2012-12-01
a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3
49 CFR 173.175 - Permeation devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side... stacked to a height of 3 m (10 feet) (including the test sample). (3) Each of the above tests may be...
49 CFR 178.609 - Test requirements for packagings for infectious substances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... free-fall drops onto a rigid, nonresilient, flat, horizontal surface from a height of 9 m (30 feet... must be dropped, one in each of the following orientation: (i) Flat on the base; (ii) Flat on the top; (iii) Flat on the longest side; (iv) Flat on the shortest side; and (v) On a corner. (2) Where the...
49 CFR 173.175 - Permeation devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...
49 CFR 173.175 - Permeation devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...
An exact solution for effects of topography on free Rayleigh waves
Savage, W.Z.
2004-01-01
An exact solution for the effects of topography on Rayleigh wave amplification is presented. The solution is obtained by incorporating conformal mapping into complex-variable stress functions developed for free Rayleigh wave propagation in an elastic half-space with a flat upper surface. Results are presented for free Rayleigh wave propagation across isolated symmetric ridges and valleys. It is found for wavelengths that are comparable to ridge widths that horizontal Rayleigh wave amplitudes are amplified at ridge crests and that vertical amplitudes are strongly reduced near ridge crests relative to horizontal and vertical amplitudes of free Rayleigh waves in the flat case. Horizontal amplitudes are strongly deamplified at valley bottoms relative to those for the flat case for Rayleigh wavelengths comparable to valley widths. Wave amplitudes in the symmetric ridges and valleys asymptotically approach those for the flat case with increased wavelengths, increased ridge and valley widths, and with horizontal distance from and depth below the isolated ridges and valleys. Also, prograde particle motion is predicted near crests of narrow ridges and near the bottoms of narrow valleys. Finally, application of the theory at two sites known for topographic wave amplification gives a predicted surface wave amplification ratio of 3.80 at the ridge center for a frequency of 1.0 Hz at Robinwood Ridge in northern California and a predicted surface wave amplification ratio of 1.67 at the ridge center for the same frequency at the Cedar Hill Nursery site at Tarzana in southern California.
10 CFR 71.75 - Qualification of special form radioactive material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...
10 CFR 71.75 - Qualification of special form radioactive material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...
10 CFR 71.75 - Qualification of special form radioactive material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...
Ignition technique for an in situ oil shale retort
Cha, Chang Y.
1983-01-01
A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.
Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.
Schmitt, M; Grub, J; Heib, F
2015-06-01
Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Use of the flat dilatometer (DMT) in landslides
NASA Astrophysics Data System (ADS)
Amoroso, Sara; Monaco, Paola
2016-04-01
During the last decades we have assisted at a considerable shift from laboratory testing to in situ testing to the point that, today, in situ testing often represent the major part of a geotechnical investigation. Recommendations given in recent State-of-the-Art papers indicate that direct-push in situ tests, such as the Seismic Cone Penetration Test (SCPT) and the Seismic Dilatometer Test (SDMT), are fast and very convenient tests for routine site investigations. The aim of this paper is to describe the use of the flat dilatometer test (DMT) in landslide diagnosis and monitoring. In particular, a method is presented for detecting slip surfaces in overconsolidated clay slopes based on the inspection of the profiles of the horizontal stress index KD from DMT, as developed by Totani et al. (1997). In addition, the relaxation of the in situ horizontal stress σh, estimated from DMT, helps to locate a landslide. The paper illustrates by using different examples the capability of SDMT to identify the shear zones left remoulded by the occurrence of a landslide. Keywords: flat dilatometer, horizontal stress index, in situ horizontal stress References Totani G., Calabrese M., Marchetti S., Monaco, P. (1997). Use of in situ flat dilatometer (DMT) for ground characterization in the stability analysis of slopes. Proceeding of 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, September 1997, vol. 1, pp. 607-610.
Stress Related Fracturing in Dimension Stone Quarries
NASA Astrophysics Data System (ADS)
Hamdi Deliormanli, Ahmet; Maerz, Norbert H.
2016-10-01
In Missouri, the horizontal stresses (pressures) in the near surface rock are uncommonly high. While the vertical stresses in rock are simply a function of the weight of the overlying rock, near surface stresses can be many times higher. The near surface horizontal stresses can be in excess of 5 times greater than the vertical stresses. In this research, Flatjack method was used to measure horizontal stress in Red Granite Quarry in Missouri. The flat jack method is an approved method of measuring ground stresses. A saw cut is used to “relax” the stress in the ground by allowing the rock to deform inwards the cut. A hydraulic flat jack is used to inflate the slot; to push the rock back to its stressed position, as measured by a strain gauge on either side of the slot. The pressure in the jack, when the rock is exactly back to its original position, is equal to the ground stress before the saw cut was made. According to the results, present production direction for each pit is not good because the maximum stress direction is perpendicular with production direction. This case causes unintentional breakage results in the loss rock. The results show that production direction should be changed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... that ensure instant release onto a rigidly supported flat horizontal steel plate, which is 2 inches thick and 2 feet square. The plate shall have a clean, dry surface and any microfinish of not less than...
Cutting process simulation of flat drill
NASA Astrophysics Data System (ADS)
Tamura, Shoichi; Matsumura, Takashi
2018-05-01
Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.
Three-flat test with plates in horizontal posture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannoni, Maurizio; Molesini, Giuseppe
2008-04-20
Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.
Solar radiation on Mars: Stationary photovoltaic array
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Sherman, I.; Landis, G. A.
1993-01-01
Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.
Safer Ski Jumps: Design of Landing Surfaces and Clothoidal In-Run Transitions
2010-06-01
MINIMIZATION ......................................................................................... 9 B. DETERMINATION OF SKIER VELOCITY AT TAKEOFF...Spiral Flatness, Clothoid Length, and Angle From Horizontal ..................... 68 c. Free Body Diagram of a Skier in Clothoidal Transition...1 Figure 2. Ski jump in Einsiedeln, Switzerland, from [5] ................................................ 2 Figure 3. A skier performing
Vertical gas injection into liquid cross-stream beneath horizontal surfaces
NASA Astrophysics Data System (ADS)
Lee, In-Ho; Makiharju, Simo; Lee, Inwon; Perlin, Marc; Ceccio, Steve
2013-11-01
Skin friction drag reduction on flat bottomed ships and barges can be achieved by creating an air layer immediately beneath the horizontal surface. The simplest way of introducing the gas is through circular orifices; however the dynamics of gas injection into liquid cross-streams under horizontal surfaces is not well understood. Experiments were conducted to investigate the development of the gas topology following its vertical injection through a horizontal surface. The liquid cross-flow, orifice diameter and gas flow rate were varied to investigate the effect of different ratios of momentum fluxes. The testing was performed on a 4.3 m long and 0.73 m wide barge model with air injection through a hole in the transparent bottom hull. The incoming boundary layer was measured via a pitot tube. Downstream distance based Reynolds number at the injection location was 5 × 105 through 4 × 106 . To observe the flow topology, still images and video were recorded from above the model (i.e. through the transparent hull), from beneath the bottom facing upward, and from the side at an oblique angle. The transition point of the flow topology was determined and analyzed.
46 CFR 174.085 - Flooding on column stabilized units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the unit, and within 5 feet (1.5 meters) of an outer surface of a column or footing on the periphery... into watertight compartments by horizontal watertight flats, all compartments in the column within 5 feet (1.5 meters) of the unit's waterline before damage causing flooding must be assumed to be subject...
Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces
NASA Astrophysics Data System (ADS)
Ibrahim, F. S.; Hady, F. M.
1990-06-01
The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.
Thermodynamics of a Block Sliding across a Frictional Surface
ERIC Educational Resources Information Center
Mungan, Carl E.
2007-01-01
The following idealized problem is intended to illustrate some basic thermodynamic concepts involved in kinetic friction. A block of mass m is sliding on top of a frictional, flat-topped table of mass M. The table is magnetically levitated, so that it can move without thermal contact and friction across a horizontal floor. The table is initially…
On the Impact Between a Water Free Surface and a Rigid Structure
NASA Astrophysics Data System (ADS)
Wang, An
In this thesis, the impact between a water surface and a structure is addressed in two related experiments. In the first experiment, the impact of a plunging breaking wave on a partially submerged 2D structure is studied. The evolution of the water surface profiles are measured with with a cinematic laser-induced flourescence technique, while the pressure distribution on the wall is measured simultaneously with an array of fast-response pressure sensors. When the structure is placed at a particular streamwise location in the wave tank and the bottom surface of the structure is located 13.3 cm below the mean water level, a ''flip-through'' impact occurs. In this case, the water surface profile between the crest and the front face of the structure is found to shrink to a point as the wave approaches the structure without breaking. High acceleration of the contact point motion is observed in this case. When the bottom of the structure is located at the mean water level, high-frequency pressure oscillations are observed. These pressure oscillations are believed to be caused by air that is entrapped near the wave crest during the impact process. When the bottom of the structure is sufficiently far above the mean water level, the first contact with the structure is the impact between the wave crest and the bottom corner of the structure. This latter condition, produces the largest impact pressures on the structure. In the second experiment, the slamming of a flat plate on a quiescent water surface is studied. A two-axis high-speed carriage is used to slam a flat plate on the water surface with high horizontal and vertical velocity. The above-mentioned LIF system is used to measure the evolution of the free surface adjacent to the plate. Measurements are performed with the horizontal and vertical carriage speeds ranging from zero to 6 m/s and 0.6 to 1.2 m/s, respectively, and the plate oriented obliquely to horizontal. Two types of splash are found, a spray of droplets and ligaments that is ejected horizontally from under the plate in the beginning of the impact process and a highly sloped spray sheet that is ejected later when the high edge of the plate moves below the water surface. Detailed measurements of these features are presented and simple models are used to interpret the data.
NASA Astrophysics Data System (ADS)
Abdulsalam, Alrowashed; Idris, Azni Bin; Ahmad, Thamer; Ahsan, Amimul
2017-01-01
This work overviews the solar radiation basics and insolation of different surfaces is presented. A complete solar radiation modelling and investigation on the effect of horizontal plate, yearly tilt, monthly tilt, and single-axis and double-axis tracking surface on the insolation are carried out to conduct performance evaluation using the case study in Dhahran city of Saudi Arabia. The increments received by insolation for the yearly tilt, monthly tilt, and single-axis and dual-axis tracking surface with respect to traditional flat-plate collector is estimated. The results show that the yearly optimal tilt angle due to the south is close to the 0.913 time latitude of Dhahran. It is found that the yearly irradiation gains using yearly and monthly optimal tilts relative to flat panel installation are 7% and 14%, respectively. The yearly insulation gains made by single-axis and dual-axis continuous tracking surfaces are 33% and 48%, respectively.
Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, Frank S.
2008-01-01
A simulation study to understand the influence of topography on the surface emissivity observed by a satellite microwave radiometer is carried out. We analyze the effects due to changes in observation angle, including the rotation of the polarization plane. A mountainous area in the Alps (Northern Italy) is considered and the information on the relief extracted from a digital elevation model is exploited. The numerical simulation refers to a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E, i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impact on surface emissivity, scattering of the radiation due to the atmosphere or neighboring elevated surfaces is not considered. C and X bands, for which atmospheric effects are negligible, and Ka band are analyzed. The results indicate that the changes in the local observation angle tend to lower the apparent emissivity of a radiometric pixel with respect to the corresponding flat surface characteristics. The effect of the rotation of the polarization plane enlarges (vertical polarization), or attenuates (horizontal polarization) this decrease. By doing some simplifying assumptions for the radiometer antenna, the conclusion is that the microwave emissivity at vertical polarization is underestimated, whilst the opposite occurs for horizontal polarization, except for Ka band, for which both under- and overprediction may occur. A quantification of the differences with respect to a flat soil and an approximate evaluation of their impact on soil moisture retrieval are yielded. PMID:27879773
[Evolution of hospital concept in Italy].
Grosso, G; Contarino, F; Biondi, M; Mistretta, A
2009-01-01
Hospital building trade was born before the origin of Healthcare System and followed the complex development of healthcare during all the past years to present day. At the beginning of 700's, when infective pathology was predominant and hygienic conditions was parameter of quality, pavilions structure took place. These hospitals required wide land to be built on, with a high surface area to volume ratio and a horizontal development. There were about 1200-1500 sleeping accommodations in large rooms (ward) where patients were split up. The typical pavilions structure were used until half 900's when it was replaced with a new concept of building trade, the mono-polibloc. They were buildings with vertical development that minimized horizontal distances and operating costs. Every floor has confinement and service rooms and represent a single and autonomous operating unit. Nowadays hospitals building trade point to use the flat-tower model that enhance the distinction between confinement area (with a vertical development-monobloc) and diagnosis, care and services area (with a horizontal development-flat). The challenge we willface in the future is to convert healthcare buildings to other uses like trading centres and services areas, to improve structures' flexibility, to better include them in the context of the urban and natural setting.
Film boiling of mercury droplets
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.
1975-01-01
Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.
Investigation of Hydrophobic Radomes for Microwave Landing System.
1982-11-01
horizontal heating wires on the inside surface, and 2) a slotted waveguide unit (C-band waveguide, about 2 feet in length) covered with a Teflon shrink tube ...AZ) Fiberglass flat 1.5ft x 13ft NE sandwich (EL) Teflon shrink 1 in x 2 ft SW tubing (Field Mon.) 7 (8) Hydrophobic Coating for Antenna Weather...SURFACE PREPARATION 13 24 Mar Conolite Primer: Vellox S-048 Finish: Microfine FSD, 7 coats, sprayed 14 24 Mar Conolite Teflon film, C-TAPE-36
Apparatus for supporting contactors used in extracting nuclear materials from liquids
Leonard, Ralph A.; Frank, Robert C.
1991-01-01
Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.
Spray Formation during the Impact of a Flat Plate on Water Surface
NASA Astrophysics Data System (ADS)
Wang, An; Duncan, James H.
2015-11-01
Spray formation during the impact of a flat plate on a water surface is studied experimentally. The plate is mounted on a two-axis carriage that can slam the plate vertically into the water surface as the carriage moves horizontally along a towing tank. The plate is 122 cm by 38 cm and oriented with adjustable pitch and roll angle. The port (lower) edge of the plate is positioned with a 3-mm gap from one of the tank walls. A laser sheet is created in a plane oriented perpendicular to the axis of the horizontal motion of the carriage. The temporal evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique at a frame rate of 800 Hz. Experiments are performed with a fixed plate trajectory in a vertical plane, undertaken at various speeds. Two types of spray are found when the plate has nonzero pitch and roll angles. The first type is composed of a cloud of high-speed droplets and ligaments generated as the port edge of the plate hits the water surface during the initial impact. The second type is a thin sheet of water that grows from the starboard edge of the plate as it moves below the local water level. The geometrical features of the spray are found to be dramatically affected by the impact velocity. The support of the Office of Naval Research under grant N000141310587 is gratefully acknowledged.
Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight
NASA Technical Reports Server (NTRS)
Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.
Neutrons on a surface of liquid helium
NASA Astrophysics Data System (ADS)
Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.
2016-08-01
We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.
Brownian motion of non-wetting droplets held on a flat solid by gravity
NASA Astrophysics Data System (ADS)
Pomeau, Yves
2013-12-01
At equilibrium a small liquid droplet standing on a solid (dry) horizontal surface it does not wet rests on this surface on a small disc. As predicted and observed if such a droplet is in a low-viscosity vapor the main source of drag for a motion along the surface is the viscous dissipation in the liquid near the disc of contact. This dissipation is minimized by a Huygens-like motion coupling rolling and translation in such a way that the fluid near the disc of contact is almost motionless with respect to the solid. Because of this reduced drag and the associated large mobility the coefficient of Brownian diffusion is much larger than its standard Stokes-Enstein value. This is correct if the weight of the droplet is sufficient to keep it on the solid, instead of being lifted by thermal noise. The coupling between translation along the surface and rotation could be measured by correlated random angular deviations and horizontal displacement in this Brownian motion.
Gravity-induced stresses near a vertical cliff
Savage, W.Z.
1993-01-01
The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.
Barta, András; Horváth, Gábor
2003-12-01
The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously.
Well bore breakouts and in situ stress
Zoback, Mark D.; Moos, Daniel; Mastin, Larry; Anderson, Roger N.
1985-01-01
The detailed cross-sectional shape of stress induced well bore breakouts has been studied using specially processed ultrasonic borehole televiewer data. Breakout shapes are shown for a variety of rock types and introduce a simple elastic failure model which explains many features of the observations. Both the observations and calculations indicate that the breakouts define relatively broad and flat curvilinear surfaces which enlarge the borehole in the direction of minimum horizontal compression. Refs.
Imaging the Peruvian flat slab with Rayliegh wave tomography
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, Sanja
In subduction zones the oceanic plates descend at a broad range of dip angles. A "flat slab" is an oceanic plate that starts to subduct steeply, but bends at 100 km depth and continues almost horizontally for several hundred kilometers. This unusual slab geometry has been linked to various geologic features, including the cessation of arc volcanism, basement core uplifts removed far from subducting margins, and the formation of high plateaus. Despite the prevalence of flat slabs worldwide since the Proterozoic, questions on how flat slabs form, persist, and re-steepen remains a topic of ongoing research. Even less clear is how this phenomenon relates to unusual features observed at the surface. To better understand the causes and consequences of slab flattening I focus on the Peruvian flat slab. This is not only the biggest flat slab region today, but due to the oblique angle at which the Nazca Plate subducts under the South American Plate, it also provides unique opportunity to get insights into the temporal evolution of the flat slab. Using ambient noise and earthquake-generated Rayleigh waves recorded at several contemporary dense seismic networks, I was able to perform unprecedentedly high resolution imaging of the subduction zone in southern Peru. Surprisingly, instead of imaging a vast flat slab region as expected, I found that the flat slab tears and re-steepens north of the subducting Nazca Ridge. The change in slab geometry is associated with variations in the slab's internal strain along strike, as inferred from slab-related anisotropy. Based on newly-discovered features I discuss the critical role of the subducting ridges in the formation and longevity of flat slabs. The slab tear created a new mantle pathway between the torn slab and the flat slab remnant to the east, and is possibly linked to the profound low velocity anomaly located under the eastern corner of the flat slab. Finally, I re-evaluate the connection between slab flattening and volcanic patterns at the surface. These findings have important implications for all present-day and paleo-flat slab regions, such as the one proposed for the western United States during the Laramide orogeny 80-55 Ma.
Stability of polar frosts in spherical bowl-shaped craters on the moon, Mercury, and Mars
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.; Svitek, Tomas; Murray, Bruce C.
1992-01-01
A model of spherical bowl-shaped craters is described and applied to the moon, Mercury, and Mars. The maximum temperature of permanently shadowed areas are calculated using estimates of the depth/diameter ratios of typical lunar bowl-shaped craters and assuming a saturated surface in which the craters are completely overlapping. For Mars, two cases are considered: water frost in radiative equilibrium and subliming CO2 frost in vapor equilibrium. Energy budgets and temperatures are used to determine whether a craterlike depression loses mass faster or slower than a flat horizontal surface. This reveals qualitatively whether the frost surface becomes rougher or smoother as it sublimes.
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
Evaluation of different models to estimate the global solar radiation on inclined surface
NASA Astrophysics Data System (ADS)
Demain, C.; Journée, M.; Bertrand, C.
2012-04-01
Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.
Transition boiling heat transfer and the film transition regime
NASA Technical Reports Server (NTRS)
Ramilison, J. M.; Lienhard, J. H.
1987-01-01
The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.
Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad
Hobbs, Jennifer A.; Towal, R. Blythe; Hartmann, Mitra J. Z.
2016-01-01
During natural exploration, rats exhibit two particularly conspicuous vibrissal-mediated behaviors: they follow along walls, and “dab” their snouts on the ground at frequencies related to the whisking cycle. In general, the walls and ground may be located at any distance from, and at any orientation relative to, the rat’s head, which raises the question of how the rat might determine the position and orientation of these surfaces. Previous studies have compellingly demonstrated that rats can accurately determine the horizontal angle at which a vibrissa first touches an object, and we therefore asked whether this parameter could provide the rat with information about the pitch, distance, and yaw of a surface relative to its head. We used a three-dimensional model of the whisker array to construct mappings between the horizontal angle of contact of each vibrissa and every possible (pitch, distance, and yaw) configuration of the head relative to a flat surface. The mappings revealed striking differences in the patterns of contact for vibrissae in different regions of the array. The exterior (A, D, E) rows provide information about the relative pitch of the surface regardless of distance. The interior (B, C) rows provide distance cues regardless of head pitch. Yaw is linearly correlated with the difference between the number of right and left whiskers touching the surface. Compared to the long reaches that whiskers can make to the side and below the rat, the reachable distance in front of the rat’s nose is relatively small. We confirmed key predictions of these functional groupings in a behavioral experiment that monitored the contact patterns that the vibrissae made with a flat vertical surface. These results suggest that vibrissae in different regions of the array are not interchangeable sensors, but rather functionally grouped to acquire particular types of information about the environment. PMID:26745501
Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.
Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B
2002-10-01
The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).
Flame spread along thermally thick horizontal rods
NASA Astrophysics Data System (ADS)
Higuera, F. J.
2002-06-01
An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.
NASA Technical Reports Server (NTRS)
Dollyhigh, S. M.
1977-01-01
The longitudinal aerodynamic characteristics of a fighter airplane concept has been determined through an investigation over a Mach number range from 0.50 to 2.16. The configuration incorporates a cambered fuselage with a single external compression horizontal ramp inlet, a clipped arrow wing, twin horizontal tails, and a single vertical tail. The wing camber surface was optimized in drag due to lift and was designed to be self trimming at Mach 1.40 and at a lift coefficient of 0.20. The fuselage was cambered to preserve the design wing loadings on the part of the theoretical wing enclosed by the fuselage. An uncambered of flat wing of the same planform and thickness ratio distribution was also tested.
Rate limits in silicon sheet growth - The connections between vertical and horizontal methods
NASA Technical Reports Server (NTRS)
Thomas, Paul D.; Brown, Robert A.
1987-01-01
Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Ma, XinCheng; Tie, Xuexi; Huang, Mengyu; Zhao, Chunsheng
In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to prevent aerosol particles being exchanged from the PBL height to the free troposphere. As a result, the aerosol particles were strongly depressed in the PBL height, producing high surface aerosol concentrations. The measured vertical aerosol distributions have important implications for studying the effects of aerosols on photochemistry. The J[O 3] values are reduced by 11%, 48%, and 50%, under the type-1, type-2, and type-3 conditions, respectively. This result reveals that atmospheric oxidant capacity (OH concentrations) is modestly reduced under the type-1 condition, but is significantly reduced under the type-2 and type-3 conditions. This result also suggests that the effect of aerosol particles on surface solar flux is an integrated column effect, and detailed vertical distributions of aerosol particles are very important for assessing the impacts of aerosol on photochemistry.
1996-01-20
STS072-738-036 (11-20 Jan. 1996) --- The astronauts used a 70mm handheld camera to expose this frame of the west-flowing Orange River, which constitutes the international boundary between Namibia and the Republic of South Africa. The railroad and highway connecting the two countries is seen as a ribbon crossing the corner of the view. The broad color difference between strong browns/reds in the northern half of the view and lighter yellows in the southern corresponds to two land surfaces. The darker is a higher, flat land surface developed on horizontal Nama Sandstone’s, with rock surfaces widely coated with a dark manganese stain, typical of desert regions. This region is known as Namaqualand and borders the Namib Desert. Where rivers have cut down into this surface, the lighter underlying rock and soil colors show up.
Ringler, Adam; Steim, J.M.; Zandt, T; Hutt, Charles R.; Wilson, David; Storm, Tyler
2016-01-01
The Streckeisen STS‐1 has been the primary vault‐type seismometer used in the over‐150‐station Global Seismographic Network (GSN). This sensor has long been known for its outstanding vertical, very long‐period (e.g., >100 s period), and low‐noise performance, although the horizontal long‐period noise performance is less well known. The STS‐1 is a limited, important resource, because it is no longer made or supported by the original manufacturer. We investigate the incoherent noise of horizontal‐component sensors, where coherent signals among sensors have been removed, giving an upper bound on the self‐noise of both the STS‐1 and STS‐2 horizontal components. Our findings suggest that a well‐installed STS‐2 could potentially produce data with similar or better incoherent noise levels to that of a horizontal‐component STS‐1. Along with our experimental investigation, we compare background noise levels for a calendar year at Incorporated Research Institutions for Seismology/U.S. Geological Survey network stations, which comprise approximately two‐thirds of the GSN, with collocated STS‐1 and STS‐2 seismometers. The use of an STS‐2‐class of sensor (flat to velocity to 120 s period) to acquire low‐frequency data in surface‐vault installations would allow network operators to focus more attention on improving vertical data. In order to deal with the difference in instrument response shapes between the two instruments, we detail two different time‐domain filters that would allow users to convert broadband STS‐2 data into very broadband data with a response similar to that of an STS‐1 (flat to velocity to 360 s period). We conclude that the complexity of the current primary horizontal vault sensors in the GSN may not be necessary until we are better able to isolate surface horizontal sensors from various noise sources.
The Aquarius Salinity Retrieval Algorithm
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank; Hilburn, Kyle; Lagerloef, Gary; Le Vine, David
2012-01-01
The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration [2] converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to molecular oxygen, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind, which is addressed in more detail in section 3. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water [3], [4] and an auxiliary field for the sea surface temperature. In the current processing only v-pol TB are used for this last step.
Interfacial instabilities in vibrated fluids
NASA Astrophysics Data System (ADS)
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.
Numerical Investigation of an Oscillating Flat Plate Airfoil
NASA Astrophysics Data System (ADS)
Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs
2017-11-01
This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.
Damianos, Konstantina; Ferrando, Riccardo
2012-02-21
The structural modifications of small supported gold clusters caused by realistic surface defects (steps) in the MgO(001) support are investigated by computational methods. The most stable gold cluster structures on a stepped MgO(001) surface are searched for in the size range up to 24 Au atoms, and locally optimized by density-functional calculations. Several structural motifs are found within energy differences of 1 eV: inclined leaflets, arched leaflets, pyramidal hollow cages and compact structures. We show that the interaction with the step clearly modifies the structures with respect to adsorption on the flat defect-free surface. We find that leaflet structures clearly dominate for smaller sizes. These leaflets are either inclined and quasi-horizontal, or arched, at variance with the case of the flat surface in which vertical leaflets prevail. With increasing cluster size pyramidal hollow cages begin to compete against leaflet structures. Cage structures become more and more favourable as size increases. The only exception is size 20, at which the tetrahedron is found as the most stable isomer. This tetrahedron is however quite distorted. The comparison of two different exchange-correlation functionals (Perdew-Burke-Ernzerhof and local density approximation) show the same qualitative trends. This journal is © The Royal Society of Chemistry 2012
Simulating the Structural Response of a Preloaded Bolted Joint
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2008-01-01
The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.
Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos IIILaser: Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrabo, L. N.; Lyons, P. W.; Jones, R. A.
This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt Pharos III neodymium-glass pulsed laser. Six different experimental setups were employed using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The 2nd Campaign investigated impulse generation with the laser beam focused at grazing incidence across near horizontal target surfaces, with pulse energies ranging from 55 to 186 J, and pulse-widths of 2 to 30 ns FWHM. Laser generated impulse was measuredmore » with a horizontal Plexiglas registered ballistic pendulum equipped with either a steel target insert or 0.5 Tesla permanent magnet (NEIT-40), to quantify changes in the momentum coupling coefficient (C{sub M}). Part 2 of this 2-part paper covers Campaign no. 2 results including C{sub M} performance data, and long exposure color photos of LP plasma phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rosenfield, J; Dong, X
2016-06-15
Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less
Contrasting Drainage and Stratification in Horizontal Vs Vertical Micellar Foam Films
NASA Astrophysics Data System (ADS)
Wojcik, Ewelina; Yilixiati, Subinuer; Zhang, Yiran; Sharma, Vivek
Understanding and controlling the drainage kinetics of thin films is an important problem that underlies the stability, lifetime and rheology of foams and emulsions. In foam films formed with micellar solutions, the surfactant is present as interfacially-adsorbed layer at both liquid-air interfaces, as well as in bulk as self-assembled supramolecular structures called micelles. Ultrathin micellar films exhibit stratification due to confinement-induced structuring and layering of micelles. Stratification in micellar foam films is manifested as stepwise thinning over time, and it leads to the coexistence of flat domains with discretely different thicknesses. In this contribution we use Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols to visualize and analyze thickness transitions and variations associated with stratification in micellar foam films made with sodium dodecyl sulfate (SDS). We contrast the drainage and stratification dynamics in horizontal and vertical foam films, and investigate the role played by gravitational, viscous, interfacial and surface forces.
Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1977-01-01
Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.
Mesospheric momentum fluxes observed by the MST radar at Poker Flat, Alaska
NASA Technical Reports Server (NTRS)
Wang, Ding-Yi; Fritts, David C.
1990-01-01
An analysis of the wave motions observed with the Poker Flat MST radar during the winter, summer, and fall of 1986 is presented. Monthly and daily mean winds, momentum fluxes, and velocity variances are investigated in detail. While several features are in agreement with previous measurements, some significant differences also are found to exist in the observations. Monthly mean horizontal winds between 82 and 89 km have amplitudes of 20-40 m/s westward and 10-25 m/s southward in July and August. In fall and winter, the horizontal winds between 58 and 75 km are weaker and essentially eastward.
Yang, Zongbo; Cheng, Jun; Xu, Xiaodan; Zhou, Junhu; Cen, Kefa
2016-07-01
Novel horizontal tubes and triangular prism (HTTP) baffles that generate flow vortices were developed to increase solution velocity between dark and light areas and thus improve microalgal growth in a flat-panel photo-bioreactor. Solution velocity, mass-transfer coefficient, and mixing time were measured with a particle-imaging velocimeter, dissolved oxygen probes, and pH probes. The solution mass-transfer coefficient increased by 30% and mixing time decreased by 21% when the HTTP baffles were used. The solution velocity between dark and light areas increased from ∼0.9cm/s to ∼3.5cm/s, resulting in a decreased dark-light cycle period to one-fourth. This enhanced flashing light effect with the HTTP baffles dramatically increased microalgae biomass yield by 70% in the flat-panel photo-bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
Determination of Etch Rate Behavior of 4H-SiC Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Habuka, Hitoshi; Katsumi, Yusuke; Oda, Satoko; Fukai, Yasushi; Fukae, Katsuya; Kato, Tomohisa; Okumura, Hajime; Arai, Kazuo
2007-12-01
The etch rate of single-crystalline 4H-SiC is studied using chlorine trifluoride gas at 673-973 K and atmospheric pressure in a cold wall horizontal reactor. The 4H-SiC etch rate can be higher than 10 μm/min at substrate temperatures higher than 723 K. The etch rate increases with the chlorine trifluoride gas flow rate. The etch rate is calculated by taking into account the transport phenomena in the reactor including the chemical reaction at the substrate surface. The flat etch rate at the higher substrate temperatures is caused mainly by the relationship between the transport rate and the surface chemical reaction rate of chlorine trifluoride gas.
Nuclear reactor heat transport system component low friction support system
Wade, Elman E.
1980-01-01
A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.
Flat electron beam sources for DLA accelerators
Ody, A.; Musumeci, P.; Maxson, J.; ...
2016-10-26
In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less
Wetting behavior and drainage of water droplets on microgrooved brass surfaces.
Rahman, M Ashiqur; Jacobi, Anthony M
2012-09-18
In the present study, contact angle hysteresis and sliding behavior of water droplets on parallel, periodic microgrooved brass surfaces are investigated experimentally for enhancement of water drainage and compared to that on flat baseline surfaces. The surfaces (a total of 17 microgrooved samples, with a range of groove depth of 22 to 109 μm, pillar width of 26 to 190 μm, and groove width of 103 and 127 μm) are fabricated using a mechanical micromachining process. The wetting state and shape/elongation of deposited water droplets, anisotropy of the contact angle hysteresis, and the drainage behavior of water droplets on the microgrooved surfaces are found to be strongly dependent on the topography of the groove geometry, which is analyzed in detail. The wetting state is found to be Wenzel for microgrooved surfaces with very low aspect ratio (<0.2) and narrow pillars (pillar width to groove width ratio of ≈0.2), and also for the two deepest grooved surfaces of two different sample series, all of which exhibit high contact angle hysteresis. Mechanisms of the advancing and receding motions are identified. The critical sliding angle (the angle from horizontal at incipient motion of the advancing confluence) for the microgrooved surfaces is found to be significantly smaller than for flat surfaces. The sliding angle exhibits significant groove geometry dependence and is found to increase with pillar width and decrease with groove depth. The findings of this study may be useful in a broad range of applications where water retention plays an important role.
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field
NASA Astrophysics Data System (ADS)
Razavi, Alireza; Sarkar, Partha P.
2018-03-01
To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.
NASA Astrophysics Data System (ADS)
Swanson, Susan K.
2007-04-01
Outcrop-analog studies of the Upper Cambrian Tunnel City Group sandstones in southern Wisconsin show the utility of lithostratigraphic information in hydrostratigraphic studies of siliciclastic sandstone aquifers. Recent work supports the lateral continuity of discrete groundwater flow through these sandstones. Lithologic description of the Reno Member of the Lone Rock Formation (Tunnel City Group) in outcrop and core reveals repeating sequences of three dominant lithofacies, including flat-pebble intraclast conglomerate with a glauconite-rich matrix; glauconitic and feldspathic subquartzose sandstone with horizontal-planar, low-angle, and hummocky lamination; and feldspathic subquartzose sandstone with dolomite-filled burrows. The vertically stacked Reno Member sequences have been interpreted as having a storm-related origin, and they are laterally continuous on the scale of an outcrop. Horizontal fracture locations correlate with bedding planes at contacts between lithofacies. They are most commonly associated with the base of the flat-pebble intraclast conglomerate or with partings along laminae and erosional surfaces in the laminated subquartzose sandstone lithofacies. Sequences show upward increases in natural gamma radiation due to increasing potassium feldspar content. The incorporation of the detailed lithostratigraphic information allows a more accurate interpretation of borehole natural gamma logs where the rocks are buried and saturated and clarifies the role of sedimentary structures in the distribution of features that might promote discrete flow through these rocks.
