. G.

    1981-01-01

    The superconducting linear synchronous machine (LSM) is an efficient method of propulsion of advanced ground transport systems and can also be used in marine engineering for the propulsion of large commercial vessels, tankers, and military ships. It provides high torque at low shaft speeds and ease of reversibility; a circular LSM design is proposed as a drive motor. The equipment is compared with the superconducting homopolar motors, showing flexibility in design, built in redundancy features, and reliability.

  14. Synchronization of multiple magnetically switched modules to power linear induction adder accelerators

    SciTech Connect

    Reed, K.W.; Kiekel, P.D.

    1997-02-01

    In applications where multiple magnetic modulators are used to drive a single Linear Induction Voltage Adder (LIVA) or Linear Accelerator (LINAC), it is essential that the outputs of the modulators by synchronized. Output rise times are typically in the 10ns to 20ns range, often making it necessary to synchronize to within less than 1ns. Microprocessor and electronic feedback schemes have been developed and demonstrated that achieve the required level of synchronization, however, they are sophisticated and potentially complex. In a quest for simplicity, this work seeks to determine the achievable level of modulator to modulator timing jitter that can be obtained with simple design practices and passive techniques. Sources of output pulse time jitter in magnetic modulators are reviewed and some basic modulator design principles that can be used to minimize the intrinsic time jitter between modulators are discussed. A novel technique for passive synchronization is presented.

  15. Motional Mechanisms of Homopolar Motors & Rollers

    ERIC Educational Resources Information Center

    Wong, H. K.

    2009-01-01

    The strong Nd[subscript 2]Fe[subscript 14]B permanent magnet has facilitated development of various fascinating yet simple homopolar motors. However, the physics of these devices is often not explained, or is explained incorrectly. A major concern is that Newton's third law was overlooked in some of the earlier articles. In this paper, I will…

  16. Motional Mechanisms of Homopolar Motors & Rollers

    ERIC Educational Resources Information Center

    Wong, H. K.

    2009-01-01

    The strong Nd[subscript 2]Fe[subscript 14]B permanent magnet has facilitated development of various fascinating yet simple homopolar motors. However, the physics of these devices is often not explained, or is explained incorrectly. A major concern is that Newton's third law was overlooked in some of the earlier articles. In this paper, I will…

  17. Synchronization behavior in linear arrays of negative differential resistance circuit elements

    NASA Astrophysics Data System (ADS)

    Xu, Huidong; Teitsworth, Stephen

    2008-03-01

    We study the electronic transport properties in a linear array of nonlinear circuit elements that exhibit negative differential resistance, and find that state-cluster synchronization emerges when there is heterogeneity in the element properties. This type of synchronization is associated with a non-uniform spatial distribution of total applied voltage across the array elements, as well as the formation of multiple stable branches in computed current-voltage curves for the entire array. Unlike most synchronizing systems studied previously [1], this system possesses coupling between elements that displays both positive and negative feedback depending on the state of each element. An empirical order parameter is defined which quantifies the degree of synchronization. We also find that the degree of synchronization is strongly dependent on the ramping rate of the total applied voltage to the array, with complete synchronization observed in the limit of small ramping rate. This model provides a basis for describing related nonlinear phenomena in more complex electronic structures such as semiconductor superlattices [2]. [1] A. Pikovsky, M. Rosenbaum, and Jürgen Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001). [2] M. Rogozia, S. W. Teitsworth, H. T Grahn, and K. H. Ploog, Phys. Rev. B65, 205303 (2002).

  18. Static Multiple-Pole Homopolar Generator With a Superconducting Screen,

    DTIC Science & Technology

    1983-11-03

    STANAR193-A OlCFILE GORY 00 FOREIGN TECHNOLOGY DIVISION STATIC MULTIPLE-POLE HOMOPOLAR GENERATOR WITH A SUPERC9ONDUCTING SCREEN by V.P. Kartsev, avld...November 1983 MICROFICHE MJR: FTD-83-C-001336 STATIC %fULTIPLE-POLE HOMOPOLAR GENERATOR WITH A SUPRCONDUCTING SCREEN By: V.P. Kartsev, and I.M. Yegorov...this translation were extracted from the best quality copy available. STATIC MULTIPLE-POLE HOMOPOLAR GENERATOR WITH A SUPERCONDUCTING SCREEN V.P

  19. Design and Development of a Segmented Magnet Homopolar Torque Converter

    DTIC Science & Technology

    1975-02-01

    IchineVr^V5^ thl ^^^P" concept in large homopolar crLt^ in th^ fi /I蔾’ ^^^C’ a^ electrodynamic power losses created in the fluid during machine...AD-A008 843 DESIGN AND DEVELOPMENT OF A SEGMENTED MAGNET HOMOPOLAR TORQUE CONVERTER C. J. Mole, et al Westinghouse Electric Corporation...This program is for the research and development of a new mechanical power trans- mission concept: the segmented magnet homopolar torque converter

  20. 175Hp contrarotating homopolar motor design report

    NASA Astrophysics Data System (ADS)

    Cannell, Michael J.; Drake, John L.; McConnell, Richard A.; Martino, William R.

    1994-06-01

    A normally conducting contrarotating homopolar motor has been designed and constructed. The reaction torque, in the outer rotor, from the inner rotor is utilized to produce true contrarotation. The machine utilizes liquid cooled conductors, high performance liquid metal current collectors, and ferrous conductors in the active region. The basic machine output is 175 hp at + or - 1,200 rpm with an input of 4 volts and 35,000 amps.

  1. Motional Mechanisms of Homopolar Motors & Rollers

    NASA Astrophysics Data System (ADS)

    Wong, H. K.

    2009-10-01

    The strong Nd2Fe14B permanent magnet has facilitated development of various fascinating yet simple homopolar motors However, the physics of these devices is often not explained, or is explained incorrectly. A major concern is that Newton's third law was overlooked in some of the earlier articles. In this paper, I will employ this law in explaining the motional mechanisms of these devices.

  2. A model of a linear synchronous motor based on distribution theory

    NASA Astrophysics Data System (ADS)

    Trapanese, Marco

    2012-04-01

    The fundamental idea of this paper is to use the distribution theory to analyze linear machines in order to include in the mathematical model both ideal and non ideal features. This paper shows how distribution theory can be used to establish a mathematical model able to describe both the ordinary working condition of a Linear Synchronous Motor (LSM) as well the role of the unavoidable irregularities and non ideal features.

  3. On control and synchronization in chaotic and hyperchaotic systems via linear feedback control

    NASA Astrophysics Data System (ADS)

    Rafikov, Marat; Balthazar, José Manoel

    2008-09-01

    This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rössler system and synchronization of the hyperchaotic Rössler system.

  4. Reliable clock estimation using linear weighted fusion based on pairwise broadcast synchronization

    SciTech Connect

    Shi, Xin Zhao, Xiangmo Hui, Fei Ma, Junyan Yang, Lan

    2014-10-06

    Clock synchronization in wireless sensor networks (WSNs) has been studied extensively in recent years and many protocols are put forward based on the point of statistical signal processing, which is an effective way to optimize accuracy. However, the accuracy derived from the statistical data can be improved mainly by sufficient packets exchange, which will consume the limited power resources greatly. In this paper, a reliable clock estimation using linear weighted fusion based on pairwise broadcast synchronization is proposed to optimize sync accuracy without expending additional sync packets. As a contribution, a linear weighted fusion scheme for multiple clock deviations is constructed with the collaborative sensing of clock timestamp. And the fusion weight is defined by the covariance of sync errors for different clock deviations. Extensive simulation results show that the proposed approach can achieve better performance in terms of sync overhead and sync accuracy.

  5. A 10-MJ compact homopolar generator

    NASA Astrophysics Data System (ADS)

    McKee, B. D.; McNab, I. R.

    1986-11-01

    The design and initial testing of a lightweight (5 kJ/kg) iron-cored homopolar generator is described. The machine employs an external power supply to motor up to operating speed (12,500 rpm) at which point 10 MJ of energy is stored in the steel rotor. Copper-graphite brushes in the stator, actuated by pneumatic actuators, make contact with the rotor surface and permit the inertial energy to be transferred to a load circuit at current levels up to 1.5 MA and voltages up to 60 V.

  6. Design of a 40 megawatt homopolar generator

    NASA Astrophysics Data System (ADS)

    Baker, N. D.; McKee, B. D.; McNab, I. R.

    1986-11-01

    Design, materials and performance features of a 40 MW homopolar generator developed to demonstrate the feasibility of using monolithic brush type generators for lung duration pulse applications are described. The generator, driven by a LOX/JP4 turbine, is intended to supply 2 MA from six coils for as much as 5 sec to meet the requirements of electromagnetic launchers and other applications. The generator components include an aged beryllium-copper rotor conductor, radial supporting bearings and thrust bearings, and a single-piece forged rotor sleeve. Sample test data are provided of the current pulse profile in a multiple fire test and the rotor temperature profile.

  7. Adaptive synchronization in an array of linearly coupled neural networks with reaction-diffusion terms and time delays

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Teng, Zhidong; Jiang, Haijun

    2012-10-01

    In this paper, the adaptive synchronization in an array of linearly coupled neural networks with reaction-diffusion terms and time delays is discussed. Based on the LaSalle invariant principle of functional differential equations and the adaptive feedback control technique, some sufficient conditions for adaptive synchronization of such a system are obtained. Finally, a numerical example is given to show the effectiveness of the proposed synchronization method.

  8. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory.

    PubMed

    Kaart, S; Schouten, J C; van den Bleek, C M

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  9. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory

    NASA Astrophysics Data System (ADS)

    Kaart, Sander; Schouten, Jaap C.; van den Bleek, Cor M.

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  10. The homopolar motor: A true relativistic engine

    NASA Astrophysics Data System (ADS)

    Guala-Valverde, Jorge; Mazzoni, Pedro; Achilles, Ricardo

    2002-10-01

    This article discusses experiments which enable the identification of the seat of mechanical forces in homopolar-machines reported earlier in this journal [J. Guala-Valverde and P. Mazzoni, Am. J. Phys. 63, 228-229 (1995); J. Guala-Valverde, P. Mazzoni, and K. Blas, ibid. 65, 147-148 (1997)]. We provide a suitable variation on a recent work "The Unipolar Dynamotor: A Genuine Relational Engine" [J. Guala-Valverde and P. Mazzoni, Apeiron 8, 41-52 (2001)], where "relational" implies "absolutely relativistic." Our view agrees with both Weber's recognition in the 19th century of the importance of relative motion in electromagnetic phenomena [A. K. T. Assis, Electrodynamics (Kluwer, Dordrecht, 1994)] and Einstein's 1905 statement concerning electromagnetism [Ann. Phys. 17, 891-921 (1905)].

  11. Superconducting homopolar motor and conductor development

    NASA Astrophysics Data System (ADS)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  12. Multi-winding homopolar electric machine

    DOEpatents

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  13. A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems.

    PubMed

    Chuang, Chun-Fu; Sun, Yeong-Jeu; Wang, Wen-June

    2012-12-01

    In this study, exponential finite-time synchronization for generalized Lorenz chaotic systems is investigated. The significant contribution of this paper is that master-slave synchronization is achieved within a pre-specified convergence time and with a simple linear control. The designed linear control consists of two parts: one achieves exponential synchronization, and the other realizes finite-time synchronization within a guaranteed convergence time. Furthermore, the control gain depends on the parameters of the exponential convergence rate, the finite-time convergence rate, the bound of the initial states of the master system, and the system parameter. In addition, the proposed approach can be directly and efficiently applied to secure communication. Finally, four numerical examples are provided to demonstrate the feasibility and correctness of the obtained results.

  14. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension

    NASA Astrophysics Data System (ADS)

    Jin, Jianxun; Zheng, Luhai; Guo, Youguang; Xu, Wei; Zhu, Jianguo

    2011-09-01

    A high temperature superconducting (HTS) linear propulsion system composed of a single-sided HTS linear synchronous motor (HTSLSM) in its middle and HTS magnetic suspension sub-systems on both sides has been developed. The HTSLSM uses an HTS bulk magnet array on the moving secondary, and the field-trapped characteristics of the HTS bulk using different magnetized methods have been measured and compared to identify their magnetization capability. In order to generate a large levitation force for the system, three different types of permanent magnet guideways (PMGs) have been numerically analyzed and experimentally verified to obtain an optimal PMG. Based on comprehensive experimental prototype tests, the results show that the HTS linear propulsion system can run with stable magnetic suspension having a constant air-gap length, and the thrust characteristics versus the exciting current, working frequency and the air-gap length have also been obtained. This work forms the basis for developing a practical HTS linear propulsion system by using HTS bulks both for propulsion and suspension.

  15. Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications.

    PubMed

    Behn, Andrew; Zimmerman, Paul M; Bell, Alexis T; Head-Gordon, Martin

    2011-12-13

    The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30-50%).

  16. Studying the force characteristics of a high temperature superconducting linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Zheng, Luhai; Jin, Jianxun

    2011-08-01

    A single-sided high temperature superconducting (HTS) linear synchronous motor (HTSLSM) with an HTS bulk magnet array as its secondary has been developed. A field-cooled magnetization system has also been developed to obtain the magnet array with alternate magnetic poles. In order to identify the performance and force characteristics of the HTSLSM, an equivalent 3D finite element analysis (FEA) model has been built up to analyze its field distributions and cogging force characteristics, and an experimental system has been constructed to measure its thrust and normal force characteristics. The traits of the thrust and the normal force have been extracted by comprehensive experiments, including the trends versus different exciting currents, different air gap lengths and variable magnetic poles. The analysis and experimental results are fundamental to the electromagnetic optimum design and control scheme evaluation for the HTSLSM.

  17. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    NASA Astrophysics Data System (ADS)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  18. New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides.

    PubMed

    Liu, Bo; Lu, Wenlian; Chen, Tianping

    2012-01-01

    In this paper, we study synchronization of networks of linearly coupled dynamical systems. The node dynamics of the network can be very general, which may not satisfy the QUAD condition. We derive sufficient conditions for synchronization, which can be regarded as extensions of previous results. These results can be employed to networks of coupled systems, of which, in particular, the node dynamics have non-Lipschitz or even discontinuous right-hand sides. We also give several corollaries where the synchronization of some specific non-QUAD systems can be deduced. As an application, we propose a scheme to realize synchronization of coupled switching systems via coupling the signals which drive the switchings. Examples with numerical simulations are also provided to illustrate the theoretical results.

  19. Preliminary design of a 1 gigajoule homopolar generator

    NASA Astrophysics Data System (ADS)

    Headifen, G. R.; Pappas, J. A.; Weldon, J. M.; Wright, J. C.; Price, J. H.; Gully, J. H.; Brunson, G.

    1993-01-01

    A high-energy, high-voltage homopolar generator has been designed. The HPG will have composite flywheels to maximize energy storage density and a multi-pass armature to achieve high output voltage. The homopolar generator is designed to discharge a constant 895 kA into a 460 V load for several seconds and recharge in less than a minute. The designed energy density is in excess of 15 J/g. Output current control will be achieved by increasing the field coil current proportionally to the decrease in rotational speed.

  20. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    SciTech Connect

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  1. A superconducting homopolar motor and generator—new approaches

    NASA Astrophysics Data System (ADS)

    Fuger, Rene; Matsekh, Arkadiy; Kells, John; Sercombe, D. B. T.; Guina, Ante

    2016-03-01

    Homopolar machines were the first continuously running electromechanical converters ever demonstrated but engineering challenges and the rapid development of AC technology prevented wider commercialisation. Recent developments in superconducting, cryogenic and sliding contact technology together with new areas of application have led to a renewed interest in homopolar machines. Some of the advantages of these machines are ripple free constant torque, pure DC operation, high power-to-weight ratio and that rotating magnets or coils are not required. In this paper we present our unique approach to high power and high torque homopolar electromagnetic turbines using specially designed high field superconducting magnets and liquid metal current collectors. The unique arrangement of the superconducting coils delivers a high static drive field as well as effective shielding for the field critical sliding contacts. The novel use of additional shielding coils reduces weight and stray field of the system. Liquid metal current collectors deliver a low resistance, stable and low maintenance sliding contact by using a thin liquid metal layer that fills a circular channel formed by the moving edge of a rotor and surrounded by a conforming stationary channel of the stator. Both technologies are critical to constructing high performance machines. Homopolar machines are pure DC devices that utilise only DC electric and magnetic fields and have no AC losses in the coils or the supporting structure. Guina Energy Technologies has developed, built and tested different motor and generator concepts over the last few years and has combined its experience to develop a new generation of homopolar electromagnetic turbines. This paper summarises the development process, general design parameters and first test results of our high temperature superconducting test motor.

  2. Quarterly Progress Report: Modeling and Simulation of the Homopolar Motor Test Apparatus

    DTIC Science & Technology

    2006-05-01

    Quarterly Progress Report: Modeling and Simulation of the Homopolar Motor Test Apparatus 5. FUNDING NUMBERS Contract # N00014-1-0588 6. AUTHOR(S) K...superconducting homopolar motor /generator (SCHPMG) machine for ship propulsion. Electrical contact (brush/slip ring) performance is a limiting factor in SCHPMG...SUBJECT TERMS superconducting homopolar motors , inhomogenous brush wear, polarity dependence, destabilized force 15. NUMBER OF PAGES 11 16. PRICE CODE

  3. Propulsion and guidance simulation of HTS bulk linear synchronous motor taking into account /E-J characteristic

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Matsumoto, H.

    2003-10-01

    We have proposed a new linear synchronous motor (LSM) theory which is based on an idea of considering the pinning force as synchronizing one in using current-carrying-armature-winding instead of permanent magnets. We have carried out basic experiments on two-dimensional electromagnetic forces produced in HTS bulk within DC-magnetic-field. As a result, we found that HTS bulk magnet in a cooling case can be levitated and guided stably according to the flux conditions between bulk and DC magnet. HTS bulk LSM can produce propulsion, levitation and guidance forces from zero speed, and be used in many applications. This paper proposes HTS bulk LSM analyzed and designed taking into account E- J characteristic. The LSM can produce stable guidance force without control. The LSM propulsion and guidance motion can be simulated numerically only by a simple propulsion control, which is not only closed-loop control but also open-loop control.

  4. A high frequency high power IGBT inverter drive for 45 HP/16,000 rpm brushless homopolar inductor motor

    SciTech Connect

    He, J.; Lin, F.

    1995-12-31

    A microprocessor-based ultra-high speed brushless homopolar inductor motor drive system (HiDrive) with no gearing and using a high frequency IGBT inverter switching at 32 kHz is described and discussed in this paper. The homopolar motor features a solid steel rotor without magnets, windings, or laminations, which allows the motor to be operated at very high speed. The HiDrive system achieves 16,000 RPM, 45 Hp continuously. The drive system discussed in this paper can be used to replace conventional motors and speed increasing gear boxes in very high speed industrial applications such as centrifuges, compressors, blowers, pumps, and machine tool spindles. The HiDrive system discussed in this paper is used to drive a compressor for nuclear power application. In this paper, the detailed descriptions of the motor construction, equivalent circuit, operation and control principle are offered. The IGBT inverter drive system design and controls including motor speed sensing, load angle control, synchronization, brake control, power device switchings, and thermal issues are addressed. The simulation results various test results, and the typical application examples of the high speed drives are also presented in this paper.

  5. Homopolar motors and generators. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning design, analysis, construction, testing, and applications of homopolar motors and generators. Energy storage for nuclear fusion and industrial welding facilities is discussed. Applications of homopolar motors in transportation are presented. Topics also include magnetic circuit analysis, superconducting windings, and environmental testing. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  6. Asymmetric Circuit Models and Parameter Measurement for PermanentMagnet Linear Synchronous Motor Considering Inductance Harmonics and Saliency

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Yamaguchi, Tomonobu; Hirahara, Hideaki; Ara, Takahiro

    This paper presents asymmetric circuit models and an inductance parameter measurement method for Permanent Magnet Linear Synchronous Motors (PMLSMs). The reason why the tested PMLSM with surface permanent magnet structure exhibits both asymmetry and salient pole natures is investigated. Asymmetric circuit models considering the saliency and inductance harmonic effects are discussed for PMLSM fed by three-phase three-wire power source systems. All fundamental and harmonic inductance parameters are easily determined by a standstill test using a single-phase commercial source. Experimental and simulation results on a single-sided PMLSM with a 3-phase, 4-pole and 14-slot mover demonstrate the validity of the proposed method.

  7. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    SciTech Connect

    Freitas, Celso Macau, Elbert; Pikovsky, Arkady

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.

  8. Operation of NRL Homopolar Generator into Parallel Energy Storage Inductor

    DTIC Science & Technology

    2013-06-01

    and inertial energy storage. In this system a self-excited homopolar generator (HPG) serves to transfer rotational energy from flywheels to...magnetic energy in the storage inductor. A single 1.4-rnH solenoid inductor enclosing the flywheels can be energized to 60 kA and serves both as energy...the energy storage circuit time constant were 1 s, an energy of 2 MJ could be obtained with an initial flywheel speed of 260 rps. As a consequence

  9. Recommissioning and characterization of the Ardec 30 megajoule homopolar generator

    NASA Astrophysics Data System (ADS)

    Coradeschi, T. J.; Hildenbrand, D. J.; Scherbarth, D. W.

    1991-01-01

    Recent efforts have resulted in a major reconstruction of the EMACK homopolar generator (HPG). The rotor, discharge brush, drive, and lubricating systems have been completely replaced. The brush actuation system has been substantially modified. The control computer, a programmable logic controller (PLC), has undergone major software and hardware revisions. The modifications made to the various subsystems are described, as well as the results of the testing of those systems. Also reported are the results of characterization testing of the HPG itself, and the development of predictive algorithms to assist the operator in selecting correct operational parameters for a given experiment.

  10. Unified modelling of passive homopolar and heteropolar electrodynamic bearings

    NASA Astrophysics Data System (ADS)

    Detoni, J. G.; Impinna, F.; Tonoli, A.; Amati, N.

    2012-09-01

    A model of passive electrodynamic bearings based on the R-L dynamics of the eddy currents inside a conductor is presented. The model is derived from an analytical solution of the magnetic field in the air region surrounding the rotor for electrodynamic bearings having an even number of magnetic pole pairs. It allows homopolar and heteropolar electrodynamic bearings to be considered in a single unified way that accounts for the electromechanical interactions between the rotating conductor and the magnetic field of the stator. The model of the bearings is then coupled to a Jeffcott rotor model using complex coordinates in a state-space representation, allowing the dynamics of rotors supported by electrodynamic bearings to be studied. The number of magnetic pole pairs is found to influence rotordynamic stability, unbalance responses and frequency responses. The results demonstrate that homopolar electrodynamic bearings have a unique characteristic of passively filtering the transmission of forces due to residual unbalance of the rotor to the machine supports. The models are also used to perform a stability analysis of a case study presented in literature, and results from experimental observation are compared to those obtained analytically.

  11. Synchronized High-Resolution Lacustrine Records in Iceland show Non-Linear Response to Holocene Insolation

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Miller, G. H.; Larsen, D. J.; Thordarson, T.; Ólafsdóttir, S.; Stoner, J. S.

    2010-12-01

    Icelandic lakes commonly have sedimentation rates in excess of 1 m ka-1 through the Holocene, offering the potential for records of environmental change at decadal or better resolution. Icelandic lake sediment contains numerous volcanic tephra layers of known age, which together with high-resolution sediment paleomagnetic secular variations (PSV) allow synchronization of sediment cores from both lacustrine and marine archives. We present synchronized high-resolution paleoclimatic records from two Icelandic lakes with very different catchment characteristics. By combining PSV records and key tephra tie points we are able to synchronize the lacustrine records with each other and with a well-dated marine core from the shelf north of Iceland. The large PSV signal that characterizes the Icelandic Holocene records allows 40 to 60 secure tie points over the past 10 ka of sediment records. The high frequency of tie points allows the reconstruction of sediment accumulation rate changes in the lacustrine records that were not apparent from the tephrochonological controls. The first order trends in the lacustine climate proxies (BSi and TOC) are similar. BSi climbs to a maximum value shortly after 8 ka, then declines toward present, reflecting a relatively late Holocene thermal maximum, lagging the Greenland ice core record by ca. 2 ka. The peak of the HTM in Iceland was warm enough to melt glaciers completely with temperatures estimated to have been 3.5°C higher relative to 1960-1990 averages. Decreasing summer insolation is reflected not by gradual cooling after the HTM, but by incremental changes in state. TOC and BSi track each other during warm times, but diverge, and sedimentation rates increase, during perturbations and cold times at 8.4 ka, 5.5 ka, 4.3 to 4 ka, 3.1 ka to 2.8 ka. Following these departures, BSi usually exhibits a step-function change, re-equilibrating at a lower BSi value. Some of the departures may be related to Icelandic volcanism influencing

  12. Analytic study on a state observer synchronizing a class of linear fractional differential systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xian-Feng; Huang, Qun; Jiang, Wei; Liu, Song

    2014-10-01

    This paper is concerned with Theorem 2 in Matignon and d’André-Novel (1997) [1], which was sufficient and necessary criterion on a state observer for a class of linear fractional differential systems. Based on the stability theory, the dual principle and the pole assignment theory of the fractional differential system, we have proved the validity of sufficiency of Theorem 2 in details. A counterexample is provided to show that the condition of Theorem 2 is not necessary.

  13. Analysis and experiment of eddy current loss in Homopolar magnetic bearings with laminated rotor cores

    NASA Astrophysics Data System (ADS)

    Jinji, Sun; Dong, Chen

    2013-08-01

    This paper analyses the eddy current loss in Homopolar magnetic bearings with laminated rotor cores produced by the high speed rotation in order to reduce the power loss for the aerospace applications. The analytical model of rotational power loss is proposed in Homopolar magnetic bearings with laminated rotor cores considering the magnetic circuit difference between Homopolar and Heteropolar magnetic bearings. Therefore, the eddy current power loss can be calculated accurately using the analytical model by magnetic field solutions according to the distribution of magnetic fields around the pole surface and boundary conditions at the surface of the rotor cores. The measurement method of rotational power loss in Homopolar magnetic bearing is proposed, and the results of the theoretical analysis are verified by experiments in the prototype MSCMG. The experimental results show the correctness of calculation results.

  14. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    SciTech Connect

    Crapo, A.D.; Lloyd, J.D. )

    1991-03-01

    This paper reports on two motors designed and built for use with high temperature superconductor (HTSC) materials. They are a homopolar DC motor that will use HTSC field windings and a brushless DC motor that will use bulk HTSC material to trap flux in steel rotor poles. The HTSC field windings of the homopolar DC motor are designed to operate at 1000 Amperes/cm{sup 2} in a 0.010 Tesla (100 Gauss) field. In order to maximize torque in the homopolar DC motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar DC motor has been tested while the authors wait for 575 Ampere turn HTSC coils.

  15. Recommissioning and characterization of the Ardec 30 megajoule homopolar generator

    SciTech Connect

    Coradeschi, T.J. ); Hildenbrand, D.J. ); Scherbarth, D.W. . Science and Technology Center)

    1991-01-01

    Recent efforts have resulted in a major reconstruction of the homopolar generator (EMACK) located at the US Army Armament Research, Development and Engineering Center, Electric Armaments Division facility in Bldg 329, Picatinny Arsenal. The rotor, discharge brush, drive and lubricating systems have been completely replaced. The brush actuation system has been substantially modified. The control computer, a programmable logic controller (PLC), has undergone major software and hardware revisions. This paper describes the modifications made to the various subsystems, as well as the results of the testing of those systems. Also reported are the results of characterization testing of the HPG itself, and the development of predictive algorithms to assist the operator in selecting correct operational parameters for a given experiment.

  16. Homopolar pulse welding of API 5L carbon steel linepipe

    SciTech Connect

    Haase, P.; Carnes, R.; Harville, M.

    1994-12-31

    Homopolar pulse welding (HPW) is a resistance welding process being investigated as a method to rapidly join API 5L carbon steel linepipe. The target application for this investigation is deepwater offshore pipeline construction utilizing the J-lay method, which requires a rapid one-shot welding process for economic feasibility. HPW utilizes the high current, low-voltage pulse produced by a homopolar generator to rapidly resistance heat the interface between abutting workpieces, and follows that pulse with an upset action to produce a weld. A large number of controllable parameters affecting the quality of the resultant weld are present in the process. Three inch nominal diameter, schedule 160 API 5L X-52 pipe sections were welded in this series while controlling variations in generator discharge speed electrode location and upsetting parameters. Welding current voltage and temperature curves were recorded for the welds. Tensile and Charpy V-notch impact specimens were machined from each weld and tested. Weld cross-sections were macroscopically examined. By delaying the application of the forging action, the `white line` or decarburized zone commonly found in high frequency resistance or flash butt welds was eliminated. Weld tensile strength was found to be primarily dependent on generator discharge speed (heat input). Electrode distance from the weld interface was found to be the critical factor determining weld zone cooling rate. HPW parameters can be selected to produce welds without the `white line` or decarburized zone commonly found in high frequency resistance and flash butt welds. Full tensile strength welds are easily achieved providing two conditions are met: sufficient heat input is supplied and a nominal upsetting action is applied within a few seconds of the discharge current peak. Electrode location provides control over the weld zone cooling rate.

  17. Segregated and synchronized vector solutions to linearly coupled systems of Schrödinger equations

    PubMed Central

    Long, Wei; Wang, Qingfang

    2015-01-01

    In this paper, we study the following linearly coupled system −ε2Δui+Pi(x)ui=ui3+∑j≠iNλijuj,ui∈H1(R3),i=1,…,N, where ε > 0 is a small parameter, Pi(x) are positive potentials, and λij = λji > 0 (i ≠ j) are coupling constants for i, j = 1, …, N. We investigate the effect of potentials to the structure of the solutions. More precisely, we construct multi-spikes solutions concentrating near the local maximum point x0i of Pi(x). When x0i=x0j, Pi(x0i)=Pj(x0j)=a,i≠j, i,j=1,…,N, the components have spikes clustering at the same point as ε → 0+. When x0i≠x0j, i≠j, the components have spikes clustering at the different points as ε → 0+. PMID:26396438

  18. Investigation on Prototype Superconducting Linear Synchronous Motor (LSM) for 600-km/h Wheel-Type Railway

    NASA Astrophysics Data System (ADS)

    Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon

    The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.

  19. Effect of the size of GdBCO-Ag secondary magnet on the static forces performance of linear synchronous motors

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Shi, Yunhua; He, Dabo; Jing, Hailian; Li, Jing; Deng, Zigang; Wang, Suyu; Wang, Jiasu; Cardwell, David A.

