High accuracy diffuse horizontal irradiance measurements without a shadowband
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlemmer, J.A; Michalsky, J.J.
1995-12-31
The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from total horizontal and direct normal irradiance. This method is in error because of angular (cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. Wemore » compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. Results indicate significant improvement in most cases. Remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less
High accuracy diffuse horizontal irradiance measurements without a shadowband
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlemmer, J.A.; Michalsky, J.J.
1995-10-01
The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from the total horizontal and direct normal irradiance. This method is in error because of the angular (often referred to as cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular responsemore » of the total horizontal pyranometer. The authors compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. The results indicate significant improvement in most cases. The remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less
Reducing economic risk in areally anisotropic formations with multiple-lateral horizontal wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.; Economides, M.J.; Frick, T.P.
1995-12-31
Well orientation is critical to horizontal well performance in areally anisotropic reservoirs. A horizontal well, drilled normal to the direction of maximum permeability, will have higher productivity than one drilled in any other arbitrary direction. Currently, horizontal permeability magnitudes and even indications of direction are rarely measured in the field. Based on well performance modeling and economic evaluation, this study attempts to determine the relative attractiveness of horizontal wells with multiple-laterals. The work exposes the economic risk in ignoring horizontal permeability magnitudes and directions and demonstrates the importance of adequate reservoir testing. A new rationalization for multiple-lateral horizontal wells ismore » the reduction of the economic risk associated with poor reservoir characterization in areally anisotropic formations while increasing the incremental net present value (NPV) over single-horizontal wells.« less
Stress perturbation associated with the Amazonas and other ancient continental rifts
Zoback, M.L.; Richardson, R.M.
1996-01-01
The state of stress in the vicinity of old continental rifts is examined to investigate the possibility that crustal structure associated with ancient rifts (specifically a dense rift pillow in the lower crust) may modify substantially the regional stress field. Both shallow (2.0-2.6 km depth) breakout data and deep (20-45 km depth) crustal earthquake focal mechanisms indicate a N to NNE maximum horizontal compression in the vicinity of the Paleozoic Amazonas rift in central Brazil. This compressive stress direction is nearly perpendicular to the rift structure and represents a ???75?? rotation relative to a regional E-W compressive stress direction in the South American plate. Elastic two-dimensional finite element models of the density structure associated with the Amazonas rift (as inferred from independent gravity modeling) indicate that elastic support of this dense feature would generate horizontal rift-normal compressional stresses between 60 and 120 MPa, with values of 80-100 MPa probably most representative of the overall structure. The observed ???75?? stress rotation constrains the ratio of the regional horizontal stress difference to the rift-normal compressive stress to be between 0.25 and 1.0, suggesting that this rift-normal stress may be from 1 to 4 times larger than the regional horizontal stress difference. A general expression for the modification of the normalized local horizontal shear stress (relative to the regional horizontal shear stress) shows that the same ratio of the rift-normal compression relative to the regional horizontal stress difference, which controls the amount of stress rotation, also determines whether the superposed stress increases or decreases the local maximum horizontal shear stress. The potential for fault reactivation of ancient continental rifts in general is analyzed considering both the local stress rotation and modification of horizontal shear stress for both thrust and strike-slip stress regimes. In the Amazonas rift case, because the observed stress rotation only weakly constrains the ratio of the regional horizontal stress difference to the rift-normal compression to be between 0.25 and 1.0, our analysis is inconclusive because the resultant normalized horizontal shear stress may be reduced (for ratios >0.5) or enhanced (for ratios <0.5). Additional information is needed on all three stress magnitudes to predict how a change in horizontal shear stress directly influences the likelihood of faulting in the thrust-faulting stress regime in the vicinity of the Amazonas rift. A rift-normal stress associated with the seismically active New Madrid ancient rift may be sufficient to rotate the horizontal stress field consistent with strike-slip faults parallel to the axis of the rift, although this results in a 20-40% reduction in the local horizontal shear stress within the seismic zone. Sparse stress data in the vicinity of the seismically quiescent Midcontinent rift of the central United States suggest a stress state similar to that of New Madrid, with the local horizontal shear stress potentially reduced by as much as 60%. Thus the markedly different levels of seismic activity associated with these two subparallel ancient rifts is probably due to other factors than stress perturbations due to dense rift pillows. The modeling and analysis here demonstrate that rift-normal compressive stresses are a significant source of stress acting on the lithosphere and that in some cases may be a contributing factor to the association of intraplate seismicity with old zones of continental extension.
Effect of occlusion, directionality and age on horizontal localization
NASA Astrophysics Data System (ADS)
Alworth, Lynzee Nicole
Localization acuity of a given listener is dependent upon the ability discriminate between interaural time and level disparities. Interaural time differences are encoded by low frequency information whereas interaural level differences are encoded by high frequency information. Much research has examined effects of hearing aid microphone technologies and occlusion separately and prior studies have not evaluated age as a factor in localization acuity. Open-fit hearing instruments provide new earmold technologies and varying microphone capabilities; however, these instruments have yet to be evaluated with regard to horizontal localization acuity. Thus, the purpose of this study is to examine the effects of microphone configuration, type of dome in open-fit hearing instruments, and age on the horizontal localization ability of a given listener. Thirty adults participated in this study and were grouped based upon hearing sensitivity and age (young normal hearing, >50 years normal hearing, >50 hearing impaired). Each normal hearing participant completed one localization experiment (unaided/unamplified) where they listened to the stimulus "Baseball" and selected the point of origin. Hearing impaired listeners were fit with the same two receiver-in-the-ear hearing aids and same dome types, thus controlling for microphone technologies, type of dome, and fitting between trials. Hearing impaired listeners completed a total of 7 localization experiments (unaided/unamplified; open dome: omnidirectional, adaptive directional, fixed directional; micromold: omnidirectional, adaptive directional, fixed directional). Overall, results of this study indicate that age significantly affects horizontal localization ability as younger adult listeners with normal hearing made significantly fewer localization errors than older adult listeners with normal hearing. Also, results revealed a significant difference in performance between dome type; however, upon further examination was not significant. Therefore, results examining type of dome should be viewed with caution. Results examining microphone configuration and microphone configuration by dome type were not significant. Moreover, results evaluating performance relative to unaided (unamplified) were not significant. Taken together, these results suggest open-fit hearing instruments, regardless of microphone or dome type, do not degrade horizontal localization acuity within a given listener relative to their 'older aged' normal hearing counterparts in quiet environments.
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.
2014-01-01
The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.
Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany.
Kutsch, Werner L; Kolle, Olaf; Rebmann, Corinna; Knohl, Alexander; Ziegler, Waldemar; Schulze, Ernst-Detlef
2008-09-01
Potential losses by advection were estimated at Hainich Forest, Thuringia, Germany, where the tower is located at a gentle slope. Three approaches were used: (1) comparing nighttime eddy covariance fluxes to an independent value of total ecosystem respiration by bottom-up modeling of the underlying processes, (2) direct measurements of a horizontal CO2 gradient and horizontal wind speed at 2 m height in order to calculate horizontal advection, and (3) direct measurements of a vertical CO2 gradient and a three-dimensional wind profile in order to calculate vertical advection. In the first approach, nighttime eddy covariance measurements were compared to independent values of total ecosystem respiration by means of bottom-up modeling of the underlying biological processes. Turbulent fluxes and storage term were normalized to the fluxes calculated by the bottom-up model. Below a u(*) threshold of 0.6 m/s the normalized turbulent fluxes decreased with decreasing u(*), but the flux to the storage increased only up to values less than 20% of the modeled flux at low turbulence. Horizontal advection was measured by a horizontal CO2 gradient over a distance of 130 m combined with horizontal wind speed measurements. Horizontal advection occurred at most of the evenings independently of friction velocity above the canopy. Nevertheless, horizontal advection was higher when u(*) was low. The peaks of horizontal advection correlated with changes in temperature. A full mass balance including turbulent fluxes, storage, and horizontal and vertical advection resulted in an increase of spikes and scatter but seemed to generally improve the results from the flux measurements. The comparison of flux data with independent bottom-up modeling results as well as the direct measurements resulted in strong indications that katabatic flows along the hill slope during evening and night reduces the measured apparent ecosystem respiration rate. In addition, anabatic flows may occur during the morning. We conclude that direct measurements of horizontal and vertical advection are highly necessary at sites located even on gentle hill slopes.
Lustbader, J.; Andreas, A.
2012-04-01
This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.
Comparison and Analysis of Energy Performance of Baseline and Enhanced Temporary Army Shelters
2015-09-01
modeling .................................................................................................... 37 4.4 Predicted vs. field- measured data...with remote access capability ......................... 35 4-2 Direct normal solar radiation measured at weather station and estimated with the... Measured global horizontal radiation and EnergyPlus calculated incident solar radiation on a horizontal surface
Mechanical Impedance of the Human Body in the Horizontal Direction
NASA Astrophysics Data System (ADS)
Holmlund, P.; Lundström, R.
1998-08-01
The mechanical impedance of the seated human body in horizontal directions (fore-and-aft and lateral) was measured during different experimental conditions, such as vibration level (0·25-1·4 m/s2r.m.s.), frequency (1·13-80 Hz), body weight (54-93 kg), upper body posture (relaxed and erect) and gender. The outcome showed that impedance, normalized by the sitting weight, varies with direction, level, posture and gender. Generally the impedance spectra show one peak for the fore-and-aft (X) direction while two peaks are found in the lateral (Y) direction. Males showed a lower normalized impedance than females. Increasing fore-and-aft vibration decreases the frequency at which maximum impedance occurs but also reduces the overall magnitude. For the lateral direction a more complex pattern was found. The frequency of impedance peaks are constant with increasing vibration level. The magnitude of the second peak decreases when changing posture from erect to relaxed. Males showed a higher impedance magnitude than females and a greater dip between the two peaks. The impedance spectra for the two horizontal directions have different shapes. This supports the idea of treating them differently; such as with respect to risk assessments and development of preventative measures.
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Somers, Jeffrey T.; Feiveson, Alan H.; Leigh, R. John; Wood, Scott J.; Paloski, William H.; Kornilova, Ludmila
2006-01-01
We studied the ability to hold the eyes in eccentric horizontal or vertical gaze angles in 68 normal humans, age range 19-56. Subjects attempted to sustain visual fixation of a briefly flashed target located 30 in the horizontal plane and 15 in the vertical plane in a dark environment. Conventionally, the ability to hold eccentric gaze is estimated by fitting centripetal eye drifts by exponential curves and calculating the time constant (t(sub c)) of these slow phases of gazeevoked nystagmus. Although the distribution of time-constant measurements (t(sub c)) in our normal subjects was extremely skewed due to occasional test runs that exhibited near-perfect stability (large t(sub c) values), we found that log10(tc) was approximately normally distributed within classes of target direction. Therefore, statistical estimation and inference on the effect of target direction was performed on values of z identical with log10t(sub c). Subjects showed considerable variation in their eyedrift performance over repeated trials; nonetheless, statistically significant differences emerged: values of tc were significantly higher for gaze elicited to targets in the horizontal plane than for the vertical plane (P less than 10(exp -5), suggesting eccentric gazeholding is more stable in the horizontal than in the vertical plane. Furthermore, centrifugal eye drifts were observed in 13.3, 16.0 and 55.6% of cases for horizontal, upgaze and downgaze tests, respectively. Fifth percentile values of the time constant were estimated to be 10.2 sec, 3.3 sec and 3.8 sec for horizontal, upward and downward gaze, respectively. The difference between horizontal and vertical gazeholding may be ascribed to separate components of the velocity position neural integrator for eye movements, and to differences in orbital mechanics. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied in a clinical setting to patients who were exposed to environments that may have modified their central integrators and thus require monitoring. Patients with gaze-evoked nystagmus can be flagged by comparing to the above established normative criteria.
NASA Astrophysics Data System (ADS)
Septyasari, U.; Niasari, S. W.; Maghfira, P. D.
2018-04-01
Telomoyo geothermal prospect area is located in Central Java, Indonesia. One of the manifestations around Telomoyo is a warm spring, called Candi Umbul. The hydrothermal fluids from the manifestation could be from the subsurface flowing up through geological structures. The previous research about 2D magnetic modeling in Candi Umbul showed that there was a normal fault with strike/dip N60°E/45° respectively. This research aims to know the distance boundary and the kind of the geological structure in the study area. We also compared the geological structure direction based on the geologic map and the derivative maps. We used derivative analyses of the magnetic data, i.e. First Horizontal Derivative (FHD) which is the rate of change of the horizontal gradient in the horizontal direction. FHD indicates the boundaries of the geological structure. We also used Second Vertical Derivative (SVD) which is the rate of change of the vertical gradient in the vertical direction. SVD can reveal normal fault or thrust fault. The FHD and SVD maps show that the geological structure boundary has the same direction with the north west-south east geological structure. The geological structure boundary is in 486 m of the local distance. Our result confirms that there is a normal fault in the study area.
NASA Astrophysics Data System (ADS)
Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.
2000-06-01
We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.
Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)
Wilcox, S.; Andreas, A.
2007-05-02
A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.
Assessment of the perception of verticality and horizontality with self-paced saccades.
Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A
1998-07-01
We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.
Regulation of reaction forces during the golf swing.
McNitt-Gray, J L; Munaretto, J; Zaferiou, A; Requejo, P S; Flashner, H
2013-06-01
During the golf swing, the reaction forces applied at the feet control translation and rotation of the body-club system. In this study, we hypothesized that skilled players using a 6-iron would regulate shot distance by scaling the magnitude of the resultant horizontal reaction force applied to the each foot with minimal modifications in force direction. Skilled players (n = 12) hit golf balls using a 6-iron. Shot distance was varied by hitting the ball as they would normally and when reducing shot distance using the same club. During each swing, reaction forces were measured using dual force plates (1200 Hz) and three-dimensional kinematics were simultaneously captured (110 Hz). The results indicate that, on average, the peak resultant horizontal reaction forces of the target leg were significantly less than normal (5%, p < 0.05) when reducing shot distance. No significant differences in the orientation of the peak resultant horizontal reaction forces were observed. Resultant horizontal reaction force-angle relationships within leg and temporal relationships between target and rear legs during the swing were consistent within player across shot conditions. Regulation of force magnitude with minimal modification in force direction is expected to provide advantages from muscle activation, coordination, and performance points of view.
Stoffel, T.; Andreas, A.
1981-07-15
The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).
High-efficiency directional backlight design for an automotive display.
Chen, Bo-Tsuen; Pan, Jui-Wen
2018-06-01
We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.
Ackers, D; Hejnowicz, Z; Sievers, A
1994-01-01
Velocities of cytoplasmic streaming were measured in internodal cells of Nitella flexilis L. and Chara corallina Klein ex Willd. by laser-Doppler-velocimetry to investigate the possibility of non-statolith-based perception of gravity. This was recently proposed, based on a report of gravity-dependent polarity of cytoplasmic streaming. Our measurements revealed large spatial and temporal variation in streaming velocity within a cell, independent of the position of the cell with respect to the direction of gravity. In 58% of the horizontally positioned cells the velocities of acropetal and basipetal streaming, measured at opposite locations in the cell, differed significantly. In 45% of these, basipetal streaming was faster than acropetal streaming. In 60% of the vertically positioned cells however the difference was significant, downward streaming was faster in only 61% of these. When cell positions were changed from vertical to horizontal and vice versa the cells reacted variably. A significant difference between velocities in one direction, before and after the change, was observed in approx. 70% of the measurements, but the velocity was faster in the downward direction, as the second position, in only 70% of the significantly different. The ratio of basipetal to acropetal streaming velocities at opposite locations of a cell was quite variable within groups of cells with a particular orientation (horizontal, normal vertical, inverted vertical). On average, however, the ratio was close to 1.00 in the horizontal position and approx. 1.03 in the normal vertical position (basipetal streaming directed downwards), which indicates a small direct effect of gravity on streaming velocity. Individual cells, however, showed an increased, as well as a decreased, ratio when moved from the horizontal to the vertical position. No discernible effect of media (either Ca(2+)-buffered medium or 1.2% agar in distilled water) on the streaming velocities was observed. The above mentioned phenomenon of graviperception is not supported by our data.
-Irradiance Model. Solar Energy Monthly and annual average direct normal irradiance for Hawaii and the normal (DNI). This is then adjusted as a function of the ratio of clear sky global horizontal (GHI) and , provided that this entire notice appears in all copies of the data. Further, the user of this data agrees
ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances
Hodges, Gary
1993-07-04
The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.
NASA Astrophysics Data System (ADS)
Honkura, Y.; Watanabe, N.; Kaneko, Y.; Oshima, S.
1989-03-01
Two-dimensional analyses of magnetotelluric data provide information on anisotropic response for two different polarization cases; the so-called B-polarization and E-polarization cases. Similar anisotropy should also be observed in the horizontal components of magnetic field variations. On the assumption that a reference station provides the normal magnetic field, transfer functions for the horizontal magnetic fields can be derived in a fashion similar to the impedance analysis for magnetotelluric data. We applied this method to magnetic data obtained at some observation sites in a geothermal area in Japan. Transfer functions for the horizontal magnetic fields exhibit a strong anisotropy with the preferred direction nearly perpendicular to that for the electric field. This result implies the existence of strong electric currents flowing in the direction perpendicular to the above preferred direction for the magnetic field. The present method was also applied to the horizontal components of magnetic field variations observed at the seafloor. In this case, a magnetic observatory on land was taken as the reference station, and attenuation of the amplitude of horizontal magnetic field variation was examined. Anisotropy in attenuation was then found with the preferred direction perpendicular to the axis of the Okinawa trough where the seafloor measurement was undertaken.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
Accurate solar radiation measurements require properly installed and maintained radiometers with calibrations traceable to the World Radiometric Reference. This study analyzes the performance of 51 commercially available and prototype radiometers used for measuring global horizontal irradiances or direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with an internal shading mask deployed at the National Renewable Energy Laboratory's (NREL) Solar Radiation Research Laboratory. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012), and their measurements were compared under clear-sky, partly cloudy, and mostly cloudy conditions to referencemore » values of low estimated measurement uncertainties. The intent of this paper is to present a general overview of each radiometer's performance based on the instrumentation and environmental conditions available at NREL.« less
NASA Technical Reports Server (NTRS)
Wood, Scott; Clement, Gilles
2013-01-01
This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.
Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F
2011-04-01
Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.
Xcel Energy Comanche Station: Pueblo, Colorado (Data)
Stoffel, T.; Andreas, A.
2007-06-20
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Lowry Range Solar Station: Arapahoe County, Colorado (Data)
Yoder, M.; Andreas, A.
2008-05-30
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Sun Spot One (SS1): San Luis Valley, Colorado (Data)
Stoffel, T.; Andreas, A.
2008-06-10
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
University of Nevada (UNLV): Las Vegas, Nevada (Data)
Stoffel, T.; Andreas, A.
2006-03-18
A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Nevada Power: Clark Station; Las Vegas, Nevada (Data)
Stoffel, T.; Andreas, A.
2006-03-27
A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Maxey, C.; Andreas, A.
2009-02-03
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Periodic alternating nystagmus during caloric stimulation.
Taki, Masakatsu; Hasegawa, Tatsuhisa; Adachi, Naoko; Fujita, Tomoki; Sakaguchi, Hirofumi; Hisa, Yasuo
2014-04-01
Periodic alternating nystagmus (PAN) is a form of horizontal jerk nystagmus characterized by periodic reversals in direction. We report a case who exhibited transient PAN induced by caloric stimulation. The patient was a 75-year-old male. He had experienced floating sensation in January 2010. Eight months later, he was referred to our university hospital. Gaze nystagmus and positional tests revealed no nystagmus. Only weak right-beating horizontal nystagmus was observed during left Dix-Hallpike maneuver. Electronystagmography showed normal saccadic and smooth pursuit eye movements. The optokinetic nystagmus pattern test was also bilaterally normal. However, during the caloric stimulation to the right ear, at 166 s from the start of irrigation, the direction of nystagmus alternated from leftward to rightward, and thereafter this reversal of direction repeated 15 times. Magnetic resonance imaging showed no significant lesion except for chronic ischemia in the brain. The patient probably had some kind of latent lesion of impaired velocity storage and exhibited transient PAN induced by caloric stimulation. Caloric stimulation is useful and simple examination to disclose latent eye movement disorders of which velocity storage mechanism is impaired. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Rey-Martinez, Jorge; McGarvie, Leigh; Pérez-Fernández, Nicolás
2017-03-01
The obtained simulations support the underlying hypothesis that the hydrostatic caloric drive is dissipated by local convective flow in a hydropic duct. To develop a computerized model to simulate and predict the internal fluid thermodynamic behavior within both normal and hydropic horizontal ducts. This study used a computational fluid dynamics software to simulate the effects of cooling and warming of two geometrical models representing normal and hydropic ducts of one semicircular horizontal canal during 120 s. Temperature maps, vorticity, and velocity fields were successfully obtained to characterize the endolymphatic flow during the caloric test in the developed models. In the normal semicircular canal, a well-defined endolymphatic linear flow was obtained, this flow has an opposite direction depending only on the cooling or warming condition of the simulation. For the hydropic model a non-effective endolymphatic flow was predicted; in this model the velocity and vorticity fields show a non-linear flow, with some vortices formed inside the hydropic duct.
Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys.
Walton, Mark M G; Mustari, Michael J
2015-08-01
Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. Copyright © 2015 the American Physiological Society.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... orientation of the hinge axis shall be horizontal. A plane surface shall be applied to any protrusion from the... direction along the axis of the nipple. The normal of the plane surface shall be maintained parallel to the...
Kiedron, Peter
2008-01-15
Once every minute between sunrise and sunset the Rotating Shadowband Spectroradiometer (RSS) measures simultaneously three irradiances: total horizontal, diffuse horizontal and direct normal in near ultraviolet, visible and near infrared range (approx. 370nm-1050nm) at 512 (RSS103) or 1024 (RSS102 and RSS105) adjacent spectral resolving elements (pixels). The resolution is pixel (wavelength) dependent and it differs from instrument to instrument. The reported irradiances are cosine response corrected. And their radiometric calibration is based on incandescent lamp calibrators that can be traced to the NIST irradiance scale. The units are W/m2/nm.
NASA Astrophysics Data System (ADS)
Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.
2015-12-01
Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault normal direction and 60 cm in the upward direction; the vector sum of these is 143 cm. Inside the Kathmandu Valley, 147 cm deformation and the same moving direction as the USGS fault normal direction were reported using with GPS data. Our results derived from the KTP records are consistent with these observations.
Model space exploration for determining landslide source history from long period seismic data
NASA Astrophysics Data System (ADS)
Zhao, Juan; Mangeney, Anne; Stutzmann, Eléonore; Capdeville, Yann; Moretti, Laurent; Calder, Eliza S.; Smith, Patrick J.; Cole, Paul; Le Friant, Anne
2013-04-01
The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450 km and 1261 km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on Mount St. Helens (1980) event which are recorded by more broadband stations.
Impact of Harness Attachment Point on Kinetics and Kinematics During Sled Towing.
Bentley, Ian; Atkins, Steve J; Edmundson, Christopher J; Metcalfe, John; Sinclair, Jonathan K
2016-03-01
Resisted sprint training is performed in a horizontal direction and involves similar muscles, velocities, and ranges of motion (ROM) to those of normal sprinting. Generally, sleds are attached to the athletes through a lead (3 m) and harness; the most common attachment points are the shoulder or waist. At present, it is not known how the different harness point's impact on the kinematics and kinetics associated with sled towing (ST). The aim of the current investigation was to examine the kinetics and kinematics of shoulder and waist harness attachment points in relation to the acceleration phase of ST. Fourteen trained men completed normal and ST trials, loaded at 10% reduction of sprint velocity. Sagittal plane kinematics from the trunk, hip, knee, and ankle were measured, together with stance phase kinetics (third footstrike). Kinetic and kinematic parameters were compared between harness attachments using one-way repeated-measures analysis of variance. The results indicated that various kinetic differences were present between the normal and ST conditions. Significantly greater net horizontal mean force, net horizontal impulses, propulsive mean force, and propulsive impulses were measured (p < 0.05). Interestingly, the waist harness also led to greater net horizontal impulse when compared with the shoulder attachment (p < 0.001). In kinematic terms, ST conditions significantly increased peak flexion in hip, knee, and ankle joints compared with the normal trials (p < 0.05). Results highlighted that the shoulder harness had a greater impact on trunk and knee joint kinematics when compared with the waist harness (p < 0.05). In summary, waist harnesses seem to be the most suitable attachment point for the acceleration phase of sprinting. Sled towing with these attachments resulted in fewer kinematic alterations and greater net horizontal impulse when compared with the shoulder harness. Future research is necessary in order to explore the long-term adaptations of these acute changes.
Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Stoffel, T.; Reda, I.
2014-03-01
Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.
Schouten, P; Parisi, A V
2011-02-07
Several broadband ultraviolet (UV) radiation angular distribution investigations have been previously presented. As the biologically damaging effectiveness of UV radiation is known to be wavelength dependent, it is necessary to expand this research into the distribution of the spectral UV. UV radiation is also susceptible to Rayleigh and Mie scattering processes, both of which are completely wavelength dependent. Additionally, the majority of previous measurements detailing the biologically damaging effect of spectral UV radiation have been oriented with respect to the horizontal plane or in a plane directed towards the sun (sun-normal), with the irradiance weighted against action spectra formulated specifically for human skin and tissue. However, the human body consists of very few horizontal or sun-normal surfaces. Extending the previous research by measuring the distribution of the spectral irradiance across the sky for the complete terrestrial solar UV waveband and weighting it against erythemal, photoconjunctivital and photokeratital action spectra allowed for the analysis of the differences between the biologically effective irradiance (UV(BE)) values intercepted at different orientations and the effect of scattering processes upon the homogeneity of these UV(BE) distributions. It was established that under the local atmospheric environment, the distribution profile of the UV(BE) for each biological response was anisotropic, with the highest intensities generally intercepted at inclination angles situated between the horizontal and vertical planes along orientations closely coinciding with the sun-normal. A finding from this was that the angular distributions of the erythemal UV(BE) and the photoconjunctivital UV(BE) were different, due to the differential scattering between the shorter and longer UV wavelengths within the atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.
Sinskey, Robert M; Eshete, Almaz
2002-01-01
To evaluate the visual and restoration of normal appearance results of maximal excision of the horizontal rectus muscles in nystagmus patients. Menelik II Hospital, Addis Ababa, Ethiopia and the Sinskey Eye Institute, Santa Monica, California. The medial and lateral rectus muscles were extirpated as far back as possible with an enucleation snare in four patients with horizontal nystagmus. A complete eye examination was performed pre- and postoperatively. Using a camcorder, ocular movements were recorded before surgery, and at postop; days 1 and 40, and months 1, 3 and 10. All four patients had a marked reduction in both abnormal and normal horizontal eye movement, and improvement in objective visual acuity. Postoperative residual intermittent fine horizontal movement was recorded in the left eye in a 6 year old and in both eyes of a 41 year old patient. A residual rotary component was recorded in a 15 year-old patient. The 6 and 9 year-old patients each developed a moderate exotropia. The 15 and 41 year-old patients maintained binocular fusion with some residual ability to converge. Vision increased subjectively in all cases. Subtotal myectomy of the horizontal muscles in horizontal nystagmus with no null point was very effective in improving and/or eliminating horizontal eye movement. Restoration of normal or near normal appearance and improvement in visual acuity occurred in all cases. None of the patients complained of their loss of horizontal gaze and eye movement. More complete myectomy of the muscles should produce total elimination of both normal and abnormal horizontal eye movement including nystagmus.
International Data | Geospatial Data Science | NREL
International Data International Data These datasets detail solar and wind resources for select Annual.xml India 10-km Monthly Direct Normal and Global Horizontal Zip 4.68 MB 04/25/2013 Monthly.xml Wind Data 50-m Wind Data These 50-m hub-height datasets have been validated by NREL and wind energy
NASA Astrophysics Data System (ADS)
Tak, Heewon; Choi, Jaewon; Jo, Sohyun; Hwang, Sukyeon
2017-04-01
Stress anisotropy analysis is important for estimating both stress regime and fracture geometry for the efficient development of unconventional resources. Despite being within the same play, different areas can have different stress regimes, which can affect drilling decisions. The Montney play is located in Canada between British Columbia and Alberta. In British Columbia it is known for its ductile shale and high horizontal stress anisotropy because of the Rocky Mountains; however, in Alberta, it has different geological characteristics with some studies finding weak horizontal stress anisotropy. Therefore, we studied the horizontal stress anisotropy using full azimuth seismic and well data in the Kakwa area in order to establish a drilling plan. Minimal horizontal anisotropy was discovered within the area and the direction of maximum horizontal anisotropy corresponded with the regional scale (i.e., NE-SW). The induced fractures were assumed to have a normal stress regime because of the large depth (> 3000 m). Additionally, because of the very high brittleness (Young's modulus > 9) and relatively weak horizontal stress anisotropy, the fracture geometry in the Kakwa area was estimated as complex or complex planar, as opposed to simply planar.
NASA Astrophysics Data System (ADS)
Masoumi, Salim; McClusky, Simon; Koulali, Achraf; Tregoning, Paul
2017-04-01
Improper modeling of horizontal tropospheric gradients in GPS analysis induces errors in estimated parameters, with the largest impact on heights and tropospheric zenith delays. The conventional two-axis tilted plane model of horizontal gradients fails to provide an accurate representation of tropospheric gradients under weather conditions with asymmetric horizontal changes of refractivity. A new parametrization of tropospheric gradients whereby an arbitrary number of gradients are estimated as discrete directional wedges is shown via simulations to significantly improve the accuracy of recovered tropospheric zenith delays in asymmetric gradient scenarios. In a case study of an extreme rain event that occurred in September 2002 in southern France, the new directional parametrization is able to isolate the strong gradients in particular azimuths around the GPS stations consistent with the "V" shape spatial pattern of the observed precipitation. In another study of a network of GPS stations in the Sierra Nevada region where highly asymmetric tropospheric gradients are known to exist, the new directional model significantly improves the repeatabilities of the stations in asymmetric gradient situations while causing slightly degraded repeatabilities for the stations in normal symmetric gradient conditions. The average improvement over the entire network is ˜31%, while the improvement for one of the worst affected sites P631 is ˜49% (from 8.5 mm to 4.3 mm) in terms of weighted root-mean-square (WRMS) error and ˜82% (from -1.1 to -0.2) in terms of skewness. At the same station, the use of the directional model changes the estimates of zenith wet delay by 15 mm (˜25%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janjai, Serm
In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derivedmore » global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)« less
Adaptations and deficits in the vestibulo-ocular reflex after sixth nerve palsy.
Wong, Agnes M F; Tweed, Douglas; Sharpe, James A
2002-01-01
The effects of paralytic strabismus on the vestibulo-ocular reflex (VOR) have not been systematically investigated in humans. The purpose of this study was to analyze the VOR in patients with unilateral peripheral sixth nerve palsy. Twenty-one patients with unilateral peripheral sixth nerve palsy (6 severe, 7 moderate, 8 mild) and 15 normal subjects were studied. Subjects made sinusoidal +/-10 degrees head-on-body rotations in yaw and pitch at approximately 0.5 and 2 Hz, and in roll at approximately 0.5, 1, and 2 Hz. Eye movement recordings were obtained using magnetic scleral search coils in each eye in darkness and during monocular viewing in light. Static torsional VOR gains, defined as change in torsional eye position divided by change in head position during sustained head roll, were also measured. In all patients, horizontal VOR gains in darkness were decreased in the paretic eye in both abduction and adduction, but remained normal in the nonparetic eye in both directions. In light, horizontal visually enhanced VOR (VVOR) gains were normal in both eyes in moderate and mild palsy. In severe palsy, horizontal VVOR gains remained low in the paretic eye during viewing with either eye, whereas those in the nonparetic eye were higher than normal when the paretic eye viewed. Vertical VOR and VVOR were normal, but dynamic and static torsional VOR and VVOR gains were reduced in both eyes in all patients. In darkness, horizontal VOR gains were reduced during abduction of the paretic eye in all patients, as anticipated in sixth nerve palsy. Gains were also reduced during adduction of the paretic eye, suggesting that innervation to the medial rectus has changed. After severe palsy, vision did not increase abducting or adducting horizontal VVOR gains to normal in the paretic eye, but caused secondary increase in VVOR gains to values above unity in the nonparetic eye, when the paretic eye fixated. In mild and moderate palsy, vision enhanced the VOR in the paretic eye but caused no change in the nonparetic eye, suggesting a monocular readjustment of innervation selectively to the paretic eye. Vertical VOR and VVOR gains were normal, indicating that the lateral rectus did not have significant vertical actions through the excursions that we tested (+/-10 degrees ). Reduced torsional VOR gains in the paretic eye can be explained by the esotropia in sixth nerve palsy. Torsional VOR gain normally varies with vergence. We attribute the reduced torsional gains in the paretic eye to the mechanism that normally lowers it during convergence. The low torsional gains in the nonparetic eye may be an adaptation to reduce torsional disparity between the two eyes.
Model space exploration for determining landslide source history from long period seismic data
NASA Astrophysics Data System (ADS)
Zhao, J.; Mangeney, A.; Stutzmann, E.; Capdeville, Y.; Moretti, L.; Calder, E. S.; Smith, P. J.; Cole, P.; Le Friant, A.
2012-12-01
The seismic signals generated by high magnitude landslide events can be recorded at remote stations, which provides access to the landslide process. During the "Boxing Day" eruption at Montserrat in 1997, the long-period seismic signals generated by the debris avalanche are recorded by two stations at distances of 450km and 1261km. We investigate the landslide process considering that the landslide source can be described by single forces. The period band 25-50 sec is selected for which the landslide signal is clearly visible at the two stations. We first use the transverse component of the closest station to determine the horizontal forces. We model the seismogram by normal mode summation and investigate the model space. Two horizontal forces are found that best fit the data. These two horizontal forces have similar amplitude, but opposite direction and they are separated in time by 70 sec. The radiation pattern of the transverse component does not enable to determine the exact azimuth of these forces. We then model the vertical component of the seismograms which enable to retrieve both the vertical and horizontal forces. Using the parameter previously determined (amplitude ratio and time shift of the 2 horizontal forces), we further investigate the model space and show that a single vertical force together with the 2 horizontal forces enable to fit the data. The complete source time function can be described as follows: a horizontal force toward the opposite direction of the landslide flow is followed 40 sec later by a vertical downward force and 30 more seconds later by a horizontal force toward the direction of the flow. The volume of the landslide estimated from the force magnitude is compatible with the volume determined by field survey. Inverting directly the seismograms in the period band 25-50sec enable to retrieve a source time function that is consistent with the 3 forces determined previously. The source time function in this narrow period band alone does not enable easily to recover the corresponding single forces. This method can be used to determine the source parameters using only 2 distant stations. It is successfully tested also on other landslides such as Mount St. Helens (1980) event and Mount Steller event (2005) which are recorded by more broadband stations.
[Case of acute ophthalmoparesis with gaze nystagmus].
Ikuta, Naomi; Tada, Yukiko; Koga, Michiaki
2012-01-01
A 61-year-old man developed double vision subsequent to diarrheal illness. Mixed horizontal-vertical gaze palsy in both eyes, diminution of tendon reflexes, and gaze nystagmus were noted. His horizontal gaze palsy was accompanied by gaze nystagmus in the abducent direction, indicative of the disturbance in central nervous system. Neither limb weakness nor ataxia was noted. Serum anti-GQ1b antibody was detected. Brain magnetic resonance imaging (MRI) findings were normal. The patient was diagnosed as having acute ophthalmoparesis. The ophthalmoparesis and nystagmus gradually disappeared in 3 months. The accompanying nystagmus suggests that central nervous system disturbance may also be present with acute ophthalmoparesis.
The solar spectrum at typical clear weather days
NASA Technical Reports Server (NTRS)
Boer, K. W.
1976-01-01
The solar spectrum in the range of 300 is less than lambda is less than 1500nm is given for five typical clear weather days. These days are selected to represent typical seasonal conditions in respect to airmass water vapor, ozone, and turbidity. Present data are reviewed, and specific conditions are selected. The spectral distribution of the irradiance is given for the direct component, the scattered skylight, the total flux on a horizontal surface, and the flux on an inclined surface normal to the direct beam.
Horizontal and sun-normal spectral biologically effective ultraviolet irradiances.
Parisi, A V; Kimlin, M G
1999-01-01
The dependence of the spectral biologically effective solar UV irradiance on the orientation of the receiver with respect to the sun has been determined for relatively cloud-free days at a sub-tropical Southern Hemisphere latitude for the solar zenith angle range 35-64 degrees. For the UV and biologically effective irradiances, the sun-normal to horizontal ratio for the total UV ranges from 1.18 +/- 0.05 to 1.27 +/- 0.06. The sun-normal to horizontal ratio for biologically effective irradiance is dependent on the relative effectiveness of the relevant action spectrum in the UV-A waveband. In contrast to the total UV, the diffuse UV and diffuse biologically effective irradiances are reduced in a sun-normal compared with a horizontal orientation by a factor ranging from 0.70 +/- 0.05 to 0.76 +/- 0.03.
Scaling depth-induced wave-breaking in two-dimensional spectral wave models
NASA Astrophysics Data System (ADS)
Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.
2015-03-01
Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Donald M.; Smith, Kenneth D.; Parashar, Rishi
Regional stress may exert considerable control on the permeability and hydraulic function (i.e., barrier to and/or conduit for fluid flow) of faults and fractures at Pahute Mesa, Nevada National Security Site (NNSS). In-situ measurements of the stress field are sparse in this area, and short period earthquake focal mechanisms are used to delineate principal horizontal stress orientations. Stress field inversion solutions to earthquake focal mechanisms indicate that Pahute Mesa is located within a transtensional faulting regime, represented by oblique slip on steeply dipping normal fault structures, with maximum horizontal stress ranging from N29°E to N63°E and average of N42°E. Averagemore » horizontal stress directions are in general agreement with large diameter borehole breakouts from Pahute Mesa analyzed in this study and with stress measurements from other locations on the NNSS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Bill; Smith, Benjamin
Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis showsmore » the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.« less
Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons
NASA Technical Reports Server (NTRS)
Dickman, J. D.
1996-01-01
Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the bony canal structure to produce a resultant sensitivity vector that was positioned between the canal planes. Calculated angles between the average canal afferent sensitivity vectors revealed that direction orthogonality is preserved at the afferent signal level, even though deviations from canal plane orthogonality exist.
Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2013-12-01
Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability, hydrology, and geomorphology in and near fault-bounded mountain ranges in general.
The influence of geologic structures on deformation due to ground water withdrawal.
Burbey, Thomas J
2008-01-01
A 62 day controlled aquifer test was conducted in thick alluvial deposits at Mesquite, Nevada, for the purpose of monitoring horizontal and vertical surface deformations using a high-precision global positioning system (GPS) network. Initial analysis of the data indicated an anisotropic aquifer system on the basis of the observed radial and tangential deformations. However, new InSAR data seem to indicate that the site may be bounded by an oblique normal fault as the subsidence bowl is both truncated to the northwest and offset from the pumping well to the south. A finite-element numerical model was developed using ABAQUS to evaluate the potential location and hydromechanical properties of the fault based on the observed horizontal deformations. Simulation results indicate that for the magnitude and direction of motion at the pumping well and at other GPS stations, which is toward the southeast (away from the inferred fault), the fault zone (5 m wide) must possess a very high permeability and storage coefficient and cross the study area in a northeast-southwest direction. Simulated horizontal and vertical displacements that include the fault zone closely match observed displacements and indicate the likelihood of the presence of the inferred fault. This analysis shows how monitoring horizontal displacements can provide valuable information about faults, and boundary conditions in general, in evaluating aquifer systems during an aquifer test.
Nystagmus responses in a group of normal humans during earth-horizontal axis rotation
NASA Technical Reports Server (NTRS)
Wall, Conrad, III; Furman, Joseph M. R.
1989-01-01
Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.
Effects of Device on Video Head Impulse Test (vHIT) Gain.
Janky, Kristen L; Patterson, Jessie N; Shepard, Neil T; Thomas, Megan L A; Honaker, Julie A
2017-10-01
Numerous video head impulse test (vHIT) devices are available commercially; however, gain is not calculated uniformly. An evaluation of these devices/algorithms in healthy controls and patients with vestibular loss is necessary for comparing and synthesizing work that utilizes different devices and gain calculations. Using three commercially available vHIT devices/algorithms, the purpose of the present study was to compare: (1) horizontal canal vHIT gain among devices/algorithms in normal control subjects; (2) the effects of age on vHIT gain for each device/algorithm in normal control subjects; and (3) the clinical performance of horizontal canal vHIT gain between devices/algorithms for differentiating normal versus abnormal vestibular function. Prospective. Sixty-one normal control adult subjects (range 20-78) and eleven adults with unilateral or bilateral vestibular loss (range 32-79). vHIT was administered using three different devices/algorithms, randomized in order, for each subject on the same day: (1) Impulse (Otometrics, Schaumberg, IL; monocular eye recording, right eye only; using area under the curve gain), (2) EyeSeeCam (Interacoustics, Denmark; monocular eye recording, left eye only; using instantaneous gain), and (3) VisualEyes (MicroMedical, Chatham, IL, binocular eye recording; using position gain). There was a significant mean difference in vHIT gain among devices/algorithms for both the normal control and vestibular loss groups. vHIT gain was significantly larger in the ipsilateral direction of the eye used to measure gain; however, in spite of the significant mean differences in vHIT gain among devices/algorithms and the significant directional bias, classification of "normal" versus "abnormal" gain is consistent across all compared devices/algorithms, with the exception of instantaneous gain at 40 msec. There was not an effect of age on vHIT gain up to 78 years regardless of the device/algorithm. These findings support that vHIT gain is significantly different between devices/algorithms, suggesting that care should be taken when making direct comparisons of absolute gain values between devices/algorithms. American Academy of Audiology
Three dimensions of the survival curve: horizontalization, verticalization, and longevity extension.