1998-06-08
A color image of the Tyrrhena Patera Region of Mars; north toward top. The scene shows a central circular depression surrounded by circular fractures and highly dissected horizontal sheets. A patera (Latin for shallow dish or saucer) is a volcano of broad areal extent with little vertical relief. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 17 degrees S. to 25 degrees S. and from longitude 250 degrees to 260 degrees; Mercator projection. Tyrrhena Patera has a 12-km-diameter caldera at its center surrounded by a 45-km-diameter fracture ring. Around the fracture ring, the terrain is highly eroded forming ragged outward-facing cliffs, as though successive flat-lying layers had been eroded back. Cut into the sequence are several flat-floored channels that extend outward as far as 200 km from the center of the volcano. The structure may be composed of highly erodible ash layers and the channels may be fluvial, with the release of water being triggered by volcanic activity (Carr, 1981, The surface of Mars, Yale Univ. Press, New Haven, 232 p.). http://photojournal.jpl.nasa.gov/catalog/PIA00421
NASA Astrophysics Data System (ADS)
Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan
2015-05-01
New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.
Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport
NASA Astrophysics Data System (ADS)
Weaver, C. M.; Wiggs, G.
2007-12-01
Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.
Spray formation during the vertical impact of a flat plate on a quiescent water surface
NASA Astrophysics Data System (ADS)
Wang, An; Duncan, James H.
2017-11-01
Spay formation during the impact of a rigid flat plate (122 cm by 38 cm) on a quiescent water surface is studied experimentally. The plate is mounted on a carriage that is driven by an electric servo motor that can slam the plate vertically into the water surface under feedback-controlled motions at various speeds. The long edges of the plate are kept horizontal and the short edges are set at various angles (roll angles) with respect to the quiescent water surface. A laser light sheet is created in a vertical plane at the middle of the long edges of the plate. The evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique. Two types of spray are found with nonzero roll angles. The first type is a cloud of high-speed droplets and ligaments that are generated when the plate's leading edge impacts the free surface. The second type is a thin water sheet that is connected to the trailing edge of the plate via a crater and is formed after the trailing edge moves below the local water level. In a reference frame moving with the plate, the profiles of the crater collapse when scaled with a power law function of time. The characteristics of the two types of spray are found to be affected by both the roll angle and the impact velocity. The support of the Office of Naval Research is gratefully acknowledged.
Liquid spreading under partial wetting conditions
NASA Astrophysics Data System (ADS)
Chen, M.; Pahlavan, A. A.; Cueto-Felgueroso, L.; McKinley, G. H.; Juanes, R.
2013-12-01
Traditional mathematical descriptions of multiphase flow in porous media rely on a multiphase extension of Darcy's law, and lead to nonlinear second-order (advection-diffusion) partial differential equations for fluid saturations. Here, we study horizontal redistribution of immiscible fluids. The traditional Darcy-flow model predicts that the spreading of a finite amount of liquid in a horizontal porous medium never stops; a prediction that is not substantiated by observation. To help guide the development of new models of multiphase flow in porous media [1], we draw an analogy with the flow of thin films. The flow of thin films over flat surfaces has been the subject of much theoretical, experimental and computational research [2]. Under the lubrication approximation, the classical mathematical model for these flows takes the form of a nonlinear fourth-order PDE, where the fourth-order term models the effect of surface tension [3]. This classical model, however, effectively assumes that the film is perfectly wetting to the substrate and, therefore, does not capture the partial wetting regime. Partial wetting is responsible for stopping the spread of a liquid puddle. Here, we present experiments of (large-volume) liquid spreading over a flat horizontal substrate in the partial wetting regime, and characterize the four spreading regimes that we observe. We extend our previous theoretical work of two-phase flow in a capillary tube [4], and develop a macroscopic phase-field modeling of thin-film flows with partial wetting. Our model naturally accounts for the dynamic contact angle at the contact line, and therefore permits modeling thin-film flows without invoking a precursor film, leading to compactly-supported solutions that reproduce the spreading dynamics and the static equilibrium configuration observed in the experiments. We anticipate that this modeling approach will provide a natural mathematical framework to describe spreading and redistribution of immiscible fluids in porous media. [1] L. Cueto-Felgueroso and R. Juanes, Phys. Rev. Lett. 101, 244504 (2008). [2] D. Bonn et al., Rev. Mod. Phys. 81, 739-805 (2009). [3] H. E. Huppert, Nature 300, 427-429 (1982). [4] L. Cueto-Felgueroso and R. Juanes, Phys. Rev. Lett. 108, 144502 (2012).
Transversal stability of the bouncing ball on a concave surface.
Chastaing, J-Y; Pillet, G; Taberlet, N; Géminard, J-C
2015-05-01
A ball bouncing repeatedly on a vertically vibrating surface constitutes the famous "bouncing ball" problem, a nonlinear system used in the 1980s, and still in use nowadays, to illustrate the route to chaos by period doubling. In experiments, in order to avoid the ball escape that would be inevitable with a flat surface, a concave lens is often used to limit the horizontal motion. However, we observe experimentally that the system is not stable. The ball departs from the system axis and exhibits a pendular motion in the permanent regime. We propose theoretical arguments to account for the decrease of the growth rate and of the asymptotic-size of the trajectory when the frequency of the vibration is increased. The instability is very sensitive to the physics of the contacts, which makes it a potentially interesting way to study the collisions rules, or to test the laws used in numerical studies of granular matter.
Heat transfer enhancement induced by wall inclination in turbulent thermal convection
NASA Astrophysics Data System (ADS)
Kenjereš, Saša
2015-11-01
We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (106≤Ra ≤109 ) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ "- and "V "-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ody, A.; Musumeci, P.; Maxson, J.
In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less
NASA Astrophysics Data System (ADS)
Kurtz, R.; Klinger, Y.; Ferry, M.; Ritz, J.-F.
2018-06-01
The 1957, MW 8.1, Gobi-Altai earthquake, Southern Mongolia, produced a 360-km-long surface rupture along the Eastern Bogd fault. Cumulative offsets of geomorphic features suggest that the Eastern Bogd fault might produce characteristic slip over the last seismic cycles. Using orthophotographs derived from a dataset of historical aerial photographs acquired in 1958, we measured horizontal offsets along two thirds ( 170 km) of the 1957 left-lateral strike-slip surface rupture. We propose a new empirical methodology to extract the average slip for each past earthquake that could be recognized along successive fault segments, to determine the slip distribution associated with successive past earthquakes. Our results suggest that the horizontal slip distribution of the 1957 Gobi-Altai earthquake is fairly flat, with an average offset of 3.5 m ± 1.3 m. A combination of our lateral measurements with vertical displacements derived from the literature, allows us to re-assess the magnitude of the Gobi-Altai earthquake to be between MW 7.8 and MW 8.2, depending on the depth of the rupture, and related value of the shear modulus. When comparing this magnitude to magnitudes derived from seismic data, it suggests that the rupture may have extended deeper than the 15 km to 20 km usually considered for the seismogenic crust. We observe that some fault segments are more likely than others to record seismic deformation through several seismic cycles, depending on the local rupture complexity and geomorphology. Additionally, our results allow us to model the horizontal slip function for the 1957 Gobi-Altai earthquake and for three previous paleoseismic events along 70% of the studied area. Along about 50% of the fault sections where we could recognize three past earthquakes, our results suggest that the slip per event was similar for each earthquake.
Dunbar, Donald C; Badam, Gyani L; Hallgrímsson, Benedikt; Vieilledent, Stéphane
2004-02-01
This study investigated the patterns of rotational mobility (> or =20 degrees ) and stability (< or =20 degrees ) of the head and trunk in wild Indian monkeys during natural locomotion on the ground and on the flat-topped surfaces of walls. Adult hanuman langurs (Semnopithecus entellus) and bonnet macaques (Macaca radiata) of either gender were cine filmed in lateral view. Whole-body horizontal linear displacement, head and trunk pitch displacement relative to space (earth horizontal), and vertical head displacement were measured from the cine films. Head-to-trunk pitch angle was calculated from the head-to-space and trunk-to-space measurements. Locomotor velocities, cycle durations, angular segmental velocities, mean segmental positions and mean peak frequencies of vertical and angular head displacements were then calculated from the displacement data. Yaw rotations were observed qualitatively. During quadrupedal walks by both species, the head was free to rotate in the pitch and yaw planes on a stabilized trunk. By contrast, during quadrupedal gallops by both species, the trunk pitched on a stabilized head. During both gaits in both species, head and trunk pitch rotations were symmetrical about comparable mean positions in both gaits, with mean head position aligning the horizontal semicircular canals near earth horizontal. Head pitch direction countered head vertical displacement direction to varying degrees during walks and only intermittently during gallops, providing evidence that correctional head pitch rotations are not essential for gaze stabilization. Head-to-space pitch velocities were below 350 deg. s(-1), the threshold above which, at least among humans, the vestibulo-ocular reflex (VOR) becomes saturated. Mean peak frequencies of vertical translations and pitch rotations of the head ranged from 1 Hz to 2 Hz, a lower frequency range than that in which inertia is predicted to be the major stabilizer of the head in these species. Some variables, which were common to both walks and gallops in both species, are likely to reflect constraints in sensorimotor control. Other variables, which differed between the two gaits in both species, are likely to reflect kinematic differences, whereas variables that differed between the two species are attributed primarily to morphological and behavioural differences. It is concluded that either the head or the trunk can provide the nervous system with a reference frame for spatial orientation and that the segment providing that reference can change, depending upon the kinematic characteristics of the chosen gait.
Understanding thermal circulations and near-surface turbulence processes in a small mountain valley
NASA Astrophysics Data System (ADS)
Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.
2017-12-01
The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.
Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao
2017-08-01
Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.
Geometric Quality Assessment of LIDAR Data Based on Swath Overlap
NASA Astrophysics Data System (ADS)
Sampath, A.; Heidemann, H. K.; Stensaas, G. L.
2016-06-01
This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope) It is suggested that 4000-5000 points are uniformly sampled in the overlapping regions of the point cloud, and depending on the surface roughness, to measure the discrepancy between swaths. Care must be taken to sample only areas of single return points only. Point-to-Plane distance based data quality measures are determined for each sample point. These measurements are used to determine the above mentioned parameters. This paper details the measurements and analysis of measurements required to determine these metrics, i.e. Discrepancy Angle, Mean and RMSD of errors in flat regions and horizontal errors obtained using measurements extracted from sloping regions (slope greater than 10 degrees). The research is a result of an ad-hoc joint working group of the US Geological Survey and the American Society for Photogrammetry and Remote Sensing (ASPRS) Airborne Lidar Committee.
Frantsevich, Leonid I; Cruse, Holk
2005-10-01
The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.
NASA Astrophysics Data System (ADS)
Jayaraman, Balaji; Brasseur, James; Haupt, Sue; Lee, Jared
2016-11-01
LES of the "canonical" daytime atmospheric boundary layer (ABL) over flat topography is developed as an equilibrium ABL with steady surface heat flux, Q0 and steady unidirectional "geostrophic" wind vector Vg above a capping inversion. A strong inversion layer in daytime ABL acts as a "lid" that sharply separates 3D "microscale" ABL turbulence at the O(10) m scale from the quasi-2D "mesoscale" turbulent weather eddies (O(100) km scale). While "canonical" ABL is equilibrium, quasi-stationary and characterized statistically by the ratio of boundary layer depth (zi) to Obukhov length scale (- L) , the real mesoscale influences (Ug and Q0) that force a true daytime ABL are nonstationary at both diurnal and sub-diurnal time scales. We study the consequences of this non-stationarity on ABL dynamics by forcing ABL LES with realistic WRF simulations over flat Kansas terrain. Considering horizontal homogeneity, we relate the mesoscale and geostrophic winds, Ug and Vg, and systematically study the ABL turbulence response to non-steady variations in Q0 and Ug. We observe significant deviations from equilibrium, that manifest in many ways, such as the formation of "roll" eddies purely from changes in mesoscale wind direction that are normally associated with increased surface heat flux. Support from DOE. Compute resources from Penn State ICS.
Vertical uniformity of cells and nuclei in epithelial monolayers.
Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P
2016-01-22
Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.
Yoshida, Shunsuke
2016-06-13
A novel glasses-free tabletop 3D display to float virtual objects on a flat tabletop surface is proposed. This method employs circularly arranged projectors and a conical rear-projection screen that serves as an anisotropic diffuser. Its practical implementation installs them beneath a round table and produces horizontal parallax in a circumferential direction without the use of high speed or a moving apparatus. Our prototype can display full-color, 5-cm-tall 3D characters on the table. Multiple viewers can share and enjoy its real-time animation from any angle of 360 degrees with appropriate perspectives as if the animated figures were present.
Rosenzweig instability in a thin layer of a magnetic fluid
NASA Astrophysics Data System (ADS)
Korovin, V. M.
2013-12-01
A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.
Field-based evaluations of horizontal flat-plate fish screens
Rose, B.P.; Mesa, M.G.; Barbin-Zydlewski, G.
2008-01-01
Diversions from streams are often screened to prevent the loss of or injury to fish. Hydraulic criteria meant to protect fish that encounter screens have been developed, but primarily for screens that are vertical to the water flow rather than horizontal. For this reason, we measured selected hydraulic variables and released wild rainbow trout Oncorhynchus mykiss over two types of horizontal flat-plate fish screens in the field. Our goal was to assess the efficacy of these screens under a variety of conditions in the field and provide information that could be used to develop criteria for safe fish passage. We evaluated three different invertedweir screens over a range of stream (0.24-1.77 m3/s) and diversion flows (0.10-0.31 m3/s). Approach velocities (AVs) ranged from 3 to 8 cm/s and sweeping velocities (SVs) from 69 to 143 cm/s. We also evaluated a simple backwatered screen over stream flows of 0.23-0.79 m3/s and diversion flows of 0.08-0.32 m3/s. The mean SVs for this screen ranged from 15 to 66 cm/s and the mean AVs from 1 to 5 cm/s. The survival rates of fish held for 24 h after passage over these screens exceeded 98%. Overall, the number of fish-screen contacts was low and the injuries related to passage were infrequent and consisted primarily of minor fin injuries. Our results indicate that screens of this type have great potential as safe and effective fish screens for small diversions. Care must be taken, however, to avoid operating conditions that produce shallow or no water over the screen surface, situations of high AVs and low SVs at backwatered screens, and situations producing a localized high AV with spiraling flow. ?? Copyright by the American Fisheries Society 2008.
Investigation of water seepage through porous media using X-ray imaging technique
NASA Astrophysics Data System (ADS)
Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon
2012-07-01
SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.
NASA Astrophysics Data System (ADS)
Janecky, D. R.; Boylan, J.; Murrell, M. T.
2009-12-01
The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings, roads, and so on) during the Site closure efforts resulted in major changes to surface and shallow groundwater flow. Consistent with previous documentation of uranium operations and contamination, only very small amounts of highly enriched uranium are found in a small number of water samples, generally from the former Solar Ponds complex and central Industrial Area. Depleted uranium is more widely distributed at the site, and water samples exhibit the full range of depleted plus natural uranium mixtures. However, one third of the samples are found to contain only natural uranium, and three quarters of the samples are found to contain more than 90% natural uranium - substantial fractions given that the focus of these analyses was on evaluating potentially contaminated waters. Following site closure, uranium concentrations have increased at some locations, particularly for surface water samples. Overall, isotopic ratios at individual locations have been relatively consistent, indicating that the increases in concentrations are due to decreases in dilution flow following removal of impermeable surfaces and buildings.
Improved double-pass michelson interferometer
NASA Technical Reports Server (NTRS)
Schindler, R. A.
1978-01-01
Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.
Spray cooling characteristics of nanofluids for electronic power devices.
Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang
2015-01-01
The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm(2) with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10(-4) kg/cm(2)s.
Gaze shifts and fixations dominate gaze behavior of walking cats
Rivers, Trevor J.; Sirota, Mikhail G.; Guttentag, Andrew I.; Ogorodnikov, Dmitri A.; Shah, Neet A.; Beloozerova, Irina N.
2014-01-01
Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5 m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body’s speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats’ gaze behavior during all locomotor tasks, jointly occupying 62–84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior “gaze stepping”. Each gaze shift took gaze to a site approximately 75–80 cm in front of the cat, which the cat reached in 0.7–1.2 s and 1.1–1.6 strides. Constant gaze occupied only 5–21% of the time cats spent looking at the walking surface. PMID:24973656
NASA Astrophysics Data System (ADS)
Srivastava, V. K.; Singh, B. P.
2017-04-01
Late Paleocene sedimentation in the pericratonic Kachchh Basin marks the initial marine transgression during the Cenozoic era. A 17 m thick sandstone-dominated succession, known as the clastic member (CM) of the Matanomadh Formation (MF), is exposed sporadically in the basin. Three facies associations are reconstructed in the succession in three different sections. Facies association-1 contains matrix-supported pebbly conglomerate facies, horizontally-laminated sandstone-mudstone alternation facies, hummocky- and swaley cross-bedded sandstone facies, wave-rippled sandstone facies and climbing ripple cross-laminated sandstone facies. This facies association developed between shoreface and foreshore zone under the influence of storms on a barrier ridge. Facies association-2 contains sigmoidal cross-bedded sandstone facies, sandstone-mudstone alternation facies, flaser-bedded sandstone facies, herringbone cross-bedded sandstone facies and tangential cross-bedded sandstone facies. This facies association possessing tidal bundles and herringbone cross-beds developed on a tidal flat with strong tidal influence. Facies association-3 comprises pebbly sandstone facies, horizontally-bedded sandstone facies, tangential cross-bedded sandstone facies exhibiting reactivation surfaces and tabular cross-bedded sandstone facies. This facies association represents sedimentation in a river-dominated estuary and reactivation surfaces and herringbone cross-beds indicating tidal influence. The bipolar paleocurrent pattern changes to unipolar up-section because of the change in the depositional currents from tidal to fluvial. The sedimentation took place in an open coast similar to the Korean coast. The presence of neap-spring tidal rhythmites further suggests that a semidiurnal system similar to the modern day Indian Ocean was responsible for the sedimentation. Here, the overall sequence developed during the transgressive phase where barrier ridge succession is succeeded by the tidal flat succession and the latter, in turn, is succeeded by the estuarine succession. This study resolves the most debated issue of initial marine transgression in the Kachchh Basin during the Cenozoic.
Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.
Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P
2006-08-01
Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (P<0.05) during the squat position on the decline surface compared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (P<0.001, P<0.05). Normalized mean electromyography amplitudes of the knee extensor muscles were significantly greater during the decline compared to the standard squats (P<0.05). Hamstring and calf muscle mean electromyography did not differ, respectively, between standard and decline squats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.
Nonprincipal plane scattering of flat plates and pattern control of horn antennas
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng
1989-01-01
Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.
NASA Astrophysics Data System (ADS)
Porter, R. C.; Gilbert, H. J.; Zandt, G.; Beck, S. L.; Warren, L. M.; Calkins, J. A.; Alvarado, P. M.; Anderson, M. L.
2011-12-01
The Pampean flat slab region, located in Chile and western Argentina between 29° and 34° S, is characterized by the subducting Nazca plate assuming a sub-horizontal geometry for ~300 km laterally before resuming a more "normal" angle of subduction. The onset of flat slab subduction is associated with the cessation of regional arc related volcanism and the migration of deformation inboard from the high Andes into the thin-skinned Precordillera and thick-skinned Sierras Pampeanas. Developing a better understanding of this region's geology is of particular importance, as it is an ideal area to study flat slab subduction and serves as a modern analogue to Laramide flat slab subduction in the western US. To study the crustal and mantle structure in the region, we combine ambient noise tomography and ballistic surface wave tomography to produce a regional 3D shear wave velocity model that encompasses flat slab subduction in the north and normal subduction geometry in the south, allowing for a comparison of the two. Results from this work show that shear velocities within the upper crust are largely determined by composition, with sedimentary basins and areas with active volcanism exhibiting slower velocities than basement cored uplifts and other bedrock exposures. Though surface waves are not particularly sensitive to the depth of sharp velocity contrasts, we observe an eastward increase in shear velocity at depth that correlates with an eastward decrease in crustal thickness. In both the slab and overlying mantle, we observe significant variations in shear wave velocity. North of 32° S, where flat slab subduction is occurring, the Nazca plate contains low-velocity zones (LVZs) beneath the high Andes and Precordillera that are not present in the east beneath the Sierras Pampeanas. An opposite transition is observed in the overlying mantle, which changes from fast in the west to slow in the east. Both of these observations are consistent with an initially hydrated slab dehydrating and releasing water into the overlying mantle. Within this region we also observe a LVZ immediately above the slab as the subduction angle steepens. This zone potentially represents asthenosphere or hydrated lithospheric mantle. South of 32° S, where subduction is occurring at a more normal angle, the slab is visible as a high-velocity body with a low-velocity mantle wedge present beneath the arc and back arc. The variations in slab and upper mantle shear velocities are consistent with a hydrated flat slab and the presence of a LVZ above the flat slab as it steepens suggests that water is being transported to a significant depth or that an asthenospheric wedge is present between the slab and cratonic lithosphere.
NASA Technical Reports Server (NTRS)
Tsou, P.; Stolte, W.
1978-01-01
The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.
Sediment Transport at Density Fronts in Shallow Water: A Continuation of N00014-08-1-0846
2013-09-30
flats in Puget Sound, coordinated with other researchers in the Tidal Flats DRI. Focused observations of the shallow density front and its evolution...an evaluation of effects of complex topography on wind correlation length scales and implications for coastal ocean modeling (Raubenheimer et al...as the integrated potential energy anomaly Φ (Simpson et al. 1990), varied with the Simpson number, , where g is gravity, ∂ρ/∂x is the horizontal
CloudSat Image of Tropical Thunderstorms Over Africa
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.Global land-atmosphere coupling associated with cold climate processes
NASA Astrophysics Data System (ADS)
Dutra, Emanuel
This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.
The airplane: A simulated commercial air transportation study
NASA Technical Reports Server (NTRS)
Dauteuil, Mark; Geniesse, Pete; Hunniford, Michael; Lawler, Kathleen; Quirk, Elena; Tognarelli, Michael
1993-01-01
The 'Airplane' is a moderate-range, 70 passenger aircraft. It is designed to serve demands for flights up to 10,000 feet and it cruises at 32 ft/s. The major drivers for the design of the Airplane are economic competitiveness, takeoff performance, and weight minimization. The Airplane is propelled by a single Astro 15 electric motor and a Zinger 12-8 propeller. The wing section is a Spica airfoil which, because of its flat bottom, provides simplicity in manufacturing and thus helps to cut costs. The wing is constructed of a single load bearing mainspar and shape-holding ribs coated with Monokote skin, lending to a light weight structural makeup. The fuselage houses the motor, flight deck and passenger compartments as well as the fuel and control actuating systems. The wing will be attached to the top of the fuselage as will the fuel and control actuator systems for easy disassembly and maintenance. The aircraft is maneuvered about its pitch axis by means of an aft elevator on the flat plate horizontal tail. The twin vertical tail surfaces are also flat plates and each features a rudder for both directional and roll control. Along with wing dihedral, the rudders will be used to roll the aircraft. The Airplane is less costly to operate at its own maximum range and capacity as well as at its maximum range and the HB-40's maximum capacity than the HB-40.
Optimized Radiator Geometries for Hot Lunar Thermal Environments
NASA Technical Reports Server (NTRS)
Ochoa, Dustin
2013-01-01
The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approximately 325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Intense Thermal Infrared Reflector (ITIR), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of ITIR is the absence of louvers or other moving parts and its simple geometry (no parabolic shapes). ITIR consists of a specularly reflective shielding surface and a diffuse radiating surface joined to form a horizontally oriented V-shape (shielding surface on top). The point of intersection of these surfaces is defined by two angles, those which define the tilt of each surface with respect to the local horizontal. The optimum set of these angles is determined on a case-by-case basis. The idea assumes minimal conductive heat transfer between shielding and radiating surfaces, and a practical design would likely stack sets of these surfaces on top of one another to reduce radiator thickness.
The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China
NASA Astrophysics Data System (ADS)
Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu
2018-06-01
A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.
NASA Astrophysics Data System (ADS)
Scopélitis, J.; Andréfouët, S.; Phinn, S.; Done, T.; Chabanet, P.
2011-12-01
Observations made on Heron Island reef flat during the 1970s-1990s highlighted the importance of rapid change in hydrodynamics and accommodation space for coral development. Between the 1940s and the 1990s, the minimum reef-flat top water level varied by some tens of centimetres, successively down then up, in rapid response to local engineering works. Coral growth followed sea-level variations and was quantified here for several coral communities using horizontal two-dimensional above water remotely sensed observations. This required seven high spatial resolution aerial photographs and Quickbird satellite images spanning 35 years: 1972, 1979, 1990, 1992, 2002, 2006 and 2007. The coral growth dynamics followed four regimes corresponding to artificially induced changes in sea levels: 1972-1979 (lowest growth rate): no detectable coral development, due to high tidal currents and minimum mean low-tide water level; 1979-1991 (higher growth rate): horizontal coral development promoted by calmer hydrodynamic conditions; 1991-2001(lower growth rate): vertical coral development, induced by increased local sea level by ~12 cm due to construction of new bund walls; 2001-2007 (highest growth rate): horizontal coral development after that vertical growth had become limited by sea level. This unique time-series displays a succession of ecological stage comprising a `catch-up' dynamic in response to a rapid local sea-level rise in spite of the occurrences of the most severe bleaching events on record (1998, 2002) and the decreasing calcification rates reported in massive corals in the northern part of the Great Barrier Reef.
Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer
NASA Astrophysics Data System (ADS)
Masnadi, Naeem; Erinin, Martin; Duncan, James H.
2017-11-01
The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo
Ohno, Yoshikazu; Otaki, Joji M.
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings. PMID:26107809
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo.
Ohno, Yoshikazu; Otaki, Joji M
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.
Numerical simulation of turbulent convective flow over wavy terrain
NASA Astrophysics Data System (ADS)
Dörnbrack, A.; Schumann, U.
1993-09-01
By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidally in the downstream direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15 H and wavelength λ of H to 8 H, where H is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship with a roughness length z o=10-4 H. The mean wind is varied between zero and 5 w *, where w * is the convective velocity scale. After rather long times, the flow structure shows horizontal scales up to 4 H, with a pattern similar to that over flat surfaces at corresponding shear friction. Weak mean wind destroys regular spatial structures induced by the surface undulation at zero mean wind. The surface heating suppresses mean-flow recirculation-regions even for steep surface waves. Short surface waves cause strong drag due to hydrostatic and dynamic pressure forces in addition to frictional drag. The pressure drag increases slowly with the mean velocity, and strongly with δ/ H. The turbulence variances increase mainly in the lower half of the mixed layer for U/w *>2.
Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors
NASA Technical Reports Server (NTRS)
1981-01-01
An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.
Selective adsorption of a supramolecular structure on flat and stepped gold surfaces
NASA Astrophysics Data System (ADS)
Peköz, Rengin; Donadio, Davide
2018-04-01
Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A
2014-07-01
An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented. © 2013 ISA. Published by ISA. All rights reserved.
Rotor Dynamic Inflow Derivatives and Time Constants from Various Inflow Models.
1980-12-01
fore-and-aft rotor diameter for the case of horizontal flight. It i- possible to determine from the blade twist both the geometric and equivalent...17, the flat-wake theory represents a limiting case where all the vortices transferred to the slipstream of a rotor, moving horizontally at a...L44,4) 66- p E 40- R CE T~ 26* E R R 0 0 R -a,- ’ I 1 P I . . . I . . 6.0 0.1 0.2 0.3 0.4 0.5 INTERGRATION INCREMENT Figure 9. Effects of the
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.
2013-12-01
The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1990-01-01
In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.
Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films
NASA Astrophysics Data System (ADS)
Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori
2007-05-01
Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.
Nilsson, Johnny E; Rosdahl, Hans G
2014-03-01
The purpose was to develop and validate portable force-measurement devices for recording push and pull forces applied by each foot to the foot bar of a kayak and the horizontal force at the seat. A foot plate on a single-point force transducer mounted on the kayak foot bar underneath each foot allowed the push and pull forces to be recorded. Two metal frames interconnected with 4 linear ball bearings, and a force transducer allowed recording of horizontal seat force. The foot-bar-force device was calibrated by loading each foot plate with weights in the push-pull direction perpendicular to the foot plate surface, while the seat-force device was calibrated to horizontal forces with and without weights on the seat. A strong linearity (r2 = .99-1.0) was found between transducer output signal and load force in the push and pull directions for both foot-bar transducers perpendicular to the foot plate and the seat-force-measuring device. Reliability of both devices was tested by means of a test-retest design. The coefficient of variation (CV) for foot-bar push and pull forces ranged from 0.1% to 1.1%, and the CV for the seat forces varied from 0.6% to 2.2%. The current study opens up a field for new investigations of the forces generated in the kayak and ways to optimize kayak-paddling performance.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca; Orozco, María Teresa; Wong Valenzuela, Raul; Husker, Allen Leroy; Kostoglodovc, Vlad; Ionescu, Constantin
2017-04-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Manea, V. C.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R. W.; Husker, A.; Kostoglodov, V.
2017-01-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.
Mishra, Pramod Kumar
2010-04-21
A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.
Fragile surface zero-energy flat bands in three-dimensional chiral superconductors
NASA Astrophysics Data System (ADS)
Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2015-12-01
We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.
Vastardis, Sotirios; Yukna, Raymond A; Rice, David A; Mercante, Don
2005-05-01
A new diamond-coated ultrasonic insert has been developed for scaling and root planing, and it was evaluated in vitro for the amount of root surface removed and the roughness of the residual root surface as a result of instrumentation. 48 extracted single-rooted human teeth were ground flat on one root surface and mounted (flat side up) in PVC rings of standard height and diameter with improved dental stone. Each tooth surface was treated with either a plain ultrasonic insert (PI), an ultrasonic insert with a fine grit diamond coating (DI) or sharp Gracey curettes (HI). The mounted teeth were attached to a stepper motor which drove the teeth in a horizontal, reciprocal motion at a constant rate. The thickness from the flattened bottom of the ring to the flattened tooth surface was measured before and after 10, 20, and 30 instrumentation strokes for each root surface with each of the experimental instruments. A number of treated teeth were randomly selected for examination with SEM and a profilometer. Statistical analysis (analysis of co-variance) was performed to compare the amounts of tooth structure removed among the 3 instruments and t-test was used to compare the roughness of the treated root surfaces. The mean depth of root structure removed was PI 10.7 microm, HI 15.0 microm, and DI 46.2 microm after 10 strokes; and PI 21.6 microm, HI 33.2 and DI 142.0 microm after 30 strokes, respectively. On average, 0.9 microm, 1.3 microm, and 4.7 microm of root surface was removed with each stroke of PI, HI and DI, respectively. PI and HI were not different from each other for all the stroke cycles, while DI was significantly different from PI and HI for all the stroke cycles (p<0.0001). Analysis with the profilometer showed that the smoothest surface was produced by the PI followed by the HI. The DI produced a surface that was significantly rougher than the surface produced by the PI or HI. These results suggest that diamond-coated ultrasonic instruments will effectively plane roots, and that caution should be used during periodontal root planing procedures. Additionally, the diamond-coated instruments will produce a rougher surface than the plain inserts or the hand curettes.
Infrared temperature measurements over bare soil and vegetation - A HAPEX perspective
NASA Technical Reports Server (NTRS)
Carlson, Toby N.; Perry, Eileen M.; Taconet, Odile
1987-01-01
Preliminary analyses of aircraft and ground measurements made in France during the HAPEX experiment show that horizontal radiometric surface temperature variations, as viewed by aircraft, can reflect the vertical profile of soil moisture (soil versus root zone) because of horizontal variations in vegetation density. Analyses based on one day's data show that, although horizontal variations in soil moisture were small, the vertical differences between a dry surface and a wet root zone were large. Horizontal temperature differences between bare soil, corn and oats reflect differences in the fractional vegetation cover, as seen by the radiometer. On the other hand, these horizontal variations in radiometric surface temperature seem to reflect real horizontal variations in surface turbulent energy fluxes.
Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.
DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William
2015-11-01
Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.
Kudla, Urszula; Qin, Ling; Milac, Adina; Kielak, Anna; Maissen, Cyril; Overmars, Hein; Popeijus, Herman; Roze, Erwin; Petrescu, Andrei; Smant, Geert; Bakker, Jaap; Helder, Johannes
2005-04-25
Southern analysis showed that Gr-EXPB1, a functional expansin from the potato cyst nematode Globodera rostochiensis, is member of a multigene family, and EST data suggest expansins to be present in other plant parasitic nematodes as well. Homology modeling predicted that Gr-EXPB1 domain 1 (D1) has a flat beta-barrel structure with surface-exposed aromatic rings, whereas the 3D structure of Gr-EXPB1-D2 was remarkably similar to plant expansins. Gr-EXPB1 shows highest sequence similarity to two extracellular proteins from saprophytic soil-inhabiting Actinobacteria, and includes a bacterial type II carbohydrate-binding module. These results support the hypothesis that a number of pathogenicity factors of cyst nematodes is of procaryotic origin and were acquired by horizontal gene transfer.
Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA
2011-10-04
A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.
Horizontally progressive mirror for blind spot detection in automobiles.
Lee, Hocheol; Kim, Dohyun; Yi, Sung
2013-02-01
The blind spot of automobiles has been a critical issue in driving safety performance. Side mirrors that use an aspheric shape to achieve a wider angle rather than conventional spherical or flat mirrors have been recently permitted from European Union safety regulations. However, these mirrors also cause difficulty in perceiving the speed and distance of an approaching vehicle in the aspheric mirror zones with their decreasing radii of curvature. We demonstrated new side mirrors showing a stable vehicle image by inserting a horizontally progressive zone between the two outer spherical zones used for the far and near views.
Shin-Etsu super-high-flat substrate for FPD panel photomask
NASA Astrophysics Data System (ADS)
Ishitsuka, Youkou; Harada, Daijitsu; Watabe, Atsushi; Takeuchi, Masaki
2017-07-01
Recently, high-resolution exposure machine has been developed for production of high-definition (HD) panels, and higher-flat photomask substrates for FPD is being expected for panel makers to produce HD panels. In this presentation, we introduce about Shin-Etsu's advanced technique of producing super-high-flat photomask substrates. Shin-Etsu has developed surface polishing and planarization technology with No.1-quality-IC photomask substrates. Our most advanced IC photomask substrates have gained the highest estimation and appreciation from our customers because of their surface quality (non-defect surface without sub-0.1um size defects) and ultimate flatness (sub-0.1um order having achieved). By scaling up those IC photomask substrate technologies and developing unique large-size processing technologies, we have achieved creating high-flat large substrates, even G10-photomask size as well as regular G6-G8 photomask size. The core technology is that the surface shape of the substrate is completely controlled by the unique method. For example, we can regularly produce a substrate with its flatness of triple 5ums; front side flatness, back side flatness and total thickness variation are all less than 5μm. Furthermore, we are able to supply a substrate with its flatness of triple 3ums for G6-photomask size advanced grade, believed to be needed in near future.
Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum
NASA Astrophysics Data System (ADS)
Hsu, Fu-Yuan
2016-06-01
In aluminum gravity casting, as liquid aluminum fell through a vertical sprue and impacted on the horizontal flat surface, a phenomenon known as hydraulic jump ( i.e., flow transition from super-critical to sub-critical flows) was observed. As the jump was transformed, a reverse eddy motion on the surface of the jump was created. This motion entrained aluminum oxide film from the surface into aluminum melt. This folded film (so-called "bifilm" defect) was engulfed by the melt and caused its quality to deteriorate. To understand this phenomenon, aluminum casting experiments and computational modeling were conducted. In the casting experiment, a radius ( R j) to the point where the circular hydraulic jump occurred was measured. This is the circular region of `irregular surface feature', a rough oxidized surface texture near the center area of the castings. To quantify contents of the bifilm defects in the outer region of the jump, the samples in this region were sectioned and re-melted for doing re-melted reduced pressure test (re-melt RPT). An "area-normalized" bifilm index map was plotted to analyze bifilms' population in the samples. The flow transition in the hydraulic jump of liquid aluminum depended on three pressure heads: inertial, gravitational, and surface-tension pressures. A new theoretical equation containing surface tension for describing the flow transition of liquid metal was proposed.
Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada
Phelps, Geoffrey A.; Graham, Scott E.
2002-01-01
The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.
NASA Astrophysics Data System (ADS)
Michaut, Chloé
2017-04-01
Horizontal intrusions probably initially start as cracks, with negligible surface deformation. Once their horizontal extents become large enough compared to their depths, they make room for themselves by lifting up their overlying roofs, creating characteristic surface deformations that can be observed at the surface of planets. We present a model where magma flows below a thin elastic overlying layer characterized by a flexural wavelength Λ and study the dynamics and morphology of such a magmatic intrusion. Our results show that, depending on its size, the intrusion present different shapes and thickness-to-radius relationships. During a first phase, elastic bending of the overlying layer is the main source of driving pressure in the flow; the pressure decreases as the flow radius increases, the intrusion is bell-shaped and its thickness is close to being proportional to its radius. When the intrusion radius becomes larger than 4 times Λ, the flow enters a gravity current regime and progressively develops a pancake shape with a flat top. We study the effect of topography on flow spreading in particular in the case where the flow is constrained by a lithostatic barrier within a depression, such as an impact crater on planets or a caldera on Earth. We show that the resulting shape for the flow depends on the ratio between the flexural wavelength of the layer overlying the intrusion and the depression radius. The model is tested against terrestrial data and is shown to well explain the size and morphology of laccoliths and saucer-shaped sills on Earth. We use our results to detect and characterize shallow solidified magma reservoirs in the crust of terrestrial planets and potential shallow water reservoirs in the ice shell of icy satellites.
Crack growth measured on flat and curved surfaces at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Orange, T. W.; Sullivan, T. L.
1967-01-01
Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.
Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ha, Tae Woong
1989-01-01
Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.
Simulations of surface winds at the Viking Lander sites using a one-level model
NASA Technical Reports Server (NTRS)
Bridger, Alison F. C.; Haberle, Robert M.
1992-01-01
The one-level model developed by Mass and Dempsey for use in predicting surface flows in regions of complex terrain was adapted to simulate surface flows at the Viking lander sites on Mars. In the one-level model, prediction equations for surface winds and temperatures are formulated and solved. Surface temperatures change with time in response to diabatic heating, horizontal advection, adiabatic heating and cooling effects, and horizontal diffusion. Surface winds can change in response to horizontal advection, pressure gradient forces, Coriolis forces, surface drag, and horizontal diffusion. Surface pressures are determined by integration of the hydrostatic equation from the surface to some reference level. The model has successfully simulated surface flows under a variety of conditions in complex-terrain regions on Earth.
Spin-imbalanced pairing and Fermi surface deformation in flat bands
NASA Astrophysics Data System (ADS)
Huhtinen, Kukka-Emilia; Tylutki, Marek; Kumar, Pramod; Vanhala, Tuomas I.; Peotta, Sebastiano; Törmä, Päivi
2018-06-01
We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, whose stability is confirmed by dynamical mean-field theory. The nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and provide a potential route for observing spin-imbalanced superfluidity and superconductivity.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface coating processes. EPA is approving this revision concerning the adoption of the EPA CTG requirements for flat wood...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... sources covered by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface... Protection (PADEP) submitted to EPA a SIP revision concerning the adoption of the CTG for flat wood paneling...
6. INTERIOR VIEW TO THE EAST OF SOUTHEAST CORNER OF ...
6. INTERIOR VIEW TO THE EAST OF SOUTHEAST CORNER OF THE HOT BAY. A LARGE MANIPULATOR ARM AND HORIZONTAL TRACKING SYSTEM IS SHOWN ABOVE SMALLER MANIPULATOR ARM WORK STATIONS. ASSOCIATED WITH THE WORK STATIONS ARE OBSERVATION WINDOWS. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
Cheng, Jun; Xu, Junchen; Lu, Hongxiang; Ye, Qing; Liu, Jianzhong; Zhou, Junhu
2018-08-01
Double paddlewheels were proposed to generate cycle flow for increasing horizontal fluid velocity between dark and light zones in a flat plate photo-bioreactor, which strengthened the mass transfer and the mixing effect to improve microalgal growth with 15% CO 2 . Numerical fluid dynamics were used to simulate the cycle flow field with double paddlewheels. The local flow field measured with particle image velocimetry fitted well with the numerical simulation results. The horizontal fluid velocity in the photo-bioreactor was markedly increased from 5.8 × 10 -5 m/s to 0.45 m/s with the rotation of double paddlewheels, resulting in a decreased dark/light cycle period. Therefore, bubble formation time and diameter reduced by 24.4% and 27.4%, respectively. Meanwhile, solution mixing time reduced by 31.3% and mass transfer coefficient increased by 41.2%. The biomass yield of microalgae Nannochloropsis Oceanic increased by 127.1% with double paddlewheels under 15% CO 2 condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces.
Valdez-Salas, Benjamin; Beltrán-Partida, Ernesto; Castillo-Uribe, Sandra; Curiel-Álvarez, Mario; Zlatev, Roumen; Stoytcheva, Margarita; Montero-Alpírez, Gisela; Vargas-Osuna, Lidia
2017-05-18
It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis ( S. epidermidis ) and Pseudomonas aeruginosa ( P. aeruginosa ) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.
Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Bush, G. A.; Perachio, A. A.
1993-01-01
Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses, respectively, elicited in the rat during linear translation in the horizontal head plane. In addition, the data suggest a spatially and temporally specific and selective otolith/canal convergence. We propose that the central otolith system is organized in canal coordinates such that there is a close alignment between the plane of angular acceleration (canal) sensitivity and the plane of linear acceleration (otolith) sensitivity in otolith/canal-convergent vestibular nuclei neurons.
Fully methylated, atomically flat (111) silicon surface
NASA Astrophysics Data System (ADS)
Fidélis, A.; Ozanam, F.; Chazalviel, J.-N.
2000-01-01
The atomically flat hydrogenated (111) silicon surface has been methylated by anodization in a Grignard reagent and the surface obtained characterized by infrared spectroscopy. 100% substitution of the hydrogen atoms by methyl groups is observed. The resulting surface exhibits preserved ordering and superior chemical stability.
NASA Astrophysics Data System (ADS)
Rossi, Christopher; Cunio, Phillip M.; Alibay, Farah; Morrow, Joe; Nothnagel, Sarah L.; Steiner, Ted; Han, Christopher J.; Lanford, Ephraim; Hoffman, Jeffrey A.
2012-12-01
The TALARIS (Terrestrial Artificial Lunar And Reduced GravIty Simulator) project is intended to test GNC (Guidance, Navigation, and Control) algorithms on a prototype planetary surface exploration hopper in a dynamic environment with simulated reduced gravity. The vehicle is being developed by the Charles Stark Draper Laboratory and Massachusetts Institute of Technology in support of efforts in the Google Lunar X-Prize contest. This paper presents progress achieved since September 2010 in vehicle development and flight testing. Upgrades to the vehicle are described, including a redesign of the power train for the gravity-offset propulsion system and a redesign of key elements of the spacecraft emulator propulsion system. The integration of flight algorithms into modular flight software is also discussed. Results are reported for restricted degree of freedom (DOF) tests used to tune GNC algorithms on the path to a full 6-DOF hover-hop flight profile. These tests include 3-DOF tests on flat surfaces restricted to horizontal motion, and 2-DOF vertical tests restricted to vertical motion and 1-DOF attitude control. The results of tests leading up to full flight operations are described, as are lessons learned and future test plans.
NASA Astrophysics Data System (ADS)
Nadolny, K.; Kapłonek, W.
2014-08-01
The following work is an analysis of flatness deviations of a workpiece made of X2CrNiMo17-12-2 austenitic stainless steel. The workpiece surface was shaped using efficient machining techniques (milling, grinding, and smoothing). After the machining was completed, all surfaces underwent stylus measurements in order to obtain surface flatness and roughness parameters. For this purpose the stylus profilometer Hommel-Tester T8000 by Hommelwerke with HommelMap software was used. The research results are presented in the form of 2D surface maps, 3D surface topographies with extracted single profiles, Abbott-Firestone curves, and graphical studies of the Sk parameters. The results of these experimental tests proved the possibility of a correlation between flatness and roughness parameters, as well as enabled an analysis of changes in these parameters from shaping and rough grinding to finished machining. The main novelty of this paper is comprehensive analysis of measurement results obtained during a three-step machining process of austenitic stainless steel. Simultaneous analysis of individual machining steps (milling, grinding, and smoothing) enabled a complementary assessment of the process of shaping the workpiece surface macro- and micro-geometry, giving special consideration to minimize the flatness deviations
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
APMP supplementary comparison (APMP.L-S8) measurement of flatness of optical flat by interferometry
NASA Astrophysics Data System (ADS)
Buajarern, J.; Bitou, Y.; Zi, X.; Zhao, L.; Swift, N.; Agarwal, A.; Hungwe, F.
2018-01-01
A reginal supplementary comparison, APMP.L-S8, was started in 2015 to demonstrate the equivalence of routine calibration services offered by NMIs to clients. Participants in this APMP.L-S8 comparison agreed to apply interferometric method for flatness measurement of the optical flats. There are two configurations of flatness interferometer used in this comparison, vertical type and horizontal type. There are seven laboratories from NMIs participated this supplementary comparison which included NIMT, NMIJ, NIM, NMC/A*STAR, MSL, NPLI and NMISA. This report describes the measurement results of two optical flats, diameter of 70 mm and 160 mm. The calibrations of this comparison were carried out by participants during the period from July 2015 to September 2016. The results show that there is a degree of equivalence below 1 for all measurands. Hence, there is a close agreement between the measurements from all participants. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Simulation of laser beam reflection at the sea surface
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2011-05-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.
Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth
Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...
2016-01-01
The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less
Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.
2010-01-01
Screens are commonly installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District in Hood River, Oregon, developed a new flat-plate screen design that offers passive operation and may result in reduced operation and installation costs to irrigators. To evaluate the performance (its biological effect on fish) of this type of screen, two size classes of juvenile coho salmon (Oncorhynchus kistuch) were released over a small version of this screen in the field-the Herman Creek screen. The performance of the screen was evaluated over a range of inflow [0.02 to 0.42 m3/s (cubic meters per second)] and diversion flows (0.02 to 0.34 m3/s) at different weir wall heights. The mean approach velocities for the screen ranged from 0 to 5 cm/s (centimeters per second) and mean sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 centimeters and were directly related to weir wall height and inflow. Passage of juvenile coho salmon over the screen under a variety of hydraulic conditions did not severely injure them or cause delayed mortality. For all fish, the mean percentage of body surface area that was injured after passage over the screen ranged from about 0.4 to 3.0%. This occurred even though many fish contacted the screen surface during passage. No fish were observed becoming impinged on the screen surface (greater than 1 second contact with the screen). When operated within its design criteria (diversion flows of about 0.28 m3/s), the screen provided safe and effective downstream passage of juvenile salmonids under a variety of hydraulic conditions. However, we do not recommend operating the screen at inflows less than 0.14 m3/s (5 ft3/s) because water depth can get quite shallow and the screen can completely dewater, particularly at very low flows.
Rolling and aging in temperature-ramp soft adhesion
NASA Astrophysics Data System (ADS)
Boniello, Giuseppe; Tribet, Christophe; Marie, Emmanuelle; Croquette, Vincent; Zanchi, Dražen
2018-01-01
Immediately before adsorption to a horizontal substrate, sinking polymer-coated colloids can undergo a complex sequence of landing, jumping, crawling, and rolling events. Using video tracking, we studied the soft adhesion to a horizontal flat plate of micron-size colloids coated by a controlled molar fraction f of the poly(lysine)-grafted-poly(N-isopropylacrylamide) (PLL-g-PNIPAM) which is a temperature-sensitive polymer. We ramp the temperature from below to above Tc=32 ±1∘C , at which the PNIPAM polymer undergoes a transition, triggering attractive interaction between microparticles and surface. The adsorption rate, the effective in-plane (x -y ) diffusion constant, and the average residence time distribution over z were extracted from the Brownian motion records during last seconds before immobilization. Experimental data are understood within a rate-equations-based model that includes aging effects and includes three populations: the untethered, the rolling, and the arrested colloids. We show that preadsorption dynamics casts a characteristic scaling function α (f ) proportional to the number of available PNIPAM patches met by soft contact during Brownian rolling. In particular, the increase of in-plane diffusivity with increasing f is understood: The stickiest particles have the shortest rolling regime prior to arrest, so that their motion is dominated by the untethered phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter
The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all ofmore » these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.« less
Behavior of hollow balls containing granules bouncing repeatedly off the ground
NASA Astrophysics Data System (ADS)
Hu, Min; Mu, Qing-song; Luo, Ning; Li, Gang; Peng, Ning-bo
2013-07-01
An experimental study of the behavior of hollow balls filled with some granules (mung beans or millets) bouncing repeatedly off a static flat horizontal surface is presented. We observed that the bounce number of the ball is limited and decreases regularly with an increasing number of granules. Moreover, for two balls containing a different kind of granules, their bounce numbers are basically equal when the two balls have the same mass of granules. While there is no clear relationship between the first rebound height of one ball and the number of granules, there appears an exponential decay of the second rebound height with an increase of the granule number. Furthermore, a two-dimensional numerical model has been created to find out the law of the ball's rebound height and the dissipation law of the granule nested system. A generalized prediction equation to reasonably explain the law of the bounce number has also been proposed.
Increasing the Energy Efficiency of Aluminum-Reduction Cells Using Modified Cathodes
NASA Astrophysics Data System (ADS)
Jianping, Peng; Yang, Song; Yuezhong, Di; Yaowu, Wang; Naixiang, Feng
2017-10-01
A cathode with an inclined surface (5°) and increased bar collector height (230 mm high) was incorporated into two 300-kA industrial aluminum-reduction cells. The voltage of the cells with the modified cathode was reduced by approximately 200 mV when compared with that of a conventional cell with a flat cathode. Through the use of simulations, the reduction in the cell voltage was attributed to the cathode modification (40 mV) and a reduced electrolyte level of 0.5 cm (160 mV). As a result of reduced anode cathode distance (ACD), the ledge toe was extended to the anode shadow by 12 cm. This caused a large inverted horizontal current and a velocity increase. The ledge profile returned to the desired position when the cells were insulated more effectively, and the metal velocity and metal crest in the modified cells were reduced accordingly.
NASA Technical Reports Server (NTRS)
Dollyhigh, S. M.
1974-01-01
An investigation has been made in the Mach number range from 0.20 to 2.16 to determine the longitudinal aerodynamic characteristics of a fighter airplane concept. The configuration concept employs a single fixed geometry inlet, a 50 deg leading-edge-angle clipped-arrow wing, a single large vertical tail, and low horizontal tails. The wing camber surface was optimized in drag due to lift and was designed to be self-trimming at Mach 1.40 and at a lift coefficient of 0.20. An uncambered or flat wing of the same planform and thickness ratio was also tested. However, for the present investigation, the fuselage was not cambered. Further tests should be made on a cambered fuselage version, which attempts to preserve the optimum wing loading on that part of the theoretical wing enclosed by the fuselage.
CloudSat Image of a Polar Night Storm Near Antarctica
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of a polar night storm near Antarctica. Until now, clouds have been hard to observe in polar regions using remote sensing, particularly during the polar winter or night season. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water; the brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.Observations of ebb flows on tidal flats: Evidence of dewatering?
NASA Astrophysics Data System (ADS)
Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.
2010-12-01
Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures. Top: (soild) Water depth within the channel and (dashed) tidal flat elevation. Center: Channel surface velocities as measured by an (black) ADCP and (red) a Fourier technique using infrared video. Bottom: Temperatures of (blue) near bed water downstream of the incised channel, (black) channel outflow, and (red) tidal flat sediment at 10 cm depth within the bed.
Evaluating the need for surface treatments to reduce crash frequency on horizontal curves.
DOT National Transportation Integrated Search
2013-10-01
The application of high-friction surface treatments at appropriate horizontal curve locations throughout the : state has the potential to improve driver performance and reduce the number of crashes experienced at : horizontal curves. These treatments...
Mirrors, Mirrors on the Wall...The Ubiquitous Multiple Reflection Error
ERIC Educational Resources Information Center
Lawson, Rebecca
2012-01-01
Participants decided when somebody, Janine, could see their face in a horizontal row of adjacent mirrors mounted flat on the same wall. They saw real mirrors and a shop-dummy representing Janine. Such coplanar mirrors reflect different, non-overlapping areas of a scene. However, almost everybody made an unexpected error: they claimed that Janine…
Surface properties of atomically flat poly-crystalline SrTiO3
Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok
2015-01-01
Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275
Dynamics and Instabilities of Acoustically Stressed Interfaces
NASA Astrophysics Data System (ADS)
Shi, William Tao
An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may involve this coupling. The dynamical behavior of a stressed drop can be determined in terms of a given form of an incident sound field and three dimensionless quantities. Thus, the behavior of a complex dynamic system has been clarified, permitting the exploration and interpretation of the nature of liquid surface phenomena.
Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects
NASA Astrophysics Data System (ADS)
Adler-Golden, Steven; Less, David; Jin, Xuemin; Rynes, Peter
2016-05-01
Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume uniform illumination across the scene and horizontal surfaces with Lambertian reflectance. When these algorithms are used to process real 3-D scenes, the retrieved "apparent" values contain the strong, spatially dependent variations in illumination as well as surface bidirectional reflectance distribution function (BRDF) effects. This is especially problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal surfaces can show strong specularity. The goals of this study are to characterize long-wavelength infrared (LWIR) signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values. We take advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature (MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky downwelling illumination and MuSES-based non-uniform environmental illumination.
Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.
2015-12-01
Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.
Geldon, A.L.
1993-01-01
Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were used to determine matrix hydrologic properties of the tuffs and lavas of Calico Hills and the Crater Flat Tuff in the C-holes. The porosity ranged from 12 to 43 percent and, on the average, was larger in nonwelded to partially welded, ash-flow tuff, ashfall tuff, and reworked tuff than in moderately to densely welded ash-flow tuff. The pore-scale horizontal permeability of nine samples ranged from 5.7x10'3 to 2.9 millidarcies, and the pore-scale vertical permeability of these samples ranged from 3.7x10'* to 1.5 millidarcies. Ratios of pore-scale horizontal to vertical permeability generally ranged from 0.7 to 2. Although the number of samples was small, values of pore-scale permeability determined were consistent with samples from other boreholes at Yucca Mountain. The specific storage of nonwelded to partially welded ash-flow tuff, ash-fall tuff, and reworked tuff was estimated from porosity and elasticity to' be 2xlO'6 per meter, twice the specific storage of moderately to densely welded ash-flow tuff and tuff breccia. The storativity of geologic units, based on their average thickness (corrected for bedding dip) and specific storage, was estimated to range from 1xlO's to 2xlO'4. Ground-water flow in the Tertiary rocks of the Yucca Mountain area is not confined by strata but appears to result from the random intersection of water-bearing fractures and faults. Even at the C-hole complex, an area of only 1,027 square meters, water-producing zones during pumping tests vary from borehole to borehole. In borehole UE-25c #1, water is produced mainly from the lower, nonwelded to welded zone of the Bullfrog Member of the Crater Flat Tuff and secondarily from the tuff-breccia zone of the Tram Member of the Crater Flat Tuff. In borehole UE-25c #3, water is produced in nearly equal proportions from these two intervals and the central, moderately to densely welded zone of the Bullfrog Member. In borehole UE-25c #2, almost all production comes from the moderately to dense
Longevity and progressive abandonment of the Rocky Flats surface, Front Range, Colorado
NASA Astrophysics Data System (ADS)
Riihimaki, Catherine A.; Anderson, Robert S.; Safran, Elizabeth B.; Dethier, David P.; Finkel, Robert C.; Bierman, Paul R.
2006-08-01
The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to ˜ 400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.
Improving catalytic selectivity through control of adsorption orientation
NASA Astrophysics Data System (ADS)
Pang, Simon H.
In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a monolayer formed by 1,2-benzenedithiol, we determined that hydrodeoxygenation selectively occurred on catalyst particle steps and edges from an upright structure, whereas decarbonylation occurred on particle terraces from a flat-lying structure. Control of furfural adsorption orientation was also achieved through the use of NiCu bimetallic catalysts. The aromatic furan ring was repelled from surface Cu, leading to an upright structure. However, under hydrogenation conditions, Ni tended to be near the surface of thin films and catalysts, leading to less dramatic selectivity enhancement. The presence of a 1-octadecanethiol monolayer kinetically stabilized the surface termination, allowing Cu to remain at the surface.
Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine
2017-05-16
At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.
Researcher and Mechanic with Solar Collector in Solar Simulator Cell
1976-08-21
Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.
NASA Astrophysics Data System (ADS)
Hafid Bouougri, El; Porada, Hubertus
2010-05-01
In terms of optimal light utilization, mat surfaces ideally are flat. In nature, however, flat mat surfaces are observed rarely or in restricted patches only. Rather they are shaped by a variety of linear and subcircular to irregular protrusions at various scales, including overgrown upturned crack margins, bulges (‘petees'), domes (‘blisters' and ‘pustules'), reticulate networks with tufts and pinnacles etc. These features are so characteristic that ‘mat types' have been established according to their prevalence, e.g., film, flat, smooth, crinkle, blister, tufted, cinder, mammilate, pustular and polygonal mats (Kendall and Skipwith, 1969; Logan et al., 1974). Responsible for the development of such mat surface features are environmental (physical and chemical) factors and, in reaction, the opportunistic growth behaviour of the participating bacterial taxa. Theoretically, a ‘juvenile' mat may be assumed as being flat, evolving into various forms with typical surface morphologies according to environmental impacts and respective bacterial reactions. Observations in the Abu Dhabi evaporitic carbonate tidal flats and Tunisian evaporitic siliciclastic tidal flats demonstrate that topography plays a fundamental role, both on the large scale of the tidal flat and on the small scale of mat surface morphology. It controls, together with related factors like, e.g., frequency of tidal flooding; duration of water cover; frequency and duration of subaerial exposure, the spatial distribution and the temporal evolution of mat surface structures. On the tidal flat scale, topographic differences result a priori from its seaward gradient and may arise additionally from physical processes which may modify the substrate surface and produce in the intertidal and lower supratidal zones narrow creeks and shallow depressions meandering perpendicular to the slope. Within a wide tidal flat without local topographic changes in the tidal zones, mat surface structures display a typical shore-parallel zonality. In contrast, in tidal flats with slight changes in topography, the typical shore-parallel zonality appears disturbed mainly along the intertidal and lower supratidal zones. The mat surface structures within each tidal zone show local and lateral transitions but all evolve from an incipient flat or polygonal mat. On the mat scale, microtopographic differences are created by the mats themselves, e.g., in the form of upturned crack margins, bulges and domes. All these are small-scale topographic highs that influence the distribution of microbial activity and mat growth dynamics. In the Abu Dhabi area it is observed that smooth or polygonal mats may grade temporally into mammilate, cinder or pustular and tufted mats along an evolutionary path controlled by preferred growth along bulges and upturned crack margins. A similar temporal evolution appears in the intertidal and supratidal zones in Tunisia where local changes on mat-surface induce a variety of mat-growth struc¬tures on and along upturned crack margins, gas domes and isolated to polygonal bulges and petee ridges. References Kendall C.G.St.C, Skipwith, P.A.d'E. (1968) Recent algal mats of a Persian gulf lagoon. J. Sedim. Res., 38, 1040-1058. Logan B.W. Hoffman P. Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Mem., 22, 140-194.
On the role of subducting oceanic plateaus in the development of shallow flat subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-08-01
Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600-700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.
NASA Astrophysics Data System (ADS)
Wang, Chunbai; Mitra, Ambar K.
2016-01-01
Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.
Sentelhas, Paulo C; Gillespie, Terry J; Santos, Eduardo A
2007-03-01
In general, leaf wetness duration (LWD) is a key parameter influencing plant disease epidemiology, since it provides the free water required by pathogens to infect foliar tissue. LWD is used as an input in many disease warning systems, which help growers to decide the best time to spray their crops against diseases. Since there is no observation standard either for sensor or exposure, LWD measurement is often problematic. To assess the performance of electronic sensors, LWD measurements obtained with painted cylindrical and flat plate sensors were compared under different field conditions in Elora, Ontario, Canada, and in Piracicaba, São Paulo, Brazil. The sensors were tested in four different crop environments--mowed turfgrass, maize, soybean, and tomatoes--during the summer of 2003 and 2004 in Elora and during the winter of 2005 in Piracicaba. Flat plate sensors were deployed facing north and at 45 degrees to horizontal, and cylindrical sensors were deployed horizontally. At the turfgrass site, both sensors were installed 30 cm above the ground, while at the crop fields, the sensors were installed at the top and inside the canopy (except for maize, with a sensor only at the top). Considering the flat plate sensor as a reference (Sentelhas et al. Operational exposure of leaf wetness sensors. Agric For Meteorol 126:59-72, 2004a), the results in the more humid climate at Elora showed that the cylindrical sensor overestimated LWD by 1.1-4.2 h, depending on the crop and canopy position. The main cause of the overestimation was the accumulation of big water drops along the bottom of the cylindrical sensors, which required much more energy and, consequently, time to evaporate. The overall difference between sensors when evaporating wetness formed during the night was around 1.6 h. Cylindrical sensors also detected wetness earlier than did flat plates--around 0.6 h. Agreement between plate and cylinder sensors was much better in the drier climate at Piracicaba. These results allow us to caution that cylindrical sensors may overestimate wetness for operational LWD measurements in humid climates and that the effect of other protocols for angling or positioning this sensor should be investigated for different crops.
Evolution of a Novel Muscle Design in Sea Urchins (Echinodermata: Echinoidea)
Ziegler, Alexander; Schröder, Leif; Ogurreck, Malte; Faber, Cornelius; Stach, Thomas
2012-01-01
The sea urchin (Echinodermata: Echinoidea) masticatory apparatus, or Aristotle's lantern, is a complex structure composed of numerous hard and soft components. The lantern is powered by various paired and unpaired muscle groups. We describe how one set of these muscles, the lantern protractor muscles, has evolved a specialized morphology. This morphology is characterized by the formation of adaxially-facing lobes perpendicular to the main orientation of the muscle, giving the protractor a frilled aspect in horizontal section. Histological and ultrastructural analyses show that the microstructure of frilled muscles is largely identical to that of conventional, flat muscles. Measurements of muscle dimensions in equally-sized specimens demonstrate that the frilled muscle design, in comparison to that of the flat muscle type, considerably increases muscle volume as well as the muscle's surface directed towards the interradial cavity, a compartment of the peripharyngeal coelom. Scanning electron microscopical observations reveal that the insertions of frilled and flat protractor muscles result in characteristic muscle scars on the stereom, reflecting the shapes of individual muscles. Our comparative study of 49 derived “regular” echinoid species using magnetic resonance imaging (MRI) shows that frilled protractor muscles are found only in taxa belonging to the families Toxopneustidae, Echinometridae, and Strongylocentrotidae. The onset of lobe formation during ontogenesis varies between species of these three families. Because frilled protractor muscles are best observed in situ, the application of a non-invasive imaging technique was crucial for the unequivocal identification of this morphological character on a large scale. Although it is currently possible only to speculate on the functional advantages which the frilled muscle morphology might confer, our study forms the anatomical and evolutionary framework for future analyses of this unusual muscle design among sea urchins. PMID:22624043
Surface Collisions Involving Particles and Moisture (SCIP'M)
NASA Technical Reports Server (NTRS)
Davis, Robert H.
2005-01-01
Experiments were performed on the collision of a solid sphere with a nearly horizontal flat surface covered with a thin layer of viscous liquid. High-speed collisions were obtained by dropping the ball onto the surface from various heights, using gravitational acceleration. Low-speed collisions were obtained using pendulums with long strings or by launching the balls at low velocities in the reduced-gravity environment of parabolic flight. The sphere bounces only when the impact velocity exceeds a critical value. The coefficient of restitution (ratio of rebound velocity to impact velocity) increases with increasing impact velocity above the critical value, indicating the increasing relative importance of elastic deformation to viscous dissipation. The critical impact velocity increases, and the coefficient of restitution decreases, with increasing viscosity or thickness of the liquid layer and with decreasing density or size of the sphere. The ratio of the wet and dry coefficients is expressed as a function of the Stokes number (ratio of particle inertia and viscous forces), showing good agreement between theory and experiment. Similar experiments were performed with the flat surface inclined at various angles to the approaching sphere. A modified Stokes number, which is a measure of the ratio of inertia of the sphere in the normal direction to the viscous forces exerted by the fluid layer, was used for the analysis of oblique collisions. Even for these oblique collisions, it was found that no rebound of the ball was observed below a certain critical Stokes number. The coefficient of normal restitution, defined as a ratio of normal rebound velocity to normal approach velocity, was found to increase beyond the critical Stokes number and even out as it approaches the value for dry restitution at high Stokes numbers. It was also found that, for smooth spheres like steel, the normal restitution at the same modified Stokes number is independent of the angle of impact. The tangential coefficient of restitution, defined as the ratio of tangential rebound velocity to tangential approach velocity, is found to be nearly unity, except for very low approach velocities. Thus, as a first approximation, the theories that predict the coefficient of restitution for head-on wet collisions can be extended to predict the coefficient of normal restitution for oblique wet collisions. Additional experiments were performed with soft surfaces in which a porous cloth or sponge layer was placed over the hard, flat surface. In these experiments, the coefficient of restitution was found to decrease with increasing impact velocity, due to inelastic losses in the soft material. A model combining inelastic deformation and flow through porous media was developed to describe these findings.
NASA Astrophysics Data System (ADS)
Zhang, K.; Brötzmann, M.; Hofsäss, H.
2012-09-01
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
Alkylation of Silicon(111) surfaces
NASA Astrophysics Data System (ADS)
Rivillon, S.; Chabal, Y. J.
2006-03-01
Methylation of chlorine-terminated silicon (111) (Si-Cl) is investigated by Infra Red Absorption Spectroscopy (IRAS). Starting from an atomically flat H-terminated Si(111), the surface is first chlorinated by a gas phase process, then methylated using a Grignard reagent. Methyl groups completely replace Cl, and are oriented normal to the surface. The surface remains atomically flat with no evidence of etching.
Luneburg lens with extended flat focal surface for electronic scan applications.
Li, Ying; Zhu, Qi
2016-04-04
Luneburg lens with flat focal surface has been developed to work together with planar antenna feeds for beam steering applications. According to our analysis of the conventional flattened Luneburg lens, it cannot accommodate enough feeding elements which can cover its whole scan range with half power beamwidths (HPBWs). In this paper, a novel Luneburg lens with extended flat focal surface is proposed based on the theory of Quasi-Conformal Transformation Optics (QCTO), with its beam steering features reserved. To demonstrate this design, a three-dimensional (3D) prototype of this novel extend-flattened Luneburg lens working at Ku band is fabricated based on 3D printing techniques, whose flat focal surface is attached to a 9-element microstrip antenna array to achieve different scan angles. Our measured results show that, with different antenna elements being fed, the HPBWs can cover the whole scan range.
Cesium injection system for negative ion duoplasmatrons
Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J
1978-01-01
Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.
Laminar flow control SPF/08 feasibility demonstration
NASA Astrophysics Data System (ADS)
Ecklund, R. C.; Williams, N. R.
1981-10-01
The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.
Suspension system for a wheel rolling on a flat track. [bearings for directional antennas
NASA Technical Reports Server (NTRS)
Mcginness, H. D. (Inventor)
1981-01-01
An improved suspension system for an uncrowned wheel rolling on a flat track is presented. It is characterized by a wheel frame assembly including a wheel frame and at least one uncrowned wheel connected in supporting relation with the frame. It is adapted to be seated in rolling engagement with a flat track, a load supporting bed, and a plurality of flexural struts interconnecting the bed in supported relation with the frame. Each of said struts is disposed in a plane passing through the center of the uncrowned wheel surface along a line substantially bisecting the line of contact established between the wheel surface and the flat surface of the truck and characterized by a modulus of elasticity sufficient for maintaining the axis of rotation for the wheel in substantial parallelism with the line of contact established between the surfaces of the wheel and track.
Vertical and horizontal control dilemmas in public hospitals.
Pettersen, Inger Johanne; Solstad, Elsa
2015-01-01
The hospital sector in Norway has been continuously reorganized since 2002 and the reforms have created organizations that are functionally/vertically controlled, whereas the production lines are coordinated on a process or a lateral basis. The purpose of this paper is to focus on both the perceived functional vertical control and horizontal controls within and between the local hospitals and the regional administrative levels. A national survey study, complemented with interviews of some key informants and document studies. The study shows that the functional and vertical lines of management control are perceived to be operating according to the traditional views of management control. The study indicates that the horizontal tasks are not very well implemented, and we did not find interactive and lateral uses of management control systems for managerial purposes. New control problems arise when services are to be coordinated between autonomous units. The paper focuses on the control problems found within the horizontal, flat relationship between production units in hospitals; new organizational structures have emerged where lateral relations are important, but traditional control practices follow functional, vertical lines.
Task factor usability ratings for different age groups writing Chinese.
Chan, A H S; So, J C Y
2009-11-01
This study evaluated how different task factors affect performance and user subjective preferences for three different age groups of Chinese subjects (6-11, 20-23, 65-70 years) when hand writing Chinese characters. The subjects copied Chinese character sentences with different settings for the task factors of writing plane angle (horizontal 0 degrees , slanted 15 degrees ), writing direction (horizontal, vertical), and line spacing (5 mm, 7 mm and no lines). Writing speed was measured and subjective preferences (effectiveness and satisfaction) were assessed for each of the task factor settings. The result showed that there was a conflict between writing speed and personal preference for the line spacing factor; 5 mm line spacing increased writing speed but it was the least preferred. It was also found that: vertical and horizontal writing directions and a slanted work surface suited school-aged children; a horizontal work surface and horizontal writing direction suited university students; and a horizontal writing direction with either a horizontal or slanted work surface suited the older adults.
