Sample records for horizontal gravity components

  1. Effects of horizontal acceleration on the superconducting gravimeter CT #036 at Ishigakijima, Japan

    NASA Astrophysics Data System (ADS)

    Imanishi, Yuichi; Nawa, Kazunari; Tamura, Yoshiaki; Ikeda, Hiroshi

    2018-01-01

    In the gravity sensor of a superconducting gravimeter, a superconducting sphere as a test mass is levitated in a magnetic field. Such a sensor is susceptible to applied horizontal as well as vertical acceleration, because the translational degrees of freedom of the mass are not perfectly limited to the vertical direction. In the case of the superconducting gravimeter CT #036 installed at Ishigakijima, Japan, horizontal ground acceleration excited by the movements of a nearby VLBI antenna induces systematic step noise within the gravity recordings. We investigate this effect in terms of the static and dynamic properties of the gravity sensor using data from a collocated seismometer. It is shown that this effect can be effectively modeled by the coupling between the horizontal and vertical components in the gravity sensor. It is also found that the mechanical eigenfrequency for horizontal translation of the levitating sphere is approximately 3 Hz.[Figure not available: see fulltext.

  2. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  3. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    PubMed Central

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-01-01

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs. PMID:27999351

  4. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.

    PubMed

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-12-18

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  5. A principal components analysis of dynamic spatial memory biases.

    PubMed

    Motes, Michael A; Hubbard, Timothy L; Courtney, Jon R; Rypma, Bart

    2008-09-01

    Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory. (c) 2008 APA, all rights reserved.

  6. Effects of static orientation upon human optokinetic afternystagmus

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Merfeld, D. M.; Zupan, L.

    1999-01-01

    "Normal" human subjects were placed in a series of 5 static orientations with respect to gravity and were asked to view an optokinetic display moving at a constant angular velocity. The axis of rotation coincided with the subject's rostro-caudal axis and produced horizontal optokinetic nystagmus and afternystagmus. Wall (1) previously reported that these optokinetic afternystagmus responses were not well characterized by parametric fits to slow component velocity. The response for nose-up, however, was larger than for nose-down. This suggested that the horizontal eye movements measured during optokinetic stimulation might include an induced linear VOR component as presented in the body of this paper. To investigate this hypothesis, another analysis of these data has been made using cumulative slow component eye position. Some subjects' responses had reversals in afternystagmus direction. These reversals were "filled in" by a zero slow component velocity. This method of analysis gives a much more consistent result across subjects and shows that, on average, responses from the nose-down horizontal (prone) orientation are greatly reduced (p < 0.05) compared to other horizontal and vertical orientations. Average responses are compared to responses predicted by a model previously used to predict successfully the responses to post-rotatory nystagmus after earth horizontal axis rotation. Ten of 11 subjects had larger responses in their supine than their prone orientation. Application of horizontal axis optokinetic afternystagmus for clinical otolith function testing, and implications for altered gravity experiments are discussed.

  7. Kinematic principles of primate rotational vestibulo-ocular reflex. II. Gravity-dependent modulation of primary eye position

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.

  8. Gravity Waves in the Presence of Shear during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.

    2016-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.

  9. Amphibian egg cytoplasm response to altered g-forces and gravity orientation

    NASA Technical Reports Server (NTRS)

    Neff, A. W.; Smith, R. C.; Malacinski, G. M.

    1986-01-01

    Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) nonyolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.

  10. Vibration effect on the Soret-induced convection of ternary mixture in a rectangular cavity heated from below

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Zubova, N. A.

    2017-06-01

    This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.

  11. Plasma Component of Self-gravitating Disks and Relevant Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Bertin, G.; Coppi, B.

    2006-04-01

    Astrophysical disks in which the disk self-gravity is more important than the gravity force associated with the central object can have significant plasma components where appreciable toroidal current densities are produced. When the vertical confinement of the plasma rotating structures that can form is kept by the Lorentz force rather than by the vertical component of the gravity force, the disk self-gravity remains important only in the radial equilibrium condition, modifying the rotation curve from the commonly considered Keplerian rotation. The equilibrium equations that are solved involve the vertical and the horizontal components of the total momentum conservation equations, coupled with the lowest order form of the gravitational Poisson's equation. The resulting poloidal field configuration can be visualized as a sequence [1] of Field Reverse Configurations, in the radial direction, consisting of pairs of oppositely directed current channels. The plasma density thus acquires a significant radial modulation that may grow to the point where plasma rings can form [2]. [1] B. Coppi, Phys. Plasmas, 12, 057302 (2005) [2] B. Coppi and F. Rousseau, to be published in Astrophys. J. (April 2006)

  12. Sodium Lidar-observed Strong Inertia-gravity Wave Activities in the Mesopause Region over Fort Collins, Colorado (41 deg N, 105 deg W)

    NASA Technical Reports Server (NTRS)

    Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart

    2007-01-01

    In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.

  13. Βiocolloid and colloid transport through water-saturated columns packed with glass beads: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2013-12-01

    The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.

  14. Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.

    1996-01-01

    Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.

  15. Major Fault Patterns in Zanjan State of Iran Based of GECO Global Geoid Model

    NASA Astrophysics Data System (ADS)

    Beheshty, Sayyed Amir Hossein; Abrari Vajari, Mohammad; Raoufikelachayeh, SeyedehSusan

    2016-04-01

    A new Earth Gravitational Model (GECO) to degree 2190 has been developed incorporates EGM2008 and the latest GOCE based satellite solutions. Satellite gradiometry data are more sensitive information of the long- and medium- wavelengths of the gravity field than the conventional satellite tracking data. Hence, by utilizing this new technique, more accurate, reliable and higher degrees/orders of the spherical harmonic expansion of the gravity field can be achieved. Gravity gradients can also be useful in geophysical interpretation and prospecting. We have presented the concept of gravity gradients with some simple interpretations. A MATLAB based computer programs were developed and utilized for determining the gravity and gradient components of the gravity field using the GGMs, followed by a case study in Zanjan State of Iran. Our numerical studies show strong (more than 72%) correlations between gravity anomalies and the diagonal elements of the gradient tensor. Also, strong correlations were revealed between the components of the deflection of vertical and the off-diagonal elements as well as between the horizontal gradient and magnitude of the deflection of vertical. We clearly distinguished two big faults in North and South of Zanjan city based on the current information. Also, several minor faults were detected in the study area. Therefore, the same geophysical interpretation can be stated for gravity gradient components too. Our mathematical derivations support some of these correlations.

  16. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  17. Tsunami generation and associated waves in the water column and seabed due to an asymmetric earthquake motion within an anisotropic substratum

    NASA Astrophysics Data System (ADS)

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad; Attarnejad, Reza

    2016-10-01

    In this paper, closed-form integral expressions are derived to describe how surface gravity waves (tsunamis) are generated when general asymmetric ground displacement (due to earthquake rupturing), involving both horizontal and vertical components of motion, occurs at arbitrary depth within the interior of an anisotropic subsea solid beneath the ocean. In addition, we compute the resultant hydrodynamic pressure within the seawater and the elastic wavefield within the seabed at any position. The method of potential functions and an integral transform approach, accompanied by a special contour integration scheme, are adopted to handle the equations of motion and produce the numerical results. The formulation accounts for any number of possible acoustic-gravity modes and is valid for both shallow and deep water situations as well as for any focal depth of the earthquake source. Phase and group velocity dispersion curves are developed for surface gravity (tsunami mode), acoustic-gravity, Rayleigh, and Scholte waves. Several asymptotic cases which arise from the general analysis are discussed and compared to existing solutions. The role of effective parameters such as hypocenter location and frequency of excitation is examined and illustrated through several figures which show the propagation pattern in the vertical and horizontal directions. Attention is directed to the unexpected contribution from the horizontal ground motion. The results have important application in several fields such as tsunami hazard prediction, marine seismology, and offshore and coastal engineering. In a companion paper, we examine the effect of ocean stratification on the appearance and character of internal and surface gravity waves.

  18. Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai

    2017-10-01

    Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.