Cheung, Siu Lan Karen; Robine, Jean-Marie; Tu, Edward Jow-Ching; Caselli, Graziella
2005-05-01
Three dimensions of the survival curve have been developed: (1) "horizontalization," which corresponds to how long a cohort and how many survivors can live before aging-related deaths significantly decrease the proportion of survivors; (2) "verticalization," which corresponds to how concentrated aging-related ("normal") deaths are around the modal age at death (M); and (3) "longevity extension," which corresponds to how far the highest normal life durations can exceed M. Our study shows that the degree of horizontalization increased relatively less than the degree of verticalization in Hong Kong from 1976 to 2001. After age normalization, the highest normal life durations moved closer to M, implying that the increase in human longevity is meeting some resistance.
NASA Astrophysics Data System (ADS)
Pastori, M.; Piccinini, D.; Margheriti, L.; Improta, L.; Valoroso, L.; Chiaraluce, L.; Chiarabba, C.
2009-10-01
Shear wave splitting is measured at 19 seismic stations of a temporary network deployed in the Val d'Agri area to record low-magnitude seismic activity. The splitting results suggest the presence of an anisotropic layer between the surface and 15 km depth (i.e. above the hypocentres). The dominant fast polarization direction strikes NW-SE parallel to the Apennines orogen and is approximately parallel to the maximum horizontal stress in the region, as well as to major normal faults bordering the Val d'Agri basin. The size of the normalized delay times in the study region is about 0.01 s km-1, suggesting 4.5 percent shear wave velocity anisotropy (SWVA). On the south-western flank of the basin, where most of the seismicity occurs, we found larger values of normalized delay times, between 0.017 and 0.02 s km-1. These high values suggest a 10 percent of SWVA. These parameters agree with an interpretation of seismic anisotropy in terms of the Extensive-Dilatancy Anisotropy (EDA) model that considers the rock volume pervaded by fluid-saturated microcracks aligned by the active stress field. Anisotropic parameters are consistent with borehole image logs from deep exploration wells in the Val d'Agri oil field that detect pervasive fluid saturated microcracks striking NW-SE parallel to the maximum horizontal stress in the carbonatic reservoir. However, we cannot rule out the contribution of aligned macroscopic fractures because the main Quaternary normal faults are parallel to the maximum horizontal stress. The strong anisotropy and the seismicity concentration testify for active deformation along the SW flank of the basin.
2013-01-01
Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment. PMID:23855907
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.
Tian, Jun-ru; Mokuno, Eriko; Demer, Joseph L.
2007-01-01
The linear vestibulo-ocular reflex (LVOR) to surge (fore-aft) translation has complex kinematics varying with target eccentricity and distance. To determine normal responses and aging changes, 9 younger [age, 28 ± 2 (SE) yr] and 11 older subjects (age, 69 ± 2 yr) underwent 0.5g whole body surge transients while wearing binocular scleral search coils. Linear chair position and head acceleration were measured with a potentiometer and accelerometer. Subjects viewed centered and 10° horizontally and vertically eccentric targets 50, 25, or 15 cm distant before unpredictable onset of randomly directed surge in darkness (LVOR) and light (V-LVOR). Response directions were kinematically appropriate to eccentricity in all subjects, but there were significantly more measurable LVOR and V-LVOR responses (63–79%) in younger than older subjects (38–44%, P < 0.01). Minimal LVOR latency averaged 48 ± 4 ms for younger and significantly longer at 70 ± 6 ms for older subjects. In the interval 200–300 ms after surge onset, horizontal LVOR gain (relative to ideal velocity) of younger subjects averaged over all target distances was 0.55 ± 0.04 and was significantly reduced in older subjects to 0.33 ± 0.04. Horizontal V-LVOR gain was 0.58 ± 0.04 in younger and significantly lower at 0.35 ± 0.06 in older subjects. Vertical gains did not differ significantly between groups. Target visibility had no effect in either group during the initial 200 ms. The LVOR and V-LVOR were augmented by saccades in younger more than older subjects. Aging thus decreases LVOR velocity gain, response rate, and saccade augmentation, but prolongs latency. PMID:16551841
NASA Technical Reports Server (NTRS)
Falls, L. W.; Crutcher, H. L.
1976-01-01
Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.
New methodology for adjusting rotating shadowband irradiometer measurements
NASA Astrophysics Data System (ADS)
Vignola, Frank; Peterson, Josh; Wilbert, Stefan; Blanc, Philippe; Geuder, Norbert; Kern, Chris
2017-06-01
A new method is developed for correcting systematic errors found in rotating shadowband irradiometer measurements. Since the responsivity of photodiode-based pyranometers typically utilized for RST sensors is dependent upon the wavelength of the incident radiation and the spectral distribution of the incident radiation is different for the Direct Normal Trradiance and the Diffuse Horizontal Trradiance, spectral effects have to be considered. These cause the most problematic errors when applying currently available correction functions to RST measurements. Hence, direct normal and diffuse contributions are analyzed and modeled separately. An additional advantage of this methodology is that it provides a prescription for how to modify the adjustment algorithms to locations with different atmospheric characteristics from the location where the calibration and adjustment algorithms were developed. A summary of results and areas for future efforts are then discussed.
Structural interpretation from horizontal seismic sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, A.R.
1983-03-01
The interpreter of a 3D survey must use a data volume. Horizontal slices through a data volume, called Seiscrop sections, have unique properties and structural interpretation from them is fast, convenient, and effective. An event on a Seiscrop section displays local strike, a property which permits direct contouring of a structural surface without any timing and posting. The width of an event on a Seiscrop section is a composition of the frequency of the data and the structural dip. Event terminations indicate faults or other discontinuities when they are transverse to structural strike. Faults parallel to structural strike are muchmore » less evident on a single Seiscrop section but become apparent with the relative movement of events from section to section. In practical mapping, we normally contour one fault block before proceeding to the next with the correlation between them being established from the vertical sections. With dual polarity variable area displays, the interpreter can perceive five amplitude levels and normally picks the edge of a trough. With color amplitude Seiscrop sections, it is possible to pick on the crest of any event. With color phase sections the interpreter can pick at any arbitrary but consistent point on the seismic waveform. Subtle structural features are commonly revealed on horizontal sections which may never have been noticed if working from vertical sections alone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Konor, Celal S.; Randall, David A.
2018-05-08
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Navier-Stokes solution on the CYBER-203 by a pseudospectral technique
NASA Technical Reports Server (NTRS)
Lambiotte, J. J.; Hussaini, M. Y.; Bokhari, S.; Orszag, S. A.
1983-01-01
A three-level, time-split, mixed spectral/finite difference method for the numerical solution of the three-dimensional, compressible Navier-Stokes equations has been developed and implemented on the Control Data Corporation (CDC) CYBER-203. This method uses a spectral representation for the flow variables in the streamwise and spanwise coordinates, and central differences in the normal direction. The five dependent variables are interleaved one horizontal plane at a time and the array of their values at the grid points of each horizontal plane is a typical vector in the computation. The code is organized so as to require, per time step, a single forward-backward pass through the entire data base. The one-and two-dimensional Fast Fourier Transforms are performed using software especially developed for the CYBER-203.
Right up There: Hemispatial and Hand Asymmetries of Altitudinal Pseudoneglect
ERIC Educational Resources Information Center
Suavansri, Ketchai; Falchook, Adam D.; Williamson, John B.; Heilman, Kenneth M.
2012-01-01
Background: Pseudoneglect is a normal left sided spatial bias observed with attempted bisections of horizontal lines and a normal upward bias observed with attempted bisections of vertical lines. Horizontal pseudoneglect has been attributed to right hemispheric dominance for the allocation of attention. The goal of this study was to test the…
Effects of static orientation upon human optokinetic afternystagmus
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Merfeld, D. M.; Zupan, L.
1999-01-01
"Normal" human subjects were placed in a series of 5 static orientations with respect to gravity and were asked to view an optokinetic display moving at a constant angular velocity. The axis of rotation coincided with the subject's rostro-caudal axis and produced horizontal optokinetic nystagmus and afternystagmus. Wall (1) previously reported that these optokinetic afternystagmus responses were not well characterized by parametric fits to slow component velocity. The response for nose-up, however, was larger than for nose-down. This suggested that the horizontal eye movements measured during optokinetic stimulation might include an induced linear VOR component as presented in the body of this paper. To investigate this hypothesis, another analysis of these data has been made using cumulative slow component eye position. Some subjects' responses had reversals in afternystagmus direction. These reversals were "filled in" by a zero slow component velocity. This method of analysis gives a much more consistent result across subjects and shows that, on average, responses from the nose-down horizontal (prone) orientation are greatly reduced (p < 0.05) compared to other horizontal and vertical orientations. Average responses are compared to responses predicted by a model previously used to predict successfully the responses to post-rotatory nystagmus after earth horizontal axis rotation. Ten of 11 subjects had larger responses in their supine than their prone orientation. Application of horizontal axis optokinetic afternystagmus for clinical otolith function testing, and implications for altered gravity experiments are discussed.
Plasma-electric field controlled growth of oriented graphene for energy storage applications
NASA Astrophysics Data System (ADS)
Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya
2018-04-01
It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.
NASA Technical Reports Server (NTRS)
Hung, R. J.
1995-01-01
A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.
Predicted sedimentary record of reflected bores
Higman, B.; Gelfenbaum, G.; Lynett, P.; Moore, A.; Jaffe, B.
2007-01-01
Where a steep slope blocks an inrushing tsunami, the tsunami commonly reverses direction as a reflected bore. A simple method for relating vertical and horizontal variation in sediment size to output from numerical models of depth-averaged tsunami flow yields predictions about the sedimentary record of reflected bores: 1. Near the reflector, a abrupt slowing of the flow as the reflected bore passes is recorded by a normally graded layer that drapes preexisting topography. 2. At intermediate distances from the reflector, the deposit consists of a single normally graded bed deposited preferentially in depressions, possibly including a sharp fine-over-coarse contact. This contact records a brief period of erosion as the front of the reflected bore passes. 3. Far seaward of the reflector, grading in the deposit includes two distinct normally graded beds deposited preferentially in depressions separated by an erosional unconformity. The second normally graded bed records the reflected bore.
Kattah, Jorge C; Talkad, Arun V; Wang, David Z; Hsieh, Yu-Hsiang; Newman-Toker, David E
2009-11-01
Acute vestibular syndrome (AVS) is often due to vestibular neuritis but can result from vertebrobasilar strokes. Misdiagnosis of posterior fossa infarcts in emergency care settings is frequent. Bedside oculomotor findings may reliably identify stroke in AVS, but prospective studies have been lacking. The authors conducted a prospective, cross-sectional study at an academic hospital. Consecutive patients with AVS (vertigo, nystagmus, nausea/vomiting, head-motion intolerance, unsteady gait) with >or=1 stroke risk factor underwent structured examination, including horizontal head impulse test of vestibulo-ocular reflex function, observation of nystagmus in different gaze positions, and prism cross-cover test of ocular alignment. All underwent neuroimaging and admission (generally <72 hours after symptom onset). Strokes were diagnosed by MRI or CT. Peripheral lesions were diagnosed by normal MRI and clinical follow-up. One hundred one high-risk patients with AVS included 25 peripheral and 76 central lesions (69 ischemic strokes, 4 hemorrhages, 3 other). The presence of normal horizontal head impulse test, direction-changing nystagmus in eccentric gaze, or skew deviation (vertical ocular misalignment) was 100% sensitive and 96% specific for stroke. Skew was present in 17% and associated with brainstem lesions (4% peripheral, 4% pure cerebellar, 30% brainstem involvement; chi(2), P=0.003). Skew correctly predicted lateral pontine stroke in 2 of 3 cases in which an abnormal horizontal head impulse test erroneously suggested peripheral localization. Initial MRI diffusion-weighted imaging was falsely negative in 12% (all <48 hours after symptom onset). Skew predicts brainstem involvement in AVS and can identify stroke when an abnormal horizontal head impulse test falsely suggests a peripheral lesion. A 3-step bedside oculomotor examination (HINTS: Head-Impulse-Nystagmus-Test-of-Skew) appears more sensitive for stroke than early MRI in AVS.
Task factor usability ratings for different age groups writing Chinese.
Chan, A H S; So, J C Y
2009-11-01
This study evaluated how different task factors affect performance and user subjective preferences for three different age groups of Chinese subjects (6-11, 20-23, 65-70 years) when hand writing Chinese characters. The subjects copied Chinese character sentences with different settings for the task factors of writing plane angle (horizontal 0 degrees , slanted 15 degrees ), writing direction (horizontal, vertical), and line spacing (5 mm, 7 mm and no lines). Writing speed was measured and subjective preferences (effectiveness and satisfaction) were assessed for each of the task factor settings. The result showed that there was a conflict between writing speed and personal preference for the line spacing factor; 5 mm line spacing increased writing speed but it was the least preferred. It was also found that: vertical and horizontal writing directions and a slanted work surface suited school-aged children; a horizontal work surface and horizontal writing direction suited university students; and a horizontal writing direction with either a horizontal or slanted work surface suited the older adults.
Comparison of optical coherence tomography and fundus photography for measuring the optic disc size.
Neubauer, Aljoscha S; Krieglstein, Tina R; Chryssafis, Christos; Thiel, Martin; Kampik, Anselm
2006-01-01
To assess the agreement and repeatability of optic nerve head (ONH) size measurements by optical coherence tomography (OCT) as compared to conventional planimetry of fundus photographs in normal eyes. For comparison with planimetry the absolute size of the ONH of 25 eyes from 25 normal subjects were measured by both OCT and digital fundus photography (Zeiss FF camera 450). Repeatability of automated Stratus OCT measurements were investigated by repeatedly measuring the optic disc in five normal subjects. Mean disc size was 1763 +/- 186 vertically and 1632 +/- 160 microm horizontally on planimetry. On OCT, values of 1772 +/- 317 microm vertically (p = 0.82) and a significantly smaller horizontal diameter of 1492 +/- 302 microm (p = 0.04) were obtained. The 95% limits of agreement were (-546 microm; +527 microm) for vertical and (-502 microm; +782 microm) for horizontal planimetric compared to OCT measurements. In some cases large discrepancies existed. Repeatability of automatic measurements of the optic disc by OCT was moderately good with intra-class correlation coefficients (ICC) of 0.78 horizontally and 0.83 vertically. The coefficient of repeatability indicating instrument precision was 80 microm for horizontal and 168 microm for vertical measurements. OCT can be used to determine optic disc margins in moderate agreement with planimetry in normal subjects. However, in some cases significant disagreement with photographic assessment may occur making manual inspection advisable. Automatic disc detection by OCT is moderately repeatable.
2011-06-01
usually walking on the right of on-coming people, and cars discouraged from passing on the right of a car traveling in the same direction. “Usually...forces a loss of detail due to horizontal compression: Valleys or troughs are squeezed into oblivion . To enable valleys to be seen, Figures 20 and 21...Volume. Left Panel: North- bound Traffic. Right Panel: Southbound Traffic. Northbound and Southbound Volume Ranges are Different 5.5 Fractional
Non-Normal Projectile Penetration in Soil and Rock: User’s Guide for Computer Code PENC02D.
1982-09-01
the path traveled , with projec- tile orientation shown every FREQI projectile lengths. In this run, FREQI was input as 2.5. The horizontal lines...must be a closed surface in the direction of travel ; the bluntness of the nose requires a near 90-deg element for closure. Sheet 3 shows the beginning...plots for this problem. Sheets 1 and 2 automatically verify the projectile shape and path traveled . Sheets 3, 4, and 5 show the axial deceleration
Thin-film Faraday patterns in three dimensions
NASA Astrophysics Data System (ADS)
Richter, Sebastian; Bestehorn, Michael
2017-04-01
We investigate the long time evolution of a thin fluid layer in three spatial dimensions located on a horizontal planar substrate. The substrate is subjected to time-periodic external vibrations in normal and in tangential direction with respect to the plane surface. The governing partial differential equation system of our model is obtained from the incompressible Navier-Stokes equations considering the limit of a thin fluid geometry and using the long wave lubrication approximation. It includes inertia and viscous friction. Numerical simulations evince the existence of persistent spatially complex surface patterns (periodic and quasiperiodic) for certain superpositions of two vertical excitations and initial conditions. Additional harmonic lateral excitations cause deformations but retain the basic structure of the patterns. Horizontal ratchet-shaped forces lead to a controllable lateral movement of the fluid. A Floquet analysis is used to determine the stability of the linearized system.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng
2007-10-01
Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.
Cephalometric skeletal evaluation of patients with Incontinentia Pigmenti
Maahs, Marcia Angelica Peter; Kiszewski, Ana Elisa; Rosa, Rafael Fabiano Machado; Maria, Fernanda Diffini Santa; Prates, Frederico Ballvé; Zen, Paulo Ricardo Gazzola
2014-01-01
Purpose The aim of this study was to evaluate the skeletal characteristics of patients with the rare genetic disease of Incontinentia Pigmenti, by lateral cephalometric analysis on the antero-posterior plane and by frontal cephalometric analysis on the horizontal plane. Methods Lateral skeletal cephalometric analyses were performed according to Steiner for evaluation of antero-posterior direction, and frontal skeletal cephalometric analyses according to Ricketts for evaluation of horizontal direction in 9 patients with IP. Left and right facial widths at the level of the zygomatic arch were also evaluated. The Student t-test was used for paired to a 5% level of significance data. Results The lateral skeletal cephalometric findings were not statistically significant, but the Class II was the most frequent finding (44.4%), followed by Class III (33.3%) and Class I (22.2%). The right maxillo-mandibular width was significantly lower than normal values, and the right facial width was significantly higher than the left, at the level of the zygomatic arch. Conclusions Patients with IP showed more skeletal discrepancies of Class II and III than Class I malocclusion, and had significant horizontal facial skeletal asymmetries. This should alert health professionals to route these patients for orthodontic assessment and possible therapeutic interventions. However, larger samples are needed to better elucidate if these cephalometric findings can be specifically related to IP. PMID:25737924
Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.
2013-01-01
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659
NASA Astrophysics Data System (ADS)
Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun
2017-07-01
In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.
Travel-time sensitivity kernels in long-range propagation.
Skarsoulis, E K; Cornuelle, B D; Dzieciuch, M A
2009-11-01
Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels.
A formulation of directivity for earthquake sources using isochrone theory
Spudich, Paul; Chiou, Brian S.J.; Graves, Robert; Collins, Nancy; Somerville, Paul
2004-01-01
A functional form for directivity effects can be derived from isochrone theory, in which the measure of the directivity-induced amplification of an S body wave is c, the isochrone velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in isochrone velocity for a finite source in a whole space. We have developed an approximation c-tilde-prime of isochrone velocity that can easily be implemented as a predictor of directivity effects in empirical ground motion prediction relations. Typically, for a given fault surface, hypocenter, and site geometry, c-tilde-prime is a simple function of the hypocentral distance, the rupture distance, the crustal shear wave speed in the seismogenic zone, and the rupture velocity. c-tilde-prime typically ranges in the interval 0.44, for rupture away from the station, to about 4, for rupture toward the station. In this version of the theory directivity is independent of period. Additionally, we have created another functional form which is c-tilde-prime modified to include the approximate radiation pattern of a finite fault having a given rake. This functional form can be used to model the spatial variations of fault-parallel and fault-normal horizontal ground motions. The strengths of this formulation are 1) the proposed functional form is based on theory, 2) the predictor is unambiguously defined for all possible site locations and source rakes, and 3) it can easily be implemented for well-studied important previous earthquakes. We compare predictions of our functional form with synthetic ground motions calculated for finite strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional form correlates best with computed fault-normal and fault-parallel motions in the synthetic motions calculated for events with M6.5. Correlation degrades but is still useful for larger events and for the geometric average horizontal motions. We have had limited success applying it to geometrically complicated faults.
Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...
Reyes, Juan C.; Kalkan, Erol
2012-01-01
In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide the most critical EDPs in nonlinear-inelastic domain; however, they tend to produce larger EDPs than as-recorded (arbitrarily oriented) motions.
Lexical and semantic processing in the absence of word reading: evidence from neglect dyslexia.
Làdavas, E; Umiltà, C; Mapelli, D
1997-08-01
Nine patients with left-sided neglect and nine matched control patients performed three tasks on horizontal (either normal or mirror-reversed) letter strings. The tasks were: reading aloud, making a lexical decision (word vs non-word), and making a semantic decision (living vs non-living item). Relative to controls, neglect patients performed very poorly in the reading task, whereas they performed nearly normally in the lexical and semantic tasks. This was considered to be a dissociation between direct tasks, rather than a dissociation between explicit and implicit knowledge. The explanation offered for the dissociation is in terms of both a dual-route model for reading aloud and a degraded representation of the letter string.
Dynamics of a spherical tippe top
NASA Astrophysics Data System (ADS)
Cross, Rod
2018-05-01
Experimental and theoretical results are presented concerning the inversion of a spherical tippe top. It was found that the top rises quickly while it is sliding and then more slowly when it starts rolling, in a manner similar to that observed previously with a spinning egg. As the top rises it rotates about the horizontal Y axis, an effect that is closely analogous to rotation of the top about the vertical Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction.
NASA Astrophysics Data System (ADS)
Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh
2017-10-01
An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.
1989-08-01
and the local horizontal plane, measured positive above the horizontal plane. The local horizontal plane is defined as a plane normal to the geocentric ...preparation instructions for Format 1000. LOCATION: Enter the areas or locations that are to be staffed with medical personnel, i.e., Vandenberg AFB
NASA Technical Reports Server (NTRS)
Otterman, J.; Brakke, T.
1986-01-01
The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.
Bryce, Richard; Losada Carreño, Ignacio; Kumler, Andrew; Hodge, Bri-Mathias; Roberts, Billy; Brancucci Martinez-Anido, Carlo
2018-08-01
This article contains data and summary statistics of solar irradiance and dry bulb temperature across the Hawaiian archipelago resolved on a monthly basis and spanning years 1998-2015. This data was derived in association with an article titled "Consequences of Neglecting the Interannual Variability of the Solar Resource: A Case Study of Photovoltaic Power Among the Hawaiian Islands" (Bryce et al., 2018 [7]). The solar irradiance data is presented in terms of Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI) and was obtained from the satellite-derived data contained in the National Solar Radiation Database (NSRDB). The temperature data is also obtained from this source. We have processed the NSRDB data and compiled these monthly resolved data sets, along with interannual summary statistics including the interannual coefficient of variability.
NASA Astrophysics Data System (ADS)
Kim, Jin-Young; Yun, Chang-Yeol; Kim, Chang Ki; Kang, Yong-Heack; Kim, Hyun-Goo; Lee, Sang-Nam; Kim, Shin-Young
2017-06-01
The South Korean government has been started monitoring and reassessment for new and renewable resource under greenhouse reduction related with the climate agreement in Paris. This study investigated characteristics of the model-derived direct normal irradiance(DNI) using ten-minute data of the Weather Research and Forecasting(WRF) model with 1 km grid spacing. First, ground horizontal irradiance(GHI) and direct normal irradiance(DNI) from the model was compared with those of ground stations throughout South Korea to evaluate the uncertainty of the GHI-derived DNI. Then solar thermal resource potential was assessed using a DNI map. Uncertainty of irradiances appeared highly dependent on sky conditions. Root mean square errors in DNI(GHI) was 45.39%(18.06%) for all sky with the range of 9.92˜51.93%(14.49˜51.47%) for clear to overcast sky. These indicate DNI is further sensitive to cloud condition in Korea which is around 72% of cloud days during a whole year. Finally DNI maps showed high value over most areas except southeastern areas and Jeju island which is humid regions in South Korea.
Motion coherence and direction discrimination in healthy aging.
Pilz, Karin S; Miller, Louisa; Agnew, Hannah C
2017-01-01
Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (<30 years) participants' ability to discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.
33 CFR 86.07 - Directional properties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pressure level specified in § 86.05 in any direction in the horizontal plane within ±45 degrees of the forward axis. The sound pressure level of the whistle in any other direction in the horizontal plane shall...
Kudish, Avraham I; Harari, Marco; Evseev, Efim G
2011-10-01
The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB radiation does penetrate this supposedly 'protective or comfort zone'. As a result, it is imperative to either apply sunscreen or cover up the exposed body surfaces even when under such shading devices. © 2011 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less
Konor, Celal S.; Randall, David A.
2018-05-08
We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia-gravity modes on a midlatitude f plane.The results of our normal-mode analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.
NASA Astrophysics Data System (ADS)
Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming
2018-03-01
The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.
The organization of the cone photoreceptor mosaic measured in the living human retina
Sawides, Lucie; de Castro, Alberto; Burns, Stephen A.
2016-01-01
The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal meridians as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina show a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones. PMID:27353225
Large eddy simulation of incompressible turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Reynolds, W. C.; Ferziger, J. H.
1978-01-01
The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.
NASA Technical Reports Server (NTRS)
Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki
1994-01-01
This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.
Wing motion measurement and aerodynamics of hovering true hoverflies.
Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao
2011-09-01
Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.
Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat
NASA Astrophysics Data System (ADS)
Marchand, Roger
2012-03-01
This paper examines the along-track vertical and horizontal structure of hydrometeor occurrence, reflectivity, and column rain rate derived from CloudSat. The analysis assumes hydrometeors statistics in a given region are horizontally invariant, with the probability of hydrometeor co-occurrence obtained simply by determining the relative frequency at which hydrometeors can be found at two points (which may be at different altitudes and offset by a horizontal distance, Δx). A correlation function is introduced (gamma correlation) that normalizes hydrometeor co-occurrence values to the range of 1 to -1, with a value of 0 meaning uncorrelated in the usual sense. This correlation function is a generalization of the alpha overlap parameter that has been used in recent studies to describe the overlap between cloud (or hydrometeor) layers. Examples of joint histograms of reflectivity at two points are also examined. The analysis shows that the traditional linear (or Pearson) correlation coefficient provides a useful one-to-one measure of the strength of the relationship between hydrometeor reflectivity at two points in the horizontal (that is, two points at the same altitude). While also potentially useful in the vertical direction, the relationship between reflectivity values at different altitudes is not as well described by the linear correlation coefficient. The decrease in correlation of hydrometeor occurrence and reflectivity with horizontal distance, as well as precipitation occurrence and column rain rate, can be reasonably well fit with a simple two-parameter exponential model. In this paper, the North Pacific and tropical western Pacific are examined in detail, as is the zonal dependence.
Skin Texture Recognition using Medical Diagnosis
NASA Astrophysics Data System (ADS)
Munshi, Anindita; Parekh, Ranjan
2010-10-01
This paper proposes an automated system for recognizing disease conditions of human skin in context to medical diagnosis. The disease conditions are recognized by analyzing skin texture images using a set of normalized symmetrical Grey Level Co occurrence Matrices (GLCM). GLCM defines the probability of grey level i occurring in the neighborhood of another grey level j at a distance d in directionθ. Directional GLCMs are computed along four directions: horizontal (θ = 0°), vertical (θ = 90°), right diagonal (θ = 45°) and left diagonal (θ = 135°), and a set of features viz. Contrast, Homogeneity and Energy computed from each, are averaged to provide an estimation of the texture class. The system is tested using 225 images pertaining to three dermatological skin conditions viz. dermatitis, eczema, urticaria. An accuracy of 94.81% is obtained using a multilayer perceptron (MLP) as a classifier.
Visually induced self-motion sensation adapts rapidly to left-right reversal of vision
NASA Technical Reports Server (NTRS)
Oman, C. M.; Bock, O. L.
1981-01-01
Three experiments were conducted using 15 adult volunteers with no overt oculomotor or vestibular disorders. In all experiments, left-right vision reversal was achieved using prism goggles, which permitted a binocular field of vision subtending approximately 45 deg horizontally and 28 deg vertically. In all experiments, circularvection (CV) was tested before and immediately after a period of exposure to reversed vision. After one to three hours of active movement while wearing vision-reversing goggles, 10 of 15 (stationary) human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as seen stripe motion, rather than in the opposite (normal) direction, demonstrating that the central neural pathways that process visual self-rotation cues can undergo rapid adaptive modification.
NASA Astrophysics Data System (ADS)
Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude
2003-02-01
This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented by hydrothermal goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the hydrothermal formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the hydrothermal mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of hydrothermal fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures and in sand porosity.
Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor
Pennell, William E.
1977-01-01
A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.
Morphology of Arabidopsis Grown under Chronic Centrifugation and on the Clinostat 123
Brown, Allan H.; Dahl, A. Orville; Chapman, David K.
1976-01-01
Morphological measurements were made on populations of Arabidopsis thaliana grown from seed for 21 days under essentially constant environmental conditions except for the influence of gravitational or centrifugal accelerations. Growth conditions were what had been proposed for experiments in an artificial satellite. Observations are reported for plants grown at normal 1-g upright or on horizontal clinostats and for plants grown on a centrifuge. Increased g-force, up to 15 times normal, was found to have significant but small effects on some morphological end points. The plants' sensitivity to the magnitude of the g-force was much less than to its vector direction. Data from centrifuge experiments (which determined the g-functions for particular characters) were extrapolated to zero-g to predict a set of morphological characteristics of a plant developing in the satellite environment. As an alternative means of predicting properties of a zero-g plant, characteristics of plants grown on horizontal clinostats were measured. The results of these two predictive methods were not in agreement. Clinostat grown plants were morphologically distinct from upright stationary controls. When plants were grown while rotating in the upright position on vertical clinostats they were similar to stationary plants also grown upright, but there were small differences some of which were statistically significant. PMID:16659483
Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...
Topological properties of the limited penetrable horizontal visibility graph family
NASA Astrophysics Data System (ADS)
Wang, Minggang; Vilela, André L. M.; Du, Ruijin; Zhao, Longfeng; Dong, Gaogao; Tian, Lixin; Stanley, H. Eugene
2018-05-01
The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.
NASA Astrophysics Data System (ADS)
Covey, John; Chen, Ray T.
2014-03-01
Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.
Kalkan, Erol; ,
2012-01-01
Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.
Focal mechanism and stress analyses for main tectonic zones in Albania
NASA Astrophysics Data System (ADS)
Dushi, Edmond; Koçi, Rexhep; Begu, Enkela; Bozo, Rrezart
2017-04-01
In this study, a number of 33 moderate earthquakes for the period 2013-2015, ranging in magnitude within 2.2 ≤ MW ≤ 4.9 and located within the Albanian territory, have been analyzed. As an earthquake prone country, situated at the frontal collision boundary between Adria microplate and Eurasian tectonic plate, Albania is characterized frequently by micro earthquakes, many moderate and seldom by strong ones. It is evidenced that the whole territory is divided in two different tectonic domains, correspondingly the outer and the inner domain, showing different stress regime as clearly evidenced based on earthquake focal mechanism and geodetic studies. Although strong earthquakes are clearly related to faults in tectonically active areas, moderate events are more frequent revealing valuable information on this purpose. All the studied events are selected to be well-recorded by a maximum possible number of the local broadband (BB) seismological stations of Albanian Seismological Network (ASN), although regional stations have been used as well to constrain the solution. Earthquakes are grouped according to their location, within three well-defined tectonic zones, namely: Adriatic-Ionian (AI), Lushnja-Elbasani-Dibra (LED) and Ohrid-Korça (OK). For each event, the seismic moment M0is determined, through spectral analyses. Moment values vary ranging 1012 - 1015 Nm, for the Adriatic-Ionian (AI) outer zone; 1013 - 1016 Nm, for the Lushnja-Elbasani-Dibra (LED) transversal zone, which cuts through both the outer and the inner domains and 1012 - 1014 Nm, for the Ohrid-Korça (OK), north-south trending inner zone. Focal mechanism solutions (FMS) have been determined for each earthquake, based on the robust first motion polarities method, as applied in the FOCMEC (Seisan 10.1) routine. Using the Michael's linear bootstrap invertion on FMS, a stress analysis is applied. Results show the minimum compressional stress directions variation: σ1 370/270, σ23030/80 and σ31980/620 (μ = 0.4) for AI zone; σ1830/90, σ22040/730and σ33500/140 (μ = 0.4) for LED zone and σ13060/430, σ21860/280 and σ3750/340 (μ = 0.65) for OK zone. Based on final results, according to Zoback (1992), the Adriatic-Ionian (AI) zone is characterized mainly by thrust (TF) faulting, although normal and oblique ones take place as well. This outer zone is under a compressive stress regime, where the maximum horizontal stress lies in the direction of P axes. Meanwhile, the Lushnja-Elbasani-Dibra (LED) transversal zone, is characterized by normal-oblique faulting (NF-NS), undergoing an oblique transform to extensional stress regime, where the maximum horizontal stress extends at the (T + 900) direction. The Ohrid-Korça (OK) zone is characterized by oblique-normal faults, undergoing and extensional stress regime, where the maximum horizontal stress lies in the of T axes direction. Keywords: moderate earthquakes, focal mechanism, stress
Post-extension shortening strains preserved in calcites of the Keweenawan rift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, K.; Craddock, J.; McGovern, M.
1993-02-01
The Keweenawan rift is part of failed triple junction system that underlies Lake Superior and the Michigan Basin. The rift experienced extensional stresses dating about 1.1 Ga, which were followed by compressional stresses from about 1,060 Ma to < 350 Ma. Associated with the rift are two thrust faults: the Douglas (dipping southeast) and the Keweenawan-Lake Owen (dipping northwest). To determine the direction of rifting, calcite twins were used to calculate strain ellipsoids (Groshong method) which are indicative of the intensity and direction of the stress applied to a rocks in a region at a given time. Rock samples whichmore » contain significant calcite within the zone of rifting were collected, slabbed, and made into thin sections. Calcite appears as amygdule, vein, and cement filings, as well as limestones. Analyses show that different calcite types show different stain orientations. Two principle directions of sub-horizontal shortening are present: one parallel to rift, and one normal to the rift, indicating that rifting motion varied out the time in which different calcite types were deposited. Shortening parallel to the rift is seen predominantly on the western margin while shortening normal to the rift is seen predominantly on the eastern margin.« less
Single-particle dispersion in stably stratified turbulence
NASA Astrophysics Data System (ADS)
Sujovolsky, N. E.; Mininni, P. D.; Rast, M. P.
2018-03-01
We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well-studied case of homogeneous and isotropic turbulence.
Underground gasification of coal
Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.
1976-01-20
There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.
Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P
2014-07-15
Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph
2008-09-01
High-speed inline digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets and 50 μm diameter neutral density particles. Experiments are performed in a 50×50×70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by two dimensional particle image velocimetry. An automated tracking program has been used for measuring velocity time history of more than 17 000 droplets and 15 000 particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. The turbulent diffusion coefficient is calculated by integration of the ensemble-averaged Lagrangian velocity autocovariance. Trends of the asymptotic droplet diffusion coefficient are examined by noting that it can be viewed as a product of a mean square velocity and a diffusion time scale. To compare the effects of turbulence and buoyancy, the turbulence intensity (ui') is scaled by the droplet quiescent rise velocity (Uq). The droplet diffusion coefficients in horizontal and vertical directions are lower than those of the fluid at low normalized turbulence intensity, but exceed it with increasing normalized turbulence intensity. For most of the present conditions the droplet horizontal diffusion coefficient is higher than the vertical diffusion coefficient, consistent with trends of the droplet velocity fluctuations and in contrast to the trends of the diffusion timescales. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale are a monotonically increasing function of ui'/Uq.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... reinstallation of the horizontal stabilizer trim actuator (HSTA) after inspection and measurement; and if... horizontal stabilizer; repetitive installations of the horizontal stabilizer trim actuator (HSTA); and if... found during a scheduled inspection of the horizontal stabilizer trim actuator (HSTA) components; the...
NASA Astrophysics Data System (ADS)
Marmorino, George O.; Smith, Geoffrey B.; Miller, W. D.
2017-09-01
A pair of time-lagged satellite images of surface algae in the Great Barrier Reef lagoon is used to investigate characteristics of the horizontal velocity field at a spatial resolution as small as 4 m. A distinctive feature is the occurrence of surface patches that are relatively clear of algae and which grow in size. These patches are interpreted as resulting from the horizontally diverging motion associated with boils. The surface divergence in such boils can be as large as 0.01 s-1, as deduced directly from the imagery. Overall, root-mean-squared values of divergence, vorticity, and strain rate are 45, 58, and 170, respectively, when normalized by the Coriolis parameter. By observing the algae and its fluid environment simultaneously, the analysis thus provides a glimpse of how underlying hydrodynamic processes help shape the distribution of surface algae - under the calm winds that favor the formation of dense surface aggregations.
Preservation of vestibular function after scala vestibuli cochlear implantation.
Suzuki, Mitsuya; Goto, Takio; Kashio, Akinori; Yasui, Takuya; Sakamoto, Takashi; Ito, Ken; Yamasoba, Tatsuya
2011-10-01
A 58-year-old man, in whom the cochlear implant (CI) had been inserted into the left ear, had right middle-ear cancer. The CI was removed immediately before receiving subtotal removal of right temporal bone. Four months later, the CI was again inserted in his left cochlea. Because of obliterated scala tympani, the 22 active electrodes of the CI were placed into the scala vestibuli. After the surgery, the patient complained that he experienced rotary vertigo and "jumbling of vertical direction" of objects on walking. Using rotation test, we evaluated vestibular function of remaining left ear. Numerous horizontal nystagmus beats were induced during earth-vertical axis rotation, whereas vertical downbeat nystagmus was scarcely induced during off-vertical axis rotation. The horizontal vestibulo-ocular reflex (VOR) was almost normally induced by sinusoidal stimulation at 0.8Hz. These data suggest that the scala vestibuli insertion of CI would be not so invasive against the lateral semicircular canal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ody, A.; Musumeci, P.; Maxson, J.
In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less
Effects of independently altering body weight and body mass on the metabolic cost of running.
Teunissen, Lennart P J; Grabowski, Alena; Kram, Rodger
2007-12-01
The metabolic cost of running is substantial, despite the savings from elastic energy storage and return. Previous studies suggest that generating vertical force to support body weight and horizontal forces to brake and propel body mass are the major determinants of the metabolic cost of running. In the present study, we investigated how independently altering body weight and body mass affects the metabolic cost of running. Based on previous studies, we hypothesized that reducing body weight would decrease metabolic rate proportionally, and adding mass and weight would increase metabolic rate proportionally. Further, because previous studies show that adding mass alone does not affect the forces generated on the ground, we hypothesized that adding mass alone would have no substantial effect on metabolic rate. We manipulated the body weight and body mass of 10 recreational human runners and measured their metabolic rates while they ran at 3 m s(-1). We reduced weight using a harness system, increased mass and weight using lead worn about the waist, and increased mass alone using a combination of weight support and added load. We found that net metabolic rate decreased in less than direct proportion to reduced body weight, increased in slightly more than direct proportion to added load (added mass and weight), and was not substantially different from normal running with added mass alone. Adding mass alone was not an effective method for determining the metabolic cost attributable to braking/propelling body mass. Runners loaded with mass alone did not generate greater vertical or horizontal impulses and their metabolic costs did not substantially differ from those of normal running. Our results show that generating force to support body weight is the primary determinant of the metabolic cost of running. Extrapolating our reduced weight data to zero weight suggests that supporting body weight comprises at most 74% of the net cost of running. However, 74% is probably an overestimate of the metabolic demand of body weight to support itself because in reduced gravity conditions decrements in horizontal impulse accompanied decrements in vertical impulse.
de Sousa, Hilário
2012-01-01
It has long been argued that spatial aspects of language influence people’s conception of time. However, what spatial aspect of language is the most influential in this regard? To test this, two experiments were conducted in Hong Kong and Macau with literate Cantonese speakers. The results suggest that the crucial factor in literate Cantonese people’s spatial conceptualization of time is their experience with writing and reading Chinese script. In Hong Kong and Macau, Chinese script is written either in the traditional vertical orientation, which is still used, or the newer horizontal orientation, which is more common these days. Before the 1950s, the dominant horizontal direction was right-to-left. However, by the 1970s, the dominant horizontal direction had become left-to-right. In both experiments, the older participants predominately demonstrated time in a right-to-left direction, whereas younger participants predominately demonstrated time in a left-to-right direction, consistent with the horizontal direction that was prevalent when they first became literate. PMID:22855679
Higashiyama, A
1992-03-01
Three experiments investigated anisotropic perception of visual angle outdoors. In Experiment 1, scales for vertical and horizontal visual angles ranging from 20 degrees to 80 degrees were constructed with the method of angle production (in which the subject reproduced a visual angle with a protractor) and the method of distance production (in which the subject produced a visual angle by adjusting viewing distance). In Experiment 2, scales for vertical and horizontal visual angles of 5 degrees-30 degrees were constructed with the method of angle production and were compared with scales for orientation in the frontal plane. In Experiment 3, vertical and horizontal visual angles of 3 degrees-80 degrees were judged with the method of verbal estimation. The main results of the experiments were as follows: (1) The obtained angles for visual angle are described by a quadratic equation, theta' = a + b theta + c theta 2 (where theta is the visual angle; theta', the obtained angle; a, b, and c, constants). (2) The linear coefficient b is larger than unity and is steeper for vertical direction than for horizontal direction. (3) The quadratic coefficient c is generally smaller than zero and is negatively larger for vertical direction than for horizontal direction. And (4) the obtained angle for visual angle is larger than that for orientation. From these results, it was possible to predict the horizontal-vertical illusion, over-constancy of size, and the moon illusion.