Smart Structures for Control of Optical Surfaces
2002-03-01
2-1 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Pressurized Lenticular Optics... lenticular . [10] . . . . . . . . . . 2-2 2.2. Schematic of 37-element piezo bimorph mirror. [4] . . . . . . . 2-3 2.3. Surface flatness improvement due to...10 flat mirror. Note slight 45◦ astigmatism (3.0λ PV, 0.36λ RMS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 4.18. Surface
Sizing and Pointing of Solar Panels and for Solar Thermal Applications
Atmospheric Science Data Center
2014-09-25
... on horizontal surface (kWh/m2/day) Amount of electromagnetic energy (solar radiation) incident on the surface of the earth. ... on horizontal surface (kWh/m2/day) Amount of electromagnetic energy (solar radiation) incident on the surface of the earth ...
Latent heat effects of the major mantle phase transitions on low-angle subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2001-08-01
Very low to zero shallow dip angles are observed at several moderately young subduction zones with an active trenchward moving overriding plate. We have investigated the effects of latent heat for this situation, where mantle material is pushed through the major mantle phase transitions during shallow low-angle subduction below the overriding plate. The significance of the buoyancy forces, arising from the latent heat effects, on the dynamics of the shallowly subducting slab is examined by numerical modeling. When a 32-Ma-old slab is overridden with 2.5 cm/yr by a continent, flat subduction occurs with a 4-5 cm/yr convergence rate. When latent heat is included in the model, forced downwellings cause a thermal anomaly and consequently thermal and phase buoyancy forces. Under these circumstances, the flat slab segment subducts horizontally about 350 km further and for about 11 Ma longer than in the case without latent heat, before it breaks through the 400-km phase transition. The style of subduction strongly depends on the mantle rheology: increasing the mantle viscosity by one order of magnitude can change the style of subduction from steep to shallow. Similarly, an overriding velocity of less than 1 cm/yr leads to steep subduction, which gradually changes to flat subduction when increasing the overriding velocity. However, these model parameters do not change the aforementioned effect of the latent heat, provided that low-angle subduction occurs. In all models latent heat resulted in a substantial increase of the flat slab length by 300-400 km. Varying the olivine-spinel transition Clapeyron slope γ from 1 to 6 MPa/K reveals a roughly linear relation between γ and the horizontal length of the slab. Based on these results, we conclude that buoyancy forces due to latent heat of phase transitions play an important role in low-angle subduction below an overriding plate.
Pixel-based absolute surface metrology by three flat test with shifted and rotated maps
NASA Astrophysics Data System (ADS)
Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang
2018-03-01
In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.
On-Line Flatness Measurement in the Steelmaking Industry
Molleda, Julio; Usamentiaga, Rubén; Garcίa, Daniel F.
2013-01-01
Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain. PMID:23939583
On-line flatness measurement in the steelmaking industry.
Molleda, Julio; Usamentiaga, Rubén; García, Daniel F
2013-08-09
Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain.
Shape Sensing a Morphed Wing with an Optical Fiber Bragg Grating
NASA Technical Reports Server (NTRS)
Tai, Hsiang
2005-01-01
We suggest using distributed fiber Bragg sensors systems which were developed locally at Langley Research Center carefully placed on the wing surface to collect strain component information at each location. Then we used the fact that the rate change of slope in the definition of linear strain is very small and can be treated as a constant. Thereby the strain distribution information of a morphed surface can be reduced into a distribution of local slope information of a flat surface. In other words a morphed curve surface is replaced by the collection of individual flat surface of different slope. By assembling the height of individual flat surface, the morphed curved surface can be approximated. A more sophisticated graphic routine can be utilized to restore the curved morphed surface. With this information, the morphed wing can be further adjusted and controlled. A numerical demonstration is presented.
Steerable vertical to horizontal energy transducer for mobile robots
Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.
2001-01-01
The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.
Turbulence structure of the near-surface boundary layer in complex terrain
NASA Astrophysics Data System (ADS)
Sfyri, Eleni; Rotach, Mathias Walter; Stiperski, Ivana; Bosveld, Fred; Lehner, Manuela; Obleitner, Friedrich
2017-04-01
Monin-Obukhov Similarity Theory (MOST) is evaluated in two cases: truly complex terrain (CT) and horizontally inhomogeneous and flat (HIF) terrain. CT data are derived from 5 measurement sites, which differ in terms of slope, orientation and surface roughness at the Inn Valley of Austria (i-Box) and HIF data come from one measurement site at the Cabauw experimental site (Netherlands). The applicability of the surface-layer, 'ideal' similarity relations is examined for both data-sets and the non-dimensional variances of temperature and humidity as a function of stability (z/L, where L is the Obukhov length) are compared for each type of terrain. Large deviations from the reference curves in case of temperature are observed in both CT and HIF, leading to the conclusion that these deviations are not due to the complex terrain but due to inappropriate near-neutral description of the reference curves. It is found here that the non-dimensional temperature variance exhibits a -1 slope in the near-neutral region, for both CT and HIF datasets. In addition, the constant-fluxes hypothesis of the MOST is evaluated at one i-Box site. It is found that only about 1% of the data show constant momentum, sensible and latent heat fluxes with height. Therefore, local scaling instead of surface layer scaling is being used in this study.
NASA Astrophysics Data System (ADS)
Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.
2018-02-01
The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.
The AXAF technology program: The optical flats tests
NASA Technical Reports Server (NTRS)
Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.
1984-01-01
The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Techane, Sirnegeda D.; Baer, Donald R.; Castner, David G.
2011-09-01
Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) and x-ray photoelectron spectroscopy (XPS). XPS measurements of C16 COOH SAMs on flat gold surfaces were made at 9 different photoelectron take-off angles (5o to 85o in 5o increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. Based on the glancing angle results, it wasmore » found that inclusion of a hydrocarbon contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1Å/CH2 group, an RSA of 1.05 and a 1.5Å CH2-contamination overlayer (total film thickness = 21.5Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs were determined to be 0.9Å/CH2 group and 1.06 RSA with a 1.5Å CH2-contamination overlayer (total film thickness = 18.5Å). The three angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.« less
A scanning Raman lidar for observing the spatio-temporal distribution of water vapor
NASA Astrophysics Data System (ADS)
Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka
2016-12-01
We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site. From the wide-range cross-sectional observations of the water vapor mixing ratio and the backscatter ratio of aerosols within a 2000 m range, we can detect small-scale water vapor structures on a horizontal scale of several hundred meters in the atmospheric boundary layer.
Characterizing the recovery of a solid surface after tungsten nano-tendril formation
NASA Astrophysics Data System (ADS)
Wright, G. M.; van Eden, G. G.; Kesler, L. A.; De Temmerman, G.; Whyte, D. G.; Woller, K. B.
2015-08-01
Recovery of a flat tungsten surface from a nano-tendril surface is attempted through three techniques; a mechanical wipe, a 1673 K annealing, and laser-induced thermal transients. Results were determined through SEM imaging and elastic recoil detection to assess the helium content in the surface. The mechanical wipe leaves a ∼0.5 μm deep layer of nano-tendrils on the surface post-wipe regardless of the initial nano-tendril layer depth. Laser-induced thermal transients only significantly impact the surface morphology at heat loads of 35.2 MJ/m2 s1/2 or above, however a fully flat or recovered surface was not achieved for 100 transients at this heat load despite reducing the helium content by a factor of ∼7. A 1673 K annealing removes all detectable levels of helium but sub-surface voids/bubbles remain intact. The surface is recovered to a nearly flat state with only some remnants of nano-tendrils re-integrating into the surface remaining.
El Gabaly, Farid; Schmid, Andreas K.
2013-03-19
A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu
2017-11-01
A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.
Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise
Mariotti, Giulio; Fagherazzi, Sergio
2013-01-01
High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming. PMID:23513219
Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise.
Mariotti, Giulio; Fagherazzi, Sergio
2013-04-02
High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming.
Two-dimensional steady bow waves in water of finite depth
NASA Astrophysics Data System (ADS)
Kao, John
1998-12-01
In this study, the two-dimensional steady bow flow in water of arbitrary finite depth has been investigated. The two-dimensional bow is assumed to consist of an inclined flat plate connected downstream to a horizontal semi-infinite draft plate. The bottom of the channel is assumed to be a horizontal plate; the fluid is assumed to be inviscid, incompressible; and the flow irrotational. For the angle of incidence α (held by the bow plate) lying between 0o and 60o, the local flow analysis near the stagnation point shows that the angle lying between the free surface and the inclined plate, β, must always be equal to 120o, otherwise no solution can exist. Moreover, we further find that the local flow solution does not exist if /alpha > 60o, and that on the inclined plate there exists a negative pressure region adjacent to the stagnation point for /alpha < 30o. Singularities at the stagnation point and the upstream infinity are found to have multiple branch-point singularities of irrational orders. A fully nonlinear theoretical model has been developed in this study for evaluating the incompressible irrotational flow satisfying the free-surface conditions and two constraint equations. To solve the bow flow problem, successive conformal mappings are first used to transform the flow domain into the interior of a unit semi-circle in which the unknowns can be represented as the coefficients of an infinite series. A total error function equivalent to satisfying the Bernoulli equation is defined and solved by minimizing the error function and applying the method of Lagrange's multiplier. Smooth solutions with monotonic free surface profiles have been found and presented here for the range of 35o < /alpha < 60o, a draft Froude number Frd less than 0.5, and a water-depth Froude number Frh less than 0.4. The dependence of the solution on these key parameters is examined. Our results may be useful in designing the optimum bow shape.
Schaffranek, Raymond W.
2004-01-01
A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the model framework, documents the type and format of inputs required, and identifies the type and format of output available.
Face specificity and the role of metal adatoms in molecular reorientation at surfaces
NASA Astrophysics Data System (ADS)
Perry, C. C.; Haq, S.; Frederick, B. G.; Richardson, N. V.
1998-07-01
Using reflection absorption infrared spectroscopy (RAIRS), the coverage-dependent reorientation of the benzoate species on the (110) and (111) faces of copper is compared and contrasted. Whereas on Cu(110) benzoate reorients from a flat-lying to an upright orientation with increasing coverage, on Cu(111), at all coverages, benzoate is aligned normal to the surface. The formation of periodic, flat-lying copper-benzoate structures has been attributed to the availability of metal adatoms, which differs dramatically between the (111) and (110) faces. We discuss the face specificity of molecular orientation by comparing calculated formation energies of adatom vacancies from ledges and kink sites on (100), (110) and (111) faces. Further support for this model is given by the evaporation of sodium, either by pre- or post-dosing, onto low-coverage benzoate/Cu(111), which induces benzoate to convert from a perpendicular to a parallel orientation. Likewise, coevaporation of Cu while dosing benzoic acid onto the Cu(111) surface also results in a majority of flat-lying benzoate species. Finally, for adsorption on the p(2×1)O/Cu(110) reconstruction, benzoate occurs only as the upright species, which is consistent with reducing the copper mobility and availability on the (110) face. We therefore suggest the possible role of metal adatoms as a new mechanism in controlling adsorbate orientation and therefore face specificity in surface reactions.
NASA Astrophysics Data System (ADS)
Lyubimov, D. V.; Lyubimova, T. P.; Lobov, N. I.; Alexander, J. I. D.
2018-02-01
The influence of surface deformations on the Rayleigh-Bénard-Marangoni instability of a uniform layer of a non-Boussinesq fluid heated from below is investigated. In particular, the stability of the conductive state of a horizontal fluid layer with a deformable surface, a flat isothermal rigid lower boundary, and a convective heat transfer condition at the upper free surface is considered. The fluid is assumed to be isothermally incompressible. In contrast to the Boussinesq approximation, density variations are accounted for in the continuity equation and in the buoyancy and inertial terms of the momentum equations. Two different types of temperature dependence of the density are considered: linear and exponential. The longwave instability is studied analytically, and instability to perturbations with finite wavenumber is examined numerically. It is found that there is a decrease in stability of the system with respect to the onset of longwave Marangoni convection. This result could not be obtained within the framework of the conventional Boussinesq approximation. It is also shown that at Ma = 0 the critical Rayleigh number increases with Ga (the ratio of gravity to viscous forces or Galileo number). At some value of Ga, the Rayleigh-Bénard instability vanishes. This stabilization occurs for each of the density equations of state. At small values of Ga and when deformation of the free surface is important, it is shown that there are significant differences in stability behavior as compared to results obtained using the Boussinesq approximation.
Range-dependence of acoustic channel with traveling sinusoidal surface wave.
Choo, Youngmin; Seong, Woojae; Lee, Keunhwa
2014-04-01
Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.
Hsiao, Erik; Marino, Matthew J; Kim, Seong H
2010-12-15
This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.
Experimental data and model for the turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.
1981-01-01
Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, K.; Broetzmann, M.; Hofsaess, H.
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less
NASA Astrophysics Data System (ADS)
Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro
2017-09-01
Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.
Vaughan, Patrick E; Vogelsberg, Caitlin C M; Vollner, Jennifer M; Fenton, Todd W; Haut, Roger C
2016-09-01
The forensic literature suggests that when adolescents fall onto edged and pointed surfaces, depressed fractures can occur at low energy levels. This study documents impact biomechanics and fracture characteristics of infant porcine skulls dropped onto flat, curved, edged, and focal surfaces. Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. While characteristic measures of fracture such as number and length of fractures did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. While experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI), more focal impacts produced depressed fractures initiating at the POI. The study supported case-based forensic literature suggesting cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. © 2016 American Academy of Forensic Sciences.
Study of role of meniscus and viscous forces during liquid-mediated contacts separation
NASA Astrophysics Data System (ADS)
Dhital, Prabin
Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.
Mattioli, Giuseppe; Larciprete, Rosanna; Alippi, Paola; Bonapasta, Aldo Amore; Filippone, Francesco; Lacovig, Paolo; Lizzit, Silvano; Paoletti, Anna Maria; Pennesi, Giovanna; Ronci, Fabio; Zanotti, Gloria; Colonna, Stefano
2017-11-16
We have investigated the formation and the properties of ultrathin films of ruthenium phthalocyanine (RuPc) 2 vacuum deposited on graphite by scanning tunneling microscopy and synchrotron photoemission spectroscopy measurements, interpreted in close conjunction with ab initio simulations. Thanks to its unique dimeric structure connected by a direct Ru-Ru bond, (RuPc) 2 can be found in two stable rotameric forms separated by a low-energy barrier. Such isomerism leads to a peculiar organization of the molecules in flat, horizontal layers on the graphite surface, characterized by a chessboard-like alternation of the two rotamers. Moreover, the molecules are vertically connected to form π-stacked columnar pillars of akin rotamers, compatible with the high conductivity measured in (RuPc) 2 powders. Such features yield an unprecedented supramolecular assembly of phthalocyanine films, which could open interesting perspectives toward the realization of new architectures of organic electronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Asher, W.; Drushka, K.; Jessup, A. T.; Clark, D.
2016-02-01
Satellite-mounted microwave radiometers measure sea surface salinity (SSS) as an area-averaged quantity in the top centimeter of the ocean over the footprint of the instrument. If the horizontal variability in SSS is large inside this footprint, sub-grid-scale variability in SSS can affect comparison of the satellite-retrieved SSS with in situ measurements. Understanding the magnitude of horizontal variability in SSS over spatial scales that are relevant to the satellite measurements is therefore important. Horizontal variability of SSS at the ocean surface can be studied in situ using data recorded by thermosalinographs (TSGs) that sample water from a depth of a few meters. However, it is possible measurements made at this depth might underestimate the horizontal variability at the surface because salinity and temperature can become vertically stratified in a very near surface layer due to the effects of rain, solar heating, and evaporation. This vertical stratification could prevent horizontal gradients from propagating to the sampling depths of ship-mounted TSGs. This presentation will discuss measurements made using an underway salinity profiling system installed on the R/V Thomas Thompson that made continuous measurements of SSS and SST in the Pacific Ocean. The system samples at nominal depths of 2-m, 3-m, and 5-m, allowing the depth dependence of the horizontal variability in SSS and SST to be measured. Horizontal variability in SST is largest at low wind speeds during daytime, when a diurnal warm layer forms. In contrast, the diurnal signal in the variability of SSS was smaller with variability being slightly larger at night. When studied as a function of depth, the results show that over 100-km scales, the horizontal variability in both SSS and SST at a depth of 2 m is approximately a factor of 4 higher than the variability at 5 m.
NASA Astrophysics Data System (ADS)
Schoellhamer, D. H.; Manning, A. J.; Work, P. A.
2015-12-01
Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.
NASA Technical Reports Server (NTRS)
Martin, Andrew; Hunter, Harlo A.
1949-01-01
An investigation was conducted to determine the longitudinal- and lateral-stability characteristics of a 0.5-scale moue1 of the Fairchild Lark missile, The model was tested with 0 deg and with 22.5 deg of roll. Three horizontal wings having NACA 16-009, 16-209, and 64A-209 sections were tested. Pressures were measured on both pointed and blunt noses. The wind-tunnel-test data indicate that rolling the missile 22.5 deg. had no serious effect on the static longitudinal stability. The desired maneuvering acceleration could not be attained with any of the horizontal wings tested, even with the horizontal wing flaps deflected 50 deg. The flaps on the 64A-209 wing (with small trailing-edge angles and flat sides) were effective at all flap deflections, while the flaps on the 16-series wings (with large trailing-edge angles) lost effectiveness at small flap deflections. The data showed that rolling moment existed when the vertical wing flaps were deflected with the model at other than zero angle of attack. A similar rolling moment probably would be found . with the horizontal wing flaps deflected and the model yawed.
Kinematic analysis of the thoracic limb of healthy dogs during descending stair and ramp exercises.
Kopec, Nadia L; Williams, Jane M; Tabor, Gillian F
2018-01-01
OBJECTIVE To compare the kinematics of the thoracic limb of healthy dogs during descent of stairs and a ramp with those during a trot across a flat surface (control). ANIMALS 8 privately owned dogs. PROCEDURES For each dog, the left thoracic limb was instrumented with 5 anatomic markers to facilitate collection of 2-D kinematic data during each of 3 exercises (descending stairs, descending a ramp, and trotting over a flat surface). The stair exercise consisted of 4 steps with a 35° slope. For the ramp exercise, a solid plank was placed over the steps to create a ramp with a 35° slope. For the flat exercise, dogs were trotted across a flat surface for 2 m. Mean peak extension, peak flexion, and range of movement (ROM) of the shoulder, elbow, and carpal joints were compared among the 3 exercises. RESULTS Mean ROM for the shoulder and elbow joints during the stair exercise were significantly greater than during the flat exercise. Mean peak extension of the elbow joint during the flat exercise was significantly greater than that during both the stair and ramp exercises. Mean peak flexion of the elbow joint during the stair exercise was significantly greater than that during the flat exercise. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that descending stairs may be beneficial for increasing the ROM of the shoulder and elbow joints of dogs. Descending stair exercises may increase elbow joint flexion, whereas flat exercises may be better for targeting elbow joint extension.
Super free fall for a container composed of diverging flat plates
NASA Astrophysics Data System (ADS)
Medina, A.; Torres, A.; Peralta, S.; Weidman, P. D.
2010-11-01
We have analyzed experimentally and theoretically the characteristics of the upper free surface of a liquid column released from rest in a vertical container whose cross-section opens slowly in the downward direction. In distinction with the work of Villermaux and Pomeau (2010) for a conical container, we consider a container composed of slightly inclined flat surfaces. At small times for which viscous effects can be neglected, the free surface moves downward with an acceleration larger than gravity. The existence of a nipple centered on the upper free surface with amplitude an increasing function of time is observed. A one-dimensional model of the initial acceleration for flat, slightly expanding walls reproduces the observed super free fall experiments fairly well. Details of the nipple development will be presented.
NASA Astrophysics Data System (ADS)
Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.
2015-02-01
This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.
NASA Astrophysics Data System (ADS)
Bertotti, Giovanni; Bisdom, Kevin; Bezerra, Hilario; Reijmer, John; Cazarin, Carol
2016-04-01
Despite the scarcity of major deformation structures such as folds and faults, the flat-lying, post-rift shallow water carbonates of the Jandaira Formation (Potiguar Basin, NE Brazil) display well-organized fracture systems distributed of tens of km2. Structures observed in the outcropping carbonates are sub-vertical, generally N-S trending mode I and hybrid veins and barren fractures, sub-vertical roughly E-W trending stylolites and sub-horizontal stylolites. These features developed during subsidence in a simple and constant stress field characterized by, beside gravity, a significant horizontal stress probably of tectonic origin. The corresponding depth curves have different origin and slopes and, therefore, cross each other resulting in position of the principal stresses which change with depth. As a result, the type and amount of fractures affecting subsiding rocks change despite the fact that the far-field stresses remain constant. Following early diagenesis and porosity elimination in the first 100-200m depth, Jandaira carbonates experienced wholesale fracturing at depths of 400-800m resulting in a network of NNW-NE trending fractures partly organized in conjugate sets with a low interfault angle and a sub-vertical intersection, and sub-vertical stylolites roughly perpendicular to the fractures. Intense fluid circulation was activated as a consequence through the carbonates. With increasing subsidence, sub-horizontal stylolites formed providing calcite which precipitated in the open fractures transforming them in veins. The Jandaira formation lost thereby the permeability it had reached during the previous stage. Because of the lack of major deformation, the outcrops of the Jandaira Formation is an excellent analog for carbonate reservoirs in the Middle East, South Atlantic and elsewhere.
49 CFR 173.4 - Small quantities for highway and rail.
Code of Federal Regulations, 2011 CFR
2011-10-01
... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D) One drop flat on the short side; and (E) One drop on a corner at the junction of three intersecting...
NASA Astrophysics Data System (ADS)
Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.
2015-01-01
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
Concentric wrench for blind access opening in a turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurer, Kurt Neal; Drlik, Gary Joseph; Gibler, Edward Eugene
The concentric wrench includes an outer tube having flats at one end and a gripping surface at an opposite end. An inner tube has interior flats at one end and a gripping surface at its opposite end. With the inner and outer tubes disposed about a pressure transmitting conduit, the tubes may be inserted into a blind access opening in the outer turbine casing to engage the flats of the tubes against hex nuts of an internal fitting. By relatively rotating the tubes using the externally exposed gripping surfaces, the threaded connection between the parts of the fitting bearing themore » respective hex nuts can be tightened or loosened.« less
NASA Technical Reports Server (NTRS)
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
NASA Technical Reports Server (NTRS)
Swanson, Robert S; Crandall, Stewart M
1948-01-01
A limited number of lifting-surface-theory solutions for wings with chordwise loadings resulting from angle of attack, parabolic-ac camber, and flap deflection are now available. These solutions were studied with the purpose of determining methods of extrapolating the results in such a way that they could be used to determine lifting-surface-theory values of the aspect-ratio corrections to the lift and hinge-moment parameters for both angle-of-attack and flap-deflection-type loading that could be used to predict the characteristics of horizontal tail surfaces from section data with sufficient accuracy for engineering purposes. Such a method was devised for horizontal tail surfaces with full-span elevators. In spite of the fact that the theory involved is rather complex, the method is simple to apply and may be applied without any knowledge of lifting-surface theory. A comparison of experimental finite-span and section value and of the estimated values of the lift and hinge-moment parameters for three horizontal tail surfaces was made to provide an experimental verification of the method suggested. (author)
Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.
Exposing high-energy surfaces by rapid-anneal solid phase epitaxy
Wang, Y.; Song, Y.; Peng, R.; ...
2017-08-08
The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less
Crimp sealing of tubes flush with or below a fixed surface
Fischer, J.E.; Walmsley, D.; Wapman, P.D.
1996-08-20
An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. 8 figs.
Crimp sealing of tubes flush with or below a fixed surface
Fischer, Jon E.; Walmsley, Don; Wapman, P. Derek
1996-01-01
An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes.
An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics
NASA Technical Reports Server (NTRS)
Sung, D. Y.; Lance, M. B.; Young, L. A.; Stroub, R. H.
1989-01-01
A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack.
Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.
Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales
2012-12-01
To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.
Non-lightlike ruled surfaces with constant curvatures in Minkowski 3-space
NASA Astrophysics Data System (ADS)
Ali, Ahmad Tawfik
We study the non-lightlike ruled surfaces in Minkowski 3-space with non-lightlike base curve c(s) =∫(αt + βn + γb)ds, where t, n, b are the tangent, principal normal and binormal vectors of an arbitrary timelike curve Γ(s). Some important results of flat, minimal, II-minimal and II-flat non-lightlike ruled surfaces are studied. Finally, the following interesting theorem is proved: the only non-zero constant mean curvature (CMC) non-lightlike ruled surface is developable timelike ruled surface generated by binormal vector.
NASA Astrophysics Data System (ADS)
Goo, Nam Seo; Phuoc Phan, Van; Park, Hoon Cheol
2009-03-01
Pre-stressed piezoelectric actuators such as RAINBOW, THUNDER™, and LIPCA have a curvature due to a mismatch of the coefficient of thermal expansion, which inevitably exists during the manufacturing process. This technical note provides an answer to the question of how their actuation displacement performance changes when the curved pre-stressed piezoelectric actuators are attached to a flat surface. Finite element analysis with the ANSYS™ program was used to calculate the stress distribution inside a LIPCA, one of the pre-stressed piezoelectric actuators, after the LIPCA was cured and attached to the flat surface. The change of actuation displacement performance can be explained in terms of the relation between the piezoelectric strain constants and internal stress. As a result of the curing and attachment to a flat surface, the two-dimensional stress state inside the piezoceramic layer leads to an expected increase of around 51% for the longitudinal piezoelectric strain constant. To confirm this result, we reconsider the experimental results of the actuation moment measurement of the LIPCA and bare lead zirconium titanate.
NASA Technical Reports Server (NTRS)
Lamar, J. E.
1971-01-01
The development of a nonplanar lifting surface method having a continuous distribution of singularities and satisfying the tangent flow boundary condition on the mean camber surface is given. The method predicts some incompressible longitudinal aerodynamic coefficients of rectangular wings which have circular-arc camber. The solution method is of the integral-equation type and the resulting surface integrals are evaluated by either using numerical or analytical techniques, as are appropriate. Applications are made and the results compared with those from an exact two-dimensional circular-arc camber solution, a three-dimensional flat-wing solution which represents the camber by a projected slope onto the flat surface, and a flat-wing experiment. From these comparisons, the present method is found to predict well the flat-wing experiment and limiting values, in addition to the center of pressure variation at an angle of attack of zero for any camber. For wings having camber ratios larger than about 1.25% and moderate to high aspect ratios, the results deterioriate due to the inadequacy of lifting pressure modes employed.
Automatic Aircraft Collision Avoidance System and Method
NASA Technical Reports Server (NTRS)
Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)
2014-01-01
The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.
NASA Astrophysics Data System (ADS)
Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian
2016-04-01
Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most of the tracer mass, which enters the slope wind layer at the valley bottom, is leaving it again through horizontal fluxes at the height of the intrusion and therefore remains inside the valley.
Flat conductor cable commercialization project
NASA Technical Reports Server (NTRS)
Hogarth, P.; Wadsworth, E.
1977-01-01
An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... Techniques Guidelines for Large Appliance and Metal Furniture; Flat Wood Paneling; Paper, Film, and Foil... appliance and metal furniture; flat wood paneling; and paper, film, and foil surface coating processes. In... Control Techniques Guidelines for Large Appliance and Metal Furniture; Flat Wood Paneling; Paper, Film...
Diamond Turning Of Infra-Red Components
NASA Astrophysics Data System (ADS)
Hodgson, B.; Lettington, A. H.; Stillwell, P. F. T. C.
1986-05-01
Single point diamond machining of infra-red optical components such as aluminium mirrors, germanium lenses and zinc sulphide domes is potentially the most cost effective method for their manufacture since components may be machined from the blanks to a high surface finish, requiring no subsequent polishing, in a few minutes. Machines for the production of flat surfaces are well established. Diamond turning lathes for curved surfaces however require a high capital investment which can be justified only for research purposes or high volume production. The present paper describes the development of a low cost production machine based on a Bryant Symons diamond turning lathe which is able to machine spherical components to the required form and finish. It employs two horizontal spindles one for the workpiece the other for the tool. The machined radius of curvature is set by the alignment of the axes and the radius of the tool motion, as in conventional generation. The diamond tool is always normal to the workpiece and does not need to be accurately profiled. There are two variants of this basic machine. For machining hemispherical domes the axes are at right angles while for lenses with positive or negative curvature these axes are adjustable. An aspherical machine is under development, based on the all mechanical spherical machine, but in which a ± 2 mm aspherecity may be imposed on the best fit sphere by moving the work spindle under numerical control.
Influence of input device, work surface angle, and task on spine kinematics.
Riddell, Maureen F; Gallagher, Kaitlin M; McKinnon, Colin D; Callaghan, Jack P
2016-01-01
With the increase of tablet usage in both office and industrial workplaces, it is critical to investigate the influence of tablet usage on spine posture and movement. To quantify spine kinematics while participants interacted with a tablet or desktop computer. Fourteen participants volunteered for this study. Marker clusters were fixed onto body regions to analyze cervical and lumbar spine posture and sampled at 32 Hz (Optotrak Certus, NDI, Waterloo, Canada). Participants sat for one hour in total. Cervical and lumbar median angles and range of motion (10th to 90th % ile angles) were extracted from amplitude probability distribution functions performed on the angle data. Using a sloped desk surface at 15°, compared to a flat desk, influenced cervical flexion (p = 0.0228). Completing the form fill task resulted in the highest degree of cervical flexion (p = 0.0008) compared to the other tasks completed with cervical angles between 6.1°-8.5° higher than emailing and reading respectively. An interaction between device and task (p = 0.0061) was found for relative lumbar median spine angles. Increased lumbar flexion was recorded when using a computer versus a tablet to complete various tasks. Task influenced both cervical and lumbar spine posture with the highest cervical flexion occurring while completing a simulated data entry task. A work surface slope of 15° decreased cervical spine flexion compared to a horizontal work surface slope.
Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions
NASA Astrophysics Data System (ADS)
Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.
2014-08-01
Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.
Tectonic evolution of the Mexico flat slab and patterns of intraslab seismicity.
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Sandiford, D.
2017-12-01
The Cocos plate slab is horizontal for about 250 km beneath the Guerrero region of southern Mexico. Analogous morphologies can spontaneously develop in subduction models, through the presence of a low-viscosity mantle wedge. The Mw 7.1 Puebla earthquake appears to have ruptured the inboard corner of the Mexican flat slab; likely in close proximity to the mantle wedge corner. In addition to the historical seismic record, the Puebla earthquake provides a valuable constraint through which to assess geodynamic models for flat slab evolution. Slab deformation predicted by the "weak wedge" model is consistent with past seismicity in the both the upper plate and slab. Below the flat section, the slab is anomalously warm relative to its depth; the lack of seismicity in the deeper part of the slab fits the global pattern of temperature-controlled slab seismicity. This has implications for understanding the deeper structure of the slab, including the seismic hazard from source regions downdip of the Puebla rupture (epicenters closer to Mexico City). While historical seismicity provides a deformation pattern consistent with the weak wedge model , the Puebla earthquake is somewhat anomalous. The earthquake source mechanism is consistent with stress orientations in our models, however it maps to a region of relatively low deviatoric stress.
Correcting Thermal Deformations in an Active Composite Reflector
NASA Technical Reports Server (NTRS)
Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.
2011-01-01
Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.
Pitch variable liquid lens array using electrowetting
NASA Astrophysics Data System (ADS)
Kim, YooKwang; Lee, Jin Su; Kim, Junoh; Won, Yong Hyub
2017-02-01
These days micro lens array is used in various fields such as fiber coupling, laser collimation, imaging and sensor system and beam homogenizer, etc. One of important thing in using micro lens array is, choice of its pitch. Especially imaging systems like integral imaging or light-field camera, pitch of micro lens array defines the system property and thus it could limit the variability of the system. There are already researches about lens array using liquid, and droplet control by electrowetting. This paper reports the result of combining them, the liquid lens array that could vary its pitch by electrowetting. Since lens array is a repeated system, realization of a small part of lens array is enough to show its property. The lens array is composed of nine (3 by 3) liquid droplets on flat surface. On substrate, 11 line electrodes are patterned along vertical and horizontal direction respectively. The width of line electrodes is 300um and interval is 200um. Each droplet is positioned to contain three electrode lines for both of vertical and horizontal direction. So there is one remaining electrode line in each of outermost side for both direction. In original state the voltage is applied to inner electrodes. When voltage of outermost electrodes are turned on, eight outermost droplets move to outer side, thereby increasing pitch of lens array. The original pitch was 1.5mm and it increased to 2.5mm after electrodes of voltage applied is changed.
NASA Astrophysics Data System (ADS)
Schleicher, L.; Pratt, T. L.
2017-12-01
Underlying sediment can amplify ground motions during earthquakes, making site response estimates key components in seismic evaluations for building infrastructure. The horizontal-to-vertical spectral ratio (HVSR) method, using either earthquake signals or ambient noise as input, is an appealing method for estimating site response because it uses only a single seismic station rather than requiring two or more seismometers traditionally used to compute a horizontal sediment-to-bedrock spectral ratio (SBSR). A number of studies have had mixed results when comparing the accuracy of the HVSR versus SBSR methods for identifying the frequencies and amplitudes of the primary resonance peaks. Many of these studies have been carried out in areas of complex geology, such as basins with structures that can introduce 3D effects. Here we assess the effectiveness of the HVSR method by a comparison with the SBSR method and models of transfer functions in an area dominated by a flat and thin, unconsolidated sediment layer over bedrock, which should be an ideal setting for using the HVSR method. In this preliminary study, we analyze teleseismic and regional earthquake recordings from a temporary seismometer array deployed throughout Washington, DC, which is underlain by a wedge of 0 to 270 m thick layer of unconsolidated Atlantic Coastal Plain sedimentary strata. At most sites, we find a close match in the amplitudes and frequencies of large resonance peaks in horizontal ground motions at frequencies of 0.7 to 5 Hz in site response estimates using the HVSR and SBSR methods. Amplitudes of the HVSRs tend to be slightly lower than SBSRs at 3 Hz and less, but the amplitudes of the fundamental resonance peaks often match closely. The results suggest that the HVSR method could be a successful approach to consider for computing site response estimates in areas of simple shallow geology consisting of thin sedimentary layers with a strong reflector at the underlying bedrock surface. [This publication represents the views of the authors and does not necessarily represent the views of the Defense Nuclear Facilities Safety Board.