  19. The quest for the perfect gravity anomaly: Part 1 - New calculation standards

    USGS Publications Warehouse

    Li, X.; Hildenbrand, T.G.; Hinze, W. J.; Keller, Gordon R.; Ravat, D.; Webring, M.

    2006-01-01

    The North American gravity database together with databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account our enhanced computational power, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining different anomaly components. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. ?? 2005 Society of Exploration Geophysicists.

  20. Why do we need detailed gravity over continents: Some Australian examples

    NASA Technical Reports Server (NTRS)

    Lambeck, K.

    1985-01-01

    Geophysical quantities available over a continent are gravity and components of the magnetic field. Direct inferences on crustal structure are difficult to make and strongly dependent on mechanical assumptions the isostatic state. The data for Australia represents one of the best continental scale gravity surveys. The gravity anomalies are generally bland over the continent which confirms that stress relaxation and erosion and rebound were instrumental in reducing nonhydrostatic stresses. In central Australia very large gravity anomalies occur and the region is out of isostatic equilibrium despite the fact that tectonic activity ceased 300 ma ago. The isostatic response functions points to a substantial horizontal compression in the crust. Similar conclusions are drawn for the large anomalies in western Australia. The tectonic implications of these anomalies are examined. In eastern Australia the gravity anomalies are explained in terms of a model of erosion of the highlands and concomitant regional isostatic rebound.

  1. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  2. Unified Model for the Overall Efficiency of Inlets Sampling from Horizontal Aerosol Flows

    NASA Astrophysics Data System (ADS)

    Hangal, Sunil Pralhad

    When sampling aerosols from ambient or industrial air environments, the sampled aerosol must be representative of the aerosol in the free stream. The changes that occur during sampling must be assessed quantitatively so that sampling errors can be compensated for. In this study, unified models have been developed for the overall efficiency of tubular sharp-edged inlets sampling from horizontal aerosol flows oriented at 0 to 90^circ relative to the wind direction in the vertical (pitch) and horizontal plane(yaw). In the unified model, based on experimental data, the aspiration efficiency is represented by a single equation with different inertial parameters at 0 to 60^ circ and 45 to 90^circ . Tnt transmission efficiency is separated into two components: one due to gravitational settling in the boundary layer and the other due to impaction. The gravitational settling component is determined by extending a previously developed isoaxial sampling model to nonisoaxial sampling. The impaction component is determined by a new model that quantifies the particle losses caused by wall impaction. The model also quantifies the additional particle losses resulting from turbulent motion in the vena contracta which is formed in the inlet when the inlet velocity is higher than the wind velocity. When sampling aerosols in ambient or industrial environments with an inlet, small changes in wind direction or physical constraints in positioning the inlet in the system necessitates the assessment of sampling efficiency in both the vertical and horizontal plane. The overall sampling efficiency of tubular inlets has been experimentally investigated in yaw and pitch orientations at 0 to 20 ^circ from horizontal aerosol flows using a wind tunnel facility. The model for overall sampling efficiency has been extended to include both yaw and pitch sampling based on the new data. In this model, the difference between yaw and pitch is expressed by the effect of gravity on the impaction process inside the inlet described by a newly developed gravity effect angle. At yaw, the gravity effect angle on the wall impaction process does not change with sampling angle. At pitch, the gravity effect on the impaction process results in particle loss increase for upward and decrease for downward sampling. Using the unified model, graphical representations have been developed for sampling at small angles. These can be used in the field to determine the overall sampling efficiency of inlets at several operating conditions and the operating conditions that result in an acceptable sampling error. Pitch and diameter factors have been introduced for relating the efficiency values over a wide range of conditions to those of a reference condition. The pitch factor determines the overall sampling efficiency at pitch from yaw values, and the diameter factor determines the overall sampling efficiency at different inlet diameters.

  3. The effect of gravity modulation on thermosolutal convection

    NASA Technical Reports Server (NTRS)

    Saunders, Bonita V.; Murray, Bruce T.; Mcfadden, G. B.; Coriell, S. R.; Wheeler, A. A.

    1992-01-01

    In a gravitational field, the opposing effects of components of different diffusivities, for example, temperature and solute, in the density profile in a fluid may produce convective instabilities that exhibit a broad range of dynamical behavior. The effect of time periodic vertical gravity modulation on the onset of these instabilities in an infinite horizontal layer with stress free boundaries is examined. This work is viewed as a first step in expanding previous results in solidification to the full problem of characterizing the effects of gravity modulation in thermosolutal convection during the directional solidification of binary alloys. Calculations carried out both with and without steady background acceleration are presented, the latter results being relevant to microgravity conditions.

  4. Active Response Gravity Offload System

    NASA Technical Reports Server (NTRS)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  5. The Principle of Equivalence: Demonstrations of Local Effective Vertical and Horizontal

    ERIC Educational Resources Information Center

    Munera, Hector A.

    2010-01-01

    It has been suggested that Einstein's principle of equivalence (PE) should be introduced at an early stage. This principle leads to the notion of local effective gravity, which in turn defines effective vertical and horizontal directions. Local effective gravity need not coincide with the direction of terrestrial gravity. This paper describes…

  6. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  7. Mapping the gravity field in coastal areas: feasibility and interest of a new airborne planar gradiometer concept

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Panet, Isabelle; Foulon, Bernard; Christophe, Bruno; Pajot-Métivier, Gwendoline; Diament, Michel

    2014-05-01

    Satellite missions such as CHAMP, GRACE and GOCE have led to an unprecedented improvement of global gravity field models during the past decade. However, for many applications these global models are not sufficiently accurate when dealing with wavelengths shorter than 100 km. This is all the more true in areas where gravity data are scarce and uneven as for instance in the poorly covered land-sea transition area. We suggest here, in line with spatial gravity gradiometry, airborne gravity gradiometry as a convenient way to amplify the sensitivity to short wavelengths and to cover homogeneously coastal region. Moreover, the directionality of the gravity gradients gives new information on the geometry of the gravity field and therefore of the causative bodies. In this respect, we analyze here the performances of a new airborne electrostatic acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers inheriting from technologies developed by ONERA for spatial accelerometers. After an overview of the functionals of the gravity field that are of interest for coastal oceanography, passive navigation and hydrocarbon exploration, we present the corresponding required precision and resolution. Then, we investigate the influence of the different parameters of the survey, such as altitude or cross-track distance, on the resolution and precision of the final measurements. To do so, we design numerical simulations of airborne survey performed with GREMLIT and compute the total error budget on the gravity gradients. Based on this error analysis, we infer by a method of error propagation the uncertainty on the different functionals of the gravity potential used for each application. This finally enables us to conclude on the requirements for a high resolution mapping of the gravity field in coastal areas.

  8. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  9. Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation

    PubMed Central

    Cao, Juliang; Wu, Meiping; Lian, Junxiang; Cai, Shaokun; Wang, Lin

    2018-01-01

    Horizontal gravity disturbances are an important factor that affects the accuracy of inertial navigation systems in long-duration ship navigation. In this paper, from the perspective of the coordinate system and vector calculation, the effects of horizontal gravity disturbance on the initial alignment and navigation calculation are simultaneously analyzed. Horizontal gravity disturbances cause the navigation coordinate frame built in initial alignment to not be consistent with the navigation coordinate frame in which the navigation calculation is implemented. The mismatching of coordinate frame violates the vector calculation law, which will have an adverse effect on the precision of the inertial navigation system. To address this issue, two compensation methods suitable for two different navigation coordinate frames are proposed, one of the methods implements the compensation in velocity calculation, and the other does the compensation in attitude calculation. Finally, simulations and ship navigation experiments confirm the effectiveness of the proposed methods. PMID:29562653

  10. Effects of mechanostimulation on gravitropism and signal persistence in flax roots.

    PubMed

    John, Susan P; Hasenstein, Karl H

    2011-09-01

    Gravitropism describes curvature of plants in response to gravity or differential acceleration and clinorotation is commonly used to compensate unilateral effect of gravity. We report on experiments that examine the persistence of the gravity signal and separate mechanostimulation from gravistimulation. Flax roots were reoriented (placed horizontally for 5, 10 or 15 min) and clinorotated at a rate of 0.5 to 5 rpm either vertically (parallel to the gravity vector and root axis) or horizontally (perpendicular to the gravity vector and parallel to the root axis). Image sequences showed that horizontal clinorotation did not affect root growth rate (0.81 ± 0.03 mm h-1) but vertical clinorotation reduced root growth by about 7%. The angular velocity (speed of clinorotation) did not affect growth for either direction. However, maximal curvature for vertical clinorotation decreased with increasing rate of rotation and produced straight roots at 5 rpm. In contrast, horizontal clinorotation increased curvature with increasing angular velocity. The point of maximal curvature was used to determine the longevity (memory) of the gravity signal, which lasted about 120 min. The data indicate that mechanostimulation modifies the magnitude of the graviresponse but does not affect memory persistence.