Kalkan, Erol; Kwong, Neal S.
2012-01-01
According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
Aerodynamic characteristics of horizontal tail surfaces
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1940-01-01
Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory.
The three-dimensional kinematics of a barbell during the snatch of Taiwanese weightlifters.
Chiu, Hung-Ta; Wang, Chih-Hung; Cheng, Kuangyou B
2010-06-01
The purpose of this study is to characterize the trajectory of a barbell and clarify whether there is a standard pattern in the barbell trajectory for each lifter. Two high-speed cameras (mega-speed MS1000, sampling rate=120 Hz) were used to film the barbell trajectories of male Taiwanese weightlifters under competitive conditions. Twenty-four successful lifts were filmed and classified into 3 groups (n=8 per group) by relative barbell-mass (RBM): the better-performance group (RBM>1.63), the middle group (1.28
Hickman, Stephen H.; Healy, John H.; Zoback, Mark D.
1985-01-01
Hydraulic fracturing stress measurements and a borehole televiewer survey were conducted in a 1.6‐km‐deep well at Auburn, New York. This well, which was drilled at the outer margin of the Appalachian Fold and Thrust Belt in the Appalachian Plateau, penetrates approximately 1540 m of lower Paleozoic sedimentary rocks and terminates 60 m into the Precambrian marble basement. Analysis of the hydraulic fracturing tests indicates that the minimum horizontal principal stress increases in a nearly linear fashion from 9.9±0.2 MPa at 593 m to 30.6±0.4 MPa at 1482 m. The magnitude of the maximum horizontal principal stress increases in a less regular fashion from 13.8±1.2 MPa to 49.0±2.0 MPa over the same depth range. The magnitudes of the horizontal principal stresses relative to the calculated overburden stress are somewhat lower than is the norm for this region and are indicative of a strike‐slip faulting regime that, at some depths, is transitional to normal faulting. As expected from the relative aseismicity of central New York State, however, analysis of the magnitudes of the horizontal principal stresses indicates, at least to a depth of 1.5 km, that frictional failure on favorably oriented preexisting fault planes is unlikely. Orientations of the hydraulic fractures at 593 and 919 m indicate that the azimuth of the maximum horizontal principal stress at Auburn is N83°E±15°, in agreement with other stress field indicators for this region. The borehole televiewer log revealed a considerable number of planar features in the Auburn well, the great majority of which are subhorizontal (dips < 5°) and are thought to be bedding plane washouts or drill bit scour marks. In addition, a smaller number of distinct natural fractures were observed on the borehole televiewer log. Of these, the distinct steeply dipping natural fractures in the lower half of the sedimentary section at Auburn tend to strike approximately east‐west, while those in the upper part of the well and in the Precambrian basement exhibit no strong preferred orientation. The origin of this east‐west striking fracture set is uncertain, as it is parallel both to the contemporary direction of maximum horizontal compression and to a late Paleozoic fracture set that has been mapped to the south of Auburn. In addition to these planar features the borehole televiewer log indicates paired dark bands on diametrically opposite sides of the borehole throughout the Auburn well. Processing of the borehole televiewer data in the time domain revealed these features to be irregular depressions in the borehole wall. As these depressions were consistently oriented in a direction at right angles to the direction of maximum horizontal compression, we interpret them to be the result of stress‐induced spalling of the borehole wall (breakouts).
Beam pointing direction changes in a misaligned Porro prism resonator
NASA Astrophysics Data System (ADS)
Lee, Jyh-Fa; Leung, Chung-Yee
1988-07-01
The relative change of the beam pointing direction for a misaligned Porro prism resonator has been analyzed, using an oscillation axis concept for the Porro prism resonator to find the beam direction. Expressions for the beam tilting angles are presented which show that the angular misalignment in the horizontal direction will result in beam tilting in both the horizontal and vertical directions. Good agreement between experimental and theoretical results is found.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.
Log-Normal Turbulence Dissipation in Global Ocean Models
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor
2018-03-01
Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.
DOT National Transportation Integrated Search
2015-06-01
Trenchless Technology has become an increasingly popular underground utility construction method, beginning in : the early 1900s with pipe jacking beneath railroad lines. One method, horizontal directional drilling (HDD), became : more common in the ...
Göbel, Silke M
2015-01-01
Most adults and children in cultures where reading text progresses from left to right also count objects from the left to the right side of space. The reverse is found in cultures with a right-to-left reading direction. The current set of experiments investigated whether vertical counting in the horizontal plane is also influenced by reading direction. Participants were either from a left-to-right reading culture (UK) or from a mixed (left-to-right and top-to-bottom) reading culture (Hong Kong). In Experiment 1, native English-speaking children and adults and native Cantonese-speaking children and adults performed three object counting tasks. Objects were presented flat on a table in a horizontal, vertical, and square display. Independent of culture, the horizontal array was mostly counted from left to right. While the majority of English-speaking children counted the vertical display from bottom to top, the majority of the Cantonese-speaking children as well as both Cantonese- and English-speaking adults counted the vertical display from top to bottom. This pattern was replicated in the counting pattern for squares: all groups except the English-speaking children started counting with the top left coin. In Experiment 2, Cantonese-speaking adults counted a square array of objects after they read a text presented to them either in left-to-right or in top-to-bottom reading direction. Most Cantonese-speaking adults started counting the array by moving horizontally from left to right. However, significantly more Cantonese-speaking adults started counting with a top-to-bottom movement after reading the text presented in a top-to-bottom reading direction than in a left-to-right reading direction. Our results show clearly that vertical counting in the horizontal plane is influenced by longstanding as well as more recent experience of reading direction.
Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.
2008-01-01
Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.
Savage, W.Z.; Morin, R.H.
2002-01-01
We have applied a previously developed analytical stress model to interpret subsurface stress conditions inferred from acoustic televiewer logs obtained in two municipal water wells located in a valley in the southern Davis Mountains near Alpine, Texas. The appearance of stress-induced breakouts with orientations that shift by 90?? at two different depths in one of the wells is explained by results from exact solutions for the effects of valleys on gravity and tectonically induced subsurface stresses. The theoretical results demonstrate that above a reference depth termed the hinge point, a location that is dependent on Poisson's ratio, valley shape, and magnitude of the maximum horizontal tectonic stress normal to the long axis of the valley, horizontal stresses parallel to the valley axis are greater than those normal to it. At depths below this hinge point the situation reverses and horizontal stresses normal to the valley axis are greater than those parallel to it. Application of the theoretical model at Alpine is accommodated by the fact that nearby earthquake focal mechanisms establish an extensional stress regime with the regional maximum horizontal principal stress aligned perpendicular to the valley axis. We conclude that the localized stress field associated with a valley setting can be highly variable and that breakouts need to be examined in this context when estimating the orientations and magnitudes of regional principal stresses.
Oku, Takanori; Uno, Kanna; Nishi, Tomoki; Kageyama, Masayuki; Phatiwuttipat, Pipatthana; Koba, Keitaro; Yamashita, Yuto; Murakami, Kenta; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki
2014-01-01
This paper proposes a novel method for assessment of muscle imbalance based on muscle synergy hypothesis and equilibrium point (EP) hypothesis of motor control. We explain in detail the method for extracting muscle synergies under the concept of agonist-antagonist (AA) muscle pairs and for estimating EP trajectories and endpoint stiffness of human upper limbs in a horizontal plane using an electromyogram. The results of applying this method to the reaching movement of one normal subject and one hemiplegic subject suggest that (1) muscle synergies (the balance among coactivation of AA muscle pairs), particularly the synergies that contributes to the angular directional kinematics of EP and the limb stiffness, are quite different between the normal subject and the hemiplegic subject; (2) the concomitant EP trajectory is also different between the normal and hemiplegic subjects, corresponding to the difference of muscle synergies; and (3) the endpoint (hand) stiffness ellipse of the hemiplegic subject becomes more elongated and orientation of the major axis rotates clockwise more than that of the normal subject. The level of motor impairment would be expected to be assessed from a comparison of these differences of muscle synergies, EP trajectories, and endpoint stiffness among normal and pathological subjects using the method.
Experimental investigation of the tip based micro/nano machining
NASA Astrophysics Data System (ADS)
Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.
2017-12-01
Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.
Directional control-response relationships for mining equipment.
Burgess-Limerick, R; Krupenia, V; Wallis, G; Pratim-Bannerjee, A; Steiner, L
2010-06-01
A variety of directional control-response relationships are currently found in mining equipment. Two experiments were conducted in a virtual environment to determine optimal direction control-response relationships in a wide variety of circumstances. Direction errors were measured as a function of control orientation (horizontal or vertical), location (left, front, right) and directional control-response relationships. The results confirm that the principles of consistent direction and visual field compatibility are applicable to the majority of situations. An exception is that fewer direction errors were observed when an upward movement of a horizontal lever or movement of a vertical lever away from the participants caused extension (lengthening) of the controlled device, regardless of whether the direction of movement of the control is consistent with the direction in which the extension occurs. Further, both the control of slew by horizontally oriented controls and the control of device movements in a frontal plane by the perpendicular movements of vertical levers were associated with relatively high rates of directional errors, regardless of the directional control-response relationship, and these situations should be avoided. STATEMENT OF RELEVANCE: The results are particularly applicable to the design of mining equipment such as drilling and bolting machines, and have been incorporated into MDG35.1 Guideline for bolting & drilling plant in mines (Industry & Investment NSW, 2010). The results are also relevant to the design of any equipment where vertical or horizontal levers are used to control the movement of equipment appendages, e.g. cranes mounted to mobile equipment and the like.
3D Model of the Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.
Learning to Read Vertical Text in Peripheral Vision
Subramanian, Ahalya; Legge, Gordon E.; Wagoner, Gunther Harrison; Yu, Deyue
2014-01-01
Purpose English–language text is almost always written horizontally. Text can be formatted to run vertically, but this is seldom used. Several studies have found that horizontal text can be read faster than vertical text in the central visual field. No studies have investigated the peripheral visual field. Studies have also concluded that training can improve reading speed in the peripheral visual field for horizontal text. We aimed to establish whether the horizontal vertical differences are maintained and if training can improve vertical reading in the peripheral visual field. Methods Eight normally sighted young adults participated in the first study. Rapid Serial Visual Presentation (RSVP) reading speed was measured for horizontal and vertical text in the central visual field and at 10° eccentricity in the upper or lower (horizontal text), and right or left (vertical text) visual fields. Twenty-one normally sighted young adults split equally between 2 training and 1 control group participated in the second study. Training consisted of RSVP reading either using vertical text in the left visual field or horizontal text in the inferior visual field. Subjects trained daily over 4 days. Pre and post horizontal and vertical RSVP reading speeds were carried out for all groups. For the training groups these measurements were repeated 1 week and 1 month post training. Results Prior to training, RSVP reading speeds were faster for horizontal text in the central and peripheral visual fields when compared to vertical text. Training vertical reading improved vertical reading speeds by an average factor of 2.8. There was partial transfer of training to the opposite (right) hemifield. The training effects were retained for up to a month. Conclusions RSVP training can improve RSVP vertical text reading in peripheral vision. These findings may have implications for patients with macular degeneration or hemianopic field loss. PMID:25062130
77 FR 731 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... mechanism of the horizontal stabilizer trim actuator (HSTA). This AD requires repetitive inspections... trim actuator of the horizontal stabilizer; various modification(s); and corrective actions if... the ball nut and ballscrew and attachment (Gimbal) fittings for the trim actuator of the horizontal...
77 FR 50577 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... the drive mechanism of the horizontal stabilizer trim actuator. This AD requires repetitive detailed... horizontal stabilizer trim control system; repetitive measurements for discrepancies of the ballscrew to... lubrication of the horizontal stabilizer trim control system; repetitive measurements for discrepancies of the...
Mester, U; Heinen, S; Kaymak, H
2010-09-01
Aspheric intraocular lenses (IOLs) aim to improve visual function and particularly contrast vision by neutralizing spherical aberration. One drawback of such IOLs is the enhanced sensitivity to decentration and tilt, which can deteriorate image quality. A total of 30 patients who received bilateral phacoemulsification before implantation of the aspheric lens FY-60AD (Hoya) were included in a prospective study. In 25 of the patients (50 eyes) the following parameters could be assessed 3 months after surgery: visual acuity, refraction, contrast sensitivity, pupil size, wavefront errors and decentration and tilt using a newly developed device. The functional results were very satisfying and comparable to results gained with other aspheric IOLs. The mean refraction was sph + 0.1 D (±0.7 D) and cyl 0.6 D (±0.8 D). The spherical equivalent was −0.2 D (±0.6 D). Wavefront measurements revealed a good compensation of the corneal spherical aberration but vertical and horizontal coma also showed opposing values in the cornea and IOL. The assessment of the lens position using the Purkinje meter demonstrated uncritical amounts of decentration and tilt. The mean amount of decentration was 0.2 mm±0.2 mm in the horizontal and vertical directions. The mean amount of tilt was 4.0±2.1° in horizontal and 3.0±2.5° in vertical directions. In a normal dioptric power range the aspheric IOL FY-60AD compensates the corneal spherical aberration very well with only minimal decentration. The slight tilt is symmetrical in both eyes and corresponds to the position of the crystalline lens in young eyes. This may contribute to our findings of compensated corneal coma.
Use of wind data for estimating horizontal dilution potential of atmosphere.
George, K V; Verma, P; Devotta, S
2007-04-01
In this study, a new methodology is suggested for estimating horizontal dilution potential of an area using wind data. The mean wind speed and wind direction variation are used as a measure of linear and angular spread of pollutants in the atmosphere. A formula is developed for estimating the potential of horizontal spread of pollutants in an area wherein only the wind speed and direction are used. The methodology is further applied to monitor wind data of one year. It is found that there is a very smooth variation of horizontal dilution potential over a year with limited dilution during post monsoon period and a high dilution in pre monsoon period.
Infantile nystagmus syndrome is associated with inefficiency of goal-directed hand movements.
Liebrand-Schurink, Joyce; Cox, Ralf F A; van Rens, Ger H M B; Cillessen, Antonius H N; Meulenbroek, Ruud G J; Boonstra, F Nienke
2014-12-23
The effect of infantile nystagmus syndrome (INS) on the efficiency of goal-directed hand movements was examined. We recruited 37 children with INS and 65 control subjects with normal vision, aged 4 to 8 years. Participants performed horizontally-oriented, goal-directed cylinder displacements as if they displaced a low-vision aid. The first 10 movements of 20 back-and-forth displacements in a trial were performed between two visually presented target areas, and the second 10 between remembered target locations (not visible). Motor performance was examined in terms of movement time, endpoint accuracy, and a harmonicity index reflecting energetic efficiency. Compared to the control group, the children with INS performed the cylinder displacements more slowly (using more time), less accurately (specifically in small-amplitude movements), and with less harmonic acceleration profiles. Their poor visual acuity proved to correlate with slower and less accurate movements, but did not correlate with harmonicity. When moving between remembered target locations, the performance of children with INS was less accurate than that of the children with normal vision. In both groups, movement speed and harmonicity increased with age to a similar extent. Collectively, the findings suggest that, in addition to the visuospatial homing-in problems associated with the syndrome, INS is associated with inefficiency of goal-directed hand movements. ( http://www.trialregister.nl number, NTR2380.). Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Nielsen, Karina; Khan, Shfaqat A.; Spada, Giorgio; Wahr, John; Bevis, Michael; Liu, Lin; van Dam, Tonie
2013-04-01
We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surface displacements from 2006 to 2012 at four GPS sites located between ˜5 and ˜150 km from the front of Jakobshavn Isbræ (JI) in west Greenland. Horizontal displacements during 2006-2010 at KAGA, ILUL, and QEQE, relative to the site AASI, are directed toward north-west, suggesting that the main mass loss signal is located near the frontal portion of JI. The directions of the observed displacements are supported by modeled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006, 2009, and 2010. However, horizontal displacements during 2010-2012 at KAGA and ILUL are directed more towards the west suggesting a change in the spatial distribution of the ice mass loss. In addition, we observe an increase in the uplift rate during 2010-2012 as compared to 2006-2010. The sudden change in vertical and horizontal displacements is due to enhanced melt-induced ice loss in 2010 and 2012.
Lateral interactions in the outer retina
Thoreson, Wallace B.; Mangel, Stuart C.
2012-01-01
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (ICa) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones. PMID:22580106
Variants of windmill nystagmus.
Choi, Kwang-Dong; Shin, Hae Kyung; Kim, Ji-Soo; Kim, Sung-Hee; Choi, Jae-Hwan; Kim, Hyo-Jung; Zee, David S
2016-07-01
Windmill nystagmus is characterized by a clock-like rotation of the beating direction of a jerk nystagmus suggesting separate horizontal and vertical oscillators, usually 90° out of phase. We report oculographic characteristics in three patients with variants of windmill nystagmus in whom the common denominator was profound visual loss due to retinal diseases. Two patients showed a clock-like pattern, while in the third, the nystagmus was largely diagonal (in phase or 180° out of phase) but also periodically changed direction by 180°. We hypothesize that windmill nystagmus is a unique manifestation of "eye movements of the blind." It emerges when the central structures, including the cerebellum, that normally keep eye movements calibrated and gaze steady can no longer perform their task, because they are deprived of the retinal image motion that signals a need for adaptive recalibration.
Microalga propels along vorticity direction in a shear flow
NASA Astrophysics Data System (ADS)
Chengala, Anwar; Hondzo, Miki; Sheng, Jian
2013-05-01
Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.
“Taller and Shorter”: Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927
"Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings.
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.
2014-04-01
Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.
Kalkan, Erol; Kwong, Neal S.
2014-01-01
According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
Spatial Orientation and Balance Control Changes Induced by Altered Gravito-Inertial Force Vectors
NASA Technical Reports Server (NTRS)
Kaufman, Galen D.; Wood, Scott J.; Gianna, Claire C.; Black, F. Owen; Paloski, William H.; Dawson, David L. (Technical Monitor)
1999-01-01
Seventeen healthy and eight vestibular deficient subjects were exposed to an interaural centripetal acceleration of 1 G (resultant 45 deg roll tilt of 1.4 G) on a 0.8 meter radius centrifuge for a period of 90 minutes in the dark. The subjects sat with head fixed upright, except every 4 of 10 minutes when instructed to rotate their head so that their nose and eyes pointed towards a visual point switched on every 3 to 5 seconds at random places (within +/- 30 deg) in the Earth horizontal plane. Motion sickness caused some subjects to limit their head movements during significant portions of the 90 minute period, and led three normal subjects to stop the test earlier. Eye movements, including directed saccades for subjective Earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation using electro-oculography. Postural stability measurements were made before and within ten minutes after centrifugation. In normal subjects, postural sway and multisegment body kinematics were gathered during an eyes-closed head movement cadence (sway-referenced support platform), and in response to translational/rotational platform perturbations. A significant increase in postural sway, segmental motion amplitude and hip frequency was observed after centrifugation. This effect was short-lived, with a recovery time of several postural test trials. There were also asymmetries in the direction of post-centrifugation center of sway and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). To delineate the effect of the magnitude of the gravito-inertial vector versus its direction during the adaptive centrifugation period, we tilted eight normal subjects in the roll axis at a 45 deg angle in the dark for 90 minutes without rotational motion. Their postural responses did not change following the period of tilt. Based on verbal reports, normal subjects overestimated roll-tilt during 90 minutes of both tilt and centrifugation stimuli. Subjective estimates of head-horizontal, provided by directed saccades, revealed significant errors after approximately 30 minutes that tended to increase only in the group who underwent centrifugation. Immediately after centrifugation, subjects reported feeling tilted on average 10 degrees in the opposite direction, which was in agreement with the direction of their earth-directed saccades. In vestibular deficient (VD) subjects, postural sway was measured using a sway-referenced or earth-fixed support surface, and with or without a head movement sequence. 'Me protocol was selected for each patient during baseline testing, and corresponded to the most challenging condition in which the patient was able to maintain balance with eyes closed. Bilaterally VD subjects showed no postural decrement after centrifugation, while unilateral VD subjects had varying degrees of decrement. Unilateral VD subjects were tested twice; they underwent centrifugation both with right ear out and left ear out. Their post-centrifuation center of sway shifted at right angles depending on the centrifuge GIF orientation. Bilateral VD subjects bad shifts as well, but no consistent directional trend. VD subjects underestimated roll-tilt during centrifugation, These results suggest that orientation of the gravito-inertial vector and its magnitude arc both used by the central nervous system for calibration of multiple orientation systems. A change in the background gravito-inertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.
Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.
2001-01-01
Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.
A Pilot Study of Horizontal Head and Eye Rotations in Baseball Batting.
Fogt, Nick; Persson, Tyler W
2017-08-01
The purpose of the study was to measure and compare horizontal head and eye tracking movements as baseball batters "took" pitches and swung at baseball pitches. Two former college baseball players were tested in two conditions. A pitching machine was used to project tennis balls toward the subjects. In the first condition, subjects acted as if they were taking (i.e., not swinging) the pitches. In the second condition, subjects attempted to bat the pitched balls. Head movements were measured with an inertial sensor; eye movements were measured with a video eye tracker. For each condition, the relationship between the horizontal head and eye rotations was similar for the two subjects, as were the overall head-, eye-, and gaze-tracking strategies. In the "take" condition, head movements in the direction of the ball were larger than eye movements for much of the pitch trajectory. Large eye movements occurred only late in the pitch trajectory. Gaze was directed near the ball until approximately 150 milliseconds before the ball arrived at the batter, at which time gaze was directed ahead of the ball to a location near that occupied when the ball crosses the plate. In the "swing" condition, head movements in the direction of the ball were larger than eye movements throughout the pitch trajectory. Gaze was directed near the ball until approximately 50 to 60 milliseconds prior to pitch arrival at the batter. Horizontal head rotations were larger than horizontal eye rotations in both the "take" and "swing" conditions. Gaze was directed ahead of the ball late in the pitch trajectory in the "take" condition, whereas gaze was directed near the ball throughout much of the pitch trajectory in the "swing" condition.
The Principle of Equivalence: Demonstrations of Local Effective Vertical and Horizontal
ERIC Educational Resources Information Center
Munera, Hector A.
2010-01-01
It has been suggested that Einstein's principle of equivalence (PE) should be introduced at an early stage. This principle leads to the notion of local effective gravity, which in turn defines effective vertical and horizontal directions. Local effective gravity need not coincide with the direction of terrestrial gravity. This paper describes…
Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot
Watson-Lamprey, J. A.; Boore, D.M.
2007-01-01
In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.
Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2017-12-01
Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.
NASA Astrophysics Data System (ADS)
Wang, Yuebing
2017-04-01
Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.
Reliability Based Geometric Design of Horizontal Circular Curves
NASA Astrophysics Data System (ADS)
Rajbongshi, Pabitra; Kalita, Kuldeep
2018-06-01
Geometric design of horizontal circular curve primarily involves with radius of the curve and stopping sight distance at the curve section. Minimum radius is decided based on lateral thrust exerted on the vehicles and the minimum stopping sight distance is provided to maintain the safety in longitudinal direction of vehicles. Available sight distance at site can be regulated by changing the radius and middle ordinate at the curve section. Both radius and sight distance depend on design speed. Speed of vehicles at any road section is a variable parameter and therefore, normally the 98th percentile speed is taken as the design speed. This work presents a probabilistic approach for evaluating stopping sight distance, considering the variability of all input parameters of sight distance. It is observed that the 98th percentile sight distance value is much lower than the sight distance corresponding to 98th percentile speed. The distribution of sight distance parameter is also studied and found to follow a lognormal distribution. Finally, the reliability based design charts are presented for both plain and hill regions, and considering the effect of lateral thrust.
Flat electron beam sources for DLA accelerators
Ody, A.; Musumeci, P.; Maxson, J.; ...
2016-10-26
In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less
Prediction of human gait parameters from temporal measures of foot-ground contact
NASA Technical Reports Server (NTRS)
Breit, G. A.; Whalen, R. T.
1997-01-01
Investigation of the influence of human physical activity on bone functional adaptation requires long-term histories of gait-related ground reaction force (GRF). Towards a simpler portable GRF measurement, we hypothesized that: 1) the reciprocal of foot-ground contact time (1/tc); or 2) the reciprocal of stride-period-normalized contact time (T/tc) predict peak vertical and horizontal GRF, loading rates, and horizontal speed during gait. GRF data were collected from 24 subjects while they walked and ran at a variety of speeds. Linear regression and ANCOVA determined the dependence of gait parameters on 1/tc and T/tc, and prediction SE. All parameters were significantly correlated to 1/tc and T/tc. The closest pooled relationship existed between peak running vertical GRF and T/tc (r2 = 0.896; SE = 3.6%) and improved with subject-specific regression (r2 = 0.970; SE = 2.2%). We conclude that temporal measures can predict force parameters of gait and may represent an alternative to direct GRF measurements for determining daily histories of habitual lower limb loading quantities necessary to quantify a bone remodeling stimulus.
Turbulent structures of non-Newtonian solutions containing rigid polymers
NASA Astrophysics Data System (ADS)
Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.
2017-10-01
The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall-normal direction. The proper orthogonal decomposition of velocity fluctuations shows that the inclined shear layer structure of Newtonian wall flows becomes horizontal at the MDR and does not contribute to turbulence production.
Cultured normal mammalian tissue and process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)
1993-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
NASA Astrophysics Data System (ADS)
Yang, Y.; Zeng, Z.; Shuang, X.; Li, X.
2017-12-01
On 17th October, 2016, an earthquake of Ms6.3 occurred in Zaduo County, Qinghai Province (32.9°N, 95.0°E), 159 km away from the epicenter of Yushu Ms7.3 earthquake in 2011. The earthquake is located in the eastern Tibet Plateau and the north region of Eastern Himalayan Syntaxis. Using the broadband seismic waveform data form regional networks, we determined the focal mechanism solutions (FMSs) of 83 earthquakes (M>3.5) occurred in Zaduo and its adjacent areas from 2009 to 2017. We also collected another 63 published FMSs and then inversed the current tectonic stress field in study region using the damped linear inversion method. The results show that the Zaduo earthquake is a normal oblique earthquake. The FMSs in our study region are mainly in strike-slip and normal fault patterns. The strike-slip earthquakes are mainly distributed in Yushu-Ganzi, Zaduo and Yanshiping fault zones, and the normal faulting events occurred in Nu Jiang fault zone and Nierong County and its vicinity, the south and southwest of the study areas. The tectonic stress field results indicate that the stress distribution in the north and east of the study region changes homogeneously and slowly. From west to east, the σ1 gradually changes from NNE to NE direction, and the σ3 varies from NWW to NW direction. Both the maximum (σ1) and minimum (σ3) principal stress axes in the study area are nearly horizontal, except in the Nu Jiang fault zone and its vicinity, the south of the study area, which is in a normal faulting stress regime (σ1 is vertical and σ3 is horizontal). The localized normal faulting stress field in the south area, which is almost limited in a semicircle, indicates that a high pressure and low viscosity body with low S-wave velocity and high conductivity might exists beneath the anomaly area. And there may be another semicircle abnormal area beyond the south of the study region. Waveform data for this study are provided by Data Management Centre of China National Seismic Network at Institute of Geophysics (SEISDMC, doi:10.11998/SeisDmc/SN), China Earthquake Networks Center and GS, QH, SC, XZ Seismic Networks, China Earthquake Administration. This work was supported by the National Nature Science Foundation of China under Grant No.41230206.
A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction
NASA Technical Reports Server (NTRS)
Smith, Samantha A.; DelGenio, Anthony D.
1998-01-01
A simple model of horizontal inhomogeneity and cloud fraction in cirrus clouds has been formulated on the basis that all internal horizontal inhomogeneity in the ice mixing ratio is due to variations in the cloud depth, which are assumed to be Gaussian. The use of such a model was justified by the observed relationship between the normalized variability of the ice water mixing ratio (and extinction) and the normalized variability of cloud depth. Using radar cloud depth data as input, the model reproduced well the in-cloud ice water mixing ratio histograms obtained from horizontal runs during the FIRE2 cirrus campaign. For totally overcast cases the histograms were almost Gaussian, but changed as cloud fraction decreased to exponential distributions which peaked at the lowest nonzero ice value for cloud fractions below 90%. Cloud fractions predicted by the model were always within 28% of the observed value. The predicted average ice water mixing ratios were within 34% of the observed values. This model could be used in a GCM to produce the ice mixing ratio probability distribution function and to estimate cloud fraction. It only requires basic meteorological parameters, the depth of the saturated layer and the standard deviation of cloud depth as input.
Simonetti, Stephen J.; Shoemaker, William R.; Harris, Reid N.
2016-01-01
Amphibian populations worldwide are being threatened by the disease chytridiomycosis, which is caused by Batrachochytrium dendrobatidis. To mitigate the effects of B. dendrobatidis, bioaugmentation of antifungal bacteria has been shown to be a promising strategy. One way to implement bioaugmentation is through indirect horizontal transmission, defined as the transfer of bacteria from a host to the environment and to another host. In addition, direct horizontal transmission among individuals can facilitate the spread of a probiotic in a population. In this study, we tested whether the antifungal bacterium Janthinobacterium lividum could be horizontally transferred, directly or indirectly, in a laboratory experiment using Lithobates clamitans tadpoles. We evaluated the ability of J. lividum to colonize the tadpoles' skin and to persist through time using culture-dependent and culture-independent techniques. We also tested whether the addition of J. lividum affected the skin community in L. clamitans tadpoles. We found that transmission occurred rapidly by direct and indirect horizontal transmission, but indirect transmission that included a potential substrate was more effective. Even though J. lividum colonized the skin, its relative abundance on the tadpole skin decreased over time. The inoculation of J. lividum did not significantly alter the skin bacterial diversity of L. clamitans tadpoles, which was dominated by Pseudomonas. Our results show that indirect horizontal transmission can be an effective bioaugmentation method. Future research is needed to determine the best conditions, including the presence of substrates, under which a probiotic can persist on the skin so that bioaugmentation becomes a successful strategy to mitigate chytridiomycosis. PMID:26873311
Meinert, Ilka; Brown, Niklas; Alt, Wilfried
2016-01-01
Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs.
Meinert, Ilka; Brown, Niklas; Alt, Wilfried
2016-01-01
Background Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Methods Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Results Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Conclusion Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs. PMID:27010929
NASA Technical Reports Server (NTRS)
Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.
2002-01-01
Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Slip and Dilation Tendency Analysis of the Patua Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...
Responses of Cells in the Midbrain Near-Response Area in Monkeys with Strabismus
Das, Vallabh E.
2012-01-01
Purpose. To investigate whether neuronal activity within the supraoculomotor area (SOA—monosynaptically connected to medial rectus motoneurons and encode vergence angle) of strabismic monkeys was correlated with the angle of horizontal misalignment and therefore helps to define the state of strabismus. Methods. Single-cell neural activity was recorded from SOA neurons in two monkeys with exotropia as they performed eye movement tasks during monocular viewing. Results. Horizontal strabismus angle varied depending on eye of fixation (dissociated horizontal deviation) and the activity of SOA cells (n = 35) varied in correlation with the angle of strabismus. Both near-response (cells that showed larger firing rates for smaller angles of exotropia) and far-response (cells that showed lower firing rates for smaller angles of exotropia) cells were identified. SOA cells showed no modulation of activity with changes in conjugate eye position as tested during smooth-pursuit, thereby verifying that the responses were related to binocular misalignment. SOA cell activity was also not correlated with change in horizontal misalignment due to A-patterns of strabismus. Comparison of SOA population activity in strabismic animals and normal monkeys (described in the literature) show that both neural thresholds and neural sensitivities are altered in the strabismic animals compared with the normal animals. Conclusions. SOA cell activity is important in determining the state of horizontal strabismus, possibly by altering vergence tone in extraocular muscle. The lack of correlated SOA activity with changes in misalignment due to A/V patterns suggest that circuits mediating horizontal strabismus angle and those that mediate A/V patterns are different. PMID:22562519
Direct and inverse energy cascades in a forced rotating turbulence experiment
NASA Astrophysics Data System (ADS)
Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe
2014-11-01
Turbulence in a rotating frame provides a remarkable system where 2D and 3D properties may coexist, with a possible tuning between direct and inverse cascades. We present here experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic PIV in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical 3D turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in 2D turbulence. At the largest rotation rate, the flow is nearly 2D and a pure inverse energy cascade is found for the horizontal energy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... person believes that an additional scientific study should be conducted in order to form an adequate... containing 6 horizontal mixed flow turbines directly connected to 6 submersible generator units for a total... the existing intake tower, each containing 6 horizontal mixed flow turbines directly connected to 6...
Evaporation-induced gas-phase flows at selective laser melting
NASA Astrophysics Data System (ADS)
Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.
2018-02-01
Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.
Single-primer fluorescent sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, J.L.; Morgan, C.A.; Middendorf, L.R.
Modified linker arm oligonucleotides complementary to standard M13 priming sites were synthesized, labelled with either one, two, or three fluoresceins, and purified by reverse-phase HPLC. When used as primers in standard dideoxy M13 sequencing with /sup 32/P-dNTPs, normal autoradiographic patterns were obtained. To eliminate the radioactivity, direct on-line fluorescence detection was achieved by the use of a scanning 10 mW Argon laser emitting 488 nm light. Fluorescent bands were detected directly in standard 0.2 or 0.35 mm thick polyacrylamide gels at a distance of 24 cm from the loading wells by a photomultiplier tube filtered at 520 nm. Horizontal andmore » temporal location of each band was displayed by computer as a band in real time, providing visual appearance similar to normal 4-lane autoradiograms. Using a single primer labelled with two fluoresceins, sequences of between 500 and 600 bases have been read in a single loading with better than 98% accuracy; up to 400 bases can be read reproducibly with no errors. More than 50 sequences have been determined by this method. This approach requires only 1-2 ug of cloned template, and produces continuous sequence data at about one band per minute.« less
NASA Astrophysics Data System (ADS)
Larrañeta, M.; Moreno-Tejera, S.; Lillo-Bravo, I.; Silva-Pérez, M. A.
2018-02-01
Many of the available solar radiation databases only provide global horizontal irradiance (GHI) while there is a growing need of extensive databases of direct normal radiation (DNI) mainly for the development of concentrated solar power and concentrated photovoltaic technologies. In the present work, we propose a methodology for the generation of synthetic DNI hourly data from the hourly average GHI values by dividing the irradiance into a deterministic and stochastic component intending to emulate the dynamics of the solar radiation. The deterministic component is modeled through a simple classical model. The stochastic component is fitted to measured data in order to maintain the consistency of the synthetic data with the state of the sky, generating statistically significant DNI data with a cumulative frequency distribution very similar to the measured data. The adaptation and application of the model to the location of Seville shows significant improvements in terms of frequency distribution over the classical models. The proposed methodology applied to other locations with different climatological characteristics better results than the classical models in terms of frequency distribution reaching a reduction of the 50% in the Finkelstein-Schafer (FS) and Kolmogorov-Smirnov test integral (KSI) statistics.
NASA Astrophysics Data System (ADS)
Kajiwara, Yusuke; Murata, Hiroaki; Kimura, Haruhiko; Abe, Koji
As a communication support tool for cases of amyotrophic lateral sclerosis (ALS), researches on eye gaze human-computer interfaces have been active. However, since voluntary and involuntary eye movements cannot be distinguished in the interfaces, their performance is still not sufficient for practical use. This paper presents a high performance human-computer interface system which unites high quality recognitions of horizontal directional eye movements and voluntary blinks. The experimental results have shown that the number of incorrect inputs is decreased by 35.1% in an existing system which equips recognitions of horizontal and vertical directional eye movements in addition to voluntary blinks and character inputs are speeded up by 17.4% from the existing system.
Horizontal acquisition of transposable elements and viral sequences: patterns and consequences.
Gilbert, Clément; Feschotte, Cédric
2018-04-01
It is becoming clear that most eukaryotic transposable elements (TEs) owe their evolutionary success in part to horizontal transfer events, which enable them to invade new species. Recent large-scale studies are beginning to unravel the mechanisms and ecological factors underlying this mode of transmission. Viruses are increasingly recognized as vectors in the process but also as a direct source of genetic material horizontally acquired by eukaryotic organisms. Because TEs and endogenous viruses are major catalysts of variation and innovation in genomes, we argue that horizontal inheritance has had a more profound impact in eukaryotic evolution than is commonly appreciated. To support this proposal, we compile a list of examples, including some previously unrecognized, whereby new host functions and phenotypes can be directly attributed to horizontally acquired TE or viral sequences. We predict that the number of examples will rapidly grow in the future as the prevalence of horizontal transfer in the life cycle of TEs becomes even more apparent, firmly establishing this form of non-Mendelian inheritance as a consequential facet of eukaryotic evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Case history of an opposed-bore, dual horizontal well in the Austin Chalk formation of south Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooney, M.F.; Rogers, C.T.; Stacey, E.S.
1993-03-01
Petro-Hunt Corp. used a unique horizontal-well design to optimize development of an irregularly shaped lease in the Austin chalk formation in Texas. Two medium-radius horizontal bores were drilled in opposite directions from one vertical hole to maximize horizontal displacement in the lease. Underbalanced drilling techniques were used to prevent formation damage. The well design resulted in a significant cost savings per horizontal foot compared with 24 offset wells that the operator drilled. This paper reviews well planning and drilling and emphasizes techniques used to intersect thin horizontal targets and to initiate the second horizontal bore. Production results and drilling economicsmore » are discussed briefly, and ideas on future dual-horizontal-well applications are presented.« less
NASA Astrophysics Data System (ADS)
Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.
2014-12-01
The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.
Atmospheric turbidity and transmittance of solar radiation in Riyadh, Saudi Arabia
NASA Astrophysics Data System (ADS)
El-Shobokshy, Mohammad S.; Al-Saedi, Yaseen G.
During the last two decades, the urban areas in the city of Riyadh—the capital of Saudi Arabia—were increasing at an exceptionally high rate through a series of development plans. The major plans had been completed by the end of 1982. Some other big utility projects were started and completed during 1987. As a consequence, the air quality has deteriorated markedly and air pollution episodes recorded during these activities showed that particulates were present in the atmosphere at high concentrations. Later in January 1991 the Gulf war started and the firing of the oil fields in Kuwait soon followed. It was estimated that soot particulates were emitted at a rate of 600 ton d -1 along with high rates of other gases. This event has led to significant air quality and visibility problems. Direct normal solar radiation has been measured during the summer months of July and August which were characterized by very dry and cloudless weather for the period between 1982 and 1992. A year-to-year trend of the transmittance of direct normal solar irradiance was then determined. The atmospheric fine aerosol (<2 μm diameter) loading data during the same period were used to establish a correlation between the aerosol concentration and the extinction coefficient. The total horizontal and direct normal solar radiation measurements during some days when the dark smoke emitted from the oil field fires in Kuwait were passing over Riyadh are presented. The reduction in solar irradiation reflects the intensity of dark smoke at a distance of 500 km from Kuwait.
NASA Astrophysics Data System (ADS)
Dong, Guanyu
2018-03-01
In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.
Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.
2003-01-01
The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.
Elizabeth City State University: Elizabeth City, North Carolina (Data)
Stoffel, T.; Andreas, A.
1985-09-25
The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).
Bluefield State College: Bluefield, West Virginia (Data)
Stoffel, T.; Andreas, A.
1985-11-06
The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).
Radiation patterns of interfacial dipole antennas
NASA Technical Reports Server (NTRS)
Engheta, N.; Papas, C. H.; Elachi, C.
1982-01-01
The radiation pattern of an infinitesimal electric dipole is calculated for the case where the dipole is vertically located on the plane interface of two dielectric half spaces and for the case where the dipole is lying horizontally along the interface. For the vertical case, it is found that the radiation pattern has nulls at the interface and along the dipole axis. For the horizontal case, it is found that the pattern has a null at the interface; that the pattern in the upper half space, whose index of refraction is taken to be less than that of the lower half space, has a single lobe whose maximum is normal to the interface; and that in the lower half space, in the plane normal to the interface and containing the dipole, the pattern has three lobes, whereas in the plane normal to the interface and normally bisecting the dipole, the pattern has two maxima located symmetrically about a minimum. Interpretation of these results in terms of the Cerenkov effect is given.
Do the angle and length of the eustachian tube influence the development of chronic otitis media?