    2014-11-01

    Bulk high temperature superconductor magnets (HTSMs) have a higher flux-generating capability compared to conventional permanent magnets (PMs). These materials potentially can be used in high temperature superconducting (HTS) linear synchronous motors (LSMs) as superconducting secondary magnets, what will result in a reduced volume and weight as well as in higher force density and efficiency of these devices when compared to conventional PMs. The focus of this paper is on the effect of size of the secondary HTSM on the static performance (thrust force and normal force) of a LSM. In order to obtain high-field HTSM as the secondary, single grain bulk GdBCO-Ag superconductors of diameter 20 mm, 30 mm and 40 mm, which have higher Jc and trapped fields than YBCO superconductors, were used in this device for the first time following application by the same optimized magnetization condition. It was found that both thrust and normal forces increase and saturate with the increasing size of the HTSM secondary at the small size range, and then potentially distort when the physical size of the HTSM secondary approaches the pole pitch of the linear three-phase primary windings of the LSM. Furthermore, more experiments of a larger-sized multi-seeded HTSM secondary, confirmed that the relationship between the HTSM secondary size and the pole pitch of the primary is an important factor for achieving higher thrust and normal forces. It is suggested that the multi-pole HTSM secondary will be more beneficial to future HTS LSM designs since the single-pole HTSM secondary size should be equal to or smaller than the stator pole pitch in the paper.

  20. Homopolar motors and generators. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search

    SciTech Connect

    Not Available

    1992-12-01

    The bibliography contains citations concerning design, analysis, construction, testing, and applications of homopolar motors and generators. Energy storage for nuclear fusion and industrial welding facilities is discussed. Applications of homopolar motors in transportation are presented. Topics also include magnetic circuit analysis, superconducting windings, and environmental testing. (Contains a minimum of 54 citations and includes a subject term index and title list.)

  1. Homopolar machine for reversible energy storage and transfer systems

    DOEpatents

    Stillwagon, Roy E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  2. Homopolar machine for reversible energy storage and transfer systems

    DOEpatents

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  3. Homopolar machine for reversible energy storage and transfer systems

    DOEpatents

    Stillwagon, Roy E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  4. Homopolar machine for reversible energy storage and transfer systems

    SciTech Connect

    Stillwagon, R.E.

    1981-06-02

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  5. Homopolar machine for reversible energy storage and transfer systems

    SciTech Connect

    Stillwagon, R.E.

    1981-06-30

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  6. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    NASA Astrophysics Data System (ADS)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  7. Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems.

    PubMed

    Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan

    2015-11-01

    This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results.

  8. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  9. Application of non-linear angle synchronous spectrofluorimetry to the determination of complex mixtures of drugs in urine: A comparative study

    NASA Astrophysics Data System (ADS)

    Murillo Pulgarín, J. A.; Alañón Molina, A.; Boras, N.

    2012-12-01

    Synchronous fluorescence spectroscopy (SFS) is a rapid, sensitive and non-destructive method suitable for the analysis of multifluorophoric mixtures. In this study non linear variable angle synchronous spectrofluorimetry was applied to the determination of three fluoroquinololes in urine. Although this technique provides very good results, total resolution of multicomponent mixtures is not always achieved when the spectral profiles strongly overlap. Partial least-squares regression (PLS-1) was utilized to a develop calibration model that related synchronous fluorescence spectra to the analytical concentration of fluoroquinolones in the presence of urine. The same multicomponent mixture was determined using excitation emission matrix fluorescence (EEMF) along with N-way partial least squares regression (N-PLS and U-PLS). The determination was carried out in micellar medium 0.01 M with a pH of 4.8 provided by 0.2 M sodium acetate/acetic acid buffer. A central composite design was selected to obtain a calibration matrix of 25 standards plus a blank sample. The proposed methods were validated by application to a test set of synthetic samples. The results show that SFS with PLS-1 is a better method compared to EEMF with N-PLS or U-PLS because of the low RMSEP values of the former.

  10. Synchronicity from synchronized chaos

    SciTech Connect

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.

  11. Synchronicity from synchronized chaos

    DOE PAGES

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind andmore » matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.« less

  12. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach

    NASA Astrophysics Data System (ADS)

    Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver

    2016-01-01

    In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.

  13. The self-excited homopolar generator. I - Theory and electrical design

    NASA Astrophysics Data System (ADS)

    Mitcham, A. J.; Prothero, D. H.; Brooks, J. C.

    1989-01-01

    The authors describe two types of self-excited homopolar generators which can be used to power an electromagnetic railgun. These are the single-rotating and contrarotating versions of the machine. A method is described for modeling both types of machine, and typical results are presented showing the performance of the overall system (generator and railgun). Results are also given for the performance of the current collection system and the stray field profile of both types of machine. The self-excited air-cored homopolar generator is shown to be an ideal power source for an electromagnetic railgun. It is capable of high overall efficiency, typically 40 percent for the complete system (generator and railgun), and gives an acceptably low peak/mean acceleration in the barrel. The single-rotating generator is much the simpler configuration mechanically, but the contrarotating machine has the advantage of eliminating the net torque reaction on the stator.

  14. Development of a current collection loss management system for SDI homopolar power supplies

    SciTech Connect

    Brown, D.W.

    1989-01-01

    High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/cm{sup 2}, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To data, no system has achieved these conditions simultaneously. This is the annual report covering the second year period of performance on DOE contract DE-AC03-86SF16518. Major areas covered include design, construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80--90 kW/kg generator power density. 17 figs., 2 tabs.

  15. Development of a current collection loss management system for SDI homopolar power supplies

    NASA Astrophysics Data System (ADS)

    Brown, D. W.

    1991-04-01

    High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/sq cm, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To date, no system has achieved these conditions simultaneously. This is the final report covering the three year period of performance on DOE contract AC03-86SF-16518. Major areas covered include design, construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80 kW/kg generator power density.

  16. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    PubMed

    Stamova, Ivanka; Stamov, Gani

    2017-09-08

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity

    PubMed Central

    West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5–12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15–20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics. PMID:27826233

  18. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity.

    PubMed

    West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.

  19. Quarterly Progress Report - Homopolar Motors Contract N00014-05-1-0123, Period of Performance: December 1, 2004 - February 28, 2005

    DTIC Science & Technology

    2005-05-01

    to the Office of Naval Research (ONR) on the development of high-power superconducting homopolar motors for ship propulsion . One of the major issues...facing the development of such machines for ship propulsion is the lifetime of the brushes used to transfer power from the homopolar motor rotor to

  20. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  1. Analytical and Experimental Characterization of a Linear-Array Thermopile Scanning Radiometer for Geo-Synchronous Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Sorensen, Ira J.

    1998-01-01

    The Thermal Radiation Group, a laboratory in the department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working towards the development of a new technology for cavity-based radiometers. The radiometer consists of a 256-element linear-array thermopile detector mounted on the wall of a mirrored wedgeshaped cavity. The objective of this research is to provide analytical and experimental characterization of the proposed radiometer. A dynamic end-to-end opto-electrothermal model is developed to simulate the performance of the radiometer. Experimental results for prototype thermopile detectors are included. Also presented is the concept of the discrete Green's function to characterize the optical scattering of radiant energy in the cavity, along with a data-processing algorithm to correct for the scattering. Finally, a parametric study of the sensitivity of the discrete Green's function to uncertainties in the surface properties of the cavity is presented.

  2. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2015-03-15

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  3. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  4. Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor chaotic oscillators.

    PubMed

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  5. A new two-phase homopolar switched reluctance motor for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Tsai, Mi-Ching; Huang, Chien-Chin; Huang, Zheng-Yi

    2003-12-01

    This paper presents a novel 2-phase homopolar switched reluctance motor (SRM), whose design successfully avoids dead-zone problems that afflict low cost 1- and/or 2-phase SRMs. Unlike conventional radial-winding-radial-gap motors, the proposed SRM has an interior stator that is of the pancake type with axial winding. Such a design allows for a high slot-fill factor and is suitable for implementation as a flat pancake-shaped stator. An efficient, compact prototype was produced with TMS320F240 DSP driving control unit. Experimental results indicate that the present SRM design has the potential to be used for electric bicycles and scooters.

  6. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    NASA Astrophysics Data System (ADS)

    Severson, Eric Loren

    The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of

  7. Final manufacture and assembly of a modular 60 megajoule pulsed homopolar power supply

    NASA Astrophysics Data System (ADS)

    Noble, W. L.; Weldon, J. M.; Gully, J. H.

    1986-11-01

    Design and performance specification of a 60 MJ pulsed homopolar generator (HPG) power system being completed at the Center for Electromechanics at the University of Texas are summarized. The system consists of six 10 MJ HPGs. The stators, compensating turns, steel rotors, ceramic insulation, shafts, stator end plates, bearings and their housings, and brush ring assemblies of the HPGs are described in detail. Attention is also given to the materials and configurations of the field coils and output busbars. The power supply will serve for high current research in areas pertinent to electromagnetic propulsion, pulsed welding, and other pulsed power applications.

  8. Achieving second order advantage with multi-way partial least squares and residual bi-linearization with total synchronous fluorescence data of monohydroxy-polycyclic aromatic hydrocarbons in urine samples.

    PubMed

    Calimag-Williams, Korina; Knobel, Gaston; Goicoechea, H C; Campiglia, A D

    2014-02-06

    An attractive approach to handle matrix interference in samples of unknown composition is to generate second- or higher-order data formats and process them with appropriate chemometric algorithms. Several strategies exist to generate high-order data in fluorescence spectroscopy, including wavelength time matrices, excitation-emission matrices and time-resolved excitation-emission matrices. This article tackles a different aspect of generating high-order fluorescence data as it focuses on total synchronous fluorescence spectroscopy. This approach refers to recording synchronous fluorescence spectra at various wavelength offsets. Analogous to the concept of an excitation-emission data format, total synchronous data arrays fit into the category of second-order data. The main difference between them is the non-bilinear behavior of synchronous fluorescence data. Synchronous spectral profiles change with the wavelength offset used for sample excitation. The work presented here reports the first application of total synchronous fluorescence spectroscopy to the analysis of monohydroxy-polycyclic aromatic hydrocarbons in urine samples of unknown composition. Matrix interference is appropriately handled by processing the data either with unfolded-partial least squares and multi-way partial least squares, both followed by residual bi-linearization.

  9. Decomposition-based multi-objective differential evolution particle swarm optimization for the design of a tubular permanent magnet linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Wang, Guanghui; Chen, Jie; Cai, Tao; Xin, Bin

    2013-09-01

    This article proposes a decomposition-based multi-objective differential evolution particle swarm optimization (DMDEPSO) algorithm for the design of a tubular permanent magnet linear synchronous motor (TPMLSM) which takes into account multiple conflicting objectives. In the optimization process, the objectives are evaluated by an artificial neural network response surface (ANNRS), which is trained by the samples of the TPMSLM whose performances are calculated by finite element analysis (FEA). DMDEPSO which hybridizes differential evolution (DE) and particle swarm optimization (PSO) together, first decomposes the multi-objective optimization problem into a number of single-objective optimization subproblems, each of which is associated with a Pareto optimal solution, and then optimizes these subproblems simultaneously. PSO updates the position of each particle (solution) according to the best information about itself and its neighbourhood. If any particle stagnates continuously, DE relocates its position by using two different particles randomly selected from the whole swarm. Finally, based on the DMDEPSO, optimization is gradually carried out to maximize the thrust of TPMLSM and minimize the ripple, permanent magnet volume, and winding volume simultaneously. The result shows that the optimized TPMLSM meets or exceeds the performance requirements. In addition, comparisons with chosen algorithms illustrate the effectiveness of DMDEPSO to find the Pareto optimal solutions for the TPMLSM optimization problem.

  10. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo

    NASA Astrophysics Data System (ADS)

    Wei, Zhouchao; Moroz, Irene; Sprott, J. C.; Akgul, Akif; Zhang, Wei

    2017-03-01

    We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.

  11. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  12. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo.

    PubMed

    Wei, Zhouchao; Moroz, Irene; Sprott, J C; Akgul, Akif; Zhang, Wei

    2017-03-01

    We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.

  13. Development of a current collection loss management system for SDI homopolar power supplies

    SciTech Connect

    Hannan, W.F. III.

    1987-01-01

    High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operated continuously at 2 kA/cm{sup 2}, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To data, no system has achieved these conditions simultaneously. This is the annual report covering the first year period of performance on DOE contract DE-AC03-86SF16518. Major areas covered include design and construction of a cryogenically-cooled brush test rig, design of a high speed brush test rig, loss analysis of the current collection system, and an application study which defines the air core homopolar construction necessary to achieve the goal of 80--90 kW/kg generator power density. 15 figs.

  14. Clearance sensing hydrostatic bearing restrictor for the homopolar generator systems tester

    SciTech Connect

    Vaughn, M.R.

    1985-01-01

    This work documents the development of an advanced hydrostatic bearing system for the subcritical operation of the Homopolar Generator Systems Tester. Since this Systems Tester is unique in that it was built with stationary shaft bearings, several new hydrostatic bearing ideas were developed. First, a new clearance sensing variable restrictor was developed to accommodate the almost five fold increase in radial bearing clearance intrinsic to the machine geometry encountered during each machine cycle. A new dynamic hydrostatic thrust-bearing model was developed that permits tilt about any axis perpendicular to the axis of rotation as well as axial motion. These bearings are well instrumented providing data to verify the models both at rest and during operation. In addition to the bearing advances, overall machine design decisions, as well as the factors which influenced them, are examined. Magnetic effects are discussed with respect to both rotor dynamic effects and thrust bearing loading. Bearing sump and sealing philosophies are also discussed. Decisions concerning rotor geometry are similarly reviewed. Finally, the results of the experiment are evaluated in terms of the future impact on not only homopolar generators, but on rotating machinery in general.

  15. A new high current laboratory and pulsed homopolar generator power supply at the University of Texas

    NASA Astrophysics Data System (ADS)

    Floyd, J. E.; Aanstoos, T. A.

    1984-03-01

    The University of Texas at Austin is constructing a facility for research in pulse power technology for the Center for Electromechanics at the Balcones Research Center. The facility, designed to support high-current experiments, will be powered by six homopolar generators, each rated at 10 MJ and arranged to allow matching the requirements of resistive and inductive loads at various voltage and current combinations. Topics covered include the high bay, the power supply configuration and parameters, the speed and field control, and the magnetic circuit. Also considered are the removable air-cooled brushes, the water-cooled field coils, the hydraulic motor sizing and direct coupling, the low-impedance removable field coils, and the hydrostatic bearing design.

  16. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  17. Detecting Hidden Chaotic Regions and Complex Dynamics in the Self-Exciting Homopolar Disc Dynamo

    NASA Astrophysics Data System (ADS)

    Wei, Zhouchao; Moroz, Irene; Sprott, Julien Clinton; Wang, Zhen; Zhang, Wei

    In 1979, Moffatt pointed out that the conventional treatment of the simplest self-exciting homopolar disc dynamo has inconsistencies because of the neglect of induced azimuthal eddy currents, which can be resolved by introducing a segmented disc dynamo. Here we return to the simple dynamo system proposed by Moffatt, and demonstrate previously unknown hidden chaotic attractors. Then we study multistability and coexistence of three types of attractors in the autonomous dynamo system in three dimensions: equilibrium points, limit cycles and hidden chaotic attractors. In addition, the existence of two homoclinic orbits is proved rigorously by the generalized Melnikov method. Finally, by using Poincaré compactification of polynomial vector fields in three dimensions, the dynamics near infinity of singularities is obtained.

  18. Thermal design and development of actively cooled brushes for compact homopolar generators

    NASA Astrophysics Data System (ADS)

    Makel, D. B.

    1986-11-01

    The thermal and hydraulic design of actively cooled current transfer brushes for compact homopolar generators (HPG) is described. The development of high-energy-density HPG's at the Center for Electromechanics at the University of Texas at Austin requires brushgear capable of handling high current densities and large thermal loads. Platelet technology has been applied in the design of actively cooled brushes with coolant injection directly from the brush contact face into the brush-rotor interface. Coolant channels a few thousandths of an inch in diameter have been designed in brushes constructed of photoetched platelets of copper (0.020 to 0.005 in. thick) and then bonded to form the cooled brush. Platelet construction of brushes also permits the incorporation of internal instrumentation for temperature measurement. The brushes have been designed to provide data on the effects of rotor speed, current level, coolant flow rate, and coolant injection pattern.

  19. EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component

    NASA Astrophysics Data System (ADS)

    Amirat, Yassine; Choqueuse, Vincent; Benbouzid, Mohamed

    2013-12-01

    Failure detection has always been a demanding task in the electrical machines community; it has become more challenging in wind energy conversion systems because sustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the generator health degeneration, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure detection techniques based on the homopolar component of the generator stator current and attempts to highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind turbine generators for stationary and non-stationary cases.

  20. Design of a homopolar generator for 400 m/s slip ring velocity brush testing

    NASA Astrophysics Data System (ADS)

    Price, J. H.; Kitzmiller, J. R.

    1986-11-01

    Design and performance features of a high speed brush tester (HSBT) homopolar generator (HPG) developed for testing active cooling concepts for brushgears at slip ring velocities up to 400 m/sec are described. The HPG is a 4.6 MJ, 1.0 MA, 36 V device which accommodates tests in environments different from the standard atmosphere. Component details of the rotor, machine structure, output conductors and insulation system, brush mechanisms, bearings, seals and dynamics, field coils, and the drive system are summarized. Features which allow radial access for service and testing of brushgear, quick disconnects in the high contact area output terminals, clearance monitoring in the thrust bearing, and retraction of the shaft seal at high shaft speeds are discussed.

  1. A series wound air core homopolar generator - SWAC for tactical armor applications

    NASA Astrophysics Data System (ADS)

    Ohst, David; Pavlik, Dennis

    1989-01-01

    The results of a study on generator design for a pulsed electromagnetic (EM) railgun launcher for a 10-shot low-repetition-rate mobile tactical system are presented. A novel design for a series-wound air-core (SWAC) homopolar generator is discussed. A number approaches to the problems associated with multiple-shot operation and high power density are presented. Specifically, designs for a spiral coil group, segmented current collection, active cooling and optimized rotor kinetic energy are addressed. The most significant features of the design are conventional water cooling, low rotational stored energy, and demonstrated materials and fabrication techniques. The resulting power supply consists of two counterrotating SWAC machines with a net energy density of 10 kJ/kg, 60-MJ total stored energy per shot, 2.50 mA peak current at 320 V, and significantly reduced eddy current losses.

  2. On self-exciting coupled Faraday disk homopolar dynamos driving series motors

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.; Hide, Raymond; Soward, Andrew M.

    1998-06-01

    We present the results of a preliminary analytical and numerical study of one of the simpler members of a hierarchy of N (where N ≥ 1) coupled self-exciting Faraday disk homopolar dynamos, incorporating motors as additional electrical elements driven by the dynamo-generated current, as proposed by Hide (1997). The hierarchy is a generalisation of a single disk dynamo ( N = 1) with just one electric motor in the system, and crucially, incorporating effects due to mechanical friction in both the disk and the motor, as investigated by Hide et al. (1996). This is describable by a set of three coupled autonomous nonlinear ordinary differential equations, which, due to the presence of the motor, has solutions corresponding to co-existing periodic states of increasing complexity, as well as to chaotic dynamics. We consider the case of two such homopolar dynamos ( N = 2) with generally dissimilar characteristics but coupled together magnetically, with the aim of determining the extent to which this coupled system differs in its behaviour from the single disk dynamo with a series motor (Hide et al. 1996). In the case when the units are identical, the behaviour of the double dynamo system (after initial transients have decayed away) is identical to that of the single dynamo system, with solutions (including “synchronised chaos”) locked in both amplitude and phase. When there is no motor in the system and the coefficient of mechanical friction in the disks is small, these transients resemble the well-known ‘non-synchronous’, but structurally unstable Rikitake solution.

  3. Neocortical synchronization

    PubMed Central

    Timofeev, Igor; Bazhenov, Maksim; Seigneur, Joseé; Sejnowski, Terrence

    2011-01-01

    Summary Neuronal synchronization occurs when two or more neuronal events are coordinated across time. Local synchronization produces field potentials. Long-range synchronization between distant brain sites contributes to the electroencephalogram. Neuronal synchronization depends on synaptic (chemical/electrical), ephaptic, and extracellular interactions. For an expanded treatment of this topic see Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at www.ncbi.nlm.nih.gov/books). PMID:24850952

  4. The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos

    NASA Astrophysics Data System (ADS)

    Hide, Raymond

    1997-02-01

    This paper discusses the derivation of the autonomous sets of dimensionless nonlinear ordinary differential equations (ODE's) that govern the behaviour of a hierarchy of related electro-mechanical self-exciting Faraday-disk homopolar dynamo systems driven by steady mechanical couples. Each system comprises N interacting units which could be arranged in a ring or lattice. Within each unit and connected in parallel or in series with the coil are electric motors driven into motion by the dynamo, all having linear characteristics, so that nonlinearity arises entirely through the coupling between components. By introducing simple extra terms into the equations it is possible to represent biasing effects arising from impressed electromotive forces due to thermoelectric or chemical processes and from the presence of ambient magnetic fields. Dissipation in the system is due not only to ohmic heating but also to mechanical friction in the disk and the motors, with the latter agency, no matter how weak, playing an unexpectedly crucial rôle in the production of régimes of chaotic behaviour. This has already been demonstrated in recent work on a case of a single unit incorporating just one series motor, which is governed by a novel autonomous set of nonlinear ODE's with three time-dependent variables and four control parameters. It will be of mathematical as well as geophysical and astrophysical interest to investigate systematically phase and amplitude locking and other types of behaviour in the more complicated cases that arise when N > 1, which can typically involve up to 6 N dependent variables and 19 N-5 control parameters. Even the simplest members of the hierarchy, with N as low as 1, 2 or 3, could prove useful as physically-realistic low-dimensional models in theoretical studies of fluctuating stellar and planetary magnetic fields. Geomagnetic polarity reversals could be affected by the presence of the Earth's solid metallic inner core, driven like an electric motor

  5. Surfaces of Homopolar Amorphous Semiconductors: Definition, Characterization, and Density of Surface States

    NASA Astrophysics Data System (ADS)

    Richmond, Daniel Lee

    To rigorously investigate the contribution of surfaces to the density of electronic states of a-Si (Ge), and the effect of the topology on the density of surface states, a surface for amorphous homopolar tetrahedral solids is defined. Continuous random network models are statistically analyzed for homogeneity. Various possible surfaces generated from these models are examined with the result that a spherical surface is found to be most representative of a surface from a homogeneous infinite amorphous solid. The homopolar amorphous surface is characterized by a wealth of steric and dangling bond configurations. Surface atoms can have one, two, or three dangling bonds, and can have from zero to three nearest neighbor surface atoms. The density of dangling bonds is 0.106 bonds/(ANGSTROM)('2). Reconstruction enables a 96% reduction in the density of dangling bonds. The ring structure of the surface atoms is significantly different from the ring structure of the bulk atoms. The topological effects on the density of surface states is exhaustively treated using a s-band Hamiltonian. Rings of different sizes uniquely contribute to the density of states. Other topological properties, such as multiple dangling bonds per surface atom and near neighbor surface atoms are treated. The effects on the density of states by the surface in the valence band and energy gap of a tetrahedral solid is investigated using a two parameter Hamiltonian. The local and configuration averaged density of states are computed for the dangling bond and four back bond hybrids. The ring structure affects the density of surface states in the valence band, but not the more localized energy gap states. The antibonding spectral feature in the energy gap deriving from surface atoms with two or three dangling bonds is independent of all topological effects, while the bonding spectral feature from these same surface atoms is not. The spectral feature due to surface atoms with only one dangling bond is also

  6. Operational Synchronization

    NASA Astrophysics Data System (ADS)

    Brandt, Kevin

    Complex systems incorporate many elements, links, and actions. OpSync describes adaptive control techniques within complex systems to stimulate coherent synchronization. This approach fuses concepts from complexity theory, network theory, and non-cooperative game theory.

  7. Synchronously deployable truss structure

    NASA Technical Reports Server (NTRS)

    Bush, H. G. (Inventor); Mikulas, M., Jr. (Inventor); Wallsom, E. (Inventor)

    1986-01-01

    A collapsible-expandable truss structure, including first and second spaced surface truss layers having an attached core layer is described. The surface truss layers are composed of a plurality of linear struts arranged in multiple triangular configurations. Each linear strut is hinged at the center and hinge connected at each end to a nodular joint. A passive spring serves as the expansion force to move the folded struts from a stowed collapsed position to a deployed operative final truss configuration. A damper controls the rate of spring expansion for the synchronized deployment of the truss as the folded configuration is released for deployment by the restrain belts. The truss is synchronously extended under the control of motor driven spools.

  8. Final design of the control and auxiliary systems for the Balcones 60 MJ homopolar pulse power supply

    NASA Astrophysics Data System (ADS)

    Hildenbrand, D. J.; Pichot, M. A.; Price, J. H.

    1986-11-01

    Design criteria and features of a 60 MJ pulse power supply to be operated at the Center for Electromechanics at the University of Texas are described. The system is driven by six 10 MJ homopolar generators (HPG) which can be operated in series, in parallel, or in combination configurations. Component modularity, operational dependability, repetition rate, maintainability, drive train simplicity and failsafe operation criteria were met in the final design. The generators have removable brush assemblies and water cooled field coil assemblies and hydrostatic bearings. A block diagram is provided of the control I-O architecture and back-up systems and operational procedures are outlined.

  9. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    NASA Astrophysics Data System (ADS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-08-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  10. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  11. Synchronous Photodiode-Signal Sampler

    NASA Technical Reports Server (NTRS)

    Primus, Howard K.

    1988-01-01

    Synchronous sampling circuit increases signal-to-noise ratio of measurements of chopped signal of known phase and frequency in presence of low-frequency or dc background noise. Used with linear array of photoelectric sensors for locating edge of metal plate. Multiplexing circuit cycles through 16 light-emitting-diode/photodiode pairs, under computer control. Synchronized with multiplexer so edge detector makes one background-subtracted signal measurement per emitter/detector pair in turn.

  12. Synchronizing Fireflies

    ERIC Educational Resources Information Center

    Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi

    2006-01-01

    "Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…

  13. Synchronizing Fireflies

    ERIC Educational Resources Information Center

    Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi

    2006-01-01

    "Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…

  14. Programmable synchronization unit

    SciTech Connect

    Kang, H.

    1984-10-01

    A Programmable Synchronization Unit (PSU, 135-726) has been designed as an element of the new timing system for the Stanford Linear Collider (SLC) project to provide synchronization signals needed for various apparatus in the SLC Damping Ring, or anywhere it is necessary to monitor longer than the fiducial period (approx. = 2.8 ..mu..s). A 119 MHz pulse train derived from the 476 MHz main drive line and superimposed with 360 Hz fiducial signal is the frequency source. Following a programmable delay D of up to 4.4 ..mu..s, the PSU can deliver N pulses of width W (in increments of 8.4 ns) with a pulse period of P (in increments of 58.8 ns, the damping ring half period). The device may be programmed at any time during the interfiducial period.

  15. Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo

    NASA Astrophysics Data System (ADS)

    Hide, R.

    In the interpretation of geomagnetic polarity reversals with their highly variable frequency over geological time it is necessary, as with other irregularly fluctuating geophysical phenomena, to consider the relative importance of forced contributions associated with changing boundary conditions and of free contributions characteristic of the behaviour of nonlinear systems operating under fixed boundary conditions. New evidence -albeit indirect- in favour of the likely predominance of forced contributions is provided by the discovery reported here of the possibility of complete quenching by nonlineax effects of current fluctuations in a self-exciting homopolar dynamo with its single Faraday disk driven into rotation with angular speed y(τ) (where τ denotes time) by a steady applied couple. The armature of an electric motor connected in series with the coil of the dynamo is driven into rotation' with angular speed z(τ) by a torque xf (x) due to Lorentz forces associated with the electric current x(τ) in the system (just as certain parts of the spectrum of eddies within the liquid outer core are generated largely by Lorentz forces associated with currents generated by the self-exciting magnetohydrodynamic (MHD) geodynamo). The discovery is based on bifurcation analysis supported by computational studies of the following (mathematically novel) autonomous set of nonlinear ordinary differential equations: dx/dt = x(y - 1) - βzf(x), dy/dt = α(1 - x²) - κy, dz/dt = xf (x) -λz, where f (x) = 1 - ɛ + ɛσx, in cases when the dimensionless parameters (α, β, κ, λ, σ) are all positive and 0 ≤ ɛ ≤ 1. Within those regions of (α, β, κ, λ, σ) parameter space where the applied couple, as measured by α, is strong enough for persistent dynamo action (i.e. x ≠ 0) to occur at all, there are in general extensive regions where x(τ) exhibits large amplitude regular or irregular (chaotic) fluctuations. But these fluctuating régimes shrink in size as increases

  16. Public-channel cryptography using chaos synchronization.

    PubMed

    Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2005-07-01

    We present a key-exchange protocol that comprises two parties with chaotic dynamics that are mutually coupled and undergo a synchronization process, at the end of which they can use their identical dynamical state as an encryption key. The transferred coupling- signals are based nonlinearly on time-delayed states of the parties, and therefore they conceal the parties' current state and can be transferred over a public channel. Synchronization time is linear in the number of synchronized digits alpha, while the probability for an attacker to synchronize with the parties drops exponentially with alpha. To achieve security with finite alpha we use a network.

  17. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  18. Synchronizing noisy nonidentical oscillators by transient uncoupling

    SciTech Connect

    Tandon, Aditya Mannattil, Manu; Schröder, Malte; Timme, Marc; Chakraborty, Sagar

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  19. Continuous and discontinuous transitions to synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Chaoqing; Garnier, Nicolas B.

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  20. Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wen; Zheng, Zhi-Gang

    2007-02-01

    Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored. It is found that depending on parameter mismatches, the synchronization of phases exhibits different manners. The synchronization regime can be divided into three regimes. For small mismatches, the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases, the amplitudes and phases of oscillators are correlated, and the amplitudes will dominate the synchronous dynamics for very large mismatches. The lag time among phases exhibits a power law when phase synchronization is achieved.

  1. Magnet pole shape design for reduction of thrust ripple of slotless permanent magnet linear synchronous motor with arc-shaped magnets considering end-effect based on analytical method

    NASA Astrophysics Data System (ADS)

    Shin, Kyung-Hun; Park, Hyung-Il; Kim, Kwan-Ho; Jang, Seok-Myeong; Choi, Jang-Young

    2017-05-01

    The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM) because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region) is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.

  2. Synchronization in uncertain complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Maoyin; Zhou, Donghua

    2006-03-01

    We consider the problem of synchronization in uncertain generic complex networks. For generic complex networks with unknown dynamics of nodes and unknown coupling functions including uniform and nonuniform inner couplings, some simple linear feedback controllers with updated strengths are designed using the well-known LaSalle invariance principle. The state of an uncertain generic complex network can synchronize an arbitrary assigned state of an isolated node of the network. The famous Lorenz system is stimulated as the nodes of the complex networks with different topologies. We found that the star coupled and scale-free networks with nonuniform inner couplings can be in the state of synchronization if only a fraction of nodes are controlled.