  11. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    NASA Astrophysics Data System (ADS)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  12. System Finds Horizontal Location of Center of Gravity

    NASA Technical Reports Server (NTRS)

    Johnston, Albert S.; Howard, Richard T.; Brewster, Linda L.

    2006-01-01

    An instrumentation system rapidly and repeatedly determines the horizontal location of the center of gravity of a laboratory vehicle that slides horizontally on three air bearings (see Figure 1). Typically, knowledge of the horizontal center-of-mass location of such a vehicle is needed in order to balance the vehicle properly for an experiment and/or to assess the dynamic behavior of the vehicle. The system includes a load cell above each air bearing, electronic circuits that generate digital readings of the weight on each load cell, and a computer equipped with software that processes the readings. The total weight and, hence, the mass of the vehicle are computed from the sum of the load-cell weight readings. Then the horizontal position of the center of gravity is calculated straightforwardly as the weighted sum of the known position vectors of the air bearings, the contribution of each bearing being proportional to the weight on that bearing. In the initial application for which this system was devised, the center- of-mass calculation is particularly simple because the air bearings are located at corners of an equilateral triangle. However, the system is not restricted to this simple geometry. The system acquires and processes weight readings at a rate of 800 Hz for each load cell. The total weight and the horizontal location of the center of gravity are updated at a rate of 800/3 approx. equals 267 Hz. In a typical application, a technician would use the center-of-mass output of this instrumentation system as a guide to the manual placement of small weights on the vehicle to shift the center of gravity to a desired horizontal position. Usually, the desired horizontal position is that of the geometric center. Alternatively, this instrumentation system could be used to provide position feedback for a control system that would cause weights to be shifted automatically (see Figure 2) in an effort to keep the center of gravity at the geometric center.

  13. Active Response Gravity Offload and Method

    NASA Technical Reports Server (NTRS)

    Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  14. Status of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Boulanger, D.; Foulon, B.; Lebat, V.; Bresson, A.; Christophe, B.

    2016-12-01

    Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is based of a planar electrostatic gradiometer configuration. The feasibility of the instrument and of its performance was proved by realistic simulations, based on actual data and recorded environmental aircraft perturbations, with performance of about one Eötvös along the two horizontal components of the gravity gradient. In order to assess the operation of the electrostatic gradiometer on its associated stabilized platform, a one axis prototype has also been built. The next step is the realization of the stabilization platform, controlled by the common mode outputs of the instrument itself, in order to reject the perturbations induced by the airborne environment in the horizontal directions. One of the interests of the GREMLIT instrument is the possibility of an easy hybrid configuration with a vertical one axis Cold Atoms Interferometer gravity gradiometer called GIBON and also under development at ONERA. In such hybrid instrument, The CAI instrument takes also advantage of the platform stabilized by the electrostatic one. The poster will emphasize the status of realization of the instrument and of its stabilized platform.

  15. Statistical comparisons of gravity wave features derived from OH airglow and SABER data

    NASA Astrophysics Data System (ADS)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.

    2017-12-01

    The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.

  16. New statistical analysis of the horizontal phase velocity distribution of gravity waves observed by airglow imaging

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K.; Tsutsumi, Masaki; Shiokawa, Kazuo

    2014-08-01

    We have developed a new analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow intensity image data to study atmospheric gravity waves. This method can deal with extensive amounts of imaging data obtained on different years and at various observation sites without bias caused by different event extraction criteria for the person processing the data. The new method was applied to sodium airglow data obtained in 2011 at Syowa Station (69°S, 40°E), Antarctica. The results were compared with those obtained from a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics, such as wavelengths, phase velocities, and wave periods. The horizontal phase velocity of each wave event in the airglow images corresponded closely to a peak in the spectrum. The statistical results of spectral analysis showed an eastward offset of the horizontal phase velocity distribution. This could be interpreted as the existence of wave sources around the stratospheric eastward jet. Similar zonal anisotropy was also seen in the horizontal phase velocity distribution of the gravity waves by the event analysis. Both methods produce similar statistical results about directionality of atmospheric gravity waves. Galactic contamination of the spectrum was examined by calculating the apparent velocity of the stars and found to be limited for phase speeds lower than 30 m/s. In conclusion, our new method is suitable for deriving the horizontal phase velocity characteristics of atmospheric gravity waves from an extensive amount of imaging data.

  17. How providing more or less time to solve a cognitive task interferes with upright stance control; a posturographic analysis on healthy young adults.

    PubMed

    Rougier, Patrice R; Bonnet, Cédrick T

    2016-06-01

    Contrasted postural effects have been reported in dual-task protocols associating balance control and cognitive task that could be explained by the nature and the relative difficulty of the cognitive task and the biomechanical significance of the force platform data. To better assess their respective role, eleven healthy young adults were required to stand upright quietly on a force platform while concomitantly solving mental-calculation or mental-navigation cognitive tasks. Various levels of difficulty were applied by adjusting the velocity rate at which the instructions were provided to the subject according to his/her maximal capacities measured beforehand. A condition without any concomitant cognitive task was added to constitute a baseline behavior. Two basic components, the horizontal center-of-gravity movements and the horizontal difference between center-of-gravity and center-of-pressures were computed from the complex center-of-pressure recorded movements. It was hypothesized that increasing the delay should infer less interaction between postural control and task solution. The results indicate that both mental-calculation and mental-navigation tasks induce reduced amplitudes for the center-of-pressure minus center-of-gravity movements, only along the mediolateral axis, whereas center-of-gravity movements were not affected, suggesting that different circuits are involved in the central nervous system to control these two movements. Moreover, increasing the delays task does not infer any effect for both movements. Since center-of-pressure minus center-of-gravity expresses the horizontal acceleration communicated to the center-of-gravity, one may assume that the control of the latter should be facilitated in dual-tasks conditions, inferring reduced center-of-gravity movements, which is not seen in our results. This lack of effect should be thus interpreted as a modification in the control of these center-of-gravity movements. Taken together, these results emphasized how undisturbed upright stance control can be impacted by mental tasks requiring attention, whatever their nature (calculation or navigation) and their relative difficulty. Depending on the provided instructions, i.e. focusing our attention on body movements or on the opposite diverting this attention toward other objectives, the evaluation of upright stance control capacities might be drastically altered. Copyright © 2016. Published by Elsevier B.V.

  18. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data

    NASA Astrophysics Data System (ADS)

    Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc

    2018-05-01

    The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.

  20. Towards a global accurate model for horizontal and vertical elastic response of the Earth to seasonal hydrology derived from GRACE

    NASA Astrophysics Data System (ADS)

    Chanard, K.; Fleitout, L.; Calais, E.; Barbot, S.; Avouac, J. P.