Sub-monolayer growth of Ag on flat and nanorippled SiO{sub 2} surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto
2016-05-30
In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on themore » flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.« less
Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study
NASA Astrophysics Data System (ADS)
Rostamsowlat, Iman
2018-06-01
The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.
Effect of Macrogeometry on the Surface Topography of Dental Implants.
Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian
2015-01-01
Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.
Method and apparatus for preparing multiconductor cable with flat conductors
NASA Technical Reports Server (NTRS)
Marcell, G. V. (Inventor)
1969-01-01
A method and apparatus for preparing flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of a substrate is described. The conductors are brought into contact with the substrate surface, and while maintained in axial tension on said substrate, the combination is seated on a yieldably compressible layer to permit the conductor to become embedded into the surface of the substrate film.
Kumar, Sandeep; Kumari, Minal; Acharya, Shashidhar; Prasad, Ram
2014-01-01
Aim: The aim was to assess, in vitro, the effect on surface abrasivity of enamel surface caused by three different types (flat trim, zig-zag, bi-level) of toothbrush bristle design. Materials and Methods: Twenty-four freshly extracted, sound, human incisor teeth were collected for this study. The enamel slab was prepared, which were mounted, on separate acrylic bases followed by subjected to profilometric analysis. The surface roughness was measured using the profilometer. The specimen were divided into three groups, each group containing eight mounted specimens, wherein, Group 1 specimens were brushed with flat trim toothbrush; Group 2 brushed with zig-zag and Group 3 with bi-level bristle design. A commercially available dentifrice was used throughout the study. A single specimen was brushed for 2 times daily for 2 min period for 1 week using a customized brushing apparatus. The pre- and post-roughness value change were analyzed and recorded. Statistical test: Kruskal–Wallis test and Mann–Whitney U-test. Result: The results showed that surface abrasion was produced on each specimen, in all the three groups, which were subjected to brushing cycle. However, the bi-level bristle design (350% increase in roughness, P = 0.021) and zig-zag bristle design (160% increase in roughness, P = 0.050) showed significantly higher surface abrasion when compared with flat trim bristle design toothbrush. Conclusion: Flat trim toothbrush bristle produces least surface abrasion and is relatively safe for use. PMID:25125852
Nonflat equilibrium liquid shapes on flat surfaces.
Starov, Victor M
2004-01-15
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.
NASA Astrophysics Data System (ADS)
Hu, Yonghong; Jia, Gensuo; Pohl, Christine; Zhang, Xiaoxuan; van Genderen, John
2016-02-01
Radiative forcing (RF) induced by land use (mainly surface albedo) change is still not well understood in climate change science, especially the effects of changes in urban albedo due to rapid urbanization on the urban radiation budget. In this study, a modified RF derivation approach based on Landsat images was used to quantify changes in the solar radiation budget induced by variations in surface albedo in Beijing from 2001 to 2009. Field radiation records from a Beijing meteorological station were used to identify changes in RF at the local level. There has been rapid urban expansion over the last decade, with the urban land area increasing at about 3.3 % annually from 2001 to 2009. This has modified three-dimensional urban surface properties, resulting in lower albedo due to complex building configurations of urban centers and higher albedo on flat surfaces of suburban areas and cropland. There was greater solar radiation (6.93 × 108 W) in the urban center in 2009 than in 2001. However, large cropland and urban fringe areas caused less solar radiation absorption. RF increased with distance from the urban center (less than 14 km) and with greater urbanization, with the greatest value being 0.41 W/m2. The solar radiation budget in urban areas was believed to be mainly influenced by urban structural changes in the horizontal and vertical directions. Overall, the results presented herein indicate that cumulative urbanization impacts on the natural radiation budget could evolve into an important driver of local climate change.
Surface-based atlases of cerebellar cortex in the human, macaque, and mouse.
Van Essen, David C
2002-12-01
This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).
Surface-based atlases of cerebellar cortex in the human, macaque, and mouse
NASA Technical Reports Server (NTRS)
Van Essen, David C.
2002-01-01
This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).
Storlazzi, C.D.; Jaffe, B.E.
2008-01-01
High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.
Stabilization of posture by precision touch of the index finger with rigid and flexible filaments
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Rabin, E.; DiZio, P.
2001-01-01
Light touch of the index finger with a stationary surface at non-mechanically supportive force levels (<100 g) greatly attenuates the body sway of standing subjects. In three experiments, we evaluated the properties of finger contact and of the contacted object necessary to produce postural stabilization in subjects standing heel-to-toe with eyes closed, as well as how accurately hand position can be controlled. Experiment 1 involved finger contact with flexible filaments of different bending strengths, a flat surface, and an imagined spatial position. Contact with the flat surface was most effective in attenuating sway; the flexible filaments were much less effective but still significantly better than imagined contact. Experiment 2 compared the effectiveness of finger contact with a flexible filament, a rigid filament of the same diameter, a flat surface, and an imagined spatial position. The rigid filament and flat surface conditions were equally effective in attenuating body sway and were greatly superior to contact with the flexible filament, which was superior to imagined contact. Experiment 3 included five conditions: arms by sides; finger "contact" with an imagined spatial position; finger contact with a flat surface; finger contact with a flexible filament attempting to maintain it bent; and contact with the flexible filament attempting not to bend it. The arms by sides and finger "contact" with an imagined position conditions did not differ significantly; all three conditions involving actual finger contact showed significantly less center of pressure and hand sway, but contact with the flat surface was most effective in attenuating both postural and hand displacement. In all three experiments, the level of force applied in fingertip contact conditions was far below that necessary to provide mechanical stabilization. Our findings indicate that: (1) stimulation of a small number of receptors in the fingertip is adequate to allow stabilization of sway, (2) fingertip force levels as low as 5-10 g provide some stabilization, (3) contact with a stationary spatial referent is most effective, and (4) independent control of arm and torso occurs when finger contact is allowed.
Development of Surfaces Optically Suitable for Flat Solar Panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.
1978-01-01
Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.
In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.
Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.; Wilmoth, Richard G.
1995-01-01
The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.
NASA Technical Reports Server (NTRS)
Shuford, Charles L , Jr
1958-01-01
A summary is given of the background and present status of the pure-planing theory for rectangular flat plates and v-bottom surfaces. The equations reviewed are compared with experiment. In order to extend the range of available planing data, the principal planing characteristics for models having sharp bottom surfaces having constant angles of dead rise of 20 degrees and 40 degrees. Planing data were also obtained for flat-plate surfaces with very slightly rounded chines for which decreased lift and drag coefficients are obtained.
Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi
2016-01-01
Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.
NASA Technical Reports Server (NTRS)
Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)
2008-01-01
A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.
Comparisons of the Maxwell and CLL Gas/Surface Interaction Models Using DSMC
NASA Technical Reports Server (NTRS)
Hedahl, Marc O.
1995-01-01
Two contrasting models of gas-surface interactions are studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate is that of one of the solar panels on the Magellan spacecraft, and the freestream conditions are one of those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two plate system is not representative of the Magellan geometry, but is studied to explore possible experiments that might be used to differentiate between the two gas surface interaction models.
On the state of stress in the near-surface of the earth's crust
Savage, W.Z.; Swolfs, H.S.; Amadei, B.
1992-01-01
Five models for near-surface crustal stresses induced by gravity and horizontal deformation and the influence of rock property contrasts, rock strength, and stress relaxation on these stresses are presented. Three of the models-the lateral constraint model, the model for crustal stresses caused by horizontal deformation, and the model for the effects of anisotropy-are linearly elastic. The other two models assume that crustal rocks are brittle or viscoelastic in order to account for the effects of rock strength and time on near-surface stresses. It is shown that the lateral constraint model is simply a special case of the combined gravity-and deformation-induced stress field when horizontal strains vanish and that the inclusion of the effect of rock anisotropy in the solution for crustal stresses caused by gravity and horizontal deformation broadens the range for predicted stresses. It is also shown that when stress levels in the crust reach the limits of brittle rock strength, these stresses become independent of strain rates and that stress relaxation in ductile crustal rocks subject to constant horizontal strain rates causes horizontal stresses to become independent of time in the long term. ?? 1992 Birkha??user Verlag.
Animating Autonomous Pedestrians
2006-01-01
walkable surface in a region may be mapped onto a horizontal plane without loss of essential geometric information. Consequently, the 3D space may be...that the walkable surface in a region may be mapped onto a horizontal plane without loss of essential geometric information, such as the distance
Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel
NASA Astrophysics Data System (ADS)
Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian
Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.
1991-04-01
Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.
Magnetic reconnection launcher
Cowan, Maynard
1989-01-01
An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.
Rainfall prediction using fuzzy inference system for preliminary micro-hydro power plant planning
NASA Astrophysics Data System (ADS)
Suprapty, B.; Malani, R.; Minardi, J.
2018-04-01
East Kalimantan is a very rich area with water sources, in the form of river streams that branch to the remote areas. The conditions of natural potency like this become alternative solution for area that has not been reached by the availability of electric energy from State Electricity Company. The river water in selected location (catchment area) which is channelled to the canal, pipeline or penstock can be used to drive the waterwheel or turbine. The amount of power obtained depends on the volume/water discharge and headwater (the effective height between the reservoir and the turbine). The water discharge is strongly influenced by the amount of rainfall. Rainfall is the amount of water falling on the flat surface for a certain period measured, in units of mm3, above the horizontal surface in the absence of evaporation, run-off and infiltration. In this study, the prediction of rainfall is done in the area of East Kalimantan which has 13 watersheds which, in principle, have the potential for the construction of Micro Hydro Power Plant. Rainfall time series data is modelled by using AR (Auto Regressive) Model based on FIS (Fuzzy Inference System). The FIS structure of the training results is then used to predict the next two years rainfall.
Inherited weaknesses control deformation in the flat slab region of Central Argentina
NASA Astrophysics Data System (ADS)
Stevens, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.
2015-12-01
The Sierras Pampeanas region of west-central Argentina has long been considered a geologic type-area for flat-slab induced thick-skinned deformation. Frictional coupling between the horizontal subducting plate and South American lithosphere from ~12 Ma to the present provides an obvious causal mechanism for the basement block uplifts that characterize this region. New low temperature thermochronometry data show basement rocks from the central Sierras Pampeanas (~ longitude 66 ̊ W) including Sierras Cadena de Paiman, Velasco and Mazan retain a cooling history of Paleozoic - Mesozoic tectonics events. Results from this study indicate that less than 2 km of basement has been exhumed since at least the Mesozoic. These trends recorded by both apatite fission track (AFT) and apatite helium (AHe) thermochronometry suggest that recent Mio-Pliocene thick-skinned deformation associated with flat-slab subduction follow inherited zones of weakness from Paleozoic terrane sutures and shear zones and Mesozoic rifting. If a Cenozoic foreland basin exisited in this region, its thickness was minimal and was controlled by paleotopography. Pre-Cenozoic cooling ages in these ranges that now reach as high as 4 km imply significant exhumation of basement rocks before the advent of flat slab subduction in the mid-late Miocene. It also suggests that thick-skinned deformation associated with flat slab subduction may at least be facilitated by inherited crustal-scale weaknesses. At the most, pre-existing zones of weakness may be required in regions of thick-skinned deformation. Although flat-slab subduction plays an important role in the exhumation of the Sierras Pampeanas, it is likely not the sole mechanism responsible for thick-skinned deformation in this region. This insight sheds light on the interpretation of modern and ancient regions of thick-skinned deformation in Cordilleran systems.
Metal powder absorptivity: Modeling and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
Metal powder absorptivity: Modeling and experiment
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...
2016-08-10
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
NASA Technical Reports Server (NTRS)
1975-01-01
A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.
Anterior Corneal, Posterior Corneal, and Lenticular Contributions to Ocular Aberrations.
Atchison, David A; Suheimat, Marwan; Mathur, Ankit; Lister, Lucas J; Rozema, Jos
2016-10-01
To determine the corneal surfaces and lens contributions to ocular aberrations. There were 61 healthy participants with ages ranging from 20 to 55 years and refractions -8.25 diopters (D) to +3.25 D. Anterior and posterior corneal topographies were obtained with an Oculus Pentacam, and ocular aberrations were obtained with an iTrace aberrometer. Raytracing through models of corneas provided total corneal and surface component aberrations for 5-mm-diameter pupils. Lenticular contributions were given as differences between ocular and corneal aberrations. Theoretical raytracing investigated influence of object distance on aberrations. Apart from defocus, the highest aberration coefficients were horizontal astigmatism, horizontal coma, and spherical aberration. Most correlations between lenticular and ocular parameters were positive and significant, with compensation of total corneal aberrations by lenticular aberrations for 5/12 coefficients. Anterior corneal aberrations were approximately three times higher than posterior corneal aberrations and usually had opposite signs. Corneal topographic centers were displaced from aberrometer pupil centers by 0.32 ± 0.19 mm nasally and 0.02 ± 0.16 mm inferiorly; disregarding corneal decentration relative to pupil center was significant for oblique astigmatism, horizontal coma, and horizontal trefoil. An object at infinity, rather than at the image in the anterior cornea, gave incorrect aberration estimates of the posterior cornea. Corneal and lenticular aberration magnitudes are similar, and aberrations of the anterior corneal surface are approximately three times those of the posterior surface. Corneal decentration relative to pupil center has significant effects on oblique astigmatism, horizontal coma, and horizontal trefoil. When estimating component aberrations, it is important to use correct object/image conjugates and heights at surfaces.
Narrowband Angular Reflectance Properties of the Alkali Flats at White Sands, New Mexico
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; LeCroy, Stuart R.; Wheeler, Robert J.
1994-01-01
Results from helicopter measurements of the angular properties of surface reflectance for the alkali flats regions of the White Sands Missile Range are presented for the wavelength interval of 0.4 to 0.85 microns. This work was performed to allow accurate radiative transfer calculations over the region. Detailed tables and interpolation equations are given that permit other investigators to perform satellite calibrations over the alkali flats site. The effects of wavelength and soil moisture on narrowband angular reflectance are also investigated. Although there is a spectral variation in surface albedo, there is little spectral effect in Anisotropic Factor except in the forward scattering peak at solar zenith angles greater than 60 deg. The magnitude of the forward-scattering peak is also sensitive to soil moisture, with wet conditions causing a larger peak. The significance of this result is that angular reflectance properties at the center of the alkali flats usually will be different than those at the flats edge because moisture differences typically exist.
NASA Technical Reports Server (NTRS)
Manson, A. H.; Meek, C. E.
1989-01-01
The continuing series of horizontal wind measurements by the spaced-antenna real time winds (RTW) method was supplemented by a phase coherent system for two years. Vertical motions are inferred from the complex autocorrelation functions, and an RTW system provides 5 min samples from 60 to 110 km. Comparisons with full interferometric 3-D velocity measurements confirm the validity of this approach. Following comparisons and corrections with the horizontal winds, mean summer and winter (24 h) days of vertical motions are shown. Tidal fluctuations are evident. In summer the motions are downward, consistent with data from Poker Flat, and the suggestion of Coy et al. (1986) that these represent Eulerian motions. The expected upward Lagrangian motion then results from adding up upward Stokes' drift. The winter motions are more complex, and are discussed in the context of gravity wave fluxes and possible meridional cells. The divergence of the vertical flux of zonal momentum is also calculated and found to be similar to the coriolis torque due to the meridional winds.
Cranswick, E.
1988-01-01
Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Angle, J.; Wrighton, K. C.; Bohrer, G.
2017-12-01
Wetland soils store a great amount of carbon, but also accumulate and emit methane (CH4), a powerful greenhouse gas. To better understand the vertical and horizontal spatial variability of CH4 emissions, we monitored production and fluxes of CH4 in Old Woman Creek, an estuarine wetland of Lake Erie, Ohio, during the growing seasons of 2015 and 2016. Our combined observation methods targeted three different scales: 1) the eddy covariance technique provided continuous high frequency observations integrated over a large spatial footprint; 2) monthly chamber measurements provided sparse point measurements of fluxes in four distinct land-cover types in the wetland: open water, emergent vegetation (Typha spp.), floating vegetation (Nelumbo spp.) and mud flats; and 3) in-situ porewater dialysis samplers, "peepers", provided vertical CH4 concentration data in the soil at the same locations and temporal time steps as the chambers. In addition, we studied gene transcripts to quantify methanogenesis activity along the vertical soil profile. Using integrated chamber and EC measurements, we found an average surface emission rate from Typha, the most abundant vegetated land cover, of 219.4 g CH4-C m-2 y-1, which was much higher than rates reported in similar emergent vegetation types in other wetlands. There was large spatial variation of flux rates, with mud flats having the highest rates of CH4 emission, followed by Nelumbo and Typha patches, and with open water having the lowest emissions. Within the soil column, we applied a numerical model to convert soil methane concentrations to emissions rates. We found that, contrary to current ideas of methane production, most methane was being produced in the well-oxygenated surface soils, probably in anoxic microsites within the oxic layer. Our metatranscriptomic data supported these findings, clearly showing nine times greater methanogenic activity in oxic surface soils relative to deeper anoxic soils. Combined, our results provide important insights for the representation of processes of methane production and consumption in models, which can largely affect the estimates of methane emission from wetlands.
Kurouski, Dmitry; Deckert-Gaudig, Tanja; Deckert, Volker; Lednev, Igor K
2014-01-07
Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer's and Parkinson's diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael
1994-11-01
This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.
Development of CFRP mirrors for space telescopes
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2013-09-01
CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.
Blackfolds, plane waves and minimal surfaces
NASA Astrophysics Data System (ADS)
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Method of manufacturing lightweight thermo-barrier material
NASA Technical Reports Server (NTRS)
Blair, Winford (Inventor)
1987-01-01
A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.
Trampoline Effect: Observations and Modeling
NASA Astrophysics Data System (ADS)
Guyer, R.; Larmat, C. S.; Ulrich, T. J.
2009-12-01
The Iwate-Miyagi earthquake at site IWTH25 (14 June 2008) had large, asymmetric at surface vertical accelerations prompting the sobriquet trampoline effect (Aoi et. al. 2008). In addition the surface acceleration record showed long-short waiting time correlations and vertical-horizontal acceleration correlations. A lumped element model, deduced from the equations of continuum elasticity, is employed to describe the behavior at this site in terms of a surface layer and substrate. Important ingredients in the model are the nonlinear vertical coupling between the surface layer and the substrate and the nonlinear horizontal frictional coupling between the surface layer and the substrate. The model produces results in qualitative accord with observations: acceleration asymmetry, Fourier spectrum, waiting time correlations and vertical acceleration-horizontal acceleration correlations. [We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work].
NASA Astrophysics Data System (ADS)
Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques
2010-05-01
Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen-normal shortening, (4) emplacement of late prolate shape plutons in the direction of flow, and (5) late, conjugate strike-slip shearing. The macroscopic- to regional scale tectonoplutonic pattern produced by longitudinal flow forms a flat composite anisotropy throughout the lower crust. In the light of GPS data, these results suggest that bulk longitudinal flow accounts for observed deformation of the Tibetan plateau as well as for its seismic structure. This flow mode may be preferred to lateral, east-directed channel flow because it combines both lateral gravity-driven thinning and distributed, orogen-normal shortening of the crust. These results further suggest that lower crustal seismic reflectivity in orogenic belts may not necessarily images fabrics produced by extensional tectonics, as commonly thought, but crustal layering produced by syn-convergence lateral flow.
Kinematics of fault-related folding derived from a sandbox experiment
NASA Astrophysics Data System (ADS)
Bernard, Sylvain; Avouac, Jean-Philippe; Dominguez, StéPhane; Simoes, Martine
2007-03-01
We analyze the kinematics of fault tip folding at the front of a fold-and-thrust wedge using a sandbox experiment. The analog model consists of sand layers intercalated with low-friction glass bead layers, deposited in a glass-sided experimental device and with a total thickness h = 4.8 cm. A computerized mobile backstop induces progressive horizontal shortening of the sand layers and therefore thrust fault propagation. Active deformation at the tip of the forward propagating basal décollement is monitored along the cross section with a high-resolution CCD camera, and the displacement field between pairs of images is measured from the optical flow technique. In the early stage, when cumulative shortening is less than about h/10, slip along the décollement tapers gradually to zero and the displacement gradient is absorbed by distributed deformation of the overlying medium. In this stage of detachment tip folding, horizontal displacements decrease linearly with distance toward the foreland. Vertical displacements reflect a nearly symmetrical mode of folding, with displacements varying linearly between relatively well defined axial surfaces. When the cumulative slip on the décollement exceeds about h/10, deformation tends to localize on a few discrete shear bands at the front of the system, until shortening exceeds h/8 and deformation gets fully localized on a single emergent frontal ramp. The fault geometry subsequently evolves to a sigmoid shape and the hanging wall deforms by simple shear as it overthrusts the flat ramp system. As long as strain localization is not fully established, the sand layers experience a combination of thickening and horizontal shortening, which induces gradual limb rotation. The observed kinematics can be reduced to simple analytical expressions that can be used to restore fault tip folds, relate finite deformation to incremental folding, and derive shortening rates from deformed geomorphic markers or growth strata.
Structure and Kinematics of a Complex Crater: Upheaval Dome, Southeast, Utah
NASA Technical Reports Server (NTRS)
Kriens, B. J.; Herkenhoff, K. E.; Shoemaker, E. M.
1997-01-01
Two vastly different phenomena, extraterrestrial impact and salt diapirism, have been proposed for the origin of Upheaval Dome. Upheaval Dome is a about 2.5-km-diameter structural dome surrounded by a 5-km-diameter ring structural depression, which is in turn flanked by extensive, nearly flat-lying Colorado Plateau strata. Seismic refraction data and geologic mapping indicate that the dome originated by the collapse of a transient cavity formed by impact; data also show that rising salt has had a negligible influence on dome development. Evidence for this includes several factors: (1) a rare lag deposit of impactite is present; (2) fan-tailed fracture surfaces (shatter surfaces) and a few shattercones are present; (3) the top of the underlying salt horizon is at least 500 m below the center of the dome, with no exposures of salt in the dome to support the possibility that a salt diapir has ascended through it; (4) sedimentary strata in the center are significantly imbricated by top-to-the-center thrust faulting and are complexly folded; (5) top-to-the-center low-angle normal faults are found at the perimeter of the structure; and (6) clastic dikes are widespread. The scarcity of melt rocks and shock fabrics is attributed to approximately 0.5 km of erosion; the structures of the dome reflect processes of complex crater development at a depth of about 0.5 km below the crater floor. Based on mapping and kinematic analysis, we infer that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, largely resulted from this motion. In addition, we have detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding in the perimeter of the structure. Collectively, the observed deformation accounts for the creation of both the central uplift and the encircling ring syncline.
Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.
2012-01-01
Screens are installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District (Oregon) developed a unique flat-plate screen (the “Farmers Screen”) that operates passively and may offer reduced installation and operating costs. To evaluate the effectiveness of this screen on fish, we conducted two separate field experiments. First, juvenile coho salmon Oncorhynchus kisutch were released over a working version of this screen under a range of inflows (0.02–0.42 m3/s) and diversion flows (0.02–0.34 m3/s) at different water depths. Mean approach velocities ranged from 0 to 5 cm/s and sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 cm and were directly related to inflow. Passage of fish over the screen under these conditions did not severely injure them or cause delayed mortality, and no fish were observed becoming impinged on the screen surface. Second, juvenile coho salmon and steelhead O. mykiss were released at the upstream end of a 34-m flume and allowed to volitionally move downstream and pass over a 3.5-m section of the Farmers Screen to determine whether fish would refuse to pass over the screen after encountering its leading edge. For coho salmon, 75–95% of the fish passed over the screen within 5 min and 82–98% passed within 20 min, depending on hydraulic conditions. For steelhead, 47–90% of the fish passed over the screen within 5 min and 79–95% passed within 20 min. Our results indicate that when operated within its design criteria, the Farmers Screen provides safe and efficient downstream passage of juvenile salmonids under a variety of hydraulic conditions.
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
NASA Technical Reports Server (NTRS)
Creager, Marcus O.
1959-01-01
An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.
Alvarez-Escobar, Marta; Hansford, Derek; Monteiro, Fernando J.
2018-01-01
Introduction Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials. PMID:29593793
NASA Technical Reports Server (NTRS)
Norwood, L. B.
1972-01-01
Procedures for low cost fabrication and direct bond installation of flat, single curved, and compound curvature ablative heat shields on a DC-3 aircraft are discussed. The panel sizes and attachment locations are identified. In addition to the bonding of the four contoured panels, two flat panels were bonded to the nearly flat, lower surface of the center wing section. The detailed requirements and objectives of the investigation are described.
Extracting flat-field images from scene-based image sequences using phase correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caron, James N., E-mail: Caron@RSImd.com; Montes, Marcos J.; Obermark, Jerome L.
Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method usesmore » sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.« less
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.
1996-01-01
Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.
Short time dynamics of water coalescence on a flat water pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Su Jin; Gim, Bopil; Fezzaa, Kamel
2016-12-01
Coalescence is an important hydrodynamic event that frequently takes place in nature as well as in industry. Here we provide an experimental study on short time dynamics of water coalescence, particularly when a water droplet comes in contact with a flat water surface, by utilizing high-resolution high-penetration ultrafast X-ray microscopy. Our results demonstrate a possibility that an extreme curvature difference between a drop and a flat surface can significantly modify the hydrodynamics of water coalescence, which is unexpected in the existing theory. We suggest a plausible explanation for why coalescence can be modified by an extreme curvature difference.
Soil strength response of select soil disturbance classes on a wet pine flat in South Carolina
Emily A. Carter; W. Michael Aust; James A. Burger
2007-01-01
Harvest operations conducted under conditions of high soil moisture on a et pine flat in South Carolina resulted in a high degree of soil surface disturbance. Less soil surface disturbance occurred when soil moisture content was lower. Soil strength varied by soil disturbance class in wet harvested locations and highly disturbed areas were associated with low soil...
Tests of crustal divergence models for Aphrodite Terra, Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1989-01-01
This paper discusses the characteristics of Aphrodite Terra, the highland region of Venus which is considered to be a likely site of mantle upwelling, active volcanism, and extensional tectonics, and examines the relation of these features to three alternative kinematic models for the interaction of mantle convection with the surface. These the 'vertical tectonics' model, in which little horizontal surface displacement results from mantle flow; the 'plate divergence' model, in which shear strain from large horizontal displacements is accommodated only in narrow zones of deformation; and the 'distributed deformation' model, in which strain from large horizontal motions is broadly accommodated. No convincing observational evidence was found to support the rigid-plate divergence, while the evidence of large-scale horizontal motions of Aphrodite argues against purely vertical tectonics. A model is proposed, involving a broad disruption of a thin lithosphere. In such a model, lineaments are considered to be surface manifestations of mantle convective flow.
Channel surface plasmons in a continuous and flat graphene sheet
NASA Astrophysics Data System (ADS)
Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.
2018-05-01
We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.
Phelps, Geoffrey A.; McKee, Edwin H.; Sweetkind, D.; Langenheim, V.E.
2000-01-01
The Environmental Restoration Program of the U.S. Department of Energy, Nevada Operations Office, was developed to investigate the possible consequences to the environment of 40 years of nuclear testing on the Nevada Test Site. The majority of the tests were detonated underground, introducing contaminants into the ground-water system (Laczniak and others, 1996). An understanding of the ground-water flow paths is necessary to evaluate the extent of ground-water contamination. This report provides information specific to Yucca Flat on the Nevada Test Site. Critical to understanding the ground-water flow beneath Yucca Flat is an understanding of the subsurface geology, particularly the structure and distribution of the pre-Tertiary rocks, which comprise both the major regional aquifer and aquitard sequences (Winograd and Thordarson, 1975; Laczniak and others, 1996). Because the pre-Tertiary rocks are not exposed at the surface of Yucca Flat their distribution must be determined through well logs and less direct geophysical methods such as potential field studies. In previous studies (Phelps and others, 1999; Phelps and Mckee, 1999) developed a model of the basement surface of the Paleozoic rocks beneath Yucca Flat and a series of normal faults that create topographic relief on the basement surface. In this study the basement rocks and structure of Yucca Flat are examined in more detail using the basement gravity anomaly derived from the isostatic gravity inversion model of Phelps and others (1999) and high-resolution magnetic data, as part of an effort to gain a better understanding of the Paleozoic rocks beneath Yucca Flat in support of groundwater modeling.
49 CFR 173.4a - Excepted quantities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... package or packing different materials in the package must not result in a violation of § 173.21. (6) Each... onto a solid unyielding surface from a height of 1.8 m (5.9 feet): (i) Where the sample is in the shape...; (B) One drop flat on the top; (C) One drop flat on the longest side; (D) One drop flat on the...
49 CFR 173.4 - Small quantities for highway and rail.
Code of Federal Regulations, 2012 CFR
2012-10-01
... solid materials; (iii) One (1) g (0.04 ounce) for authorized materials meeting the definition of a... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D...
NASA Astrophysics Data System (ADS)
Nielsen, Karina; Khan, Shfaqat A.; Spada, Giorgio; Wahr, John; Bevis, Michael; Liu, Lin; van Dam, Tonie
2013-04-01
We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surface displacements from 2006 to 2012 at four GPS sites located between ˜5 and ˜150 km from the front of Jakobshavn Isbræ (JI) in west Greenland. Horizontal displacements during 2006-2010 at KAGA, ILUL, and QEQE, relative to the site AASI, are directed toward north-west, suggesting that the main mass loss signal is located near the frontal portion of JI. The directions of the observed displacements are supported by modeled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006, 2009, and 2010. However, horizontal displacements during 2010-2012 at KAGA and ILUL are directed more towards the west suggesting a change in the spatial distribution of the ice mass loss. In addition, we observe an increase in the uplift rate during 2010-2012 as compared to 2006-2010. The sudden change in vertical and horizontal displacements is due to enhanced melt-induced ice loss in 2010 and 2012.
Bedforms induced by solitary waves: laboratory studies on generation and migration rate
NASA Astrophysics Data System (ADS)
la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico; Paola, Chris
2017-04-01
This study presents experiments on the formation of sandy bedforms, produced by surface solitary waves (SSWs) in shallow water conditions. The experiments were carried out in a 12.0 m long, 0.15 m wide and 0.5 m high flume, at Saint Anthony Falls Laboratory in Minneapolis. The tank is filled by fresh water and a removable gate, placed at the left hand-side of the tank, divides the flume in two regions: the lock region and the ambient fluid region. The standard lock-release method generates SSWs by producing a displacement between the free surfaces that are divided by the gate. Wave amplitude, wavelength, and celerity depend on the lock length and on the water level difference between the two regions. Natural sand particles (D50=0.64) are arranged on the bottom in order to form a horizontal flat layer with a thickness of 2 cm. A digital pressure gauge and a high-resolution acoustic velocimeter allowed us to measure, locally, both pressure and 3D water velocity induced on the bottom by each wave. Image analysis technique is then used to obtain the main wave features: amplitude, wavelength, and celerity. Dye is finally used as vertical tracer to mark the horizontal speed induced by the wave. For each experiment we generated 400 waves, having the same features and we analyzed their action on sand particles placed on the bottom. The stroke, induced by each wave, entails a shear stress on the sand particles, causing sediment transport in the direction of wave propagation. Immediately after the wave passage, a back flow occurs near the bottom. The horizontal pressure gradient and the velocity field induced by the wave cause the boundary layer separation and the consequent reverse flow. Depending on the wave features and on the water depth, the boundary shear stress induced by the reverse flow can exceed the critical value inducing the back motion of the sand particles. The experiments show that the particle back motion is localized at particular cross sections along the tank, where the wave steepening occur. For this reason, the pressure and velocity measures were collected in several cross sections along the tank. The propagation of consecutive waves with the same features induces the generation of erosion and accumulation zones, which slowly evolve in isometric bedforms.
NASA Astrophysics Data System (ADS)
Dewing, Keith; Pratt, Brian R.; Hadlari, Thomas; Brent, Tom; BÉDard, Jean; Rainbird, Robert H.
2013-02-01
Regional geological mapping of the glaciated surface of northwestern Victoria Island in the western Canadian Arctic revealed an anomalous structure in otherwise flat-lying Neoproterozoic and lower Paleozoic carbonate rocks, located south of Richard Collinson Inlet. The feature is roughly circular in plan view, approximately 25 km in diameter, and characterized by quaquaversal dips of approximately 45°, decreasing laterally. The core of the feature also exhibits local vertical dips, low-angle reverse faults, and drag folds. Although brecciation was not observed, shatter cones are pervasive in all lithologies in the central area, including 723 Ma old dikes that penetrate Neoproterozoic limestones. Their abundance decreases distally, and none was observed in surrounding, horizontally bedded strata. This circular structure is interpreted as a deeply eroded meteorite impact crater of the complex type, and the dipping strata as the remnants of the central uplift. The variation in orientation and shape of shatter cones point to variably oriented stresses with the passage of the shock wave, possibly related to the presence of pore water in the target strata as well as rock type and lithological heterogeneities, especially bed thickness. Timing of impact is poorly constrained. The youngest rocks affected are Late Ordovician (approximately 450 Ma) and the impact structure is mantled by undisturbed postglacial sediments. Regional, hydrothermal dolomitization of the Ordovician limestones, possibly in the Late Devonian (approximately 360 Ma), took place before the impact, and widespread WSW-ENE-trending normal faults of probable Early Cretaceous age (approximately 130 Ma) apparently cross-cut the impact structure.
Champigneux, Pierre; Renault-Sentenac, Cyril; Bourrier, David; Rossi, Carole; Delia, Marie-Line; Bergel, Alain
2018-06-01
Smooth and nano-rough flat gold electrodes were manufactured with controlled Ra of 0.8 and 4.5nm, respectively. Further nano-rough surfaces (Ra 4.5nm) were patterned with arrays of micro-pillars 500μm high. All these electrodes were implemented in pure cultures of Geobacter sulfurreducens, under a constant potential of 0.1V/SCE and with a single addition of acetate 10mM to check the early formation of microbial anodes. The flat smooth electrodes produced an average current density of 0.9A·m -2 . The flat nano-rough electrodes reached 2.5A·m -2 on average, but with a large experimental deviation of ±2.0A·m -2 . This large deviation was due to the erratic colonization of the surface but, when settled on the surface, the cells displayed current density that was directly correlated to the biofilm coverage ratio. The micro-pillars considerably improved the experimental reproducibility by offering the cells a quieter environment, facilitating biofilm development. Current densities of up to 8.5A·m -2 (per projected surface area) were thus reached, in spite of rate limitation due to the mass transport of the buffering species, as demonstrated by numerical modelling. Nano-roughness combined with micro-structuring increased current density by a factor close to 10 with respect to the smooth flat surface. Copyright © 2018 Elsevier B.V. All rights reserved.
Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats
NASA Astrophysics Data System (ADS)
Ridd, Peter V.; Sam, Renagi
1996-11-01
The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.