  3. Synchronization in uncertain complex networks.

    PubMed

    Chen, Maoyin; Zhou, Donghua

    2006-03-01

    We consider the problem of synchronization in uncertain generic complex networks. For generic complex networks with unknown dynamics of nodes and unknown coupling functions including uniform and nonuniform inner couplings, some simple linear feedback controllers with updated strengths are designed using the well-known LaSalle invariance principle. The state of an uncertain generic complex network can synchronize an arbitrary assigned state of an isolated node of the network. The famous Lorenz system is stimulated as the nodes of the complex networks with different topologies. We found that the star coupled and scale-free networks with nonuniform inner couplings can be in the state of synchronization if only a fraction of nodes are controlled.

  4. Noncoherent DTTLs for Symbol Synchronization

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Tkacenko, Andre

    2007-01-01

    Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol

  5. Overview of Cell Synchronization.

    PubMed

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  6. Digitized synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher E. (Inventor)

    1990-01-01

    A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.

  7. Synchronization of mobile chaotic oscillator networks

    SciTech Connect

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  8. Synchronization of mobile chaotic oscillator networks

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  9. Synchronization of Regular Automata

    NASA Astrophysics Data System (ADS)

    Caucal, Didier

    Functional graph grammars are finite devices which generate the class of regular automata. We recall the notion of synchronization by grammars, and for any given grammar we consider the class of languages recognized by automata generated by all its synchronized grammars. The synchronization is an automaton-related notion: all grammars generating the same automaton synchronize the same languages. When the synchronizing automaton is unambiguous, the class of its synchronized languages forms an effective boolean algebra lying between the classes of regular languages and unambiguous context-free languages. We additionally provide sufficient conditions for such classes to be closed under concatenation and its iteration.

  10. Influence of the Homopolar Dihydrogen Bonding C-H⋅⋅⋅H-C on Coordination Geometry: Experimental and Theoretical Studies.

    PubMed

    Safin, Damir A; Babashkina, Maria G; Robeyns, Koen; Mitoraj, Mariusz P; Kubisiak, Piotr; Garcia, Yann

    2015-11-09

    The reaction of the N-thiophosphorylated thiourea (HOCH2 )(Me)2 CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L-1,5-S,S')2 ]⋅0.5 (n-C6 H14 ) or pale green blocks of the trans square-planar complex trans-[Ni(L-1,5-S,S')2 ]. The former complex is stabilized by homopolar dihydrogen C-H⋅⋅⋅H-C interactions formed by n-hexane solvent molecules with the [Ni(L-1,5-S,S')2 ] unit. Furthermore, the dispersion-dominated C-H⋅⋅⋅ H-C interactions are, together with other noncovalent interactions (C-H⋅⋅⋅N, C-H⋅⋅⋅Ni, C-H⋅⋅⋅S), responsible for pseudotetrahedral coordination around the Ni(II) center in [Ni(L-1,5-S,S')2 ]⋅0.5 (n-C6 H14 ).

  11. Physiological Synchronization in a Vigilance Dual Task.

    PubMed

    Guastello, Stephen J

    2016-01-01

    The synchronization of autonomic arousal levels and other physio-logical responses between people is a potentially important component of work team performance, client-therapist relationships, and other types of human interaction. This study addressed several problems: What statistical models are viable for identifying synchronization for loosely coupled human systems? How is the level of synchronization related to psychosocial variables such as empathy, subjective ratings of workload, and actual performance? Participants were 70 undergraduates who worked in pairs on a vigilance dual task in which they watched a virtual reality security camera, rang a bell when they saw the target intruder, and completed a jig-saw puzzle. Event rates either increased or decreased during the 90 min work period. The average R2 values for each person were .66, .66, .62, and .53 for the linear autoregressive model, linear autoregressive model with a synchronization component, the nonlinear autoregressive model, and the nonlinear autoregressive model with a synchronization component, respectively. All models were more accurate at a lag of 20 sec compared to 50 sec or customized lag lengths. Although the linear models were more accurate overall, the nonlinear synchronization parameters were more often related to psychological variables and performance. In particular, greater synchronization was observed with the nonlinear model when the target event rate increased, compared to when it decreased, which was expected from the general theory of synchronization. Nonlinear models were also more effective for uncovering inhibitory or dampening relationships between the co-workers as well as mutually excitatory relationships. Future research should explore the comparative model results for tasks that induce higher levels of synchronization and involve different types of internal group coordination.

  12. Synchronization of stochastic oscillators in biochemical systems.

    PubMed

    Challenger, Joseph D; McKane, Alan J

    2013-07-01

    We investigate the synchronization of stochastic oscillations in biochemical models by calculating the complex coherence function within the linear noise approximation. The method is illustrated on a simple example and then applied to study the synchronization of chemical concentrations in social amoeba. The degree to which variation of rate constants in different cells and the volume of the cells affects synchronization of the oscillations is explored and the phase lag calculated. In all cases the analytical results are shown to be in good agreement with those obtained through numerical simulations.

  13. Are feedback loops destructive to synchronization?

    NASA Astrophysics Data System (ADS)

    Sheshbolouki, A.; Zarei, M.; Sarbazi-Azad, H.

    2015-08-01

    We study the effects of directionality on synchronization of dynamical networks. Performing the linear stability analysis and the numerical simulation of the Kuramoto model in directed networks, we show that balancing in- and out-degrees of all nodes enhances the synchronization of sparse networks, especially in networks with high clustering coefficient and homogeneous degree distribution. Furthermore, by omitting all the feedback loops, we show that while hierarchical directed acyclic graphs are structurally highly synchronizable, their global synchronization is too sensitive to the choice of natural frequencies and is strongly affected by noise.

  14. Automated ILA design for synchronous sequential circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.

    1991-01-01

    An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.

  15. Synchronization in multistatic radar

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1993-08-01

    This report gives a summary of multistatic radar principles and synchronization methods. Different methods are described using direct and indirect synchronization. The report also presents a general review of synchronization methods for the future. Two LORAN C receivers have been analyzed for use as local reference oscillators in multistatic radar.

  16. Description, molecular characterization, and patterns of distribution of a widespread New World avian malaria parasite (Haemosporida: Plasmodiidae), Plasmodium (Novyella) homopolare sp. nov.

    PubMed

    Walther, Erika L; Valkiūnas, Gediminas; González, Angie D; Matta, Nubia E; Ricklefs, Robert E; Cornel, Anthony; Sehgal, Ravinder N M

    2014-09-01

    Plasmodium (Novyella) homopolare, a newly described Plasmodium species, was found in a wide range of Passeriformes species in California, USA, and Colombia. This parasite infected more than 20% of the sampled bird community (N = 399) in California and was found in 3.6% of birds sampled (N = 493) in Colombia. Thus far, it has been confirmed in North and South America where it is present in numerous species of migratory and resident birds from six families. Based on 100% matches, or near-100% matches (i.e., ≤2-nucleotide difference), to DNA sequences previously deposited in GenBank, this parasite is likely also distributed in the Eastern USA, Central America, and the Caribbean. Here, we describe the blood stages of P. homopolare and its mtDNA cytochrome b sequence. P. homopolare belongs to the subgenus Novyella and can be readily distinguished from the majority of other Novyella species, primarily, by the strictly polar or subpolar position of meronts and advanced trophozoites in infected erythrocytes. We explore possible reasons why this widespread parasite has not been described in earlier studies. Natural malarial parasitemias are usually light and co-infections predominate, making the parasites difficult to detect and identify to species when relying exclusively on microscopic examination of blood films. The combined application of sequence data and digital microscopy techniques, such as those used in this study, provides identifying markers that will facilitate the diagnosis of this parasite in natural avian populations. We also address the evolutionary relationship of this parasite to other species of Plasmodium using phylogenetic reconstruction.

  17. Quarterly Progress Report - Homopolar Motors Contract N00014-05-1-0123 for Period of Performance, March 1, 2005 - May 31, 2005

    DTIC Science & Technology

    2005-06-01

    ship propulsion . One of the major issues facing the development of such machines for ship propulsion is the lifetime of the brushes used to transfer power from the homopolar motor rotor to the stator. Significant loss and wear polarity differences have been observed during the testing of such brushes, and ONR is developing a fundamental science program to address these issues. During this quarter, lAT personnel participated in an integrated product team (IPT) meeting, giving impromptu presentations on historical aspects of fiber brush development and

  18. Synchronization of chaotic systems

    SciTech Connect

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  19. Dynamic controller design for exponential synchronization of Chen chaotic system

    NASA Astrophysics Data System (ADS)

    Park, Ju H.; Lee, S. M.; Kwon, O. M.

    2007-07-01

    The Letter considers synchronization of Chen chaotic system. The problems of determining the exponential stability and estimating the exponential convergence rate for the synchronization are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. For this end, a dynamic controller is proposed for the first time and a criterion for existence of the controller is given in terms of LMIs. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.

  20. Sun-synchronous satellite orbit determination

    NASA Astrophysics Data System (ADS)

    Ma, Der-Ming; Zhai, Shen-You

    2004-02-01

    The linearized dynamic equations used for on-board orbit determination of Sun-synchronous satellite are derived. Sun-synchronous orbits are orbits with the secular rate of the right ascension of the ascending node equal to the right ascension rate of the mean sun. Therefore the orbit is no more a closed circle but a tight helix about the Earth. In the paper, instead of treating the orbit as a closed circle, the actual helix orbit is taken as nominal trajectory. The details of the linearized equations of motion for the satellite in the Sun-synchronous orbit are derived. The linearized equations are obtained by perturbing the Keplerian motion with the J2 correction and the effect of sun's attraction being neglected. Combined with the GPS navigation equations, the Kalman filter formulation is given. The particular application considered is the circular Sun-synchronous orbit with the altitude of 800 km and inclination of 98.6°. The numerical example simulated by MATLAB® shows that only the pseudo-range data used in the algorithm still gives acceptable results. Based on the simulation results, we can use the on-board GPS receivers' signal only as an alternative to determine the orbit of Sun-Synchronous satellite and therefore circumvents the need for extensive ground support.

  1. Synchronization of genetic oscillators

    NASA Astrophysics Data System (ADS)

    Zhou, Tianshou; Zhang, Jiajun; Yuan, Zhanjiang; Chen, Luonan

    2008-09-01

    Synchronization of genetic or cellular oscillators is a central topic in understanding the rhythmicity of living organisms at both molecular and cellular levels. Here, we show how a collective rhythm across a population of genetic oscillators through synchronization-induced intercellular communication is achieved, and how an ensemble of independent genetic oscillators is synchronized by a common noisy signaling molecule. Our main purpose is to elucidate various synchronization mechanisms from the viewpoint of dynamics, by investigating the effects of various biologically plausible couplings, several kinds of noise, and external stimuli. To have a comprehensive understanding on the synchronization of genetic oscillators, we consider three classes of genetic oscillators: smooth oscillators (exhibiting sine-like oscillations), relaxation oscillators (displaying jump dynamics), and stochastic oscillators (noise-induced oscillation). For every class, we further study two cases: with intercellular communication (including phase-attractive and repulsive coupling) and without communication between cells. We find that an ensemble of smooth oscillators has different synchronization phenomena from those in the case of relaxation oscillators, where noise plays a different but key role in synchronization. To show differences in synchronization between them, we make comparisons in many aspects. We also show that a population of genetic stochastic oscillators have their own synchronization mechanisms. In addition, we present interesting phenomena, e.g., for relaxation-type stochastic oscillators coupled to a quorum-sensing mechanism, different noise intensities can induce different periodic motions (i.e., inhomogeneous limit cycles).

  2. Transient Uncoupling Induces Synchronization

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-01

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.

  3. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  4. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay

    SciTech Connect

    Tang, Longkun E-mail: xqwu@whu.edu.cn; Wu, Xiaoqun E-mail: xqwu@whu.edu.cn; Lu, Jun-an; Lü, Jinhu

    2015-03-15

    Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) The coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay.

  5. Electromagnetic Launchers and Guns. Phase 1

    DTIC Science & Technology

    1980-06-01

    a high-speed maglev transportation system based on a linear synchronous motor (1,2,3). In 1975 Gerard K. O’Neill of Princeton University...fact that the very important railgun- homopolar launcher technology is already being pursued at Westinghouse and university of Texas, Austin. The...shown in Fig. 14 on the following page. There are three comparable options for energy storage: an engine-driven homopolar generator followed by an

  6. Synchronization in networks with random interactions: Theory and applications

    NASA Astrophysics Data System (ADS)

    Feng, Jianfeng; Jirsa, Viktor K.; Ding, Mingzhou

    2006-03-01

    Synchronization is an emergent property in networks of interacting dynamical elements. Here we review some recent results on synchronization in randomly coupled networks. Asymptotical behavior of random matrices is summarized and its impact on the synchronization of network dynamics is presented. Robert May's results on the stability of equilibrium points in linear dynamics are first extended to systems with time delayed coupling and then nonlinear systems where the synchronized dynamics can be periodic or chaotic. Finally, applications of our results to neuroscience, in particular, networks of Hodgkin-Huxley neurons, are included.

  7. SONET synchronization: What's happening

    NASA Technical Reports Server (NTRS)

    Cubbage, Robert W.

    1993-01-01

    Almost everyone that has heard of SONET knows that the acronym stands for Synchronous Optical NETwork. There has been a host of magazine articles on SONET rings, SONET features, even SONET compatibility with digital radio. What has not been highly publicized is the critical relationship between SONET, network synchronization, and payload jitter. This topic is addressed.

  8. EEG synchronization and migraine

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.

    2004-03-01

    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.

  9. Quantum-phase synchronization

    NASA Astrophysics Data System (ADS)

    Fiderer, Lukas J.; Kuś, Marek; Braun, Daniel

    2016-09-01

    We study mechanisms that allow one to synchronize the quantum phase of two qubits relative to a fixed basis. Starting from one qubit in a fixed reference state and the other in an unknown state, we find that, contrary to the impossibility of perfect quantum cloning, the quantum phase can be synchronized perfectly through a joined unitary operation. When both qubits are initially in a pure unknown state, perfect quantum-phase synchronization through unitary operations becomes impossible. In this situation we determine the maximum average quantum-phase synchronization fidelity and the distribution of relative phases and fidelities, and we identify optimal quantum circuits that achieve this maximum fidelity. A subset of these optimal quantum circuits enable perfect quantum-phase synchronization for a class of unknown initial states restricted to the equatorial plane of the Bloch sphere.

  10. Synchronization On Hanoi Networks

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Boettcher, Stefan

    2015-03-01

    Synchronization of coupled oscillators has been intensively studied on a variety of structures. It is believed that the dynamics is deeply associated with its structure. To explore this relation, we study the synchronization of coupled oscillators on Hanoi networks. We analyze the evolution of coupled units over time, and characterized the convergence to the global synchronized state. For this state, the results show a close connection to the spectrum of connectivity matrix. Inspired by this connection, we try to show a dynamical pattern that describes the entire synchronization process from the onset to the final state. This may unveil the unique hierarchical structure of these self-similar Hanoi networks. Our goal is to map the dynamics to the spectrum of the connectivity matrix that encodes significant information about the structure of the underlying system. This exploration may have implications on designing networks that synchronizes coupled units efficiently. Supported through NSF Grant DMR-1207431.

  11. Synchronizing Large Systolic Arrays

    NASA Astrophysics Data System (ADS)

    Fisher, Allan L.; Kung, H. T.

    1982-12-01

    Parallel computing structures consist of many processors operating simultaneously. If a concurrent structure is regular, as in the case of a systolic array. it may be convenient to think of all processors as operating in lock step. This synchronized view, for example, often makes the definition of the structure and its correctness relatively easy to follow. However, large, totally synchronized systems controlled by central clocks are difficult to implement because of the inevitable problem of clock skews and delays. An alternative means of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased design complexity and hardware cost. Realizing that different circumstances call for different synchronization methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization schemes for systolic arrays are proposed. In general, this paper represents a first step towards a systematic study of synchronization problems for large systolic arrays. One set of models is based on assumptions that allow the use of a pipelined clocking scheme, where more than one clock event is propagated at a time. In this case, it is shown that even assuming that physical variations along clock lines can produce skews between wires of the same length, any one-dimensional systolic array can be correctly synchronized by a global pipelined clock while enjoying desirable properties such as modularity, expandability and robustness in the synchronization scheme. This result cannot be extended to two-dimensional arrays, however--the paper shows that under this assumption, it is impossible to run a clock such that the maximum clock skew between two communicating cells will be bounded by a constant as systems grow. For such cases or where pipelined clocking is unworkable, a synchronization scheme

  12. Fixed-time synchronization of multi-links complex network

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zheng, Mingwen

    2017-01-01

    In the paper, the fixed-time and finite-time synchronizations of multi-links complex network are investigated. Compared with finite-time synchronization, the settling time of fixed-time synchronization is independent of initial conditions. For uncertain multi-links complex networks, this paper further analyzes synchronization mechanism and unknown parameters based on the drive-response concept and finite-time stability theory. Novel synchronization control criteria and the result of parameters identification are, respectively, obtained in a finite time by utilizing Lyapunov function and linear matrix inequality (LMI). Besides, we give other two versions of finite-time synchronization and parameters identification for uncertain multi-links complex network with impulsive control input. Finally, numerical examples are given to illustrate the effectiveness of our theoretical results.

  13. On Λ - ϕ generalized synchronization of chaotic dynamical systems in continuous-time

    NASA Astrophysics Data System (ADS)

    Ouannas, A.; Al-sawalha, M. M.

    2016-02-01

    In this paper, a new type of chaos synchronization in continuous-time is proposed by combining inverse matrix projective synchronization (IMPS) and generalized synchronization (GS). This new chaos synchronization type allows us to study synchronization between different dimensional continuous-time chaotic systems in different dimensions. Based on stability property of integer-order linear continuous-time dynamical systems and Lyapunov stability theory, effective control schemes are introduced and new synchronization criterions are derived. Numerical simulations are used to validate the theoretical results and to verify the effectiveness of the proposed schemes.

  14. GENERAL: Bistability in Coupled Oscillators Exhibiting Synchronized Dynamics

    NASA Astrophysics Data System (ADS)

    Olusola, O. I.; Vincent, U. E.; Njah, A. N.; Olowofela, J. A.

    2010-05-01

    We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues — a signature of mode locking phenomenon are found.

  15. Synchronization of Asynchronous Switched Boolean Network.

    PubMed

    Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui

    2015-01-01

    In this paper, the complete synchronizations for asynchronous switched Boolean network with free Boolean sequence controllers and close-loop controllers are studied. First, the basic asynchronous switched Boolean network model is provided. With the method of semi-tensor product, the Boolean dynamics is translated into linear representation. Second, necessary and sufficient conditions for ASBN synchronization with free Boolean sequence control and close-loop control are derived, respectively. Third, some illustrative examples are provided to show the efficiency of the proposed methods.

  16. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  17. Nonlocal chaotic phase synchronization

    NASA Astrophysics Data System (ADS)

    Zhan, Meng; Zheng, Zhi-Gang; Hu, Gang; Peng, Xi-Hong

    2000-09-01

    A novel synchronization behavior, nonlocal chaotic phase synchronization, is investigated. For two coupled Rossler oscillators with only one forced by an injected periodic signal, the phase of the unforced oscillator can be locked to the phase of the periodic signal while the forced one is well unlocked by the signal; in a chain of coupled chaotic oscillators with nearest coupling, the phase of an oscillator (or a cluster) can be locked to another nonneighbor one. Moreover, the mechanism underlying the transition to nonlocal synchronization is discussed in detail.

  18. Effects due to induced azimuthal eddy currents in a self-exciting Faraday disk homopolar dynamo with a nonlinear series motor. I.. Two special cases

    NASA Astrophysics Data System (ADS)

    Hide, Raymond; Moroz, Irene M.

    1999-10-01

    The elucidation of the behaviour of physically realistic self-exciting Faraday-disk dynamos bears inter alia on attempts by theoretical geophysicists to interpret observations of geomagnetic polarity reversals. Hide [The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos, Phys. Earth Planet. Interiors 103 (1997) 281-291; Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo, Nonlinear Processes in Geophysics 4 (1998) 201-205] has introduced a novel 4-mode set of nonlinear ordinary differential equations to describe such a dynamo in which a nonlinear electric motor is connected in series with the coil. The applied couple, α, driving the disk is steady and the Lorentz couple driving the motor is a quadratic function, x(1-ɛ)+ɛσx 2, of the dynamo-generated current x, with 0≤ɛ≤1. When there are no additional biasing effects due to background magnetic fields etc., the behaviour of the dynamo is determined by eight independent non-negative control parameters. These include ρ, proportional to the resistance of the disk to azimuthal eddy currents, and β, an inverse measure of the moment of inertia of the armature of the motor. When β=0 (the case when the motor is absent and ɛ and σ are redundant) and ρ -1≠0 , the 4-mode dynamo equations reduce to the 3-mode Lorenz equations, which can behave chaotically [E. Knobloch, Chaos in the segmented disc dynamo, Phys. Lett. A 82 (1981) 439-440]. When β≠0 but ρ -1=0 , the 4-mode set of equations reduces to a 3-mode dynamo [R. Hide (1997), see above], which can also behave chaotically when ɛ=0 [R. Hide, A.C. Skeldon, D.J. Acheson, A study of two novel self-exciting single-disk homopolar dynamos: theory, Proc. R. Soc. Lond. A 452 (1996) 1369-1395] but not when ɛ=1 [R. Hide (1998), see above]. In the latter case, however, all persistent fluctuations are completely quenched [R. Hide (1998), see above]. In this paper we investigate

  19. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  20. Synchronization of yeast.

    PubMed

    Manukyan, Arkadi; Abraham, Lesley; Dungrawala, Huzefa; Schneider, Brandt L

    2011-01-01

    The budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are amongst the simplest and most powerful model systems for studying the genetics of cell cycle control. Because yeast grows very rapidly in simple and economical media, large numbers of cells can easily be obtained for genetic, molecular, and biochemical studies of the cell cycle. The use of synchronized cultures greatly aids in the ease and interpretation of cell cycle studies. In principle, there are two general methods for obtaining synchronized yeast populations. Block and release methods can be used to induce cell cycle synchrony. Alternatively, centrifugal elutriation can be used to select synchronous populations. Because each method has innate advantages and disadvantages, the use of multiple approaches helps in generalizing results. An overview of the most commonly used methods to generate synchronized yeast cultures is presented along with working Notes, a section that includes practical comments, experimental considerations and observations, and hints regarding the pros and cons innate to each approach.

  1. Synchronization in complex networks

    SciTech Connect

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  2. Hydrodynamic synchronization of flagellar oscillators

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin

    2016-11-01

    In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the nonlinear dynamics of synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers requires swimming strokes that break time-reversal symmetry to facilitate hydrodynamic synchronization. We discuss different physical mechanisms for flagellar synchronization, which break this symmetry in different ways.

  3. Synchronization in time-varying networks.

    PubMed

    Kohar, Vivek; Ji, Peng; Choudhary, Anshul; Sinha, Sudeshna; Kurths, Jüergen

    2014-08-01

    We study the stability of the synchronized state in time-varying complex networks using the concept of basin stability, which is a nonlocal and nonlinear measure of stability that can be easily applied to high-dimensional systems [P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Phys. 9, 89 (2013)]. The time-varying character is included by stochastically rewiring each link with the average frequency f. We find that the time taken to reach synchronization is lowered and the stability range of the synchronized state increases considerably in dynamic networks. Further we uncover that small-world networks are much more sensitive to link changes than random ones, with the time-varying character of the network having a significant effect at much lower rewiring frequencies. At very high rewiring frequencies, random networks perform better than small-world networks and the synchronized state is stable over a much wider window of coupling strengths. Lastly we show that the stability range of the synchronized state may be quite different for small and large perturbations, and so the linear stability analysis and the basin stability criterion provide complementary indicators of stability.

  4. Synchronization in time-varying networks

    NASA Astrophysics Data System (ADS)

    Kohar, Vivek; Ji, Peng; Choudhary, Anshul; Sinha, Sudeshna; Kurths, Jüergen

    2014-08-01

    We study the stability of the synchronized state in time-varying complex networks using the concept of basin stability, which is a nonlocal and nonlinear measure of stability that can be easily applied to high-dimensional systems [P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Phys. 9, 89 (2013), 10.1038/nphys2516]. The time-varying character is included by stochastically rewiring each link with the average frequency f. We find that the time taken to reach synchronization is lowered and the stability range of the synchronized state increases considerably in dynamic networks. Further we uncover that small-world networks are much more sensitive to link changes than random ones, with the time-varying character of the network having a significant effect at much lower rewiring frequencies. At very high rewiring frequencies, random networks perform better than small-world networks and the synchronized state is stable over a much wider window of coupling strengths. Lastly we show that the stability range of the synchronized state may be quite different for small and large perturbations, and so the linear stability analysis and the basin stability criterion provide complementary indicators of stability.

  5. Robust global synchronization of two complex dynamical networks.

    PubMed

    Asheghan, Mohammad Mostafa; Míguez, Joaquín

    2013-06-01

    We investigate the synchronization of two coupled complex dynamical networks, a problem that has been termed outer synchronization in the literature. Our approach relies on (a) a basic lemma on the eigendecomposition of matrices resulting from Kronecker products and (b) a suitable choice of Lyapunov function related to the synchronization error dynamics. Starting from these two ingredients, a theorem that provides a sufficient condition for outer synchronization of the networks is proved. The condition in the theorem is expressed as a linear matrix inequality. When satisfied, synchronization is guaranteed to occur globally, i.e., independently of the initial conditions of the networks. The argument of the proof includes the design of the gain of the synchronizer, which is a constant square matrix with dimension dependent on the number of dynamic variables in a single network node, but independent of the size of the overall network, which can be much larger. This basic result is subsequently elaborated to simplify the design of the synchronizer, to avoid unnecessarily restrictive assumptions (e.g., diffusivity) on the coupling matrix that defines the topology of the networks and, finally, to obtain synchronizers that are robust to model errors in the parameters of the coupled networks. An illustrative numerical example for the outer synchronization of two networks of classical Lorenz nodes with perturbed parameters is presented.

  6. Hypothesis test for synchronization: Twin surrogates revisited

    NASA Astrophysics Data System (ADS)

    Romano, M. Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf

    2009-03-01

    The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.

  7. Optimistic barrier synchronization

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1992-01-01

    Barrier synchronization is fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that it has already processed all the work required of it prior to synchronization. The alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all the necessary pre-synchronization computation, is treated. The problem arises when the number of pre-sychronization messages to be received by a processor is unkown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. We describe an optimistic O(log sup 2 P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions as well as associative parallel prefix computations.

  8. Synchronous trifocal colorectal cancer

    PubMed Central

    Charalampoudis, Petros; Kykalos, Stylianos; Stamopoulos, Paraskevas; Kouraklis, Gregory

    2016-01-01

    Synchronous colorectal cancers (SCRCs) have been increasingly diagnosed due to emerging diagnostic modalities. The presence of three or more synchronous colorectal cancers has, however, only rarely been reported. A 76-year-old white man presented for management of two concurrent colorectal adenocarcinomas in the left colon evidenced on total colonoscopy. Preoperative abdominal ultrasonography and thoracoabdominal computed tomography were negative for metastatic disease. The patient underwent an elective left hemicolectomy. The pathology report ultimately showed the presence of three moderately differentiated, distinct colorectal cancers. The patient experienced an uneventful recovery. PMID:27695171

  9. Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2017-04-01

    The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.

  10. Cluster synchronization in networks of neurons with chemical synapses

    SciTech Connect

    Juang, Jonq; Liang, Yu-Hao

    2014-03-15

    In this work, we study the cluster synchronization of chemically coupled and generally formulated networks which are allowed to be nonidentical. The sufficient condition for the existence of stably synchronous clusters is derived. Specifically, we only need to check the stability of the origins of m decoupled linear systems. Here, m is the number of subpopulations. Examples of nonidentical networks such as Hindmarsh-Rose (HR) neurons with various choices of parameters in different subpopulations, or HR neurons in one subpopulation and FitzHugh-Nagumo neurons in the other subpopulation are provided. Explicit threshold for the coupling strength that guarantees the stably cluster synchronization can be obtained.

  11. Pinning synchronization of discrete dynamical networks with delay coupling

    NASA Astrophysics Data System (ADS)

    Cheng, Ranran; Peng, Mingshu; Zuo, Jun

    2016-05-01

    The purpose of this paper is to investigate the pinning synchronization analysis for nonlinear coupled delayed discrete dynamical networks with the identical or nonidentical topological structure. Based on the Lyapunov stability theory, pinning control method and linear matrix inequalities, several adaptive synchronization criteria via two kinds of pinning control method are obtained. Two examples based on Rulkov chaotic system are included to illustrate the effectiveness and verification of theoretical analysis.

  12. Implementing the Synchronous Classroom

    ERIC Educational Resources Information Center

    Furman, Jan A.

    2010-01-01

    This commentary describes an action research project conducted by selected staff at the Northern Valley Regional High School District in New Jersey. The project focused on the idea of developing a synchronous classroom to provide world language learning opportunities to students. Relevant research is provided as are ideas regarding logistics and…

  13. Implementing the Synchronous Classroom

    ERIC Educational Resources Information Center

    Furman, Jan A.

    2010-01-01

    This commentary describes an action research project conducted by selected staff at the Northern Valley Regional High School District in New Jersey. The project focused on the idea of developing a synchronous classroom to provide world language learning opportunities to students. Relevant research is provided as are ideas regarding logistics and…

  14. Synchronized time stamp support

    SciTech Connect

    Kowalkowski, J.

    1994-02-16

    New software has been added to IOC core to maintain time stamps. The new software has the ability to maintain time stamps over all IOCs on a network. The purpose of this paper is to explain how EPICS will synchronize the time stamps. In addition, this paper will explain how to configure and use the new EPICS time stamp support software.

  15. Synchronization of Yeast.

    PubMed

    Smith, Jessica; Manukyan, Arkadi; Hua, Hui; Dungrawala, Huzefa; Schneider, Brandt L

    2017-01-01

    The budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are amongst the simplest and most powerful model systems for studying the genetics of cell cycle control. Because yeast grows very rapidly in a simple and economical media, large numbers of cells can easily be obtained for genetic, molecular, and biochemical studies of the cell cycle. The use of synchronized cultures greatly aids in the ease and interpretation of cell cycle studies. In principle, there are two general methods for obtaining synchronized yeast populations. Block-and-release methods can be used to induce cell cycle synchrony. Alternatively, centrifugal elutriation can be used to select synchronous populations. Because each method has innate advantages and disadvantages, the use of multiple approaches helps in generalizing results. An overview of the most commonly used methods to generate synchronized yeast cultures is presented along with working Notes: a section that includes practical comments, experimental considerations and observations, and hints regarding the pros and cons innate to each approach.