    2016-12-01

    Elastic deformation of the Earth induced by seasonal variations in hydrology is now well established. We compute the vertical and horizontal deformation induced by large variations of continental water storage at a set of 195 globally distributed continuous Global Positioning System (cGPS) stations. Seasonal loading is derived from the Gravity and Recovery Climate experiment (GRACE) equivalent water height data, where we first account for non observable degree-1 components using previous results (Swenson et al., 2010). While the vertical displacements are well predicted by the model, the horizontal components are systematically underpredicted and out-of- phase with the observations. This global result confirms previous difficulties to predict horizontal seasonal site positions at a regional scale. We discuss possible contributions to this misfit (thermal expansion, draconitic effects, etc.) and show a dramatic improvement when we derive degree-one deformation plus reference frame differences between model and observations. The fit in phase and amplitude of the seasonal deformation model to the horizontal GPS measurements is improved and the fit to the vertical component is not affected. However, the amplitude of global seasonal horizontal displacement remains slightly underpredicted. We explore several hypothesis including the validity of a purely elastic model derived from seismic estimates at an annual time scale. We show that mantle volume variations due to mineral phase transitions may play a role in the seasonal deformation and, as a by-product, use this seasonal deformation to provide a lower bound of the transient astenospheric viscosity. Our study aims at providing an accurate model for horizontal and vertical seasonal deformation of the Earth induced by variations in surface hydrology derived from GRACE.

  1. Radiating Instabilities of Internal Inertio-gravity Waves

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Schmitz, G.

    The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.

  2. Response of Pendulums to Translational and Rotational Components of Ground Motion

    NASA Astrophysics Data System (ADS)

    Graizer, V.; Kalkan, E.

    2008-12-01

    Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). Pendulum response is usually simplified by considering the input from uni-axial translational motion only. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). We consider complete equations of motion for three following types of pendulum: (i) conventional mass-on-rod, (ii) mass- on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. Inverted pendulums are used in seismology for more than 100 years, for example, classical Wiechert's horizontal seismograph built around 1905 and still used at some seismological observatories, and recent Guralp's horizontal seismometers CMG-40T and CMG-3T. Inverted pendulums also have significant importance for engineering applications where they are often used to simulate the dynamic response of various structural systems. The results of this study show that a horizontal pendulum similar to a modern accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The responses of pendulums are calculated in time-domain using close-form solution Duhamel's integral with complex input forcing functions. As compared to a common horizontal pendulum, response of an inverted pendulum is sensitive to acceleration of gravity and vertical acceleration when it reaches the level close to 1.0 g. Gravity effect introduces nonlinearity into the differential equation of motion, and results in shift of the frequency response to lower frequencies. The equations of inverted pendulum represent elastic response of pendulums (as material behavior), with nonlinearity created by time and amplitude dependence of equation coefficients. Sensitivity of inverted pendulum to angular acceleration of tilt is proportional to the length of a pendulum, and should be taken into consideration since it can produce significant effect especially for long pendulums, idealizing for instance, bridge piers, bents, elevated water tanks, telecommunication towers, etc.

  3. Vertical and horizontal seismometric observations of tides

    NASA Astrophysics Data System (ADS)

    Lambotte, S.; Rivera, L.; Hinderer, J.

    2006-01-01

    Tidal signals have been largely studied with gravimeters, strainmeters and tiltmeters, but can also be retrieved from digital records of the output of long-period seismometers, such as STS-1, particularly if they are properly isolated. Horizontal components are often noisier than the vertical ones, due to sensitivity to tilt at long periods. Hence, horizontal components are often disturbed by local effects such as topography, geology and cavity effects, which imply a strain-tilt coupling. We use series of data (duration larger than 1 month) from several permanent broadband seismological stations to examine these disturbances. We search a minimal set of observable signals (tilts, horizontal and vertical displacements, strains, gravity) necessary to reconstruct the seismological record. Such analysis gives a set of coefficients (per component for each studied station), which are stable over years and then can be used systematically to correct data from these disturbances without needing heavy numerical computation. A special attention is devoted to ocean loading for stations close to oceans (e.g. Matsushiro station in Japon (MAJO)), and to pressure correction when barometric data are available. Interesting observations are made for vertical seismometric components; in particular, we found a pressure admittance between pressure and data 10 times larger than for gravimeters for periods larger than 1 day, while this admittance reaches the usual value of -3.5 nm/s 2/mbar for periods below 3 h. This observation may be due to instrumental noise, but the exact mechanism is not yet understood.

  4. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  5. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco

    2013-09-01

    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.

  6. Properties of thermospheric gravity waves on earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Pesnell, W. D.

    1992-01-01

    A spectral model with spherical harmonics and Fourier components that can simulate atmospheric perturbations in the global geometry of a multiconstituent atmosphere is presented. The boundaries are the planetary surface where the transport velocities vanish and the exobase where molecular heat conduction and viscosity dominate. The time consuming integration of the conservation equations is reduced to computing the transfer function (TF) which describes the dynamic properties of the medium divorced from the complexities in the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source distribution is then obtained in short order. Theoretical studies are presented to illuminate some properties of gravity waves on earth, Venus and Mars.

  7. Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs

    PubMed Central

    Couvillon, Margaret J.; Phillipps, Hunter L. F.; Schürch, Roger; Ratnieks, Francis L. W.

    2012-01-01

    The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis. PMID:22513277

  8. Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs.

    PubMed

    Couvillon, Margaret J; Phillipps, Hunter L F; Schürch, Roger; Ratnieks, Francis L W

    2012-08-23

    The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis.

  9. The representational dynamics of remembered projectile locations.

    PubMed

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica

    2013-12-01

    When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles.

  10. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.

  11. A Mechanistic Study of Nucleate Boiling Heat Transfer Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Hasan, M. M.

    2000-01-01

    Experimental studies of growth and detachment processes of a single bubble and multiple bubbles formed on a heated surface have been conducted in the parabola flights of KC-135 aircraft. Distilled water and PF5060 were used as the test liquids. A micro-fabricated test surface was designed and built. Artificial cavities of diameters 10 microns, 7 microns and 4 microns were made on a thin polished Silicon wafer that was electrically heated by a number of small heating elements on the back side in order to control the surface superheat. Bubble growth period, bubble size and shape from nucleation to departure were measured under subcooled and saturation conditions. Significantly larger bubble departure diameters and bubble growth periods than those at earth normal gravity were observed. Bubble departure diameters as large as 20 mm for water and 6 mm for PF5060 were observed as opposed to about 3 mm for water and less than 1 mm for PF5060 at earth normal gravity respectively. It is found that the bubble departure diameter can be approximately related to the gravity level through the relation D(sub d) proportional 1/g(exp 1/2). For water,the effect of wall superheat and liquid subcooling on bubble departure diameter is found to be small.The growth periods are found to be very sensitive to liquid subcooling at a given wall superheat. However,the preliminary results of single bubble dynamics using PF5060 showed that the departure diameter increases when wall superheat is elevated at the same gravity and subcooling. Growth period of single bubbles in water has been found to vary as t(sub g) proportional g(exp -.93). For water, when the magnitude of horizontal gravitational components was comparable to that of gravity normal to the surface, single bubbles slid along the heater surface and departed with smaller diameter at the same gravity level in the direction normal to the surface. For PF5060, even a very small horizontal gravitational component caused the sliding of bubble along the surface. The numerical simulation has been carried out by solving under the condition of axisymmetry, the mass, momentum, and energy equations for the vapor and the liquid phases. In the model the contribution of micro-layer has been included and instantaneous shape of the evolving vapor-liquid interface is determined from the analysis. Consistent with the experimental results, it is found that effect of reduced gravity is to stretch the growth period and bubble diameter It is found that effect of reduced gravity is to stretch the growth period and bubble diameter at departure. The numerical simulations are in good agreement with the experimental data for both the departure diameters and the growth periods. In the study on dynamics of multiple bubbles, horizontal merger of 2,3 4,and 5 bubbles was observed. It is found that after merger of 2 and 3 bubbles the equivalent diameter of the detached bubble is smaller than that of a single bubble departing at the same gravity level. During and after bubble merger, liquid still fills the space between the vapor stems so as to form mushroom type bubbles. The experimental and numerical studies conducted so far have brought us a step closer to prediction of nucleate boiling heat fluxes under low gravity conditions. Preparations for a space flight are continuing.