Dinç, Aykut Erdem; Damar, Murat; Uğur, Mehmet Birol; Öz, Ibrahim Ilker; Eliçora, Sultan Şevik; Bişkin, Sultan; Tutar, Hakan
2015-09-01
To compare the eustachian tube (ET) angle (ETa) and length (ETl) of ears with and without chronic otitis media (COM), and to determine the relationship between ET anatomy and the development of COM. A retrospective case-control study. The study group comprised 125 patients (age range, 8-79 years; 64 males and 61 females) with 124 normal ears and 126 diseased ears, including ears with chronic suppurative otitis media (CSOM) with central perforation, intratympanic tympanosclerosis (ITTS), cholesteatoma, and a tympanic membrane with retraction pockets (TMRP). ET angle and length were measured using computed tomography employing the multiplanar reconstruction technique. The ETa was significantly more horizontal in diseased versus normal ears of all study groups (P = .030), and there was no group difference in ETl (P = .160). ETl was shorter in CSOM versus ITTS ears and normal ears (P = .007 and P = .003, respectively) and in cholesteatoma versus TMRP ears (P = .014). In the unilateral COM group, there were no significant differences in the ETa or ETl of diseased versus contralateral normal ears (P = .155 and P = .710, respectively). The ETa was significantly more horizontal in childhood-onset diseased versus normal ears (P = .027), and there was no group difference in ETl (P = .732). The ETa (P = .002) and ETl (P < .001) were significantly greater in males than females. A more horizontal ETa and shorter ETl could be contributory (though not significantly) etiological factors in the development of COM. 3b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
New challenges in solar energy resource and forecasting in Greece
NASA Astrophysics Data System (ADS)
Kazantzidis, A.; Nikitidou, E.; Salamalikis, V.; Tzoumanikas, P.; Zagouras, A.
2018-05-01
Aerosols and clouds are the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. Under cloudy skies, the high temporal and spatial variability of cloudiness is the key factor for the estimation of solar irradiance. In this study, recent research activities related to the climatology and the prediction of solar energy in Greece are presented with emphasis on new challenges in the climatology of global horizontal irradiance (GHI) and direct normal irradiance (DNI), the changes of DNI due to the decreasing aerosol optical depth and the short-term (15-240 min) forecasts of solar irradiance with the collaborative use of neural networks and satellite images.
Direct-contact closed-loop heat exchanger
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1984-01-01
A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
Multivoxel Pattern Analysis Reveals 3D Place Information in the Human Hippocampus.
Kim, Misun; Jeffery, Kate J; Maguire, Eleanor A
2017-04-19
The spatial world is three dimensional (3D) and humans and other animals move both horizontally and vertically within it. Extant neuroscientific studies have typically investigated spatial navigation on a horizontal 2D plane, leaving much unknown about how 3D spatial information is represented in the brain. Specifically, horizontal and vertical information may be encoded in the same or different neural structures with equal or unequal sensitivity. Here, we investigated these possibilities using fMRI while participants were passively moved within a 3D lattice structure as if riding a rollercoaster. Multivoxel pattern analysis was used to test for the existence of information relating to where and in which direction participants were heading in this virtual environment. Behaviorally, participants had similarly accurate memory for vertical and horizontal locations and the right anterior hippocampus (HC) expressed place information that was sensitive to changes along both horizontal and vertical axes. This is suggestive of isotropic 3D place encoding. In contrast, participants indicated their heading direction faster and more accurately when they were heading in a tilted-up or tilted-down direction. This direction information was expressed in the right retrosplenial cortex and posterior HC and was only sensitive to vertical pitch, which could reflect the importance of the vertical (gravity) axis as a reference frame. Overall, our findings extend previous knowledge of how we represent the spatial world and navigate within it by taking into account the important third dimension. SIGNIFICANCE STATEMENT The spatial world is 3D. We can move horizontally across surfaces, but also vertically, going up slopes or stairs. Little is known about how the brain supports representations of 3D space. A key question is whether horizontal and vertical information is equally well represented. Here, we measured fMRI response patterns while participants moved within a virtual 3D environment and found that the anterior hippocampus (HC) expressed location information that was sensitive to the vertical and horizontal axes. In contrast, information about heading direction, found in retrosplenial cortex and posterior HC, favored the vertical axis, perhaps due to gravity effects. These findings provide new insights into how we represent our spatial 3D world and navigate within it. Copyright © 2017 Kim et al.
The dynamic effect of reading direction habit on spatial asymmetry of image perception.
Afsari, Zaeinab; Ossandón, José P; König, Peter
2016-09-01
Exploration of images after stimulus onset is initially biased to the left. Here, we studied the causes of such an asymmetry and investigated effects of reading habits, text primes, and priming by systematically biased eye movements on this spatial bias in visual exploration. Bilinguals first read text primes with right-to-left (RTL) or left-to-right (LTR) reading directions and subsequently explored natural images. In Experiment 1, native RTL speakers showed a leftward free-viewing shift after reading LTR primes but a weaker rightward bias after reading RTL primes. This demonstrates that reading direction dynamically influences the spatial bias. However, native LTR speakers who learned an RTL language late in life showed a leftward bias after reading either LTR or RTL primes, which suggests the role of habit formation in the production of the spatial bias. In Experiment 2, LTR bilinguals showed a slightly enhanced leftward bias after reading LTR text primes in their second language. This might contribute to the differences of native RTL and LTR speakers observed in Experiment 1. In Experiment 3, LTR bilinguals read normal (LTR, habitual reading) and mirrored left-to-right (mLTR, nonhabitual reading) texts. We observed a strong leftward bias in both cases, indicating that the bias direction is influenced by habitual reading direction and is not secondary to the actual reading direction. This is confirmed in Experiment 4, in which LTR participants were asked to follow RTL and LTR moving dots in prior image presentation and showed no change in the normal spatial bias. In conclusion, the horizontal bias is a dynamic property and is modulated by habitual reading direction.
Directional abnormalities of vestibular and optokinetic responses in cerebellar disease
NASA Technical Reports Server (NTRS)
Walker, M. F.; Zee, D. S.; Shelhamer, M. J. (Principal Investigator)
1999-01-01
Directional abnormalities of vestibular and optokinetic responses in patients with cerebellar degeneration are reported. Three-axis magnetic search-coil recordings of the eye and head were performed in eight cerebellar patients. Among these patients, examples of directional cross-coupling were found during (1) high-frequency, high-acceleration head thrusts; (2) constant-velocity chair rotations with the head fixed; (3) constant-velocity optokinetic stimulation; and (4) following repetitive head shaking. Cross-coupling during horizontal head thrusts consisted of an inappropriate upward eye-velocity component. In some patients, sustained constant-velocity yaw-axis chair rotations produced a mixed horizontal-torsional nystagmus and/or an increase in the baseline vertical slow-phase velocity. Following horizontal head shaking, some patients showed an increase in the slow-phase velocity of their downbeat nystagmus. These various forms of cross-coupling did not necessarily occur to the same degree in a given patient; this suggests that different mechanisms may be responsible. It is suggested that cross-coupling during head thrusts may reflect a loss of calibration of brainstem connections involved in the direct vestibular pathways, perhaps due to dysfunction of the flocculus. Cross-coupling during constant-velocity rotations and following head shaking may result from a misorientation of the angular eye-velocity vector in the velocity-storage system. Finally, responses to horizontal optokinetic stimulation included an inappropriate torsional component in some patients. This suggests that the underlying organization of horizontal optokinetic tracking is in labyrinthine coordinates. The findings are also consistent with prior animal-lesion studies that have shown a role for the vestibulocerebellum in the control of the direction of the VOR.
Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond
2016-01-01
Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119
Horizontal directional drilling: a green and sustainable technology for site remediation.
Lubrecht, Michael D
2012-03-06
Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.
Rebollar, Eria A; Simonetti, Stephen J; Shoemaker, William R; Harris, Reid N
2016-04-01
Amphibian populations worldwide are being threatened by the disease chytridiomycosis, which is caused by Batrachochytrium dendrobatidis To mitigate the effects of B. dendrobatidis, bioaugmentation of antifungal bacteria has been shown to be a promising strategy. One way to implement bioaugmentation is through indirect horizontal transmission, defined as the transfer of bacteria from a host to the environment and to another host. In addition, direct horizontal transmission among individuals can facilitate the spread of a probiotic in a population. In this study, we tested whether the antifungal bacterium Janthinobacterium lividum could be horizontally transferred, directly or indirectly, in a laboratory experiment using Lithobates clamitans tadpoles. We evaluated the ability of J. lividumto colonize the tadpoles' skin and to persist through time using culture-dependent and culture-independent techniques. We also tested whether the addition of J. lividum affected the skin community in L. clamitans tadpoles. We found that transmission occurred rapidly by direct and indirect horizontal transmission, but indirect transmission that included a potential substrate was more effective. Even though J. lividum colonized the skin, its relative abundance on the tadpole skin decreased over time. The inoculation of J. lividum did not significantly alter the skin bacterial diversity of L. clamitans tadpoles, which was dominated by Pseudomonas Our results show that indirect horizontal transmission can be an effective bioaugmentation method. Future research is needed to determine the best conditions, including the presence of substrates, under which a probiotic can persist on the skin so that bioaugmentation becomes a successful strategy to mitigate chytridiomycosis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Huang, Y.; Zhan, H.; Knappett, P.
2017-12-01
Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and <1 percent, respectively. These discrepancies are well within acceptable ranges of uncertainty for aquifer parameters estimation, when compared with other pumping test interpretation methods, which typically estimate uncertainty for the estimated parameters of 20 or 30 percent. Finally, the stream depletion rate was calculated as a function of stream-bank pumping. Unique to horizontally anisotropic aquifer, the stream depletion rate at any given pumping rate depends on the horizontal anisotropy ratio and the direction of the principle transmissivity. For example, when horizontal anisotropy ratios are 5 and 50 respectively, the corresponding depletion rate under pseudo steady-state condition are 86 m3/day and 91 m3/day. The results of this research fill a knowledge gap on predicting the response of horizontally anisotropic aquifers connected to streams. We further provide a method to estimate aquifer properties and predict stream depletion rates from observed drawdown. This new model can be used by water resources managers to exploit groundwater resource reasonably while protecting stream ecosystem.
Direct-contact closed-loop heat exchanger
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
Greenland, K B; Edwards, M J; Hutton, N J; Challis, V J; Irwin, M G; Sleigh, J W
2010-11-01
The sniffing position is often considered optimal for direct laryngoscopy. Another concept of airway configuration involving a laryngeal vestibule axis and two curves has also been suggested. We investigated whether this theory can be supported mathematically and if it supports the sniffing position as being optimal for direct laryngoscopy. Magnetic resonance imaging scans were performed in 42 normal adult volunteers. The airway passage was divided into two curves-primary (oro-pharyngeal curve) and secondary (pharyngo-glotto-tracheal curve). Airway configuration was evaluated in the neutral, extension, head lift, and sniffing positions. The airway passage, point of inflection (where the two curves meet), its tangent, and the line of sight were plotted on each scan. The point of inflection lay within the laryngeal vestibule in all positions. The head lift and sniffing positions caused the tangent to the point of inflection to approximate the horizontal plane. The sniffing, extension, and head lift positions caused a reduction in the area between the line of sight and the airway curve compared with the neutral position. A two-curve theory is proposed as a basis for explaining airway configuration. The changes in these curves with head and neck positioning support the sniffing position as optimal for direct laryngoscopy. Application of this new concept to other forms of laryngoscopy should be investigated.
Does magmatism influence low-angle normal faulting?
Parsons, Thomas E.; Thompson, George A.
1993-01-01
Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.
Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species.
Baker, Kate S; Dallman, Timothy J; Field, Nigel; Childs, Tristan; Mitchell, Holly; Day, Martin; Weill, François-Xavier; Lefèvre, Sophie; Tourdjman, Mathieu; Hughes, Gwenda; Jenkins, Claire; Thomson, Nicholas
2018-04-13
Horizontal gene transfer has played a role in developing the global public health crisis of antimicrobial resistance (AMR). However, the dynamics of AMR transfer through bacterial populations and its direct impact on human disease is poorly elucidated. Here, we study parallel epidemic emergences of multiple Shigella species, a priority AMR organism, in men who have sex with men to gain insight into AMR emergence and spread. Using genomic epidemiology, we show that repeated horizontal transfer of a single AMR plasmid among Shigella enhanced existing and facilitated new epidemics. These epidemic patterns contrasted with slighter, slower increases in disease caused by organisms with vertically inherited (chromosomally encoded) AMR. This demonstrates that horizontal transfer of AMR directly affects epidemiological outcomes of globally important AMR pathogens and highlights the need for integration of genomic analyses into all areas of AMR research, surveillance and management.
Movement compatibility for frontal controls with displays located in four cardinal orientations.
Chan, Alan H S; Hoffmann, Errol R
2010-12-01
Strength and reversibility of direction-of-motion stereotypes and response times are presented for different configurations of horizontal, vertical and rotary controls with horizontal, vertical and circular displays. Measures of the strength and reversibility of stereotypes were used to analyse the effects of direction of turn instruction (clockwise/anticlockwise; up/down; left/right), display orientation (North; East; South; West) and hand side (left/right) on movement compatibility. A number of acceptable display/control arrangements were identified for displays in each of the North, East, South and West orientations relative to the operator. For the horizontally moving control, the Worringham and Beringer principle was found to identify display/control arrangements having both high stereotype strength and high reversibility. Vertically moving controls are excellent with vertical displays but poor with horizontal and circular displays. Rotary controls have high stereotype strength and reversibility with both horizontal and circular displays (with the indicator at the 12 o'clock position). STATEMENT OF RELEVANCE: Design of display/control arrangements requires a strong relationship between operator's expectancies and the response of a device to control inputs. The present research fills in gaps for stereotypes where data are not available, in particular where the operator is not seated facing a display directly to the front.
Egri, Ádám; Blahó, Miklós; Sándor, András; Kriska, György; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor
2012-05-01
Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.
NASA Astrophysics Data System (ADS)
Egri, Ádám; Blahó, Miklós; Sándor, András; Kriska, György; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor
2012-05-01
Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.
Influence of magnetic field on zebrafish activity and orientation in a plus maze.
Osipova, Elena A; Pavlova, Vera V; Nepomnyashchikh, Valentin A; Krylov, Viacheslav V
2016-01-01
We describe an impact of the geomagnetic field (GMF) and its modification on zebrafish's orientation and locomotor activity in a plus maze with four arms oriented to the north, east, south and west. Zebrafish's directional preferences were bimodal in GMF: they visited two arms oriented in opposed directions (east-west) most frequently. This bimodal preference remained stable for same individuals across experiments divided by several days. When the horizontal GMF component was turned 90° clockwise, the preference accordingly shifted by 90° to arms oriented to the north and south. Other modifications of GMF (reversal of both vertical and horizontal GMF components; reversal of vertical component only; and reversal of horizontal component only) did not exert any discernible effect on the orientation of zebrafish. The 90° turn of horizontal component also resulted in a significant increase of fish's locomotor activity in comparison with the natural GMF. This increase became even more pronounced when the horizontal component was repeatedly turned by 90° and back with 1min interval between turns. Our results show that GMF and its variations should be taken into account when interpreting zebrafish's directional preferences and locomotor activity in mazes and other experimental devices. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hatayama, Ken; Fujiwara, Hiroyuki
1998-05-01
This paper aims to present a new method to calculate surface waves in 3-D sedimentary basin models, based on the direct boundary element method (BEM) with vertical boundaries and normal modes, and to evaluate the excitation of secondary surface waves observed remarkably in basins. Many authors have so far developed numerical techniques to calculate the total 3-D wavefield. However, the calculation of the total wavefield does not match our purpose, because the secondary surface waves excited on the basin boundaries will be contaminated by other undesirable waves. In this paper, we prove that, in principle, it is possible to extract surface waves excited on part of the basin boundaries from the total 3-D wavefield with a formulation that uses the reflection and transmission operators defined in the space domain. In realizing this extraction in the BEM algorithm, we encounter the problem arising from the lateral and vertical truncations of boundary surfaces extending infinitely in the half-space. To compensate the truncations, we first introduce an approximate algorithm using 2.5-D and 1-D wavefields for reference media, where a 2.5-D wavefield means a 3-D wavefield with a 2-D subsurface structure, and we then demonstrate the extraction. Finally, we calculate the secondary surface waves excited on the arc shape (horizontal section) of a vertical basin boundary subject to incident SH and SV plane waves propagating perpendicularly to the chord of the arc. As a result, we find that in the SH-incident case the Love waves are predominantly excited, rather than the Rayleigh waves and that in the SV-wave incident case the Love waves as well as the Rayleigh waves are excited. This suggests that the Love waves are more detectable than the Rayleigh waves in the horizontal components of observed recordings.
NASA Astrophysics Data System (ADS)
Adewole, E. O.; Healy, D.
2017-03-01
Accurate information on fault networks, the full stress tensor, and pore fluid pressures are required for quantifying the stability of structure-bound hydrocarbon prospects, carbon dioxide sequestration, and drilling prolific and safe wells, particularly fluid injections wells. Such information also provides essential data for a proper understanding of superinduced seismicities associated with areas of intensive hydrocarbon exploration and solid minerals mining activities. Pressure and stress data constrained from wells and seismic data in the Northern Niger Delta Basin (NNDB), Nigeria, have been analysed in the framework of fault stability indices by varying the maximum horizontal stress direction from 0° to 90°, evaluated at depths of 2 km, 3.5 km and 4 km. We have used fault dips and azimuths interpreted from high resolution 3D seismic data to calculate the predisposition of faults to failures in three faulting regimes (normal, pseudo-strike-slip and pseudo-thrust). The weighty decrease in the fault stability at 3.5 km depth from 1.2 MPa to 0.55 MPa demonstrates a reduction of the fault strength by high magnitude overpressures. Pore fluid pressures > 50 MPa have tendencies to increase the risk of faults to failure in the study area. Statistical analysis of stability indices (SI) indicates faults dipping 50°-60°, 80°-90°, and azimuths ranging 100°-110° are most favourably oriented for failure to take place, and thus likely to favour migrations of fluids given appropriate pressure and stress conditions in the dominant normal faulting regime of the NNDB. A few of the locally assessed stability of faults show varying results across faulting regimes. However, the near similarities of some model-based results in the faulting regimes explain the stability of subsurface structures are greatly influenced by the maximum horizontal stress (SHmax) direction and magnitude of pore fluid pressures.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
NASA Astrophysics Data System (ADS)
Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.
2016-12-01
Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.
A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.
Xu, Jin; Wang, Xudong
2016-09-01
A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems. © 2016, National Ground Water Association.
Sumanont, Sermsak; Nopamassiri, Supachoke; Boonrod, Artit; Apiwatanakul, Punyawat; Boonrod, Arunnit; Phornphutkul, Chanakarn
2018-03-20
Suspension suture button fixation was frequently used to treat acromioclavicular joint (ACJ) dislocation. However, there were many studies reporting about complications and residual horizontal instability after fixation. Our study compared the stability of ACJ after fixation between coracoclavicular (CC) fixation alone and CC fixation combined with ACJ repair by using finite element analysis (FEA). A finite element model was created by using CT images from the normal shoulder. The model 1 was CC fixation with suture button alone, and the model 2 was CC fixation with suture button combined with ACJ repair. Three different forces (50, 100, 200 N) applied to the model in three planes; inferior, anterior and posterior direction load to the acromion. The von Mises stress of the implants and deformation at ACJs was recorded. The ACJ repair in the model 2 could reduce the peak stress on the implant after applying the loading forces to the acromion which the ACJ repair could reduce the peak stress of the FiberWire at suture button about 90% when compared to model 1. And, the ACJ repair could reduce the deformation of the ACJ after applying the loading forces to the acromion in both vertical and horizontal planes. This FEA supports that the high-grade injuries of the ACJ should be treated with CC fixation combined with ACJ repair because this technique provides excellent stability in both vertical and horizontal planes and reduces stress to the suture button.
MEMS-based side-view endomicroscope for in vivo small animal imaging(Conference Presentation)
NASA Astrophysics Data System (ADS)
Duan, Xiyu; Li, Haijun; Li, Gaoming; Li, Xue; Oldham, Kenn R.; Wang, Thomas D.
2017-02-01
Tremendous advances have been made in technological development of whole body molecular imaging, including PET, SPECT, MRI, bioluminescence, and ultrasound. However, a great unmet need still exists for high resolution imaging of biological processes that occur in the epithelium, the thin layer of tissue where many important cancers originate. Confocal endomicroscopes designed with a fiber bundle are used in the clinic, but they can only create images in the horizontal plane. Imaging in the plane perpendicular to the tissue surface is also important because epithelial cells differentiate in the vertical direction. Subtle changes in normal tissue differentiation patterns can reveal the early expression of cancer biomarkers. In this work, we present a side-viewing confocal endomicroscope that can collect images in either horizontal or oblique plane using an integrated monolithic electrostatic 3D MEMS scanner. The endomicroscope can perform sub-cellular resolution imaging in both the horizontal plane and the oblique plane with FOVs of 500 x 700 µm2 and 500 x 200 µm2. A side-viewing probe will allow optimal contact between the imaging window and the luminal wall, which makes it easy to navigate in the hollow organ. The endomicroscope is packaged into a stainless steel tube with outer diameter of 4.2 mm, which can be used for both small animal and human GI tract imaging. We demonstrate in vivo imaging of colonic dysplasia in mice, showing the endomicroscope can potentially be used for early detection and staging of colon cancer.
Cawley, William E.; Warnick, Robert F.
1982-01-01
1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.
Weighted triangulation adjustment
Anderson, Walter L.
1969-01-01
The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C.V.; Lockwood, G.J.; Normann, R.A.
1999-06-01
The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less
Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea
NASA Astrophysics Data System (ADS)
Bruneau, Nicolas; Zika, Jan; Toumi, Ralf
2017-10-01
We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.
Effects of rolling friction on a spinning coin or disk
NASA Astrophysics Data System (ADS)
Cross, Rod
2018-05-01
Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.
Nickalls, R W
1996-09-01
Visual latency difference was determined directly in normal volunteers, using the rotating Pulfrich technique described by Nickalls [Vision Research, 26, 367-372 (1986)]. Subjects fixated a black vertical rod rotating clockwise on a horizontal turntable turning with constant angular velocity (16.6,33.3 or 44.7 revs/min) with a neutral density filter (OD 0.7 or 1.5) in front of the right eye. For all subjects the latency difference associated with the 1.5 OD filter was significantly greater (P < 0.001) with the rod rotating at 16.6 rev/min than at 33.3 revs/min. The existence of an inverse relationship between latency difference and angular velocity is hypothesized.
Deployment and early results from the CanSIM (Canadian Solar Spectral Irradiance Meter) network
NASA Astrophysics Data System (ADS)
Tatsiankou, Viktar; Hinzer, Karin; Schriemer, Henry; McVey-White, Patrick; Beal, Richard
2017-09-01
Three of seven stations have been deployed as part of the Canadian Solar Spectral Irradiance (CanSIM) network situated in Ottawa, Varennes and Egbert to measure long term spectral variation of the direct normal (DNI) and global horizontal irradiances (GHI) across the country. Every station is equipped with a solar tracker, SolarSIM-D2+, SolarSIM-G+, and SR20 pyranometer, reporting the spectral DNI, GHI, diffuse horizontal irradiance (DHI) and aerosol optical depth in the 280-4000 nm range, broadband DNI, GHI, and DHI, atmospheric total column ozone and water vapour amounts. The spectral GHI as measured by the SolarSIM-G+ was within 5% as compared to EKO MS-700 spectroradiometer in 350-1050 nm range on 17 March 2017. The difference in the GHI as reported by SolarSIM-G+ and SR20 pyranometer from all stations was within 2% on 14 April 2017. Furthermore, on this day, the daily GHI sum for the Ottawa, Varennes, and Egbert stations was 7.01, 6.95, and 7.11 kWh/m2, respectively, while the daily DNI sum was 10.65, 10.86, 10.04 kWh/m2, respectively.
The National Solar Radiation Data Base (NSRDB)
Sengupta, Manajit; Xie, Yu; Lopez, Anthony; ...
2018-03-19
The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less
Tortuosity of lightning return stroke channels
NASA Technical Reports Server (NTRS)
Levine, D. M.; Gilson, B.
1984-01-01
Data obtained from photographs of lightning are presented on the tortuosity of return stroke channels. The data were obtained by making piecewise linear fits to the channels, and recording the cartesian coordinates of the ends of each linear segment. The mean change between ends of the segments was nearly zero in the horizontal direction and was about eight meters in the vertical direction. Histograms of these changes are presented. These data were used to create model lightning channels and to predict the electric fields radiated during return strokes. This was done using a computer generated random walk in which linear segments were placed end-to-end to form a piecewise linear representation of the channel. The computer selected random numbers for the ends of the segments assuming a normal distribution with the measured statistics. Once the channels were simulated, the electric fields radiated during a return stroke were predicted using a transmission line model on each segment. It was found that realistic channels are obtained with this procedure, but only if the model includes two scales of tortuosity: fine scale irregularities corresponding to the local channel tortuosity which are superimposed on large scale horizontal drifts. The two scales of tortuosity are also necessary to obtain agreement between the electric fields computed mathematically from the simulated channels and the electric fields radiated from real return strokes. Without large scale drifts, the computed electric fields do not have the undulations characteristics of the data.
The National Solar Radiation Data Base (NSRDB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Xie, Yu; Lopez, Anthony
The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less
NASA Astrophysics Data System (ADS)
Rodríguez, S.; Cróquer, A.; Guzmán, H. M.; Bastidas, C.
2009-03-01
Anecdotal evidence collected since 2004 suggests that infections caused by ciliates in the genus Halofolliculina may be related to coral mortality in more than 25 scleractinian species in the Caribbean. However, the relationship between the presence of ciliates and coral mortality has not yet been firmly established. Field and laboratory manipulations were used to test if ciliate infections harm corals, if ciliates are able to infect healthy colonies, and if coral susceptibility to ciliate infection depends on temperature, depth, distance to an infected colony, and the presence of injuries. Ciliate infections were always characterized by a visually detectable front of ciliates located on recently exposed coral skeletons. These infections altered the normal structure of the colony by causing tissue mortality (0.8 ± 0.95 cm month-1, mean ± SD) and by delaying or preventing recovery from injuries. Under laboratory conditions, ciliates transmitted directly and horizontally from infected to healthy hosts, and coral susceptibility to ciliate infections increased with the presence of injuries. After invasion, the ciliate population grew, rapidly and after 8 d, produced tissue mortality on 32% of newly infected hosts. Thus, our results support the existence of a new Caribbean coral syndrome that is associated with tissue mortality, is infectious, and transmits directly and horizontally. Even though the role of ciliates in the development of lesions on coral tissues remains unclear, their presence is by far the most conspicuous sign of this syndrome; thus, we propose to name this condition Caribbean ciliate infection (CCI).
NASA Astrophysics Data System (ADS)
Seiler, Christian; Fletcher, John
2013-04-01
Large-scale fault corrugations or megamullions are a common feature of detachment faults and form either as original fault grooves, displacement-gradient folds or constrictional folds parallel to the extension direction. In highly oblique extensional settings such as the Gulf of California, horizontal shortening perpendicular to the extension direction is an inherent part of the regional stress field and likely forms a key factor during the development of extension-parallel fault corrugations. However, the amount of horizontal shortening absorbed by megamullions is difficult to quantify, and constrictional folding is not normally thought to accommodate significant strike-slip deformation. The Las Cuevitas and Santa Rosa detachments are two low-angle normal fault systems exposed on the Gulf of California rifted margin in northeastern Baja California, Mexico. The two detachments accommodate between ~7-9km of SE-directed extension and represent the next significant set of faults in direction of transport from the rift breakaway fault. Fault kinematics are highly complex, but suggest integrated normal, oblique- and strike-slip faulting, with kinematics controlled by the orientation of faults with respect to the regional transtensional stress field. Both fault systems are strongly corrugated, with megamullion amplitudes of ~4-7km and half wavelenghts of between ~15 to 20km. Differential folding of the syntectonic basin-fill of the supradetachment basins strongly suggest that the observed megamullions formed largely, though not exclusively, due to constrictional folding associated with the transtensional stress regime of the plate boundary. This is consistent with basin-scale facies variations that record differential uplift and subsidence in antiformal and synformal megamullion domains, respectively. Compared to the two detachments, the San Pedro Martir fault - the master fault of the rift system at this latitude - shows more subtle fault corrugations with amplitudes of <3km. Unlike the Las Cuevitas and Santa Rosa detachments, though, there is no evidence for constrictional folding on the San Pedro Martir fault. Instead, the observed corrugations likely represent original grooves of the fault plane, formed as adjacent fault nuclei joined along-strike during fault growth. Comparison between the sinuosity of the San Pedro Martir fault (1.08), attributed entirely to original fault asperities, with the sinuosity of the two detachment systems (Las Cuevitas detachment: 1.17, Santa Rosa detachment: 1.22), suggests that about 10% of shortening occurred on each of the two detachments due to synextensional constrictional folding. This corresponds to a combined total of ~8km of N-S shortening, or ~10km of dextral shear resolved in direction of the relative plate motion, and occurs in addition to ~21km of right-lateral strain accommodated by clockwise vertical-axis block rotations. Thus, strain in this part of the rift system was partitioned between discrete extensional faulting on the two detachment systems, and significant right-lateral shear accommodated by distributed volume deformation.
Mallette, Claire; Duff, Margaret; McPhee, Carolyn; Pollex, Heather; Wood, Anya
2011-01-01
Nurses frequently experience horizontal violence in their interactions with nursing colleagues within the workplace. By definition, horizontal violence includes such disrespectful behaviours as intimidation, coercion, bullying, criticism, exclusion or belittling. Educational programs addressing horizontal violence have been developed, but few have been evaluated with respect to knowledge acquisition and transfer. The purpose of this paper is to describe an experimental effectiveness study, using a pre/post design with a control group (total N=164). The research evaluated an innovative educational program in which nurses, using avatars, role-played strategies to address horizontal violence within a virtual nursing unit developed on the Second Life platform. The results of participating in this program were compared with more traditional educational methodologies, such as a workbook and a self-directed e-learning module. While all strategies were perceived by participants as beneficial, the findings from this study suggest that learning through the self-directed e-learning module followed with practice in a virtual world is an effective way of acquiring knowledge, skills and abilities to better address horizontal violence.
Tracking reflector assembly for a skylight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominquez, R.L.
1984-02-07
A tracking reflector assembly for a skylight includes a ring-shaped base member rotatably supported above the skylight by a plurality of rollers which engage a channel formed within an annular wall of the ring. A reflector is pivotally coupled to the ring for reflecting light into the skylight to supplement light which strikes the skylight directly. A vertical drive motor operates in response to a pair of photosensors for raising and lowering the reflector to follow changes in the angular elevation of the sun. The ring-shaped base member includes a toothed lower surface engaged by a gear coupled to amore » horizontal drive motor for rotating the ring-shaped base member in response to a third photosensor for following east-to-west movement of the sun. Each of the aforementioned photosensors is normally shaded and actuates the associated drive motor only when being struck by direct sunlight. A vertical limit switch limits the amount by which the reflector may be pivotally raised to avoid reflecting midday summer sunlight into the skylight. Another switch is responsive to closure of the reflector over the base member for preventing the vertical drive motor from attempting to further pivot the reflector downwardly. A fourth photosensor senses darkness resulting from sunset or heavy overcast conditions for pivoting the reflector downwardly and returning the base member and reflector to an easterly direction. A limit switch senses the return of the base member to the full east position for terminating actuation of the horizontal drive motor. A user operated switch selectively enables the tracking reflector assembly to operate automatically or causes the reflector to be lowered and the base member to be returned to the full east position until the user again enables the automatic control circuitry.« less
Modification of Eccentric Gaze-Holding
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Paloski, W. H.; Somers, J. T.; Leigh, R. J.; Wood, S. J.; Kornilova, L.
2006-01-01
Clear vision and accurate localization of objects in the environment are prerequisites for reliable performance of motor tasks. Space flight confronts the crewmember with a stimulus rearrangement that requires adaptation to function effectively with the new requirements of altered spatial orientation and motor coordination. Adaptation and motor learning driven by the effects of cerebellar disorders may share some of the same demands that face our astronauts. One measure of spatial localization shared by the astronauts and those suffering from cerebellar disorders that is easily quantified, and for which a neurobiological substrate has been identified, is the control of the angle of gaze (the "line of sight"). The disturbances of gaze control that have been documented to occur in astronauts and cosmonauts, both in-flight and postflight, can be directly related to changes in the extrinsic gravitational environment and intrinsic proprioceptive mechanisms thus, lending themselves to description by simple non-linear statistical models. Because of the necessity of developing robust normal response populations and normative populations against which abnormal responses can be evaluated, the basic models can be formulated using normal, non-astronaut test subjects and subsequently extended using centrifugation techniques to alter the gravitational and proprioceptive environment of these subjects. Further tests and extensions of the models can be made by studying abnormalities of gaze control in patients with cerebellar disease. A series of investigations were conducted in which a total of 62 subjects were tested to: (1) Define eccentric gaze-holding parameters in a normative population, and (2) explore the effects of linear acceleration on gaze-holding parameters. For these studies gaze-holding was evaluated with the subjects seated upright (the normative values), rolled 45 degrees to both the left and right, or pitched back 30 and 90 degrees. In a separate study the further effects of acceleration on gaze stability was examined during centrifugation (+2 G (sub x) and +2 G (sub z) using a total of 23 subjects. In all of our investigations eccentric gaze-holding was established by having the subjects acquire an eccentric target (+/-30 degrees horizontal, +/- 15 degrees vertical) that was flashed for 750 msec in an otherwise dark room. Subjects were instructed to hold gaze on the remembered position of the flashed target for 20 sec. Immediately following the 20 sec period, subjects were cued to return to the remembered center position and to hold gaze there for an additional 20 sec. Following this 20 sec period the center target was briefly flashed and the subject made any corrective eye movement back to the true center position. Conventionally, the ability to hold eccentric gaze is estimated by fitting the natural log of centripetal eye drifts by linear regression and calculating the time constant (G) of these slow phases of "gaze-evoked nystagmus". However, because our normative subjects sometimes showed essentially no drift (tau (sub c) = m), statistical estimation and inference on the effect of target direction was performed on values of the decay constant theta = 1/(tau (sub c)) which we found was well modeled by a gamma distribution. Subjects showed substantial variance of their eye drifts, which were centrifugal in approximately 20 % of cases, and > 40% for down gaze. Using the ensuing estimated gamma distributions, we were able to conclude that rightward and leftward gaze holding were not significantly different, but that upward gaze holding was significantly worse than downward (p<0.05). We also concluded that vertical gaze holding was significantly worse than horizontal (p<0.05). In the case of left and right roll, we found that both had a similar improvement to horizontal gaze holding (p<0.05), but didn't have a significant effect on vertical gaze holding. For pitch tilts, both tilt angles significantly decreased gaze-holding ility in all directions (p<0.05). Finally, we found that hyper-g centrifugation significantly decreased gaze holding ability in the vertical plane. The main findings of this study are as follows: (1) vertical gaze-holding is less stable than horizontal, (2) gaze-holding to upward targets is less stable than to downward targets, (3) tilt affects gaze holding, and (4) hyper-g affects gaze holding. This difference between horizontal and vertical gaze-holding may be ascribed to separate components of the velocity-to-position neural integrator for eye movements, and to differences in orbital mechanics. The differences between upward and downward gaze-holding may be ascribed to an inherent vertical imbalance in the vestibular system. Because whole body tilt and hyper-g affects gaze-holding, it is implied that the otolith organs have direct connections to the neural integrator and further studies of astronaut gaze-holding are warranted. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied to normals who maybe exposed to environments which may modify the central integrator and require monitoring, and to evaluate patients with gaze-evoked nystagmus by comparing to the above established normative criteria.
Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...
Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .
Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...
NASA Technical Reports Server (NTRS)
Purser, Paul E.; Spear, Margaret F.
1947-01-01
A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.
Cluster glass induced exchange biaslike effect in the perovskite cobaltites
NASA Astrophysics Data System (ADS)
Luo, Wanju; Wang, Fangwei
2007-04-01
Exchange biaslike phenomenon is observed in the Ba doped perovskite polycrystalline LaCoO3. The magnetic hysteresis loop shifts in both horizontal and vertical directions at 5K when the samples are cooled down to 5K in a magnetic field. The nature of this magnetic anisotropy is ascribed to the freezing properties of the local anisotropy in the cluster glass system. The magnetic shifts in horizontal and vertical directions can be derived directly under the principle that the spins of a cluster are frozen in random orientations and aligned to the field direction upon zero field and field cooling, respectively.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
Application of Statistical Learning Theory to Plankton Image Analysis
2006-06-01
linear distance interval from 1 to 40 pixels and two directions formula (horizontal & vertical, and diagonals), EF2 is EF with 7 ex- ponential distance...and four directions formula (horizontal, vertical and two diagonals). It is clear that exponential distance inter- val works better than the linear ...PSI - PS by Vincent, linear and pseudo opening and closing spectra, each has 40 elements, total feature length of 160. PS2 - PS modified from Mei- jster
NASA Astrophysics Data System (ADS)
Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc
2018-05-01
The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.
NASA Astrophysics Data System (ADS)
Pischiutta, Marta; Cianfarra, Paola; Salvini, Francesco; Cara, Fabrizio; Vannoli, Paola
2018-03-01
Directional site effects observed at seismological stations on pronounced relief are analyzed. We investigate the ground motion properties calculating horizontal-to-vertical spectral ratios and horizontal polarization of both ambient vibrations and earthquake records using broadband seismograms of the Italian Seismic Network. We find that a subset of 47 stations with pronounced relief, results in a significant (>2) directional amplification of the horizontal component, with a well defined, site-specific direction of motion. However, the horizontal spectral response of sites is not uniform, varying from an isolated (resonant) frequency peak to a broadband amplification, interesting frequency bands as large as 1-10 Hz in many cases. Using the 47 selected stations, we have tried to establish a relation between directional amplification and topography geometry in a 2D-vision, when applicable, through a morphological analysis of the Digital Elevation Model using Geographic Information Systems. The procedure computes the parameters that characterize the geometry of topographic irregularities (size and slope), in combination with a principal component analysis that automatically yields the orientation of the elongated ridges. In seeking a relation between directional amplification and the surface morphology, we have found that it is impossible to fit the variety of observations with a resonant topography model as well as to identify common features in the ground motion behavior for stations with similar topography typologies. We conclude that, rather than the shape of the topography, local structural complexities and details of the near-surface structure must play a predominant role in controlling ground motion properties at sites with pronounced relief.
NASA Astrophysics Data System (ADS)
Pischiutta, Marta; Cianfarra, Paola; Salvini, Francesco; Cara, Fabrizio; Vannoli, Paola
2018-07-01
Directional site effects observed at seismological stations on pronounced relief are analysed. We investigate the ground motion properties calculating horizontal-to-vertical spectral ratios and horizontal polarization of both ambient vibrations and earthquake records using broad-band seismograms of the Italian seismic network. We find that a subset of 47 stations with pronounced relief results in a significant (>2) directional amplification of the horizontal component, with a well-defined, site-specific direction of motion. However, the horizontal spectral response of sites is not uniform, varying from an isolated (resonant) frequency peak to a broad-band amplification, interesting frequency bands as large as 1-10 Hz in many cases. Using 47 selected stations, we have tried to establish a relation between directional amplification and topography geometry in a 2-D vision, when applicable, through a morphological analysis of the digital elevation model using geographic information systems. The procedure computes the parameters that characterize the geometry of topographic irregularities (size and slope), in combination with a principal component analysis that automatically yields the orientation of the elongated ridges. In seeking a relation between directional amplification and the surface morphology, we have found that it is impossible to fit the variety of observations with a resonant topography model as well as to identify common features in the ground motion behaviour for stations with similar topography typologies. We conclude that, rather than the shape of the topography, local structural complexities and details of the near-surface structure must play a predominant role in controlling ground motion properties at sites with pronounced relief.
Orienting numbers in mental space: horizontal organization trumps vertical.
Holmes, Kevin J; Lourenco, Stella F
2012-01-01
While research on the spatial representation of number has provided substantial evidence for a horizontally oriented mental number line, recent studies suggest vertical organization as well. Directly comparing the relative strength of horizontal and vertical organization, however, we found no evidence of spontaneous vertical orientation (upward or downward), and horizontal trumped vertical when pitted against each other (Experiment 1). Only when numbers were conceptualized as magnitudes (as opposed to nonmagnitude ordinal sequences) did reliable vertical organization emerge, with upward orientation preferred (Experiment 2). Altogether, these findings suggest that horizontal representations predominate, and that vertical representations, when elicited, may be relatively inflexible. Implications for spatial organization beyond number, and its ontogenetic basis, are discussed.
Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Bush, G. A.; Perachio, A. A.
1993-01-01
Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses, respectively, elicited in the rat during linear translation in the horizontal head plane. In addition, the data suggest a spatially and temporally specific and selective otolith/canal convergence. We propose that the central otolith system is organized in canal coordinates such that there is a close alignment between the plane of angular acceleration (canal) sensitivity and the plane of linear acceleration (otolith) sensitivity in otolith/canal-convergent vestibular nuclei neurons.
NASA Astrophysics Data System (ADS)
Ferry, John M.; Wing, Boswell A.; Penniston-Dorland, Sarah C.; Rumble, Douglas
2002-03-01
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.