  16. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  17. Distributed Generalized Dynamic Barrier Synchronization

    NASA Astrophysics Data System (ADS)

    Agarwal, Shivali; Joshi, Saurabh; Shyamasundar, Rudrapatna K.

    Barrier synchronization is widely used in shared-memory parallel programs to synchronize between phases of data-parallel algorithms. With proliferation of many-core processors, barrier synchronization has been adapted for higher level language abstractions in new languages such as X10 wherein the processes participating in barrier synchronization are not known a priori, and the processes in distinct "places" don't share memory. Thus, the challenge here is to not only achieve barrier synchronization in a distributed setting without any centralized controller, but also to deal with dynamic nature of such a synchronization as processes are free to join and drop out at any synchronization phase. In this paper, we describe a solution for the generalized distributed barrier synchronization wherein processes can dynamically join or drop out of barrier synchronization; that is, participating processes are not known a priori. Using the policy of permitting a process to join only in the beginning of each phase, we arrive at a solution that ensures (i) Progress: a process executing phase k will enter phase k + 1 unless it wants to drop out of synchronization (assuming the phase execution of the processes terminate), and (ii) Starvation Freedom: a new process that wants to join a phase synchronization group that has already started, does so in a finite number of phases. The above protocol is further generalized to multiple groups of processes (possibly non-disjoint) engaged in barrier synchronization.

  18. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  19. Aeroacoustical coupling and synchronization of organ pipes.

    PubMed

    Fischer, Jost Leonhardt; Bader, Rolf; Abel, Markus

    2016-10-01

    A synchronization experiment on two mutual interacting organ pipes is compared with a theoretical model which takes into account the coupling mechanisms by the underlying first principles of fluid mechanics and aeroacoustics. The focus is on the Arnold-tongue, a mathematical object in the parameter space of detuning and coupling strength which quantitatively captures the interaction of the synchronized sound sources. From the experiment, a nonlinearly shaped Arnold-tongue is obtained, describing the coupling of the synchronized pipe-pipe system. This is in contrast to the linear shaped Arnold-tongue found in a preliminary experiment of the coupled system pipe-loudspeaker. To understand the experimental result, a coarse-grained model of two nonlinear coupled self-sustained oscillators is developed. The model, integrated numerically, is in very good agreement with the synchronization experiment for separation distances of the pipes in the far field and in the intermediate field. The methods introduced open the door for a deeper understanding of the fundamental processes of sound generation and the coupling mechanisms on mutual interacting acoustic oscillators.

  20. Synchronization in a network of delay coupled maps with stochastically switching topologies

    NASA Astrophysics Data System (ADS)

    Nag, Mayurakshi; Poria, Swarup

    2016-10-01

    The synchronization behavior of delay coupled chaotic smooth unimodal maps over a ring network with stochastic switching of links at every time step is reported in this paper. It is observed that spatiotemporal synchronization never appears for nearest neighbor connections; however, stochastic switching of connections with homogeneous delay $(\\tau)$ is capable of synchronizing the network to homogeneous steady state or periodic orbit or synchronized chaotically oscillating state depending on the delay parameter, stochasticity parameter and map parameters. Linear stability analysis of the synchronized state is done analytically for unit delay and the value of the critical coupling strength, at which the onset of synchronization occurs is determined analytically. The logistic map $rx(1-x)$ (a smooth unimodal map) is chosen for numerical simulation purpose. Synchronized steady state or synchronized period-2 orbit is stabilized for delay $\\tau=1$. On the other hand for delay $\\tau=2$ the network is stabilized to the fixed point of the local map. Numerical simulation results are in good agreement with the analytically obtained linear stability analysis results. Another interesting observation is the existence of synchronized chaos in the network for delay $\\tau>2$. Calculating synchronization error and plotting time series data and Poincare first return map the existence of synchronized chaos is confirmed. The results hold good for other smooth unimodal maps also.

  1. Wavelet phase synchronization and chaoticity.

    PubMed

    Postnikov, E B

    2009-11-01

    It has been shown that the so-called "wavelet phase" (or "time-scale") synchronization of chaotic signals is actually synchronization of smoothed functions with reduced chaotic fluctuations. This fact is based on the representation of the wavelet transform with the Morlet wavelet as a solution of the Cauchy problem for a simple diffusion equation with initial condition in a form of harmonic function modulated by a given signal. The topological background of the resulting effect is discussed. It is argued that the wavelet phase synchronization provides information about the synchronization of an averaged motion described by bounding tori instead of the fine-level classical chaotic phase synchronization.

  2. Optimal synchronization in space.

    PubMed

    Brede, Markus

    2010-02-01

    In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of "wire" available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l) proportional to l(-alpha), with exponents alpha increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.

  3. Synchronization of Sound Sources

    NASA Astrophysics Data System (ADS)

    Abel, Markus; Ahnert, Karsten; Bergweiler, Steffen

    2009-09-01

    Sound generation and interaction are highly complex, nonlinear, and self-organized. Nearly 150 years ago Rayleigh raised the following problem: two nearby organ pipes of different fundamental frequencies sound together almost inaudibly with identical pitch. This effect is now understood qualitatively by modern synchronization theory M. Abel et al. [J. Acoust. Soc. Am. 119, 2467 (2006)JASMAN0001-496610.1121/1.2170441]. For a detailed investigation, we substituted one pipe by an electric speaker. We observe that even minute driving signals force the pipe to synchronization, thus yielding three decades of synchronization—the largest range ever measured to our knowledge. Furthermore, a mutual silencing of the pipe is found, which can be explained by self-organized oscillations, of use for novel methods of noise abatement. Finally, we develop a reconstruction method which yields a perfect quantitative match of experiment and theory.

  4. Synchronization and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Qian, Bian; Breuer, Kenneth

    2008-03-01

    Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.

  5. Synchronization of micromasers

    NASA Astrophysics Data System (ADS)

    Davis-Tilley, C.; Armour, A. D.

    2016-12-01

    We investigate synchronization effects in quantum self-sustained oscillators theoretically using the micromaser as a model system. We use the probability distribution for the relative phase as a tool for quantifying the emergence of preferred phases when two micromasers are coupled together. Using perturbation theory, we show that the behavior of the phase distribution is strongly dependent on exactly how the oscillators are coupled. In the quantum regime where photon occupation numbers are low we find that, although synchronization effects are rather weak, they are nevertheless significantly stronger than expected from a semiclassical description of the phase dynamics. We also compare the behavior of the phase distribution with the mutual information of the two oscillators and show that they can behave in rather different ways.

  6. Optimal synchronization in space

    NASA Astrophysics Data System (ADS)

    Brede, Markus

    2010-02-01

    In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of “wire” available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l)∝l-α , with exponents α increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.

  7. System Timing and Synchronization.

    DTIC Science & Technology

    1978-07-01

    The emphasis in this report is on troposcatter and line of sight link parameters and their relationship to network clock synchronization. This report...includes analysis and discussion of the important physical effects in troposcatter propagation, and a description of experiments and data acquired...during a recent measurement program designed to establish a better understanding of the relevant troposcatter and line of sight medium and equipment effects. (Author)

  8. Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  9. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  10. Socially synchronized circadian oscillators.

    PubMed

    Bloch, Guy; Herzog, Erik D; Levine, Joel D; Schwartz, William J

    2013-08-22

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day-night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the 'group' level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature.

  11. Practical time-delay synchronization of a periodically modulated self-excited oscillators with uncertainties.

    PubMed

    Kakmeni, F M Moukam; Bowong, S; Senthikumar, D V; Kurths, J

    2010-12-01

    This paper studies time-delay synchronization of a periodically modulated Duffing Van der Pol (DVP) oscillator subjected to uncertainties with emphasis on complete synchronization. A robust adaptive response system is designed to synchronize with the uncertain drive periodically modulated DVP oscillator. Adaptation laws on the upper bounds of uncertainties are proposed to guarantee the boundedness of both the synchronization error and the estimated feedback coupling gains. Numerical results are presented to check the effectiveness of the proposed synchronization scheme. The results suggest that the linear and nonlinear terms in the feedback coupling play a complementary role in increasing the synchronization regime in the parameter space of the synchronization manifold. The proposed method can be successfully applied to a large variety of physical systems.

  12. A novel approach to synchronization of nonlinearly coupled network systems with delays

    NASA Astrophysics Data System (ADS)

    Tseng, Jui-Pin

    2016-06-01

    In this investigation, a novel approach to establishing the global synchronization of coupled network systems is presented. Under this approach, individual subsystems can be non-autonomous, and the coupling configuration is rather general. The coupling terms can be non-diffusive, nonlinear, time-dependent, asymmetric, and with time delays. With an iteration scheme, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, delay-dependent and delay-independent criteria for global synchronization can be established. We implement the present approach to analyze synchronization of the FitzHugh-Nagumo systems under delayed and nonlinear sigmoidal coupling. Two examples are presented to demonstrate new dynamical scenarios, where oscillatory behavior and multistability emerge or are suppressed as the coupled neurons synchronize under the synchronization criterion. In addition, asynchrony induced by the coupling strength or coupling delay occurs while the synchronization criterion is violated.

  13. An integrative synchronization and imaging approach for bistatic spaceborne/stratospheric SAR with a fixed receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Qilei; Chang, Wenge; Li, Xiangyang

    2013-12-01

    Bistatic spaceborne/stratospheric synthetic aperture radar (SAR) with a fixed receiver is a novel hybrid bistatic SAR system, in which a spaceborne SAR serves as the transmitter of opportunity, while a fixed receiver is mounted on a stratospheric platform. This paper presents an integrative synchronization and imaging approach for this particular system. Firstly, a novel synchronization method using the direct-path signal, which can be collected by a dedicated antenna, is proposed and applied. The synchronization error can be completely removed using the proposed method. However, as the cost of synchronization, the characteristic of synchronized echo's range history becomes quite different from that of general bistatic SAR data. To focus this particular synchronized data, its 2-D spectrum is derived under linear approximations and then a frequency-domain imaging algorithm using two-dimensional inverse scaled Fourier transform (2-DISFT) is proposed. At last, the proposed integrative synchronization and imaging algorithm is verified by simulations.

  14. Statistical modeling approach for detecting generalized synchronization

    NASA Astrophysics Data System (ADS)

    Schumacher, Johannes; Haslinger, Robert; Pipa, Gordon

    2012-05-01

    Detecting nonlinear correlations between time series presents a hard problem for data analysis. We present a generative statistical modeling method for detecting nonlinear generalized synchronization. Truncated Volterra series are used to approximate functional interactions. The Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are estimated via l1 and l2 regularized maximum likelihood regression. The regularization manages the high number of kernel coefficients and allows feature selection strategies yielding sparse models. The method's performance is evaluated on different coupled chaotic systems in various synchronization regimes and analytical results for detecting m:n phase synchrony are presented. Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal local field potentials recorded in different parts of macaque visual cortex.

  15. Synchronized charge oscillations in correlated electron systems

    PubMed Central

    Shukla, Nikhil; Parihar, Abhinav; Freeman, Eugene; Paik, Hanjong; Stone, Greg; Narayanan, Vijaykrishnan; Wen, Haidan; Cai, Zhonghou; Gopalan, Venkatraman; Engel-Herbert, Roman; Schlom, Darrell G.; Raychowdhury, Arijit; Datta, Suman

    2014-01-01

    Strongly correlated phases exhibit collective carrier dynamics that if properly harnessed can enable novel functionalities and applications. In this article, we investigate the phenomenon of electrical oscillations in a prototypical MIT system, vanadium dioxide (VO2). We show that the key to such oscillatory behaviour is the ability to induce and stabilize a non-hysteretic and spontaneously reversible phase transition using a negative feedback mechanism. Further, we investigate the synchronization and coupling dynamics of such VO2 based relaxation oscillators and show, via experiment and simulation, that this coupled oscillator system exhibits rich non-linear dynamics including charge oscillations that are synchronized in both frequency and phase. Our approach of harnessing a non-hysteretic reversible phase transition region is applicable to other correlated systems exhibiting metal-insulator transitions and can be a potential candidate for oscillator based non-Boolean computing.

  16. Explosive synchronization in weighted complex networks

    NASA Astrophysics Data System (ADS)

    Leyva, I.; Sendiña-Nadal, I.; Almendral, J. A.; Navas, A.; Olmi, S.; Boccaletti, S.

    2013-10-01

    The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. Given a set of phase oscillators networking with a generic wiring of connections and displaying a generic frequency distribution, we show how combining dynamical local information on frequency mismatches and global information on the graph topology suggests a judicious and yet practical weighting procedure which is able to induce and enhance explosive, irreversible, transitions to synchronization. We report extensive numerical and analytical evidence of the validity and scalability of such a procedure for different initial frequency distributions, for both homogeneous and heterogeneous networks, as well as for both linear and nonlinear weighting functions. We furthermore report on the possibility of parametrically controlling the width and extent of the hysteretic region of coexistence of the unsynchronized and synchronized states.

  17. Bistable synchronization of coupled random network of cubic maps

    NASA Astrophysics Data System (ADS)

    Nag, Mayurakshi

    2017-06-01

    The spatiotemporal behavior of coupled cubic maps over a dynamic network having randomness in coupling connections is investigated here. Due to the bistable nature of cubic map the synchronization behavior is dependent on the initial conditions. The network can stabilize to any one of the nonzero unstable fixed point of the map depending on the initial conditions. Linear stability analysis of synchronized fixed point gives the value of coupling at which onset of synchronization occurs. The critical coupling strength depends on the randomness in rewiring, properties of the local map, but it is independent of lattice size. Numerical simulation results match very well with predictions from theoretical analysis. Behaviors of the network for synchronized initial conditions are pointed out. Looking at the case of stability in a network with static rewiring, it is found that, the range of synchronization of fixed point becomes shorter than the dynamical random one. Contribution of delay in the synchronization phenomenon is studied both analytically and numerically and the range of synchronized period-2 orbit is found to be quite similar in both the cases. Multistable nature of the delay coupled network is shown numerically.

  18. Practical synchronization on complex dynamical networks via optimal pinning control

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  19. Synchronization in arrays of coupled self-induced friction oscillators

    NASA Astrophysics Data System (ADS)

    Marszal, Michał; Saha, Ashesh; Jankowski, Krzysztof; Stefański, Andrzej

    2016-11-01

    We investigate synchronization phenomena in systems of self-induced dry friction oscillators with kinematic excitation coupled by linear springs. Friction force is modelled according to exponential model. Initially, a single degree of freedom mass-spring system on a moving belt is considered to check the type of motion of the system (periodic, non-periodic). Then the system is coupled in chain of identical oscillators starting from two, up to four oscillators. A reference probe of two coupled oscillators is applied in order to detect synchronization thresholds for both periodic and non-periodic motion of the system. The master stability function is applied to predict the synchronization thresholds for longer chains of oscillators basing on two oscillator probe. It is shown that synchronization is possible both for three and four coupled oscillators under certain circumstances. Our results confirmed that this technique can be also applied for the systems with discontinuities.

  20. Receptors as a master key for synchronization of rhythms

    NASA Astrophysics Data System (ADS)

    Nagano, Seido

    2004-03-01

    A simple, but general scheme to achieve synchronization of rhythms was derived. The scheme has been inductively generalized from the modelling study of cellular slime mold. It was clarified that biological receptors work as apparatuses that can convert external stimulus to the form of nonlinear interaction within individual oscillators. Namely, the mathematical model receptor works as a nonlinear coupling apparatus between nonlinear oscillators. Thus, synchronization is achieved as a result of competition between two kinds of non-linearities, and to achieve synchronization, even a small external stimulation via model receptors can change the characteristics of individual oscillators significantly. The derived scheme is very simple mathematically, but it is a very powerful scheme as numerically demonstrated. The biological receptor scheme should significantly help understanding of synchronization phenomena in biology since groups of limit cycle oscillators and receptors are ubiquitous in biological systems. Reference: S. Nagano, Phys Rev. E67, 056215(2003)

  1. Practical synchronization on complex dynamical networks via optimal pinning control.

    PubMed

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  2. An analytical study on the synchronization of strange non-chaotic attractors

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.

    2016-12-01

    In this paper, we present an analytical study on the synchronization dynamics observed in unidirectionally-coupled quasiperiodically-forced systems that exhibit strange non-chaotic attractors (SNA) in their dynamics. The SNA dynamics observed in the uncoupled system is studied analytically through phase portraits and Poincare maps. A difference system is obtained by coupling the state equations of similar piecewise linear regions of the drive and the response systems. The mechanism of synchronization of the coupled system is realized through the bifurcation of the eigenvalues in one of the piecewise linear regions of the difference system. The analytical solutions obtained for the normalized state equations in each piecewise linear region of the difference system have been used to explain the synchronization dynamics through phase portraits and time-series analysis. The stability of the synchronized state is confirmed through the master stability function. An explicit analytical solution explaining the synchronization of SNAs is reported in the literature for the first time.

  3. Synchronization, multistability and basin crisis in coupled pendula

    NASA Astrophysics Data System (ADS)

    Olusola, O. I.; Vincent, U. E.; Njah, A. N.

    2010-02-01

    The synchronization dynamics of two linearly coupled pendula is studied in this paper. Based on the Lyapunov stability theory and Linear matrix inequality (LMI); some necessary and sufficient conditions for global asymptotic synchronization are derived from which an estimated threshold coupling kth, for the on-set of full synchronization is obtained. The numerical value of kth determined from the average energies of the systems is in good agreement with theoretical analysis. Prior to the on-set of synchronization, the boundary crisis of the chaotic attractor is identified. In the bistable states, where two asymmetric periodic attractors co-exist, it is shown that the coupled pendula can attain multistable states via a new dynamical transition—the basin crisis that occur prior to the on-set of stable synchronization. The essential feature of basin crisis is that the two co-existing attractors are destroyed while new three or more co-existing attractors of the same or different periodicity are created. In addition, the linear perturbation technique and the Routh-Hurwitz criteria are employed to investigate the stability of steady states, and clearly identify the different types of bifurcations likely to be encountered. Finally, two-parameter phase plots, show various regions of chaos, hyperchaos and periodicity.

  4. A Semantics of Synchronization.

    DTIC Science & Technology

    1980-09-01

    AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE --ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION.(U) .C SEP 80 C A SEAQUIST N00015-75... COMPUTER SCIENCE TECHNOLOGY LEVL NIT/WSAIM-176 A SEMW30~CS OF SYNilUMZfTIMt DTIC ELEOTEW- OCT 30 198 Carl R. Seaquist j Septet~e3.980 C..)1tds research... coud ition$c rcatcO)I) end create silrtread =proc(rn:cvt) if inhbusy theci ondifion~wait(an.rcaders) end rn.readcrcou nt: =in.rcadcrcount + 1 comtll ion

  5. Synchronization of pathogenic protozoans.

    PubMed

    Svärd, Staffan; Troell, Karin

    2011-01-01

    Protozoans are single-cell eukaryotes and many of the best studied protozoans are parasitic to humans (e.g., Plasmodium falciparum causing malaria and Trypanosoma brucei causing sleeping sickness). These organisms are distantly related to humans but with retained eukaryotic type of cellular processes, making them good model systems for studies of the evolution of basic processes like the cell cycle. Giardia intestinalis causes 250 million cases of diarrhea yearly and is one of the earliest diverging protozoans. It has recently been possible to synchronize its cell cycle using compounds that inhibit different steps of the cell cycle and the detailed protocol is described here.

  6. Psychic energy and synchronicity.

    PubMed

    Zabriskie, Beverley

    2014-04-01

    Given Jung's interest in physics' formulations of psychic energy and the concept of time, overlaps and convergences in the themes addressed in analytical psychology and in quantum physics are to be expected. These are informed by the active intersections between the matter of mind and mindfulness re matter. In 1911, Jung initiated dinners with Einstein. Jung's definition of libido in the pivotal 1912 Fordham Lectures reveals the influence of these conversations. Twenty years later, a significant period in physics, Wolfgang Pauli contacted Jung. Their collaboration led to the theory of synchronicity.

  7. Generalized synchronization via nonlinear control.

    PubMed

    Juan, Meng; Xingyuan, Wang

    2008-06-01

    In this paper, the generalized synchronization problem of drive-response systems is investigated. Using the drive-response concept and the nonlinear control theory, a control law is designed to achieve the generalized synchronization of chaotic systems. Based on the Lyapunov stability theory, a generalized synchronization condition is derived. Theoretical analyses and numerical simulations further demonstrate the feasibility and effectiveness of the proposed technique.

  8. Huygens synchronization of two clocks.

    PubMed

    Oliveira, Henrique M; Melo, Luís V

    2015-07-23

    The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model.

  9. Planning for Victory: Joint Synchronization

    DTIC Science & Technology

    1993-02-22

    Desert Storm . . . .. 13 V A JOINT SYNCHRONIZATION MATRIX .. ........ .. 16 Proposed Synchronization Matrixes Joint Sync Matrix: D-day, 1944 . . .. 16...campaigns. I will offer two such proposals. Joint Sync Matrix: D-day, 1944 . Figure 2 is offered as one proposal of how a joint synchronization matrix...CHANNEL sweep CENTRAL CHANNEL commence sweep AfW ALLIED completeI CHERBOURG-LE HAVRE FLEET sweep UTAH OMAHA GOLD JUNO SWORD ASUW SWEEPS ALLIED

  10. Inside black holes with synchronized hair

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen

    2016-09-01

    Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers-Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers-Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.

  11. SLAC synchronous condenser

    SciTech Connect

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90{degrees} in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC`s utility power is improved with the addition of the condenser. The inertia of the condenser`s 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ``scrubbing`` the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations.

  12. FPGA based fast synchronous serial multi-wire links synchronization

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  13. Mixed outer synchronization of coupled complex networks with time-varying coupling delay.

    PubMed

    Wang, Jun-Wei; Ma, Qinghua; Zeng, Li; Abd-Elouahab, Mohammed Salah

    2011-03-01

    In this paper, the problem of outer synchronization between two complex networks with the same topological structure and time-varying coupling delay is investigated. In particular, we introduce a new type of outer synchronization behavior, i.e., mixed outer synchronization (MOS), in which different state variables of the corresponding nodes can evolve into complete synchronization, antisynchronization, and even amplitude death simultaneously for an appropriate choice of the scaling matrix. A novel nonfragile linear state feedback controller is designed to realize the MOS between two networks and proved analytically by using Lyapunov-Krasovskii stability theory. Finally, numerical simulations are provided to demonstrate the feasibility and efficacy of our proposed control approach.

  14. Development of Chalcopyrite Crystals for Nonlinear Optical Applications

    DTIC Science & Technology

    1974-12-01

    write the expansion ol the homopolar and the heteropolar part of the mean energy gap in the following way. £.(«) - £. + (a«», + (a.)’*, + (Ha) C...a nearly linear relation over a wide 7 —12-um spectral range. We therefore used a 1 stepping motor and synchronously rotated the AgGaSe, crystal

  15. Design Method of ILQ Robust Current Control System for Synchronous Reluctance Electrical Motors

    NASA Astrophysics Data System (ADS)

    Amano, Yoko; Takami, Hiroshi; Fujii, Takao

    In this paper, a robust current control system for a synchronous reluctance electrical motor by an ILQ (Inverse Linear Quadratic) design method is proposed newly. First, for performing simultaneously decouple and large region linearization of an d-q axes system in the synchronous reluctance electrical motor using nonlinear state feedback, it is derived that a linear current-voltage state equation linearized model by the d-q axes decouple of the synchronous reluctance electrical motor. Next, according to the ILQ design method, an optimum solution and an optimal condition that achieve the robust current control system for the synchronous reluctance electrical motor are analytically derived, then the robust current control system can be designed. Finally, in practical experiments, we compare the proposed method with the PI (Proportional Integral) control method, the creativity and the usefulness of the proposed method are confirmed by experimental results.

  16. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  17. Benefits of Synchronous Online Courses

    ERIC Educational Resources Information Center

    Moser, Scott; Smith, Phil

    2015-01-01

    Most online courses are offered as "asynchronous" courses and have no real-time contact with students. The Synchronous online alternative provides normal scheduled class time and allows students to login to a virtual online classroom with the instructor. We provide an overview of two different platforms for hosting synchronous classes…

  18. RAM-Based frame synchronizer

    NASA Technical Reports Server (NTRS)

    Niswander, J. K.; Stattel, R. J.

    1980-01-01

    Frame synchronizer for serial telemetry is rapidly reconfigured for changing formats. Synchronizer generates signals marking data-word boundaries, beginning of each frame, and beginning of each paragraph. Also derived are search, check, and lock status signals. Existing unit is assembled from standard random-access memory elements and MOS and low-power-Schottky logic.

  19. Chaos synchronization by nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Petereit, Johannes; Pikovsky, Arkady

    2017-03-01

    We study synchronization properties of three nonlinearly coupled chaotic maps. Coupling is introduced in such a way, that it cannot be reduced to pairwise terms, but includes combined action of all interacting units. For two models of nonlinear coupling we characterize the transition to complete synchrony, as well as partially synchronized states. Relation to hypernetworks of chaotic units is also discussed.

  20. Chua's Circuit: Control and Synchronization

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  1. Robust Synchronization Schemes for Dynamic Channel Environments

    NASA Technical Reports Server (NTRS)

    Xiong, Fugin

    2003-01-01

    Professor Xiong will investigate robust synchronization schemes for dynamic channel environment. A sliding window will be investigated for symbol timing synchronizer and an open loop carrier estimator for carrier synchronization. Matlab/Simulink will be used for modeling and simulations.

  2. Friction and Phase Synchronization

    NASA Astrophysics Data System (ADS)

    Braiman, Y.; Protopopescu, V.; Family, F.; Hentschel, H. G. E.

    2000-03-01

    Spatiotemporal fluctuations in small discrete nonlinear arrays affect the dynamics of the center of mass. We derive the equations describing the dynamics of the center of mass and the spatial fluctuations for each coherent mode of the array. Analysis of these equations indicates that depending on array stiffness, size, and the external forcing - quantized jumps occur in the minimum friction (maximum velocity) of the array. We propose an analytical formalism to determine the occurrences of these jumps. We present numerical evidence indicating that phase synchronization is related to the frictional properties of sliding objects at the atomic scale and discuss mechanisms of tuning and controlling nanoscale friction. Y. Braiman, F. Family, H. G. E. Hentschel, C. Mak, and J. Krim, Phys. Rev. E 59, R4737 (1999). H. G. E. Hentschel, F. Family, and Y. Braiman, Phys. Rev. Lett. 83, 104 (1999).

  3. Timesharing without synchronization

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rubin, A. L.

    1976-01-01

    The capacity region of a multiple-access channel has recently been identified as the convex hull (barred K) of a certain set (K) of points in the first quadrant of the (R1,R2) plane. For a pair of rates in K, a more or less standard random-coding argument can be used to show the existence of a good pair of codes. But for points in barred K-K, it is apparently necessary for the two senders to use some form of time sharing to achieve the desired rates. However, in order to share time, at least one of the senders must have knowledge of the other's phase; and in many practical situations this knowledge does not exist. This paper investigates the problems which arise in coding for multiple-access channels when the senders cannot synchronize with each other.

  4. Twin engine synchronizer

    SciTech Connect

    Kobus, J.R.

    1988-05-03

    This patent describes an apparatus for synchronizing the speeds of two engines, each having its own throttle level connected by an associated cable to a respective hand throttle lever, comprising moving means carried by the throttle lever of one of the engines for moving the throttle lever of the one engine independently of its associated cable and its respective hand throttle lever to increase or decrease the speed of the one engine until the speed of the one engine matches the speed of the other engine. The moving means moves the throttle lever of the one engine without moving its associated cable or its respective hand throttle lever, and actuating means mounted remote from the throttle lever of the one engine for actuating the moving means.

  5. Evaluating the effect of synchronized sea lice treatments in Chile.

    PubMed

    Arriagada, G; Stryhn, H; Sanchez, J; Vanderstichel, R; Campistó, J L; Rees, E E; Ibarra, R; St-Hilaire, S

    2017-01-01

    The sea louse is considered an important ectoparasite that affects farmed salmonids around the world. Sea lice control relies heavily on pharmacological treatments in several salmon-producing countries, including Chile. Among options for drug administration, immersion treatments represent the majority of antiparasitic control strategies used in Chile. As a topical procedure, immersion treatments do not induce a long lasting effect; therefore, re-infestation from neighbouring farms may undermine their efficacy. Synchronization of treatments has been proposed as a strategy to improve immersion treatment performance, but it has not been evaluated so far. Using a repeated-measures linear mixed-effect model, we evaluated the impact of treatment synchronization of neighbouring farms (within 10km seaway distance) on the adult lice mean abundance from weeks 2 to 8 post-treatment on rainbow trout and Atlantic salmon farms in Chile, while controlling for external and internal sources of lice before the treatments, and also for environmental and fish-related variables. Results indicate that treatment synchronization was significantly associated with lower adult lice levels from weeks 5 to 7 after treatment. This relationship appeared to be linear, suggesting that higher levels of synchronization may result in lower adult sea lice levels during these weeks. These findings suggest that synchronization can improve the performance of immersion delousing treatments by keeping sea lice levels low for a longer period of time. Our results may be applicable to other regions of the world where immersion treatments are widely used.

  6. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators.

    PubMed

    Lörch, Niels; Nigg, Simon E; Nunnenkamp, Andreas; Tiwari, Rakesh P; Bruder, Christoph

    2017-06-16

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  7. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators

    NASA Astrophysics Data System (ADS)

    Lörch, Niels; Nigg, Simon E.; Nunnenkamp, Andreas; Tiwari, Rakesh P.; Bruder, Christoph

    2017-06-01

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  8. Dynamical inference: Where phase synchronization and generalized synchronization meet

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2014-06-01

    Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.

  9. Anti-phase synchronization and ergodicity in arrays of oscillators coupled by an elastic force

    NASA Astrophysics Data System (ADS)

    Dilão, Rui

    2014-04-01

    We have proposed a mechanism of interaction between two non-linear dissipative oscillators, leading to exact and robust anti-phase and in-phase synchronization. The system we have analyzed is a model for the Huygens's two pendulum clocks system, as well as a model for synchronization mediated by an elastic media. Here, we extend these results to arrays, finite or infinite, of conservative pendula coupled by linear elastic forces. We show that, for two interacting pendula, this mechanism leads always to synchronized anti-phase small amplitude oscillations, and it is robust upon variation of the parameters. For three or more interacting pendula, this mechanism leads always to ergodic non-synchronized oscillations. In the continuum limit, the pattern of synchronization is described by a quasi-periodic longitudinal wave.

  10. Interaction Patterns in Synchronous Online Calculus and Linear Algebra Recitations

    ERIC Educational Resources Information Center

    Mayer, Greg; Hendricks, Cher

    2014-01-01

    This study describes interaction patterns observed during a pilot project that explored the use of web-conferencing (WC) software in two undergraduate distance education courses offered to advanced high-school students. The pilot program replaced video-conferencing technology with WC software during recitations, so as to increase participation in…

  11. Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2010-01-01

    A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.