  12. Particle Image Velocimetry Study of Density Current Fronts

    ERIC Educational Resources Information Center

    Martin, Juan Ezequiel

    2009-01-01

    Gravity currents are flows that occur when a horizontal density difference causes fluid to move under the action of gravity; density currents are a particular case, for which the scalar causing the density difference is conserved. Flows with a strong effect of the horizontal density difference, even if only partially driven by it--such as the…

  13. The Entrainment Rate for Buoyant Plumes in a Crossflow

    NASA Astrophysics Data System (ADS)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  14. Muscle activity adapts to anti-gravity posture during pedalling in persons with post-stroke hemiplegia.

    PubMed

    Brown, D A; Kautz, S A; Dairaghi, C A

    1997-05-01

    With hemiplegia following stroke, a person's movement response to anti-gravity posture often appears rigid and inflexible, exacerbating the motor dysfunction. A major determinant of pathological movement in anti-gravity postures is the failure to adapt muscle-activity patterns automatically to changes in posture. The aim of the present study was to determine whether the impaired motor performance observed when persons with hemiplegia pedal in a horizontal position is exacerbated at more vertical anti-gravity body orientations. Twelve healthy elderly subjects and 17 subjects with chronic (> 6 months) post-stroke hemiplegia participated in the study. Subjects pedalled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload, cadence, and hip and knee kinematics. Pedal reaction forces, and crank and pedal kinematics, were measured and then used to calculate the work done by each leg and their net positive and negative components. The EMG was recorded from four leg muscles (tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris). The main result from this study was that impaired plegic leg performance, as measured by net negative work done by the plegic leg and abnormal early rectus femoris activity, was exacerbated at the most vertical body orientations. However, contrary to the belief that muscle activity cannot adapt to anti-gravity postures, net positive work increased appropriately and EMG activity in all muscles showed modulated levels of activity similar to those in elderly control subjects. These results support the hypothesis that increased verticality exacerbates the already impaired movement performance. Yet, much of the motor response to verticality was flexible and appropriate, given the mechanics of the task.

  15. On the state of stress in the near-surface of the earth's crust

    USGS Publications Warehouse

    Savage, W.Z.; Swolfs, H.S.; Amadei, B.

    1992-01-01

    Five models for near-surface crustal stresses induced by gravity and horizontal deformation and the influence of rock property contrasts, rock strength, and stress relaxation on these stresses are presented. Three of the models-the lateral constraint model, the model for crustal stresses caused by horizontal deformation, and the model for the effects of anisotropy-are linearly elastic. The other two models assume that crustal rocks are brittle or viscoelastic in order to account for the effects of rock strength and time on near-surface stresses. It is shown that the lateral constraint model is simply a special case of the combined gravity-and deformation-induced stress field when horizontal strains vanish and that the inclusion of the effect of rock anisotropy in the solution for crustal stresses caused by gravity and horizontal deformation broadens the range for predicted stresses. It is also shown that when stress levels in the crust reach the limits of brittle rock strength, these stresses become independent of strain rates and that stress relaxation in ductile crustal rocks subject to constant horizontal strain rates causes horizontal stresses to become independent of time in the long term. ?? 1992 Birkha??user Verlag.

  16. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.

  17. Limitation on the use of the horizontal clinostat as a gravity compensator

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Dahl, A. O.; Chapman, D. K.

    1975-01-01

    If the horizontal clinostat effectively compensates for the influence of the gravity vector on the rotating plant, it makes the plant unresponsive to whatever chronic acceleration may be applied transverse to the axis of clinostat rotation. This was tested by centrifuging plants while they were growing on clinostats. For a number of morphological endpoints of development, the results depended on the magnitude of the applied g-force. Gravity compensation by the clinostat was incomplete, and this conclusion is in agreement with results of satellite experiments which are reviewed.

  18. Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.

  19. Role of gravity-based information on the orientation and localization of the perceived body midline.

    PubMed

    Ceyte, Hadrien; Cian, Corinne; Nougier, Vincent; Olivier, Isabelle; Trousselard, Marion

    2007-01-01

    The present study focused on the influence of gravity-based information on the orientation and localization of the perceived body midline. The orientation was investigated by the rolling adjustment of a rod on the subjects' Z-axis and the localization by the horizontal adjustment of a visual dot as being straight ahead. Experiment 1 investigated the effect of the dissociation between the Z-axis and the direction of gravity by placing subjects in roll tilt and supine postures. In roll tilt, the perception of the body midline orientation was deviated in the direction of body tilt and the perception of its localization was deviated in the opposite direction. In the supine body orientation, estimates of the Z-axis and straight-ahead remained veridical as when the body was upright. Experiment 2 highlighted the relative importance of the otolithic and tactile information using diffuse pressure stimulation. The estimation of body midline orientation was modified contrarily to the estimation of its localization. Thus, subjects had no absolute representation of their egocentric space. The main hypothesis regarding the dissociation between the orientation and localization of the body midline may be related to a difference in the integration of sensory information. It can be suggested that the horizontal component of the vestibulo-ocular reflex (VOR) contributed to the perceived localization of the body midline, whereas its orientation was mainly influenced by tactile information.

  20. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...

  1. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...

  2. Wavelength dependence of eddy dissipation and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.

  3. Three-dimensional organization of vestibular-related eye movements to off-vertical axis rotation and linear translation in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.

    1999-01-01

    During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.

  4. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements.

    PubMed

    Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2014-07-15

    Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.

  5. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  6. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  7. A multidimensional model of the effect of gravity on the spatial orientation of the monkey

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.

    1993-01-01

    A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).

  8. Limitation on the Use of the Horizontal Clinostat as a Gravity Compensator 123

    PubMed Central

    Brown, Allan H.; Dahl, A. O.; Chapman, D. K.

    1976-01-01

    If the horizontal clinostat effectively compensates for the influence of the gravity vector on the rotating plant, it should make the plant unresponsive to whatever chronic acceleration may be applied transverse to the axis of clinostat rotation. This was tested by centrifuging plants while they were growing on clinostats. For a number of morphological end-points of development the results depended on the magnitude of the applied g-force. Therefore, gravity compensation by the clinostat was incomplete. This conclusion is in agreement with results of satellite experiments which are reviewed. PMID:16659631

  9. Generating a Reduced Gravity Environment on Earth

    NASA Technical Reports Server (NTRS)

    Dungan, L. K.; Valle, P.; Shy, C.

    2015-01-01

    The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.

  10. Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?

    NASA Technical Reports Server (NTRS)

    Edwards, K. L.

    1985-01-01

    The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.

  11. Gravity wave momentum flux in the lower stratosphere over convection

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan; Pfister, Leonhard

    1995-01-01

    This work describes a method for estimating vertical fluxes of horizontal momentum carried by short horizontal scale gravity waves (lambda(sub x) = 10-100 km) using aircraft measured winds in the lower stratosphere. We utilize in situ wind vector and pressure altitude measurements provided by the Meteorological Measurement System (MMS) on board the ER-2 aircraft to compute the momentum flux vectors at the flight level above deep convection during the tropical experiment of the Stratosphere Troposphere Exchange Project (STEP-Tropical). Data from Flight 9 are presented here for illustration. The vertical flux of horizontal momentum these observations points in opposite directions on either side of the location of a strong convective updraft in the cloud shield. This property of internal gravity waves propagating from a central source compares favorably with previously described model results.

  12. Inertial processing of vestibulo-ocular signals

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1999-01-01

    New evidence for a central resolution of gravito-inertial signals has been recently obtained by analyzing the properties of the vestibulo-ocular reflex (VOR) in response to combined lateral translations and roll tilts of the head. It is found that the VOR generates robust compensatory horizontal eye movements independent of whether or not the interaural translatory acceleration component is canceled out by a gravitational acceleration component due to simultaneous roll-tilt. This response property of the VOR depends on functional semicircular canals, suggesting that the brain uses both otolith and semicircular canal signals to estimate head motion relative to inertial space. Vestibular information about dynamic head attitude relative to gravity is the basis for computing head (and body) angular velocity relative to inertial space. Available evidence suggests that the inertial vestibular system controls both head attitude and velocity with respect to a gravity-centered reference frame. The basic computational principles underlying the inertial processing of otolith and semicircular canal afferent signals are outlined.