Math, Renukaradhya K; Jin, Hyun Mi; Kim, Jeong Myeong; Hahn, Yoonsoo; Park, Woojun; Madsen, Eugene L; Jeon, Che Ok
2012-01-01
Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology) indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT). Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat.
Math, Renukaradhya K.; Jin, Hyun Mi; Kim, Jeong Myeong; Hahn, Yoonsoo; Park, Woojun; Madsen, Eugene L.; Jeon, Che Ok
2012-01-01
Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology) indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT). Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat. PMID:22563400
Method of making hollow elastomeric bodies
NASA Technical Reports Server (NTRS)
Broyles, H. F.; Moacanin, J.; Cuddihy, E. F. (Inventor)
1976-01-01
Annular elastomeric bodies having intricate shapes are cast by dipping a heated, rotating mandrel into a solution of the elastomer, permitting the elastomer to creep into sharp recesses, drying the coated mandrel and repeating the operation until the desired thickness has been achieved. A bladder for a heart assist pump in which a cylindrical body terminating in flat, sharp horizontal flanges fabricated by this procedure has been subjected to over 2,500 hours of simulated life conditions with no visible signs of degradation.
Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters
NASA Astrophysics Data System (ADS)
Ehret, G.; Laubach, S.; Schulz, M.
2017-06-01
The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.
Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W
2016-01-01
Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Nelson, P.; Moucha, R.
2014-12-01
Numerical investigations of surface deformation in response to flat slab subduction began with seminal papers by Bird (1988) and Mitrovica et al. (1989). Recently, a number of numerical studies have begun to explore the complexity in the dynamics of flat-slab subduction initiation and continuation, but did not address the corresponding surface deformation (English et al., 2003; Pérez-Campos et al., 2008; Liu et al., 2010; Jones et al., 2011; Arrial and Billen, 2013; Vogt and Gerya, 2014). Herein, we explore the conditions that lead to flat-slab subduction and characterize the resulting surface deformation using a 2D finite-difference marker-in-cell method. We specifically explore how initial model geometry and boundary conditions affect the evolution of the angle at which a slab subducts in the presence/absence of a buoyant oceanic plateau and the resulting surface topography. In our simulations, the surface is tracked through time as an internal erosion/sedimentation surface. The top boundary of the crust is overlaid by a "sticky" (viscous 10^17 Pa.s) water/air layer with correspondingly stratified densities. We apply a coupled surface processes model that solves the sediment transport/diffusion erosion equation at each time step to account for the corresponding crustal mass flux and its effect on crustal deformation. Model results show the initial angle of subduction has a substantial impact on the subduction angle of the slab and hence the evolution of topography. The results also indicate plate velocity and the presence of an oceanic plateau in a forced subduction only have a moderate effect on the angle of subduction.
Dynamics of a radially expanding liquid sheet: Experiments
NASA Astrophysics Data System (ADS)
Majumdar, Nayanika; Tirumkudulu, Mahesh
2017-11-01
A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.
The Oligo-Miocene of Eil (NE Somalia): a prograding coral- Lepidocyclina system
NASA Astrophysics Data System (ADS)
Bosellini, A.; Russo, A.; Arush, M. A.; Cabdulqadir, M. M.
The Oligo-Miocene succession of Eil is the product of a depositional regression and constitutes a 120-150 m thick depositional sequence that prograded seaward for at least 20-25 km. Its time-transgressive stratigraphy is documented physically by well exposed tangential clinoforms (previously considered as evidence of a tectonic coastal flexure) and biostratigraphically by the occurrence of calcareous nannoplankton, planktonic and benthonic foraminifera, and a rich coral fauna. The upper boundary of the sequence is indicated by a reefal toplap, which constitutes the flat surface of the Nogal Plateau. Age (Chattian to Burdigalian) and toplap relationships of the sequence indicate clearly that progradation took place after the Late Oligocene flooding which followed the strong fall of sea-level during the Chattian. Because of the horizontal geometry of the entire sedimentary system, it has been possible to make a clear environmental reconstruction and a facies model with original water depths. A worldwide Tertiary facies—the Lepidocyclina beds— was confined to the front of the reef, at depths ranging from 35-40 to 120-130 m.
Point-based and model-based geolocation analysis of airborne laser scanning data
NASA Astrophysics Data System (ADS)
Sefercik, Umut Gunes; Buyuksalih, Gurcan; Jacobsen, Karsten; Alkan, Mehmet
2017-01-01
Airborne laser scanning (ALS) is one of the most effective remote sensing technologies providing precise three-dimensional (3-D) dense point clouds. A large-size ALS digital surface model (DSM) covering the whole Istanbul province was analyzed by point-based and model-based comprehensive statistical approaches. Point-based analysis was performed using checkpoints on flat areas. Model-based approaches were implemented in two steps as strip to strip comparing overlapping ALS DSMs individually in three subareas and comparing the merged ALS DSMs with terrestrial laser scanning (TLS) DSMs in four other subareas. In the model-based approach, the standard deviation of height and normalized median absolute deviation were used as the accuracy indicators combined with the dependency of terrain inclination. The results demonstrate that terrain roughness has a strong impact on the vertical accuracy of ALS DSMs. From the relative horizontal shifts determined and partially improved by merging the overlapping strips and comparison of the ALS, and the TLS, data were found not to be negligible. The analysis of ALS DSM in relation to TLS DSM allowed us to determine the characteristics of the DSM in detail.
A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator
NASA Technical Reports Server (NTRS)
Turner, Simon; Andrisani, Dominick, II
1992-01-01
The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto; Kim, Yunjin; Durden, Stephen L.
1992-01-01
A numerical evaluation is presented of the regime of validity for various rough surface scattering theories against numerical results obtained by employing the method of moments. The contribution of each theory is considered up to second order in the perturbation expansion for the surface current. Considering both vertical and horizontal polarizations, the unified perturbation method provides best results among all theories weighed.
NASA Astrophysics Data System (ADS)
Avramov-Zamurovic, S.; Nelson, C.
2018-10-01
We report on experiments where spatially partially coherent laser beams with flat top intensity profiles were propagated underwater. Two scenarios were explored: still water and mechanically moved entrained salt scatterers. Gaussian, fully spatially coherent beams, and Multi-Gaussian Schell model beams with varying degrees of spatial coherence were used in the experiments. The main objective of our study was the exploration of the scintillation performance of scalar beams, with both vertical and horizontal polarizations, and the comparison with electromagnetic beams that have a randomly varying polarization. The results from our investigation show up to a 50% scintillation index reduction for the case with electromagnetic beams. In addition, we observed that the fully coherent beam performance deteriorates significantly relative to the spatially partially coherent beams when the conditions become more complex, changing from still water conditions to the propagation through mechanically moved entrained salt scatterers.
Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.
2013-01-01
This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.
Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo
Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo
2016-01-01
We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved “Out of Africa” to explore the more severe climates of Eurasia. PMID:27010321
Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.
Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo
2016-03-01
We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of Eurasia.
Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan
2014-01-01
Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745
Atomically Flat Surfaces Developed for Improved Semiconductor Devices
NASA Technical Reports Server (NTRS)
Powell, J. Anthony
2001-01-01
New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the small tilt angle between the crystal "basal" plane and the polished wafer surface. These steps are used in normal SiC epi film growth in a process known as stepflow growth to produce material for device fabrication. In the new process, the first step is to etch an array of mesas on the SiC wafer top surface. Then, epi film growth is carried out in the step flow fashion until all steps have grown themselves out of existence on each defect-free mesa. If the size of the mesas is sufficiently small (about 0.1 by 0.1 mm), then only a small percentage of the mesas will contain an undesired screw defect. Mesas with screw defects supply steps during the growth process, allowing a rough surface with unwanted hillocks to form on the mesa. The improvement in SiC epi surface morphology achievable with the new technology is shown. An atomic force microscope image of a typical SiC commercial epilayer surface is also shown. A similar image of an SiC atomically flat epi surface grown in a Glenn laboratory is given. With the current screw defect density of commercial wafers (about 5000 defects/cm2), the yield of atomically free 0.1 by 0.l mm mesas is expected to be about 90 percent. This is large enough for many types of electronic and optical devices. The implementation of this new technology was recently published in Applied Physics Letters. This work was initially carried out in-house under a Director's Discretionary Fund project and is currently being further developed under the Information Technology Base Program.
Process and apparatus for indirect-fired heating and drying
Abbasi, Hamid Ali; Chudnovsky, Yaroslav
2005-04-12
A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.
Analysis of Experimental Investigations of the Planing Process of the Surface of Water
NASA Technical Reports Server (NTRS)
Sottorf, W.
1944-01-01
Pressure distribution and spray measurements were carried out on rectangular flat and V-bottom planing surfaces. Lift, resistance, and center of pressure data are analyzed and it is shown how these values may be computed for the pure planing procees of a flat or V-bottom suface of arbitrary beam, load and speed, the method being illustrated with the aid of an example.
49 CFR 173.441 - Radiation level limitations and exclusive use provisions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; or in the case of a flat-bed style vehicle, at any point on the vertical planes projected from the... external surface of the vehicle; (3) 0.1 mSv/h (10 mrem/h) at any point 2 m (6.6 feet) from the outer lateral surfaces of the vehicle (excluding the top and underside of the vehicle); or in the case of a flat...
NASA Technical Reports Server (NTRS)
1975-01-01
A general description of the leading edge/flat surface heating array is presented along with its components, assembly instructions, installation instructions, operation procedures, maintenance instructions, repair procedures, schematics, spare parts lists, engineering drawings of the array, and functional acceptance test log sheets. The proper replacement of components, correct torque values, step-by-step maintenance instructions, and pretest checkouts are described.
On the role of infiltration and exfiltration in swash zone boundary layer dynamics
NASA Astrophysics Data System (ADS)
Pintado-Patiño, José Carlos; Torres-Freyermuth, Alec; Puleo, Jack A.; Pokrajac, Dubravka
2015-09-01
Boundary layer dynamics are investigated using a 2-D numerical model that solves the Volume-Averaged Reynolds-Averaged Navier-Stokes equations, with a VOF-tracking scheme and a k - ɛ turbulence closure. The model is validated with highly resolved data of dam break driven swash flows over gravel impermeable and permeable beds. The spatial gradients of the velocity, bed shear stress, and turbulence intensity terms are investigated with reference to bottom boundary layer (BL) dynamics. Numerical results show that the mean vorticity responds to flow divergence/convergence at the surface that result from accelerating/decelerating portions of the flow, bed shear stress, and sinking/injection of turbulence due to infiltration/exfiltration. Hence, the zero up-crossing of the vorticity is employed as a proxy of the BL thickness inside the shallow swash zone flows. During the uprush phase, the BL develops almost instantaneously with bore arrival and fluctuates below the surface due to flow instabilities and related horizontal straining. In contrast, during the backwash phase, the BL grows quasi-linearly with less influence of surface-induced forces. However, the infiltration produces a reduction of the maximum excursion and duration of the swash event. These effects have important implications for the BL development. The numerical results suggest that the BL growth rate deviates rapidly from a quasi-linear trend if the infiltration is dominant during the initial backwash phase and the flat plate boundary layer theory may no longer be applicable under these conditions.
14 CFR 77.19 - Civil airport imaginary surfaces.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., having visibility minimums greater that three-fourths of a statute mile; (v) 4,000 feet for that end of a... visibility minimums as low as three-fourths statute mile; and (vi) 16,000 feet for precision instrument... existing or planned for that runway end. (a) Horizontal surface. A horizontal plane 150 feet above the...
14 CFR 77.19 - Civil airport imaginary surfaces.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., having visibility minimums greater that three-fourths of a statute mile; (v) 4,000 feet for that end of a... visibility minimums as low as three-fourths statute mile; and (vi) 16,000 feet for precision instrument... existing or planned for that runway end. (a) Horizontal surface. A horizontal plane 150 feet above the...
14 CFR 77.19 - Civil airport imaginary surfaces.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., having visibility minimums greater that three-fourths of a statute mile; (v) 4,000 feet for that end of a... visibility minimums as low as three-fourths statute mile; and (vi) 16,000 feet for precision instrument... existing or planned for that runway end. (a) Horizontal surface. A horizontal plane 150 feet above the...
Simulations of horizontal roll vortex development above lines of extreme surface heating
W.E. Heilman; J.D. Fast
1992-01-01
A two-dimensional, nonhydrostatic, coupled, earth/atmospheric model has been used to simulate mean and turbulent atmospheric characteristics near lines of extreme surface heating. Prognostic equations are used to solve for the horizontal and vertical wind components, potential temperature, and turbulent kinetic energy (TKE). The model computes nonhydrostatic pressure...
Eberle, Felix; Metzler, Martin; Kolb, Dieter M; Saitner, Marc; Wagner, Patrick; Boyen, Hans-Gerd
2010-09-10
Self-assembled monolayers of 1,4-dicyanobenzene on Au(111) electrodes are studied by cyclic voltammetry, in-situ STM and ex-situ XPS. High-resolution STM images reveal a long-range order of propeller-like assemblies each of which consists of three molecules, all lying flat on the gold substrate with the cyano groups oriented parallel to the metal surface. It is demonstrated that both functional groups can act as complexation sites for metal ions from solution. Surprisingly, such arrangements still allow the metal to be deposited on top of the molecules by electrochemical reduction despite the close vicinity to the Au surface. The latter is demonstrated by angle-resolved XPS which unequivocally shows that the metal indeed resides on top of the organic layer rather than underneath, despite the flat arrangement of the molecules.
Testing of flat conductor cable to Underwriters Laboratory standards UL719 and UL83
NASA Technical Reports Server (NTRS)
Loggins, R. W.; Herndon, R. H.
1974-01-01
The flat conductor cable (FCC) which was tested consisted of three AWG No. 12 flat copper conductors laminated between two films of polyethylene terephthalate (Mylar) insulation with a self-extinguishing polyester adhesive. Results of the tests conducted on this cable, according to specifications, warrants the use of this FCC for electrical interconnections in a surface nonmetallic protective covering.
Zhu, Timothy C; Friedberg, Joseph S; Dimofte, Andrea; Miles, Jeremy; Metz, James; Glatstein, Eli; Hahn, Stephen M
2002-06-06
An isotropic detector-based system was compared with a flat photodiode-based system in patients undergoing pleural photodynamic therapy. Isotropic and flat detectors were placed side by side in the chest cavity, for simultaneous in vivo dosimetry at surface locations for twelve patients. The treatment used 630nm laser to a total light irradiance of 30 J/cm 2 (measured with the flat photodiodes) with photofrin® IV as the photosensitizer. Since the flat detectors were calibrated at 532nm, wavelength correction factors (WCF) were used to convert the calibration to 630nm (WCF between 0.542 and 0.703). The mean ratio between isotropic and flat detectors for all sites was linear to the accumulated fluence and was 3.4±0.6 or 2.1±0.4, with or without the wavelength correction for the flat detectors, respectively. The μ eff of the tissues was estimated to vary between 0.5 to 4.3 cm -1 for four sites (Apex, Posterior Sulcus, Anterior Chest Wall, and Posterior Mediastinum) assuming μ s ' = 7 cm -1 . Insufficient information was available to estimate μ eff directly for three other sites (Anterior Sulcus, Posterior Chest Wall, and Pericardium) primarily due to limited sample size, although one may assume the optical penetration in all sites to vary in the same range (0.5 to 4.3 cm -1 ).
Random packing of regular polygons and star polygons on a flat two-dimensional surface.
Cieśla, Michał; Barbasz, Jakub
2014-08-01
Random packing of unoriented regular polygons and star polygons on a two-dimensional flat continuous surface is studied numerically using random sequential adsorption algorithm. Obtained results are analyzed to determine the saturated random packing ratio as well as its density autocorrelation function. Additionally, the kinetics of packing growth and available surface function are measured. In general, stars give lower packing ratios than polygons, but when the number of vertexes is large enough, both shapes approach disks and, therefore, properties of their packing reproduce already known results for disks.
NASA Astrophysics Data System (ADS)
Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae
2013-07-01
We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
NASA Astrophysics Data System (ADS)
Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha
2015-10-01
Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.
Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.
Cha, Kyoung Je; Kong, Sun-Young; Lee, Ji Soo; Kim, Hyung Woo; Shin, Jae-Yeon; La, Moonwoo; Han, Byung Woo; Kim, Dong Sung; Kim, Hyun-Jung
2017-10-12
Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.
NASA Astrophysics Data System (ADS)
Gunko, Yuri F.; Gunko, Natalia A.
2018-05-01
In this paper we consider the problem of determining the structure of the electric field near the surface of a flat insulated body under conditions of a deep vacuum. It is assumed that the emitted particles are electrons leaving the body surface under the influence of ionizing radiation whose velocities distribution near the surface is isotropic. It is estimated the thickness of the screening layer under conditions of stationary emission from a flat surface. The solutio of the problem of determining a stationary self-consistent electric field near the surface is found in a simple analytical form. The thickness of the screening layer is calculated from this formula.
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, Jerald A.
1997-01-01
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, J.A.
1997-08-26
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.
Drug release from slabs and the effects of surface roughness.
Kalosakas, George; Martini, Dimitra
2015-12-30
We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.
Micro-cone targets for producing high energy and low divergence particle beams
Le Galloudec, Nathalie
2013-09-10
The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.
Lower Lateral Cartilage Cephalic Malposition: An Over-Diagnosed Entity.
Hafezi, Farhad; Naghibzadeh, Bijan; Kazemi Ashtiani, Abbas
2018-06-01
Lower lateral cartilage malposition is represented by anterior convexity of the lower lateral cartilage (LLC) dome with posterior pinch, as defined by Sheen and Constantian. This anatomic variation consists of cephalic, or upward and inward, rotation of lateral crura, particularly in bulbous tip patients. In most cases, "bulbous pinch" LLC is positioned toward the medial canthus, not laterally, so it is referred to as cephalic displacement. Accordingly, it is recommended to caudally displace cartilage in the majority of rhinoplasty cases in which variation is seen. The purpose of this paper is to measure the exact angle of lateral crura with fixed reference points on the face. We drew and marked LLC contours and vertical/horizontal lines in 40 consecutive rhinoplasty cases. We then divided them into two groups: (1) bulbous pinch and (2) flat LLCs. The right- and left-sided LLC angles to midline and horizontal lines were measured and compared to assess whether there was any significant difference between the two subgroups. There was no significant difference between the angles of LLC rotation in the bulbous and flat LLCs groups, measured both vertically and horizontally. Based on our findings, although cephalic malposition of LLCs may be present in some patients but in the majority of cases the etiology of nasal lateral wall pinching is not cephalic displacement of lateral crura but most probably is due, rather, to severe convexity of the posterior and lateral crura. According to our findings, cephalic malposition is an uncommon anatomic variation of LLCs that has been reported at high frequency (60-70% of their rhinoplasty cases). This finding may help to correct this deformity into a normal anatomic configuration. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.
Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L
2017-11-01
This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.
Differences Between Gait on Stairs and Flat Surfaces in Relation to Fall Risk and Future Falls.
Wang, Kejia; Delbaere, Kim; Brodie, Matthew A D; Lovell, Nigel H; Kark, Lauren; Lord, Stephen R; Redmond, Stephen J
2017-11-01
We used body-worn inertial sensors to quantify differences in semi-free-living gait between stairs and on normal flat ground in older adults, and investigated the utility of assessing gait on these terrains for predicting the occurrence of multiple falls. Eighty-two community-dwelling older adults wore two inertial sensors, on the lower back and the right ankle, during several bouts of walking on flat surfaces and up and down stairs, in between rests and activities of daily living. Derived from the vertical acceleration at the lower back, step rate was calculated from the signal's fundamental frequency. Step rate variability was the width of this fundamental frequency peak from the signal's power spectral density. Movement vigor was calculated at both body locations from the signal variance. Partial Spearman correlations between gait parameters and physiological fall risk factors (components from the Physiological Profile Assessment) were calculated while controlling for age and gender. Overall, anteroposterior vigor at the lower back in stair descent was lower in subjects with longer reaction times. Older adults walked more slowly on stairs, but they were not significantly slower on flat surfaces. Using logistic regression, faster step rate in stair descent was associated with multiple prospective falls over 12 months. No significant associations were shown from gait parameters derived during walking upstairs or on flat surfaces. These results suggest that stair descent gait may provide more insight into fall risk than regular walking and stair ascent, and that further sensor-based investigation into unsupervised gait on different terrains would be valuable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, P.L.
1988-02-02
In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less
Na, Jun-Hee; Park, Seung Chul; Kim, Se-Um; Choi, Yoonseuk; Lee, Sin-Doo
2012-01-16
A convertible lenticular liquid crystal (LC) lens architecture is demonstrated using an index-matched planarization layer on a periodically undulated electrode for the homogeneous alignment of an LC. It is found that the in-plane component of the electric field by the undulated electrode plays a primary role in the flat-to-lens effect while the out-of-plane component contributes to the anchoring enhancement of the LC molecules in the surface layer. Our LC device having an index-matched planarization layer on the undulated electrode is capable of achieving the electrical tunability from the flat surface to the lenticular lens suitable for 2D/3D convertible displays.
Pandey, Binod; Tan, Yih Horng; Fujikawa, Kohki; Demchenko, Alexei V.
2013-01-01
We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein. PMID:23519474
Effects of orientation and downward-facing convex curvature on pool-boiling critical heat flux
NASA Astrophysics Data System (ADS)
Howard, Alicia Ann Harris
Photographic studies of near-saturated pool boiling on both inclined flat surfaces and a downward-facing convex surface were conducted in order to determine the physical mechanisms that trigger critical heat flux (CHF). Based on the vapor behavior observed just prior to CHF, it is shown for the flat surfaces that the surface orientations can be divided into three regions: upward-facing (0-60°), near-vertical (60-165°), and downward-facing (165-180°) each region is associated with a unique CHIP trigger mechanism. In the upward-facing region, the buoyancy forces remove the vapor vertically off the heater surface. The near- vertical region is characterized by a wavy liquid-vapor interface which sweeps along the heater surface. In the downward-facing region, the vapor repeatedly stratifies on the heater surface, greatly decreasing CHF. The vapor behavior along the convex surface is cyclic in nature and similar to the nucleation/coalescence/stratification/release procedure observed for flat surfaces in the downward-facing region. The vapor stratification occurred at the bottom (downward-facing) heaters on the convex surface. CHF is always triggered on these downward-facing heaters and then propagates up the convex surface, and the orientations of these heaters are comparable with the orientation range of the flat surface downward-facing region. The vast differences between the observed vapor behavior within the three regions and on the convex surface indicate that a single overall pool boiling CHF model cannot possibly account for all the observed effects. Upward-facing surfaces have been examined and modeled extensively by many investigators and a few investigators have addressed downward-facing surfaces, so this investigation focuses on modeling the near-vertical region. The near-vertical CHF model incorporates classical two-dimensional interfacial instability theory, a separated flow model, an energy balance, and a criterion for separation of the wavy interface from the surface at CHF. The model was tested for different fluids and shows good agreement with CHF data. Additionally, the instability theory incorporated into this model accurately predicts the angle of transition between the near-vertical and downward-facing regions.
Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P
2016-02-01
We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.
PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons
NASA Astrophysics Data System (ADS)
Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre
2017-06-01
We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.
VISIDEP™: visual image depth enhancement by parallax induction
NASA Astrophysics Data System (ADS)
Jones, Edwin R.; McLaurin, A. P.; Cathey, LeConte
1984-05-01
The usual descriptions of depth perception have traditionally required the simultaneous presentation of disparate views presented to separate eyes with the concomitant demand that the resulting binocular parallax be horizontally aligned. Our work suggests that the visual input information is compared in a short-term memory buffer which permits the brain to compute depth as it is normally perceived. However, the mechanism utilized is also capable of receiving and processing the stereographic information even when it is received monocularly or when identical inputs are simultaneously fed to both eyes. We have also found that the restriction to horizontally displaced images is not a necessary requirement and that improvement in image acceptability is achieved by the use of vertical parallax. Use of these ideas permit the presentation of three-dimensional scenes on flat screens in full color without the encumbrance of glasses or other viewing aids.
The Universal Transverse Mercator (UTM) grid
,
1997-01-01
The most convenient way to identify points on the curved surface of the Earth is with a system of reference lines called parallels of latitude and meridians of longitude. On some maps the meridians and parallels appear as straight lines. On most modern maps, however, the meridians and parallels may appear as curved lines. These differences are due to the mathematical treatment required to portray a curved surface on a flat surface so that important properties of the map (such as distance and areal accuracy) are shown with minimum distortion. The system used to portray a portion of the round Earth on a flat surface is called a map projection.
The Universal Transverse Mercator (UTM) grid
,
1999-01-01
The most convenient way to identify points on the curved surface of the Earth is with a system of reference lines called parallels of latitude and meridians of longitude. On some maps, the meridians and parallels appear as straight lines. On most modern maps, however, the meridians and parallels appear as curved lines. These differences sre due to the mathematical treatment required to portray a curved surface on a flat surface so that important properties of the map (such as distance and areal accuracy) are shown with minimum distortion. The system used to portray a portion of the round Earth on a flat surface is called a map projection.
NASA Technical Reports Server (NTRS)
Hefner, J. N.
1973-01-01
Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.
Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements
NASA Astrophysics Data System (ADS)
Johnson, Tyler; Lang, Amy
2009-11-01
Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, M. A. Pagnan, E-mail: miguelangel.pagnan@hotmail.com; Mitsoura, E., E-mail: meleni@uaemex.mx; Oviedo, J.O. Hernández
Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electronsmore » was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical beam profiles were also graphed, showing a horizontal symmetry of ±035%, horizontal flatness of ±3.62%, vertical symmetry of ±2.1% and vertical flatness of ±14.2%. Conclusions: The electron beam was characterized and the data obtained were useful to determine the spatial dose distribution to a SSD of 500±0.5cm, in an area of 200×100cm{sup 2}. Dose profiles were obtained both horizontally and vertically, thus allowing to assess electron beam symmetry and flatness. PDD analysis up to a depth of 9±0.05cm, has made possible to establish the depth of electron penetration, assuring an only skin irradiation treatment.« less
Antibacterial Au nanostructured surfaces
NASA Astrophysics Data System (ADS)
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-01-01
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a
Mangano, M.G.; Buatois, L.A.; West, R.R.; Maples, C.G.
1998-01-01
Upper Carboniferous tidal-flat deposits near Waverly, eastern Kansas (Stull Shale Member, Kanwaka Shale Formation), host abundant and very well-preserved trace fossils attributed to the activity of burrowing bivalves. Thin shell lenses with an abundant bivalve fauna area associated with the ichnofossil-bearing beds and afford an unusual opportunity to relate trace fossils to their makers. Two distinctive life and feeding strategies can be reconstructed on the basis of trace fossil analysis and functional morphology. Lockeria siliquaria hyporeliefs commonly are connected with vertical to inclined, truncated endichnial shafts in the absence of horizontal locomotion traces. These structures record vertical and oblique displacement through the sediment, and suggest relatively stable domiciles rather than temporary resting traces as typically considered. Crowded bedding surfaces displaying cross-cutting relationships between specimens of L. siliquaria and differential preservation at the top (concave versus convex epireliefs) record a complex history of successive events of colonization, erosion, deposition, and recolonization (time-averaged assemblages). Irregujlar contours of some large hypichnia indicate the cast of the foot, while other outlines closely match the anterior area of Wilkingia, its suggested tracemaker. Relatively stable, vertical to inclined life positions and dominanit vertical mobility suggest a filter-feeding strategy. Moreover, the elongate shell and pallial sinus of Wilkingia providfe a strong independent line of evidence for an opisthosiphonate, moderately deep-tier inhabitant. Wilingia may represent a pioneer attempt at siphon-feeding in the late Paleozoic, preceding the outcome of the Mesozoic infaunal radiation. A second strategy is represented by Lockeia ornata and association locomotionm and locomotion/feding structures. Lockeia ornata is commonly connected with chevron locomotion traces that record the bifurcated foot of a protobranch bivalve. Lockeia ornata exhibits distinctive, fine, parallel lines that mimic the ornamentation of Phestia, a nuculanid protobranch bivalve. Rosary and radial structures give evidence of a patterned search for food. Lockeia ornata and associated Protovirgularia record dominant horizontal locomoton and suggest the activity of deposit-feeding bivalves. Morphologic variability of Protovirgularia was controlled by substrate fluidity, which was dependent on sediment heterogeneity and tidal-cycle dynamics. This study demonstrates that detailed analysis of bivalve traces provides valuable information on bivalve ethology and paleoecology, evolutionary innovations, environmental dynamics, and substrate fluidity.
Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen
2005-01-01
The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...
Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges
NASA Astrophysics Data System (ADS)
Sunderland, Zofia; Patorski, Krzysztof
2015-09-01
When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.
Near-station terrain corrections for gravity data by a surface-integral technique
Gettings, M.E.
1982-01-01
A new method of computing gravity terrain corrections by use of a digitizer and digital computer can result in substantial savings in the time and manual labor required to perform such corrections by conventional manual ring-chart techniques. The method is typically applied to estimate terrain effects for topography near the station, for example within 3 km of the station, although it has been used successfully to a radius of 15 km to estimate corrections in areas where topographic mapping is poor. Points (about 20) that define topographic maxima, minima, and changes in the slope gradient are picked on the topographic map, within the desired radius of correction about the station. Particular attention must be paid to the area immediately surrounding the station to ensure a good topographic representation. The horizontal and vertical coordinates of these points are entered into the computer, usually by means of a digitizer. The computer then fits a multiquadric surface to the input points to form an analytic representation of the surface. By means of the divergence theorem, the gravity effect of an interior closed solid can be expressed as a surface integral, and the terrain correction is calculated by numerical evaluation of the integral over the surfaces of a cylinder, The vertical sides of which are at the correction radius about the station, the flat bottom surface at the topographic minimum, and the upper surface given by the multiquadric equation. The method has been tested with favorable results against models for which an exact result is available and against manually computed field-station locations in areas of rugged topography. By increasing the number of points defining the topographic surface, any desired degree of accuracy can be obtained. The method is more objective than manual ring-chart techniques because no average compartment elevations need be estimated ?
Near Surface Seismic Hazard Characterization in the Presence of High Velocity Contrasts
NASA Astrophysics Data System (ADS)
Gribler, G.; Mikesell, D.; Liberty, L. M.
2017-12-01
We present new multicomponent surface wave processing techniques that provide accurate characterization of near-surface conditions in the presence of large lateral or vertical shear wave velocity boundaries. A common problem with vertical component Rayleigh wave analysis in the presence of high contrast subsurface conditions is Rayleigh wave propagation mode misidentification due to an overlap of frequency-phase velocity domain dispersion, leading to an overestimate of shear wave velocities. By using the vertical and horizontal inline component signals, we isolate retrograde and prograde particle motions to separate fundamental and higher mode signals, leading to more accurate and confident dispersion curve picks and shear wave velocity estimates. Shallow, high impedance scenarios, such as the case with shallow bedrock, are poorly constrained when using surface wave dispersion information alone. By using a joint inversion of dispersion and horizontal-to-vertical (H/V) curves within active source frequency ranges (down to 3 Hz), we can accurately estimate the depth to high impedance boundaries, a significant improvement compared to the estimates based on dispersion information alone. We compare our approach to body wave results that show comparable estimates of bedrock topography. For lateral velocity contrasts, we observe horizontal polarization of Rayleigh waves identified by an increase in amplitude and broadening of the horizontal spectra with little variation in the vertical component spectra. The horizontal spectra offer a means to identify and map near surface faults where there is no topographic or clear body wave expression. With these new multicomponent active source seismic data processing and inversion techniques, we better constrain a variety of near surface conditions critical to the estimation of local site response and seismic hazards.
NASA Astrophysics Data System (ADS)
Kunimura, Shinsuke; Ohmori, Hitoshi
We present a rapid process for producing flat and smooth surfaces. In this technical note, a fabrication result of a carbon mirror is shown. Electrolytic in-process dressing (ELID) grinding with a metal bonded abrasive wheel, then a metal-resin bonded abrasive wheel, followed by a conductive rubber bonded abrasive wheel, and finally magnetorheological finishing (MRF) were performed as the first, second, third, and final steps, respectively in this process. Flatness over the whole surface was improved by performing the first and second steps. After the third step, peak to valley (PV) and root mean square (rms) values in an area of 0.72 x 0.54 mm2 on the surface were improved. These values were further improved after the final step, and a PV value of 10 nm and an rms value of 1 nm were obtained. Form errors and small surface irregularities such as surface waviness and micro roughness were efficiently reduced by performing ELID grinding using the above three kinds of abrasive wheels because of the high removal rate of ELID grinding, and residual small irregularities were reduced by short time MRF. This process makes it possible to produce flat and smooth surfaces in several hours.
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
NASA Technical Reports Server (NTRS)
Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.
1977-01-01
Cratering motions and structural deformation are described for the rim of the Prairie Flat multiring crater, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the crater. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the crater walls. Preliminary comparisons with laboratory experimental cratering and with numerical simulations indicate that explosion craters of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact craters with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.
Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah
Lines, Gregory C.
1979-01-01
The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust).The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused.Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities.Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the shallow-brine aquifer, which yields water from near-surface carbonate muds and crystalline halite and gypsum. The shallow-brine aquifer is the main source of brine used for the production of potash on the Salt Flats.Recharge to that part of the shallow-brine aquifer north of Interstate Highway 80 on the Salt Flats is mainly by infiltration of precipitation and wind-driven floods of surface brine. Discharge was mainly by evaporation at the playa surface and withdrawals from brine-collection ditches. Some water was transpired by phreatophytes, and some leaked into the alluvial fan along the western edge of the playa.Salt-scraping studies indicate that the amount of halite on the Salt Flats is directly related to the amount of recharge through the surface (which causes re-solution of halite) and the amount of evaporation at the surface (which causes crystallization of halite). Evaporation rates through sediment-covered salt crust and the gypsum surface were estimated at between 3x10-4 and 4x10-3 inches per day during the summer and fall of 1976. Evaporation rates through the surface of thick perennial salt crust were much higher.The concentration of dissolved solids in brine in the shallow-brine aquifer varies, but it generally increases from the edges of the playas toward areas of salt crust. Dissolved-solids concentration in the shallow brine ranges from less than 100,000 to more than 300,000 milligrams per liter on both playas. The increase in salinity toward areas of salt crust reflects the natural direction of brine movement through the aquifer toward the natural discharge area.On the Salt Flats, the percentages of dissolved potassium chloride and magnesium chloride in the shallow-brine aquifer generally increase from the edge of the playa to- ward the salt crust. The relative enrichment in potassium and magnesium reflects the many years of subsurface drainage toward the main discharge area (the salt crust) prior to man's withdrawal of brine. By artificially extracting brines from the carbonate muds, the percentages of potassium and magnesium have decreased while brine salinity has been maintained by re-solution of the salt crust.The configuration of the density-corrected potentiometric surface in the fall of 1976 indicates that brine in the shallow-brine aquifer under the Bonneville Racetrack was draining toward brine-collection ditches or a well field to the west. Ground-water divides have no effect on the movement of dissolved salt across the surface in wind-driven floods, and salt in surface brine was carried from the racetrack into the area of influence of the ditches by such surface movement. During 1976 on the Salt Flats, some brine was moving through the shallow-brine aquifer across lease and property boundaries.An evaluation of suggested remedial measures indicates that none will completely eliminate the conflict between uses or transform the Bonneville Salt Flats to its original state prior to man's activities in the area.