  12. Generalized synchronization between chimera states

    NASA Astrophysics Data System (ADS)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  13. Generalized synchronization between chimera states.

    PubMed

    Andrzejak, Ralph G; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  14. Nutritional recommendations for synchronized swimming.

    PubMed

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.

  15. Partial synchronization and partial amplitude death in mesoscale network motifs

    NASA Astrophysics Data System (ADS)

    Poel, Winnie; Zakharova, Anna; Schöll, Eckehard

    2015-02-01

    We study the interplay between network topology and complex space-time patterns and introduce a concept to analytically predict complex patterns in networks of Stuart-Landau oscillators with linear symmetric and instantaneous coupling based solely on the network topology. These patterns consist of partial amplitude death and partial synchronization and are found to exist in large variety for all undirected networks of up to 5 nodes. The underlying concept is proved to be robust with respect to frequency mismatch and can also be extended to larger networks. In addition it directly links the stability of complete in-phase synchronization to only a small subset of topological eigenvalues of a network.

  16. Partial synchronization and partial amplitude death in mesoscale network motifs.

    PubMed

    Poel, Winnie; Zakharova, Anna; Schöll, Eckehard

    2015-02-01

    We study the interplay between network topology and complex space-time patterns and introduce a concept to analytically predict complex patterns in networks of Stuart-Landau oscillators with linear symmetric and instantaneous coupling based solely on the network topology. These patterns consist of partial amplitude death and partial synchronization and are found to exist in large variety for all undirected networks of up to 5 nodes. The underlying concept is proved to be robust with respect to frequency mismatch and can also be extended to larger networks. In addition it directly links the stability of complete in-phase synchronization to only a small subset of topological eigenvalues of a network.

  17. Emergent hybrid synchronization in coupled chaotic systems.

    PubMed

    Padmanaban, E; Boccaletti, Stefano; Dana, S K

    2015-02-01

    We evidence an interesting kind of hybrid synchronization in coupled chaotic systems where complete synchronization is restricted to only a subset of variables of two systems while other subset of variables may be in a phase synchronized state or desynchronized. Such hybrid synchronization is a generic emergent feature of coupled systems when a controller based coupling, designed by the Lyapunov function stability, is first engineered to induce complete synchronization in the identical case, and then a large parameter mismatch is introduced. We distinguish between two different hybrid synchronization regimes that emerge with parameter perturbation. The first, called hard hybrid synchronization, occurs when the coupled systems display global phase synchronization, while the second, called soft hybrid synchronization, corresponds to a situation where, instead, the global synchronization feature no longer exists. We verify the existence of both classes of hybrid synchronization in numerical examples of the Rössler system, a Lorenz-like system, and also in electronic experiment.

  18. How to synchronize biological clocks.

    PubMed

    Russo, G; Di Bernardo, M

    2009-02-01

    This paper is concerned with a novel algorithm to study networks of biological clocks. A new set of conditions is established that can be used to verify whether an existing network synchronizes or to give guidelines to construct a new synthetic network of biological oscillators that synchronize. The methodology uses the so-called contraction theory from dynamical system theory and Gershgorin disk theorem. The strategy is validated on two examples: a model of glycolisis in yeast cells and a synthetic network of Repressilators that synchronizes.

  19. Synchronization of periodical cicada emergences.

    PubMed

    Hoppensteadt, F C; Keller, J B

    1976-10-15

    Synchronized insect emergences are shown to be a possible consequence of predation in the presence of a limited environmental carrying capacity through a mathematical model for cicada populations that includes these two features. Synchronized emergences, like those observed in 13- and 17-year cicades, are predicted for insects with sufficiently long life-spans. Balanced solutions, in which comparable emergences occur each year, are found for insects having sufficiently short life-spans, such as 3-, 4-, and 7-year cicadas. For the values used here, synchronized emergences occur for insects with life-spans of 10 years or more, and balanced emergences occur for life-spans of fewer than 10 years.

  20. Noncoherent Symbol Synchronization Techniques

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  1. Time synchronized video systems

    NASA Technical Reports Server (NTRS)

    Burnett, Ron

    1994-01-01

    The idea of synchronizing multiple video recordings to some type of 'range' time has been tried to varying degrees of success in the past. Combining this requirement with existing time code standards (SMPTE) and the new innovations in desktop multimedia however, have afforded an opportunity to increase the flexibility and usefulness of such efforts without adding costs over the traditional data recording and reduction systems. The concept described can use IRIG, GPS or a battery backed internal clock as the master time source. By converting that time source to Vertical Interval Time Code or Longitudinal Time Code, both in accordance with the SMPTE standards, the user will obtain a tape that contains machine/computer readable time code suitable for use with editing equipment that is available off-the-shelf. Accuracy on playback is then determined by the playback system chosen by the user. Accuracies of +/- 2 frames are common among inexpensive systems and complete frame accuracy is more a matter of the users' budget than the capability of the recording system.

  2. Synchronous identification of friendly targets

    DOEpatents

    Telle, John M.; Roger, Stutz A.

    1998-01-01

    A synchronous communication targeting system for use in battle. The present invention includes a transceiver having a stabilizing oscillator, a synchronous amplifier and an omnidirectional receiver, all in electrical communication with each other. A remotely located beacon is attached to a blackbody radiation source and has an amplitude modulator in electrical communication with a optical source. The beacon's amplitude modulator is set so that the optical source transmits radiation frequency at approximately the same or lower amplitude than that of the blackbody radiation source to which the beacon is attached. The receiver from the transceiver is adapted to receive frequencies approximately at or below blackbody radiation signals and sends such signals to the synchronous amplifier. The synchronous amplifier then rectifies and amplifies those signals which correspond to the predetermined frequency to therefore identify whether the blackbody radiation source is friendly or not.

  3. Competing Synchronization of Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Rosa, Epaminondas

    2006-03-01

    Coupled nonlinear oscillators abound in nature and in man-made devices. Think for example of two neurons in the brain competing to get the attention of a third neuron, and eventually developing some sort of synchronization process. This is a common feature involving oscillators in general, and can be studied using numerical simulations and/or experimental setups. In this talk, results involving electronic circuits and plasma discharges will be presented showing interesting features related to the types of oscillators and to the types of couplings. In particular, for the case of two oscillators competing for synchronization with a third one, the target oscillator synchronizes alternately to one or the other of the competing oscillators. The time intervals of synchronous states vary in a random-like manner. Numerical and experimental results will be presented and the consistency between them will be discussed.

  4. Incoherence-Mediated Remote Synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi

    2017-04-01

    In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.

  5. Synchronization waves in geometric networks.

    PubMed

    Leyva, I; Navas, A; Sendiña-Nadal, I; Buldú, J M; Almendral, J A; Boccaletti, S

    2011-12-01

    We report synchronization of networked excitable nodes embedded in a metric space, where the connectivity properties are mostly determined by the distance between units. Such a high clustered structure, combined with the lack of long-range connections, prevents full synchronization and yields instead the emergence of synchronization waves. We show that this regime is optimal for information transmission through the system, as it enhances the options of reconstructing the topology from the dynamics. Measurements of topological and functional centralities reveal that the wave-synchronization state allows detection of the most structurally relevant nodes from a single observation of the dynamics, without any a priori information on the model equations ruling the evolution of the ensemble.

  6. Anticipated synchronization in coupled complex Ginzburg-Landau systems.

    PubMed

    Ciszak, Marzena; Mayol, Catalina; Mirasso, Claudio R; Toral, Raul

    2015-09-01

    We study the occurrence of anticipated synchronization in two complex Ginzburg-Landau systems coupled in a master-slave configuration. Master and slave systems are ruled by the same autonomous function, but the slave system receives the injection from the master and is subject to a negative delayed self-feedback loop. We give evidence that the magnitude of the largest anticipation time, obtained for complex-valued coupling constants, depends on the dynamical regime where the system operates (defect turbulence, phase turbulence, or bichaos) and scales with the linear autocorrelation time of the system. We also provide analytical conditions for the stability of the anticipated synchronization manifold that are in qualitative agreement with those obtained numerically. Finally, we report on the existence of anticipated synchronization in coupled two-dimensional complex Ginzburg-Landau systems.

  7. Synchronization and Bellerophon states in conformist and contrarian oscillators.

    PubMed

    Qiu, Tian; Boccaletti, Stefano; Bonamassa, Ivan; Zou, Yong; Zhou, Jie; Liu, Zonghua; Guan, Shuguang

    2016-11-09

    The study of synchronization in generalized Kuramoto models has witnessed an intense boost in the last decade. Several collective states were discovered, such as partially synchronized, chimera, π or traveling wave states. We here consider two populations of globally coupled conformist and contrarian oscillators (with different, randomly distributed frequencies), and explore the effects of a frequency-dependent distribution of the couplings on the collective behaviour of the system. By means of linear stability analysis and mean-field theory, a series of exact solutions is extracted describing the critical points for synchronization, as well as all the emerging stationary coherent states. In particular, a novel non-stationary state, here named as Bellerophon state, is identified which is essentially different from all other coherent states previously reported in the Literature. A robust verification of the rigorous predictions is supported by extensive numerical simulations.

  8. Synchronization and Bellerophon states in conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Boccaletti, Stefano; Bonamassa, Ivan; Zou, Yong; Zhou, Jie; Liu, Zonghua; Guan, Shuguang

    2016-11-01

    The study of synchronization in generalized Kuramoto models has witnessed an intense boost in the last decade. Several collective states were discovered, such as partially synchronized, chimera, π or traveling wave states. We here consider two populations of globally coupled conformist and contrarian oscillators (with different, randomly distributed frequencies), and explore the effects of a frequency-dependent distribution of the couplings on the collective behaviour of the system. By means of linear stability analysis and mean-field theory, a series of exact solutions is extracted describing the critical points for synchronization, as well as all the emerging stationary coherent states. In particular, a novel non-stationary state, here named as Bellerophon state, is identified which is essentially different from all other coherent states previously reported in the Literature. A robust verification of the rigorous predictions is supported by extensive numerical simulations.

  9. Synchronization and Bellerophon states in conformist and contrarian oscillators

    PubMed Central

    Qiu, Tian; Boccaletti, Stefano; Bonamassa, Ivan; Zou, Yong; Zhou, Jie; Liu, Zonghua; Guan, Shuguang

    2016-01-01

    The study of synchronization in generalized Kuramoto models has witnessed an intense boost in the last decade. Several collective states were discovered, such as partially synchronized, chimera, π or traveling wave states. We here consider two populations of globally coupled conformist and contrarian oscillators (with different, randomly distributed frequencies), and explore the effects of a frequency–dependent distribution of the couplings on the collective behaviour of the system. By means of linear stability analysis and mean–field theory, a series of exact solutions is extracted describing the critical points for synchronization, as well as all the emerging stationary coherent states. In particular, a novel non-stationary state, here named as Bellerophon state, is identified which is essentially different from all other coherent states previously reported in the Literature. A robust verification of the rigorous predictions is supported by extensive numerical simulations. PMID:27827411

  10. Synchronized Swimming of Two Fish

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros; Novati, Guido; Abbati, Gabriele; Hejazialhosseini, Babak; van Rees, Wim

    2015-11-01

    We present simulations of two, self-propelled, fish-like swimmers that perform synchronized moves in a two-dimensional, viscous fluid. The swimmers learn to coordinate by receiving a reward for their synchronized actions. We analyze the swimming patterns emerging for different rewards in terms of their hydrodynamic efficiency and artistic impression. European Research Council (ERC) Advanced Investigator Award (No. 2-73985-14).

  11. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  12. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  13. Synchronous reactive programming in Ptolemy

    SciTech Connect

    Boulanger, F.; Vidal-Naquet, G.

    1996-12-31

    Synchronous reactive languages allow a high level deterministic description of reactive systems such as control-command systems. Their well defined mathematical semantics makes it possible to check formal properties on the control of a system. In previous work, we developed an object-oriented execution model for synchronous reactive modules. This model is implemented as a set of tools and a C++ class library, and allows us to use object-oriented methodologies and tools for the design of complex applications with both transformational and reactive parts. Among these design tools, the Ptolemy system stands as an object-oriented framework that supports various execution models, or {open_quotes}domains{close_quotes}. We are currently working on a translator from the output format of the Lustre and Esterel compilers to the Ptolemy language. Since no existing domain matches the reactive synchronous execution model, we also plan to develop a SEC (Synchronous Execution and Communication) domain. Such a domain will provide support for the execution of synchronous modules in Ptolemy. One of the most interesting features of Ptolemy is the communication between domains. Therefore we discuss the interface of the SEC domain to other domains to determine the meaning of communications between them. The main goal is to allow the use of synchronous reactive modules for the control of the behavior of data-flow or discrete event processes.

  14. Fs level laser-to-RF synchronization at REGAE

    NASA Astrophysics Data System (ADS)

    Titberidze, M.; Felber, M.; Lamb, T.; Loch, R.; Sydlo, C.; Schlarb, H.

    2017-07-01

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a unique linear accelerator capable of producing ultrashort (∼ 10 fs) electron bunches for studying fast processes in matter by means of ultrafast electron diffraction (UED) experiments. Additionally, REGAE is suitable for upcoming external injection experiments for laser wakefield acceleration (LWFA). In order to carry out both mentioned experiments, it is crucial to achieve fs level stability in terms of laser-to-RF synchronization. In this paper we present an advanced laser- to-RF synchronization scheme based on integrated Mach-Zehnder Modulator (MZM). The setup demonstrated the Titanium Sapphire photoinjector laser synchronization with 11 fs (rms) precision in the bandwidth up to 100 kHz. Long term timing drift measurements showed unprecedented peak-to-peak stability of 31 fs (7 fs rms) over 43 hours of measurement time. In addition, AM-PM coefficient of the MZM based laser-to-RF synchronization setup has been evaluated and showed a factor of 10 improved performance compared to conventional direct conversion based laser synchronization setup.

  15. Synchronization in Complex Oscillator Networks and Smart Grids

    SciTech Connect

    Dorfler, Florian; Chertkov, Michael; Bullo, Francesco

    2012-07-24

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.

  16. Direct evidence of flagellar synchronization through hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Wan, Kirsty; Goldstein, Raymond

    2013-11-01

    Eukaryotic cilia and flagella exhibit striking coordination, from the synchronous beating of two flagella in Chlamydomonas to the metachronal waves and large-scale flows displayed by carpets of cilia. However, the precise mechanisms responsible for flagellar synchronization remain unclear. We perform a series of experiments involving two individual flagella in a quiescent fluid. Cells are isolated from the colonial alga Volvox carteri, held in place at a fixed distance d, and oriented so that their flagellar beating planes coincide. In this fashion, we are able to explicitly assess the role of hydrodynamics in achieving synchronization. For closely separated cells, the flagella are capable of exhibiting a phase-locked state for thousands of beats at a time, despite significant differences in their intrinsic frequencies. For intermediate values of d, synchronous periods are interrupted by brief phase slips, while for d >> 1 the flagellar phase difference drifts almost linearly with time. The coupling strength extracted through analysis of the synchronization statistics exhibits excellent agreement with hydrodynamic predictions. This study unambiguously reveals that flagella coupled only through hydrodynamics are capable of exhibiting robust synchrony.

  17. Synchronization in complex oscillator networks and smart grids

    PubMed Central

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-01-01

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications. PMID:23319658

  18. Synchronization in complex oscillator networks and smart grids.

    PubMed

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-02-05

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

  19. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.

    PubMed

    Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na

    2015-09-03

    Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  20. Synchronization of phase oscillators with frequency-weighted coupling

    PubMed Central

    Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang

    2016-01-01

    Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings. PMID:26903110

  1. Synchronization of phase oscillators with frequency-weighted coupling

    NASA Astrophysics Data System (ADS)

    Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang

    2016-02-01

    Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.

  2. Synchronized flutter of two slender flags

    NASA Astrophysics Data System (ADS)

    Mougel, Jérôme; Doaré, Olivier; Michelin, Sébastien

    2016-08-01

    The interactions and synchronization of two parallel and slender flags in a uniform axial flow are studied in the present paper by generalizing Lighthill's Elongated Body Theory (EBT) and Lighthill's Large Amplitude Elongated Body Theory (LAEBT) to account for the hydrodynamic coupling between flags. The proposed method consists in two successive steps, namely the reconstruction of the flow created by a flapping flag within the LAEBT framework and the computation of the fluid force generated by this nonuniform flow on the second flag. In the limit of slender flags in close proximity, we show that the effect of the wakes have little influence on the long time coupled-dynamics and can be neglected in the modeling. This provides a simplified framework extending LAEBT to the coupled dynamics of two flags. Using this simplified model, both linear and large amplitude results are reported to explore the selection of the flapping regime as well as the dynamical properties of two side-by-side slender flags. Hydrodynamic coupling of the two flags is observed to destabilize the flags for most parameters, and to induce a long-term synchronization of the flags, either in-phase or out-of-phase.

  3. On the estimation of phase synchronization, spurious synchronization and filtering.

    PubMed

    Rios Herrera, Wady A; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F

    2016-12-01

    Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.

  4. On the estimation of phase synchronization, spurious synchronization and filtering

    NASA Astrophysics Data System (ADS)

    Rios Herrera, Wady A.; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F.

    2016-12-01

    Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.

  5. Bodily synchronization underlying joke telling

    PubMed Central

    Schmidt, R. C.; Nie, Lin; Franco, Alison; Richardson, Michael J.

    2014-01-01

    Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock–knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily “dance” occurs during structured conversation interactions and that this “dance” is constructed from a set of rhythms associated with the nested behavioral structure of the interaction. PMID:25177287

  6. How Synchronization Protects from Noise

    PubMed Central

    Tabareau, Nicolas; Slotine, Jean-Jacques; Pham, Quang-Cuong

    2010-01-01

    The functional role of synchronization has attracted much interest and debate: in particular, synchronization may allow distant sites in the brain to communicate and cooperate with each other, and therefore may play a role in temporal binding, in attention or in sensory-motor integration mechanisms. In this article, we study another role for synchronization: the so-called “collective enhancement of precision”. We argue, in a full nonlinear dynamical context, that synchronization may help protect interconnected neurons from the influence of random perturbations—intrinsic neuronal noise—which affect all neurons in the nervous system. More precisely, our main contribution is a mathematical proof that, under specific, quantified conditions, the impact of noise on individual interconnected systems and on their spatial mean can essentially be cancelled through synchronization. This property then allows reliable computations to be carried out even in the presence of significant noise (as experimentally found e.g., in retinal ganglion cells in primates). This in turn is key to obtaining meaningful downstream signals, whether in terms of precisely-timed interaction (temporal coding), population coding, or frequency coding. Similar concepts may be applicable to questions of noise and variability in systems biology. PMID:20090826

  7. Chaos synchronization based on a continuous chaos control method in semiconductor lasers with optical feedback.

    PubMed

    Murakami, A; Ohtsubo, J

    2001-06-01

    Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calculations for rate equations indicate that the stability of chaos synchronization depends significantly on the external mirror position. We performed a linear stability analysis for the rate equations. Our results show that the stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive mode competition between the two frequencies destroys the synchronization, but stable synchronization can be achieved when the mode competition is very weak.

  8. Modeling walker synchronization on the Millennium Bridge.

    PubMed

    Eckhardt, Bruno; Ott, Edward; Strogatz, Steven H; Abrams, Daniel M; McRobie, Allan

    2007-02-01

    On its opening day the London Millennium footbridge experienced unexpected large amplitude wobbling subsequent to the migration of pedestrians onto the bridge. Modeling the stepping of the pedestrians on the bridge as phase oscillators, we obtain a model for the combined dynamics of people and the bridge that is analytically tractable. It provides predictions for the phase dynamics of individual walkers and for the critical number of people for the onset of oscillations. Numerical simulations and analytical estimates reproduce the linear relation between pedestrian force and bridge velocity as observed in experiments. They allow prediction of the amplitude of bridge motion, the rate of relaxation to the synchronized state and the magnitude of the fluctuations due to a finite number of people.

  9. Modeling walker synchronization on the Millennium Bridge

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Ott, Edward; Strogatz, Steven H.; Abrams, Daniel M.; McRobie, Allan

    2007-02-01

    On its opening day the London Millennium footbridge experienced unexpected large amplitude wobbling subsequent to the migration of pedestrians onto the bridge. Modeling the stepping of the pedestrians on the bridge as phase oscillators, we obtain a model for the combined dynamics of people and the bridge that is analytically tractable. It provides predictions for the phase dynamics of individual walkers and for the critical number of people for the onset of oscillations. Numerical simulations and analytical estimates reproduce the linear relation between pedestrian force and bridge velocity as observed in experiments. They allow prediction of the amplitude of bridge motion, the rate of relaxation to the synchronized state and the magnitude of the fluctuations due to a finite number of people.

  10. Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system

    NASA Astrophysics Data System (ADS)

    Huang, Chengdai; Cao, Jinde

    2017-05-01

    This paper is concerned with the issues of synchronization and anti-synchronization for fractional chaotic financial system with market confidence by taking advantage of active control approach. Some sufficient conditions are derived to guarantee the synchronization and anti-synchronization for the proposed fractional system. Moreover, the relationship between the order and synchronization(anti-synchronization) is demonstrated numerically. It reveals that synchronization(anti-synchronization) is faster as the order increases. Finally, two illustrative examples are exploited to verify the efficiency of the obtained theoretical results.

  11. How to suppress undesired synchronization.

    PubMed

    Louzada, V H P; Araújo, N A M; Andrade, J S; Herrmann, H J

    2012-01-01

    Examples of synchronization can be found in a wide range of phenomena such as neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement is observed when contrarians sit at the highly connected elements. The same qualitative results are obtained for artificially generated networks and two real ones, namely, the Routers of the Internet and a neuronal network.

  12. How to suppress undesired synchronization

    PubMed Central

    Louzada, V. H. P.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2012-01-01

    Examples of synchronization can be found in a wide range of phenomena such as neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement is observed when contrarians sit at the highly connected elements. The same qualitative results are obtained for artificially generated networks and two real ones, namely, the Routers of the Internet and a neuronal network. PMID:22993685

  13. Remote synchronization in star networks.

    PubMed

    Bergner, A; Frasca, M; Sciuto, G; Buscarino, A; Ngamga, E J; Fortuna, L; Kurths, J

    2012-02-01

    We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.

  14. Digital data detection and synchronization

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Morris, J. F.

    1973-01-01

    The primary accomplishments have been in the analysis and simulation of receivers and bit synchronizers. It has been discovered that tracking rate effects play, a rather fundamental role in both receiver and synchronizer performance, but that data relating to recorder time-base-error, for the proper characterization of this phenomenon, is in rather short supply. It is possible to obtain operationally useful tape recorder time-base-error data from high signal-to-noise ratio tapes using synchronizers with relatively wideband tracking loops. Low signal-to-noise ratio tapes examined in the same way would not be synchronizable. Additional areas of interest covered are receiver false lock, cycle slipping, and other unusual phenomena, which have been described to some extent in this and earlier reports and simulated during the study.

  15. Synchronized passive imaging of single cavitation events

    NASA Astrophysics Data System (ADS)

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Chauvet, Daurian; Boch, Anne-Laure; Fink, Mathias; Tanter, Mickaël

    2011-09-01

    Passive cavitation detection techniques are usually of relatively low sensitivity to single cavitation events. Moreover, a single-element transducer is generally used, so that the spatial localization of these cavitation events is not possible, or is limited to the probing volume. To both detect and localize single cavitation events over an extended volume, the following experimental set-up has been used and validated: cavitation is induced with a focused single-element transducer (mean frequency 660 kHz, f♯ = 1) driven by a high power (up to 5 kW) electric burst of a few cycles, and the acoustic emission of the bubbles is recorded on a standard linear array (4-7 MHz), mounted on the side of the single element to probe its focal spot. Both the frequencies and the geometry used are appropriate to in vivo implementation. The recording of ultrasonic radio-frequency (RF) data was performed simultaneously on 64 channels of the array and was synchronized with the pulsed excitation. A single cavitation event results in a high frequency and coherent wave front on the RF data. Thanks to synchronization, these RF data are beam-formed to localize the event with a axial resolution of 0.3 mm. A small number of discrete events could also be separated with this method. Besides, B-mode images obtained with the linear array prior to passive detection allowed the positioning of the events within the tissue structure. This technique has been used first ex vivo on freshly harve pig and sheep thigh muscle: with a two cycle excitation, a 9 MPa cavitation threshold was found. Cavitation detection was also achieved in vivo with a five cycle burst excitation in sheep thigh muscle for a peak acoustic pressure of 11MPa. This technique could provide useful information in order to better understand, control and monitor the initiation phase of the histotripsy process.

  16. Synchronization in an optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Shlomi, Keren; Yuvaraj, D.; Baskin, Ilya; Suchoi, Oren; Winik, Roni; Buks, Eyal

    2015-03-01

    We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and the results are compared with the theoretical prediction.

  17. Synchronization with sound propagation delays

    NASA Astrophysics Data System (ADS)

    Haché, A.

    2010-04-01

    Complex systems that synchronize with acoustic signals, like chanting crowds and musical ensembles, have the intrinsic ability to maintain synchrony without external aid or visual cues, even when spread over wide areas. According to two models, the counterintuitive self-synchronization happens when the system's components have a spatial distribution that is sufficiently uniform. The roles of system size and density are examined for arrangements in 1, 2 and 3 dimensions. Asynchrony is predicted to become vanishingly small at high densities, and results suggest ways on how to minimize asynchrony in real-world situations.

  18. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  19. Optimized multiparty quantum clock synchronization

    SciTech Connect

    Ben-Av, Radel; Exman, Iaakov

    2011-07-15

    A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.

  20. Synchronization of the fractional-order generalized augmented Lü system and its circuit implementation

    NASA Astrophysics Data System (ADS)

    Xue, Wei; Xu, Jin-Kang; Cang, Shi-Jian; Jia, Hong-Yan

    2014-06-01

    In this paper, the synchronization of the fractional-order generalized augmented Lü system is investigated. Based on the predictor—corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincaré maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system parameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchronization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.

  1. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.

    PubMed

    Liu, Meiqin

    2009-09-01

    This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  2. Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Sheng; Liu, Zhen-Wei; Zhao, Yan; Liu, Zhao-Bing

    2012-04-01

    The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.

  3. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    PubMed

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  4. Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays

    PubMed Central

    Wang, Rubin; Wang, Weixiang; Cao, Jianting

    2010-01-01

    This paper studies two kinds of synchronization between two discrete-time networks with time delays, including inner synchronization within each network and outer synchronization between two networks. Based on Lyapunov stability theory and linear matrix inequality (LMI), sufficient conditions for two discrete-time networks to be asymptotic stability are derived in terms of LMI. Finally numerical examples are given to illustrate the effectiveness of our derived results. The theoretical understanding provides insights into the dynamics of two or more neural networks with appropriate couplings. PMID:21886675

  5. Synchronization Control for Stochastic Neural Networks with Mixed Time-Varying Delays

    PubMed Central

    Zhu, Qing; Song, Aiguo; Fei, Shumin; Yang, Yuequan; Cao, Zhiqiang

    2014-01-01

    Synchronization control of stochastic neural networks with time-varying discrete and continuous delays has been investigated. A novel control scheme is proposed using the Lyapunov functional method and linear matrix inequality (LMI) approach. Sufficient conditions have been derived to ensure the global asymptotical mean-square stability for the error system, and thus the drive system synchronizes with the response system. Also, the control gain matrix can be obtained. With these effective methods, synchronization can be achieved. Simulation results are presented to show the effectiveness of the theoretical results. PMID:25110747

  6. Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties

    NASA Astrophysics Data System (ADS)

    Wong, W. K.; Li, Hongjie; Leung, S. Y. S.

    2012-12-01

    The study investigates robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Based on the properties of the kronecker product and the stability of the fractional-order system, the robust synchronization criteria are derived by applying the nonlinear control. These criteria are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. The coupling configuration matrix is not necessary to be symmetric or irreducible, and the inner coupling matrix needs not to be symmetric, diagonal or positive definite. Two numerical examples are provided to demonstrate the validity of the presented synchronization scheme.

  7. Impulsive synchronization of discrete-time chaotic systems under communication constraints

    NASA Astrophysics Data System (ADS)

    Gao, Yanbo; Zhang, Xiaomei; Lu, Guoping; Zheng, Yufan

    2011-03-01

    This paper investigates the problem of impulsive synchronization of discrete-time chaotic systems subject to limited communication capacity. Control laws with impulses are derived by using measurement feedback, where the effect of quantization errors is considered. Sufficient conditions for asymptotic stability of synchronization error systems are given in terms of linear matrix inequalities and algebraic inequalities. Some numerical simulations are given to demonstrate the effectiveness of the method.

  8. Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling.

    PubMed

    Guo, Zhenyuan; Yang, Shaofu; Wang, Jun

    2015-06-01

    This paper presents theoretical results on the global exponential synchronization of multiple memristive neural networks with time delays. A novel coupling scheme is introduced, in a general topological structure described by a directed or undirected graph, with a linear diffusive term and discontinuous sign term. Several criteria are derived based on the Lyapunov stability theory to ascertain the global exponential stability of synchronization manifold in the coupling scheme. Simulation results for several examples are given to substantiate the effectiveness of the theoretical results.

  9. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  10. Fermi Timing and Synchronization System

    SciTech Connect

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  11. Sports Medicine Meets Synchronized Swimming.

    ERIC Educational Resources Information Center

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  12. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  13. Synchronization by elastic neuronal latencies

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  14. Tweaking synchronization by connectivity modifications

    NASA Astrophysics Data System (ADS)

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A.; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  15. PCM synchronization by word stuffing

    NASA Technical Reports Server (NTRS)

    Butman, S.

    1969-01-01

    When a transmitted word, consisting of a number of pulses, is detected and removed from the data stream, the space left by the removal is eliminated by a memory buffer. This eliminates the need for a clock synchronizer thereby removing instability problems.

  16. Tweaking synchronization by connectivity modifications.

    PubMed

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  17. Research on bit synchronization based on GNSS

    NASA Astrophysics Data System (ADS)

    Yu, Huanran; Liu, Yi-jun

    2017-05-01

    The signals transmitted by GPS satellites are divided into three components: carrier, pseudocode and data code. The processes of signal acquisition are acquisition, tracking, bit synchronization, frame synchronization, navigation message extraction, observation extraction and position speed calculation, among which bit synchronization is of greatest importance. The accuracy of bit synchronization and the shortening of bit synchronization time can help us to use satellite to realize positioning and acquire the information transmitted by satellite signals more accurately. Even under the condition of weak signal, how to improve bit synchronization performance is what we need to research. We adopt a method of polymorphic energy accumulation minima so as to find the bit synchronization point, as well as complete the computer simulation to conclude that under the condition of extremely weak signal power, this method still has superior synchronization performance, which can achieve high bit edge detection rate and the optimal bit error rate.