  13. Ionospheric total electron content seismo-perturbation after Japan's March 11, 2011, M=9.0 Tohoku earthquake under a geomagnetic storm; a nonlinear principal component analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Woei

    2012-10-01

    Nonlinear principal component analysis (NLPCA) is implemented to analyze the spatial pattern of total electron content (TEC) anomalies 3 hours after Japan's Tohoku earthquake that occurred at 05:46:23 on 11 March, 2011 (UTC) ( M w =9). A geomagnetic storm was in progress at the time of the earthquake. NLPCA and TEC data processing were conducted on the global ionospheric map (GIM) for the time between 08:30 to 09:30 UTC, about 3 hours after this devastating earthquake and ensuing tsunami. Analysis results show stark earthquake-associated TEC anomalies that are widespread, and appear to have been induced by two acoustic gravity waves due to strong shaking (vertical acoustic wave) and the generation of the tsunami (horizontal Rayleigh mode gravity wave). The TEC anomalies roughly fit the initial mainshock and movement of the tsunami. Observation of the earthquake-associated TEC anomalies does not appear to be affected by a contemporaneous geomagnetic storm.

  14. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  15. Impacts of Horizontal Propagation of Orographic Gravity Waves on the Wave Drag in the Stratosphere and Lower Mesosphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng

    2017-11-01

    The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.

  16. Pressure Profiles in a Loop Heat Pipe Under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  17. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  18. Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents

    DOE PAGES

    Zheng, Zhong; Christov, Ivan  C.; Stone, Howard  A.

    2014-05-01

    We report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b)more » a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.« less

  19. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  20. Small gravitationally elicited voltage transients in pea stems

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.

    1984-01-01

    Decapitated veritcal stem segments were observed for 45 min, noting the number of transients mu V for each 5-min interval. Results for two sets of stem segments are plotted. The average frequencies were 0.72 + or -0.05 and 0.66 + or - 0.04 per 5 min. One set of segments was swiveled gently to the horizontal position; then, recording continued for another 90 min. Transients continued in the vertical controls at a closely similar average rate 0.78 + or - 0.04 per 5 min. However, after the first 5-min interval the horizontally placed plants exhibited transients at an increased average rate of 1.08 + or - 0.04 per 5 min. The frequency of transients also increased following horizontal placement of intact shoots. However, it appears that this increase had two components: one due to gravity reception, and one due to the redistribution of indolacetic acid (IAA) believed to mediate gravitropic curvature (or, more specifically, to the increase of IAA in the lower tissue.

  1. Gravity dependency of the gramicidin A channel conductivity. A model for gravity perception on the cellular level.

    PubMed

    Schatz, A; Linke-Hommes, A; Neubert, J

    1996-01-01

    Theoretical investigations involving the membrane-solution interface have revealed that the density of the solution varies appreciably within interfacial layers adjacent to charged membrane surfaces. The hypothesis that gravity interacts with this configuration and modifies transport rates across horizontal and vertical membranes differently was supported by initial experiments with gramicidin A channels in phosphatidylserine (PS) membranes in 0.1 M KCl. Channel conductivity was found to be about 1.6 times higher in horizontal membranes than in vertical membranes. Here we present the results of further experiments with gramicidin A channels (incorporated into charged PS- and uncharged phosphatidylcholine (PC) membranes in KCl- and CsCl-solutions) to demonstrate that the hypothesis is more generally applicable. Again, channel conductivity was found to be higher in horizontal PS membranes by a factor of between 1.20 and 1.75 in 0.1 M CsCl. No difference in channel conductivity was found for uncharged PC membranes in 0.1 M KCl and in 0.1 M CsCl. However, for PC membranes in 0.05 M KCl the channel conductivity was significantly higher in horizontal membranes by a factor of between 1.07 and 1.14. These results are consistent with the results of our model calculations of layer density and extension, which showed that the layer formation is enhanced by increasing membrane surface charge and decreasing electrolyte ion concentration. The mechanism of gravity interaction with membrane transport processes via interface reactions might be utilized by biological systems for orientational behaviour in the gravity field, which has been observed even for cellular systems.

  2. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must be... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... Earth's gravity, as described in § 1065.630. Calculate the reference torque as the weights' reference...

  3. Light Spectrum Related Responses of 1-g and Clino-Rotated Cress

    NASA Astrophysics Data System (ADS)

    Rakleviciene, D.; Svegzdiene, D.; Losinska, R.

    2008-06-01

    Growth and positioning of cress on a 50-rpm horizontal clinostat in response to blue (450 nm), red (660 nm) and far red (735 nm) light spectral components and their combinations (red & far red or blue & red & far red) were estimated and compared with cress grown in the usual vertical position with and without illumination. No gravity-related alterations have been determined in the elongation of dark-grown hypocotyls, though leaves slightly responded to clino-rotation. Impact of light of 450, 660 and 735 nm wavelengths applied at a comparatively low density of the photon flux (5, 13, 0.8-1 μmol m-2s-1, respectively) had a stronger inhibiting effect on the elongation of hypocotyls on clinostat than at 1 g. Growth of 1-g petioles responded to light spectrum which was not the case with clino-rotated ones. However, radial expansion of cells in palisade and spongy mesophyll tissues of clino-rotated laminas was promoted under combined blue & red & far red illumination (50 μmol·m-2s-1). Gravity-dependent alteration of the positioning of leaf petioles and laminas was suppressed by light. The obtained data confirm the interactions between responses of cress seedlings induced by changed gravity and by spectral components of light.

  4. Variation in velocity of cytoplasmic streaming and gravity effect in characean internodal cells measured by laser-Doppler-velocimetry.

    PubMed

    Ackers, D; Hejnowicz, Z; Sievers, A

    1994-01-01

    Velocities of cytoplasmic streaming were measured in internodal cells of Nitella flexilis L. and Chara corallina Klein ex Willd. by laser-Doppler-velocimetry to investigate the possibility of non-statolith-based perception of gravity. This was recently proposed, based on a report of gravity-dependent polarity of cytoplasmic streaming. Our measurements revealed large spatial and temporal variation in streaming velocity within a cell, independent of the position of the cell with respect to the direction of gravity. In 58% of the horizontally positioned cells the velocities of acropetal and basipetal streaming, measured at opposite locations in the cell, differed significantly. In 45% of these, basipetal streaming was faster than acropetal streaming. In 60% of the vertically positioned cells however the difference was significant, downward streaming was faster in only 61% of these. When cell positions were changed from vertical to horizontal and vice versa the cells reacted variably. A significant difference between velocities in one direction, before and after the change, was observed in approx. 70% of the measurements, but the velocity was faster in the downward direction, as the second position, in only 70% of the significantly different. The ratio of basipetal to acropetal streaming velocities at opposite locations of a cell was quite variable within groups of cells with a particular orientation (horizontal, normal vertical, inverted vertical). On average, however, the ratio was close to 1.00 in the horizontal position and approx. 1.03 in the normal vertical position (basipetal streaming directed downwards), which indicates a small direct effect of gravity on streaming velocity. Individual cells, however, showed an increased, as well as a decreased, ratio when moved from the horizontal to the vertical position. No discernible effect of media (either Ca(2+)-buffered medium or 1.2% agar in distilled water) on the streaming velocities was observed. The above mentioned phenomenon of graviperception is not supported by our data.

  5. Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B

    NASA Technical Reports Server (NTRS)

    Scheffler, A. O.; Liu, C. H.

    1984-01-01

    A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed.

  6. Geodynamical behavior of some active area in Egypt, as deduced from geodetic and gravity data

    NASA Astrophysics Data System (ADS)

    Issawy, E.; Mrlina, J.; Radwan, A.; Mahmoud, S.; Rayan, A.