NASA Astrophysics Data System (ADS)
Ferry, John; Wing, Boswell; Penniston-Dorland, Sarah; Rumble, Douglas
2001-11-01
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux 5,000 and 300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.
Keidser, Gitte; Rohrseitz, Kristin; Dillon, Harvey; Hamacher, Volkmar; Carter, Lyndal; Rass, Uwe; Convery, Elizabeth
2006-10-01
This study examined the effect that signal processing strategies used in modern hearing aids, such as multi-channel WDRC, noise reduction, and directional microphones have on interaural difference cues and horizontal localization performance relative to linear, time-invariant amplification. Twelve participants were bilaterally fitted with BTE devices. Horizontal localization testing using a 360 degrees loudspeaker array and broadband pulsed pink noise was performed two weeks, and two months, post-fitting. The effect of noise reduction was measured with a constant noise present at 80 degrees azimuth. Data were analysed independently in the left/right and front/back dimension and showed that of the three signal processing strategies, directional microphones had the most significant effect on horizontal localization performance and over time. Specifically, a cardioid microphone could decrease front/back errors over time, whereas left/right errors increased when different microphones were fitted to left and right ears. Front/back confusions were generally prominent. Objective measurements of interaural differences on KEMAR explained significant shifts in left/right errors. In conclusion, there is scope for improving the sense of localization in hearing aid users.
Teaching Activities on Horizontal Nuclear Proliferation.
ERIC Educational Resources Information Center
Zola, John
1990-01-01
Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)
77 FR 26154 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... stabilizer actuator (THSA), the THSA upper secondary attachment engaged because it could only withstand the... [trimmable horizontal stabilizer actuator] upper primary attachment, which may result in a loading of the... of the trimmable horizontal stabilizer actuator (THSA), the THSA upper secondary attachment engaged...
Directional tendencies of Hebrew, Japanese, and English readers.
Nachson, I; Hatta, T
2001-08-01
Consistent left-right and right-left reading habits are associated with corresponding directional tendencies in the reproduction of horizontally displayed visual stimuli. Inconsistent reading habits should therefore be associated with inconsis tent directional tendencies. This hypothesis was tested on Japanese readers whose reading habits were inconsistent by asking them to reproduce four series of 12-item horizontal stimulus arrays. The hypothesis was partially supported by the data which showed that, like Hebrew readers who also have inconsistent reading habits, the directional tendencies shown by the 68 Japanese readers were significantly weaker on some tasks that those shown by the 16 English readers whose left-right reading habits were consistent. The data were interpreted as showing that acquired reading habits may affect directionality in perception of visual stimuli.
Generating a Reduced Gravity Environment on Earth
NASA Technical Reports Server (NTRS)
Dungan, L. K.; Valle, P.; Shy, C.
2015-01-01
The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions and...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
Vertical or horizontal orientation of foot radiographs does not affect image interpretation
Ferran, Nicholas Antonio; Ball, Luke; Maffulli, Nicola
2012-01-01
Summary This study determined whether the orientation of dorsoplantar and oblique foot radiographs has an effect on radiograph interpretation. A test set of 50 consecutive foot radiographs were selected (25 with fractures, and 25 normal), and duplicated in the horizontal orientation. The images were randomly arranged, numbered 1 through 100, and analysed by six image interpreters. Vertical and horizontal area under the ROC curve, accuracy, sensitivity and specificity were calculated for each image interpreter. There was no significant difference in the area under the ROC curve, accuracy, sensitivity or specificity of image interpretation between images viewed in the vertical or horizontal orientation. While conventions for display of radiographs may help to improve the development of an efficient visual search strategy in trainees, and allow for standardisation of publication of radiographic images, variation from the convention in clinical practice does not appear to affect the sensitivity or specificity of image interpretation. PMID:23738310
NASA Astrophysics Data System (ADS)
Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.
2017-06-01
In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.
Shunmugavelu, Karthik
2017-01-01
A combination of horizontal and vertical third molar impaction is a rare occurrence.When the tooth is unable to erupt to its proper position and fail to achieve a normal occlusion, it is known as impacted tooth. In this scientific article, case report of a female patient aged 30 years reported with acombination of horizontally and vertically impacted third molars in the maxilla and mandible has been presented. The treatment included surgical removal of the impacted teeth without any damage to underlying structures. Horizontal impaction of left maxillary third molar, vertical impaction of right maxillary third molar and left mandibular third molar is a rare occurrence. If symptomatic, surgical removal has to be planned as earlier as possible rather than late complications.
Center of mass detection via an active pixel sensor
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)
2005-01-01
An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.
Center of mass detection via an active pixel sensor
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)
2006-01-01
An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.
Center of mass detection via an active pixel sensor
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)
2002-01-01
An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.
Video image stabilization and registration--plus
NASA Technical Reports Server (NTRS)
Hathaway, David H. (Inventor)
2009-01-01
A method of stabilizing a video image displayed in multiple video fields of a video sequence includes the steps of: subdividing a selected area of a first video field into nested pixel blocks; determining horizontal and vertical translation of each of the pixel blocks in each of the pixel block subdivision levels from the first video field to a second video field; and determining translation of the image from the first video field to the second video field by determining a change in magnification of the image from the first video field to the second video field in each of horizontal and vertical directions, and determining shear of the image from the first video field to the second video field in each of the horizontal and vertical directions.
On the Convection of a Binary Mixture in a Horizontal Layer Under High-frequency Vibrations
NASA Astrophysics Data System (ADS)
Smorodin, B. L.; Ishutov, S. M.; Myznikova, B. I.
2018-02-01
The convective instability and non-linear flows are considered in a horizontal, binary-mixture layer with negative Soret coupling, subjected to the high-frequency vibration whose axis is directed at an arbitrary angle to the layer boundaries. The limiting case of long-wave disturbances is studied using the perturbation method. The influence of the intensity and direction of vibration on the spatially-periodic traveling wave solution is analyzed. It is shown that the shift in the Rayleigh number range, in which the traveling wave regime exists, toward higher values is a response to a horizontal-to-vertical transition in the vibration axis orientation. The characteristics of amplitude- and phase-modulated traveling waves are obtained and discussed.
Klein, Brennan J; Li, Zhi; Durgin, Frank H
2016-04-01
What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides to dissociate egocentric from allocentric reference frames. In Experiment 1, it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Klein, Brennan J.; Li, Zhi; Durgin, Frank H.
2015-01-01
What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides in order to dissociate egocentric from allocentric reference frames. In Experiment 1 it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. PMID:26594884
Optimization of the AGS superconducting helical partial snake strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin,F.; Huang, H.; Luccio, A.U.
2008-06-23
Two helical partial snakes, one super-conducting (a.k.a cold snake) and one normal conducting (a.k.a warm snake), have preserved the polarization of proton beam up to 65% in the Brookhaven Alternating Gradient Synchrotron (AGS) at the extraction energy from 85% at injection. In order to overcome spin resonances, stronger partial snakes would be required. However, the stronger the partial snake, the more the stable spin direction tilted producing a stronger horizontal intrinsic resonance. The balance between increasing the spin tune gap generated by the snakes and reducing the tilted stable spin direction has to be considered to maintain the polarization. Becausemore » the magnetic field of the warm snake has to be a constant, only the cold snake with a maximum 3T magnetic field can be varied to find out the optimum snake strength. This paper presents simulation results by spin tracking with different cold snake magnetic fields. Some experimental data are also analyzed.« less
NASA Astrophysics Data System (ADS)
Soh, I.; Chang, C.
2017-12-01
The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress magnitude variation.
Conway, Lucian Gideon; Bongard, Kate; Plaut, Victoria; Gornick, Laura Janelle; Dodds, Daniel P; Giresi, Thomas; Tweed, Roger G; Repke, Meredith A; Houck, Shannon C
2017-10-01
What kinds of physical environments make for free societies? The present research investigates the effect of three different types of ecological stressors (climate stress, pathogen stress, and frontier topography) on two measurements of governmental restriction: Vertical restriction involves select persons imposing asymmetrical laws on others, while horizontal restriction involves laws that restrict most members of a society equally. Investigation 1 validates our measurements of vertical and horizontal restriction. Investigation 2 demonstrates that, across both U.S. states and a sample of nations, ecological stressors tend to cause more vertically restrictive societies but less horizontally restrictive societies. Investigation 3 demonstrates that assortative sociality partially mediates ecological stress→restriction relationships across nations, but not in U.S. states. Although some stressor-specific effects emerged (most notably, cold stress consistently showed effects in the opposite direction), these results in the main suggest that ecological stress simultaneously creates opposing pressures that push freedom in two different directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew; Hayes, William; Pohl, Andrew
2015-02-02
We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decompositionmore » models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.« less
NASA Astrophysics Data System (ADS)
Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun
2017-01-01
A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.
Does gravity influence the visual line bisection task?
Drakul, A; Bockisch, C J; Tarnutzer, A A
2016-08-01
The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Hydrological deformation signals in karst systems: new evidence from the European Alps
NASA Astrophysics Data System (ADS)
Serpelloni, E.; Pintori, F.; Gualandi, A.; Scoccimarro, E.; Cavaliere, A.; Anderlini, L.; Belardinelli, M. E.; Todesco, M.
2017-12-01
The influence of rainfall on crustal deformation has been described at local scales, using tilt and strain meters, in several tectonic settings. However, the literature on the spatial extent of rainfall-induced deformation is still scarce. We analyzed 10 years of displacement time-series from 150 continuous GPS stations operating across the broad zone of deformation accommodating the N-S Adria-Eurasia convergence and the E-ward escape of the Eastern Alps toward the Pannonian basin. We applied a blind-source-separation algorithm based on a variational Bayesian Independent Component Analysis method to the de-trended time-series, being able to characterize the temporal and spatial features of several deformation signals. The most important ones are a common mode annual signal, with spatially uniform response in the vertical and horizontal components and a time-variable, non-cyclic, signal characterized by a spatially variable response in the horizontal components, with stations moving (up to 8 mm) in the opposite directions, reversing the sense of movement in time. This implies a succession of extensional/compressional strains, with variable amplitudes through time, oriented normal to rock fractures in karst areas. While seasonal displacements in the vertical component (with an average amplitude of 4 mm over the study area) are satisfactorily reproduced by surface hydrological loading, estimated from global assimilation models, the non seasonal signal is associated with groundwater flow in karst systems, and is mainly influencing the horizontal component. The temporal evolution of this deformation signal is correlated with cumulated precipitation values over periods of 200-300 days. This horizontal deformation can be explained by pressure changes associated with variable water levels within vertical fractures in the vadose zones of karst systems, and the water level changes required to open or close these fractures are consistent with the fluctuations of precipitation and with the dynamics of karst systems.
Canalolithiasis of the superior semicircular canal: an anomaly in benign paroxysmal vertigo.
Schratzenstaller, Bruno; Wagner-Manslau, Carola; Strasser, Gerhard; Arnold, Wolfgang
2005-10-01
According to the canalolithiasis theory, benign paroxysmal vertigo (BPPV) is caused by gravity-dependent movements of otoconial debris that collects in the endolymph of the posterior semicircular canal. Other parts of the vestibular organ are rarely affected, and it is mainly the horizontal canal that is affected by this atypical form of BPPV. Canalolithiasis of the superior semicircular canal must be considered an anomaly because the superior semicircular canal is the highest point of the vestibular organ and debris normally cannot collect in this special location. Until now, BPPV of the superior canal has mainly been dealt with theoretically in the literature. The authors present three patients with canalolithiasis of the superior semicircular canal and offer direct proof of the condition using high-resolution 3D MRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Lopez, A.; Sengupta, M.
Typical Meteorological Year (TMY) data sets provide industry standard resource information for building designers and are commonly used by the solar industry to estimate photovoltaic and concentrating solar power system performance. Historically, TMY data sets were only available for certain station locations, but current TMY data sets are available on the same grid as the National Solar Radiation Database data and are referred to as the gridded TMY. In this report, a comparison of TMY, typical direct (normal irradiance) year (TDY), and typical global (horizontal irradiance) year (TGY) data sets were performed to better understand the impact of ancillary weathermore » variables upon them. These analyses identified geographical areas of high and low temporal and spatial variability, thereby providing insight into the representativeness of a particular TMY data set for use in renewable energy as well as other applications.« less
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Kim, Shinwoo; Woodward, Tracey; Wang, T. G.
1992-01-01
The effects on microstructure of crucible orientation with respect to the earth's gravitational vector, g, during directional solidification of low-volume fraction copper and aluminum, Pb-Cu, and Sn-Al alloys are examined. It is demonstrated that horizontal alignment (i.e. perpendicular to g) in combination with axial rotation of the crucible during growth is sufficient to negate factors which initiate macrosegregation, e.g. density gradients attributed to temperature and/or compositional differences, and promotes a uniform microstructure.
Power System Implementation and Demonstration at Camp Katuu, Palau
2011-05-11
Horizontal Rows 3 Vertical Rows 3 Vertical Rows with Center Walkway 6 Vertical Rows 1 Amount of rail mounting (lf) 1440’ 1800’ 1800’ 1440’ 2 Ease of rail...installation some rail cutting required to clear walkway requires two level rail mounting system requires two level rail mounting system no rail...Maintenance access 21" horizontal & vertical walkway , does not have direct access to all panels Accessible with 15" walkways Direct access to each panel and
Two stage indirect evaporative cooling system
Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan
2005-08-23
A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.
Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.
Ernst, David A; Lohmann, Kenneth J
2016-06-15
The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao
2018-05-01
A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.
Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian
2017-10-01
Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.
NASA Astrophysics Data System (ADS)
Clark, D.
2012-12-01
In the future, acquisition of magnetic gradient tensor data is likely to become routine. New methods developed for analysis of magnetic gradient tensor data can also be applied to high quality conventional TMI surveys that have been processed using Fourier filtering techniques, or otherwise, to calculate magnetic vector and tensor components. This approach is, in fact, the only practical way at present to analyze vector component data, as measurements of vector components are seriously afflicted by motion noise, which is not as serious a problem for gradient components. In many circumstances, an optimal approach to extracting maximum information from magnetic surveys would be to combine analysis of measured gradient tensor data with vector components calculated from TMI measurements. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for a number of elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, horizontal line current and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalized source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetization direction for these sources (and only very weakly dependent on magnetization direction in general). In combination the NSS and its vector gradient enable estimation of the Euler structural index, thereby constraining source geometry, and determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Once source locations are determined, information of source magnetizations can be obtained by simple linear inversion of measured or calculated vector and/or tensor data. Inversions based on the vector gradient of the NSS over the Tallawang magnetite deposit in central New South Wales obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Inverted magnetizations are consistent with magnetic property measurements on drill core samples from this deposit. Similarly, inversions of calculated tensor data over the Mount Leyshold gold-mineralized porphyry system in Queensland yield good estimates of the centroid location, total magnetic moment and magnetization direction of the magnetite-bearing potassic alteration zone that are consistent with geological and petrophysical information.
The development and testing of a novel cross axis wind turbine
NASA Astrophysics Data System (ADS)
Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.
2016-06-01
A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).
Spatial-temporal characteristics of lightning flash size in a supercell storm
NASA Astrophysics Data System (ADS)
Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng
2017-11-01
The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.
Free and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models
NASA Astrophysics Data System (ADS)
Marques, Carlos A. F.; Castanheira, José M.
2015-04-01
It is well known that precipitation in the equatorial belt does not occur randomly, but is often organized into synoptic to planetary-scale disturbances with time scales smaller than a season. Several studies have shown that a large fraction of the convection variability in such disturbances is associated with dynamical Equatorial Waves, such as the Kelvin, Equatorial Rossby, Mixed Rossby-Gravity, Eastward and Westward Inertio-Gravity waves (e.g. Kiladis et al., Rev. Geophys., 2009). The horizontal structures and dispersion characteristics of such Convectively Coupled Equatorial Waves (CCEWs) correspond to the solutions of the shallow water (SW) equations on an equatorial β-plane obtained by Matsuno (J. Meteor. Soc. Japan, 1966). CCEWs have broad impacts within the tropics, but their simulation in general circulation models is still problematic. Using space-time spectral analyses of a proxy field for tropical convection (e.g. outgoing long wave radiation (OLR)), it has been shown the existence of spectral peaks aligned along the dispersion curves of equatorially trapped wave modes of SW theory, which have been interpreted as the effect of equatorial wave processes (e.g. Takayabu, J. Meteor. Soc. Japan, 1994; Wheeler and Kiladis, JAS, 1999). However, different equatorial modes may not be well separated in the wavenumber-frequency domain due to a vertical variation of the horizontal basic flow, that may introduce Doppler shiftings and changes in the vertical heating profiles which may distort the theoretical dispersion curves (Yang et al., JAS, 2003). In this communication, we present a new methodology for the diagnosis of CCEWs, which is based on a pre-filtering of the geopotential and horizontal wind, via three-dimensional (3-D) normal mode functions of the adiabatic linearized equations of a resting atmosphere, followed by a space-time power and cross spectral analysis applied to the 3-D normal mode filtered fields and the OLR (or other fields that may be proxies of tropical convection) to identify the spectral regions of coherence. The advantage of such an approach is that the theoretical vertical as well as horizontal structure functions are taken into account in the projection method, and so the structures obtained are better defined with respect to the theoretical normal modes of a 3-D atmosphere compared to other approaches. The methodology has been applied to the (u,v,φ) and OLR fields simulated by various of the most recent climate models (CMIP5). The methodology has been also applied to the ERA-Interim geopotential and horizontal wind fields and to the interpolated OLR data produced by the National Oceanic and Atmospheric Administration, against which model simulations are evaluated. This new diagnosis method permits a direct detection of various types of equatorial waves, compares the dispersion characteristics of the coupled waves with the theoretical dispersion curves and allows an identification of which vertical modes are more involved in the convection. Moreover, it is able to show the existence of free dry waves and moist coupled waves with a common vertical structure, which is in conformity with the effect of convective heating/cooling on the effective static stability, as deduced from the gross moist stability concept (Kiladis et al., Rev. Geophys., 2009). The methodology is also sensitive to wave's interactions. Deficiencies found in the models' simulations should help the identification of which physical processes need to be improved in climate models.
Angle Performance on Optima XE
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu
2011-01-07
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less
Development of an omni-directional shear horizontal mode magnetostrictive patch transducer
NASA Astrophysics Data System (ADS)
Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin
2018-04-01
The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.
Control and prediction components of movement planning in stuttering vs. nonstuttering adults
Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo
2014-01-01
Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459
Davatzes, Nicholas C.; Hickman, Stephen H.
2009-01-01
A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.
Analysis of the solar radiation data for Beer Sheva, Israel, and its environs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudish, A.I.; Ianetz, A.
The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Knupp, K. R.; Molthan, A.; Coleman, T.
2017-12-01
Northern Alabama is among the most tornado-prone regions in the United States. This region has a higher degree of spatial variability in both terrain and land cover than the more frequently studied North American Great Plains region due to its proximity to the southern Appalachian Mountains and Cumberland Plateau. More research is needed to understand North Alabama's high tornado frequency and how land surface heterogeneity influences tornadogenesis in the boundary layer. Several modeling and simulation studies stretching back to the 1970's have found that variations in the land surface induce tornadic-like flow near the surface, illustrating a need for further investigation. This presentation introduces research investigating the hypothesis that horizontal gradients in land surface roughness, normal to the direction of flow in the boundary layer, induce vertically oriented vorticity at the surface that can potentially aid in tornadogenesis. A novel approach was implemented to test this hypothesis using a GIS-based quadrant pattern analysis method. This method was developed to quantify spatial relationships and patterns between horizontal variations in land surface roughness and locations of tornadogenesis. Land surface roughness was modeled using the Noah land surface model parameterization scheme which, was applied to MODIS 500 m and Landsat 30 m data in order to compare the relationship between tornadogenesis locations and roughness gradients at different spatial scales. This analysis found a statistical relationship between areas of higher roughness located normal to flow surrounding tornadogenesis locations that supports the tested hypothesis. In this presentation, the innovative use of satellite remote sensing data and GIS technologies to address interactions between the land and atmosphere will be highlighted.
Effects of sedimenting particles on the turbulence structure in a horizontal channel flow
NASA Astrophysics Data System (ADS)
Tay, Godwin F. K.; Kuhn, David C. S.; Tachie, Mark F.
2015-02-01
This work presents the results of experiments conducted in a horizontal channel to characterize low Reynolds number turbulent flows in the presence of small solid particles. The particle diameter relative to the integral length scale, dp/Λx, is approximately 0.02. Particles and fluid turbulence characteristics are measured for three average solid volume fractions of approximately ϕv = 2.0 × 10-4, 4.0 × 10-4, and 8.0 × 10-4 under conditions where the particle number density is evolving due to deposition. The results indicate that the mean slip between particles and the fluid is important only close to the wall. Away from the wall, the particles and unladen fluid mean velocities are similar. Differences between particles and the unladen fluid statistics are more pronounced in the wall-normal velocity fluctuations than the streamwise velocity fluctuations and Reynolds shear stress due to the stronger effect of the gravitational force in the wall-normal direction. The fluid turbulent intensities show no dependency on loading, but the peak Reynolds shear stress is significantly reduced. A quadrant decomposition of the Reynolds shear stress revealed a corresponding reduction in the ejections and sweeps for the laden flow in comparison with the unladen flow. Swirling strength and vorticity root-mean-square fluctuations decayed due to the damping effect of particles. The influence of particles on the turbulence structure was examined using two-point correlations of the velocity fluctuations and swirling strength, where it was demonstrated that the wall structures are attached eddies which are more extensive (much larger) in the particle-laden flow compared to the unladen flow.
76 FR 13072 - Airworthiness Directives; Saab AB, Saab Aerosystems Model SAAB 2000 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... important to the structural integrity of the horizontal stabilizer. Corrosion damage in these areas, if not... structural integrity of the horizontal stabilizer. Corrosion damage in these areas, if not detected and... convoluted tubing on the harness, applying corrosion prevention compound to the inspected area, making sure...
75 FR 77796 - Airworthiness Directives; Saab AB, Saab Aerosystems Model SAAB 2000 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... of the horizontal stabilizer. Corrosion damage in these areas, if not detected and corrected, can... of the horizontal stabilizer. Corrosion damage in these areas, if not detected and corrected, can... convoluted tubing on the harness, applying corrosion prevention compound to the inspected area, making sure...
Lexical Processes in the Recognition of Japanese Horizontal and Vertical Compounds
ERIC Educational Resources Information Center
Miwa, Koji; Dijkstra, Ton
2017-01-01
This lexical decision eye-tracking study investigated whether horizontal and vertical readings elicit comparable behavioral patterns and whether reading directions modulate lexical processes. Response times and eye movements were recorded during a lexical decision task with Japanese bimorphemic compound words presented vertically. The data were…
Natural convection in the Hale-Shaw cell of horizontal Bridgman solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y.; Liu, J.; Zhou, Y.
1995-08-01
The numerical simulation of natural convection in the Hale-Shaw cell during horizontal Bridgman solidification reveals that the convection is present even for the very thin cell. The effects of the horizontal temperature gradient, G, thickness of the cell, H, temperature difference between the top and bottom of the cell, and other parameters have been studied. These findings have been confirmed by experiments through direct observation and measurement of convection in the cell containing succinonitrile transparent model alloy.
The effect of delays on filament oscillations and stability
NASA Astrophysics Data System (ADS)
van den Oord, G. H. J.; Schutgens, N. A. J.; Kuperus, M.
1998-11-01
We discuss the linear response of a filament to perturbations, taking the finite communication time between the filament and the photosphere into account. The finite communication time introduces delays in the system. Recently Schutgens (1997ab) investigated the solutions of the delay equation for vertical perturbations. In this paper we expand his analysis by considering also horizontal and coupled oscillations. The latter occur in asymmetric coronal fields. We also discuss the effect of Alfven wave emission on filament oscillations and show that wave emission is important for stabilizing filaments. We introduce a fairly straightforward method to study the solutions of delay equations as a function of the filament-photosphere communication time. A solution can be described by a linear combination of damped harmonic oscillations each characterized by a frequency, a damping/growth time and, accordingly, a quality factor. As a secondary result of our analysis we show that, within the context of line current models, Kippenhahn/Schlüter-type filament equilibria can never be stable in the horizontal and the vertical direction at the same time but we also demonstrate that Kuperus/Raadu-type equilibria can account for both an inverse or a normal polarity signature. The diagnostic value of our analysis for determining, e.g., the filament current from observations of oscillating filaments is discussed.
Marion, Bill; Smith, Benjamin
2017-03-27
Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Bill; Smith, Benjamin
Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less
Head-Shaking Nystagmus Depends on Gravity
Marti, Sarah; Straumann, Dominik
2005-01-01
In acute unilateral peripheral vestibular deficit, horizontal spontaneous nystagmus (SN) increases when patients lie on their affected ear. This phenomenon indicates an ipsilesional reduction of otolith function that normally suppresses asymmetric semicircular canal signals. We asked whether head-shaking nystagmus (HSN) in patients with chronic unilateral vestibular deficit following vestibular neuritis is influenced by gravity in the same way as SN in acute patients. Using a three-dimensional (3-D) turntable, patients (N = 7) were placed in different whole-body positions along the roll plane and oscillated (1 Hz, ±10°) about their head-fixed vertical axis. Eye movements were recorded with 3-D magnetic search coils. HSN was modulated by gravity: When patients lay on their affected ear, slow-phase eye velocity significantly increased upon head shaking and consisted of a horizontal drift toward the affected ear (average: 1.2°/s ±0.5 SD), which was added to the gravity-independent and directionally nonspecific SN. In conclusion, HSN in patients with chronic unilateral peripheral vestibular deficit is best elicited when they are lying on their affected ear. This suggests a gravity-dependent mechanism similar to the one observed for SN in acute patients, i.e., an asymmetric suppression of vestibular nystagmus by the unilaterally impaired otolith organs. PMID:15735939
Circulation in a bay influenced by flooding of a river discharging outside the bay
NASA Astrophysics Data System (ADS)
Kakehi, Shigeho; Takagi, Takamasa; Okabe, Katsuaki; Takayanagi, Kazufumi
2017-03-01
To investigate the influence of a river discharging outside a bay on circulation in the bay, we carried out current and salinity measurements from mooring systems and hydrographic observations in Matsushima Bay, Japan, and off the Naruse River, which discharges outside the bay. Previously, enhancement of horizontal circulation in the bay induced by increased freshwater input from the Naruse River was reported to have degraded the seedling yield of wild Pacific oysters in the bay, but the freshwater inflow from the river was not directly measured. Our hydrographic observations in Katsugigaura Strait, approximately 3 km southwest of the Naruse River mouth, detected freshwater derived from the river. The mooring data revealed that freshwater discharged by the river flowed into Matsushima Bay via the strait and that the freshwater transport increased when the river was in flood. The inflow through straits other than Katsugigaura was estimated by a box model analysis to be 26-145 m3 s-1 under normal river discharge conditions, and it decreased to 6 m3 s-1 during flood conditions. During flood events, the salt and water budgets in the bay were maintained by the horizontal circulation: inflow occurred mainly via Katsugigaura Strait, and outflow was mainly via other straits.
NASA Astrophysics Data System (ADS)
Paulsen, T.; Wilson, T. J.; Demosthenous, C.; Millan, C.; Jarrard, R. D.; Laufer, A.
2013-12-01
Strain analyses of mechanically twinned calcite in veins and faults hosted by Neogene (13.6 Ma to 4.3 Ma) sedimentary and volcanic rocks recovered within the ANDRILL AND-1B drill core from the Terror Rift in the southern Ross Sea, Antarctica, yield prolate and oblate ellipsoids with principal shortening and extension strains ranging from 0.1% to 8.5%. The majority of samples show homogeneous coaxial strain predominantly characterized by subvertical shortening, which we attribute to lithostatic loading in an Andersonian normal faulting stress regime during sedimentary and ice sheet burial of the stratigraphic sequence. The overall paucity of a non-coaxial layer-parallel shortening signal in the AND-1B twin populations suggests that horizontal compressive stresses predicted by Neogene transtensional kinematic models for the rift system have been absent or of insufficient magnitude to cause a widespread noncoaxial strain overprint. Limited numbers of oriented samples yield a possible average ESE extension direction for the rift that is subparallel to other indicators of Neogene extension. The lack of horizontal shortening in the twin data suggests the Neogene Terror Rift system either lacks a strong longitudinal strike-slip component, or that spatial partitioning of strain controls the maximum shortening axes seen in rocks of this age.
NASA Astrophysics Data System (ADS)
Grifoni, D.; Carreras, G.; Sabatini, F.; Zipoli, G.
2005-11-01
Mediterranean beaches are very crowded during summer and, because of the high values of solar UV radiation, the potential risk for human health is relevant. In this study, all-day measurements of biologically effective global and diffuse UV radiation for skin (UVBEeryt) and eye (UVBEpker, UVBEpconj, UVBEcat) disorders were carried out on differently tilted surfaces on a summer’s day on a Mediterranean beach. The role played by beach umbrellas in protection from excessive sun exposure was also investigated. Erythema, photokeratitis and cataract seem to require almost the same exposure time to reach the risk threshold dose. Under full sunlight, the highest global and diffuse UV values are reached on surfaces normally oriented towards sunlight and on horizontal surfaces, respectively. Over vertical surfaces, at this northern hemisphere site, global and diffuse UV radiation reaches maxima values in the south-facing direction around noon, while maxima values are reached early in the morning and late in the afternoon over surfaces facing east and west, respectively. The quality of the beach umbrella’s protection (efficiency in blocking solar UV radiation) varies with surface orientation; the highest efficiency for our specific site and geometrical conditions occurs over horizontal surfaces, with efficiency being least over vertical surfaces when incident radiation values are still relevant.
NASA Technical Reports Server (NTRS)
John, B. E.; Howard, K. A.
1985-01-01
A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.
Matsuzaki, Jun; Masumori, Masaya; Tange, Takeshi
2007-05-01
Active phototropic bending of non-elongating and radially growing portion of stems (woody stems) has not been previously documented, whereas negative gravitropic bending is well known. We found phototropic bending in woody stems and searched for the underlying mechanism. We inclined 1-year-old Quercus crispula Blume seedlings and unilaterally illuminated them from a horizontal direction perpendicular to ('normal' illumination) or parallel to ('parallel' illumination) the inclination azimuth. With normal illumination, active phototropic bending and xylem formation could be evaluated separately from the negative gravitropic response and vertical deflection resulting from the weight of the seedlings. One-year-old stems with normal illumination bent significantly, with asymmetrical xylem formation towards the illuminated upper surface and side of the stem, whereas those with parallel illumination showed non-significant lateral bending, with asymmetrical xylem formation only on the upper side. A mechanical model was built on the assumption that a bending moment resulted from the asymmetrical xylem formation during phototropic bending of the woody stems. The model fitted the relationship between the observed spatial distributions of the xylem and the observed lateral bending, and thus supported the hypothesis that phototropic bending of woody stems results from asymmetrical xylem formation, as such occurs during gravitropism.
NASA Astrophysics Data System (ADS)
Zhang, T.; Stackhouse, P. W.; Chandler, W.; Hoell, J. M., Jr.; Westberg, D. J.
2015-12-01
The DIRINDEX model has previously been applied to the NASA GEWEX SRB Release 3.0 global horizontal irradiances (GHIs) to derive 3-hourly, daily and monthly mean direct normal irradiances (DNIs) for the period from 2000 to 2005 (http://dx.doi.org/10.1016/j.solener.2014.09.006), though the model was originally designed to estimate hourly DNIs from hourly GHIs. Input to the DIRINDEX model comprised 1.) the 3-hourly all-sky and clear-sky GHIs from the GEWEX SRB dataset; 2.) the surface pressure and the atmospheric column water vapor from the GEOS4 dataset; and 3.) daily mean aerosol optical depth at 700 nm derived from the daily mean aerosol data from the Model of Atmospheric Transport and CHemistry (MATCH). The GEWEX SRB data is spatially available on a quasi-equal-area global grid system consisting of 44016 boxes ranging from 1 degree latitude by 1 degree longitude around the Equator to 1 degree latitude by 120 degree longitude next to the poles. The derived DNIs were on the same grid system. Due to the limited availability of the MATCH aerosol data, the model was applied to the years from 2000 to 2005 only. The results were compared with ground-based measurements from 39 sites of the Baseline Surface Radiation Network (BSRN). The comparison statistics show that the results were in better agreement with their BSRN counterparts than the current Surface meteorology and Solar Energy (SSE) Release 6.0 data (https://eosweb.larc.nasa.gov/sse/). In this paper, we present results from the model over the entire time span of the GEWEX SRB Release 3.0 data (July 1983 to December2007) in which the MERRA atmospheric data were substituted for the GEOS4 data, and the Max-Planck Aerosol Climatology Version 1 (MAC-v1) data for the MATCH data. As a consequence, we derived a 24.5-year DNI dataset of global coverage continuous from July 1983 to December 2007. Comparisons with the BSRN data show that the results are comparable in quality with that from the earlier application.
NASA Astrophysics Data System (ADS)
Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.
2017-12-01
The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2008-12-01
Escarpments bounding the Pito Deep Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito Deep 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito Deep Rift and previous results for Hess Deep Rift reveal outward dipping dikes that are interpreted as a result of subaxial spreading processes that are not evident from surface studies of spreading centers. Both areas show evidence of subaxial subsidence during accretion and lateral magmatic flow in the sheeted dike complex.
Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion
NASA Technical Reports Server (NTRS)
Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.
1996-01-01
1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.
Nonlinear critical-layer evolution of a forced gravity wave packet
NASA Astrophysics Data System (ADS)
Campbell, L. J.; Maslowe, S. A.
2003-10-01
In this paper, numerical simulations are presented of the nonlinear critical-layer evolution of a forced gravity wave packet in a stratified shear flow. The wave packet, localized in the horizontal direction, is forced at the lower boundary of a two-dimensional domain and propagates vertically towards the critical layer. The wave mean-flow interactions in the critical layer are investigated numerically and contrasted with the results obtained using a spatially periodic monochromatic forcing. With the horizontally localized forcing, the net absorption of the disturbance at the critical layer continues for large time and the onset of the nonlinear breakdown is delayed compared with the case of monochromatic forcing. There is an outward flux of momentum in the horizontal direction so that the horizontal extent of the packet increases with time. The extent to which this happens depends on a number of factors including the amplitude and horizontal length of the forcing. It is also seen that the prolonged absorption of the disturbance stabilizes the solution to the extent that it is always convectively stable; the local Richardson number remains positive well into the nonlinear regime. In this respect, our results for the localized forcing differ from those in the case of monochromatic forcing where significant regions with negative Richardson number appear.
Kriska, György; Csabai, Zoltán; Boda, Pál; Malik, Péter; Horváth, Gábor
2006-01-01
We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection–polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection–polarizational characteristics of the car paintwork. PMID:16769639
Direct and inverse energy cascades in a forced rotating turbulence experiment
NASA Astrophysics Data System (ADS)
Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe
2014-12-01
We present experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps, which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic particle image velocimetry in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical three-dimensional turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in two-dimensional turbulence. At the largest rotation rate, the flow is nearly two-dimensional, and a pure inverse energy cascade is found for the horizontal energy. To describe the scale-by-scale energy budget, we consider a generalization of the Kármán-Howarth-Monin equation to inhomogeneous turbulent flows, in which the energy input is explicitly described as the advection of turbulent energy from the flaps through the surface of the control volume where the measurements are performed.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Jacob, K.
Flank eruptions of polygenetic volcanoes are regarded as surface expressions of radial dikes. Therefore, the approximate pattern of radial dikes is revealed by the distribution of sites of flank eruptions. Bending of radial dikes into a preferred orientation reveals the maximum horizontal compressive stress axis. The Aleutian and Alaskan volcanoes are studied using this concept and 28 orientations of the maximum horizontal compressive stress axis are obtained. Combined with the orientation of similar quality obtained from active faults in central Alaska the trajectories of the maximum horizontal stress for the entire area during recent 10,000 to 100,000 years or longermore » is depicted. Along the Aleutian-Alaska volcanic belt, the maximum horizontal compression parallels the direction of relative motion between the North American and Pacific plates. Seven roughly east-westerly orientations are obtained from west Alaskan and Bering Sea volcanoes. In central Alaska, the trajectories spread north-westward in a fan shape with axis of symmetry in a N25/sup 0/W direction passing through the easternmost part of the Aleutian trench. The trajectories continue westward onto the Bering Sea shelf with a generally westerly trend. The overall pattern of orientations of maximum horizontal compressive stresses seems to be explained by the convergent plate motions along. An exception is the high--angle relationship between the maximum horizontal stress orientation in the central Aleutians and the immediate back-arc region, which suggests that in the back-arc region the tectonic stress system has a different origin probably at considerable depth beneath the crust.« less
Büchner, Vera Antonia; Hinz, Vera; Schreyögg, Jonas
2015-01-01
Several public policy initiatives, particularly those involving managed care, aim to enhance cooperation between partners in the health care sector because it is expected that such cooperation will reduce costs and generate additional revenue. However, empirical evidence regarding the effects of cooperation on hospital performance is scarce, particularly with respect to creating a comprehensive measure of cooperation behavior. The aim of this study is to investigate the impact of hospital cooperation behavior on organizational performance. We differentiate between horizontal and vertical cooperation using two alternative measures-cooperation depth and cooperation breadth-and include the interaction effects between both cooperation directions. Data are derived from a survey of German hospitals and combined with objective performance information from annual financial statements. Generalized linear regression models are used. The study findings provide insight into the nature of hospitals' cooperation behavior. In particular, we show that there are negative synergies between horizontal administrative cooperation behavior and vertical cooperation behavior. Whereas the depth and breadth of horizontal administrative cooperation positively affect financial performance (when there is no vertical cooperation), vertical cooperation positively affects financial performance (when there is no horizontal administrative cooperation) only when cooperation is broad (rather than deep). Horizontal cooperation is generally more effective than vertical cooperation at improving financial performance. Hospital managers should consider the negative interaction effect when making decisions about whether to recommend a cooperative relationship in a horizontal or vertical direction. In addition, managers should be aware of the limited financial benefit of cooperation behavior.
Blood filling and flow in lungs during change in body position in space
NASA Technical Reports Server (NTRS)
Pogodin, A. S.; Mazhbich, B. I.
1980-01-01
In the horizontal position (supine and lateral), in the upright position (head up and head down) and during change of the cat body position in space, quantitative responses of regional blood volume and blood flow in the lungs (ml/100 cu cm) revealed presence of the gradient in the gravitation direction. Blood volume and blood flow of different lung portions changed qualitatively and quantitatively in different ways. These changes occurred only in the direction producing the equality of regional hydrostatical and hemodynamic loads in the lungs at either horizontal level.
Bromberg, Carolina Ritter; Alves, Caroline Beatriz; Stona, Deborah; Spohr, Ana Maria; Rodrigues-Junior, Sinval Adalberto; Melara, Rafael; Burnett, Luiz Henrique
2016-12-01
Because of the many possibilities for endodontically restoring the posterior teeth and the high prevalence of restoration failures, this topic continues to be of major concern. A composite resin (CR) restoration reinforced by a horizontal fiberglass post may improve the fracture resistance of endodontically treated teeth. The authors investigated this possibility by comparing the fracture resistance of molars restored with direct techniques with that of molars restored with indirect techniques. The authors divided 50 extracted sound third molars into 5 groups: sound teeth, onlay (ON), inlay (IN), direct CR, and transfixed fiberglass post (TFP) plus direct CR. The authors performed standardized mesio-occlusodistal cavity preparations and endodontic treatments. The authors cemented indirect restorations of Lava Ultimate (3M ESPE) adhesively in the ON and IN groups. The authors restored CR group teeth directly with Filtek Z230 XT (3M ESPE). In the TFP group, the authors transfixed 2 fiberglass posts horizontally and restored the teeth directly with CR. Thereafter, the authors submitted the teeth to cyclic fatigue loading with 500,000 cycles at 200 newtons. The authors tested fracture resistance in newtons in a universal testing machine. The authors analyzed data with 1-way analysis of variance and a Tukey test (P < .05). Sound teeth had the highest fracture resistance. ON had the highest recovery of resistance, followed by TFP. CR had the lowest recovery, which was similar to that of IN. Endodontically treated molars restored with TFP plus CR had fracture resistance similar to those restored with ON, which was higher than that for IN or CR only. Horizontal TFPs placed inside a composite restoration had the same performance as did ON restorations. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
Synapse maintenance and restoration in the retina by NGL2
Zhao, Lei
2018-01-01
Synaptic cell adhesion molecules (CAMs) promote synapse formation in the developing nervous system. To what extent they maintain and can restore connections in the mature nervous system is unknown. Furthermore, how synaptic CAMs affect the growth of synapse-bearing neurites is unclear. Here, we use adeno-associated viruses (AAVs) to delete, re-, and overexpress the synaptic CAM NGL2 in individual retinal horizontal cells. When we removed NGL2 from horizontal cells, their axons overgrew and formed fewer synapses, irrespective of whether Ngl2 was deleted during development or in mature circuits. When we re-expressed NGL2 in knockout mice, horizontal cell axon territories and synapse numbers were restored, even if AAVs were injected after phenotypes had developed. Finally, overexpression of NGL2 in wild-type horizontal cells elevated synapse numbers above normal levels. Thus, NGL2 promotes the formation, maintenance, and restoration of synapses in the developing and mature retina, and restricts axon growth throughout life. PMID:29553369
NASA Technical Reports Server (NTRS)
Wiener, Bernard; Harris, Agnes E
1950-01-01
Time histories are presented of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber during abrupt pitching maneuvers at a pressure altitude of approximately 20,000 feet. The normal and pitching accelerations measured varied from -0.90b to 3.41g and from -0.73 to 0.80 radian per second per second (sic), respectively, with a Mach number variation of from 0.40 to o.75. The maximum horizontal-tail load measured was 17,250 pounds down. The maximum elevator load was 1900 pounds up. The stabilizer twisted a maximum of 0.76 degrees leading edge down at the tip. The greatest fuselage deflection at the tail was about 1.7 inches down.