  18. Synchronization limit of weakly forced nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisa-Aki

    2014-10-01

    Nonlinear oscillators exhibit synchronization (injection-locking) to external periodic forcings, which underlies the mutual synchronization in networks of nonlinear oscillators. Despite its history of synchronization and the practical importance of injection-locking to date, there are many important open problems of an efficient injection-locking for a given oscillator. In this work, I elucidate a hidden mechanism governing the synchronization limit under weak forcings, which is related to a widely known inequality; Hölder's inequality. This mechanism enables us to understand how and why the efficient injection-locking is realized; a general theory of synchronization limit is constructed where the maximization of the synchronization range or the stability of synchronization for general forcings including pulse trains, and a fundamental limit of general m : n phase locking, are clarified systematically. These synchronization limits and their utility are systematically verified in the Hodgkin-Huxley neuron model as an example.

  19. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  20. Synchronization effect for uncertain quantum networks

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Gebremariam, Tesfay; Li, Chong; Song, Heshan

    2017-01-01

    We propose a novel technique for investigating the synchronization effect for uncertain networks with quantum chaotic behaviors in this paper. Through designing a special function to construct Lyapunov function of network and the adaptive laws of uncertain parameters, the synchronization between the uncertain network and the synchronization target can be realized, and the uncertain parameters in state equations of the network nodes are perfectly identified. All the theoretical results are verified by numerical simulations to demonstrate the effectiveness of the proposed synchronization technique.

  1. Synchronization between two coupled complex networks.

    PubMed

    Li, Changpin; Sun, Weigang; Kurths, Jürgen

    2007-10-01

    We study synchronization for two unidirectionally coupled networks. This is a substantial generalization of several recent papers investigating synchronization inside a network. We derive analytically a criterion for the synchronization of two networks which have the same (inside) topological connectivity. Then numerical examples are given which fit the theoretical analysis. In addition, numerical calculations for two networks with different topological connections are presented and interesting synchronization and desynchronization alternately appear with increasing value of the coupling strength.

  2. Don't homogenize, synchronize.

    PubMed

    Sawhney, M

    2001-01-01

    To be more responsive to customers, companies often break down organizational walls between their units--setting up all manner of cross-business and cross-functional task forces and working groups and promoting a "one-company" culture. But such attempts can backfire terribly by distracting business and functional units and by contaminating their strategies and processes. Fortunately, there's a better way, says the author. Rather than tear down organizational walls, a company can make them permeable to information. It can synchronize all its data on products, filtering the information through linked databases and applications and delivering it in a coordinated, meaningful form to customers. As a result, the organization can present a single, unified face to the customer--one that can change as market conditions warrant--without imposing homogeneity on its people. Such synchronization can lead not just to stronger customer relationships and more sales but also to greater operational efficiency. It allows a company, for example, to avoid the high costs of maintaining many different information systems with redundant data. The decoupling of product control from customer control in a synchronized company reflects a fundamental fact about business: While companies have to focus on creating great products, customers think in terms of the activities they perform and the benefits they seek. For companies, products are ends, but for customers, products are means. The disconnect between how customers think and how companies organize themselves is what leads to inefficiencies and missed opportunities, and that's exactly the problem that synchronization solves. Synchronized companies can get closer to customers, sustain product innovation, and improve operational efficiency--goals that have traditionally been very difficult to achieve simultaneously.

  3. Synchronization in chaotic Hamiltonian systems and a geophysical application.

    PubMed

    Hannachi, A

    1999-07-01

    This paper addresses the question of the rate of synchronization of two identical systems as a function of the inserting time interval Delta t between inserted variables of the driving system in the role of the same variables of the driven system in a simplified Hamiltonian system and its application to a simplified geophysical model. We start by analyzing the synchronization in a simplified two-degree Hamiltonian system. The synchronization rate turns out to be a decreasing function of the inserting time interval Delta t up to a certain limit Delta t(o) where the process reverses and the synchronization rate becomes slower as the inserting frequency decreases. The key point of the analysis uses a second-order Taylor expansion of the system resolvent which indicates that synchronization rate is basically of order O(Delta t(2)) for small Delta t. The study is then extended to include a simplified geophysical system. A nonlinear one-dimensional shallow-water model on a periodic domain meant to represent a latitudinal circle around 45 degrees N is used. It is found that when the zonal wind is inserted, the maximum synchronization rate is obtained when the inserting time interval is approximately 4 h. When the meridional wind is inserted, it is obtained at slightly less than 4 h. It is shown, in particular, that the synchronization rate depends on the latitude (or the Coriolis parameter). A low-order simplified dynamical system derived from the one-dimensional shallow-water model is used to show that this optimum time interval Delta t(o) when the zonal wind and the geopotential, for example, are inserted varies approximately as square root of [2]/2 Omega sin phi to accuracy O(Delta t(3)). Analyses performed with a linear version of the shallow-water model reveal that this latter can be used to explain the observed convergence behavior in the nonlinear model. The only point is the choice of the stationary state for linearization purposes. It is then suggested that in

  4. Sensorimotor Synchronization across the Life Span

    ERIC Educational Resources Information Center

    Drewing, Knut; Aschersleben, Gisa; Li, Shu-Chen

    2006-01-01

    The present study investigates the contribution of general processing resources as well as other more specific factors to the life-span development of sensorimotor synchronization and its component processes. Within a synchronization tapping paradigm, a group of 286 participants, 6 to 88 years of age, were asked to synchronize finger taps with…

  5. High speed synchronizer card utilizing VLSI technology

    NASA Technical Reports Server (NTRS)

    Speciale, Nicholas; Wunderlich, Kristin

    1988-01-01

    A generic synchronizer card capable of providing standard NASA communication block telemetry frame synchronization and quality control was fabricated using VLSI technology. Four VLSI chip sets are utilized to shrink all the required functions into a single synchronizer card. The application of VLSI technology to telemetry systems resulted in an increase in performance and a decrease in cost and size.

  6. Delay synchronization of temporal Boolean networks

    NASA Astrophysics Data System (ADS)

    Wei, Qiang; Xie, Cheng-jun; Liang, Yi; Niu, Yu-jun; Lin, Da

    2016-01-01

    This paper investigates the delay synchronization between two temporal Boolean networks base on semi-tensor product method, which improve complete synchronization. Necessary and sufficient conditions for delay synchronization are drawn base on algebraic expression of temporal Boolean networks. A example is presented to show the effectiveness of theoretical analysis.

  7. Criterion of quantum synchronization and controllable quantum synchronization based on an optomechanical system

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2015-02-01

    We propose a quantitative criterion to determine whether the coupled quantum systems can achieve complete synchronization or phase synchronization in the process of analyzing quantum synchronization. Adopting the criterion, we discuss the quantum synchronization effects between optomechanical systems and find that the error between the systems and the fluctuation of error is sensitive to coupling intensity by calculating the largest Lyapunov exponent of the model and quantum fluctuation, respectively. By taking the appropriate coupling intensity, we can control quantum synchronization even under different logical relationships between switches. Finally, we simulate the dynamical evolution of the system to verify the quantum synchronization criterion and to show the ability of synchronization control.

  8. Chaos synchronization by resonance of multiple delay times

    NASA Astrophysics Data System (ADS)

    Martin, Manuel Jimenez; D'Huys, Otti; Lauerbach, Laura; Korutcheva, Elka; Kinzel, Wolfgang

    2016-02-01

    Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single-delay networks, the number of synchronized sublattices is determined by the greatest common divisor (GCD) of the network loop lengths. We demonstrate analytically the GCD condition in networks of iterated Bernoulli maps with multiple delay times and complement our analytic results by numerical phase diagrams, providing parameter regions showing complete and sublattice synchronization by resonance for Tent and Bernoulli maps. We compare networks with the same GCD with single and multiple delays, and we investigate the sensitivity of the correlation to a detuning between the delays in a network of coupled Stuart-Landau oscillators. Moreover, the GCD condition also allows detection of time-delay resonances, leading to high correlations in nonsynchronizable networks. Specifically, GCD-induced resonances are observed both in a chaotic asymmetric network and in doubly connected rings of delay-coupled noisy linear oscillators.

  9. Synchronization of moving oscillators in three dimensional space

    NASA Astrophysics Data System (ADS)

    Majhi, Soumen; Ghosh, Dibakar

    2017-05-01

    We investigate the macroscopic behavior of a dynamical network consisting of a time-evolving wiring of interactions among a group of random walkers. We assume that each walker (agent) has an oscillator and show that depending upon the nature of interaction, synchronization arises where each of the individual oscillators are allowed to move in such a random walk manner in a finite region of three dimensional space. Here, the vision range of each oscillator decides the number of oscillators with which it interacts. The live interaction between the oscillators is of intermediate type (i.e., not local as well as not global) and may or may not be bidirectional. We analytically derive the density dependent threshold of coupling strength for synchronization using linear stability analysis and numerically verify the obtained analytical results. Additionally, we explore the concept of basin stability, a nonlinear measure based on volumes of basin of attractions, to investigate how stable the synchronous state is under large perturbations. The synchronization phenomenon is analyzed taking limit cycle and chaotic oscillators for wide ranges of parameters like interaction strength k between the walkers, speed of movement v, and vision range r.

  10. Multistatic radar: Synchronization and time reference system

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1994-08-01

    A synchronization and time reference system for multistatic radar (MSR) is presented. The report also gives a summary of the most important parameter values of the synchronization process in MSR. Some reference oscillator systems using Loran C and global positioning system (GPS) receivers have been briefly analyzed. The synchronization method is based on a multioscillator system from the HP time and frequency standard system, the HP 55000 system. The multioscillator concept gives a more robust and redundant solution of the synchronization problem. The synchronization system can also be given external support by other time precision systems, for instance the GPS system.

  11. Intermittent phase synchronization in human epileptic brain

    NASA Astrophysics Data System (ADS)

    Moskalenko, Olga I.; Koloskova, Anastasya D.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-03-01

    We found the intermittent phase synchronization in human epileptic brain. We show that the phases of the synchronous behavior are observed both during the epileptic seizures and in the fields of the background activity of the brain. We estimate the degree of intermittent phase synchronization in both considered cases and found that the epileptic seizures are characterized by the higher degree of synchronization in comparison with the fields of background activity. For estimation of synchronization degree the modification of the method for estimation of zero conditional Lyapunov exponent from time series proposed in [PRE 92 (2015) 012913] has been used.

  12. Different Synchronization Schemes for Chaotic Rikitake Systems

    NASA Astrophysics Data System (ADS)

    Khan, M. Ali

    2013-06-01

    This paper presents the chaos synchronization by designing a different type of controllers. Firstly, we propose the synchronization of bi-directional coupled chaotic Rikitake systems via hybrid feedback control. Secondly, we study the synchronization of unidirectionally coupled Rikitake systems using hybrid feedback control. Lastly, we investigate the synchronization of unidirectionally coupled Rikitake chaotic systems using tracking control. Comparing all the results, finally, we conclude that tracking control is more effective than feedback control. Simulation results are presented to show the efficiency of synchronization schemes.

  13. Partial Synchronization of Interconnected Boolean Networks.

    PubMed

    Chen, Hongwei; Liang, Jinling; Lu, Jianquan

    2017-01-01

    This paper addresses the partial synchronization problem for the interconnected Boolean networks (BNs) via the semi-tensor product (STP) of matrices. First, based on an algebraic state space representation of BNs, a necessary and sufficient criterion is presented to ensure the partial synchronization of the interconnected BNs. Second, by defining an induced digraph of the partial synchronized states set, an equivalent graphical description for the partial synchronization of the interconnected BNs is established. Consequently, the second partial synchronization criterion is derived in terms of adjacency matrix of the induced digraph. Finally, two examples (including an epigenetic model) are provided to illustrate the efficiency of the obtained results.

  14. Inhomogeneity induces relay synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Frasca, Mattia; Fortuna, Luigi; Boccaletti, Stefano

    2016-04-01

    Relay synchronization is a collective state, originally found in chains of interacting oscillators, in which uncoupled dynamical units synchronize through the action of mismatched inner nodes that relay the information but do not synchronize with them. It is demonstrated herein that relay synchronization is not limited to such simple motifs, rather it can emerge in larger and arbitrary network topologies. In particular, we show how this phenomenon can be observed in networks of chaotic systems in the presence of some mismatched units, the relay nodes, and how it is actually responsible for an enhancement of synchronization in the network.

  15. Photonic cavity synchronization of nanomechanical oscillators.

    PubMed

    Bagheri, Mahmood; Poot, Menno; Fan, Linran; Marquardt, Florian; Tang, Hong X

    2013-11-22

    Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical synchronization between mechanically isolated nanomechanical resonators. Optical backaction gives rise to both reactive and dissipative coupling of the mechanical resonators, leading to coherent oscillation and mutual locking of resonators with dynamics beyond the widely accepted phase oscillator (Kuramoto) model. In addition to the phase difference between the oscillators, also their amplitudes are coupled, resulting in the emergence of sidebands around the synchronized carrier signal.

  16. Inhomogeneity induces relay synchronization in complex networks.

    PubMed

    Gambuzza, Lucia Valentina; Frasca, Mattia; Fortuna, Luigi; Boccaletti, Stefano

    2016-04-01

    Relay synchronization is a collective state, originally found in chains of interacting oscillators, in which uncoupled dynamical units synchronize through the action of mismatched inner nodes that relay the information but do not synchronize with them. It is demonstrated herein that relay synchronization is not limited to such simple motifs, rather it can emerge in larger and arbitrary network topologies. In particular, we show how this phenomenon can be observed in networks of chaotic systems in the presence of some mismatched units, the relay nodes, and how it is actually responsible for an enhancement of synchronization in the network.

  17. Synchronization and Phase Dynamics of Oscillating Foils

    NASA Astrophysics Data System (ADS)

    Finkel, Cyndee L.

    In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is

  18. Experience dependent plasticity alters cortical synchronization

    PubMed Central

    Kilgard, M.P.; Vazquez, J.L.; Engineer, N.D.; Pandya, P.K.

    2008-01-01

    Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However, pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization, and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors shaping the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing. PMID:17317055

  19. Synchronization and Registration of Cine Magnetic Resonance and Dynamic Computed Tomography Images of the Heart.

    PubMed

    Betancur, Julian; Simon, Antoine; Langella, Bernard; Leclercq, Christophe; Hernandez, Alfredo; Garreau, Mireille

    2016-09-01

    The synchronization and registration of dynamic computed tomography (CT) and magnetic resonance images (MRI) of the heart is required to perform a combined analysis of their complementary information. We propose a novel method that synchronizes and registers intrapatient dynamic CT and cine-MRI short axis view (SAX). For the synchronization step, a normalized cross-correlation curve is computed from each image sequence to describe the global cardiac dynamics. The time axes of these curves are then warped using an adapted dynamic time warping (DTW) procedure. The adaptation constrains the time deformation to obtain a coherent warping function. The registration step then computes the rigid transformation that maximizes the multiimage normalized mutual information of DTW-synchronized images. The DTW synchronization and the multiimage registration were evaluated using dynamic CT and cine-SAX acquisitions from nine patients undergoing cardiac resynchronization therapy. The distance between the end-systolic phases after DTW was used to evaluate the synchronization. Mean errors, expressed as a percentage of the RR-intervals, were 3.9% and 3.7% after adapted DTW synchronization against 10.8% and 11.3% after linear synchronization, for dynamic CT and cine-SAX, respectively. This suggests that the adapted DTW synchronization leads to a coherent warping of cardiac dynamics. The multiimage registration was evaluated using fiducial points. Compared to a monoimage and a two-image registration, the multiimage registration of DTW-synchronized images obtained the lowest mean fiducial error showing that the use of dynamic voxel intensity information improves the registration.

  20. Graph partitions and cluster synchronization in networks of oscillators

    PubMed Central

    Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio

    2017-01-01

    Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454

  1. Detecting synchronization in coupled stochastic ecosystem networks

    NASA Astrophysics Data System (ADS)

    Kouvaris, N.; Provata, A.; Kugiumtzis, D.

    2010-01-01

    Instantaneous phase difference, synchronization index and mutual information are considered in order to detect phase transitions, collective behaviours and synchronization phenomena that emerge for different levels of diffusive and reactive activity in stochastic networks. The network under investigation is a spatial 2D lattice which serves as a substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. Kinetic Monte Carlo simulations demonstrate that the system spontaneously organizes into a number of asynchronous local oscillators, when only nearest neighbour interactions are considered. In contrast, the oscillators can be correlated, phase synchronized and completely synchronized when introducing different interactivity rules (diffusive or reactive) for nearby and distant species. The quantitative measures of synchronization show that long distance diffusion coupling induces phase synchronization after a well defined transition point, while long distance reaction coupling induces smeared phase synchronization.

  2. Synchronization of electronic genetic networks.

    PubMed

    Wagemakers, Alexandre; Buldú, Javier M; García-Ojalvo, Jordi; Sanjuán, Miguel A F

    2006-03-01

    We describe a simple analog electronic circuit that mimics the behavior of a well-known synthetic gene oscillator, the repressilator, which represents a set of three genes repressing one another. Synchronization of a population of such units is thoroughly studied, with the aim to compare the role of global coupling with that of global forcing on the population. Our results show that coupling is much more efficient than forcing in leading the gene population to synchronized oscillations. Furthermore, a modification of the proposed analog circuit leads to a simple electronic version of a genetic toggle switch, which is a simple network of two mutual repressor genes, where control by external forcing is also analyzed.

  3. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  4. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  5. [Synchronous diverticulitis: a case report.].

    PubMed

    Castañeda-Argáiz, R; Rodríguez-Zentner, H A; Tapia, H; González-Contreras, Q H

    2010-01-01

    Diverticular colonic disease is not as common in developing nations as in western and industrialized societies, accounting for approximately 130 000 hospitalizations per year in the United States, being diverticulitis the most frequent complication. Synchronous presentation of this complication is very rare, with only one case reported in literature. We present a patient who presented with diffuse abdominal pain. Colonoscopy was performed identifying a mass in the sigmoid colon and a perforation in the cecum. Patient underwent total abdominal colectomy with ileorectal anastomosis and protective loop ileostomy. Histopathologic examination revealed synchronous complicated diverticular disease of the sigmoid and cecum. In this report we disclose this type of atypical presentation of diverticular disease and establish that the approach taken is safe and feasible.

  6. Parallel integrated frame synchronizer chip

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder Singh (Inventor); Solomon, Jeffrey Michael (Inventor); Bennett, Toby Dennis (Inventor)

    2000-01-01

    A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.

  7. New Solutions for Synchronized Domineering

    NASA Astrophysics Data System (ADS)

    Bahri, Sahil; Kruskal, Clyde P.

    Cincotti and Iida invented the game of Synchronized Domineering, and analyzed a few special cases. We develop a more general technique of analysis, and obtain results for many more special cases. We obtain complete results for board sizes 3 ×n, 5 ×n, 7 ×n, and 9 ×n (for n large enough) and partial results for board sizes 2×n, 4 ×n, and 6 ×n.

  8. High Accuracy Time Transfer Synchronization

    DTIC Science & Technology

    1994-12-01

    HIGH ACCURACY TIME TRANSFER SYNCHRONIZATION Paul Wheeler, Paul Koppang, David Chalmers, Angela Davis, Anthony Kubik and William Powell U.S. Naval...Observatory Washington, DC 20392 Abstract In July 1994, the US Naval Observatory (USNO) Time Service System Engineering Division conducted a...field test to establish a baseline accuracy for two-way satellite time transfer synchro- nization. Three Hewlett-Packard model 5071 high performance

  9. Digital-data receiver synchronization

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-08-02

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  10. Conveyor-belt clock synchronization

    SciTech Connect

    Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.; Wong, Franco N.C.; Lloyd, Seth

    2004-10-01

    A protocol for synchronizing distant clocks is proposed that does not rely on the arrival times of the signals which are exchanged, and an optical implementation based on coherent-state pulses is described. This protocol is not limited by any dispersion that may be present in the propagation medium through which the light signals are exchanged. Possible improvements deriving from the use of quantum-mechanical effects are also addressed.

  11. Network synchronization in hippocampal neurons.

    PubMed

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-03-22

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits.

  12. Forced Synchronization of Eukaryotic Cells

    NASA Astrophysics Data System (ADS)

    Battogtokh, Dorjsuren

    A comprehensive mathematical model of the budding yeast cell cycle, accounting for several dozen published experiments, has thirty five variables and one hundred and forty parameters.5 Detailed models describing cell cycle regulation in other organisms have also a large number of variables and parameters. Complexity rises further upon integrating the cell cycle network to other pathways in the cell. For some practical and theoretical issues, abundant complexity in realistic models can be tackled by studying first a functional subset of a model to understand the mechanism of a concerned process, and then by revealing the conditions of its occurrence in a detailed model. Here we review this approach applied to the problem of cell synchronization. Using analytic results obtained from a minimal model, we simulate cell synchronization in comprehensive mathematical models for budding and fission yeast cell cycles. Our results demonstrate that an experimental method based on periodic forcing of the synthesis of cell cycle regulators can be a powerful tool for cell synchronization.

  13. Network synchronization in hippocampal neurons

    PubMed Central

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-01-01

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron’s tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network’s activity and dynamics, contributing to our understanding of developing neural circuits. PMID:26961000

  14. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    PubMed

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  15. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  16. Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization.

    PubMed

    Fu, Chenbo; Lin, Weijie; Huang, Liang; Wang, Xingang

    2014-05-01

    Synchronization transition in networks of nonlocally coupled chaotic oscillators is investigated. It is found that in reaching the state of global synchronization the networks can stay in various states of partial synchronization. The stability of the partial synchronization states is analyzed by the method of eigenvalue analysis, in which the important roles of the network topological symmetry on synchronization transition are identified. Moreover, for networks possessing multiple topological symmetries, it is found that the synchronization transition can be divided into different stages, with each stage characterized by a unique synchronous pattern of the oscillators. Synchronization transitions in networks of nonsymmetric topology and nonidentical oscillators are also investigated, where the partial synchronization states, although unstable, are found to be still playing important roles in the transitions.

  17. Synergistic effect of repulsive inhibition in synchronization of excitatory networks

    NASA Astrophysics Data System (ADS)

    Belykh, Igor; Reimbayev, Reimbay; Zhao, Kun

    2015-06-01

    We show that the addition of pairwise repulsive inhibition to excitatory networks of bursting neurons induces synchrony, in contrast to one's expectations. Through stability analysis, we reveal the mechanism underlying this purely synergistic phenomenon and demonstrate that it originates from the transition between different types of bursting, caused by excitatory-inhibitory synaptic coupling. This effect is generic and observed in different models of bursting neurons and fast synaptic interactions. We also find a universal scaling law for the synchronization stability condition for large networks in terms of the number of excitatory and inhibitory inputs each neuron receives, regardless of the network size and topology. This general law is in sharp contrast with linearly coupled networks with positive (attractive) and negative (repulsive) coupling where the placement and structure of negative connections heavily affect synchronization.

  18. A statistical modeling approach for detecting generalized synchronization

    PubMed Central

    Schumacher, Johannes; Haslinger, Robert; Pipa, Gordon

    2012-01-01

    Detecting nonlinear correlations between time series presents a hard problem for data analysis. We present a generative statistical modeling method for detecting nonlinear generalized synchronization. Truncated Volterra series are used to approximate functional interactions. The Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are estimated via l1 and l2 regularized maximum likelihood regression. The regularization manages the high number of kernel coefficients and allows feature selection strategies yielding sparse models. The method's performance is evaluated on different coupled chaotic systems in various synchronization regimes and analytical results for detecting m:n phase synchrony are presented. Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal local field potentials recorded in different parts of macaque visual cortex. PMID:23004851

  19. Soliton synchronization in the focusing nonlinear Schrödinger equation.

    PubMed

    Sun, Yu-Hao

    2016-05-01

    The focusing nonlinear Schrödinger equation (NLSE) describes propagation of quasimonochromatic waves in weakly nonlinear media. The aim of this study is to determine conditions of soliton synchronization in the NLSE in terms of the solitons' position and phase parameters. For this purpose, the concept of asymptotic middle states of solitons in the NLSE is first introduced. With soliton solutions of the NLSE, it is shown that soliton synchronization can be achieved by synchronizing the asymptotic middle states of the solitons, and conditions of soliton synchronization in terms of the solitons' position and phase parameters are given. Although the interaction of the solitons is nonlinear, the conditions are linear equations. Then, aided with the synchronization conditions, simple initial conditions are presented for producing synchronized interaction of solitons without the need to obtain analytic expressions for the synchronized interaction of the solitons. The initial conditions are summations of fundamental solitons with no mutual overlap, so they might be convenient to implement in applicative contexts.

  20. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    PubMed Central

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  1. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links.

    PubMed

    Diwadkar, Amit; Vaidya, Umesh

    2016-04-12

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies.

  2. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    PubMed

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    NASA Astrophysics Data System (ADS)

    Diwadkar, Amit; Vaidya, Umesh

    2016-04-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies.

  4. A Megawatt Power Module for Ship Service - Supplement. Volume 1: Program Technical Report

    DTIC Science & Technology

    2007-06-01

    Alternator” otherwise known as an “AC Homopolar ” or “Synchronous Homopolar ” machine for this application. The various motor /generator machine...After reviewing alternative motor /generator technologies as discussed above, a Homopolar Inductor Alternator (HIA) was selected for the technology...integrated flywheel energy storage system with homopolar inductor motor /generator and high-frequency drive”, Industry Applications, IEEE Transactions on

  5. A discrete-time chaos synchronization system for electronic locking devices

    NASA Astrophysics Data System (ADS)

    Minero-Ramales, G.; López-Mancilla, D.; Castañeda, Carlos E.; Huerta Cuellar, G.; Chiu Z., R.; Hugo García López, J.; Jaimes Reátegui, R.; Villafaña Rauda, E.; Posadas-Castillo, C.

    2016-11-01

    This paper presents a novel electronic locking key based on discrete-time chaos synchronization. Two Chen chaos generators are synchronized using the Model-Matching Approach, from non-linear control theory, in order to perform the encryption/decryption of the signal to be transmitted. A model/transmitter system is designed, generating a key of chaotic pulses in discrete-time. A plant/receiver system uses the above mentioned key to unlock the mechanism. Two alternative schemes to transmit the private chaotic key are proposed. The first one utilizes two transmission channels. One channel is used to encrypt the chaotic key and the other is used to achieve output synchronization. The second alternative uses only one transmission channel for obtaining synchronization and encryption of the chaotic key. In both cases, the private chaotic key is encrypted again with chaos to solve secure communication-related problems. The results obtained via simulations contribute to enhance the electronic locking devices.

  6. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Kalloniatis, Alexander C.

    2016-06-01

    We present an analysis of conditions under which the dynamics of a frustrated Kuramoto—or Kuramoto-Sakaguchi—model on sparse networks can be tuned to enhance synchronization. Using numerical optimization techniques, linear stability, and dimensional reduction analysis, a simple tuning scheme for setting node-specific frustration parameters as functions of native frequencies and degrees is developed. Finite-size scaling analysis reveals that even partial application of the tuning rule can significantly reduce the critical coupling for the onset of synchronization. In the second part of the paper, a codynamics is proposed, which allows a dynamic tuning of frustration parameters simultaneously with the ordinary Kuramoto dynamics. We find that such codynamics enhance synchronization when operating on slow time scales, and impede synchronization when operating on fast time scales relative to the Kuramoto dynamics.

  7. Synchronization of dynamic response measurements for the purpose of structural health monitoring

    NASA Astrophysics Data System (ADS)

    Maes, K.; Reynders, E.; Rezayat, A.; De Roeck, G.; Lombaert, G.

    2016-09-01

    This paper presents a technique for offline time synchronization of data acquisition systems for linear structures with proportional damping. The technique can be applied when direct synchronization of data acquisition systems is impossible or not sufficiently accurate. The synchronization is based on the acquired dynamic response of the structure only, and does not require the acquisition of a shared sensor signal or a trigger signal. The time delay is identified from the spurious phase shift of the mode shape components that are obtained from system identification. A demonstration for a laboratory experiment on a cantilever steel beam shows that the proposed methodology can be used for accurate time synchronization, resulting in a significant improvement of the accuracy of the identified mode shapes.

  8. Global synchronization of memristive neural networks subject to random disturbances via distributed pinning control.

    PubMed

    Guo, Zhenyuan; Yang, Shaofu; Wang, Jun

    2016-12-01

    This paper presents theoretical results on global exponential synchronization of multiple memristive neural networks in the presence of external noise by means of two types of distributed pinning control. The multiple memristive neural networks are coupled in a general structure via a nonlinear function, which consists of a linear diffusive term and a discontinuous sign term. A pinning impulsive control law is introduced in the coupled system to synchronize all neural networks. Sufficient conditions are derived for ascertaining global exponential synchronization in mean square. In addition, a pinning adaptive control law is developed to achieve global exponential synchronization in mean square. Both pinning control laws utilize only partial state information received from the neighborhood of the controlled neural network. Simulation results are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. H ∞ Cluster Synchronization for a Class of Neutral Complex Dynamical Networks with Markovian Switching

    PubMed Central

    2014-01-01

    H ∞ cluster synchronization problem for a class of neutral complex dynamical networks (NCDNs) with Markovian switching is investigated in this paper. Both the retarded and neutral delays are considered to be interval mode dependent and time varying. The concept of H ∞ cluster synchronization is proposed to quantify the attenuation level of synchronization error dynamics against the exogenous disturbance of the NCDNs. Based on a novel Lyapunov functional, by employing some integral inequalities and the nature of convex combination, mode delay-range-dependent H ∞ cluster synchronization criteria are derived in the form of linear matrix inequalities which depend not only on the disturbance attenuation but also on the initial values of the NCDNs. Finally, numerical examples are given to demonstrate the feasibility and effectiveness of the proposed theoretical results. PMID:24892088

  10. Finite-time H∞ synchronization for complex networks with semi-Markov jump topology

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Park, Ju H.; Wu, Zheng-Guang; Zhang, Zhengqiang

    2015-07-01

    This paper investigates the problem of finite-time H∞ synchronization for complex networks with time-varying delays and semi-Markov jump topology. The network topologies are assumed to switch from one to another at different instants. Such a switching is governed by a semi-Markov process which are time-varying and dependent on the sojourn-time h. Attention is focused on proposing some synchronization criteria guaranteeing the underlying network is stochastically finite-time H∞ synchronized. By using the properties of Kronecker product combined with the Lyapunov-Krasovskii method, the solutions to the finite-time H∞ synchronization problem are formulated in the form of low-dimensional linear matrix inequalities. Finally, a numerical example is given to demonstrate the effectiveness of our proposed approach.

  11. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    NASA Astrophysics Data System (ADS)

    Yan, Sen-Lin

    2014-09-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range.

  12. Determining the degree of synchronism for intermittent phase synchronization in human electroencephalography data

    NASA Astrophysics Data System (ADS)

    Koloskova, A. D.; Moskalenko, O. I.