Slot-grating flat lens for telecom wavelengths.
Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J
2014-07-01
We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.
NASA Astrophysics Data System (ADS)
Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi
2013-08-01
We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.
Selectively-etched nanochannel electrophoretic and electrochemical devices
Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.
2004-11-16
Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.
Selectively-etched nanochannel electrophoretic and electrochemical devices
Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA
2006-06-27
Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.
Adaptation to reef habitats through selection on the coral animal and its associated microbiome.
van Oppen, Madeleine J H; Bongaerts, Pim; Frade, Pedro; Peplow, Lesa M; Boyd, Sarah E; Nim, Hieu T; Bay, Line K
2018-06-13
Spatially adjacent habitats on coral reefs can represent highly distinct environments, often harbouring different coral communities. Yet, certain coral species thrive across divergent environments. It is unknown whether the forces of selection are sufficiently strong to overcome the counteracting effects of the typically high gene flow over short distances, and for local adaptation to occur. We screened the coral genome (using restriction-site-associated sequencing [RAD-seq]), and characterized both the dinoflagellate photosymbiont and tissue-associated prokaryote microbiomes (using metabarcoding) of a reef flat and slope population of the reef-building coral, Pocillopora damicornis, at two locations on Heron Island in the southern Great Barrier Reef. Reef flat and slope populations were separated by <100 m horizontally and ~5 m vertically and the two study locations were separated by ~1 km. For the coral host, genetic divergence between habitats was much greater than between locations, suggesting limited gene flow between the flat and slope populations. Consistent with environmental selection, outlier loci primarily belonged to the conserved, minimal cellular stress response, likely reflecting adaptation to the different temperature and irradiance regimes on the reef flat and slope. Similarly, the prokaryote community differed across both habitat and, to a lesser extent, location, whereas the dinoflagellate photosymbionts differed by habitat but not location. The observed intra-specific diversity associated with divergent habitats supports that environmental adaptation involves multiple members of the coral holobiont. Adaptive alleles or microbial associations present in coral populations from the environmentally-variable reef flat may provide a source of adaptive variation for assisted evolution approaches, through assisted gene flow, artificial cross-breeding or probiotic inoculations, with the aim to increase climate resilience in the slope populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The effect of tip shields on a horizontal tail surface
NASA Technical Reports Server (NTRS)
Dronin, Paul V; Ramsden, Earl I; Higgins, George J
1928-01-01
A series of experiments made in the wind tunnel of the Daniel Guggenheim School of Aeronautics, New York University, on the effect of tip shields on a horizontal tail surface are described and discussed. It was found that some aerodynamic gain can be obtained by the use of tip shields though it is considered doubtful whether their use would be practical.
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide
2011-12-01
Variations in microscopic elastic structures along the entire length of canine aorta were evaluated by use of a scanning haptic microscope (SHM). The total aorta from the aortic arch to the abdominal aorta was divided into 6 approximately equal segments. After embedding the aorta in agar, it was cut into horizontal circumferential segments to obtain disk-like agar portions containing ring-like samples of aorta with flat surfaces (thickness, approximately 1 mm). The elastic modulus and topography of the samples under no-load conditions were simultaneously measured along the entire thickness of the wall by SHM by using a probe with a diameter of 5 μm and a spatial resolution of 2 μm at a rate of 0.3 s/point. The elastic modulus of the wall was the highest on the side of the luminal surface and decreased gradually toward the adventitial side. This tendency was similar to that of the change in the elastin fiber content. During the evaluation of the mid-portion of each tunica media segment, the highest elastic modulus (40.8 ± 3.5 kPa) was identified at the thoracic section of the aorta that had the highest density of elastic fibers. Under no-load conditions, portions of the aorta with high elastin density have a high elastic modulus.
NASA Astrophysics Data System (ADS)
Dimas, Athanassios A.; Kolokythas, Gerasimos A.
Numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme is used where central finite-differences, in the horizontal direction, and a pseudo-spectral approximation method with Chebyshev polynomials, in the vertical direction, are applied. A fractional time-step scheme is used for the temporal discretization. Over the rippled bed, the wave boundary layer thickness increases significantly, in comparison to the one over flat bed, due to flow separation at the ripple crests, which generates alternating circulation regions. The amplitude of the wall shear stress over the ripples increases with increasing ripple height or decreasing Reynolds number, while the corresponding friction force is insensitive to the ripple height change. The amplitude of the form drag forces due to dynamic and hydrostatic pressures increase with increasing ripple height but is insensitive to the Reynolds number change, therefore, the percentage of friction in the total drag force decreases with increasing ripple height or increasing Reynolds number.
Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö
2003-06-01
It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously.
Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.
Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg
2017-05-02
We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.
NASA Astrophysics Data System (ADS)
Hepkema, Tjebbe M.; de Swart, Huib E.; Zagaris, Antonios; Duran–Matute, Matias
2018-05-01
In a tidal channel with adjacent tidal flats, along-channel momentum is dissipated on the flats during rising tides. This leads to a sink of along-channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along-channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep-Vlie double-inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2 % in M2 amplitudes and an increase of approximately 25 % in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35 %, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep-Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three-dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.
Bulldozing of Basal Continental Mantle Lithosphere During Flat-Slab Subduction
NASA Astrophysics Data System (ADS)
Axen, G. J.; van Wijk, J.; Currie, C. A.
2017-12-01
Flat-slab subduction occurs along 10% of subduction margins, forming magmatic gaps and causing inland migration of upper-plate deformation. We suggest that basal continental mantle lithosphere (CML) can be bulldozed ahead of the flat portion of horizontally-subducted oceanic lithosphere, forming a growing and advancing keel of thickened CML. This process fills the asthenospheric mantle wedge with CML, precluding melting. The bulldozed CML keel may transmit tectonic stresses ahead of the flat slab itself, causing upper-plate deformation ahead of the slab hinge. We designed 2-D numerical models after the North American Laramide orogeny, with subduction of a thick, buoyant oceanic plateau (conjugate Shatsky Rise) and with the continent advancing trenchward over the initial slab hinge. This results in slab-flattening, and removal of CML material. In our models, the thickness of the CML layer removed by this process depends on overriding plate rheology and is up to 25 km. The removed material is bulldozed ahead of the hinge and may fill up the asthenospheric wedge. Low-density (depleted) CML favors formation of bulldozed keels, which increase in width as CML strength decreases. Regular-density and/or stronger CML forms smaller bulldozed keels that are more likely to sink with the slab as eclogitization and densification proceed. When the flat slab rolls back, it leaves a step in the CML at the farthest extent of the slab. Relics of this step may remain below North America or may have dripped off. We interpret an upper-mantle fast-velocity anomaly below SE New Mexico and W Texas as a drip/keel, and the step in lithosphere thickness in southwestern Colorado as a fossil step, caused by the removal of the CML layer. Our model predicts that the Laramide bulldozed CML keel may have aided in stress transmission that caused basement uplifts as far as NE Wyoming and subsurface folds even farther N and E. Modern examples may exist in South American flat slab segments.
NASA Astrophysics Data System (ADS)
Su, John G.; Patterson, Pamela R.; Wu, Ming C.
2001-05-01
We have developed a novel wafer-scale single-crystalline silicon micromirror bonding process to fabricate optically flat micromirrors on polysilicon surface-micromachined 2D scanners. The electrostatically actuated 2D scanner has a mirror area of 450 micrometers x 450 micrometers and an optical scan angle of +/- +/-7.5 degree(s). Compared to micromirrors made with a standard polysilicon surface-micromachining process, the radius of curvature of the micromirror has been improved by 1 50 times from 1.8 cm to 265 cm, with surface roughness < 10 nm. Besides, single-crystalline honeycomb micromirrors derived from silicon on insulator (SOI) have been developed to reduce the mass of the bonded mirror.
A study of wind effects on collector performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onur, N.; Hewitt, J.C. Jr.
1980-08-01
Convective heat transfer experiments have been run on flat-plate collectors for tilt angles ranging from the horizontal to the vertical and for five different flow velocities. Experimental data are used to evaluate the currently used models, namely, those of Jurges (1924), Drake (1948), and Sparrow et al (1970-79), and it is shown that although none of these models provides an exact fit, they do represent bounds for the present data. It is also shown that the effect of flow from the northern quadrants provides an additional heat loss reduction of 10 to 20%.
The thermal influence of continents on a model-generated January climate
NASA Technical Reports Server (NTRS)
Spar, J.; Cohen, C.; Wu, P.
1981-01-01
Two climate simulations were compared. Both climate computations were initialized with the same horizontally uniform state of rest. However, one is carried out on a water planet (without continents), while the second is repeated on a planet with geographically realistic but flat (sea level) continents. The continents in this experiment have a uniform albedo of 0.14, except where snow accumulates, a uniform roughness height of 0.3 m, and zero water storage capacity. Both runs were carried out for a 'perpetual January' with solar declination fixed at January 15.
ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS
Patton, G. Jr.; Zirinsky, S.
1961-06-01
A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.
Orthognathic Surgery and Rhinoplasty to Address Nasomaxillary Hypoplasia.
Veeramani, Anamika; Sawh, Raj; Steinbacher, Derek M
2017-11-01
The treatment of nasomaxillary hypoplasia is challenging. The phenotype of Binder "syndrome" includes the following: midfacial hypoplasia, class III malocclusion, small or absent anterior nasal spine, flattened nose, horizontal nostrils, short columella, acute nasolabial angle, and a flat frontonasal angle. A staged approach is used, with orthognathic surgery to achieve vertical maxillary length and sagittal advancement, followed by rhinoplasty aimed to increase nasal tip projection, rotation, and columellar length. This article details the diagnosis and treatment of nasomaxillary hypoplasia, demonstrating the senior author's (D.M.S.) preferred approach and technical steps. Therapeutic, V.
Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces
Van Essen, David C.; Drury, Heather A.; Joshi, Sarang; Miller, Michael I.
1998-01-01
The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex. PMID:9448242
Functional and structural mapping of human cerebral cortex: solutions are in the surfaces
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.
1998-01-01
The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.
Surface texture can bias tactile form perception.
Nakatani, Masashi; Howe, Robert D; Tachi, Susumu
2011-01-01
The sense of touch is believed to provide a reliable perception of the object's properties; however, our tactile perceptions could be illusory at times. A recently reported tactile illusion shows that a raised form can be perceived as indented when it is surrounded by textured areas. This phenomenon suggests that the form perception can be influenced by the surface textures in its adjacent areas. As perception of texture and that of form have been studied independently of each other, the present study examined whether textures, in addition to the geometric edges, contribute to the tactile form perception. We examined the perception of the flat and raised contact surface (3.0 mm width) with various heights (0.1, 0.2, 0.3 mm), which had either textured or non-textured adjacent areas, under the static, passive and active touch conditions. Our results showed that texture decreased the raised perception of the surface with a small height (0.1 mm) and decreased the flat perception of the physically flat surface under the passive and active touch conditions. We discuss a possible mechanism underlying the effect of the textures on the form perception based on previous neurophysiological findings.
Waves in Radial Gravity Using Magnetic Fluid
NASA Technical Reports Server (NTRS)
Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.
1999-01-01
Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.
Maklad, Adel; Reed, Caitlyn; Johnson, Nicholas S.; Fritzsch, Bernd
2014-01-01
In jawed (gnathostome) vertebrates, the inner ears have three semicircular canals arranged orthogonally in the three Cartesian planes: one horizontal (lateral) and two vertical canals. They function as detectors for angular acceleration in their respective planes. Living jawless craniates, cyclostomes (hagfish and lamprey) and their fossil records seemingly lack a lateral horizontal canal. The jawless vertebrate hagfish inner ear is described as a torus or doughnut, having one vertical canal, and the jawless vertebrate lamprey having two. These observations on the anatomy of the cyclostome (jawless vertebrate) inner ear have been unchallenged for over a century, and the question of how these jawless vertebrates perceive angular acceleration in the yaw (horizontal) planes has remained open. To provide an answer to this open question we reevaluated the anatomy of the inner ear in the lamprey, using stereoscopic dissection and scanning electron microscopy. The present study reveals a novel observation: the lamprey has two horizontal semicircular ducts in each labyrinth. Furthermore, the horizontal ducts in the lamprey, in contrast to those of jawed vertebrates, are located on the medial surface in the labyrinth rather than on the lateral surface. Our data on the lamprey horizontal duct suggest that the appearance of the horizontal canal characteristic of gnathostomes (lateral) and lampreys (medial) are mutually exclusive and indicate a parallel evolution of both systems, one in cyclostomes and one in gnathostome ancestors.
Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada
Sweetkind, Donald S.; Drake II, Ronald M.
2007-01-01
During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.
Mullinax, Jerry L.
1988-01-01
A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.
Frost Growth and Densification in Laminar Flow Over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.
Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.
Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald
2013-06-01
While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.
Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams.
Türkan, Uğur; Güden, Mustafa; Sudağıdan, Mert
2016-06-01
The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.
Descriptive and Computer Aided Drawing Perspective on an Unfolded Polyhedral Projection Surface
NASA Astrophysics Data System (ADS)
Dzwierzynska, Jolanta
2017-10-01
The aim of the herby study is to develop a method of direct and practical mapping of perspective on an unfolded prism polyhedral projection surface. The considered perspective representation is a rectilinear central projection onto a surface composed of several flat elements. In the paper two descriptive methods of drawing perspective are presented: direct and indirect. The graphical mapping of the effects of the representation is realized directly on the unfolded flat projection surface. That is due to the projective and graphical connection between points displayed on the polyhedral background and their counterparts received on the unfolded flat surface. For a significant improvement of the construction of line, analytical algorithms are formulated. They draw a perspective image of a segment of line passing through two different points determined by their coordinates in a spatial coordinate system of axis x, y, z. Compared to other perspective construction methods that use information about points, for computer vision and the computer aided design, our algorithms utilize data about lines, which are applied very often in architectural forms. Possibility of drawing lines in the considered perspective enables drawing an edge perspective image of an architectural object. The application of the changeable base elements of perspective as a horizon height and a station point location enable drawing perspective image from different viewing positions. The analytical algorithms for drawing perspective images are formulated in Mathcad software, however, they can be implemented in the majority of computer graphical packages, which can make drawing perspective more efficient and easier. The representation presented in the paper and the way of its direct mapping on the flat unfolded projection surface can find application in presentation of architectural space in advertisement and art.
In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.
2012-01-01
A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.
Adsorption of guaiacol on Fe (110) and Pd (111) from first principles
NASA Astrophysics Data System (ADS)
Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin
2016-06-01
The catalytic properties of surfaces are highly dependent upon the effect said surfaces have on the geometric and electronic structure of adsorbed reactants, products, and intermediates. It is therefore crucial to have a surface-level understanding of the adsorption of the key species in a reaction in order to design active and selective catalysts. Here, we study the adsorption of guaiacol on Fe (110) and Pd (111) using dispersion-corrected density functional theory calculations as both of these metals are of interest as hydrodeoxygenation catalysts for the conversion of bio-oils to useable biofuels. Both vertical (via the oxygen functional groups) and horizontal (via the aromatic ring) adsorption configurations were examined and the resulting adsorption and molecular distortion energies showed that the vertical sites were only physisorbed while the horizontal sites were chemisorbed on both metal surfaces. A comparison of guaiacol's horizontal adsorption on Fe (110) and Pd (111) showed that guaiacol had a stronger adsorption on Pd (111) while the Fe (110) surface distorted the Csbnd O bonds to a greater degree. Electronic analyses on the horizontal systems showed that the greater adsorption strength for guaiacol on Pd (111) was likely due to the greater charge transfer between the aromatic ring and the surface Pd atoms. Additionally, the greater distortion of the Csbnd O bonds in adsorbed guaiacol on Fe (110) is likely due to the greater degree of interaction between the oxygen and surface Fe atoms. Overall, our results show that the Fe (110) surface has a greater degree of interaction with the functional groups and the Pd (111) surface has a greater degree of interaction with the aromatic ring.
Transport processes in intertidal sand flats
NASA Astrophysics Data System (ADS)
Wu, Christy
2010-05-01
Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.
Post-fire land treatments and wind erosion -- lessons from the Milford Flat Fire, UT, USA
Miller, Mark E.; Bowker, Matthew A.; Reynolds, Richard L.; Goldstein, Harland L.
2012-01-01
We monitored sediment flux at 25 plots located at the northern end of the 2007 Milford Flat Fire (Lake Bonneville Basin, west-central Utah) to examine the effectiveness of post-fire rehabilitation treatments in mitigating risks of wind erosion during the first 3 years post fire. Maximum values were recorded during Mar–Jul 2009 when horizontal sediment fluxes measured with BSNE samplers ranged from 16.3 to 1251.0 g m−2 d−1 in unburned plots (n = 8; data represent averages of three sampler heights per plot), 35.2–555.3 g m−2 d−1 in burned plots that were not treated (n = 5), and 21.0–44,010.7 g m−2 d−1 in burned plots that received one or more rehabilitation treatments that disturbed the soil surface (n = 12). Fluxes during this period exhibited extreme spatial variability and were contingent on upwind landscape characteristics and surficial soil properties, with maximum fluxes recorded in settings downwind of treated areas with long treatment length and unstable fine sand. Nonlinear patterns of wind erosion attributable to soil and fetch effects highlight the profound importance of landscape setting and soil properties as spatial factors to be considered in evaluating risks of alternative post-fire rehabilitation strategies. By Mar–Jul 2010, average flux for all plots declined by 73.6% relative to the comparable 2009 period primarily due to the establishment and growth of exotic annual plants rather than seeded perennial plants. Results suggest that treatments in sensitive erosion-prone settings generally exacerbated rather than mitigated wind erosion during the first 3 years post fire, although long-term effects remain uncertain.
A miniature implantable coil that can be wrapped around a tubular organ within the human body
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.
Rover Panorama of Entrance to Murray Buttes on Mars
2016-08-19
This 360-degree panorama was acquired by the Mast Camera (Mastcam) on NASA's Curiosity Mars rover as the rover neared features called "Murray Buttes" on lower Mount Sharp. The view combines more than 130 images taken on Aug. 5, 2016, during the afternoon of the mission's 1,421st sol, or Martian day, by Mastcam's left-eye camera. This date also was the fourth anniversary of Curiosity's landing. The dark, flat-topped mesa seen to the left of Curiosity's robotic arm is about 300 feet (about 90 meters) from the rover's position. It stands about 50 feet (about 15 meters) high. The horizontal ledge near the top of the mesa is about 200 feet (about 60 meters) across. An upper portion of Mount Sharp appears on the distant horizon to the left of this mesa. The relatively flat foreground is part of a geological layer called the Murray formation, which formed from lakebed mud deposits. The buttes and mesas rising above this surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- the Stimson formation -- during the first half of 2016 while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The buttes and mesas of Murray Buttes are capped by material that is relatively resistant to erosion, just as is the case with many similarly shaped buttes and mesas on Earth. The informal naming honors Bruce Murray (1931-2013), a Caltech planetary scientist and director of NASA's Jet Propulsion Laboratory, Pasadena, California. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20765
Target Tracking and Interception by Aggressive Honeybees
2010-08-01
flat disc) of equal surface area . When aggressive bees are offered a choice between a hemispherical sphere and a flat disc (of equal diameter or...equal surface area ), the bees display a greater frequency of attacks toward the 3-D target when it has the same diameter as the 2-D target, but a...as 107 those carrying pollen on their hind legs. The bees were anesthetized in a refrigerator for 20-108 30 min, after which they were taken out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuandeng; Liu, Yu; Xu, Zhi
We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottommore » of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.« less
Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics
NASA Astrophysics Data System (ADS)
Anderson, W.
2015-12-01
Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.
A method for obtaining distributed surface flux measurements in complex terrain
NASA Astrophysics Data System (ADS)
Daniels, M. H.; Pardyjak, E.; Nadeau, D. F.; Barrenetxea, G.; Brutsaert, W. H.; Parlange, M. B.
2011-12-01
Sonic anemometers and gas analyzers can be used to measure fluxes of momentum, heat, and moisture over flat terrain, and with the proper corrections, over sloping terrain as well. While this method of obtaining fluxes is currently the most accurate available, the instruments themselves are costly, making installation of many stations impossible for most campaign budgets. Small, commercial automatic weather stations (Sensorscope) are available at a fraction of the cost of sonic anemometers or gas analyzers. Sensorscope stations use slow-response instruments to measure standard meteorological variables, including wind speed and direction, air temperature, humidity, surface skin temperature, and incoming solar radiation. The method presented here makes use of one sonic anemometer and one gas analyzer along with a dozen Sensorscope stations installed throughout the Val Ferret catchment in southern Switzerland in the summers of 2009, 2010 and 2011. Daytime fluxes are calculated using Monin-Obukhov similarity theory in conjunction with the surface energy balance at each Sensorscope station as well as at the location of the sonic anemometer and gas analyzer, where a suite of additional slow-response instruments were co-located. Corrections related to slope angle were made for wind speeds and incoming shortwave radiation measured by the horizontally-mounted cup anemometers and incoming solar radiation sensors respectively. A temperature correction was also applied to account for daytime heating inside the radiation shield on the slow-response temperature/humidity sensors. With these corrections, we find a correlation coefficient of 0.77 between u* derived using Monin-Obukhov similarity theory and that of the sonic anemometer. Calculated versus measured heat fluxes also compare well and local patterns of latent heat flux and measured surface soil moisture are correlated.
Development of Physical Techniques for the Non-Destructive Evaluation of Polymers
1986-09-30
retreival is possible in an interferometer employing microwaves, a simple Fizeau arrangement was constructed, in which partially aluminised expanded ... polystyrene flats formed BMW the surfaces of the cavity within which interference took place. Figure 21 shows the interference pattern recorded when the flats
Cell behavior on surface modified polydimethylsiloxane (PDMS).
Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R
2014-07-01
Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly confined surface plasmon polaritons in the ultraviolet region
NASA Astrophysics Data System (ADS)
Chubchev, E. D.; Nechepurenko, I. A.; Dorofeenko, A. V.; Vinogradov, A. P.; Lisyansky, A. A.
2018-04-01
We study a surface plasmon polariton mode that is strongly confined in the transverse direction and propagates along a periodically nanostructured metal-dielectric interface. We show that the wavelength of this mode is determined by the period of the structure, and may therefore, be orders of magnitude smaller than the wavelength of a plasmon-polariton propagating along a flat surface. This plasmon polariton exists in the frequency region in which the sum of the real parts of the permittivities of the metal and dielectric is positive, a frequency region in which surface plasmon polaritons do not exist on a flat surface. The propagation length of the new mode can reach a several dozen wavelengths. This mode can be observed in materials that are uncommon in plasmonics, such as aluminum or sodium.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.
The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less
A Parametric Study of Jet Interactions with Rarefied Flow
NASA Technical Reports Server (NTRS)
Glass, C. E.
2004-01-01
Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.
Absolute calibration of optical flats
Sommargren, Gary E.
2005-04-05
The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.
Measuring parameters of large-aperture crystals used for generating optical harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, R. E.; Hibbard, R. L.; Michie, R. B.
1999-02-23
The purpose of this project was to develop tools for understanding the influence of crystal quality and crystal mounting on harmonic-generation efficiency at high irradiance. Measuring the homogeneity of crystals interferometrically, making detailed physics calculations of conversion efficiency, performing finite- element modeling of mounted crystals, and designing a new optical metrology tool were key elements in obtaining that understanding. For this work, we used the following frequency-tripling scheme: type I second- harmonic generation followed by type II sum-frequency mixing of the residual fundamental and the second harmonic light. The doubler was potassium dihydrogen phosphate (KDP), and the tripler was deuteratedmore » KDP (KD*P). With this scheme, near-infrared light (1053 nm) can be frequency tripled (to 351 nm) at high efficiency (theoretically >90%) for high irradiance (>3 GW/cm²). Spatial variations in the birefringence of the large crystals studied here (37 to 41 cm square by about 1 cm thick) imply that the ideal phase-matching orientation of the crystal with respect to the incident laser beam varies across the crystal. We have shown that phase-measuring interferometry can be used to measure these spatial variations. We observed transmitted wavefront differences between orthogonally polarized interferograms of {lambda}/50 to {lambda}/100, which correspond to index variations of order 10 -6. On some plates that we measured, the standard deviation of angular errors is 22-23 µrad; this corresponds to a 1% reduction in efficiency. Because these conversion crystals are relatively thin, their surfaces are not flat (deviate by k2.5 urn from flat). A crystal is mounted against a precision-machined surface that supports the crystal on four edges. This mounting surface is not flat either (deviates by +2.5 µm from flat). A retaining flange presses a compliant element against the crystal. The load thus applied near the edges of the crystal surface holds it in place. We performed detailed finite-element modeling to predict the resulting shape of the mounted crystal. The prediction agreed with measurements of mounted crystals. We computed the physics of the frequency-conversion process to better quantify the effects on efficiency of variation in the crystal' s axis, changes in the shape of the crystal, and mounting-induced stress. We were able to accurately predict the frequency-conversion performance of 37-cm square crystals on Beamlet, a one-beam scientific prototype of the NIF laser architecture, using interferometric measurements of the mounted crystals and the model. In a 2{omega} measurement campaign, the model predicted 64.9% conversion efficiency; 64.1% was observed. When detuned by 640 µrad, the model and measurement agreement is even better (both were 10.4%). Finally, we completed the design and initial testing of a new optical metrology tool to measure the spatial variation of frequency conversion. This system employs a high-power subaperture beam from a commercial laser oscillator and rod amplifier. The beam interrogates the crystal' s aperture by moving the crystal horizontally on a translation stage and translating the laser beam vertically on an optical periscope. Precision alignment is maintained by means of a full-aperture reference mirror, a precision-machined surface on the crystal mount, and autocollimators (the goal for angular errors is 10 µrad). The autocollimators track the mounting angle of the crystal and the direction of the laser beam with respect to the reference mirror. The conversion efficiency can be directly measured by recording l{omega}, 2{omega}, 3{omega} energy levels during the scan and by rocking (i.e., tilting) the crystal mount over an angular range.« less
NASA Astrophysics Data System (ADS)
Booker, J. R.; Burd, A. I.; Mackie, R.
2011-12-01
Three-dimensional interpretation of a large number of magnetotelluric sites in the Andean back arc of Argentina reveals at least two near-vertical conductive structures that extend from near the top of the mantle transition zone to the base of the lithosphere. Both are of limited horizontal extent. One is near the eastern-most extent of the Nazca flat-slab. It penetrates the most reasonable down-dip extension of the seismogenic subducted slab and suggests that the slab may not extend much deeper than about 200 km. The other is south of the flat-slab region and just east of the large Payun-Matru basaltic volcanic province. It arises roughly where the subducted slab would meet the transition zone if the slab extends linearly down from where it is seismogenic. It is tempting to conclude that both structures are partially molten plumes arising from the transition zone or deeper. The flat-slab plume has not penetrated the compressive lithosphere of the Sierras Pampeanas. The Payunia plume would logically seem connected to the geologically recent OIB-like volcanism near Payun Matru, but the shallow mantle structure beneath the area of most recent activity seems better explained by a connection to the Andean volcanism to the west.
Droplet Impact Onto A Flat Plate: Inclined Verses Moving Surfaces
NASA Astrophysics Data System (ADS)
Tsai, Scott; Bird, James C.; Stone, Howard A.
2008-11-01
Much research has been conducted on the impact of droplets normal to flat surfaces. However, very little research has been carried out on oblique impacts, even though they occur frequently in nature and industry. We experiment with the effects of tangential and normal impact velocities on the behavior of a droplet as it impacts a flat plate. The plate is inclined in the first case, and in the second case the plate is rotated via an electric motor. The asymmetric nature of the impact causes asymmetric splashing, such that under certain conditions only part of the rim splashes. Using a high-speed camera, we demonstrate that the splash threshold of inclined and moving surfaces are quantitatively similar, with only small differences. We also develop a phase diagram of splashing showing which phase occurs given a tangential and normal impact velocity. Such a phase diagram is useful for both engineering design and for the evaluation of splash-prediction models.
Direct measurement of interaction forces between a single bacterium and a flat plate.
Klein, Jonah D; Clapp, Aaron R; Dickinson, Richard B
2003-05-15
A technique for precisely measuring the equilibrium and viscous interaction forces between a single bacterium and a flat surface as functions of separation distance is described. A single-beam gradient optical trap was used to micromanipulate the bacterium against a flat surface while evanescent wave light scattering was used to measure separation distances. Calibrating the optical trap far from the surface allowed the trapped bacterium to be used as a force probe. Equilibrium force-distance profiles were determined by measuring the deflection of the cell from the center of the optical trap at various trap positions. Simultaneously, viscous forces were determined by measuring the relaxation time for the fluctuating bacterium. Absolute distances were determined using a best-fit approximation to the theoretical prediction for the hindered mobility of a diffusing sphere near a wall. Using this approach, forces in the range from 0.01 to 4 pN were measured at near-nanometer resolution between Staphylococcus aureus and glass that was bare or coated with adsorbed protein.
A high performance porous flat-plate solar collector
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Clarke, V.; Reynolds, R.
1979-01-01
A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.
Using surface impedance for calculating wakefields in flat geometry
Bane, Karl; Stupakov, Gennady
2015-03-18
Beginning with Maxwell's equations and assuming only that the wall interaction can be approximated by a surface impedance, we derive formulas for the generalized longitudinal and transverse impedance in flat geometry, from which the wakefields can also be obtained. From the generalized impedances, by taking the proper limits, we obtain the normal longitudinal, dipole, and quad impedances in flat geometry. These equations can be applied to any surface impedance, such as the known dc, ac, and anomalous skin models of wall resistance, a model of wall roughness, or one for a pipe with small, periodic corrugations. We show that, formore » the particular case of dc wall resistance, the longitudinal impedance obtained here agrees with a known result in the literature, a result that was derived from a very general formula by Henke and Napoly. As an example, we apply our results to representative beam and machine parameters in the undulator region of LCLS-II and estimate the impact of the transverse wakes on the machine performance.« less
Contrast coating of the surface of flat polyps at CT colonography: a marker of detection
Kim, David H.; Hinshaw, J. Louis; Lubner, Meghan G.; Munoz del Rio, Alejandro; Pooler, B. Dustin; Pickhardt, Perry J.
2014-01-01
Purpose To assess the frequency of oral contrast coating of flat polyps, which may promote detection, and influencing factors within a screening CTC population. Materials From 7,426 individuals, 123 patients with 160 flat polyps were extracted. Flat polyps were defined as plaque-like, raised ≤ 3mm in height and reviewed for contrast coating. Factors including demographic variables such as age and sex, and polyp variables such as polyp size, location, and histology were analyzed for effect on coating. Results Of 160 flat polyps (mean size 9.4mm±3.6), 78.8% demonstrated coating. Mean coat thickness was 1.5mm±0.6; 23.8% (n=30), demonstrating a thin film of contrast. Large size (≥10 mm), and proximal colonic location (relative to splenic flexure) were predictive variables by univariate logistic regression [OR (odds ratio) 3.4(CI 1.3–8.9; p=0.011), 2.0(CI 1.2–3.5; p=0.011), respectively]. Adenomas (OR 0.37, CI: 0.14–1.02; p=0.054) and mucosal polyps or venous blebs (OR 0.07, CI: 0.02–0.25; p < 0.001) were less likely to coat than serrated/hyperplastic lesions. Age and sex were not predictive for coating (p=0.417, p= 0.499, respectively). Conclusions Surface contrast coating is common for flat polyps at CTC, promoted by large size, proximal location, and serrated/hyperplastic histology. Given the difficulty in detection, recognition may aid in flat polyp identification. PMID:24482303
Anisotropic tomography of the European lithospheric structure from surface wave studies
NASA Astrophysics Data System (ADS)
Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul
2016-06-01
We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.
NASA Astrophysics Data System (ADS)
Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2012-12-01
Under various physical conditions (mean temperature and velocity gradients, stratification and rotation) atmospheric turbulent flows remain intrinsically anisotropic. The immediate vicinity of physical boundaries rises to a greater complexity of the anisotropy effects. In this paper we address the issue of the scaling anisotropy of the wind velocity fields within the atmospheric boundary layer (ABL). Under the universal multifractal (UM) framework we compare the small time-scale (0.1 to 1,000 seconds) boundary-layer characteristics of the wind for two different case studies. The first case study consisted of a single mast located within a wind farm in Corsica, France. Three sonic anemometers were installed on the mast at 22, 23 and 43m, measuring three-dimensional wind velocity data at 10Hz. Wakes, complex terrain and buoyancy forces influenced the measurements. The second case study (GROWIAN experiment in Germany) consisted of an array of propeller anemometers measuring wind speed inflow data at 2.5Hz over flat terrain. The propeller anemometers were positioned vertically at 10, 50, 75, 100, 125 and 150m with four horizontal measurements taken at 75, 100 and 125m. The spatial distribution allowed us to calculate the horizontal and vertical shear structure functions of the horizontal wind. Both case studies are within a kilometre from the sea. For the first case study (10Hz measurements in a wind farm test site) the high temporal resolution of the data meant we observed Kolmogorov scaling from 0.2 seconds (with intermittency correction) right up to 1,000 seconds at which point a scaling break occurred. After the break we observed a scaling power law of approximately 2, which is in agreement with Bolgiano-Obukhov scaling theory with intermittency correction. However, for the second case study (2.5Hz on flat terrain) we only observed Kolmogorov scaling from 6.4 seconds (also with intermittency correction). The spectra of horizontal velocity components remain anisotropic over high frequencies, where u1 most scales as Bolgiano-Obukhov and u2 scales as Kolmogorov. The scaling law of the vertical shears of the horizontal wind in the array varied from Kolmogorov to Bolgiano-Obukhov with height depending on the condition of stability. We interpret the results with the UM anisotropic model that greatly enhances our understanding of the ABL structure. Comparing the two case studies we found in both cases the multifractality parameter of about 1.6, which remains close to the estimates obtained for the free atmosphere. From the UM parameters, the exponent of the power law of the distribution of the extremes can be predicted. Over small scales, this exponent is of about 7.5 for the wind velocity, which is a crucial result for applications within the field of wind energy.