Stress Related Fracturing in Dimension Stone Quarries
NASA Astrophysics Data System (ADS)
Hamdi Deliormanli, Ahmet; Maerz, Norbert H.
2016-10-01
In Missouri, the horizontal stresses (pressures) in the near surface rock are uncommonly high. While the vertical stresses in rock are simply a function of the weight of the overlying rock, near surface stresses can be many times higher. The near surface horizontal stresses can be in excess of 5 times greater than the vertical stresses. In this research, Flatjack method was used to measure horizontal stress in Red Granite Quarry in Missouri. The flat jack method is an approved method of measuring ground stresses. A saw cut is used to “relax” the stress in the ground by allowing the rock to deform inwards the cut. A hydraulic flat jack is used to inflate the slot; to push the rock back to its stressed position, as measured by a strain gauge on either side of the slot. The pressure in the jack, when the rock is exactly back to its original position, is equal to the ground stress before the saw cut was made. According to the results, present production direction for each pit is not good because the maximum stress direction is perpendicular with production direction. This case causes unintentional breakage results in the loss rock. The results show that production direction should be changed.
Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.
Kinoshita, Yuki; Ogata, Daiki; Watanabe, Yoshiaki; Riquimaroux, Hiroshi; Ohta, Tetsuo; Hiryu, Shizuko
2014-09-01
The prey pursuit behavior of Japanese horseshoe bats (Rhinolophus ferrumequinum nippon) was investigated by tasking bats during flight with choosing between two tethered fluttering moths. Echolocation pulses were recorded using a telemetry microphone mounted on the bat combined with a 17-channel horizontal microphone array to measure pulse directions. Flight paths of the bat and moths were monitored using two high-speed video cameras. Acoustical measurements of returning echoes from fluttering moths were first collected using an ultrasonic loudspeaker, turning the head direction of the moth relative to the loudspeaker from 0° (front) to 180° (back) in the horizontal plane. The amount of acoustical glints caused by moth fluttering varied with the sound direction, reaching a maximum at 70°-100° in the horizontal plane. In the flight experiment, moths chosen by the bat fluttered within or moved across these angles relative to the bat's pulse direction, which would cause maximum dynamic changes in the frequency and amplitude of acoustical glints during flight. These results suggest that echoes with acoustical glints containing the strongest frequency and amplitude modulations appear to attract bats for prey selection.
Position control of desiccation cracks by memory effect and Faraday waves.
Nakayama, Hiroshi; Matsuo, Yousuke; Takeshi, Ooshida; Nakahara, Akio
2013-01-01
Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday waves, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node zones of the Faraday waves: in the case of stripe-patterned Faraday waves, the cracks are formed twice more frequently in the node zones than in the anti-node zones, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node zones, the memory of the square lattice pattern of Faraday waves makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday waves.
Lu, Ning; Ge, Shemin
1996-01-01
By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.
Emam, T A; Hanna, G; Cuschieri, A
2002-02-01
Laparoscopic suturing is technically a demanding skill in laparoscopic surgery. Ergonomic experimental studies provide objective information on the important factors and variables that govern optimal endoscopic suturing. Our objective was to determine the optimum physical alignment, visual display, and direction of intracorporeal laparoscopic bowel suturing using infrared motion analysis and telemetric electromyography (EMG) systems. Ten surgeons participated in the study; each sutured 50-mm porcine small bowel enterotomies toward and away from the surgeon in the vertical and horizontal bowel plane with either isoplanar (image display corresponds with actual lie of the bowel) or nonisoplanar (bowel displayed horizontally but mounted vertically in the trainer and vice versa) display. The end points were the placement error score, execution time, leakage pressure, motion analysis, and telemetric EMG parameters of the surgeon's dominant upper limb. Suturing was demonstrably easier in the vertical than in the horizontal plane, resulting in a better task quality (placement error score, p < 0.0001; leakage pressure, p < 0.005) and shorter execution time (p < 0.05). Nonisoplanar display of the surgical anatomy degrades performance in terms of both task efficiency and task quality. On motion analysis, a wider angle of excursion and lower angular velocity were observed during the vertical suturing with isoplaner display. Compared to horizontal suturing, supination at the wrist was significantly greater during vertical than horizontal suturing (p < 0.05). Within each category (vertical vs horizontal suturing), the direction of suturing (toward/away from the surgeon) did not influence the extent of pronation/ supination at the wrist. In line with the degraded performance, significantly more muscle work was expended during horizontal suturing. This affected the forearm flexors (p < 0.05), arm flexors and extensors (p < 0.005 and p < 0.05, respectively), and deltoid muscles (p < 0.005) and was accompanied by significantly more fatigue in the related muscles. Small bowel enterotomies sutured toward the surgeon in both the vertical and the horizontal planes exhibited less placement error score than when sutured away from the surgeon, with no significant difference in the motion analysis and EMG parameters. Optimal laparoscopic suturing (better task quality and reduced execution time) is achieved with vertical suturing toward the surgeon with isoplanar monitor display of the operative field. The poorer task performance observed during horizontal suturing is accompanied by more muscle work and fatigue, and it is not improved by monitor display of the enterotomy in the vertical plane.
Genetics Home Reference: horizontal gaze palsy with progressive scoliosis
... to track moving objects. Up-and-down (vertical) eye movements are typically normal. In people with HGPPS , an ... the brainstem is the underlying cause of the eye movement abnormalities associated with the disorder. The cause of ...
Nasi, J P; Volchan, E; Tecles, M T; Bernardes, R F; Rocha-Miranda, C E
1997-05-01
In the opossum the symmetrical binocular horizontal optokinetic nystagmus gives way to an asymmetrical monocular reflex: the nasotemporal (NT) stimulation yielding lower gain than the temporonasal (TN). In adults, monocularly enucleated at postnatal days 21-25 (pnd21-25), the gain of NT responses is markedly increased, approaching that of TN. Severe cell loss was detected in the nucleus of the optic tract (NOT) on the deafferented side in early monoenucleated specimens. In normal animals retinal afferents to the NOT are all crossed, while in animals enucleated at pnd21-25 sparse uncrossed retinal elements were observed. Although this abnormal projection might influence the increased NT response in this subgroup, it is argued that the increased symmetry in monoenucleated opossums may be the result of changes mediated by the commissural connection between both NOTs.
NASA Astrophysics Data System (ADS)
Bazhutov, Yu. N.; Baranov, D. S.
2001-08-01
There are presented the first results of the new heavy stable cosmic ray particles search in the bubble chamber "SKAT" (450 x 160 x 90 cm3 ), which was exposed in the neutrino beam of Serpukhov Accelerator during 1976 - 1992 years and was viewed along the horizontal direction so as the magnet field direction (MDM > 150 GeV/c). From looking over 1,270 stills (1 roll for April 23, 1979) it was selected 757 tracks of cosmic ray particles with zenith angle θ < 45°, track length - L > 50 cm and momentum P>2.0GeV/c. From this events there were constructed momentum spectrums for both negative and positive vertical cosmic ray penetrating particles in the (2.0 - 126) GeV/c range and calculated their charge ratio. For positive particles the momentum spectrum has normal shape in all studied range the same as for negative particles but only for momentum range (2.0 - 32) GeV/c and charge ratio for this range is normal and the same as for cosmic muons. But for momentum P>32GeV/c it was observed negative particles excess flux (~10-5 cm-2 s-1 sr-1 ) with changed charge ratio - R = 0.62 +/0.18 (˜>3.5σ) for momentum range (32GeV/c
3σ) and for momentum range (3.6GeV/c
107 cm2 ṡsṡsr); 2) the installation place must be on the Earth surface or small underground (< 100 m.w.e.); 3) it is desirable to use track detector for event and particle charge viewing. One of the largest Bubble Chamber "SKAT" (BC), operated from 1976 to 1992 on the Serpukhov Accelerator neutrino beam had satisfied to all these demands. Its operation on the neutrino beam could provide a small background from Accelerator fo r our researches. Accumulated ~ 4 x 2,000,000 stills inside ~ 4 x 1660 rolls during this long period were conserved until now and were ready to analysis. The large Bubble Chamber (450 x 160 x 90 cm3 ) had been placed in greatest magnetic field (17 kG) horizontally directed so as coaxial to it view of 4 stereo photo chambers. So near vertical penetrating cosmic rays could be registered the same as near horizontal neutrino beam events. Full "SKAT" exposition is S-T ~ 4ṡ109 cm2 ṡsṡsr , that is rather more demanded one. It provides us for charge and momentum (MDM > 150 GeV/c) measurements. BC had been placed on the Earth surface, but had large magnetic iron screen (d ~ 2500 g/cm2 = 25m.w.e., Fig.1).
Quantification of image contrast of infarcts on computed tomography scans.
Gomolka, R S; Chrzan, R M; Urbanik, A; Kazmierski, R; Grzanka, A D; Nowinski, W L
2017-02-01
Introduction Accurate identification of infarcts in non-contrast computed tomography (NC-CT) scans of the brain is fundamental in the diagnosis and management of patients with stroke. Quantification of image contrast properties at the boundaries of ischemic infarct regions in NC-CT can contribute to a more precise manual or automatic delineation of these regions. Here we explore these properties quantitatively. Methods We retrospectively investigated 519 NC-CT studies of 425 patients with clinically confirmed ischemic strokes. The average and standard deviation (SD) of patients' age was 67.5 ± 12.4 years and the average(median)±SD time from symptoms onset to NC-CT examination was 27.4(12)±35.7 h. For every scan with an ischemic lesion identified by experts, the image contrast of the lesion vs. normal surrounding parenchyma was calculated as a difference of mean Hounsfield Unit (HU) of 1-5 consecutive voxels (the contrast window width) belonging to the lesion and to the parenchyma. This contrast was calculated at each single voxel of ischemic lesion boundaries (previously delineated by the experts) in horizontal and vertical directions in each image. The distributions of obtained horizontal, vertical and both contrasts combined were calculated among all 519 NC-CTs. Results The highest applicative contrast window width was identified as 5 voxels. The ischemic infarcts were found to be characterized by 6.60 HU, 8.28 HU and 7.55 HU mean values for distributions of horizontal, vertical and combined contrasts. Approximately 40-50% of the infarct boundary voxels were found to refer to the image contrast below 5 HU. Conclusion Low image contrast of ischemic lesions prevents accurate delineation of the infarcts in NC-CT.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)
1996-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Uncertainty Evaluation of Measurements with Pyranometers and Pyrheliometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konings, Jorgen; Habte, Aron
2016-01-03
Evaluating photovoltaic (PV) cells, modules, arrays and systems performance of solar energy relies on accurate measurement of the available solar radiation resources. Solar radiation resources are measured using radiometers such as pyranometers (global horizontal irradiance) and pyrheliometers (direct normal irradiance). The accuracy of solar radiation data measured by radiometers depends not only on the specification of the instrument but also on a) the calibration procedure, b) the measurement conditions and maintenance, and c) the environmental conditions. Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This paper providesmore » guidelines and recommended procedures for estimating the uncertainty in measurements by radiometers using the Guide to the Expression of Uncertainty (GUM) Method. Special attention is paid to the concept of data availability and its link to uncertainty evaluation.« less
The co-genetic evolution of metamorphic core complexes and drainage systems
NASA Astrophysics Data System (ADS)
Trost, Georg; Neubauer, Franz; Robl, Jörg
2016-04-01
Metamorphic core complexes (MCCs) are large scale geological features that globally occur in high strain zones where rocks from lower crustal levels are rapidly exhumed along discrete fault zones, basically ductile-low-angle normal faults recognizable by a metamorphic break between the cool upper plate and hot lower plate. Standard methods, structural analysis and geochronology, are applied to reveal the geodynamic setting of MCCs and to constrain timing and rates of their exhumation. Exhumation is abundantly accompanied by spatially and temporally variable vertical (uplift) and horizontal motions (lateral advection) representing the tectonic driver of topography formation that forces drainage systems and related hillslopes to adjust. The drainage pattern commonly develops in the final stage of exhumation and contributes to the decay of the forming topography. Astonishingly, drainage systems and their characteristic metrics (e.g. normalized steepness index) in regions coined by MCCs have only been sparsely investigated to determine distinctions between different MCC-types (A- and B-type MCCs according to Le Pourhiet et al., 2012). They however, should significantly differ in their topographic expression that evolves by the interplay of tectonic forcing and erosional surface processes. A-type MCCs develop in an overall extensional regime and are bounded partly by strike-slip faults showing transtensional or transpressional components. B-type MCCs are influenced by extensional dynamics only. Here, we introduce C-type MCCs that are updoming along oversteps of crustal-scale, often orogen-parallel strike-slip shear zones. In this study, we analyze drainage systems of several prominent MCCs, and compare their drainage patterns and channel metrics to constrain their geodynamic setting. The Naxos MCC represents an A-type MCC. The Dayman Dome located in Papua New Guinea a B-type MCC, whereas MCCs of the Red River Shear Zone, the Diancang, Ailao-Shan and Day Nui Con Voi complexes, show structural features of the C-type endmember. In the case of the Diancang complex, the MCC is even superimposed by late stage B-type dynamics. The Tauern window and Lepontine dome in the Alps are described as C-type MCCs. We extracted drainage systems and basins and calculated Strahler orders to explore asymmetries in the drainage pattern and to detect evidence for horizontal advection of rivers and catchments. We computed longitudinal river profiles and determined the normalized steepness indexes for channels to uncover regions of spatially variable uplift rates and to constrain the state of landscape adjustment at active MCCs. Furthermore, we analyzed the stability of watersheds by computing so called χ-maps. A-type MCCs show a drainage pattern, which is partly parallel to the stretching and elongation direction, potentially developing from grooves of the detachment. The B-type MCCs show preferences for a radial oriented drainage pattern along lateral terminations. The radial morphology is overprinted by fault systems and neighboring uplifted domes beside the investigation site. A clear preferred direction for further capturing of catchments can be described along detachment zones. The results show an asymmetric alignment of the drainage networks of C-type MCCs, caused by tilting and lateral offset of the streams. One side of the valley shows short streams, whereas the other side is characterized by long, deeply incised streams with a clear tendency to capture adjacent catchments. In C-type MCCs, the drainage pattern develops perpendicular to the trunk streams, which are subparallel to confining faults. The tributaries of the trunk valleys show often dragging in shear direction of the confining fault. The drainage pattern along ductile low-angle normal faults seemingly develops parallel to these faults and shows an asymmetry due to tilting towards the hangingwall block. The analysis reveals that the three types of MCCs can be distinguished by their drainage pattern. All three types have a distinct central drainage divide in common, which is getting elongated in the stretching direction in C-type MCCs and remains small in B-type MCCs. Further early results of our analysis show the high potential of employing morphometric tools in combination with methods from structural geology and low temperature geochronology to determine the type of MCCs, to reveal timing and rates of uplift and horizontal advection, and to constrain the state of landscape adjustment at active MCCs.
Method and apparatus for drilling horizontal holes in geological structures from a vertical bore
Summers, David A.; Barker, Clark R.; Keith, H. Dean
1982-01-01
This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.
47 CFR 101.115 - Directional antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...
47 CFR 101.115 - Directional antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...
47 CFR 101.115 - Directional antennas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...
Laterality and Directional Preferences in Preschool Children.
ERIC Educational Resources Information Center
Tan, Lesley E.
1982-01-01
Directional preference for horizontal hand movements was investigated in 49 right- and 49 left-handed four-year-olds using three drawing tests. Directionality for more complex perceptual-motor tasks has a different basis than directionality for simple tasks; such directionality is established at a later age but only for the right hand. (Author/CM)
Investigation into influence factors of wave velocity anisotropy for TCDP borehole
NASA Astrophysics Data System (ADS)
Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.
2015-12-01
The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
...: Cracks on the lug of the rear attachment fitting of the horizontal stabilizer have been detected during..., Kansas City, Missouri 64106; telephone: (816) 329-4130; fax: (816) 329-4090. SUPPLEMENTARY INFORMATION... lug of the rear attachment fitting of the horizontal stabilizer have been detected during the...
Ho, Mae-Wan
2014-01-01
A culture of denial over the horizontal spread of genetically modified nucleic acids prevails in the face of direct evidence that it has occurred widely when appropriate methods and molecular probes are used for detection.
75 FR 43876 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... aeroplanes, one of the bolts that connect the horizontal stabilizer control unit actuator with the dog-links... single dog-link connection fails, the complete stabilizer load is taken up by the remaining dog-link... the horizontal stabilizer control unit actuator with the dog-links was found broken (one on the nut...
SHORT-WAVELENGTH MAGNETIC BUOYANCY INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizerski, K. A.; Davies, C. R.; Hughes, D. W., E-mail: kamiz@igf.edu.pl, E-mail: tina@maths.leeds.ac.uk, E-mail: d.w.hughes@leeds.ac.uk
2013-04-01
Magnetic buoyancy instability plays an important role in the evolution of astrophysical magnetic fields. Here we revisit the problem introduced by Gilman of the short-wavelength linear stability of a plane layer of compressible isothermal fluid permeated by a horizontal magnetic field of strength decreasing with height. Dissipation of momentum and magnetic field is neglected. By the use of a Rayleigh-Schroedinger perturbation analysis, we explain in detail the limit in which the transverse horizontal wavenumber of the perturbation, denoted by k, is large (i.e., short horizontal wavelength) and show that the fastest growing perturbations become localized in the vertical direction asmore » k is increased. The growth rates are determined by a function of the vertical coordinate z since, in the large k limit, the eigenmodes are strongly localized in the vertical direction. We consider in detail the case of two-dimensional perturbations varying in the directions perpendicular to the magnetic field, which, for sufficiently strong field gradients, are the most unstable. The results of our analysis are backed up by comparison with a series of initial value problems. Finally, we extend the analysis to three-dimensional perturbations.« less
NASA Astrophysics Data System (ADS)
Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.
2017-08-01
In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.
Matsunaga, Jun; Aiba, Setsuya
2005-05-01
Dog-ears often lead to lengthening of an excision, and it is desirable to avoid them. Facial skin, including the subepidermal connective tissue, is flexible and can be used advantageously to minimize dog-ears using a novel buried suture technique. After removing a round lesion, the first horizontal square buried suture (HSBS) was deeply placed parallel to the longitudinal direction of the defect beneath superficial fascia. After the first HSBS was tied, the defect became fusiform but was still largely open. The second HSBS was also placed parallel to the longitudinal direction of the defect but in more superficial fascia and using smaller horizontal buried loops than those of the first deep suture. After the second HSBS in the middle of the dermis was tied, the wound was almost closed without dog-ears. Consequently, few skin sutures were required to finish the operation. Using this technique, a small circular or oval defect on the face up to 1 cm in diameter can be closed without any additional excision of the skin and without creating dog-ears.
Cerebellar nodulectomy impairs spatial memory of vestibular and optokinetic stimulation in rabbits.
Barmack, N H; Errico, P; Ferraresi, A; Fushiki, H; Pettorossi, V E; Yakhnitsa, V
2002-02-01
Natural vestibular and optokinetic stimulation were used to investigate the possible role of the cerebellar nodulus in the regulation and modification of reflexive eye movements in rabbits. The nodulus and folium 9d of the uvula were destroyed by surgical aspiration. Before and after nodulectomy the vertical and horizontal vestibuloocular reflexes (VVOR, HVOR) were measured during sinusoidal vestibular stimulation about the longitudinal (roll) and vertical (yaw) axes. Although the gain of the HVOR (G(HVOR) = peak eye movement velocity/peak head velocity) was not affected by the nodulectomy, the gain of the VVOR (G(VVOR)) was reduced. The gains of the vertical and horizontal optokinetic reflexes (G(VOKR), G(HOKR)) were measured during monocular, sinusoidal optokinetic stimulation (OKS) about the longitudinal and vertical axes. Following nodulectomy, there was no reduction in G(VOKR) or G(HOKR). Long-term binocular OKS was used to generate optokinetic afternystagmus, OKAN II, that lasts for hours. After OKAN II was induced, rabbits were subjected to static pitch and roll, to determine how the plane and velocity of OKAN II is influenced by a changing vestibular environment. During static pitch, OKAN II slow phase remained aligned with earth-horizontal. This was true for normal and nodulectomized rabbits. During static roll, OKAN II remained aligned with earth-horizontal in normal rabbits. During static roll in nodulectomized rabbits, OKAN II slow phase developed a centripetal vertical drift. We examined the suppression and recovery of G(VVOR) following exposure to conflicting vertical OKS for 10-30 min. This vestibular-optokinetic conflict reduced G(VVOR) in both normal and nodulectomized rabbits. The time course of recovery of G(VVOR) after conflicting OKS was the same before and after nodulectomy. In normal rabbits, the head pitch angle, at which peak OKAN II velocity occurred, corresponded to the head pitch angle maintained during long-term OKS. If the head was maintained in a "pitched-up" or "pitched-down" orientation during long-term OKS, the subsequently measured OKAN II peak velocity occurred at the same orientation. This was not true for nodulectomized rabbits, who had OKAN II peak velocities at head pitch angles independent of those maintained during long-term OKS. We conclude that the nodulus participates in the regulation of compensatory reflexive movements. The nodulus also influences "remembered" head position in space derived from previous optokinetic and vestibular stimulation.
NASA Astrophysics Data System (ADS)
Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin
2018-04-01
Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These results were in good agreement with both numerical simulation and laboratory permeability tests, which indicate that Malan loess is more permeable in the vertical direction than in the horizontal directions.
NASA Technical Reports Server (NTRS)
Nagano, M.; Yoshii, H.; Hara, T.; Kamata, K.; Kawaguchi, S.; Kifune, T.
1985-01-01
Muon energy spectrum above 100 TeV was determined by observing the extensive air showers (EAS) from the horizontal direction (HAS). No definite muon originated shower of sizes above 100,000 and zenith angles above 60 deg was observed. The upper limits of HAS intensity is 5x10/12 m/2 s/1 sn/1 above 100,000. It is indicated that the upper limit of muon flux above 100 TeV is about 1.3x10/8 m/2 s/1 sr/1 and is in agreement with that expected from the primary spectrum with a knee assuming scaling in the fragmentation region and 40% protons in the primary beam. The critical energy at which muon flux from prompt processes take over that from the conventional process is higher than 100 Tev at horizontal direction.
Fixation stability of the upward gaze in patients with myasthenia gravis: an eye-tracker study
Mihara, Miharu; Hayashi, Atsushi; Fujita, Kazuya; Kakeue, Ken; Tamura, Ryoi
2017-01-01
Objective To quantify fixation stability of the upward gaze in patients with myasthenia gravis (MG) using an eye tracker. Methods and analysis In this study, 21 normal subjects, 5 patients with MG with diplopia, 5 patients with MG without diplopia and 6 patients with superior oblique (SO) palsy were included. Subjects fixated on a target in the upward direction for 1 min. The horizontal (X) and vertical (Y) eye positions were recorded using an eye tracker. Fixation stability was first quantified using the bivariate contour ellipse areas (BCEA) of fixation points as an index of whole stability. Then, the SDs of the X and Y eye positions (SDX and SDY, respectively) were quantified as indices of directional stability, with the data divided into three 20 s fractions to detect temporal fixation fluctuation. Results BCEAs were larger in patients with MG (both with and without diplopia) than normal subjects and patients with SO palsy, without significant differences among the three 20 s fractions. Compared with normal subjects, SDXs were larger only in patients with MG with diplopia; SDYs were larger in both patients with MG with and without diplopia. In addition, SDYs in patients with MG with diplopia were larger than those in patients with MG without diplopia and patients with SO palsy. Furthermore, a significant difference among the three 20 s fractions was detected for SDYs in patients with MG with diplopia. Conclusion Patients with MG, especially those with diplopia, exhibit fixation instability in the upward gaze. Non-invasive quantification of fixation stability with an eye tracker is useful for precisely identifying MG-specific fatigue characteristics. Trial registration number UMIN000023468; pre-results. PMID:29354719
NASA Astrophysics Data System (ADS)
Li, Zongchao; Chen, Xueliang; Gao, Mengtan; Jiang, Han; Li, Tiefei
2017-03-01
Earthquake engineering parameters are very important in the engineering field, especially engineering anti-seismic design and earthquake disaster prevention. In this study, we focus on simulating earthquake engineering parameters by the empirical Green's function method. The simulated earthquake (MJMA6.5) occurred in Kyushu, Japan, 1997. Horizontal ground motion is separated as fault parallel and fault normal, in order to assess characteristics of two new direction components. Broadband frequency range of ground motion simulation is from 0.1 to 20 Hz. Through comparing observed parameters and synthetic parameters, we analyzed distribution characteristics of earthquake engineering parameters. From the comparison, the simulated waveform has high similarity with the observed waveform. We found the following. (1) Near-field PGA attenuates radically all around with strip radiation patterns in fault parallel while radiation patterns of fault normal is circular; PGV has a good similarity between observed record and synthetic record, but has different distribution characteristic in different components. (2) Rupture direction and terrain have a large influence on 90 % significant duration. (3) Arias Intensity is attenuating with increasing epicenter distance. Observed values have a high similarity with synthetic values. (4) Predominant period is very different in the part of Kyushu in fault normal. It is affected greatly by site conditions. (5) Most parameters have good reference values where the hypo-central is less than 35 km. (6) The GOF values of all these parameters are generally higher than 45 which means a good result according to Olsen's classification criterion. Not all parameters can fit well. Given these synthetic ground motion parameters, seismic hazard analysis can be performed and earthquake disaster analysis can be conducted in future urban planning.
Effects of horizontal acceleration on the superconducting gravimeter CT #036 at Ishigakijima, Japan
NASA Astrophysics Data System (ADS)
Imanishi, Yuichi; Nawa, Kazunari; Tamura, Yoshiaki; Ikeda, Hiroshi
2018-01-01
In the gravity sensor of a superconducting gravimeter, a superconducting sphere as a test mass is levitated in a magnetic field. Such a sensor is susceptible to applied horizontal as well as vertical acceleration, because the translational degrees of freedom of the mass are not perfectly limited to the vertical direction. In the case of the superconducting gravimeter CT #036 installed at Ishigakijima, Japan, horizontal ground acceleration excited by the movements of a nearby VLBI antenna induces systematic step noise within the gravity recordings. We investigate this effect in terms of the static and dynamic properties of the gravity sensor using data from a collocated seismometer. It is shown that this effect can be effectively modeled by the coupling between the horizontal and vertical components in the gravity sensor. It is also found that the mechanical eigenfrequency for horizontal translation of the levitating sphere is approximately 3 Hz.[Figure not available: see fulltext.
Ashley, E.L.; Ashley, J.W.; Bowker, H.W.; Hall, R.H.; Kendall, J.W.
1959-02-01
A moderator structure is described for a nuclear reactor of the heterogensous type wherein a large mass of moderator is provided with channels therethrough for the introduction of uranium serving as nuclear fuel and for the passage of a cooling fluid. The structure is comprised of blocks of moderator material in superposed horizontal layers, the blocks of each layer being tied together with spaces between them and oriented to have horizontal Wigner growth. The ties are strips of moderator material, the same as the blocks, with transverse Wigner growth, disposed horizontally along lines crossing at vertical axes of the blocks. The blocks are preferably rectangular with a larger or length dimension transverse to the directions of Wiguer growth and are stood on end to provide for horizontal growth.
Barmack, N H; Pettorossi, V E
1988-08-01
The influence of unilateral plugs of the left horizontal semicircular canal (LHC plugs) of rabbits on the development and compensation of asymmetric eye movements evoked by horizontal vestibular stimulation was studied. LHC plugs caused an immediate reduction of 50-65% in the gain of the horizontal vestibuloocular reflex (HVOR). This reduction in gain was achieved without altering the symmetry of the HVOR, and was accompanied by a change in the axial alignment of eye movements evoked by vestibular stimulation about the vertical (HVOR) and longitudinal (VVOR) axes. Postoperative asymmetry of eye movements developed 12-48 hr after the plugging operation. The development of asymmetry was reduced if the rabbit was restrained for 24 hr, thereby minimizing vestibular stimulation following the plugging operation. Over a 3-4 week period, the normal symmetry of eye movements was restored and the axial alignments of the HVOR and VVOR returned to the preoperative values. The gain of the HVOR did not recover. The horizontal cervicoocular reflex (HCOR) was examined before the plugging operation and after compensation of asymmetry was complete. The gain and phase of the HCOR were not altered. A relatively simple set of explanations at a cellular level is proposed to account for the induction and compensation of asymmetric eye movements following a unilateral plug of the horizontal semicircular canal.
How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them.
Fux, Michal; Eilam, David
2009-09-07
The present study focused on the movements that owls perform before they swoop down on their prey. The working hypothesis was that owl head movements reflect the capacity to efficiently follow visually and auditory a moving prey. To test this hypothesis, five tame barn owls (Tyto alba) were each exposed 10 times to a live vole in a laboratory setting that enabled us to simultaneously record the behavior of both owl and vole. Bi-dimensional analysis of the horizontal and vertical projections of movements revealed that owl head movements increased in amplitude parallel to the vole's direction of movement (sideways or away from/toward the owl). However, the owls also performed relatively large repetitive horizontal head movements when the voles were progressing in any direction, suggesting that these movements were critical for the owl to accurately locate the prey, independent of prey behavior. From the pattern of head movements we conclude that owls orient toward the prospective clash point, and then return to the target itself (the vole) - a pattern that fits an interception rather than a tracking mode of following a moving target. The large horizontal component of head movement in following live prey may indicate that barn owls either have a horizontally narrow fovea or that these movements serve in forming a motion parallax along with preserving image acuity on a horizontally wide fovea.
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
Resolution characteristics of optical coherence tomography for dental use.
Watanabe, Hiroshi; Kuribayashi, Ami; Sumi, Yasunori; Kurabayashi, Tohru
2017-03-01
The purpose of this study was to clarify the resolution characteristics of optical coherence tomography (OCT) for dental use. Two types of swept-source optical coherence tomography machines were employed in this study. To clarify their resolution characteristics, we newly developed a glass chart device with a ladder pattern of wavelengths, which ranged from 4 × 2 μm to 1024 × 2 μm, as well as a star-target pattern, a grid pattern and a spatial frequency response pattern. The resolving powers and characteristics of the OCTs were subjectively evaluated. The Santec OCT-2000 ™ (Santec Co., Komaki, Japan) had a resolving power of 64 μm in both the horizontal X and vertical Y directions, while the OCT from Yoshida had a resolving power of 64 μm in the horizontal X direction and 128 µm in the vertical Y direction. The resolving power of the depth Z direction could not be obtained from this study. With the Yoshida OCT, the star-target pattern seemed to be non-symmetrical, owing to an edge enhancement effect, which was revealed when the ladder patterns were placed in a horizontal direction. This study successfully clarified the resolution characteristics of two types of OCTs. The obtained data may be useful for diagnostic purposes, and the glass chart device used in this study may be useful for OCT quality assurance programmes.
NASA Astrophysics Data System (ADS)
Bramstedt, Klaus; Stone, Thomas C.; Gottwald, Manfred; Noël, Stefan; Bovensmann, Heinrich; Burrows, John P.
2017-07-01
The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on Envisat (2002-2012) performed nadir, limb, solar/lunar occultation and various monitoring measurements. The pointing information of the instrument is determined by the attitude information of the Envisat platform with its star trackers together with the encoder readouts of both the azimuth and the elevation scanner of SCIAMACHY. In this work, we present additional sources of attitude information from the SCIAMACHY measurements itself. The basic principle is the same as used by the star tracker: we measure the viewing direction towards celestial objects, i.e. sun and moon, to detect possible mispointings. In sun over limb port observations, we utilise the vertical scans over the solar disk. In horizontal direction, SCIAMACHY's sun follower device (SFD) is used to adjust the viewing direction. Moon over limb port measurements use for both the vertical and the horizontal direction the adjustment by the SFD. The viewing direction is steered towards the intensity centroid of the illuminated part of the lunar disk. We use reference images from the USGS Robotic Lunar Observatory (ROLO) to take into account the inhomogeneous surface and the variations by lunar libration and phase to parameterise the location of the intensity centroid from the observation geometry. Solar observations through SCIAMACHY's so-called sub-solar port (with a viewing direction closely to zenith) also use the SFD in the vertical direction. In the horizontal direction the geometry of the port defines the viewing direction. Using these three type of measurements, we fit improved mispointing parameters by minimising the pointing offsets in elevation and azimuth. The geolocation of all retrieved products will benefit from this; the tangent heights are especially improved. The altitudes assigned to SCIAMACHY's solar occultation measurements are changed in the range of -130 to -330 m, the lunar occultation measurements are changed in the range of 0 to +130 m and the limb measurements are changed in the range of -50 to +60 m (depending on season, altitude and azimuth angle). The horizontal location of the tangent point is changed by about 5 km for all measurements. These updates are implemented in version 9 of the SCIAMACHY Level 1b products and Level 2 version 7 (based on L1b version 9).
Interaction in planning movement direction for articulatory gestures and manual actions.
Vainio, Lari; Tiainen, Mikko; Tiippana, Kaisa; Komeilipoor, Naeem; Vainio, Martti
2015-10-01
Some theories concerning speech mechanisms assume that overlapping representations are involved in programming certain articulatory gestures and hand actions. The present study investigated whether planning of movement direction for articulatory gestures and manual actions could interact. The participants were presented with written vowels (Experiment 1) or syllables (Experiment 2) that were associated with forward or backward movement of tongue (e.g., [i] vs. [ɑ] or [te] vs. [ke], respectively). They were required to pronounce the speech unit and simultaneously move the joystick forward or backward according to the color of the stimulus. Manual and vocal responses were performed relatively rapidly when the articulation and the hand action required movement into the same direction. The study suggests that planning horizontal tongue movements for articulation shares overlapping neural mechanisms with planning horizontal movement direction of hand actions.
72-directional display having VGA resolution for high-appearance image generation
NASA Astrophysics Data System (ADS)
Takaki, Yasuhiro; Dairiki, Takeshi
2006-02-01
The high-density directional display, which was originally developed in order to realize a natural 3D display, is not only a 3D display but also a high-appearance display. The appearances of objects, such as glare and transparency, are the results of the reflection and the refraction of rays. The faithful reproduction of such appearances of objects is impossible using conventional 2D displays because rays diffuse on the display screen. The high-density directional display precisely controls the horizontal ray directions so that it can reproduce the appearances of objects. The fidelity of the reproduction of object appearances depends on the ray angle sampling pitch. The angle sampling pitch is determined by considering the human eye imaging system. In the present study the high-appearance display which has the resolution of 640×400 and emits rays in 72 different horizontal directions with the angle pitch of 0.38° was constructed. Two 72-directional displays were combined, each of which consisted of a high-resolution LCD panel (3,840×2,400) and a slanted lenticular sheet. Two images produced by two displays were superimposed by a half mirror. A slit array was placed at the focal plane of the lenticular sheet for each display to reduce the horizontal image crosstalk in the combined image. The impression analysis shows that the high-appearance display provides higher appearances and presence than the conventional 2D displays do.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1988-01-01
The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.
Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.
Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas
2016-10-17
Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique
NASA Astrophysics Data System (ADS)
Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.
2005-12-01
Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds, the vertical wind can be retrieved from the horizontal flow divergence with a much-improved sensitivity than that represented by direct zenith measurements. The value of the vertical wind speed ranges from -5 to 5 m/s. Some nights seem to present gravity wave activity with periodic fluctuations of 1-2 hours visible in the vertical winds as well as in the temperature series.
Spatial interactions during bimanual coordination patterns: the effect of directional compatibility.
Bogaerts, H; Swinnen, S P
2001-04-01
Whereas previous bimanual coordination research has predominantly focused on the constraining role of timing, the present study addressed the role of spatial (i.e., directional) constraints during the simultaneous production of equilateral triangles with both upper limbs. In addition to coordination modes in which mirror-image and isodirectional movements were performed (compatible patterns), new modes were tested in which the left limb lagged with respect to the right by one triangle side (non-compatible patterns). This resulted in the experimental manipulation of directional compatibility between the limbs. In addition, triangles with either horizontal or vertical orientations were to be drawn in order to assess the role of static images on movement production. Results supported the important role of directional constraints in bimanual coordination. Furthermore, triangles in vertical orientations (with a vertical symmetry axis, i.e., one apex pointing up) were drawn more successfully than those in horizontal orientations (with a horizontal symmetry axis, i.e., one apex pointing left or right), suggesting that the static aspects of a geometric form may affect movement dynamics. Finally, evidence suggested that cognitive processes related to integration of the submovements into a unified plan mediate the performance of new coordination patterns. The implications of the present finding for clinical populations are discussed
Large-scale anisotropy in stably stratified rotating flows
Marino, R.; Mininni, P. D.; Rosenberg, D. L.; ...
2014-08-28
We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up tomore » $1024^3$ grid points and Reynolds numbers of $$\\approx 1000$$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $$\\sim k_\\perp^{-5/3}$$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.« less
A comparison of coronal and interplanetary current sheet inclinations
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.
1983-01-01
The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.
Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake
Tsuji, Takeshi; Ishibashi, Jun’ichiro; Ishitsuka, Kazuya; Kamata, Ryuichi
2017-01-01
We report horizontal sliding of the kilometre-scale geologic block under the Aso hot springs (Uchinomaki area) caused by vibrations from the 2016 Kumamoto earthquake (Mw 7.0). Direct borehole observations demonstrate the sliding along the horizontal geological formation at ~50 m depth, which is where the shallowest hydrothermal reservoir developed. Owing to >1 m northwest movement of the geologic block, as shown by differential interferometric synthetic aperture radar (DInSAR), extensional open fissures were generated at the southeastern edge of the horizontal sliding block, and compressional deformation and spontaneous fluid emission from wells were observed at the northwestern edge of the block. The temporal and spatial variation of the hot spring supply during the earthquake can be explained by the horizontal sliding and borehole failures. Because there was no strain accumulation around the hot spring area prior to the earthquake and gravitational instability could be ignored, the horizontal sliding along the low-frictional formation was likely caused by seismic forces from the remote earthquake. The insights derived from our field-scale observations may assist further research into geologic block sliding in horizontal geological formations. PMID:28218298
Accuracy of Automatic Cephalometric Software on Landmark Identification
NASA Astrophysics Data System (ADS)
Anuwongnukroh, N.; Dechkunakorn, S.; Damrongsri, S.; Nilwarat, C.; Pudpong, N.; Radomsutthisarn, W.; Kangern, S.
2017-11-01
This study was to assess the accuracy of an automatic cephalometric analysis software in the identification of cephalometric landmarks. Thirty randomly selected digital lateral cephalograms of patients undergoing orthodontic treatment were used in this study. Thirteen landmarks (S, N, Or, A-point, U1T, U1A, B-point, Gn, Pog, Me, Go, L1T, and L1A) were identified on the digital image by an automatic cephalometric software and on cephalometric tracing by manual method. Superimposition of printed image and manual tracing was done by registration at the soft tissue profiles. The accuracy of landmarks located by the automatic method was compared with that of the manually identified landmarks by measuring the mean differences of distances of each landmark on the Cartesian plane where X and Y coordination axes passed through the center of ear rod. One-Sample T test was used to evaluate the mean differences. Statistically significant mean differences (p<0.05) were found in 5 landmarks (Or, A-point, Me, L1T, and L1A) in horizontal direction and 7 landmarks (Or, A-point, U1T, U1A, B-point, Me, and L1A) in vertical direction. Four landmarks (Or, A-point, Me, and L1A) showed significant (p<0.05) mean differences in both horizontal and vertical directions. Small mean differences (<0.5mm) were found for S, N, B-point, Gn, and Pog in horizontal direction and N, Gn, Me, and L1T in vertical direction. Large mean differences were found for A-point (3.0 < 3.5mm) in horizontal direction and L1A (>4mm) in vertical direction. Only 5 of 13 landmarks (38.46%; S, N, Gn, Pog, and Go) showed no significant mean difference between the automatic and manual landmarking methods. It is concluded that if this automatic cephalometric analysis software is used for orthodontic diagnosis, the orthodontist must correct or modify the position of landmarks in order to increase the accuracy of cephalometric analysis.
Li, Xin; Gao, Deli; Chen, Xuyue
2017-06-08
Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min ≤ Q r ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min < Q max < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r < Q min < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.
Bohling, Geoffrey C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
Shape of magnifiers affects controllability in children with visual impairment.