    2017-05-01

    The phenomenon of intermittent phase synchronization during development of epileptic activity in human beings has been discovered based on EEG data. The presence of synchronous behavior phases has been detected both during spike-wave discharges and in the regions of background activity of the brain. The degree of synchronism in the intermittent phase-synchronization regime in both cases has been determined, and it has been established that spike-wave discharges are characterized by a higher degree of synchronism than exists in the regions of background activity of the brain. To determine the degree of synchronism, a modified method of evaluating zero conditional Lyapunov exponents from time series is proposed.

  13. Feedback linearizing control of a MIMO power system

    NASA Astrophysics Data System (ADS)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  14. Spatio-temporal synchronization of recurrent epidemics.

    PubMed Central

    He, Daihai; Stone, Lewi

    2003-01-01

    Long-term spatio-temporal datasets of disease incidences have made it clear that many recurring epidemics, especially childhood infections, tend to synchronize in-phase across suburbs. In some special cases, epidemics between suburbs have been found to oscillate in an out-of-phase ('antiphase') relationship for lengthy periods. Here, we use modelling techniques to help explain the presence of in-phase and antiphase synchronization. The nonlinearity of the epidemic dynamics is often such that the intensity of the outbreak influences the phase of the oscillation thereby introducing 'shear', a factor that is found to be important for generating antiphase synchronization. By contrast, the coupling between suburbs via the immigration of infectives tends to enhance in-phase synchronization. The emerging synchronization depends delicately on these opposite factors. We use theoretical results from continuous time models to provide a framework for understanding the relationship between synchronization patterns for different model structures. PMID:12965019

  15. A chimeric path to neuronal synchronization

    SciTech Connect

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  16. A chimeric path to neuronal synchronization

    NASA Astrophysics Data System (ADS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  17. A chimeric path to neuronal synchronization.

    PubMed

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  18. Synchronization of chaotic systems with different order.

    PubMed

    Femat, Ricardo; Solís-Perales, Gualberto

    2002-03-01

    The chaotic synchronization of third-order systems and second-order driven oscillator is studied in this paper. Such a problem is related to synchronization of strictly different chaotic systems. We show that dynamical evolution of second-order driven oscillators can be synchronized with the canonical projection of a third-order chaotic system. In this sense, it is said that synchronization is achieved in reduced order. Duffing equation is chosen as slave system whereas Chua oscillator is defined as master system. The synchronization scheme has nonlinear feedback structure. The reduced-order synchronization is attained in a practical sense, i.e., the difference e=x(3)-x(1)(') is close to zero for all time t> or =t(0)> or =0, where t(0) denotes the time of the control activation.

  19. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    SciTech Connect

    Danziger, Michael M. Havlin, Shlomo; Moskalenko, Olga I.; Kurkin, Semen A.; Zhang, Xiyun; Boccaletti, Stefano

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  20. Explosive synchronization coexists with classical synchronization in the Kuramoto model.

    PubMed

    Danziger, Michael M; Moskalenko, Olga I; Kurkin, Semen A; Zhang, Xiyun; Havlin, Shlomo; Boccaletti, Stefano

    2016-06-01

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10(6)) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  1. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  2. Nondestructive synchronous beam current monitor

    SciTech Connect

    Covo, Michel Kireeff

    2014-12-15

    A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA.

  3. Synchronous Sampling for Distributed Experiments

    NASA Astrophysics Data System (ADS)

    Wittkamp, M.; Ettl, J.

    2015-09-01

    Sounding Rocket payloads, especially for atmospheric research, often consists of several independent sensors or experiments with different objectives. The data of these sensors can be combined in the post processing to improve the scientific results of the flight. One major requirement for this data-correlation is a common timeline for the measurements of the distributed experiments. Within this paper we present two ways to achieve absolute timing for asynchronously working experiments. The synchronization process is using the Global Positioning System (GPS) and a standard serial communication protocol for transport of timestamps and flight-states.

  4. [Respiratory synchronization and breast radiotherapy].

    PubMed

    Mège, A; Ziouèche-Mottet, A; Bodez, V; Garcia, R; Arnaud, A; de Rauglaudre, G; Pourel, N; Chauvet, B

    2016-10-01

    Adjuvant radiation therapy following breast cancer surgery continues to improve locoregional control and overall survival. But the success of highly targeted-conformal radiotherapy such as intensity-modulated techniques, can be compromised by respiratory motion. The intrafraction motion can potentially result in significant under- or overdose, and also expose organs at risk. This article summarizes the respiratory motion and its effects on imaging, dose calculation and dose delivery by radiotherapy for breast cancer. We will review the methods of respiratory synchronization available for breast radiotherapy to minimize the respiratory impact and to spare organs such as heart and lung.

  5. Synchronization in random balanced networks

    NASA Astrophysics Data System (ADS)

    García del Molino, Luis Carlos; Pakdaman, Khashayar; Touboul, Jonathan; Wainrib, Gilles

    2013-10-01

    Characterizing the influence of network properties on the global emerging behavior of interacting elements constitutes a central question in many areas, from physical to social sciences. In this article we study a primary model of disordered neuronal networks with excitatory-inhibitory structure and balance constraints. We show how the interplay between structure and disorder in the connectivity leads to a universal transition from trivial to synchronized stationary or periodic states. This transition cannot be explained only through the analysis of the spectral density of the connectivity matrix. We provide a low-dimensional approximation that shows the role of both the structure and disorder in the dynamics.

  6. Desynchronization of stochastically synchronized chemical oscillators

    SciTech Connect

    Snari, Razan; Tinsley, Mark R. E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh; Showalter, Kenneth E-mail: kshowalt@wvu.edu; Wilson, Dan; Moehlis, Jeff; Netoff, Theoden Ivan

    2015-12-15

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  7. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  8. Complexity and synchronization in stochastic chaotic systems

    NASA Astrophysics Data System (ADS)

    Dang, Thai Son; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  9. Synchronization analysis of cultured epileptic human astrocytes

    NASA Astrophysics Data System (ADS)

    Balazsi, Gabor; Cornell-Bell, Ann; Neiman, Alexander; Moss, Frank

    2001-03-01

    Astrocyte cultures from severely epileptic patients were cultured, and the fluctuations of the intracellular calcium ion concentration were visualized using the fluorescent dye Fluo-3. The resulting image sequences were analyzed by methods of stochastic synchronization. Increased synchronization was observed in the epileptic tissues, when compared to normal tissues from rats. The more pathological the tissue, the more synchronized the calcium oscillations. The results might lead to a better understanding of intracellular calcium dynamics and could help drug development.

  10. Topological speed limits to network synchronization.

    PubMed

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2004-02-20

    We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and remains finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.

  11. Synchronization reveals topological scales in complex networks.

    PubMed

    Arenas, Alex; Díaz-Guilera, Albert; Pérez-Vicente, Conrad J

    2006-03-24

    We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.

  12. Electronic Non-Contacting Linear Position Measuring System

    DOEpatents

    Post, Richard F.

    2005-06-14

    A non-contacting linear position location system employs a special transmission line to encode and transmit magnetic signals to a receiver on the object whose position is to be measured. The invention is useful as a non-contact linear locator of moving objects, e.g., to determine the location of a magnetic-levitation train for the operation of the linear-synchronous motor drive system.

  13. Variety of synchronous regimes in neuronal ensembles.

    PubMed

    Komarov, M A; Osipov, G V; Suykens, J A K

    2008-09-01

    We consider a Hodgkin-Huxley-type model of oscillatory activity in neurons of the snail Helix pomatia. This model has a distinctive feature: It demonstrates multistability in oscillatory and silent modes that is typical for the thalamocortical neurons. A single neuron cell can demonstrate a variety of oscillatory activity: Regular and chaotic spiking and bursting behavior. We study collective phenomena in small and large arrays of nonidentical cells coupled by models of electrical and chemical synapses. Two single elements coupled by electrical coupling show different types of synchronous behavior, in particular in-phase and antiphase synchronous regimes. In an ensemble of three inhibitory synaptically coupled elements, the phenomenon of sequential synchronous dynamics is observed. We study the synchronization phenomena in the chain of nonidentical neurons at different oscillatory behavior coupled with electrical and chemical synapses. Various regimes of phase synchronization are observed: (i) Synchronous regular and chaotic spiking; (ii) synchronous regular and chaotic bursting; and (iii) synchronous regular and chaotic bursting with different numbers of spikes inside the bursts. We detect and study the effect of collective synchronous burst generation due to the cluster formation and the oscillatory death.

  14. When inhibition not excitation synchronizes neural firing.

    PubMed

    Van Vreeswijk, C; Abbott, L F; Ermentrout, G B

    1994-12-01

    Excitatory and inhibitory synaptic coupling can have counter-intuitive effects on the synchronization of neuronal firing. While it might appear that excitatory coupling would lead to synchronization, we show that frequently inhibition rather than excitation synchronizes firing. We study two identical neurons described by integrate-and-fire models, general phase-coupled models or the Hodgkin-Huxley model with mutual, non-instantaneous excitatory or inhibitory synapses between them. We find that if the rise time of the synapse is longer than the duration of an action potential, inhibition not excitation leads to synchronized firing.

  15. Tape-recorded Lectures With Slide Synchronization

    ERIC Educational Resources Information Center

    Goodhue, D.

    1969-01-01

    Describes "Taped Explanation Slide Synchronization" programs used for individual study or group showing in college zoology. Discusses preparation of programs, class organization, equipment, and costs. (EB)

  16. Coupled lasers: phase versus chaos synchronization.

    PubMed

    Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-10-15

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  17. Tape-recorded Lectures With Slide Synchronization

    ERIC Educational Resources Information Center

    Goodhue, D.

    1969-01-01

    Describes "Taped Explanation Slide Synchronization" programs used for individual study or group showing in college zoology. Discusses preparation of programs, class organization, equipment, and costs. (EB)

  18. Pilotless Frame Synchronization Using LDPC Code Constraints

    NASA Technical Reports Server (NTRS)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  19. Phase synchronization of two anharmonic nanomechanical oscillators.

    PubMed

    Matheny, Matthew H; Grau, Matt; Villanueva, Luis G; Karabalin, Rassul B; Cross, M C; Roukes, Michael L

    2014-01-10

    We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key for sensor and clock applications. Our work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization--given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.

  20. Synchronization of fractional order complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Li, Tianzeng

    2015-06-01

    In this letter the synchronization of complex dynamical networks with fractional order chaotic nodes is studied. A fractional order controller for synchronization of complex network is presented. Some new sufficient synchronization criteria are proposed based on the Lyapunov stability theory and the LaSalle invariance principle. These synchronization criteria can apply to an arbitrary fractional order complex network in which the coupling-configuration matrix and the inner-coupling matrix are not assumed to be symmetric or irreducible. It means that this method is more general and effective. Numerical simulations of two fractional order complex networks demonstrate the universality and the effectiveness of the proposed method.

  1. Map synchronization in optical communication systems

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Mohanty, N.

    1973-01-01

    The time synchronization problem in an optical communication system is approached as a problem of estimating the arrival time (delay variable) of a known transmitted field. Maximum aposteriori (MAP) estimation procedures are used to generate optimal estimators, with emphasis placed on their interpretation as a practical system device, Estimation variances are used to aid in the design of the transmitter signals for best synchronization. Extension is made to systems that perform separate acquisition and tracking operations during synchronization. The closely allied problem of maintaining timing during pulse position modulation is also considered. The results have obvious application to optical radar and ranging systems, as well as the time synchronization problem.

  2. Chaotic synchronization of coupled ergodic maps.

    PubMed

    Sterling, D. G.

    2001-03-01

    With few exceptions, studies of chaotic synchronization have focused on dissipative chaos. Though less well known, chaotic systems that lack dissipation may also synchronize. Motivated by an application in communication systems, we couple a family of ergodic maps on the N-torus and study the global stability of the synchronous state. While most trajectories synchronize at some time, there is a measure zero set that never synchronizes. We give explicit examples of these asynchronous orbits in dimensions two and four. On more typical trajectories, the synchronization error reaches arbitrarily small values and, in practice, converges. In dimension two we derive bounds on the average synchronization time for trajectories resulting from randomly chosen initial conditions. Numerical experiments suggest similar bounds exist in higher dimensions as well. Adding noise to the coupling signal destroys the invariance of the synchronous state and causes typical trajectories to desynchronize. We propose a modification of the standard coupling scheme that corrects this problem resulting in robust synchronization in the presence of noise.

  3. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Optimal feedback correction in string quartet synchronization

    PubMed Central

    Wing, Alan M.; Endo, Satoshi; Bradbury, Adrian; Vorberg, Dirk

    2014-01-01

    Control of relative timing is critical in ensemble music performance. We hypothesize that players respond to and correct asynchronies in tone onsets that arise from fluctuations in their individual tempos. We propose a first-order linear phase correction model and demonstrate that optimal performance that minimizes asynchrony variance predicts a specific value for the correction gain. In two separate case studies, two internationally recognized string quartets repeatedly performed a short excerpt from the fourth movement of Haydn's quartet Op. 74 no. 1, with intentional, but unrehearsed, expressive variations in timing. Time series analysis of successive tone onset asynchronies was used to estimate correction gains for all pairs of players. On average, both quartets exhibited near-optimal gain. However, individual gains revealed contrasting patterns of adjustment between some pairs of players. In one quartet, the first violinist exhibited less adjustment to the others compared with their adjustment to her. In the second quartet, the levels of correction by the first violinist matched those exhibited by the others. These correction patterns may be seen as reflecting contrasting strategies of first-violin-led autocracy versus democracy. The time series approach we propose affords a sensitive method for investigating subtle contrasts in music ensemble synchronization. PMID:24478285

  5. Optimal feedback correction in string quartet synchronization.

    PubMed

    Wing, Alan M; Endo, Satoshi; Bradbury, Adrian; Vorberg, Dirk

    2014-04-06

    Control of relative timing is critical in ensemble music performance. We hypothesize that players respond to and correct asynchronies in tone onsets that arise from fluctuations in their individual tempos. We propose a first-order linear phase correction model and demonstrate that optimal performance that minimizes asynchrony variance predicts a specific value for the correction gain. In two separate case studies, two internationally recognized string quartets repeatedly performed a short excerpt from the fourth movement of Haydn's quartet Op. 74 no. 1, with intentional, but unrehearsed, expressive variations in timing. Time series analysis of successive tone onset asynchronies was used to estimate correction gains for all pairs of players. On average, both quartets exhibited near-optimal gain. However, individual gains revealed contrasting patterns of adjustment between some pairs of players. In one quartet, the first violinist exhibited less adjustment to the others compared with their adjustment to her. In the second quartet, the levels of correction by the first violinist matched those exhibited by the others. These correction patterns may be seen as reflecting contrasting strategies of first-violin-led autocracy versus democracy. The time series approach we propose affords a sensitive method for investigating subtle contrasts in music ensemble synchronization.

  6. Coronal Modeling and Synchronic Maps

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, R.; Mikic, Z.; Riley, P.; Downs, C.; Henney, C. J.; Arge, C.

    2013-07-01

    MHD simulations of the solar corona rely on maps of the solar magnetic field (typically measured at the photosphere) for input as boundary conditions. These "synoptic" maps (available from a number of ground-based and space-based solar observatories), which are perhaps better described as "diachronic," are built up over a solar rotation. A well-known problem with this approach is that the maps contain data that is as much as 27 days old. The Sun's magnetic flux is always evolving, and these changes in the flux affect coronal and heliospheric structure. Flux evolution models can in principle provide a more accurate specification, by estimating the likely state of the photospheric magnetic field on unobserved portions of the Sun. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model (Arge et al. 2010), which incorporates data assimilation techniques into the Worden and Harvey (2000) flux evolution model, is especially well-suited for this purpose. In this presentation we describe the use of such "synchronic" maps with coronal models. We compare results using synchronic maps versus the traditional synoptic maps. Research supported by AFOSR, NASA, and NSF.

  7. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  8. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  9. Synchronizing with music: intercultural differences.

    PubMed

    Drake, Carolyn; Ben El Heni, Jamel

    2003-11-01

    The way in which listeners perceive music changes throughout childhood, but little is known about the factors responsible for these changes. One factor, explicit music training, has received considerable attention, with studies indicating that musicians demonstrate a more complex hierarchical mental representation for music and superior temporal organizational skills. But does acculturation-the passive exposure to a particular type of music since birth-also influence the acquisition of these skills? We compared the music synchronization performance of Tunisian and French subjects with music from these two contrasting musical cultures. Twelve musical excerpts were selected from the two popular music cultures, matched for perceived tempo, complexity, and familiarity, and subjects were asked to tap in time with the music. Tapping mode (rate and hierarchical level) varied with subjects' familiarity with the musical idiom, as evidenced by an interaction between musical culture and type of music: participants synchronized at higher hierarchical levels (and over a wider range) with music from their own culture than with an unfamiliar type of music. Thus, passive acculturation as well as explicit music tuition influence our perception and cognition of music.

  10. Artificial apnea classification with quantitative sleep EEG synchronization.

    PubMed

    Akṣahin, Mehmet; Aydın, Serap; Fırat, Hikmet; Eroǧul, Osman

    2012-02-01

    In the present study, both linear and nonlinear EEG synchronization methods so called Coherence Function (CF) and Mutual Information (MI) are performed to obtain high quality signal features in discriminating the Central Sleep Apnea (CSA) and Obstructive Sleep Apnea (OSA) from controls. For this purpose, sleep EEG series recorded from patients and healthy volunteers are classified by using several Feed Forward Neural Network (FFNN) architectures with respect to synchronic activities between C3 and C4 recordings. Among the sleep stages, stage2 is considered in tests. The NN approaches are trained with several numbers of neurons and hidden layers. The results show that the degree of central EEG synchronization during night sleep is closely related to sleep disorders like CSA and OSA. The MI and CF give us cooperatively meaningful information to support clinical findings. Those three groups determined with an expert physician can be classified by addressing two hidden layers with very low absolute error where the average area of CF curves ranged form 0 to 10 Hz and the average MI values are assigned as two features. In a future work, these two features can be combined to create an integrated single feature for error free apnea classification.

  11. Synchronization-based approach for detecting functional activation of brain

    NASA Astrophysics Data System (ADS)

    Hong, Lei; Cai, Shi-Min; Zhang, Jie; Zhuo, Zhao; Fu, Zhong-Qian; Zhou, Pei-Ling

    2012-09-01

    In this paper, we investigate a synchronization-based, data-driven clustering approach for the analysis of functional magnetic resonance imaging (fMRI) data, and specifically for detecting functional activation from fMRI data. We first define a new measure of similarity between all pairs of data points (i.e., time series of voxels) integrating both complete phase synchronization and amplitude correlation. These pairwise similarities are taken as the coupling between a set of Kuramoto oscillators, which in turn evolve according to a nearest-neighbor rule. As the network evolves, similar data points naturally synchronize with each other, and distinct clusters will emerge. The clustering behavior of the interaction network of the coupled oscillators, therefore, mirrors the clustering property of the original multiple time series. The clustered regions whose cross-correlation coefficients are much greater than other regions are considered as the functionally activated brain regions. The analysis of fMRI data in auditory and visual areas shows that the recognized brain functional activations are in complete correspondence with those from the general linear model of statistical parametric mapping, but with a significantly lower time complexity. We further compare our results with those from traditional K-means approach, and find that our new clustering approach can distinguish between different response patterns more accurately and efficiently than the K-means approach, and therefore more suitable in detecting functional activation from event-related experimental fMRI data.

  12. Spatial organization and Synchronization in collective swimming of Hemigrammus bleheri

    NASA Astrophysics Data System (ADS)

    Ashraf, Intesaaf; Ha, Thanh-Tung; Godoy-Diana, Ramiro; Thiria, Benjamin; Halloy, Jose; Collignon, Bertrand; Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) Team; Laboratoire Interdisciplinaire des Energies de Demain (LIED) Team

    2016-11-01

    In this work, we study the collective swimming of Hemigrammus bleheri fish using experiments in a shallow swimming channel. We use high-speed video recordings to track the midline kinematics and the spatial organization of fish pairs and triads. Synchronizations are characterized by observance of "out of phase" and "in phase" configurations. We show that the synchronization state is highly correlated to swimming speed. The increase in synchronization led to efficient swimming based on Strouhal number. In case of fish pairs, the collective swimming is 2D and the spatial organization is characterized by two characteristic lengths: the lateral and longitudinal separation distances between fish pairs.For fish triads, different swimming patterns or configurations are observed having three dimensional structures. We performed 3D kinematic analysis by employing 3D reconstruction using the Direct Linear Transformation (DLT). We show that fish still keep their nearest neighbor distance (NND) constant irrespective of swimming speeds and configuration. We also point out characteristic angles between neighbors, hence imposing preferred patterns. At last we will give some perspectives on spatial organization for larger population. Sorbonne Paris City College of Doctoral Schools. European Union Information and Communication Technologies project ASSISIbf, FP7-ICT-FET-601074.

  13. Phase-response curves and synchronized neural networks

    PubMed Central

    Smeal, Roy M.; Ermentrout, G. Bard; White, John A.

    2010-01-01

    We review the principal assumptions underlying the application of phase-response curves (PRCs) to synchronization in neuronal networks. The PRC measures how much a given synaptic input perturbs spike timing in a neural oscillator. Among other applications, PRCs make explicit predictions about whether a given network of interconnected neurons will synchronize, as is often observed in cortical structures. Regarding the assumptions of the PRC theory, we conclude: (i) The assumption of noise-tolerant cellular oscillations at or near the network frequency holds in some but not all cases. (ii) Reduced models for PRC-based analysis can be formally related to more realistic models. (iii) Spike-rate adaptation limits PRC-based analysis but does not invalidate it. (iv) The dependence of PRCs on synaptic location emphasizes the importance of improving methods of synaptic stimulation. (v) New methods can distinguish between oscillations that derive from mutual connections and those arising from common drive. (vi) It is helpful to assume linear summation of effects of synaptic inputs; experiments with trains of inputs call this assumption into question. (vii) Relatively subtle changes in network structure can invalidate PRC-based predictions. (viii) Heterogeneity in the preferred frequencies of component neurons does not invalidate PRC analysis, but can annihilate synchronous activity. PMID:20603361

  14. Using Synchronous Technology to Enrich Student Learning

    ERIC Educational Resources Information Center

    Wang, Charles Xiaoxue; Jaeger, David; Liu, Jinxia; Guo, Xiaoning; Xie, Nan

    2013-01-01

    To explore the potential applications of synchronous technology to enrich student learning, faculty members from an American regional state university and a Chinese regional university collaborated to find appropriate ways to integrate synchronous technology (e.g., Adobe Connect) into an educational technology program in the American university…

  15. Development of Network Synchronization Predicts Language Abilities.

    PubMed

    Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W

    2016-01-01

    Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities.

  16. Examining Interactivity in Synchronous Virtual Classrooms

    ERIC Educational Resources Information Center

    Martin, Florence; Parker, Michele A.; Deale, Deborah F.

    2012-01-01

    Interaction is crucial to student satisfaction in online courses. Adding synchronous components (virtual classroom technologies) to online courses can facilitate interaction. In this study, interaction within a synchronous virtual classroom was investigated by surveying 21 graduate students in an instructional technology program in the…

  17. Multiple-access channels without synchronization

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Posner, E. C.

    1977-01-01

    This paper discusses models for multiple-access communications which take into account the fact that the channel users may not be able to synchronize their transmissions. It is shown that for a broad class of such channels, the capacity region is the same as it would be with user synchronization. Some open problems are discussed.

  18. Complexity in synchronized and non-synchronized states: A comparative analysis and application

    NASA Astrophysics Data System (ADS)

    Palit, Sanjay K.; Fataf, Nur Aisyah Abdul; Md Said, Mohd Rushdan; Mukherjee, Sayan; Banerjee, Santo

    2017-07-01

    This analysis shows the dynamics of a hyperchaotic system changes from its original state to a synchronized state with nonlinear controller. The decreasing complexity of the coupled systems also quantifies the loss of information from its original state to the synchronized state. We proposed and modified a chaos synchronization based secure communication scheme to implement in case of non synchronization. The scheme is designed and illustrated using examples and simulations. Security analysis of the proposed scheme is also investigated. This analysis gives a new direction on chaos based cryptography in case of the coupled systems completely in non synchronized state.

  19. Complexity in synchronized and non-synchronized states: A comparative analysis and application

    NASA Astrophysics Data System (ADS)

    Palit, Sanjay K.; Fataf, Nur Aisyah Abdul; Said, Mohd Rushdan Md; Mukherjee, Sayan; Banerjee, Santo

    2017-01-01

    This analysis shows the dynamics of a hyperchaotic system changes from its original state to a synchronized state with nonlinear controller. The decreasing complexity of the coupled systems also quantifies the loss of information from its original state to the synchronized state. We proposed and modified a chaos synchronization based secure communication scheme to implement in case of non synchronization. The scheme is designed and illustrated using examples and simulations. Security analysis of the proposed scheme is also investigated. This analysis gives a new direction on chaos based cryptography in case of the coupled systems completely in non synchronized state.

  20. Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control.

    PubMed

    Hou, Huazhou; Zhang, Qingling

    2016-11-01

    In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method.

  1. EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands.

    PubMed

    Tóth, Brigitta; Boha, Roland; Pósfai, Márton; Gaál, Zsófia Anna; Kónya, Anikó; Stam, Cornelis Jan; Molnár, Márk

    2012-03-01

    Task-dependent changes of nonlinear-linear synchronization features and graph theoretical properties of the delta and theta frequencies were analyzed in the present EEG study that were related to episodic memory maintenance processes. Synchronization was found to increase with respect to both the delta and theta bands within the frontal and parietal areas and also between these regions. Results of graph theoretical analysis indicated a task-related shift towards small-world network topology in the theta band.

  2. Complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems and coupling time delays

    NASA Astrophysics Data System (ADS)

    Wu, Xuefei; Xu, Chen; Feng, Jianwen

    2015-03-01

    In this paper, the complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems and linear coupling time delays are considered. The pinning control scheme are adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods.

  3. Visually evoked phase synchronization changes of alpha rhythm in migraine: correlations with clinical features.

    PubMed

    de Tommaso, Marina; Marinazzo, Daniele; Guido, Marco; Libro, Giuseppe; Stramaglia, Sebastiano; Nitti, Luigi; Lattanzi, Gianluca; Angelini, Leonardo; Pellicoro, Mario

    2005-09-01

    This study aimed to compute phase synchronization of the alpha band from a multichannel electroencephalogram (EEG) recorded under repetitive flash stimulation from migraine patients without aura. This allowed examination of ongoing EEG activity during visual stimulation in the pain-free phase of migraine. Flash stimuli at frequencies of 3, 6, 9, 12, 15, 18, 21, 24, and 27 Hz were delivered to 15 migraine patients without aura and 15 controls, with the EEG recorded from 18 scalp electrodes, referred to the linked earlobes. The EEG signals were filtered in the alpha (7.5-13 Hz) band. For all stimulus frequencies that we evaluated, the phase synchronization index was based on the Hilbert transformation. Phase synchronization separated the patients and controls for the 9, 24 and 27 Hz stimulus frequencies; hyper phase synchronization was observed in patients, whereas healthy subjects were characterized by a reduced phase synchronization. These differences were found in all regions of the scalp. During migraine, the brain synchronizes to the idling rhythm of the visual areas under certain photic stimulations; in normal subjects however, brain regions involved in the processing of sensory information demonstrate desynchronized activity. Hypersynchronization of the alpha rhythm may suggest a state of cortical hypoexcitability during the interictal phase of migraine. The employment of non-linear EEG analysis may identify subtle functional changes in the migraine brain.

  4. Amplitude dynamics favors synchronization in complex networks

    PubMed Central

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-01-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847

  5. Decoder synchronization for deep space missions

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

    1994-01-01

    The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

  6. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  7. Transient performance of permanent magnet synchronous motors

    NASA Astrophysics Data System (ADS)

    Borger, W. U.

    The performance of a permanent magnet synchronous machine is presented for transient conditions including: starting, load application and load removal. The machine studied possesses asynchronous torque for starting as well as synchronous torque for high efficiency and high power factor during normal operation. The transient performance of the synchronous machine is compared with a high efficiency induction machine of the same rating. The comparison presented is strictly analytical and is approached by developing the required equations for the idealized synchronous and induction machines. Solutions for the equations are approximated on the digital computer. Although the study is not universal in scope, it shows that the permanent magnet synchronous motor rivals the induction machine in weight and in transient performance while at the same time besting the induction machine from an efficiency and power factor standpoint.

  8. Chaos synchronization in networks of semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido

    2015-11-01

    Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.

  9. Amplitude dynamics favors synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-04-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.

  10. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    PubMed Central

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with

  11. [Synchronous carcinoma of the colorectum].

    PubMed

    Pisciotta, M; Gulotta, G; Profita, G; Amoroso, S; Mineo, R; Rodolico, V

    1991-06-30

    The incidence of synchronous carcinoma of the large intestine is rising in relation to a greater oncogenic environmental charge and increased average life expectancy. There is also a constant risk of not recognising the disease, especially in the case of small carcinoma and, to a greater extent, in patients operated during the occlusive phase. Having underlined the diagnostic value of a correct preparation of the colon prior to instrumental tests, the authors emphasise the importance of a careful intraoperative exploration of the viscera, its preliminary confinement in occluded subjects and repeated surgery in the event of doubts regarding the monolocation of the tumour. Lastly, they underline the importance of postoperative radiological and endoscopic controls since these tests mark both the successful outcome of treatment and the start of follow-up.

  12. Synchronous computer mediated group discussion.

    PubMed

    Gallagher, Peter

    2005-01-01

    Over the past 20 years, focus groups have become increasingly popular with nursing researchers as a data collection method, as has the use of computer-based technologies to support all forms of nursing research. This article describes the conduct of a series of focus groups in which the participants were in the same room as part of a "real-time" discussion during which they also used personal computers as an interface between each other and the moderator. Synchronous Computer Mediated Group Discussion differed from other forms of focus group discussion in that participants used personal computers rather than verbal expressions to respond to specific questions, engage in communication with other participants, and to record their thoughts. This form of focus group maintained many of the features of spoken exchanges, a cornerstone of the focus group, while capturing the advantages of online discussion.

  13. Synchronized sampling improves fault location

    SciTech Connect

    Kezunovic, M.; Perunicic, B.

    1995-04-01

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  14. Synchronization to a bouncing ball with a realistic motion trajectory.

    PubMed

    Gan, Lingyu; Huang, Yingyu; Zhou, Liang; Qian, Cheng; Wu, Xiang

    2015-07-07

    Daily music experience involves synchronizing movements in time with a perceived periodic beat. It has been established for over a century that beat synchronization is less stable for the visual than for the auditory modality. This auditory advantage of beat synchronization gives rise to the hypotheses that the neural and evolutionary mechanisms underlying beat synchronization are modality-specific. Here, however, we found that synchronization to a periodically bouncing ball with a realistic motion trajectory was not less stable than synchronization to an auditory metronome. This finding challenges the auditory advantage of beat synchronization, and has important implications for the understanding of the biological substrates of beat synchronization.