Identification of flat dysplastic aberrant crypt foci in the colon of azoxymethane-treated A/J mice.
Paulsen, Jan Erik; Knutsen, Helle; Ølstørn, Hege Benedikte; Løberg, Else Marit; Alexander, Jan
2006-02-01
The role of aberrant crypt foci (ACF) as preneoplastic lesions in colon carcinogenesis is not clear. In Min/+ mice and their wild-type littermates treated with azoxymethane (AOM), we previously identified a subgroup of flat ACF that seem more immediate precursors of tumors than the classical elevated ACF. In the present study, we identified a similar subgroup of flat ACF in AOM-treated A/J mice and compared them with nascent tumors and classical elevated ACF. At week 1 and 2 after birth, A/J mice were injected subcutaneously with AOM (10 mg/kg bw/injection). At weeks 7-14, we examined the luminal surface of unsectioned colon preparations stained with methylene blue in the inverse light microscope. The lesions were also examined by histopathology and immunohistochemistry. Surface examination revealed flat ACF, classical elevated ACF and nascent tumors. Since flat ACF were not observed as elevated structures, their bright blue appearance and compressed pit pattern of crypt openings seen with transillumination were used as criteria for their identification. Flat ACF and nascent tumors displayed a uniform picture of severe dysplasia, compressed pit pattern, overexpression of cytoplasmic/nuclear beta-catenin and nuclear overexpression of cyclin D1. Apparently, flat ACF and tumors represented the same type of dysplastic lesions at different stages of crypt multiplication. In contrast, classical elevated ACF did not seem to be as clearly related to tumorigenesis. They infrequently (1/20) possessed severe dysplasia, overexpression of cytoplasmic/nuclear beta-catenin, or nuclear overexpression of cyclin D1, and they did not have compressed crypt openings. Furthermore, flat ACF grew significantly faster than classical elevated ACF. In conclusion, our data indicate a development from flat ACF to adenoma characterized by aberrant activation of the Wnt signaling pathway and fast crypt multiplication. Classical elevated ACF do not seem to be as closely related to tumorigenesis. Copyright 2005 Wiley-Liss, Inc.
Low-Melt Poly(Amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)
2014-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
Low-Melt Poly(amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)
2015-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
39 CFR Appendix A to Subpart A of... - Mail Classification Schedule
Code of Federal Regulations, 2012 CFR
2012-07-01
... Density and Saturation Letters High Density and Saturation Flats/Parcels Carrier Route Letters Flats Not... Package Services Single-Piece Parcel Post Inbound Surface Parcel Post (at UPU rates) Bound Printed Matter... Single-Piece First-Class Mail International Standard Mail (Regular and Nonprofit) High Density and...
Direct numerical simulation of instabilities in parallel flow with spherical roughness elements
NASA Technical Reports Server (NTRS)
Deanna, R. G.
1992-01-01
Results from a direct numerical simulation of laminar flow over a flat surface with spherical roughness elements using a spectral-element method are given. The numerical simulation approximates roughness as a cellular pattern of identical spheres protruding from a smooth wall. Periodic boundary conditions on the domain's horizontal faces simulate an infinite array of roughness elements extending in the streamwise and spanwise directions, which implies the parallel-flow assumption, and results in a closed domain. A body force, designed to yield the horizontal Blasius velocity in the absence of roughness, sustains the flow. Instabilities above a critical Reynolds number reveal negligible oscillations in the recirculation regions behind each sphere and in the free stream, high-amplitude oscillations in the layer directly above the spheres, and a mean profile with an inflection point near the sphere's crest. The inflection point yields an unstable layer above the roughness (where U''(y) is less than 0) and a stable region within the roughness (where U''(y) is greater than 0). Evidently, the instability begins when the low-momentum or wake region behind an element, being the region most affected by disturbances (purely numerical in this case), goes unstable and moves. In compressible flow with periodic boundaries, this motion sends disturbances to all regions of the domain. In the unstable layer just above the inflection point, the disturbances grow while being carried downstream with a propagation speed equal to the local mean velocity; they do not grow amid the low energy region near the roughness patch. The most amplified disturbance eventually arrives at the next roughness element downstream, perturbing its wake and inducing a global response at a frequency governed by the streamwise spacing between spheres and the mean velocity of the most amplified layer.
Apparent thermal inertia and the surface heterogeneity of Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.
NASA Astrophysics Data System (ADS)
Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.
2018-02-01
The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.
NASA Astrophysics Data System (ADS)
Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.
2018-07-01
The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.
Polymeric and Lipid Membranes—From Spheres to Flat Membranes and vice versa
Saveleva, Mariia S.; Gorin, Dmitry A.; Skirtach, Andre G.
2017-01-01
Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect “infinite” or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized. PMID:28809796
Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.
Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G
2017-08-15
Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.
Effect of dialyzer geometry on granulocyte and complement activation.
Schaefer, R M; Heidland, A; Hörl, W H
1987-01-01
During hemodialysis with cuprophan membranes, the complement system as well as leukocytes become activated. In order to clarify the role of dialyzer geometry, the effect of hollow-fiber versus flat-sheet dialyzers and of different surface areas on C3a generation and leukocyte degranulation was investigated. Plasma levels of leukocyte elastase in complex with alpha 1-proteinase inhibitor were significantly increased after 1 h (+55%) and 3 h (+62%) of hemodialysis with flat-sheet dialyzers as compared to hollow-fiber devices. In addition, plasma levels of lactoferrin, released from the specific granules of leukocytes during activation, were significantly higher (+42%) 3 h after the onset of dialysis treatment with flat-sheet than with hollow-fiber dialyzers. With respect to surface area, larger dialyzers tended to cause more release of leukocyte elastase as compared to dialyzers with smaller surface areas, irrespectively of the configuration of the dialyzer used. On the other hand, activation of the complement system, as measured by the generation of C3a-desarg, did not differ with both types of configurations. The same held true for leukopenia, which was almost identical for hollow-fiber and flat-sheet dialyzers. From these findings two lines of evidence emerge: First, not only the type of membrane material used in a dialyzer may influence its biocompatibility, but the geometry of the extracorporeal device also determines the degree of compatibility. Hence, the extent of leukocyte activation correlated with both configuration of the dialyzer and surface area of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Raj K.; Berg, Larry K.; Pekour, Mikhail
The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains eachmore » for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Branagan, P.; Warpinski, N.R.
A new model suggests that the fracture systems that control permeability in flat-lying fluvial reservoirs are distributed in a continuum of sizes, and occur in subparallel, en echelon patterns. Few high angle ''orthogonal'' fractures exist because this system is created by high pore pressures and relatively low differential horizontal stresses, rather than by structural deformation. Interfracture communication occurs primarily at infrequent, low-angle intersections of fractures. Vertical continuity of such fractures through a reservoir is commonly limited by the numerous lithologic discontinuities inherent in fluvial sandstones. This type of fracture system has been documented in Mesaverde rocks in the Rulison fieldmore » of the Piceance Creek basin, northwestern Colorado, by studies of 4300 ft (1310 m) of core from the US Department of Energy's three Multiwell Experiment wells, and by studies of the excellent nearby outcrops. Well test results and geologic data from core and outcrop support the model. The described natural fracture system has a significant effect on production and stimulation. 16 refs., 15 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Warpinski, N.R.; Sattler, A.R.
A model is presented that suggests that regional fracture systems commonly control permeability in flat-lying reservoirs. Such fractures are distributed in a continuum of sizes and occur in subparallel, en echelon patterns. Few high-angle, orthogonal fractures exist because this system is created by high pore pressures and relatively low differential horizontal (tectonic) stresses rather than by significant structural deformation. Interfracture communication occurs primarily at infrequent, low-angle intersections of fractures. Vertical continuity of such fractures through a reservoir commonly is limited to the numerous lithologic discontinuities inherent in nonmarine sandstones. This type of fracture system has been documented in Mesaverede rocksmore » in the Rulison field of the Piceance Creek basin, northwestern Colorado, by studies of 4,300 ft (1310 m) of core from the U.S. DOE's three Multiwell Experiment (MWX) wells and by studies of the excellent nearby outcrops. Well test results and geologic data from core and outcrop support the model. The described natural fracture system has a significant effect on production and stimulation.« less
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
Aerodynamic characteristics of horizontal tail surfaces
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1940-01-01
Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory.
The effects of diffusion in hot subdwarf progenitors from the common envelope channel
NASA Astrophysics Data System (ADS)
Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili
2018-04-01
Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.
NASA Astrophysics Data System (ADS)
Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.
2003-11-01
The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.
Microscopic modeling of confined crystal growth and dissolution.
Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K; Jettestuen, Espen
2016-08-01
We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally.
Microscopic modeling of confined crystal growth and dissolution
NASA Astrophysics Data System (ADS)
Høgberget, Jørgen; Røyne, Anja; Dysthe, Dag K.; Jettestuen, Espen
2016-08-01
We extend the (1+1)-dimensional fluid solid-on-solid (SOS) model to include a confining flat surface opposite to the SOS surface subject to a constant load. This load is balanced by a repulsive surface-surface interaction given by an ansatz which agrees with known analytical solutions in the limit of two separated flat surfaces. Mechanical equilibrium is imposed at all times by repositioning the confining surface. By the use of kinetic Monte Carlo (KMC) we calculate how the equilibrium concentration (deposition rate) depends on the applied load, and find it to reproduce analytical thermodynamics independent of the parameters of the interaction ansatz. We also study the dependency between the surface roughness and the saturation level as we vary the surface tension, and expand on previous analyses of the asymmetry between growth and dissolution by parametrizing the linear growth rate constant for growth and dissolution separately. We find the presence of a confining surface to affect the speed of growth and dissolution equally.
Eye structure and amphibious foraging in albatrosses
Martin, G. R.
1998-01-01
Anterior eye structure and retinal visual fields were determined in grey-headed and black-browed albatrosses, Diomedea melanophris and D. chrysostoma (Procellariiformes, Diomedeidae), using keratometry and an ophthalmoscopic reflex technique. Results for the two species were very similar and indicate that the eyes are of an amphibious optical design suggesting that albatross vision is well suited to the visual pursuit of active prey both on and below the ocean surface. The corneas are relatively flat (radius ca. 14.5 mm) and hence of low absolute refractive power (ca. 23 dioptres). In air the binocular fields are relatively long (vertical extent ca. 70 degrees) and narrow (maximum width in the plane of the optic axes 26–32 degrees), a topography found in a range of bird species that employ visual guidance of bill position when foraging. The cyclopean fields measure approximately 270 degrees in the horizontal plane, but there is a 60 degrees blind sector above the head owing to the positioning of the eyes below the protruding supraorbital ridges. Upon immersion the monocular fields decrease in width such that the binocular fields are abolished. Anterior eye structure, and visual field topography in both air and water, show marked similarity with those of the Humboldt penguin.
Göbel, Silke M
2015-01-01
Most adults and children in cultures where reading text progresses from left to right also count objects from the left to the right side of space. The reverse is found in cultures with a right-to-left reading direction. The current set of experiments investigated whether vertical counting in the horizontal plane is also influenced by reading direction. Participants were either from a left-to-right reading culture (UK) or from a mixed (left-to-right and top-to-bottom) reading culture (Hong Kong). In Experiment 1, native English-speaking children and adults and native Cantonese-speaking children and adults performed three object counting tasks. Objects were presented flat on a table in a horizontal, vertical, and square display. Independent of culture, the horizontal array was mostly counted from left to right. While the majority of English-speaking children counted the vertical display from bottom to top, the majority of the Cantonese-speaking children as well as both Cantonese- and English-speaking adults counted the vertical display from top to bottom. This pattern was replicated in the counting pattern for squares: all groups except the English-speaking children started counting with the top left coin. In Experiment 2, Cantonese-speaking adults counted a square array of objects after they read a text presented to them either in left-to-right or in top-to-bottom reading direction. Most Cantonese-speaking adults started counting the array by moving horizontally from left to right. However, significantly more Cantonese-speaking adults started counting with a top-to-bottom movement after reading the text presented in a top-to-bottom reading direction than in a left-to-right reading direction. Our results show clearly that vertical counting in the horizontal plane is influenced by longstanding as well as more recent experience of reading direction.
Development of Surfaces Optically Suitable for Flat Solar Panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.; Parr, A.
1977-01-01
Innovations in reflectometry techniques are described; and the development of an absorbing selective coating is discussed along with details of surface properties. Conclusions as to the parameterization desired for practical applications of selective surfaces are provided.
Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.
Effect of surface morphology on friction of graphene on various substrates
NASA Astrophysics Data System (ADS)
Cho, Dae-Hyun; Wang, Lei; Kim, Jin-Seon; Lee, Gwan-Hyoung; Kim, Eok Su; Lee, Sunhee; Lee, Sang Yoon; Hone, James; Lee, Changgu
2013-03-01
The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion.The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion. Electronic supplementary information (ESI) available: Sample preparation method, identification of graphene thickness, AFM and FFM measurements. See DOI: 10.1039/c3nr34181j
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
In vitro evaluation of the marginal integrity of CAD/CAM interim crowns.
Kelvin Khng, Kwang Yong; Ettinger, Ronald L; Armstrong, Steven R; Lindquist, Terry; Gratton, David G; Qian, Fang
2016-05-01
The accuracy of interim crowns made with computer-aided design and computer-aided manufacturing (CAD/CAM) systems has not been well investigated. The purpose of this in vitro study was to evaluate the marginal integrity of interim crowns made by CAD/CAM compared with that of conventional polymethylmethacrylate (PMMA) crowns. A dentoform mandibular left second premolar was prepared for a ceramic crown and scanned for the fabrication of 60 stereolithical resin dies, half of which were scanned to fabricate 15 Telio CAD-CEREC and 15 Paradigm MZ100-E4D-E4D crowns. Fifteen Caulk and 15 Jet interim crowns were made on the remaining resin dies. All crowns were cemented with Tempgrip under a 17.8-N load, thermocycled for 1000 cycles, placed in 0.5% acid fuschin for 24 hours, and embedded in epoxy resin before sectioning from the mid-buccal to mid-lingual surface. The marginal discrepancy was measured using a traveling microscope, and dye penetration was measured as a percentage of the overall length under the crown. The mean vertical marginal discrepancy of the conventionally made interim crowns was greater than for the CAD/CAM crowns (P=.006), while no difference was found for the horizontal component (P=.276). The mean vertical marginal discrepancy at the facial surface of the Caulk crowns was significantly greater than that of the other 3 types of interim crowns (P<.001). At the facial margin, the mean horizontal component of the Telio crowns was significantly larger than that of the other 3 types, with no difference at the lingual margins (P=.150). The mean percentage dye penetration for the Paradigm MZ100-E4D crowns was significantly greater and for Jet crowns significantly smaller than for the other 3 crowns (P<.001). However, the mean percentage dye penetration was significantly correlated with the vertical and horizontal marginal discrepancies of the Jet interim crowns at the facial surface and with the horizontal marginal discrepancies of the Caulk interim crowns at the lingual surface (P<.01 in each instance). A significantly smaller vertical marginal discrepancy was found with the interim crowns fabricated by CAD/CAM as compared with PMMA crowns; however, this difference was not observed for the horizontal component. The percentage dye penetration was correlated with vertical and horizontal discrepancies at the facial surface for the Jet interim crowns and with horizontal discrepancies at the lingual surface for the Caulk interim crowns. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Evidence for a shear horizontal resonance in supported thin films
NASA Astrophysics Data System (ADS)
Zhang, X.; Manghnani, M. H.; Every, A. G.
2000-07-01
We report evidence for a different type of acoustic film excitation, identified as a shear horizontal resonance, in amorphous silicon oxynitride films on GaAs substrate. Observation of this excitation has been carried out using surface Brillouin scattering of light. A Green's function formalism is used for analyzing the experimental spectra, and successfully simulates the spectral features associated with this mode. The attributes of this mode are described; these include its phase velocity which is nearly equal to that of a bulk shear wave propagating parallel to the surface and is almost independent of film thickness and scattering angle, its localization mainly in the film, and its polarization in the shear horizontal direction.
Illusions and Cloaks for Surface Waves
McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.
2014-01-01
Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks. PMID:25145953
The polar amplification asymmetry: role of Antarctic surface height
NASA Astrophysics Data System (ADS)
Salzmann, Marc
2017-05-01
Previous studies have attributed an overall weaker (or slower) polar amplification in Antarctica compared to the Arctic to a weaker Antarctic surface albedo feedback and also to more efficient ocean heat uptake in the Southern Ocean in combination with Antarctic ozone depletion. Here, the role of the Antarctic surface height for meridional heat transport and local radiative feedbacks, including the surface albedo feedback, was investigated based on CO2-doubling experiments in a low-resolution coupled climate model. When Antarctica was assumed to be flat, the north-south asymmetry of the zonal mean top of the atmosphere radiation budget was notably reduced. Doubling CO2 in a flat Antarctica (flat AA) model setup led to a stronger increase in southern hemispheric poleward atmospheric and oceanic heat transport compared to the base model setup. Based on partial radiative perturbation (PRP) computations, it was shown that local radiative feedbacks and an increase in the CO2 forcing in the deeper atmospheric column also contributed to stronger Antarctic warming in the flat AA model setup, and the roles of the individual radiative feedbacks are discussed in some detail. A considerable fraction (between 24 and 80 % for three consecutive 25-year time slices starting in year 51 and ending in year 126 after CO2 doubling) of the polar amplification asymmetry was explained by the difference in surface height, but the fraction was subject to transient changes and might to some extent also depend on model uncertainties. In order to arrive at a more reliable estimate of the role of land height for the observed polar amplification asymmetry, additional studies based on ensemble runs from higher-resolution models and an improved model setup with a more realistic gradual increase in the CO2 concentration are required.
Davis, Leonard C.; Pacala, Theodore; Sippel, George R.
1981-01-01
A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.
Apparatus and method for rapid cooling of large area substrates in vacuum
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2012-11-06
The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.
'Endurance Crater's' Dazzling Dunes (false-color)
NASA Technical Reports Server (NTRS)
2004-01-01
As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces. Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere. Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.Design guidelines for horizontal drains used for slope stabilization.
DOT National Transportation Integrated Search
2013-03-01
The presence of water is one of the most critical factors contributing to the instability of hillslopes. A common : solution to stabilize hillslopes is installation of horizontal drains to decrease the elevation of the water table : surface. Lowering...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wexler, Jason; Botkin, Jonathan; Culligan, Matthew
A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.
Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.
2017-09-01
The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.
Method to improve superconductor cable
Borden, A.R.
1984-03-08
A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.
PHLUX: Photographic Flux Tools for Solar Glare and Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-12-02
A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flashmore » blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less
Compact photoacoustic tomography system
NASA Astrophysics Data System (ADS)
Kalva, Sandeep Kumar; Pramanik, Manojit
2017-03-01
Photoacoustic tomography (PAT) is a non-ionizing biomedical imaging modality which finds applications in brain imaging, tumor angiogenesis, monitoring of vascularization, breast cancer imaging, monitoring of oxygen saturation levels etc. Typical PAT systems uses Q-switched Nd:YAG laser light illumination, single element large ultrasound transducer (UST) as detector. By holding the UST in horizontal plane and moving it in a circular motion around the sample in full 2π radians photoacoustic data is collected and images are reconstructed. The horizontal positioning of the UST make the scanning radius large, leading to larger water tank and also increases the load on the motor that rotates the UST. To overcome this limitation, we present a compact photoacoustic tomographic (ComPAT) system. In this ComPAT system, instead of holding the UST in horizontal plane, it is held in vertical plane and the photoacoustic waves generated at the sample are detected by the UST after it is reflected at 45° by an acoustic reflector attached to the transducer body. With this we can reduce the water tank size and load on the motor, thus overall PAT system size can be reduced. Here we show that with the ComPAT system nearly similar PA images (phantom and in vivo data) can be obtained as that of the existing PAT systems using both flat and cylindrically focused transducers.
Moss, Owen R.
1980-01-01
A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.
Horizontal film balance having wide range and high sensitivity
Abraham, B.M.; Miyano, K.; Ketterson, J.B.
1981-03-05
A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.
Horizontal film balance having wide range and high sensitivity
Abraham, B.M.; Miyano, K.; Ketterson, J.B.
1983-11-08
A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.
Horizontal film balance having wide range and high sensitivity
Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.
1983-01-01
A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.
A Hammer-Impact, Aluminum, Shear-Wave Seismic Source
Haines, Seth
2007-01-01
Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.
Antibacterial Au nanostructured surfaces.
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-02-07
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.
Selective phonon damping in topological semimetals
NASA Astrophysics Data System (ADS)
Gordon, Jacob S.; Kee, Hae-Young
2018-05-01
Topological semimetals are characterized by their intriguing Fermi surfaces (FSs) such as Weyl and Dirac points, or nodal FS, and their associated surface states. Among them, topological crystalline semimetals, in the presence of strong spin-orbit coupling, possess a nodal FS protected by nonsymmorphic lattice symmetries. In particular, it was theoretically proposed that SrIrO3 exhibits a bulk nodal ring due to glide symmetries, as well as flat two-dimensional surface states related to chiral and mirror symmetries. However, due to the semimetallic nature of the bulk, direct observation of these surface states is difficult. Here we study the effect of flat-surface states on phonon modes for SrIrO3 side surfaces. We show that mirror odd optical surface phonon modes are damped at the zone center, as a result of coupling to the surface states with different mirror parities, while even modes are unaffected. This observation could be used to infer their existence, and experimental techniques for such measurements are also discussed.
Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.
Lee, Hsiao-Wen; Lin, Bor-Shyh
2012-11-05
LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.
NASA Astrophysics Data System (ADS)
Liu, C.; Ong, H. C.
2018-01-01
We have employed a polarization-resolved Fourier-space surface plasmon resonance microscope to determine the electric field component ratio of surface plasmon polaritons (SPPs) propagating on a flat gold film. By using a metallic nanoparticle as a probe to capture the radiation damping of the SPP scattered waves, we find the angular far-field distribution is related to the transverse and longitudinal fields of SPPs. The experiment is supported by analytical and numerical calculations. Our results present a simple but useful approach to probe the behaviors of SPPs such as the transverse spin density as well as the energy density.
NASA Astrophysics Data System (ADS)
Oki, Sae; Suzuki, Ryosuke O.
2017-05-01
The performance of a flat-plate thermoelectric (TE) module consisting of square truncated pyramid elements is simulated using commercial software and original TE programs. Assuming that the temperatures of both the hot and cold surfaces are constant, the performance can be varied by changing the element shape and element alignment pattern. When the angle between the edge and the base is 85° and the small square surfaces of all n-type element faces are connected to the low-temperature surface, the efficiency becomes the largest among all the 17 examined shapes and patterns. By changing the shape to match the temperature distribution, the performance of the TE module is maximized.
Atmospheric Dispersion Capability for T2VOC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.
2005-09-19
Atmospheric transport by variable-K theory dispersion has been added to T2VOC. The new code, T2VOCA, models flow and transport in the subsurface identically to T2VOC, but includes also the capability for modeling passive multicomponent variable-K theory dispersion in an atmospheric region assumed to be flat, horizontal, and with a logarithmic wind profile. The specification of the logarithmic wind profile in the T2VOC input file is automated through the use of a build code called ATMDISPV. The new capability is demonstrated on 2-D and 3-D example problems described in this report.
Land claim and loss of tidal flats in the Yangtze Estuary.
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
Land claim and loss of tidal flats in the Yangtze Estuary
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-01-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525
Land claim and loss of tidal flats in the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
Feasibility study of a 270V dc flat cable aircraft electrical power distributed system
NASA Astrophysics Data System (ADS)
Musga, M. J.; Rinehart, R. J.
1982-01-01
This report documents the efforts of a one man-year feasibility study to evaluate the usage of flat conductors in place of conventional round wires for a 270 volt direct current aircraft power distribution system. This study consisted of designing electrically equivalent power distribution harnesses in flat conductor configurations for a currently operational military aircraft. Harness designs were established for installation in aircraft airframes which are: (1) All metal, or (2) All composite, or (3) a mixture of both. Flat cables have greater surface areas for heat transfer allowing higher current densities and therefore lighter weight conductors, than with round wires. Flat cables are less susceptible to electromagnetic effects. However, these positive factors are partially offset by installation and maintenance difficulties. This study concludes that the extent of these difficulties can be adequately limited with appropriate modification to present installation and maintenance practices. A comparative analysis of the flat and the round conductor power distribution harnesses was made for weight, cost, maintenance and reliability. The knowledge gained from the design and comparative analysis phases was used to generate design criteria for flat power cable harnesses and to identify and prioritize flat cable harness components and associated production tooling which require development.
Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.
Papiorek, Sarah; Junker, Robert R; Lunau, Klaus
2014-01-01
Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.
Influence of pavement condition on horizontal curve safety.
Buddhavarapu, Prasad; Banerjee, Ambarish; Prozzi, Jorge A
2013-03-01
Crash statistics suggest that horizontal curves are the most vulnerable sites for crash occurrence. These crashes are often severe and many involve at least some level of injury due to the nature of the collisions. Ensuring the desired pavement surface condition is one potentially effective strategy to reduce the occurrence of severe accidents on horizontal curves. This study sought to develop crash injury severity models by integrating crash and pavement surface condition databases. It focuses on developing a causal relationship between pavement condition indices and severity level of crashes occurring on two-lane horizontal curves in Texas. In addition, it examines the suitability of the existing Skid Index for safety maintenance of two-lane curves. Significant correlation is evident between pavement condition and crash injury severity on two-lane undivided horizontal curves in Texas. Probability of a crash becoming fatal is appreciably sensitive to certain pavement indices. Data suggested that road facilities providing a smoother and more comfortable ride are vulnerable to severe crashes on horizontal curves. In addition, the study found that longitudinal skid measurement barely correlates with injury severity of crashes occurring on curved portions. The study recommends exploring the option of incorporating lateral friction measurement into Pavement Management System (PMS) databases specifically at curved road segments. Copyright © 2012 Elsevier Ltd. All rights reserved.
HIGH-RESOLUTION DATASET OF URBAN CANOPY PARAMETERS FOR HOUSTON, TEXAS
Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...
Zhao, Xiaolong; Tang, Jigen; Gu, Zhou; Shi, Jilong; Yang, Yimin; Wang, Changsui
2016-09-01
Oracle Bone Inscriptions in the Shang dynasty (1600-1046 BC) are the earliest well-developed writing forms of the Chinese character system, and their carving techniques have not been studied by tool marks analysis with microscopy. In this study, a digital microscope with three-dimensional surface reconstruction based on extended depth of focus technology was used to investigate tool marks on the surface of four pieces of oracle bones excavated at the eastern area of Huayuanzhuang, Yinxu site(ca., 1319-1046 BC), the last capital of the Shang dynasty, Henan province, China. The results show that there were two procedures to carve the characters on the analyzed tortoise shells. The first procedure was direct carving. The second was "outlining design," which means to engrave a formal character after engraving a draft with a pointed tool. Most of the strokes developed by an engraver do not overlap the smaller draft, which implies that the outlining design would be a sound way to avoid errors such as wrong and missing characters. The strokes of these characters have different shape at two ends and variations on width and depth of the grooves. Moreover, the bottom of the grooves is always rugged. Thus, the use of rotary wheel-cutting tools could be ruled out. In most cases, the starting points of the strokes are round or flat while the finishing points are always pointed. Moreover, the strokes should be engraved from top to bottom. When vertical or horizontal strokes had been engraved, the shell would be turned about 90 degrees to engrave the crossed strokes from top to bottom. There was no preferred order to engrave vertical or horizontal strokes. Since both sides of the grooves of the characters are neat and there exists no unorganized tool marks, then it is suggested that some sharp tools had been used for engraving characters on the shells. Microsc. Res. Tech. 79:827-832, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Chang, Y. V.
1986-01-01
The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.
Estimation of height-dependent solar irradiation and application to the solar climate of Iran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samimi, J.
1994-05-01
An explicitly height-dependent model has been used to estimate the solar irradiation over Iran which has a vast range of altitudes. The parameters of the model have been chosen on general grounds and not by parameters best fitting to any of the available measured irradiation data in Iran. The estimated global solar irradiation on the horizontal surface shows a very good agreement (4.1% deviation) with the 17-year long pyranometric measurements in Tehran, and also, is in good agreement with other, shorter available measured data. The entire data base of the Iranian meteorological stations have been used to establish a simplemore » relation between the sunshine duration records and the cloud cover reports which can be utilized in solar energy estimations for sites with no sunshine duration recorders. Clear sky maps of Iran for direct solar irradiation on tracking, horizontal, and south-facing vertical planes are presented. The global solar irradiation map for horizontal surface with cloudiness is zoned into four irradiation zones. In about four-fifths of the land in Iran, the annual-mean daily global solar irradiation on horizontal surface ranges from 4.5 to 5.4 kWh/m[sup 2].« less
Powers, P.S.; Chiarle, M.; Savage, W.Z.
1996-01-01
The traditional approach to making aerial photographic measurements uses analog or analytic photogrammetric equipment. We have developed a digital method for making measurements from aerial photographs which uses geographic information system (GIS) software, and primarily DOS-based personal computers. This method, which is based on the concept that a direct visual comparison can be made between images derived from two sets of aerial photographs taken at different times, was applied to the surface of the active portion of the Slumgullion earthflow in Colorado to determine horizontal displacement vectors from the movements of visually identifiable objects, such as trees and large rocks. Using this method, more of the slide surface can be mapped in a shorter period of time than using the standard photogrammetric approach. More than 800 horizontal displacement vectors were determined on the active earthflow surface using images produced by our digital photogrammetric technique and 1985 (1:12,000-scale) and 1990 (1:6,000-scale) aerial photographs. The resulting displacement field shows, with a 2-m measurement error (??? 10%), that the fastest moving portion of the landslide underwent 15-29 m of horizontal displacement between 1985 and 1990. Copyright ?? 1996 Elsevier Science Ltd.
Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration
Ghibaudo, Marion; Trichet, Léa; Le Digabel, Jimmy; Richert, Alain; Hersen, Pascal; Ladoux, Benoît
2009-01-01
Abstract In a three-dimensional environment, cells migrate through complex topographical features. Using microstructured substrates, we investigate the role of substrate topography in cell adhesion and migration. To do so, fibroblasts are plated on chemically identical substrates composed of microfabricated pillars. When the dimensions of the pillars (i.e., the diameter, length, and spacing) are varied, migrating cells encounter alternating flat and rough surfaces that depend on the spacing between the pillars. Consequently, we show that substrate topography affects cell shape and migration by modifying cell-to-substrate interactions. Cells on micropillar substrates exhibit more elongated and branched shapes with fewer actin stress fibers compared with cells on flat surfaces. By analyzing the migration paths in various environments, we observe different mechanisms of cell migration, including a persistent type of migration, that depend on the organization of the topographical features. These responses can be attributed to a spatial reorganization of the actin cytoskeleton due to physical constraints and a preferential formation of focal adhesions on the micropillars, with an increased lifetime compared to that observed on flat surfaces. By changing myosin II activity, we show that actomyosin contractility is essential in the cellular response to micron-scale topographic signals. Finally, the analysis of cell movements at the frontier between flat and micropillar substrates shows that cell transmigration through the micropillar substrates depends on the spacing between the pillars. PMID:19580774
NASA Astrophysics Data System (ADS)
Eakin, C. M.
2017-12-01
Plate tectonics is primarily driven by the subduction of cold dense oceanic slabs. It has yet to be fully understood however how variations in slab morphology and buoyancy influence the surrounding mantle dynamics, and what difference if any is seen at the surface. An excellent natural laboratory to answer such questions is found along the Andean margin where the world's largest flat slab is presently subducting beneath much of Peru. Following the deployment of broadband seismic arrays across the region, mantle flow both beneath and above the flat-slab is investigated using targeted shear-wave splitting techniques that detect seismic anisotropy and the pattern of mantle deformation. The along strike change in slab dip angle and buoyancy content is found to exert a strong control over the surrounding mantle flow field. Modeling of the induced mantle flow, and the dynamic topography at the surface that results, predicts a wave of dynamic subsidence that propagates away from the trench as the flat slab develops. This is found to correlate well with the record of widespread sediment deposition across western Amazonia during the Miocene. A combination of uplift, flexure and dynamic topography during slab flattening is proposed to explain the overall landscape evolution of the region and the subsequent configuration of the transcontinental Amazon drainage system we see today.
Fusion of Cross-Track TerraSAR-X PS Point Clouds over Las Vegas
NASA Astrophysics Data System (ADS)
Wang, Ziyun; Balz, Timo; Wei, Lianhuan; Liao, Mingsheng
2014-11-01
Persistent scatterer interferometry (PS-InSAR) is widely used in radar remote sensing. However, because the surface motion is estimated in the line-of-sight (LOS) direction, it is not possible to differentiate between vertical and horizontal surface motions from a single stack. Cross-track data, i.e. the combination of data from ascending and descending orbits, allows us to better analyze the deformation and to obtain 3d motion information. We implemented a cross-track fusion of PS-InSAR point cloud data, making it possible to separate the vertical and horizontal components of the surface motion.
Methods of and apparatus for levitating an eddy current probe
Stone, William J.
1988-05-03
An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.
Voluntary wheel running improves recovery from a moderate spinal cord injury.
Engesser-Cesar, Christie; Anderson, Aileen J; Basso, D Michele; Edgerton, V R; Cotman, Carl W
2005-01-01
Recently, locomotor training has been shown to improve overground locomotion in patients with spinal cord injury (SCI). This has triggered renewed interest in the role of exercise in rehabilitation after SCI. However, there are no mouse models for voluntary exercise and recovery of function following SCI. Here, we report voluntary wheel running improves recovery from a SCI in mice. C57Bl/10 female mice received a 60-kdyne T9 contusion injury with an IH impactor after 3 weeks of voluntary wheel running or 3 weeks of standard single housing conditions. Following a 7-day recovery period, running mice were returned to their running wheels. Weekly open-field behavior measured locomotor recovery using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale and the Basso Mouse Scale (BMS) locomotor rating scale, a scale recently developed specifically for mice. Initial experiments using standard rung wheels show that wheel running impaired recovery, but subsequent experiments using a modified flat-surface wheel show improved recovery with exercise. By 14 days post SCI, the modified flat-surface running group had significantly higher BBB and BMS scores than the sedentary group. A repeated measures ANOVA shows locomotor recovery of modified flat-surface running mice was significantly improved compared to sedentary animals (p < 0.05). Locomotor assessment using a ladder beam task also shows a significant improvement in the modified flat-surface runners (p < 0.05). Finally, fibronectin staining shows no significant difference in lesion size between the two groups. These data represent the first mouse model showing voluntary exercise improves recovery after SCI.
Photo-responsive surface topology in chiral nematic media
NASA Astrophysics Data System (ADS)
Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.
2012-03-01
We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre
2012-07-01
The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.