Liebrand-Schurink, Joyce; Boonstra, F Nienke; van Rens, Ger H M B; Cillessen, Antonius H N; Meulenbroek, Ruud G J; Cox, Ralf F A
2016-12-01
This study aimed to examine the controllability of cylinder-shaped and dome-shaped magnifiers in young children with visual impairment. This study investigates goal-directed arm movements in low-vision aid use (stand and dome magnifier-like object) in a group of young children with visual impairment (n = 56) compared to a group of children with normal sight (n = 66). Children with visual impairment and children with normal sight aged 4-8 years executed two types of movements (cyclic and discrete) in two orientations (vertical or horizontal) over two distances (10 cm and 20 cm) with two objects resembling the size and shape of regularly prescribed stand and dome magnifiers. The visually impaired children performed slower movements than the normally sighted children. In both groups, the accuracy and speed of the reciprocal aiming movements improved significantly with age. Surprisingly, in both groups, the performance with the dome-shaped object was significantly faster (in the 10 cm condition and 20 cm condition with discrete movements) and more accurate (in the 20 cm condition) than with the stand-shaped object. From a controllability perspective, this study suggests that it is better to prescribe dome-shaped than cylinder-shaped magnifiers to young children with visual impairment. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Butler, S. L.
2017-08-01
It is instructive to consider the sensitivity function for a homogeneous half space for resistivity since it has a simple mathematical formula and it does not require a priori knowledge of the resistivity of the ground. Past analyses of this function have allowed visualization of the regions that contribute most to apparent resistivity measurements with given array configurations. The horizontally integrated form of this equation gives the sensitivity function for an infinitesimally thick horizontal slab with a small resistivity contrast and analysis of this function has admitted estimates of the depth of investigation for a given electrode array. Recently, it has been shown that the average of the vertical coordinate over this function yields a simple formula that can be used to estimate the depth of investigation. The sensitivity function for a vertical inline slab has also been previously calculated. In this contribution, I show that the sensitivity function for a homogeneous half-space can also be integrated so as to give sensitivity functions to semi-infinite vertical slabs that are perpendicular to the array axis. These horizontal sensitivity functions can, in turn, be integrated over the spatial coordinates to give the mean horizontal positions of the sensitivity functions. The mean horizontal positions give estimates for the centres of the regions that affect apparent resistivity measurements for arbitrary array configuration and can be used as horizontal positions when plotting pseudosections even for non-collinear arrays. The mean of the horizontal coordinate that is perpendicular to a collinear array also gives a simple formula for estimating the distance over which offline resistivity anomalies will have a significant effect. The root mean square (rms) widths of the sensitivity functions are also calculated in each of the coordinate directions as an estimate of the inverse of the resolution of a given array. For depth and in the direction perpendicular to the array, the rms thickness is shown to be very similar to the mean distance. For the direction parallel to the array, the rms thickness is shown to be proportional to the array length and similar to the array length divided by 2 for many arrays. I expect that these formulas will provide useful rules of thumb for estimating the centres and extents of regions influencing apparent resistivity measurements for survey planning and for education.
Drop impact on inclined superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul
We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.
Maximum spectral demands in the near-fault region
Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas
2008-01-01
The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.
Maximum spectral demands in the near-fault region
Huang, Y.-N.; Whittaker, A.S.; Luco, N.
2008-01-01
The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed. ?? 2008, Earthquake Engineering Research Institute.
Effects of Outlets on Cracking Risk and Integral Stability of Super-High Arch Dams
Hu, Hang
2014-01-01
In this paper, case study on outlet cracking is first conducted for the Goupitan and Xiaowan arch dams. A nonlinear FEM method is then implemented to study effects of the outlets on integral stability of the Xiluodu arch dam under two loading conditions, i.e., normal loading and overloading conditions. On the basis of the case study and the numerical modelling, the outlet cracking mechanism, risk, and corresponding reinforcement measures are discussed. Furthermore, the numerical simulation reveals that (1) under the normal loading conditions, the optimal distribution of the outlets will contribute to the tensile stress release in the local zone of the dam stream surface and decrease the outlet cracking risk during the operation period. (2) Under the overloading conditions, the cracks initiate around the outlets, then propagate along the horizontal direction, and finally coalesce with those in adjacent outlets, where the yield zone of the dam has a shape of butterfly. Throughout this study, a dam outlet cracking risk control and reinforcement principle is proposed to optimize the outlet design, select the appropriate concrete material, strengthen the temperature control during construction period, design reasonable impounding scheme, and repair the cracks according to their classification. PMID:25152907
NASA Astrophysics Data System (ADS)
Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.
2013-06-01
The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.
Stackman, R W; Taube, J S
1998-11-01
Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.
Effects of horizontal plyometric training volume on soccer players' performance.
Yanci, Javier; Los Arcos, Asier; Camara, Jesús; Castillo, Daniel; García, Alberto; Castagna, Carlo
2016-01-01
The aim of this study was to examine the dose response effect of strength and conditioning programmes, involving horizontally oriented plyometric exercises, on relevant soccer performance variables. Sixteen soccer players were randomly allocated to two 6-week plyometric training groups (G1 and G2) differing by imposed (twice a week) training volume. Post-training G1 (4.13%; d = 0.43) and G2 (2.45%; d = 0.53) moderately improved their horizontal countermovement jump performance. Significant between-group differences (p < 0.01) in the vertical countermovement jump for force production time (T2) were detected post-training. No significant and practical (p > 0.05, d = trivial or small) post-training improvements in sprint, change of direction ability (CODA) and horizontal arm swing countermovement jump were reported in either group. Horizontal plyometric training was effective in promoting improvement in injury prevention variables. Doubling the volume of a horizontal plyometric training protocol was shown to have no additional effect over functional aspects of soccer players' performance.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor)
1999-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under micro- gravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel. The medium used for culturing the cells, especially a mixture of epithelial and mesenchymal cells contains a mixture of Mem-alpha and Leibovits L15 supplemented with glucose, galactose and fructose.
Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting
NASA Astrophysics Data System (ADS)
Martin, P.; Arroucau, P.; Vlahovic, G.
2013-12-01
Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.
NASA Astrophysics Data System (ADS)
Pan, J.; Li, H.; Chevalier, M.; Liu, D.; Sun, Z.; Pei, J.; Wu, F.; Xu, W.
2013-12-01
Located at the northwestern end of the Himalayan-Tibetan orogenic belt, the Kongur Shan extensional system (KES) is a significant tectonic unit in the Chinese Pamir. E-W extension of the KES accommodates deformation due to the India/Asia collision in this area. Cenozoic evolution of the KES has been extensively studied, whereas Late Quaternary deformation along the KES is still poorly constrained. Besides, whether the KES is the northern extension of the Karakorum fault is still debated. Well-preserved normal fault scarps are present all along the KES. Interpretation of satellite images as well as field investigation allowed us to map active normal faults and associated vertically offset geomorphological features along the KES. At one site along the northern Kongur Shan detachment fault, in the eastern Muji basin, a Holocene alluvial fan is vertically offset by the active fault. We measured the vertical displacement of the fan with total station, and collected quartz cobbles for cosmogenic nuclide 10Be dating. Combining the 5-7 m offset and the preliminary surface-exposure ages of ~2.7 ka, we obtain a Holocene vertical slip-rate of 1.8-2.6 mm/yr along the fault. This vertical slip-rate is comparable to the right-lateral horizontal-slip rate along the Muji fault (~4.5 mm/yr, which is the northern end of the KES. Our result is also similar to the Late Quaternary slip-rate derived along the KES around the Muztagh Ata as well as the Tashkurgan normal fault (1-3 mm/yr). Geometry, kinematics, and geomorphology of the KES combined with the compatible slip-rate between the right-lateral strike-slip Muji fault and the Kongur Shan normal fault indicate that the KES may be an elongated pull-apart basin formed between the EW-striking right-lateral strike-slip Muji fault and the NW-SE-striking Karakorum fault. This unique elongated pull-apart structure with long normal fault in the NS direction and relatively short strike-slip fault in the ~EW direction seems to still be in formation, with the Karakorum fault still propagating to the north.
Xu, Qing-chao; Sun, Hao; Lin, Yan; Wang, Xiu-ying; Hu, Rong-dang
2015-10-01
To explore the effect of modified Nance arch on treating maxillary canine-first premolar transposition cases, in which the anchorage and force direction were discussed. Modified Nance arch was applied to 5 cases with maxillary impacted canine-first premolar transposition. First, a lingual knot button was bonded on the surface of the canine crown. Modified Nance arch was decorated with a hook that moved horizontally and buccally. Then the location of the hook was gradually adjusted in order to move the canine cross the root of the first premolar and move the canine to the right position. At last the canine was moved downward by straight wire appliance. Five maxillary transposed canines were fully erupted in their right position, with normal pulp activity and gingival morphology. No obvious root resorption was detected. The mean treatment time was 30 months. Modified Nance arch has advantages in treating canine-first premolar transposition.
James, Eric P.; Benjamin, Stanley G.; Marquis, Melinda
2016-10-28
A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides physically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset shows strong similarity to that previously provided by a Department of Energy-funded study, and it includes estimates in southern Canada and northern Mexico. The solar resource dataset represents anmore » initial step towards application-specific fields such as global horizontal and direct normal irradiance. This combined dataset will continue to be augmented with new forecast data from the advanced HRRR atmospheric/land-surface model.« less
Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes
Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He
2015-01-01
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797
Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes.
Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He
2015-09-08
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented.
Optical anisotropy of the human cornea determined with a polarizing microscope.
Bone, Richard A; Draper, Grenville
2007-12-01
We have investigated the optical anisotropy of the human cornea using a polarizing microscope normally used for optical mineralogy studies. The central part of the cornea was removed from 14 eyes (seven donors). With the sample placed on the microscope stage, we consistently observed hyperbolic isogyres characteristic of a negative biaxial material. The angle between the optic axes, generally similar in both eyes, ranged from 12 degrees to 40 degrees (mean+/-SD=31 degrees +/-8 degrees ). The optic axial plane always inclined downward in the nasal direction at 1 degrees -45 degrees below the horizontal (mean+/-SD=22+/-13 degrees ). The retardance produced by the corneas was estimated to be less than 200 nm. In conclusion, the human cornea possesses the anisotropy of a negative biaxial material. Both the angle between the optic axes and the retardance were fairly constant among the majority of samples, suggestive of uniformity in corneal structure.
NASA Technical Reports Server (NTRS)
Smith, R. C. G.; Choudhury, B. J.
1990-01-01
Based on NOAA-9 AVHRR and Nimbus-7 SMMR satellite data, satellite indices of vegetation from the Australian continent are calculated for the period of May 1986 to April 1987. Visible (VIS) and near infrared (NIR) reflectances and the normalized difference (ND) vegetation index are calculated from the AVHRR sensor. The microwave polarization difference (PD) is also calculated as the difference between the vertically and horizontally polarized brightness temperatures at 37 GHz. ND, PD, VIS, and NIR indices were plotted against rainfall and water balance estimates of evaporation. It is concluded that direct satellite monitoring of annual evaporation across the Australian continent using PD or VIS satellite indices of vegetation biomass appears possible for areas with evaporation less than 600 mm/y and that use of the ND relationship at continental scale may underpredict monthly evaporation of forests relative to agriculture.
Mechanical stability of a microscope setup working at a few kelvins for single-molecule localization
NASA Astrophysics Data System (ADS)
Hinohara, Takuya; Hamada, Yuki I.; Nakamura, Ippei; Matsushita, Michio; Fujiyoshi, Satoru
2013-06-01
A great advantage of single-molecule fluorescence imaging is the localization precision of molecule beyond the diffraction limit. Although longer signal-acquisition yields higher precision, acquisition time at room temperature is normally limited by photobleaching, thermal diffusion, and so on. At low temperature of a few kelvins, much longer acquisition is possible and will improve precision if the sample and the objective are held stably enough. The present work examined holding stability of the sample and objective at 1.5 K in superfluid helium in the helium bath. The stability was evaluated by localization precision of a point scattering source of a polymer bead. Scattered light was collected by the objective, and imaged by a home-built rigid imaging unit. The standard deviation of the centroid position determined for 800 images taken continuously in 17 min was 0.5 nm in the horizontal and 0.9 nm in the vertical directions.
Aerosol Retrievals from ARM SGP MFRSR Data
Alexandrov, Mikhail
2008-01-15
The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.
Orthodontically induced eruption of a horizontally impacted maxillary central incisor.
Rizzatto, Susana Maria Deon; de Menezes, Luciane Macedo; Allgayer, Susiane; Batista, Eraldo Luiz; Freitas, Maria Perpétua Mota; Loro, Raphael Carlos Drumond
2013-07-01
This case report presents the clinical features and periodontal findings in a patient with a horizontally impacted maxillary central incisor that had been exposed and aligned after a closed-eruption surgical technique. By combining 3 treatment stages-maxillary expansion, crown exposure surgery, and induced eruption-the horizontally impacted incisor was successfully moved into proper position. The patient finished treatment with a normal and stable occlusion between the maxillary and mandibular arches, and an adequate width of attached gingiva, even in the area surrounding the crown. The 5-year follow-up of stability and periodontal health demonstrated esthetic and functional outcomes after orthodontically induced tooth eruption. Clinical evaluation showed that the treated central incisor had periodontal clinical variables related to visible plaque, bleeding on probing, width of attached gingiva, and crown length that resembled the contralateral incisor. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Anisotropic encoding of three-dimensional space by place cells and grid cells
Hayman, R.; Verriotis, M.; Jovalekic, A.; Fenton, A.A.; Jeffery, K.J.
2011-01-01
The subjective sense of space may result in part from the combined activity of place cells, in the hippocampus, and grid cells in posterior cortical regions such as entorhinal cortex and pre/parasubiculum. In horizontal planar environments, place cells provide focal positional information while grid cells supply odometric (distance-measuring) information. How these cells operate in three dimensions is unknown, even though the real world is three–dimensional. The present study explored this issue in rats exploring two different kinds of apparatus, a climbing wall (the “pegboard”) and a helix. Place and grid cell firing fields had normal horizontal characteristics but were elongated vertically, with grid fields forming stripes. It appears that grid cell odometry (and by implication path integration) is impaired/absent in the vertical domain, at least when the animal itself remains horizontal. These findings suggest that the mammalian encoding of three-dimensional space is anisotropic. PMID:21822271
Interactions of light and gravity on growth, orientation, and lignin biosynthesis in mung beans
NASA Technical Reports Server (NTRS)
Jahns, G. C.
1984-01-01
Mung beans (Vigna radiata L.) seedlings grown on the third Space Transport Mission (STS-3) showed marked orientation problems (some of the stems elongated horizontally and many of the roots were growing upward) and had a lower lignin content than the ground based controls. This research was initiated to determine if the atypical growth characteristics of mung beans grown in microgravity could be simulated using horizontal clinostats. Most of the effort focused on the design, construction and testing of the clinostats. In order to closely approximate the growth conditions of the plants grown in the plant growth unit on STS-3, cylindrical lexan minichambers were constructed. Results showed that plants grown using these clinostats in the horizontal position exhibit similar growth characteristics to the plants grown on STS-3 (disorientation of both stems and roots), while the vertical stationary and vertical rotating controls exhibit normal growth.
NASA Astrophysics Data System (ADS)
Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.
2018-04-01
Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to the stream-bank.
Method and apparatus for measuring stress
Thompson, R.B.
1983-07-28
A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.
Method and apparatus for measuring stress
Thompson, R. Bruce
1985-06-11
A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.
Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)
NASA Astrophysics Data System (ADS)
Alamdar, K.; Ansari, A. H.; Ghorbani, A.
2009-04-01
Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which new ASTA filter determined Andezite boundaries from surrounded more accurately than other filters. Keywords: Horizontal derivative, Vertical derivative, Tilt angle, Analytic signal, ASTA, Sar-Cheshme.
Effect of rotating electric field on 3D complex (dusty) plasma
NASA Astrophysics Data System (ADS)
Wörner, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Kroll, M.; Schablinski, J.; Block, D.
2011-06-01
The effect of rotating electric field on 3D particle clusters suspended in rf plasma was studied experimentally. Spheroidal clusters were suspended inside a glass box mounted on the lower horizontal rf electrode, with gravity partially balanced by thermophoretic force. Clusters rotated in the horizontal plane, in response to rotating electric field that was created inside the box using conducting coating on its inner surfaces ("rotating wall" technique). Cluster rotation was always in the direction of applied field and had a shear in the vertical direction. The angular speed of rotation was 104-107 times lower than applied frequency. The experiment is compared to a recent theory.
Impact of the Distance of Maxillary Advancement on Horizontal Relapse After Orthognathic Surgery.
Fahradyan, Artur; Wolfswinkel, Erik M; Clarke, Noreen; Park, Stephen; Tsuha, Michaela; Urata, Mark M; Hammoudeh, Jeffrey A; Yamashita, Dennis-Duke R
2018-04-01
The maxillary horizontal relapse following Le Fort I advancement has been estimated to be 10% to 50%. This retrospective review examines the direct association between the amounts of maxillary advancement and relapse. We hypothesize that the greater the advancement, the greater the relapse amount. Patients with class III skeletal malocclusion underwent maxillary advancement with either a Le Fort I or a Le Fort I with simultaneous mandibular setback (bimaxillary surgery) from 2008 to 2015. Patients were assessed for a history of cleft lip or cleft palate. Patients with known syndromes were excluded. Cephalometric analysis was performed to compare surgical and postsurgical changes. Of 136 patients, 47.1% were males and 61.8% had a history of cleft. The mean surgery age was 18.9 (13.8-23) years and 53.7% underwent a bimaxillary procedure. A representative subgroup of 35 patients had preoperative, immediate postoperative, and an average of 1-year postoperative lateral cephalograms taken. The mean maxillary advancement was 6.3 mm and the horizontal relapse was 1.8 mm, indicating a 28.6% relapse. A history of cleft and amount of maxillary advancement were directly correlated, whereas bone grafting of the maxillary osteotomy sites was inversely correlated with the amount of relapse ( P < .05). Our data suggest positive correlation between amount of maxillary advancement and horizontal relapse as well as a positive correlation between history of cleft and horizontal relapse. Bone grafting of the maxillary osteotomy sites has a protective effect on the relapse.
Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Feng, Cong; Cui, Mingjian
Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less
Mangel, S C; Ariel, M; Dowling, J E
1985-11-01
The acidic amino acid receptor antagonists, alpha-methylglutamate and alpha-aminoadipate, were applied to the carp retina to study their effects upon the spectral properties of horizontal cells and to elucidate the synaptic connections between horizontal cells and cones. Application of these antagonists strongly hyperpolarized the L-type cone horizontal cells and reduced the responses of these horizontal cells to red light more than to blue light. Application of Co2+ ions to the retina, a procedure which decreases transmitter release, also hyperpolarized the L-type cone horizontal cells but reduced the response of these horizontal cells to red and blue lights equally. These results suggest that red- or long wavelength-sensitive cones release a different transmitter onto L-type cone horizontal cells than do short wavelength-sensitive cones. Application of the acidic amino acid antagonists also revealed details of the feedback pathway from L-type cone horizontal cells to cones. Previous studies have shown that feedback varies directly with stimulus size and that the effects of feedback on the responses of cones are observed as a transient waveform at response onset (a large, hyperpolarizing potential that is quickly followed by a smaller plateau potential). Application of the acidic amino acid antagonists at a dose which partially hyperpolarized the horizontal cells selectively enhanced the response of the cells to blue lights, when full field, and not spot, stimuli were used. The antagonists also eliminated the transient at response onset. These findings are consistent with the presence of a feedback pathway from L-type cone horizontal cells to short wavelength cones but not to long (red-sensitive) cones.
A mechanism for tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1986-01-01
In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.
Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects
NASA Astrophysics Data System (ADS)
Adler-Golden, Steven; Less, David; Jin, Xuemin; Rynes, Peter
2016-05-01
Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume uniform illumination across the scene and horizontal surfaces with Lambertian reflectance. When these algorithms are used to process real 3-D scenes, the retrieved "apparent" values contain the strong, spatially dependent variations in illumination as well as surface bidirectional reflectance distribution function (BRDF) effects. This is especially problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal surfaces can show strong specularity. The goals of this study are to characterize long-wavelength infrared (LWIR) signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values. We take advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature (MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky downwelling illumination and MuSES-based non-uniform environmental illumination.
Look up: Human adults use vertical height cues in reorientation.
Du, Yu; Spetch, Marcia L; Mou, Weimin
2016-11-01
Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.
Keidser, Gitte; O'Brien, Anna; Hain, Jens-Uwe; McLelland, Margot; Yeend, Ingrid
2009-11-01
Frequency-dependent microphone directionality alters the spectral shape of sound as a function of arrival azimuth. The influence of this on horizontal-plane localization performance was investigated. Using a 360 degrees loudspeaker array and five stimuli with different spectral characteristics, localization performance was measured on 21 hearing-impaired listeners when wearing no hearing aids and aided with no directionality, partial (from 1 and 2 kHz) directionality, and full directionality. The test schemes were also evaluated in everyday life. Without hearing aids, localization accuracy was significantly poorer than normative data. Due to inaudibility of high-frequency energy, front/back reversals were prominent. Front/back reversals remained prominent when aided with omnidirectional microphones. For stimuli with low-frequency emphasis, directionality had no further effect on localization. For stimuli with sufficient mid- and high-frequency information, full directionality had a small positive effect on front/back localization but a negative effect on left/right localization. Partial directionality further improved front/back localization and had no significant effect on left/right localization. The field test revealed no significant effects. The alternative spectral cues provided by frequency-dependent directionality improve front/back localization in hearing-aid users.
Effect of stance width on multidirectional postural responses
NASA Technical Reports Server (NTRS)
Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
2001-01-01
The effect of stance width on postural responses to 12 different directions of surface translations was examined. Postural responses were characterized by recording 11 lower limb and trunk muscles, body kinematics, and forces exerted under each foot of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. A quasi-static approach of force analysis was done, examining force integrals in three different epochs (background, passive, and active periods). The latency and amplitude of muscle responses were quantified for each direction, and muscle tuning curves were used to determine the spatial activation patterns for each muscle. The results demonstrate that the horizontal force constraint exerted at the ground was lessened in the wide, compared with narrow, stance for humans, a similar finding to that reported by Macpherson for cats. Despite more trunk displacement in narrow stance, there were no significant changes in body center of mass (CoM) displacement due to large changes in center of pressure (CoP), especially in response to lateral translations. Electromyographic (EMG) magnitude decreased for all directions in wide stance, particularly for the more proximal muscles, whereas latencies remained the same from narrow to wide stance. Equilibrium control in narrow stance was more of an active postural strategy that included regulating the loading/unloading of the limbs and the direction of horizontal force vectors. In wide stance, equilibrium control relied more on an increase in passive stiffness resulting from changes in limb geometry. The selective latency modulation of the proximal muscles with translation direction suggests that the trunk was being actively controlled in all directions. The similar EMG latencies for both narrow and wide stance, with modulation of only the muscle activation magnitude as stance width changed, suggest that the same postural synergy was only slightly modified for a change in stance width. Nevertheless, the magnitude of the trunk displacement, as well as of CoP displacement, was modified based on the degree of passive stiffness in the musculoskeletal system, which increased with stance width. The change from a more passive to an active horizontal force constraint, to larger EMG magnitudes especially in the trunk muscles and larger trunk and CoP excursions in narrow stance are consistent with a more effortful response for equilibrium control in narrow stance to perturbations in all directions.
NASA Technical Reports Server (NTRS)
Hanson, Frederick H
1945-01-01
Tests were made of a model representative of a single-engine tractor-type airplane for the purpose of determining the stability and control effects of a propeller used as an aerodynamic brake. The tests were made with single-and dual-rotation propellers to show the effect of type of propeller rotation, and with positive thrust to provide basic data with which to compare the effects of negative thrust. Four configurations of the model were used to give the effects of tilting the propeller thrust axis down 5 deg., raising the horizontal tail, and combining both tilt and raised tail. Results of the tests are reported herein. The effects of negative thrust were found to be significant. The longitudinal stability was increased because of the loss of wing lift and increase of the angle of attack of the tail. Directional stability and both longitudinal and directional control were decreased because of the reduced velocity at the tail. These effects are moderate for moderate braking but become pronounced with full-power braking, particularly at high values of lift coefficient. The effects of model configuration changes were small when compared with the over-all effects of negative-thrust operation; however, improved stability and control characteristics were exhibited by the model with the tilted thrust axis. Raising the horizontal tail improved the longitudinal characteristics, but was detrimental to directional characteristics. The use of dual-rotation propeller reduced the directional trim charges resulting from the braking operation. A prototype airplane was assumed and handling qualities were computed and analyzed for normal (positive thrust) and braking operation with full and partial power. The results of these analyses are presented for the longitudinal characteristics in steady and accelerated flight, and for the directional characteristics in high- and low-speed flight. It was found that by limiting the power output of the engine (assuming the constant-speed propeller will function in the range of blade angles required for negative thrust) the stability and control characteristics may be held within the limits required for safe operation. Braking with full power, particularly at low speeds, is dangerous, but braking with very small power output is satisfactory from the standpoint of control. The amount of braking produced with zero power output is equal to or better than that produced by conventional spoiler-type brakes.
Atmospheric refraction errors in laser ranging systems
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Rowlett, J. R.
1976-01-01
The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.
Saturation of the anisoplanatic error in horizontal imaging scenarios
NASA Astrophysics Data System (ADS)
Beck, Jeffrey; Bos, Jeremy P.
2017-09-01
We evaluate the piston-removed anisoplanatic error for smaller apertures imaging over long horizontal paths. Previous works have shown that the piston and tilt compensated anisoplanatic error saturates to values less than one squared radian. Under these conditions the definition of the isoplanatic angle is unclear. These works focused on nadir pointing telescope systems with aperture sizes between five meters and one half meter. We directly extend this work to horizontal imaging scenarios with aperture sizes smaller than one half meter. We assume turbulence is constant along the imaging path and that the ratio of the aperture size to the atmospheric coherence length is on the order of unity.
Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.
Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara
2017-03-01
To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Maneuvers during legged locomotion
NASA Astrophysics Data System (ADS)
Jindrich, Devin L.; Qiao, Mu
2009-06-01
Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the horizontal plane. Changes in the horizontal projection of leg length were linearly related to changes in horizontal-plane leg forces. Consequently, the passive dynamic stabilization associated with spring-mass behavior may contribute to stability during maneuvers in bipeds. Understanding the mechanics of maneuverability will be important for understanding the motor control of maneuvers and also potentially be useful for understanding stability.
Variability of phase and amplitude fronts due to horizontal refraction in shallow water.
Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F
2018-01-01
The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.
Chen, Y-J; Chen, S-K; Huang, H-W; Yao, C-C; Chang, H-F
2004-09-01
To compare the cephalometric landmark identification on softcopy and hardcopy of direct digital cephalography acquired by a storage-phosphor (SP) imaging system. Ten digital cephalograms and their conventional counterpart, hardcopy on a transparent blue film, were obtained by a SP imaging system and a dye sublimation printer. Twelve orthodontic residents identified 19 cephalometric landmarks on monitor-displayed SP digital images with computer-aided method and on their hardcopies with conventional method. The x- and y-coordinates for each landmark, indicating the horizontal and vertical positions, were analysed to assess the reliability of landmark identification and evaluate the concordance of the landmark locations in softcopy and hardcopy of SP digital cephalometric radiography. For each of the 19 landmarks, the location differences as well as the horizontal and vertical components were statistically significant between SP digital cephalometric radiography and its hardcopy. Smaller interobserver errors on SP digital images than those on their hardcopies were noted for all the landmarks, except point Go in vertical direction. The scatter-plots demonstrate the characteristic distribution of the interobserver error in both horizontal and vertical directions. Generally, the dispersion of interobserver error on SP digital cephalometric radiography is less than that on its hardcopy with conventional method. The SP digital cephalometric radiography could yield better or comparable level of performance in landmark identification as its hardcopy, except point Go in vertical direction.
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
Columnar interactions determine horizontal propagation of recurrent network activity in neocortex
Wester, Jason C.; Contreras, Diego
2012-01-01
The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential L4→L2/3→L5 sequence, followed by horizontal propagation with a leading front in supra and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supra and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supra and infragranular circuits with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo. PMID:22514308
LATTE Linking Acoustic Tests and Tagging Using Statistical Estimation
2015-09-30
the complexity of the model: (from simplest to most complex) Kalman filter , Markov chain Monte-Carlo (MCMC) and ABC. Many of these methods have been...using SMMs fitted using Kalman filters . Therefore, using the DTAG data, we can estimate the distributions associated with 2D horizontal displacement...speed (a key problem in the previous Kalman filter implementation). This new approach also allows the animal’s horizontal movement direction to differ
NASA Astrophysics Data System (ADS)
Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi
2008-05-01
One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.
Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco
2013-05-01
Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.
Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.
2006-01-01
Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.
Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy
NASA Astrophysics Data System (ADS)
Montone, Paola; Mariucci, M. Teresa
1999-09-01
We have analysed borehole breakout data from 12 deep wells in order to constrain the direction of the minimum and maximum horizontal stress in a part of the Po Plain, northern Italy, characterised by a ˜N-S prevailing compressional stress regime, and in order to shed light on the regional state of stress and on the correlation between the active stress field and the orientation of tectonic structures. The results have been compared with seismological data relating to 1988-1995 crustal seismicity (2.5< Md<4.8) and to the 1983 Parma ( Ms=5.0) and the 1996 Reggio Emilia ( Ms=5.1) events. Plio-Pleistocene mesostructural data are also described in order to better define the present-day stress field and to understand the active tectonic processes in particular stress provinces. The borehole breakout analysis, in accordance with the seismicity and mesostructural data, shows the presence of a predominant compression area, characterised by approximately N-S maximum horizontal stress, along the outer thrust of the Ferrara arc. Particularly, the breakout analysis indicates a minimum horizontal stress, N81W±22° relative to a total of eleven analysed wells, with 3746 m cumulative total length of breakout zones. Among these, nine wells are located in the same tectonic structure, consisting of an arc of asymmetric folds overthrust towards the NE. The breakout results for these wells are quite similar in terms of minimum horizontal stress direction (˜E-W oriented). The other two wells are located in the outside sector of the arc and one of them shows a different minimum horizontal stress direction, probably distinctive of another tectonic unit. On the basis of these new reliable stress indicators, the active compressive front in this area is located along the termination of the external northern Apenninic arc.
NASA Technical Reports Server (NTRS)
Mcgill, George E.
1992-01-01
The plains regions of Venus exhibit a complex array of structural features, including deformation belts of various types, wrinkle ridges, grabens, and enigmatic radar-bright linears. Probably the most pervasive of these structures are the wrinkle ridges, which appear to be morphologically identical to their counterparts on the Moon and Mars. Almost all workers agree that wrinkle ridges result from horizontal compressive stresses in the crust; they either are explained as flexural fold structures, or alternatively as scarps or folds related to reverse faults. Wrinkle ridges generally are narrow, have small amplitudes, and commonly are closely spaced as well, characteristics that imply a shallow crustal origin. If wrinkle ridges are due to horizontally directed compressive stresses in the shallow crust, as generally has been inferred, then the trends of these features provide a means to map both local and regional orientations of principal stresses in the uppermost part of the venusian crust: maximum compressive stress is normal to the ridges, minimum compressive stress is normal to the topographic surface, and thus the wrinkle ridge trends trace the orientation of the intermediate principal stress. Because there are few plains areas on Venus totally devoid of wrinkle ridges, it should be possible to establish a number of interesting relationships on a near-global scale by mapping the trends of wrinkle ridges wherever they occur. The present study is addressing three questions: (1) Do the trends of wrinkle ridges define domains that are large relative to the sizes of individual plains regions? If so, can these domains be related to large-scale topographic or geologic features? (2) Are regional trends of wrinkle ridges affected by local features such as coronae? If so, is it possible to determine the relative ages of the far-field and local stresses from detailed study of trend inheritance or superposition relationships? (3) What is the relationship between wrinkle ridges and the larger ridges that make up ridge belts?
The effects of glycogen synthase kinase-3beta in serotonin neurons.
Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R; Beaulieu, Jean Martin; Gamble, Karen L; Li, Xiaohua
2012-01-01
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.
P and S Velocity Structure in the Groningen Gas Reservoir From Noise Interferometry
NASA Astrophysics Data System (ADS)
Zhou, Wen; Paulssen, Hanneke
2017-12-01
Noise interferometry has proven to be a powerful tool to image seismic structure. In this study we used data from 10 geophones located in a borehole at ˜3 km depth within the Groningen gas reservoir in the Netherlands. The continuous data cross correlations show that noise predominantly comes in from above. The observed daily and weekly variations further indicate that the noise has an anthropogenic origin. The direct P wave emerges from the stacked vertical component cross correlations with frequencies up to 80 Hz and the direct S wave is retrieved from the horizontal components with frequencies up to 50 Hz. The measured intergeophone travel times were used to retrieve the P and S velocity structure along the borehole, and a good agreement was found with well log data. In addition, from the S wave polarizations, we determined azimuthal anisotropy with a fast direction of N65°W±18° and an estimated magnitude of (4±2)%. The fast polarization direction corresponds to the present direction of maximum horizontal stress measured at nearby boreholes but is also similar to the estimated paleostress direction.
Banta, Edward R.; Provost, Alden M.
2008-01-01
This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.
Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears
NASA Technical Reports Server (NTRS)
Fritzsch, B.; Signore, M.; Simeone, A.
2001-01-01
We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.
Ramírez-Campillo, Rodrigo; Gallardo, Francisco; Henriquez-Olguín, Carlos; Meylan, Cesar M P; Martínez, Cristian; Álvarez, Cristian; Caniuqueo, Alexis; Cadore, Eduardo L; Izquierdo, Mikel
2015-07-01
The aim of this study was to compare the effects of 6 weeks of vertical, horizontal, or combined vertical and horizontal plyometric training on muscle explosive, endurance, and balance performance. Forty young soccer players aged between 10 and 14 years were randomly divided into control (CG; n = 10), vertical plyometric group (VG; n = 10), horizontal plyometric group (HG; n = 10), and combined vertical and horizontal plyometric group (VHG; n = 10). Players performance in the vertical and horizontal countermovement jump with arms, 5 multiple bounds test (MB5), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), sprint, change of direction speed (CODS), Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1), and balance was measured. No significant or meaningful changes in the CG, apart from small change in the Yo-Yo IR1, were observed while all training programs resulted in meaningful changes in explosive, endurance, and balance performance. However, only VHG showed a statistically significant (p ≤ 0.05) increase in all performance test and most meaningful training effect difference with the CG across tests. Although no significant differences in performance changes were observed between experimental groups, the VHG program was more effective compared with VG (i.e., jumps, MKV, sprint, CODS, and balance performance) and HG (i.e., sprint, CODS, and balance performance) to small effect. The study demonstrated that vertical, horizontal, and combined vertical and horizontal jumps induced meaningful improvement in explosive actions, balance, and intermittent endurance capacity. However, combining vertical and horizontal drills seems more advantageous to induce greater performance improvements.
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
Gravity Waves in the Presence of Shear during DEEPWAVE
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.
2016-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.
Designing a new three-dimensional periodic cellular auxetic material
NASA Astrophysics Data System (ADS)
Zhou, Yiyi; Chen, Lianmen
2017-07-01
Auxetics are materials showing a negative Poisson’s ratio. Early research found several categories of auxetic materials in the chemical field. Later research identified the fundamental mechanism generating this behavior is rotation; a variety of two-dimensional auxetic material have been generated accordingly. Nevertheless, the successful example of three-dimensional auxetic material is still rare. This paper introduces a new design of three-dimensional periodic cellular auxetic material based on geometrical and mechanical methodology. The projections of the optimized periodic modules in two horizontal directions are geometrically same with auxetic hexahedral poem, so that the optimized periodic material can perform auxetic in both two horizontal directions under vertical compression. Parametric model is simulated to prove the design.
NASA Technical Reports Server (NTRS)
Meek, C. E.; Reid, I. M.
1984-01-01
It has been suggested that the velocities produced by the spaced antenna partial-reflection drift experiment may constitute a measure of the vertical oscillations due to short-period gravity waves rather than the mean horizontal flow. The contention is that the interference between say two scatterers, one of which is traveling upward, and the other down, will create a pattern which sweeps across the ground in the direction (or anti-parallel) of the wave propagation. Since the expected result, viz., spurious drift directions, is seldom, if ever, seen in spaced antenna drift velocities, this speculation is tested in an atmospheric model.
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Saffer, D. M.; Castillo, D. A.; Hirose, T.
2016-12-01
During IODP Expedition 348, borehole C0002F/N/P was advanced to a depth of 3058 m below the seafloor (mbsf) into the inner forearc accretionary wedge of the Nankai subduction zone (SW Japan), now the deepest scientific drilling ever into the ocean floor. The goals were to investigate the physical properties, structure, and state of stress deep within the hanging wall of a seismogenic subduction plate boundary. Mud pressure and gas monitoring, injection tests, leak-off tests (LOT), logging-while-drilling (LWD) measurements, and observations of mud losses and hole conditions provide both direct and indirect information about in situ pore pressure and stress state. The LOTs show that the minimum principal stress is consistently less than the vertical stress defined by the overburden, ruling out a thrust faulting stress state throughout the drilled section, and define a nearly linear gradient in Shmin from the seafloor to the base of the hole. Observations of mud loss and the lack of observed gas shows indicate that formation pore fluid pressure is not significantly (< 10 MPa) greater than hydrostatic. The maximum horizontal stress, estimated from borehole breakout width and pressure spikes during pack-off events, is close in magnitude to the vertical stress. Therefore the accretionary prism lies in either a normal or strike-slip faulting regime, or is transitional between the two, from 1 to 3 km depth. At 3002 mbsf we estimate that the effective stresses are: Sv' = 33 MPa; SHmax' = 25-36 MPa; and Shmin' = 18.5-21 MPa. Differential stresses are therefore low, on the order of 10-12 MPa, in the hanging wall of the subduction thrust. We conclude that (1) the inner wedge is not critically stressed in horizontal compression; (2) basal traction along the megathrust must be low in order to permit concurrent locking of the fault and low differential stresses deep within the upper plate; and (3) although low differential stresses may persist down to the plate boundary at 5000 mbsf, the maximum horizontal stress SHmax must transition to become greater than the vertical stress, either spatially below the base of the borehole, or temporally leading up to megathrust fault rupture, in order to drive slip on the megathrust.
FIELD EVALUATION OF DIPOLE METHOD TO MEASURE AQUIFER ANISOTROPY
The ultimate size of a three-dimensional groundwater circulation cell surrounding a vertical circulation well (VCW) is a strong function of the aquifer hydraulic anisotropy, the ratio of the hydraulic conductivity in the horizontal direction to that in the vertical direction. In ...
FIELD APPLICATION OF DIPOLE METHOD TO MEASURE AQUIFER ANISOTROPHY
The ultimate size of a three-dimensional groundwater circulation cell surrounding a vertical circulation well (VCW) is a strong function of the aquifer hydraulic anisotrophy, the ratio of the hydraulic conductivity in the horizontal direction to that in the vertical direction. In...
Tilt to horizontal global solar irradiance conversion: application to PV systems data
NASA Astrophysics Data System (ADS)
Housmans, Caroline; Leloux, Jonathan; Bertrand, Cédric
2017-04-01
Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane requiring that at least two of the three solar components (i.e. global, direct and diffuse) are known. When only global irradiance measurements are available, the conversion from horizontal to tilted planes is still possible but in this case transposition models have to be coupled with decomposition models (i.e. models that predict the direct and diffuse components from the global one). Here, two different approaches have been considered to solve the reverse process, i.e. the conversion from tilted to horizontal: (i) one-sensor approach and (ii) multi-sensors approach. Because only one tilted plane is involved in the one-sensor approach, a decomposition model need to be coupled with a transposition model to solve the problem. By contrast, at least two tilted planes being considered in the multi-sensors approach, only a transposition model is required to perform the conversion. First, global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle were used to evaluate the performance of both approaches. Four pyranometers (one mounted in the horizontal plane and three on inclined surfaces with different tilts and orientations) were involved in the validation exercise. Second, the inverse transposition was applied to tilted global solar irradiance values retrieved from the energy production registered at residential PV systems located in the vicinity of Belgian radiometric stations operated by RMI (for validation purposes).
NASA Astrophysics Data System (ADS)
Ghysels, Gert; Benoit, Sien; Awol, Henock; Jensen, Evan Patrick; Debele Tolche, Abebe; Anibas, Christian; Huysmans, Marijke
2018-04-01
An improved general understanding of riverbed heterogeneity is of importance for all groundwater modeling studies that include river-aquifer interaction processes. Riverbed hydraulic conductivity (K) is one of the main factors controlling river-aquifer exchange fluxes. However, the meter-scale spatial variability of riverbed K has not been adequately mapped as of yet. This study aims to fill this void by combining an extensive field measurement campaign focusing on both horizontal and vertical riverbed K with a detailed geostatistical analysis of the meter-scale spatial variability of riverbed K . In total, 220 slug tests and 45 standpipe tests were performed at two test sites along the Belgian Aa River. Omnidirectional and directional variograms (along and across the river) were calculated. Both horizontal and vertical riverbed K vary over several orders of magnitude and show significant meter-scale spatial variation. Horizontal K shows a bimodal distribution. Elongated zones of high horizontal K along the river course are observed at both sections, indicating a link between riverbed structures, depositional environment and flow regime. Vertical K is lognormally distributed and its spatial variability is mainly governed by the presence and thickness of a low permeable organic layer at the top of the riverbed. The absence of this layer in the center of the river leads to high vertical K and is related to scouring of the riverbed by high discharge events. Variograms of both horizontal and vertical K show a clear directional anisotropy with ranges along the river being twice as large as those across the river.