  15. A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This paper presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. We present an outline of a deductive proof of the correctness of the protocol. A bounded model of the protocol was mechanically verified for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  16. Estimating model parameters in nonautonomous chaotic systems using synchronization

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-05-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation.

  17. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  18. Global interactions, information flow, and chaos synchronization.

    PubMed

    Paredes, G; Alvarez-Llamoza, O; Cosenza, M G

    2013-10-01

    We investigate the relationship between the emergence of chaos synchronization and the information flow in dynamical systems possessing homogeneous or heterogeneous global interactions whose origin can be external (driven systems) or internal (autonomous systems). By employing general models of coupled chaotic maps for such systems, we show that the presence of a homogeneous global field, either external or internal, for all times is not indispensable for achieving complete or generalized synchronization in a system of chaotic elements. Complete synchronization can also appear with heterogeneous global fields; it does not requires the simultaneous sharing of the field by all the elements in a system. We use the normalized mutual information and the information transfer between global and local variables to characterize complete and generalized synchronization. We show that these information measures can characterize both types of synchronized states and also allow us to discern the origin of a global interaction field. A synchronization state emerges when a sufficient amount of information provided by a field is shared by all the elements in the system, on the average over long times. Thus, the maximum value of the top-down information transfer can be used as a predictor of synchronization in a system, as a parameter is varied.

  19. Periodic and Aperiodic Synchronization in Skilled Action

    PubMed Central

    Cummins, Fred

    2011-01-01

    Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import. PMID:22232583

  20. Periodic and aperiodic synchronization in skilled action.

    PubMed

    Cummins, Fred

    2011-01-01

    Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import.

  1. An extended active control for chaos synchronization

    NASA Astrophysics Data System (ADS)

    Tang, Rong-An; Liu, Ya-Li; Xue, Ju-Kui

    2009-04-01

    By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rossler, Liu's four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems' largest Lyapunov exponents' variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.

  2. V123 BEAM SYNCHRONOUS ENCODER MODULE.

    SciTech Connect

    KERNER,T.; CONKLING,C.R.; OERTER,B.

    1999-03-29

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiber optics and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring.

  3. Comments on the "Byzantine Self-Stabilizing Pulse Synchronization" Protocol: Counter-examples

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.; Siminiceanu, Radu

    2006-01-01

    Embedded distributed systems have become an integral part of many safety-critical applications. There have been many attempts to solve the self-stabilization problem of clocks across a distributed system. An analysis of one such protocol called the Byzantine Self-Stabilizing Pulse Synchronization (BSS-Pulse-Synch) protocol from a paper entitled "Linear Time Byzantine Self-Stabilizing Clock Synchronization" by Daliot, et al., is presented in this report. This report also includes a discussion of the complexity and pitfalls of designing self-stabilizing protocols and provides counter-examples for the claims of the above protocol.

  4. Self-stabilizing byzantine-fault-tolerant clock synchronization system and method

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2012-01-01

    Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.

  5. Synchronization of Boolean Networks with Different Update Schemes.

    PubMed

    Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui

    2014-01-01

    In this paper, the synchronizations of Boolean networks with different update schemes (synchronized Boolean networks and asynchronous Boolean networks) are investigated. All nodes in Boolean network are represented in terms of semi-tensor product. First, we give the concept of inner synchronization and observe that all nodes in a Boolean network are synchronized with each other. Second, we investigate the outer synchronization between a driving Boolean network and a corresponding response Boolean network. We provide not only the concept of traditional complete synchronization, but also the anti-synchronization and get the anti-synchronization in simulation. Third, we extend the outer synchronization to asynchronous Boolean network and get the complete synchronization between an asynchronous Boolean network and a response Boolean network. Consequently, theorems for synchronization of Boolean networks and asynchronous Boolean networks are derived. Examples are provided to show the correctness of our theorems.

  6. Intracavity interferometry using synchronously pumped OPO

    NASA Astrophysics Data System (ADS)

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr

    2016-12-01

    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  7. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  8. Using GLONASS signal for clock synchronization

    NASA Technical Reports Server (NTRS)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  9. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  10. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  11. Synchronous Behavior of Two Coupled Biological Neurons

    SciTech Connect

    Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.

    1998-12-01

    We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}

  12. Synchronization Of Parallel Discrete Event Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S.

    1992-01-01

    Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.

  13. Quantum Clock Synchronization with a Single Qudit

    PubMed Central

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system. PMID:25613754

  14. Suppressing explosive synchronization by contrarians

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyun; Guan, Shuguang; Zou, Yong; Chen, Xiaosong; Liu, Zonghua

    2016-01-01

    Explosive synchronization (ES) has recently received increasing attention and studies have mainly focused on the conditions of its onset so far. However, its inverse problem, i.e. the suppression of ES, has not been systematically studied so far. As ES is usually considered to be harmful in certain circumstances such as the cascading failure of power grids and epileptic seizure, etc., its suppression is definitely important and deserves to be studied. We here study this inverse problem by presenting an efficient approach to suppress ES from a first-order to second-order transition, without changing the intrinsic network structure. We find that ES can be suppressed by only changing a small fraction of oscillators into contrarians with negative couplings and the critical fraction for the transition from the first order to the second order increases with both the network size and the average degree. A brief theory is presented to explain the underlying mechanism. This finding underlines the importance of our method to improve the understanding of neural interactions underlying cognitive processes.

  15. Minimal model for spontaneous quantum synchronization

    NASA Astrophysics Data System (ADS)

    Benedetti, Claudia; Galve, Fernando; Mandarino, Antonio; Paris, Matteo G. A.; Zambrini, Roberta

    2016-11-01

    We show the emergence of spontaneous synchronization between a pair of detuned quantum oscillators within a harmonic network. Our model does not involve any nonlinearity, driving, or external dissipation, thus providing the simplest scenario for the occurrence of local coherent dynamics in an extended harmonic system. A sufficient condition for synchronization is established by building upon the Rayleigh normal mode approach to vibrational systems. Our results show that mechanisms favoring synchronization, even between oscillators that are not directly coupled to each other, are transient energy depletion and crosstalk. We also address the possible buildup of quantum correlations during synchronization and show that indeed entanglement may be generated in detuned systems, starting from uncorrelated states and without any direct coupling between the two oscillators.

  16. Method and system for downhole clock synchronization

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.

    2006-11-28

    A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.

  17. Slot synchronization in optical PPM communications

    NASA Astrophysics Data System (ADS)

    Ling, Ger; Gagliardi, Robert M.

    1986-12-01

    Maintaining slot clock synchronization in a baseband pulse position modulated (PPM) communication link is vital to its performance. This paper examines the slot clocking design associated with a direct detection, photodetecting optical PPM system. Although theoretical PPM synchronizers for optical links have been derived in the past, there is still interest in finding more practical, simpler, and easier-to-implement clocking subsystems. In this paper several types of practical slot synchronizers are considered. A basic design involving analog correlators and slot gating is presented, along with an indication of its performance. Several alternative designs are also presented, including digital synchronizers in which time samples are used for loop control. The advantage in digital systems is that more extensive processing can be handled in software, allowing the loop to perform closer to the ideal. Design procedures for digital clocking are presented, and optimal laser pulse shaping and filtering are discussed. Performance in terms of loop models and tracking error variance is included.

  18. Visual Feedback Leader-following Attitude Synchronization

    NASA Astrophysics Data System (ADS)

    Ibuki, Tatsuya; Hatanaka, Takeshi; Fujita, Masayuki

    In this paper we investigate visual feedback attitude synchronization in leader-follower type visibility structures on the Special Euclidean group SE(3). We first define visual robotic networks consisting of the dynamics describing rigid body motion, visibility structures among bodies and visual measurements. We then propose a visual feedback attitude synchronization law combining a vision-based observer with the attitude synchronization law presented in our previous works. We then prove that when the leader does not rotate, the visual robotic network with the control law achieves visual feedback attitude synchronization. Moreover, for a rotating leader, we evaluate the tracking performance of the other bodies. In analysis, we employ the notion of input-to-state stability and L2-gain performance regarding the leader’s angular velocity as an external disturbance. Finally, the validity of the proposed control law and the analysis is demonstrated through simulations.

  19. Synchronization of spin torque nano-oscillators

    NASA Astrophysics Data System (ADS)

    Turtle, James; Buono, Pietro-Luciano; Palacios, Antonio; Dabrowski, Christine; In, Visarath; Longhini, Patrick

    2017-04-01

    Synchronization of spin torque nano-oscillators (STNOs) has been a subject of extensive research as various groups try to harness the collective power of STNOs to produce a strong enough microwave signal at the nanoscale. Achieving synchronization has proven to be, however, rather difficult for even small arrays while in larger ones the task of synchronization has eluded theorists and experimentalists altogether. In this work we solve the synchronization problem, analytically and computationally, for networks of STNOs connected in series. The procedure is valid for networks of arbitrary size and it is readily extendable to other network topologies. These results should help guide future experiments and, eventually, lead to the design and fabrication of a nanoscale microwave signal generator.

  20. Modified impulsive synchronization of hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Haeri, Mohammad; Dehghani, Mahsa

    2010-03-01

    In an original impulsive synchronization only instantaneous errors are used to determine the impulsive inputs. To improve the synchronization performance, addition of an integral term of the errors is proposed here. In comparison with the original form, the proposed modification increases the impulse distances which leads to reduction in the control cost as the most important characteristic of the impulsive synchronization technique. It can also decrease the error magnitude in the presence of noise. Sufficient conditions are presented through four theorems for different situations (nominal, uncertain, noisy, and noisy uncertain cases) under which stability of the error dynamics is guaranteed. Results from computer based simulations are provided to illustrate feasibility and effectiveness of the modified impulsive synchronization method applied on Rossler hyperchaotic systems.

  1. Synchronous correlation matrices and Connes’ embedding conjecture

    SciTech Connect

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  2. Synchronization of coupled nonidentical genetic oscillators

    NASA Astrophysics Data System (ADS)

    Li, Chunguang; Chen, Luonan; Aihara, Kazuyuki

    2006-03-01

    The study of the collective dynamics of synchronization among genetic oscillators is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. Genetic oscillators are biochemical networks, which can generally be modelled as nonlinear dynamic systems. We show in this paper that many genetic oscillators can be transformed into Lur'e form by exploiting the special structure of biological systems. By using a control theory approach, we provide a theoretical method for analysing the synchronization of coupled nonidentical genetic oscillators. Sufficient conditions for the synchronization as well as the estimation of the bound of the synchronization error are also obtained. To demonstrate the effectiveness of our theoretical results, a population of genetic oscillators based on the Goodwin model are adopted as numerical examples.

  3. Synchronization of Arbitrarily Switched Boolean Networks.

    PubMed

    Chen, Hongwei; Liang, Jinling; Huang, Tingwen; Cao, Jinde

    2017-03-01

    This paper investigates the complete synchronization problem for the drive-response switched Boolean networks (SBNs) under arbitrary switching signals, where the switching signals of the response SBN follow those generated by the drive SBN at each time instant. First, the definition of complete synchronization is introduced for the drive-response SBNs under arbitrary switching signals. Second, the concept of switching reachable set starting from a given initial state set is put forward. Based on it, a necessary and sufficient condition is derived for the complete synchronization of the drive-response SBNs. Last, we give a simple algebraic expression for the switching reachable set in a given number of time steps, and two computable algebraic criteria are obtained for the complete synchronization of the SBNs. A biological example is given to demonstrate the effectiveness of the obtained main results.

  4. Optimal Synchronization of a Memristive Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Kountchou, Michaux; Louodop, Patrick; Bowong, Samuel; Fotsin, Hilaire; Kurths, Jurgen

    2016-06-01

    This paper deals with the problem of optimal synchronization of two identical memristive chaotic systems. We first study some basic dynamical properties and behaviors of a memristor oscillator with a simple topology. An electronic circuit (analog simulator) is proposed to investigate the dynamical behavior of the system. An optimal synchronization strategy based on the controllability functions method with a mixed cost functional is investigated. A finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master-slave-controller systems is also presented to show the feasibility of the proposed scheme.

  5. Amplitude envelope synchronization in coupled chaotic oscillators.

    PubMed

    Gonzalez-Miranda, J M

    2002-03-01

    A peculiar type of synchronization has been found when two Van der Pol-Duffing oscillators, evolving in different chaotic attractors, are coupled. As the coupling increases, the frequencies of the two oscillators remain different, while a synchronized modulation of the amplitudes of a signal of each system develops, and a null Lyapunov exponent of the uncoupled systems becomes negative and gradually larger in absolute value. This phenomenon is characterized by an appropriate correlation function between the returns of the signals, and interpreted in terms of the mutual excitation of new frequencies in the oscillators power spectra. This form of synchronization also occurs in other systems, but it shows up mixed with or screened by other forms of synchronization, as illustrated in this paper by means of the examples of the dynamic behavior observed for three other different models of chaotic oscillators.

  6. Synchronization in complex networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Hu, Manfeng; Xu, Zhenyuan

    2007-08-01

    Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies.

  7. Asymmetry-induced synchronization in oscillator networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Nishikawa, Takashi; Motter, Adilson E.

    2017-06-01

    A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-induced synchronization (AISync)—occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.

  8. High Efficiency Synchronous Rectification in Spacecraft

    NASA Technical Reports Server (NTRS)

    Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.

    1993-01-01

    This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.

  9. Synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  10. Synchronization phenomena in nephron-nephron interaction

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Niels-Henrik; Yip, Kay-Pong; Sosnovtseva, Olga V.; Mosekilde, Erik

    2001-06-01

    Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular oscillations in its tubular pressure and flow variations. For such rats, both in-phase and antiphase synchronization can be demonstrated in the experimental data. For spontaneously hypertensive rats, where the pressure variations in the individual nephrons are highly irregular, signs of chaotic phase and frequency synchronization can be observed. Accounting for a hemodynamic as well as for a vascular coupling between nephrons that share a common interlobular artery, we develop a mathematical model of the pressure and flow regulation in a pair of adjacent nephrons. We show that this model, for appropriate values of the parameters, can reproduce the different types of experimentally observed synchronization.

  11. Synchronization in networks of mobile oscillators.

    PubMed

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2011-02-01

    We present a model of synchronization in networks of autonomous agents where the topology changes due to agents motion. We introduce two timescales, one for the topological change and another one for local synchronization. If the former scale is much shorter, an approximation that averages out the effect of motion is available. Here we show, however, that the time required for synchronization achievement is larger than the prediction of the approximation in the opposite case, especially close to the continuum percolation transition point. The simulation results are confirmed by means of spectral analysis of the time-dependent Laplacian matrix. Our results show that the tradeoff between these two timescales, which have opposite effects on synchronization, should be taken into account for the design of mobile device networks.

  12. Chaos synchronization of general complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Lü, Jinhu; Yu, Xinghuo; Chen, Guanrong

    2004-03-01

    Recently, it has been demonstrated that many large-scale complex dynamical networks display a collective synchronization motion. Here, we introduce a time-varying complex dynamical network model and further investigate its synchronization phenomenon. Based on this new complex network model, two network chaos synchronization theorems are proved. We show that the chaos synchronization of a time-varying complex network is determined by means of the inner coupled link matrix, the eigenvalues and the corresponding eigenvectors of the coupled configuration matrix, rather than the conventional eigenvalues of the coupled configuration matrix for a uniform network. Especially, we do not assume that the coupled configuration matrix is symmetric and its off-diagonal elements are nonnegative, which in a way generalizes the related results existing in the literature.

  13. Repeat-PPM Super-Symbol Synchronization

    NASA Astrophysics Data System (ADS)

    Connelly, J.

    2016-11-01

    To attain a wider range of data rates in pulse position modulation (PPM) schemes with constrained pulse durations, the sender can repeat a PPM symbol multiple times, forming a super-symbol. In addition to the slot and symbol synchronization typically required for PPM, the receiver must also properly align the noisy super-symbols. We present a low-complexity approximation of the maximum-likelihood method for performing super-symbol synchronization without use of synchronization sequences. We provide simulation results demonstrating performance advantage when PPM symbols are spread by a pseudo-noise sequence, as opposed to simply repeating. Additionally, the results suggest that this super-symbol synchronization technique requires signal levels below those required for reliable communication. This validates that the PPM spreading approach proposed to CCSDS can work properly as part of the overall scheme.

  14. Critique of a Hughes shuttle Ku-band data sampler/bit synchronizer

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.

    1980-01-01

    An alternative bit synchronizer proposed for shuttle was analyzed in a noise-free environment by considering the basic operation of the loop via timing diagrams and by linearizing the bit synchronizer as an equivalent, continuous, phased-lock loop (PLL). The loop is composed of a high-frequency phase-frequency detector which is capable of detecting both phase and frequency errors and is used to track the clock, and a bit transition detector which attempts to track the transitions of the data bits. It was determined that the basic approach was a good design which, with proper implementation of the accumulator, up/down counter and logic should provide accurate mid-bit sampling with symmetric bits. However, when bit asymmetry occurs, the bit synchronizer can lock up with a large timing error, yet be quasi-stable (timing will not change unless the clock and bit sequence drift). This will result in incorrectly detecting some bits.

  15. Cluster synchronization of community network with distributed time delays via impulsive control

    NASA Astrophysics Data System (ADS)

    Leng, Hui; Wu, Zhao-Yan

    2016-11-01

    Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB201021), and the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273).

  16. Optimal spatial synchronization on scale-free networks via noisy chemical synapses.

    PubMed

    Perc, Matjaz

    2009-05-01

    We show that the spatial synchronization of noise-induced excitations on scale-free networks, mediated through nonlinear chemical coupling, depends vitally on the intensity of additive noise and the coupling strength. In particular, a twofold optimization is needed for achieving maximal spatial synchrony, thus indicating the existence of an optimal noise intensity as well as an optimal coupling strength. On the other hand, the traditional linear coupling via gap junctions, while still requiring a fine-tuning of the noise intensity, does not postulate the existence of an optimal coupling strength since the synchronization increases monotonously with the increasing coupling strength. Presented results reveal inherent differences in optimal spatial synchronization evoked by chemical and electrical coupling, and could hence help to pinpoint their specific roles in networked systems.

  17. Synchronization for an array of neural networks with hybrid coupling by a novel pinning control strategy.

    PubMed

    Gong, Dawei; Lewis, Frank L; Wang, Liping; Xu, Ke

    2016-05-01

    In this paper, a novel pinning synchronization (synchronization with pinning control) scheme for an array of neural networks with hybrid coupling is investigated. The main contributions are as follows: (1) A novel pinning control strategy is proposed for the first time. Pinning control schemes are introduced as an array of column vector. The controllers are designed as simple linear systems, which are easy to be analyzed or tested. (2) Augmented Lyapunov-Krasovskii functional (LKF) is applied to introduce more relax variables, which can alleviate the requirements of the positive definiteness of the matrix. (3) Based on the appropriate LKF, by introducing some free weighting matrices, some novel synchronization criteria are derived. Furthermore, the proposed pinning control scheme described by column vector can also be expanded to almost all the other array of neural networks. Finally, numerical examples are provided to show the effectiveness of the proposed results.

  18. Robust H∞ observer-based control for synchronization of a class of complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Zheng, Hai-Qing; Jing, Yuan-Wei

    2011-06-01

    This paper is concerned with the robust H∞ synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.

  19. Realization of synchronization of nonlinear oscillators under intermittent coupling controlled by pulse signal

    NASA Astrophysics Data System (ADS)

    Yuan, L. H.; Wang, C. N.; Zhang, Z. Z.

    2016-10-01

    Based on the Lyapunov stability theory, an improved Lyapunov function scheme is used to understand the complete synchronization of hyperchaotic systems by imposing pulse linear coupling on the response system. According to this scheme, the controller begins to control the response system in a period when the output error variables are increasing; otherwise, the controller turns off. The distribution of conditional Lyapunov exponent versus coupling intensity, and the synchronization cost (averaged power consumption of controller) is calculated, respectively. By designing an exponential type of Lyapunov function, it is found that complete synchronization could be realized between two Chen hyperchaotic systems and two 4-dimensional LC hyperchaotic systems. Our numerical results are consistent with the previous theoretical discussion.

  20. Collective synchronization as a method of learning and generalization from sparse data

    NASA Astrophysics Data System (ADS)

    Miyano, Takaya; Tsutsui, Takako

    2008-02-01

    We propose a method for extracting general features from multivariate data using a network of phase oscillators subject to an analogue of the Kuramoto model for collective synchronization. In this method, the natural frequencies of the oscillators are extended to vector quantities to which multivariate data are assigned. The common frequency vectors of the groups of partially synchronized oscillators are interpreted to be the template vectors representing the general features of the data set. We show that the proposed method becomes equivalent to the self-organizing map algorithm devised by Kohonen when the governing equations are linearized about their solutions of partial synchronization. As a case study to test the utility of our method, we applied it to care-needs-certification data in the Japanese public long-term care insurance program, and found major general patterns in the health status of the elderly needing nursing care.

  1. Chromosomal Mapping by Means of Mutational Induction in Synchronous Populations of Streptococcus faecalis

    PubMed Central

    Stonehill, E. H.; Hutchison, Dorris J.

    1966-01-01

    Stonehill, E. H. (Sloan-Kettering Institute for Cancer Research, New York, N.Y. and Dorris J. Hutchison. Chromosomal mapping by means of mutational induction in synchronous populations of Streptococcus faecalis. J. Bacteriol. 92:136–143. 1966.—A new method for mapping genetic loci on the bacterial chromosome, based on the linear progression of the deoxyribonucleic acid-replicating enzyme (replicase) in synchronous cultures of Streptococcus faecalis, is described. Ultraviolet irradiation was used to induce mutations to drug and to bacteriophage resistance at various intervals during the progress of the replicase along the chromosome. The time of duplication of the gene in synchronous populations was determined from reductions in the rates of irradiation-induced mutation. After the replication of various genes, the rates fell to half their former values. The resulting data made possible the construction of a 1-hr time-map indicating the sequence of replication of five genes in S. faecalis. PMID:4957554

  2. Stability and synchronization analysis of inertial memristive neural networks with time delays.

    PubMed

    Rakkiyappan, R; Premalatha, S; Chandrasekar, A; Cao, Jinde

    2016-10-01

    This paper is concerned with the problem of stability and pinning synchronization of a class of inertial memristive neural networks with time delay. In contrast to general inertial neural networks, inertial memristive neural networks is applied to exhibit the synchronization and stability behaviors due to the physical properties of memristors and the differential inclusion theory. By choosing an appropriate variable transmission, the original system can be transformed into first order differential equations. Then, several sufficient conditions for the stability of inertial memristive neural networks by using matrix measure and Halanay inequality are derived. These obtained criteria are capable of reducing computational burden in the theoretical part. In addition, the evaluation is done on pinning synchronization for an array of linearly coupled inertial memristive neural networks, to derive the condition using matrix measure strategy. Finally, the two numerical simulations are presented to show the effectiveness of acquired theoretical results.

  3. Synchronized Flashing Lights For Approach And Docking

    NASA Technical Reports Server (NTRS)

    Book, Michael L.; Howard, Richard T.; Bryan, Thomas C.; Bell, Joseph L.

    1994-01-01

    Proposed optoelectronic system for guiding vehicle in approaching and docking with another vehicle includes active optical targets (flashing lights) on approached vehicle synchronized with sensor and image-processing circuitry on approaching vehicle. Conceived for use in automated approach and docking of two spacecraft. Also applicable on Earth to manually controlled and automated approach and docking of land vehicles, aircraft, boats, and submersible vehicles, using GPS or terrestrial broadcast time signals for synchronization. Principal advantage: optical power reduced, with consequent enhancement of safety.

  4. LETTER: Synchronization model for stock market asymmetry

    NASA Astrophysics Data System (ADS)

    Donangelo, Raul; Jensen, Mogens H.; Simonsen, Ingve; Sneppen, Kim

    2006-11-01

    The waiting time needed for a stock market index to undergo a given percentage change in its value is found to have an up down asymmetry, which, surprisingly, is not observed for the individual stocks composing that index. To explain this, we introduce a market model consisting of randomly fluctuating stocks that occasionally synchronize their short term draw-downs. These synchronous events are parametrized by a 'fear factor', that reflects the occurrence of dramatic external events which affect the financial market.

  5. Control of ventilation in elite synchronized swimmers.

    PubMed

    Bjurström, R L; Schoene, R B

    1987-09-01

    Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Non-Synchronous Vibration of Turbomachinery Airfoils

    DTIC Science & Technology

    2006-03-01

    study and prevention of non-synchronous vibrations. Non-synchronous vibrations in turbine engine blades are the result of the interaction of an...was a modern fan vane blade known as the H2 case. This blade encountered NSV in experimental rig testing. An analysis was performed with TURBO ...design stage for flow over turbine engine blades . REFERENCES Anagnostopoulos, P., ed. Flow-Induced Vibrations in Engineering

  7. Optimized synchronization of chaotic and hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Bryant, Paul H.

    2010-07-01

    A method of synchronization is presented which, unlike existing methods, can, for generic dynamical systems, force all conditional Lyapunov exponents to go to -∞ . It also has improved noise immunity compared to existing methods, and unlike most of them it can synchronize hyperchaotic systems with almost any single coupling variable from the drive system. Results are presented for the Rossler hyperchaos system and the Lorenz system.

  8. Stochastic synchronization in finite size spiking networks.

    PubMed

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  9. Empirical synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L.; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  10. Synchronized Flashing Lights For Approach And Docking

    NASA Technical Reports Server (NTRS)

    Book, Michael L.; Howard, Richard T.; Bryan, Thomas C.; Bell, Joseph L.

    1994-01-01

    Proposed optoelectronic system for guiding vehicle in approaching and docking with another vehicle includes active optical targets (flashing lights) on approached vehicle synchronized with sensor and image-processing circuitry on approaching vehicle. Conceived for use in automated approach and docking of two spacecraft. Also applicable on Earth to manually controlled and automated approach and docking of land vehicles, aircraft, boats, and submersible vehicles, using GPS or terrestrial broadcast time signals for synchronization. Principal advantage: optical power reduced, with consequent enhancement of safety.

  11. Empirical synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  12. Synchronization of two interacting populations of oscillators

    NASA Astrophysics Data System (ADS)

    Montbrió, Ernest; Kurths, Jürgen; Blasius, Bernd

    2004-11-01

    We analyze synchronization between two interacting populations of different phase oscillators. For the important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher order entrainment, and the existence of states with unusual stability properties. All possible routes to synchronization of the populations are presented and some stability boundaries are obtained analytically. The impact of these findings for neuroscience is discussed.

  13. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  14. Synchronization of coupled large-scale Boolean networks

    NASA Astrophysics Data System (ADS)

    Li, Fangfei

    2014-03-01

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  15. An algorithm for the automatic synchronization of Omega receivers

    NASA Technical Reports Server (NTRS)

    Stonestreet, W. M.; Marzetta, T. L.

    1977-01-01

    The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.

  16. Synchronization in a semiclassical Kuramoto model

    NASA Astrophysics Data System (ADS)

    Hermoso de Mendoza, Ignacio; Pachón, Leonardo A.; Gómez-Gardeñes, Jesús; Zueco, David

    2014-11-01

    Synchronization is a ubiquitous phenomenon occurring in social, biological, and technological systems when the internal rythms of their constituents are adapted to be in unison as a result of their coupling. This natural tendency towards dynamical consensus has spurred a large body of theoretical and experimental research in recent decades. The Kuramoto model constitutes the most studied and paradigmatic framework in which to study synchronization. In particular, it shows how synchronization appears as a phase transition from a dynamically disordered state at some critical value for the coupling strength between the interacting units. The critical properties of the synchronization transition of this model have been widely studied and many variants of its formulations have been considered to address different physical realizations. However, the Kuramoto model has been studied only within the domain of classical dynamics, thus neglecting its applications for the study of quantum synchronization phenomena. Based on a system-bath approach and within the Feynman path-integral formalism, we derive equations for the Kuramoto model by taking into account the first quantum fluctuations. We also analyze its critical properties, the main result being the derivation of the value for the synchronization onset. This critical coupling increases its value as quantumness increases, as a consequence of the possibility of tunneling that quantum fluctuations provide.

  17. Frame Synchronization Without Attached Sync Markers

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  18. Gear synchronizer assembly for power transmission

    SciTech Connect

    Ikemoto, K.; Terakura, Y.

    1986-12-02

    This patent describes a gear synchronizer assembly comprising a gear member rotatable on a transmission shaft, a spline piece formed at one side thereof with a conical portion and thereon with external splines and mounted on a hub portion of the gear member for rotation therewith, and a synchronizer ring mounted on the conical portion of the spline piece for frictional engagement therewith. A hub member is fixedly mounted on the shaft for rotation therewith and has a cylindrical hub portion encircling the synchronizer ring and is formed thereon with external splines. A clutch sleeve encircles the cylindrical hub portion of the hub member and has internal splines in continual engagement with the external splines of the hub member. The clutch sleeve is axially shiftable toward and away from the gear member to be engaged at the internal splines thereof with the external splines of the spline piece. A thrust means is included for moving the synchronizer ring toward the spline piece in shifting operation of the clutch sleeve toward the gear member to effect the frictional engagement of the synchronizer ring with the spline piece. The improvement described here wherein the clutch sleeve is formed at its inner periphery with an internal radial projection axially movable in a corresponding axial groove formed in the cylindrical hub portion of the hub member, and wherein the thrust means comprises a radially contractible annular resilient member arranged in surrounding relationship with the synchronizer ring.

  19. Frame Synchronization Without Attached Sync Markers

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  20. Synchronization of weakly coupled canard oscillators

    NASA Astrophysics Data System (ADS)

    Köksal Ersöz, Elif; Desroches, Mathieu; Krupa, Martin

    2017-06-01

    Synchronization has been studied extensively in the context of weakly coupled oscillators using the so-called phase response curve (PRC) which measures how a change of the phase of an oscillator is affected by a small perturbation. This approach was based upon the work of Malkin, and it has been extended to relaxation oscillators. Namely, synchronization conditions were established under the weak coupling assumption, leading to a criterion for the existence of synchronous solutions of weakly coupled relaxation oscillators. Previous analysis relies on the fact that the slow nullcline does not intersect the fast nullcline near one of its fold points, where canard solutions can arise. In the present study we use numerical continuation techniques to solve the adjoint equations and we show that synchronization properties of canard cycles are different than those of classical relaxation cycles. In particular, we highlight a new special role of the maximal canard in separating two distinct synchronization regimes: the Hopf regime and the relaxation regime. Phase plane analysis of slow-fast oscillators undergoing a canard explosion provides an explanation for this change of synchronization properties across the maximal canard.