    2009-04-01

    Temporal gravity variation in parallel with the space geodetic technique (GPS) had been started in Egypt for real campaigns in 1997. The geodetic networks around the High Dam, Aswan area was the first net to be measured. More than five measurement epochs were performed. The results had a considerable limit of coincidence between gravity and GPS observations. The trend of gravity changes indicated a positive stress and had the vertical displacement observed for leveling points. The lowest gravity changes along Kalabsha fault reflect extensional and/or strike component of the stress field. Also, the areas around Cairo (Greater Cairo) and due to the occurrence of an earthquake of 1992, such type of measurements were useful for monitoring the recent activity. The data of the geodetic network around Cairo after 5 campaigns showed that, the estimated horizontal velocities for almost all points are 5.5± mm/year in approximately NW-SE direction. The non-tidal changes can explain the dynamic process within the upper crust related to the development of local stress conditions. The trends of gravity changes are more or less coincident with that deduced from GPS deformation analysis and the occurrence of the main shocks in the area. In additions, in 2005 the geodetic network around the southern part of Sinai and the Gulf of Suez were established. One campaign of measurements had been performed and the gravity values were obtained.

  7. Compliance analysis of a 3-DOF spindle head by considering gravitational effects

    NASA Astrophysics Data System (ADS)

    Li, Qi; Wang, Manxin; Huang, Tian; Chetwynd, Derek G.

    2015-01-01

    The compliance modeling is one of the most significant issues in the stage of preliminary design for parallel kinematic machine(PKM). The gravity ignored in traditional compliance analysis has a significant effect on pose accuracy of tool center point(TCP) when a PKM is horizontally placed. By taking gravity into account, this paper presents a semi-analytical approach for compliance analysis of a 3-DOF spindle head named the A3 head. The architecture behind the A3 head is a 3-R PS parallel mechanism having one translational and two rotational movement capabilities, which can be employed to form the main body of a 5-DOF hybrid kinematic machine especially designed for high-speed machining of large aircraft components. The force analysis is carried out by considering both the externally applied wrench imposed upon the platform as well as gravity of all moving components. Then, the deflection analysis is investigated to establish the relationship between the deflection twist and compliances of all joints and links using semi-analytical method. The merits of this approach lie in that platform deflection twist throughout the entire task workspace can be evaluated in a very efficient manner. The effectiveness of the proposed approach is verified by the FEA and experiment at different configurations and the results show that the discrepancy of the compliances is less than 0.04 μm/N-1 and that of the deformations is less than 10μm. The computational and experimental results show that the deflection twist induced by gravity forces of the moving components has significant bearings on pose accuracy of the platform, providing an informative guidance for the improvement of the current design. The proposed approach can be easily applied to the compliance analysis of PKM by considering gravitational effects and to evaluate the deformation caused by gravity throughout the entire workspace.

  8. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  9. Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self motion

    NASA Technical Reports Server (NTRS)

    Mast, F. W.; Newby, N. J.; Young, L. R.

    2002-01-01

    The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.

  10. Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.

    1985-12-31

    Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45{sup 0}, an error ofmore » 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs.« less

  11. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  12. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Thai; Preusse, Peter; Riese, Martin; Kalisch, Silvio

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  13. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Riese, Martin

    2014-05-01

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  14. Anisotropic phase-mixing in homogeneous turbulence in a rapidly rotating or in a strongly stratified fluid: An analytical study

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2007-05-01

    Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of potential and poloidal (or kinetic gravity wave) energy are investigated. The latter unbalance is characterized by a ratio χ /2, assuming initial proportionality between the kinetic energy spectrum and the potential energy one. The phase mixing yields asymptotic equipartition in terms of poloidal and potential energy components, and analytical solutions are found in terms of Weber functions. At large time, the damped oscillations for poloidal, potential and vertical components decay with time like (Nt)-1/2 (N is the buoyancy frequency), while the oscillations for the horizontal component decay with time like (Nt)-3/2. The long-time limit of the ratio of horizontal component to vertical one depends only on the parameters χ, β2(e), β0(z), β2(z), and β4(z).

  15. Changes in gravitational parameters inferred from time variable GRACE data-A case study for October 2005 Kashmir earthquake

    NASA Astrophysics Data System (ADS)

    Hussain, Matloob; Eshagh, Mehdi; Ahmad, Zulfiqar; Sadiq, M.; Fatolazadeh, Farzam

    2016-09-01

    The earth's gravity changes are attributed to the redistribution of masses within and/or on the surface of the earth, which are due to the frictional sliding, tensile cracking and/or cataclastic flow of rocks along the faults and detectable by earthquake events. Inversely, the gravity changes are useful to describe the earthquake seismicity over the active orogenic belts. The time variable gravimetric data are hardly available to the public domain. However, Gravity Recovery and Climatic Experiment (GRACE) is the only satellite mission dedicated to model the variation of the gravity field and an available source to the science community. Here, we have tried to envisage gravity changes in terms of gravity anomaly (Δg), geoid (N) and the gravity gradients over the Indo-Pak plate with emphasis upon Kashmir earthquake of October 2005. For this purpose, we engaged the spherical harmonic coefficients of monthly gravity solutions from the GRACE satellite mission, which have good coverage over the entire globe with unprecedented accuracy. We have analysed numerically the solutions after removing the hydrological signals, during August to November 2005, in terms of corresponding monthly differentials of gravity anomaly, geoid and the gradients. The regional structures like Main Mantle Thrust (MMT), Main Karakoram Thrust (MKT), Herat and Chaman faults are in closed association with topography and with gravity parameters from the GRACE gravimetry and EGM2008 model. The monthly differentials of these quantities indicate the stress accumulation in the northeast direction in the study area. Our numerical results show that the horizontal gravity gradients seem to be in good agreement with tectonic boundaries and differentials of the gravitational elements are subtle to the redistribution of rock masses and topography caused by 2005 Kashmir earthquake. Moreover, the gradients are rather more helpful for extracting the coseismic gravity signatures caused by seismicity over the area. Higher positive values of gravity components having higher terrain elevations are more vulnerable to the seismicity and lower risk of diastrophism otherwise.

  16. Sixteen year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Nakamura, T.; Yamamoto, M.

    2017-08-01

    We analyzed the horizontal phase velocity of gravity waves and medium-scale traveling ionospheric disturbances (MSTIDs) by using the three-dimensional fast Fourier transform method developed by Matsuda et al. (2014) for 557.7 nm (altitude: 90-100 km) and 630.0 nm (altitude: 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8°N, 136.1°E, dip angle: 49°) over ˜16 years from 16 March 1999 to 20 February 2015. The analysis of 557.7 nm airglow images shows clear seasonal variation of the propagation direction of gravity waves in the mesopause region. In spring, summer, fall, and winter, the peak directions are northeastward, northeastward, northwestward, and southwestward, respectively. The difference in east-west propagation direction between summer and winter is probably caused by the wind filtering effect due to the zonal mesospheric jet. Comparison with tropospheric reanalysis data shows that the difference in north-south propagation direction between summer and winter is caused by differences in the latitudinal location of wave sources due to convective activity in the troposphere relative to Shigaraki. The analysis of 630.0 nm airglow images shows that the propagation direction of MSTIDs is mainly southwestward with a minor northeastward component throughout the 16 years. A clear negative correlation is seen between the yearly power spectral density of MSTIDs and F10.7 solar flux. This negative correlation with solar activity may be explained by the linear growth rate of the Perkins instability and secondary wave generation of gravity waves in the thermosphere.

  17. Modulation of vergence by off-vertical yaw axis rotation in the monkey: normal characteristics and effects of space flight

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1996-01-01

    Horizontal movements of both eyes were recorded simultaneously using scleral search coils in 2 rhesus monkeys before and after the COSMOS 2229 space-flight of 1992-1993. Another 9 monkeys were tested at comparable time intervals and served as controls. Ocular vergence, defined as the difference in horizontal position between the left and right eyes, was measured during off-vertical yaw axis rotation (OVAR) in darkness. Vergence was modulated sinusoidally as a function of head position with regard to gravity during OVAR. The amplitude of peak-to-peak modulation increased with increments in tilt of the angle of the rotational axis (OVAR tilt angle) that ranged from 15 degrees to 90 degrees. Of the 11 monkeys tested, 1 had no measurable modulation in vergence. In the other 10, the mean amplitude of the peak to peak modulation was 5.5 degrees +/- 1.3 degrees at 90 degrees tilt. Each of these monkeys had maximal vergence when its nose was pointed close to upward (gravity back; mean phase: -0.9 degree +/- 26 degrees). After space flight, the modulation in vergence was reduced by over 50% for the two flight monkeys, but the phase of vergence modulation was not altered. The reduction in vergence modulation was sustained for the 11-day postflight testing period. We conclude that changes in vergence are induced in monkeys by the sinusoidal component of gravity acting along the naso-occipital axis during yaw axis OVAR, and that the modulation of the vergence reflex is significantly less sensitive to linear acceleration after space flight.