Cross-orientation suppression in human visual cortex
Heeger, David J.
2011-01-01
Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720
The Utility of SAR to Monitor Ocean Processes.
1981-11-01
echo received from ocean waves include the motion of the a horizontally polarized wave will have its E vector parallel to scattering surfaces, the so...radiation is defined by the direction of the electric field intensity, E, vector . For example, a horizontally polarized wave will have its E vector ...Oil Spill Off the East Coast of the United States ................ .... 55 19. L-band Parallel and Cross Polarized SAR Imagery of Ice in the Beaufort
The US Navy Coupled Ocean-Wave Prediction System
2014-09-01
Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum...for fourth-order differences for horizontal baroclinic pressure gradients and for interpolation of Coriolis terms. There is an option to use the
GFU-6/E 30mm Ammunition Loader for GAU-8A Gun System
1975-12-01
dropped onto the conveyor (See Figure 17) and transferred to the aircraft on these elements through flexible chuting which interfaces directly with the...14. Dwell Linkage 19 15. Horizontal Conveyor - Flex Chute Interface 20 16. Element Turnaround Sprocket 21 17. Horizontal Conveyor 22 18. Load Head... conveyor element mechanism for transport to the GAU-8/A loader unit. d. The contractor shall design the automated loading system to accept unfired
Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia
NASA Astrophysics Data System (ADS)
Balfour, N. J.; Cassidy, J. F.; Dosso, S. E.
2012-01-01
This paper aims to identify sources and variations of crustal anisotropy from shear-wave splitting measurements in the forearc of the Northern Cascadia Subduction Zone of southwest British Columbia. Over 20 permanent stations and 15 temporary stations were available for shear-wave splitting analysis on ˜4500 event-station pairs for local crustal earthquakes. Results from 1100 useable shear-wave splitting measurements show spatial variations in fast directions, with margin-parallel fast directions at most stations and margin-perpendicular fast directions at stations in the northeast of the region. Crustal anisotropy is often attributed to stress and has been interpreted as the fast direction being related to the orientation of the maximum horizontal compressive stress. However, studies have also shown anisotropy can be complicated by crustal structure. Southwest British Columbia is a complex region of crustal deformation and some of the stations are located near large ancient faults. To use seismic anisotropy as a stress indicator requires identifying which stations are influenced by stress and which by structure. We determine the source of anisotropy at each station by comparing fast directions from shear-wave splitting results to the maximum horizontal compressive stress orientation determined from earthquake focal mechanism inversion. Most stations show agreement between the fast direction and the maximum horizontal compressive stress. This suggests that anisotropy is related to stress-aligned fluid-filled microcracks based on extensive dilatancy anisotropy. These stations are further analysed for temporal variations to lay groundwork for monitoring temporal changes in the stress over extended time periods. Determining the sources of variability in anisotropy can lead to a better understanding of the crustal structure and stress, and in the future may be used as a monitoring and mapping tool.
Effectiveness of Botulinum Toxin Administered to Abolish Acquired Nystagmus
NASA Technical Reports Server (NTRS)
Leigh, R. John; Tomsak, Robert L.; Grant, Michael P.; Remler, Bernd F.; Yaniglos, Stacy S.; Lystad, Lisa; Dell'Osso, Louis F.
1992-01-01
We injected botulinum toxin into the horizontal rectus muscles of the right eyes of two patients who had acquired pendular nystagmus with horizontal, vertical, and torsional components. This treatment successfully abolished the horizontal component of the nystagmus in the injected eye in both patients for approximately 2 months. Both patients showed a small but measurable improvement of vision in the injected eye that may have been limited by coexistent disease of the visual pathways. The vertical and torsional components of the nystagmus persisted in both patients. In one patient, the horizontal component of nystagmus in the noninjected eye increased; we ascribe this finding to plastic-adaptive changes in response to paresis caused by the botulinum toxin. Such plastic-adaptive changes and direct side effects of the injections - such as diplopia and ptosis - may limit the effectiveness of botulinum toxin in the treatment of acquired nystagmus. Neither patient elected to repeat the botulinum treatment.
CFD analysis of a Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
Changes in paleostress and its magnitude related to seismic cycles in the Chelung-pu Fault, Taiwan
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshitaka; Tobe, Kota; Yeh, En-Chao; Lin, Weiren; Song, Sheng-Rong
2015-12-01
Paleostress analysis was conducted through a multiple stress inversion method using slip data recoded for the core samples from the Taiwan Chelung-pu Fault Drilling Project (TCDP). Two stress fields were obtained; one of these had horizontally plunging σ1, and the other has horizontally plunging σ2 or σ3 in the compressional stress direction of the Chi-Chi earthquake. Stress magnitude for both the stress fields was constrained by stress polygons, which indicated larger SHmax for horizontally plunging σ1 than that in the case of horizontally plunging σ2 or σ3. These differences in stress orientations and stress magnitude suggest that the change in stress filed can be caused by stress drop and stress buildup associated with seismic cycles. The seismic cycles recoded in the core samples from TCDP could include many events at geological timescale and not only the 1999 Chi-Chi earthquake.
Evidence for a shear horizontal resonance in supported thin films
NASA Astrophysics Data System (ADS)
Zhang, X.; Manghnani, M. H.; Every, A. G.
2000-07-01
We report evidence for a different type of acoustic film excitation, identified as a shear horizontal resonance, in amorphous silicon oxynitride films on GaAs substrate. Observation of this excitation has been carried out using surface Brillouin scattering of light. A Green's function formalism is used for analyzing the experimental spectra, and successfully simulates the spectral features associated with this mode. The attributes of this mode are described; these include its phase velocity which is nearly equal to that of a bulk shear wave propagating parallel to the surface and is almost independent of film thickness and scattering angle, its localization mainly in the film, and its polarization in the shear horizontal direction.
Couvillon, Margaret J.; Phillipps, Hunter L. F.; Schürch, Roger; Ratnieks, Francis L. W.
2012-01-01
The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis. PMID:22513277
Couvillon, Margaret J; Phillipps, Hunter L F; Schürch, Roger; Ratnieks, Francis L W
2012-08-23
The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis.
Geomagnetic referencing--the real-time compass for directional drillers
Buchanan, Andrew; Finn, Carol; Love, Jeffrey J.; Worthington, E. William; Lawson, Fraser; Maus, Stefan; Okewunmi, Shola; Poedjono, Benny
2013-01-01
To pinpoint the location and direction of a wellborne, directional driller rely on measurements from accelerometers, magnetometer and gyroscopes. In the past, high-accuracy guidance methods required a halt in drilling to obtain directional measurements. Advances in geomagnetic referencing now allow companies to use real-time data acquired during drilling to accurately potion horizontal wells, decrease well spacing and drill multiple wells from limited surface locations.
33 CFR 86.07 - Directional properties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... properties. The sound pressure level of a directional whistle shall be not more than 4 dB below the sound... forward axis. The sound pressure level of the whistle in any other direction in the horizontal plane shall not be more than 10 dB less than the sound pressure level specified for the forward axis, so that the...
NASA Astrophysics Data System (ADS)
Takehiro, Shin-ichi
2015-04-01
We investigate the influence of surface displacement on fluid motions induced by horizontally heterogeneous Joule heating in the inner core. The difference between the governing equations and those of Takehiro (2011) is the boundary conditions at the inner core boundary (ICB). The temperature disturbance at the ICB coincides with the melting temperature, which varies depending on the surface displacement. The normal component of stress equalizes with the buoyancy induced by the surface displacement. The toroidal magnetic field and surface displacement with the horizontal structure of Y20 spherical harmonics is given. The flow fields are calculated numerically for various amplitudes of surface displacement with the expected values of the parameters of the core. Further, by considering the heat balance at the ICB, the surface displacement amplitude is related to the turbulent velocity amplitude in the outer core, near the ICB. The results show that when the turbulent velocity is on the order of 10-1 -10-2 m/s, the flow and stress fields are similar to those of Takehiro (2011), where the surface displacement vanishes. As the amplitude of the turbulent velocity decreases, the amplitude of the surface displacement increases, and counter flows from the polar to equatorial regions emerge around the ICB, while flow in the inner regions is directed from the equatorial to polar regions, and the non-zero radial component of velocity at the ICB remains. When the turbulent velocity is on the order of 10-4 -10-5 m/s, the radial component of velocity at the ICB vanishes, the surface counter flows become stronger than the flow in the inner region, and the amplitude of the stress field near the ICB dominates the inner region, which might be unsuitable for explaining the elastic anisotropy in the inner core.
NASA Astrophysics Data System (ADS)
Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Wang, Ruyue; Yin, Shuai; Li, Ang; Fu, Fuquan
2017-08-01
An analysis of the in-situ state of stress in a shale reservoir was performed based on comprehensive information about the subsurface properties from wellbores established during the development of an oil and gas field. Industrial-level shale gas production has occurred in the Niutitang formation of the lower Cambrian Cen'gong block, South China. In this study, data obtained from hydraulic fracturing, drilling-induced fractures, borehole breakout, global positioning system (GPS), and well deviation statistics have been used to determine the orientation of the maximum horizontal principal stress. Additionally, hydraulic fracturing and multi-pole array acoustic logging (XMAC) were used to determine the vertical variations in the in-situ stress magnitude. Based on logging interpretation and mechanical experiments, the spatial distributions of mechanical parameters were obtained by seismic inversion, and a 3D heterogeneous geomechanical model was established using a finite element stress analysis approach to simulate the in-situ stress fields. The effects of depth, faults, rock mechanics, and layer variations on the principal stresses, horizontal stress difference (Δσ), horizontal stress difference coefficient (Kh), and stress type coefficient (Sp) were determined. The results show that the direction of the maximum principal stress is ESE 120°. Additionally, the development zones of natural fractures appear to correlate with regions with high principal stress differences. At depths shallower than 375 m, the stress type is mainly a thrust faulting stress regime. At depths ranging from 375 to 950 m, the stress type is mainly a strike-slip faulting stress regime. When the depth is > 950 m, the stress type is mainly a normal faulting stress regime. Depth, fault orientation, and rock mechanics all affect the type of stress. The knowledge regarding the Cen'gong block is reliable and can improve borehole stability, casing set point determination, well deployment optimization, and fracturing area selection.
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
Comparative Tectonics of Europa and Ganymede
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Collins, G. C.; Prockter, L. M.; Head, J. W.
2000-10-01
Europa and Ganymede are sibling satellites with tectonic similarities and differences. Ganymede's ancient dark terrain is crossed by furrows, probably related to ancient large impacts, and has been normal faulted to various degrees. Bright grooved is pervasively deformed at multiple scales and is locally highly strained, consistent with normal faulting of an ice-rich lithosphere above a ductile asthenosphere, along with minor horizontal shear. Little evidence has been identified for compressional structures. The relative roles of tectonism and icy cryovolcanism in creating bright grooved terrain is an outstanding issue. Some ridge and trough structures within Europa's bands show tectonic similarities to Ganymede's grooved terrain, specifically sawtooth structures resembling normal fault blocks. Small-scale troughs are consistent with widened tension fractures. Shearing has produced transtensional and transpressional structures in Europan bands. Large-scale folds are recognized on Europa, with synclinal small-scale ridges and scarps probably representing folds and/or thrust blocks. Europa's ubiquitous double ridges may have originated as warm ice upwelled along tidally heated fracture zones. The morphological variety of ridges and troughs on Europa imply that care must be taken in inferring their origin. The relative youth of Europa's surface means that the satellite has preserved near-pristine morphologies of many structures, though sputter erosion could have altered the morphology of older topography. Moderate-resolution imaging has revealed lesser apparent diversity in Ganymede's ridge and trough types. Galileo's 28th orbit has brought new 20 m/pixel imaging of Ganymede, allowing direct comparison to Europa's small-scale structures.
Present-day stress state analysis on the Big Island of Hawaíi, USA
NASA Astrophysics Data System (ADS)
Pierdominici, Simona; Kueck, Jochem; Millett, John; Planke, Sverre; Jerram, Dougal A.; Haskins, Eric; Thomas, Donald
2017-04-01
We analyze and interpret the stress features from a c. 1.5 km deep fully cored borehole (PTA2) on the Big Island of Hawaíi within the Humúula saddle region, between the Mauna Kea and Mauna Loa volcanoes. The Big Island of Hawaii comprises the largest and youngest island of the Hawaiian-Emperor seamount chain and is volumetrically dominated by shield stage tholeiitic volcanic rocks. Mauna Kea is dormant whereas Mauna Loa is still active. There are also a series of normal faults on Mauna Loa's northern and western slopes, between its two major rift zones, that are believed to be the result of combined circumferential tension from the two rift zones and from added pressure due to the westward growth of the neighboring Kīlauea volcano. The PTA2 borehole was drilled in 2013 into lava dominated formation (Pahoehoe and Aā) as part of the Humúula Groundwater Research Project (HGPR) with the purpose of characterizing the groundwater resource potential in this area. In 2016 two downhole logging campaigns were performed by the Operational Support Group of the International Continental Scientific Drilling Program (ICDP) to acquire a set of geophysical data as part of the Volcanic Margin Petroleum Prospectivity (VMAPP) project. The main objective of the logging campaign was to obtain high quality wireline log data to enable a detailed core-log integration of the volcanic sequence and to improve understanding of the subsurface expression of volcanic rocks. We identify stress features (e.g. borehole breakouts) and volcanic structures (e.g. flow boundaries, vesicles and jointing) at depth using borehole images acquired with an ABI43 acoustic borehole televiewer. We analyzed and interpreted the stress indicators and compared their orientation with the regional stress pattern. We identified a set of stress indicators along the hole dominantly concentrated within the lower logged interval of the PTA2 borehole. Two primary horizontal stress indicators have been taken into account: borehole breakouts (bidirectional enlargements) (BB) and drilling induced tensile fractures (DIF). BB and DIF occur when the stresses around the borehole exceed the compressive and tensile yield stress of the borehole wall rock respectively causing failure. A breakout is caused by the development of intersecting conjugate shear planes that cause pieces of the borehole wall to spall off. For a breakout to develop, the stress concentration around a vertical borehole is largest in the direction of the minimum horizontal stress. Hence, BB develops approximately parallel to the orientation of the minimum horizontal stress. For the DIF, the stress concentration around a vertical borehole is at a minimum in the maximum horizontal stress direction. Hence, DIF develop approximately parallel to the orientation of the maximum horizontal stress. Based on the World Stress Map, the present-day stress in this area is defined only by focal mechanism solutions. These data give a unique opportunity to characterize the orientation of the present-day stress field between two large volume shield volcanoes on an active volcanic island using a different approach and stress indicators.
Andrade, Isabel Vaamonde Sanchez; Santos-Perez, Sofia; Diz, Pilar Gayoso; Caballero, Torcuato Labella; Soto-Varela, Andrés
2013-05-01
Bithermal caloric testing and vestibular evoked myogenic potentials (VEMPs) are both diagnostic tools for the study of the vestibular system. The first tests the horizontal semicircular canal and the second evaluates the saccule and lower vestibular nerve. The results of these two tests can therefore be expected to be correlated. The aim of this study was to compare bithermal caloric test results with VEMP records in normal subjects to verify whether they are correlated. A prospective study was conducted in 60 healthy subjects (30 men and 30 women) who underwent otoscopy, pure tone audiometry, bithermal caloric testing and VEMPs. From the caloric test, we assessed the presence of possible vestibular hypofunction, whether there was directional preponderance and reflectivity of each ear (all based on both slow phase velocity and nystagmus frequency). The analysed VEMPs variables were: p1 and n1 latency, corrected amplitude, interaural p1 latency difference and p1 interaural amplitude asymmetry. We compared the reflectivity, hypofunction and directional preponderance of the caloric tests with the corrected amplitudes and amplitude asymmetries of the VEMPs. No correlations were found in the different comparisons between bithermal caloric testing results and VEMPs except for a weak correlation (p = 0.039) when comparing preponderance based on the number of nystagmus in the caloric test and amplitude asymmetry with 99 dB tone burst in the VEMPs test. The results indicate that the two diagnostic tests are not comparable, so one of them cannot replace the other, but the use of both increases diagnostic success in some conditions.
Focal mechanism of the seismic series prior to the 2011 El Hierro eruption
NASA Astrophysics Data System (ADS)
del Fresno, C.; Buforn, E.; Cesca, S.; Domínguez Cerdeña, I.
2015-12-01
The onset of the submarine eruption of El Hierro (10-Oct-2011) was preceded by three months of low-magnitude seismicity (Mw<4.0) characterized by a well documented hypocenter migration from the center to the south of the island. Seismic sources of this series have been studied in order to understand the physical process of magma migration. Different methodologies were used to obtain focal mechanisms of largest shocks. Firstly, we have estimated the joint fault plane solutions for 727 shocks using first motion P polarities to infer the stress pattern of the sequence and to determine the time evolution of principle axes orientation. Results show almost vertical T-axes during the first two months of the series and horizontal P-axes on N-S direction coinciding with the migration. Secondly, a point source MT inversion was performed with data of the largest 21 earthquakes of the series (M>3.5). Amplitude spectra was fitted at local distances (<20km). Reliability and stability of the results were evaluated with synthetic data. Results show a change in the focal mechanism pattern within the first days of October, varying from complex sources of higher non-double-couple components before that date to a simpler strike-slip mechanism with horizontal tension axes on E-W direction the week prior to the eruption onset. A detailed study was carried out for the 8 October 2011 earthquake (Mw=4.0). Focal mechanism was retrieved using a MT inversion at regional and local distances. Results indicate an important component of strike-slip fault and null isotropic component. The stress pattern obtained corresponds to horizontal compression in a NNW-SSE direction, parallel to the southern ridge of the island, and a quasi-horizontal extension in an EW direction. Finally, a simple source time function of 0.3s has been estimated for this shock using the Empirical Green function methodology.
Ductile crustal flow in Europe's lithosphere
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2011-12-01
Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
Vishwakarma, R K; Shivhare, U S; Nanda, S K
2012-09-01
Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Wiryadinata, Steven
Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.
Peripheral refraction in normal infant rhesus monkeys
Hung, Li-Fang; Ramamirtham, Ramkumar; Huang, Juan; Qiao-Grider, Ying; Smith, Earl L.
2008-01-01
Purpose To characterize peripheral refractions in infant monkeys. Methods Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15, 30, and 45 degrees. Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. Results In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical-equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians and the refractions became more symmetrical along both the horizontal and vertical meridians; small degrees of relative myopia were evident in all fields. Conclusions As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe. PMID:18487366
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-11-01
The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.
Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.
Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.
2011-01-01
Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.
Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography
2018-01-01
The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze. PMID:29304120
Hershberger, W A; Stewart, M R; Laughlin, N K
1976-05-01
Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.
Schemel, Laurence E.
2002-01-01
Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.
Hládek, Ľuboš; Porr, Bernd; Brimijoin, W Owen
2018-01-01
The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user's eye gaze.
Kim, Miso; Park, Kwan-Dong
2017-01-01
We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403
Research on the Crustal Deformation Characteristics in Beijing Using Insar and Gnss Technology
NASA Astrophysics Data System (ADS)
Hu, L.; Xing, C.; Dai, K.; Li, Y.; Li, Z.; Zhang, J.; Yan, R.; Xu, B.; Fan, Z.
2018-04-01
In this paper, we tried to reveal the characteristics of the crustal deformation in both the horizontal and vertical directions in Beijing using InSAR and GNSS observations. Regarding the serious land subsidence in Beijing plain, we also analysed the mechanism of the occurrence and development of the subsidence in combination with the tectonic settings. The GNSS results reveal that the crust in Beijing shows a significant left-lateral trend movement in the horizontal direction, while the vertical direction shows a gentle rise in the mountainous region and a significant subsidence in the plain area. The INSAR results shows a detailed subsidence area and the deformation characteristics were analyzed considering the fault activity. The foundation of geological structure dominates the subsiding in the Beijing Plain. The exploitation of groundwater exacerbates the level of subsidence and has new development. The active faults controlled the development of the subsiding in present days.
GIS-based identification of active lineaments within the Krasnokamensk Area, Transbaikalia, Russia
NASA Astrophysics Data System (ADS)
Petrov, V. A.; Lespinasse, M.; Ustinov, S. A.; Cialec, C.
2017-07-01
Lineament analysis was carried out using detailed digital elevation models (DEM) of the Krasnokamensk Area, southeastern Transbaikalia (Russia). The results of this research confirm the presence of already known faults, but also identify unknown fault zones. The primary focus was identifying small discontinuities and their relationship with extended fault zones. The developed technique allowed construction and identification of the active lineaments with their orientation of the compression and expansion axes in the horizontal plane, their direction of shear movement (right or left), and their geodynamic setting of formation (compression or stretching). The results of active faults identification and definition of their kinematics on digital elevation models were confirmed by measuring the velocities and directions of modern horizontal surface motions using a geodesic GPS, as well as identifying the principal stress axes directions of the modern stress field using modern-day earthquake data. The obtained results are deemed necessary for proper rational environmental management decisions.
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1988-01-05
A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1988-01-01
A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
NASA Astrophysics Data System (ADS)
Matsushita, T.; Takahashi, T.; Shirasawa, T.; Arakawa, E.; Toyokawa, H.; Tajiri, H.
2011-11-01
To conduct time-resolved measurements in the wide momentum transfer (q = 4π sinθ/λ, θ: the glancing angle of the x-ray beam, λ: x-ray wavelength) range of interest, we developed a method that can simultaneously measure the whole profile of x-ray diffraction and crystal truncation rod scattering of interest with no need of rotation of the specimen, detector, and monochromator crystal during the measurement. With a curved crystal polychromator (Si 111 diffraction), a horizontally convergent x-ray beam having a one-to-one correlation between wavelength (energy: 16.24-23.0 keV) and direction is produced. The convergent x-ray beam components of different wavelengths are incident on the specimen in a geometry where θ is the same for all the x-ray components and are diffracted within corresponding vertical scattering planes by a specimen ([GaAs(12ML)/AlAs(8 ML)]50 on GaAs(001) substrate) placed at the focal point. Although θ is the same for all the directions, q continuously varies because λ changes as a function of direction. The normalized horizontal intensity distribution across the beam, as measured using a two-dimensional pixel array detector downstream of the specimen, represents the reflectivity curve profile both near to and far from the Bragg point. As for the crystal truncation rod scattering around the 002 reflection, the diffraction profile from the Bragg peak down to reflectivity of 1.0 × 10-9 was measured with a sufficient data collection time (1000-2000 s). With data collection times of 100, 10, 1.0, and 0.1 s, profiles down to a reflectivity of ˜6 × 10-9, ˜2 × 10-8, ˜8 × 10-8, and ˜8 × 10-7 were measured, respectively. To demonstrate the time-resolving capability of the system, reflectivity curves were measured with time resolutions of 1.0 s while rotating the specimen. We have also measured the diffraction profile around the 113 reflection in the non-specular reflection geometry.
Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.
Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae
2015-09-22
In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.
Meylan, Cesar; McMaster, Travis; Cronin, John; Mohammad, Nur Ikhwan; Rogers, Cailyn; Deklerk, Melissa
2009-07-01
The purposes of this study were to determine the reliability of unilateral vertical, horizontal, and lateral countermovement jump assessments, the interrelationship between these tests, and their usefulness as predictors of sprint (10 m) and change-of-direction (COD) performance for 80 men and women physical education students. Jump performance was assessed on a contact mat and sprint, and COD performances were assessed using timing lights. With regard to the reliability statistics, the largest coefficient of variation (CV) was observed for the vertical jump (CV = 6.7-7.2%) of both genders, whereas the sprint and COD assessments had smallest variability (CV = 0.8 to 2.8%). All intraclass correlation coefficients (ICC) were greater than 0.85, except for the men's COD assessment with the alternate leg. The shared variance between the single-leg vertical, horizontal, and lateral jumps for men and women was less than 50%, indicating that the jumps are relatively independent of one another and represent different leg strength/power qualities. The ability of the jumps to predict sprint and COD performance was limited (R2 < 43%). It would seem that the ability to change direction with 1 leg is relatively independent of a COD with the other leg, especially in the women (R < 30%) of this study. However, if 1 jump assessment were selected to predict sprint and COD performance in a test battery, the single-leg horizontal countermovement jump would seem the logical choice, given the results of this study. Many of the findings in this study have interesting diagnostic and training implications for the strength and conditioning coach.
NASA Astrophysics Data System (ADS)
Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay
2017-11-01
Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.
Roosevelt Hot Springs, Utah FORGE Stress Logging Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLennan, John
This spreadsheet consist of data and graphs from deep well 58-32 stress testing from 6900 - 7500 ft depth. Measured stress data were used to correct logging predictions of in situ stress. Stress plots shows pore pressure (measured during the injection testing), the total vertical in situ stress (determined from the density logging) and the total maximum and minimum horizontal stresses. The horizontal stresses were determined from the DSI (Dipole Sonic Imager) and corrected to match the direct measurements.
The effects of horizontal violence and bullying on new nurse retention.
Weaver, Kelly B
2013-01-01
Horizontal violence and bullying are pervasive throughout nursing. New graduate nurses are at higher risk. Challenged with the task of making the transition from student to practitioner, new graduates often lack the confidence and social connectivity that may ward off interpersonal conflict. Continued interpersonal violence directed at new graduates may lead to negative physical and psychological consequences, high turnover rates, or abandonment of the profession. This article describes possible strategies to break the chain of violence.
NASA Technical Reports Server (NTRS)
Wagner, T. A.; Cove, D. J.; Sack, F. D.
1997-01-01
Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.
NASA Technical Reports Server (NTRS)
Kogan, M. N.; Ustinov, M. V.
1997-01-01
Work is devoted to study of free-stream vorticity normal to leading edge interaction with boundary layer over plate and resulting flow distortion influence on laminar-turbulent transition. In experiments made the wake behind the vertically stretched wire was used as a source of vortical disturbances and its effect on the boundary layer over the horizontally mounted plate with various leading edge shapes was investigated. The purpose of experiments was to check the predictions of theoretical works of M.E. Goldstein, et. al. This theory shows that small free-stream inhomogeneity interacting with leading edge produces considerable distortion of boundary layer flow. In general, results obtained confirms predictions of Goldstein's theory, i.e., the amplification of steady vortical disturbances in boundary layer caused by vortex lines stretching was observed. Experimental results fully coincide with predictions of theory for large Reynolds number, relatively sharp leading edge and small disturbances. For large enough disturbances the flow distortion caused by symmetric wake unexpectedly becomes antisymmetric in spanwise direction. If the leading edge is too blunt the maximal distortion takes place immediately at the nose and no further amplification was observed. All these conditions and results are beyond the scope of Goldstein's theory.
Kuo, Chi-Liang; Huang, Michael H
2008-04-16
We report the growth of ultralong β-Ga(2)O(3) nanowires and nanobelts on silicon substrates using a vapor phase transport method. The growth was carried out in a tube furnace, with gallium metal serving as the gallium source. The nanowires and nanobelts can grow to lengths of hundreds of nanometers and even millimeters. Their full lengths have been captured by both scanning electron microscope (SEM) and optical images. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images have been used to study the crystal structures of these nanowires and nanobelts. Strong blue emission from these ultralong nanostructures can be readily observed by irradiation with an ultraviolet (UV) lamp. Diffuse reflectance spectroscopy measurements gave a band gap of 4.56 eV for these nanostructures. The blue emission shows a band maximum at 470 nm. Interestingly, by annealing the silicon substrates in an oxygen atmosphere to form a thick SiO(2) film, and growing Ga(2)O(3) nanowires over the sputtered gold patterned regions, horizontal Ga(2)O(3) nanowire growth in the non-gold-coated regions can be observed. These horizontal nanowires can grow to as long as over 10 µm in length. Their composition has been confirmed by TEM characterization. This represents one of the first examples of direct horizontal growth of oxide nanowires on substrates.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Quaternary uplift and tilting of Amorgos Island (southern Aegean) and the 1956 earthquake
NASA Astrophysics Data System (ADS)
Stiros, Stathis C.; Marangou, Lila; Arnold, Maurice
1994-12-01
Uplifted Pleistocene marine sediments, submerged ancient ruins and raised beaches confirm earlier views that the asymmetry of the relief of Amorgos Island (southern Aegean) testifies to a fault-bounded block uplifted and tilted along a SW-NE trending horizontal axis; the uplifted coast corresponds to a high-gradient slope controlled by an oblique master normal fault. Furthermore, geomorphic and biological evidence, radiometric data and comparison of aerial photographs indicates that the 1956 earthquake (Ms = 7.4) uplifted the footwall of this normal fault by about 30 cm.
Bent Bragg–Laue monochromator for high-energy X-rays
Shi, Xianbo; Xu, Wenqian; Yakovenko, Andrey; ...
2017-07-26
A bent Bragg–Laue monochromator (BLM) is proposed for high-energy X-ray (~25–60 keV) beamlines. The BLM has the unique feature of bi-directional focusing. A sagittally bent Laue crystal can focus the large horizontal fan of a bending magnet or wiggler source. A meridionally bent Bragg crystal focuses the beam vertically and corrects for the anticlastic bending effects of the Laue crystal. This monochromator geometry relies on the crystal orientations being optimized. We show that the focusing condition and Rowland condition can be simultaneously satisfied at a given energy. A detailed ray tracings indicate that a BLM can provide similar energy resolutionmore » and higher flux density compared to a sagittally bent double-Laue monochromator configuration. A prototype BLM with a symmetric Bragg crystal and an asymmetric Laue crystal was tested. Matching of the bend radii of the two crystals in the meridional direction was demonstrated. Generally, the horizontal acceptance of the sagittally bent Laue crystal is limited by the large curvature. This horizontal BLM acceptance could be increased by translating the Laue crystal along its sagittal bending axis.« less
Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor
Hammond, Jules L.; Rosamond, Mark C.; Sivaraya, Siva; Marken, Frank; Estrela, Pedro
2016-01-01
Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)−DNA binding events using dielectric spectroscopy with the horizontal coplanar device. PMID:27983655
Bent Bragg–Laue monochromator for high-energy X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xianbo; Xu, Wenqian; Yakovenko, Andrey
A bent Bragg–Laue monochromator (BLM) is proposed for high-energy X-ray (~25–60 keV) beamlines. The BLM has the unique feature of bi-directional focusing. A sagittally bent Laue crystal can focus the large horizontal fan of a bending magnet or wiggler source. A meridionally bent Bragg crystal focuses the beam vertically and corrects for the anticlastic bending effects of the Laue crystal. This monochromator geometry relies on the crystal orientations being optimized. We show that the focusing condition and Rowland condition can be simultaneously satisfied at a given energy. A detailed ray tracings indicate that a BLM can provide similar energy resolutionmore » and higher flux density compared to a sagittally bent double-Laue monochromator configuration. A prototype BLM with a symmetric Bragg crystal and an asymmetric Laue crystal was tested. Matching of the bend radii of the two crystals in the meridional direction was demonstrated. Generally, the horizontal acceptance of the sagittally bent Laue crystal is limited by the large curvature. This horizontal BLM acceptance could be increased by translating the Laue crystal along its sagittal bending axis.« less
Three-dimensional ocular kinematics underlying binocular single vision
Misslisch, H.
2016-01-01
We have analyzed the binocular coordination of the eyes during far-to-near refixation saccades based on the evaluation of distance ratios and angular directions of the projected target images relative to the eyes' rotation centers. By defining the geometric point of binocular single vision, called Helmholtz point, we found that disparities during fixations of targets at near distances were limited in the subject's three-dimensional visual field to the vertical and forward directions. These disparities collapsed to simple vertical disparities in the projective binocular image plane. Subjects were able to perfectly fuse the vertically disparate target images with respect to the projected Helmholtz point of single binocular vision, independent of the particular location relative to the horizontal plane of regard. Target image fusion was achieved by binocular torsion combined with corrective modulations of the differential half-vergence angles of the eyes in the horizontal plane. Our findings support the notion that oculomotor control combines vergence in the horizontal plane of regard with active torsion in the frontal plane to achieve fusion of the dichoptic binocular target images. PMID:27655969
16 CFR 1216.2 - Requirements for infant walkers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... coefficient of friction = 0.05 NCAMI = Normal force (for CAMI dummy scenario) = weight of CAMI dummy and... occupant seating area and arms placed on the walker tray. (ii) [Reserved] (8) Instead of complying with... horizontally (0 ± 0.5° with respect to the table surface). (ii) [Reserved] (9) Instead of complying with...
A Tool for the Analysis of Motion Picture Film or Video Tape.
ERIC Educational Resources Information Center
Ekman, Paul; Friesen, Wallace V.
1969-01-01
A visual information display and retrieval system (VID-R) is described for application to visual records. VID-R searches and retrieves events by time address (location) or by previously stored ovservations or measurements. Fields are labeled by writing discriminable binary addresses on the horizontal lines outside the normal viewing area. The…
Microfilm Viewer Experiments. Final Report.
ERIC Educational Resources Information Center
Reintjes, J. F.; And Others
Two new designs for microfilm viewers are described. Both viewers are front projection viewers utilizing matte surface display screens. One viewer with an adjustable horizontal screen has a normal magnification rate and is mounted on a desk top. The other viewer has a high (4x) magnification rate in a mini-theater configuration with remote…
Haptic Tracking Permits Bimanual Independence
ERIC Educational Resources Information Center
Rosenbaum, David A.; Dawson, Amanda A.; Challis, John H.
2006-01-01
This study shows that in a novel task--bimanual haptic tracking--neurologically normal human adults can move their 2 hands independently for extended periods of time with little or no training. Participants lightly touched buttons whose positions were moved either quasi-randomly in the horizontal plane by 1 or 2 human drivers (Experiment 1), in…
Code of Federal Regulations, 2010 CFR
2010-07-01
... defined by a series of points of contact, with the boat structure, by straight lines at 45 degree angles... the line defined by a series of points of contact with the boat structure, by straight lines at 45 degree angles to the horizontal and contained in a vertical plane normal to the outside edge of the boat...
Considerations on the mechanisms of alternating skew deviation in patients with cerebellar lesions.
Zee, D S
1996-01-01
Alternating skew deviation, in which the side of the higher eye changes depending upon whether gaze is directed to the left or the right, is a frequent sign in patients with posterior fossa lesions, including those restricted to the cerebellum. Here we propose a mechanism for alternating skews related to the otolith-ocular responses to fore and aft pitch of the head in lateral-eyed animals. In lateral-eyed animals the expected response to a static head pitch is cyclorotation of the eyes. But if the eyes are rotated horizontally in the orbit, away from the primary position, a compensatory skew deviation should also appear. The direction of the skew would depend upon whether the eyes were directed to the right (left eye forward, right eye backward) or to the left (left eye backward, right eye forward). In contrast, for frontal-eyed animals, skew deviations are counterproductive because they create diplopia and interfere with binocular vision. We attribute the emergence of skew deviations in frontal-eyed animals in pathological conditions to 1) an imbalance in otolithocular pathways and 2) a loss of the component of ocular motor innervation that normally corrects for the differences in pulling directions and strengths of the various ocular muscles as the eyes change position in the orbit. Such a compensatory mechanism is necessary to ensure optimal binocular visual function during and after head motion. This compensatory mechanism may depend upon the cerebellum.
The NACA Impact Basin and Water Landing Tests of a Float Model at Various Velocities and Weights
NASA Technical Reports Server (NTRS)
Batterson, Sidney A
1944-01-01
The first data obtained in the United States under the controlled testing conditions necessary for establishing relationships among the numerous parameters involved when a float having both horizontal and vertical velocity contacts a water surface are presented. The data were obtained at the NACA impact basin. The report is confined to a presentation of the relationship between resultant velocity and impact normal acceleration for various float weights when all other parameters are constant. Analysis of the experimental results indicated that the maximum impact normal acceleration was proportional to the square of the resultant velocity, that increases in float weight resulted in decreases in the maximum impact normal acceleration, and that an increase in the flight-path angle caused increased impact normal acceleration.
Neutronic reactor construction
Huston, Norman E.
1976-07-06
1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.
Rotary moving bed for CO.sub.2 separation and use of same
Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.
2017-01-10
A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.
Sidelooking laser altimeter for a flight simulator
NASA Technical Reports Server (NTRS)
Webster, L. D. (Inventor)
1983-01-01
An improved laser altimeter for a flight simulator which allows measurement of the height of the simulator probe above the terrain directly below the probe tip is described. A laser beam is directed from the probe at an angle theta to the horizontal to produce a beam spot on the terrain. The angle theta that the laser beam makes with the horizontal is varied so as to bring the beam spot into coincidence with a plumb line coaxial with the longitudinal axis of the probe. A television altimeter camera observes the beam spot and has a raster line aligned with the plumb line. Spot detector circuit coupled to the output of the TV camera monitors the position of the beam spot relative to the plumb line.
Restoring directional growth sense to plants in space
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
Introduction of new plant classification: electrotropic (Et) and non-electrotropic (nEt) plants gives us a criterion which plants need electric field to grow "normally" in space. The electric field: E is measured in V/m (volt per meter). Do not confuse "electrotropism" understood by some as the response to current flow transversely through the plant's root. This effect was previously described in biological textbooks. I suggest to call it as (Ct) (here C stands for current and t for tropism). In the laboratory we have in the plant growth chamber two transparent to light (wire mesh) conducting sheets separated by m(meters) and V volts potential difference. It has been shown in laboratory that Et is a very important factor in electrotropic plant development. Space experiments with plants grown in orbit from seed to seed have been fully successful only (in my very best knowledge) with nEt plants. The most common nEt plants are grasses (more than 50% of all plants). The nEt plants in space use phototropism as their sensor of direction. In space (and most greenhouses) we have to provide the electric field at least for the Et plants. It has been shown that the electric field is also beneficial to nEt plants which also acquire the sense of direction imposed by stronger than the normal 130V/m E field (vector). The stronger horizontal E field of 1.6kV/m (slightly more than 12 times stronger than 130V/m) does not influence the rate of growth of maize (which is nEt) in 130V/m vertical field or even in the Faraday cage 0V/m. Yet when the maize gets its leaves, they all lean in the horizontal field (1.6kV/m) towards the anode. The direction of the E vector is defined by the E field lines running from the positive to the negative charges. Because the electric forces are a factor of 1038 times stronger than the gravitational forces, it is not important for the E field whether it acts on ions in the gravity or in weightlessness. We have to recall that on the Earth and in space Et is due to the E vector acting selectively on negative ions (anions) giving them their directional growth sense towards the anode (+). It is obvious that the Et shall completely ignore the difference between terrestrial gravity or microgravity in space. The gravity acts on the plant as a whole and has nothing to do with Et, Ct or nEt. In Ct the roots also bend towards the anode. Besides we do not connect any current carrying electrodes to the plant roots or leaves in the true electrotropism Et as they do it in the Ct. They connect current carrying electrodes transversely to the roots exposed to the air, and removed from the soil. I hope these exact definitions of Et and Ct shall avoid confusion between the two completely different phenomena.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
1994-01-01
Simulated data from the UCLA cumulus ensemble model are used to investigate the quasi-universal validity of closure assumptions used in existing cumulus parameterizations. A closure assumption is quasi-universally valid if it is sensitive neither to convective cloud regimes nor to horizontal resolutions of large-scale/mesoscale models. The dependency of three types of closure assumptions, as classified by Arakawa and Chen, on the horizontal resolution is addressed in this study. Type I is the constraint on the coupling of the time tendencies of large-scale temperature and water vapor mixing ratio. Type II is the constraint on the coupling of cumulus heating and cumulus drying. Type III is a direct constraint on the intensity of a cumulus ensemble. The macroscopic behavior of simulated cumulus convection is first compared with the observed behavior in view of Type I and Type II closure assumptions using 'quick-look' and canonical correlation analyses. It is found that they are statistically similar to each other. The three types of closure assumptions are further examined with simulated data averaged over selected subdomain sizes ranging from 64 to 512 km. It is found that the dependency of Type I and Type II closure assumptions on the horizontal resolution is very weak and that Type III closure assumption is somewhat dependent upon the horizontal resolution. The influences of convective and mesoscale processes on the closure assumptions are also addressed by comparing the structures of canonical components with the corresponding vertical profiles in the convective and stratiform regions of cumulus ensembles analyzed directly from simulated data. The implication of these results for cumulus parameterization is discussed.
An examination of natural convection between two horizontal walls
NASA Astrophysics Data System (ADS)
Martine, J.-P.
Measurements were made of the turbulence magnitudes and characteristics of natural convective air flow between plates. The thermal and kinematic properties of the flows were determined for comparison with theoretical predictions. Three horizontal layers were identified, as were the principle parameters for a law of variations. A viscous film with heat transferred mainly by conduction, a thermal boundary layer where strong convective changes occurred, and a central isothermal mean layer where the temperature was convected as a passive scalar were characterized. The velocity structures, both horizontal and vertical, were defined in each region. The thermal gradients were strongest near the wall, to the extent that new thermometric instruments are necessary for direct instantaneous measurement of the discrete layers that might form in that region.