  18. Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels

    NASA Astrophysics Data System (ADS)

    Gandikota, G.; Chatain, D.; Lyubimova, T.; Beysens, D.

    2014-06-01

    Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969), 10.1007/BF01397662].

  19. Effect of gravity on vertical eye position.

    PubMed

    Pierrot-Deseilligny, C

    2009-05-01

    There is growing evidence that gravity markedly influences vertical eye position and movements. A new model for the organization of brainstem upgaze pathways is presented in this review. The crossing ventral tegmental tract (CVTT) could be the efferent tract of an "antigravitational" pathway terminating at the elevator muscle motoneurons in the third nerve nuclei and comprising, upstream, the superior vestibular nucleus and y-group, the flocculus, and the otoliths. This pathway functions in parallel to the medial longitudinal fasciculus pathways, which control vertical eye movements made to compensate for all vertical head movements and may also comprise the "gravitational" vestibular pathways, involved in the central reflection of the gravity effect. The CVTT could provide the upgaze system with the supplement of tonic activity required to counteract the gravity effect expressed in the gravitational pathway, being permanently modulated according to the static positions of the head (i.e., the instantaneous gravity vector) between a maximal activity in the upright position and a minimal activity in horizontal positions. Different types of arguments support this new model. The permanent influence of gravity on vertical eye position is strongly suggested by the vertical slow phases and nystagmus observed after rapid changes in hypo- or hypergravity. The chin-beating nystagmus, existing in normal subjects with their head in the upside-down position, suggests that gravity is not compensated for in the downgaze system. Upbeat nystagmus due to brainstem lesions, most likely affecting the CVTT circuitry, is improved when the head is in the horizontal position, suggesting that this circuitry is involved in the counteraction of gravity between the upright and horizontal positions of the head. In downbeat nystagmus due to floccular damage, in which a permanent hyperexcitation of the CVTT could exist, a marked influence of static positions of the head is also observed. Finally, the strongest argument supporting a marked role of gravity in vertical eye position is that the eye movement alterations observed in the main, typical physiological and pathological conditions are precisely those that would be expected from a direct effect of gravity on the eyeballs, with, moreover, no single alternative interpretation existing so far that could account for all these different types of findings.

  20. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  1. Decomposing Worldwide Complete Spherical Bouguer Gravity Anomaly Using 2-D Empirical Method

    NASA Astrophysics Data System (ADS)

    Firdaus, Ruhul; Mey Ekawati, Gestin

    2017-04-01

    Currently available worldwide gravity anomaly data provides a high-resolution (2’×2’) of Complete Spherical Bouguer Anomaly (CSBA) based on the available information of the Earth gravity field from surface and satellite measurements. The data has not only been provided and processed thoroughly but it also has been claimed to be appropriate for various geophysical applications. Therefore, the analysis of gravity anomaly is becoming increasingly significant for the earth sciences as a whole and assisting both shallow and deep geological problems. Earth gravity anomaly has to be analyzed carefully as it has very complex data due to anomaly mixing of the density masses spread over the Earth horizontally and vertically. The bigger the spatial coverage of data (e.g. global scale data), the more severe the data from anomaly mixing due to various wavelength. BEMD is an empirical method supposedly suitable with highly oscillation-mixing data. It can effectively isolate each local anomaly in details and is analogized as successively reverse moving average with local windowing. BEMD is designed to reduce multi-component, non-linear gravity field data to a series of single local anomaly contributions. Anomaly from a single body was assumed as a mono-component signal. The main advantage of BEMD processing techniques is to present the subtle details in the data which are not clearly identified in anomaly maps, without specifying any prior information about the nature of the source bodies. As the result, we have identified regional anomalies due to the drift of continental and oceanic masses considered as crust-regional anomaly (CRA). We remove the CRA from the CBA to provide surface-residual anomaly (SRA) where shallow geologic bodies reveal. Meanwhile, the CRA itself can be used as reference to reduce this high magnitude anomaly from any measurement data to exhibit only shallow body anomaly. Further analysis can be carried out to build a general understanding of the details and parameters of the shallower or deeper causative body distributions.

  2. Galvanic vestibular stimulation combines with Earth-horizontal rotation in roll to induce the illusion of translation.

    PubMed

    Schneider, Erich; Bartl, Klaus; Glasauer, Stefan

    2009-05-01

    Human head rotation in roll around an earth-horizontal axis constitutes a vestibular stimulus that, by its rotational component, acts on the semicircular canals (SCC) and that, by its tilt of the gravity vector, also acts on the otoliths. Galvanic vestibular stimulation (GVS) is thought to resemble mainly a rotation in roll. A superposition of sinusoidal GVS with a natural earth-horizontal roll movement was therefore applied in order to cancel the rotation effects and to isolate the otolith activation. By self-adjusting the amplitude and phase of GVS, subjects were able to minimize their sensation of rotation and to generate the perception of a linear translation. The final adjustments are in the range of a model that predicts SCC activation during natural rotations and GVS. This indicates that the tilt-translation ambiguity of the otoliths is resolved by SCC-otolith interaction. It is concluded that GVS might be able to cancel rotations in roll and that the residual tilt of the gravitoinertial force is possibly interpreted as a linear translation.

  3. Gravity domains and assembly of the North American continent by collisional tectonics

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    A gravity trend map of North America, based on a horizontal Bouguer gravity gradient map produced from gravity data for Canada and the conterminous United States, is presented and used to define a continental mosaic of gravity trend domains akin to structural domains. Contrasting trend characteristics at gravity domain boundaries support the concept of outward growth of the continent primarily by accretionary tectonics. Gravity patterns, however, indicate a different style of tectonics dominated in the development of now-buried Proterozoic orogenic belts in the south-central United States, supporting a view that these belts formed along the leading edge of a southward-migrating Proterozoic continental margin.

  4. A ground-base Radar network to access the 3D structure of MLT winds

    NASA Astrophysics Data System (ADS)

    Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.

    2016-12-01

    The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.

  5. Comparison of the Effect of Horizontal Vibrations on Interfacial Waves in a Two-Layer System of Inviscid Liquids to Effective Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.

    2018-02-01

    We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.

  6. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations - Part 1: Nonhydrostatic inertia-gravity modes

    NASA Astrophysics Data System (ADS)

    Konor, Celal S.; Randall, David A.

    2018-05-01

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.

  7. Clinorotation influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; González-Camacho, F.; Rodríguez-Vilariño, V.; Kordyum, E. L.; Medina, F. J.

    The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts. The plant nucleolin homologue NopA100 is involved in the regulation of r-chromatin condensation/expansion and rDNA transcription as well as in rRNA processing. We have investigated with immunogold electron microscopy the location of nucleolar DNA and NopA100 in cress root meristematic cells grown under slow horizontal clinorotation, reproducing an important feature of microgravity, namely the absence of an orienting action of a gravity vector, compared to control conditions. We demonstrate redistribution of both rDNA and NopA100 in nucleolar subcomponents induced by clinorotation. Ribosomal DNA concentrated predominantly in fibrillar centers in the form of condensed r-chromatin inclusions and internal non condensed fibrils, redistributing from the dense fibrillar component and the transition zone between fibrillar centers and the dense fibrillar component, recognized as the loci of rDNA transcription. The content of NopA100 was much higher in the inner space of fibrillar centers and reduced in the dense fibrillar component as compared to the control. Based on these data, an effect of slow horizontal clinorotation in lowering the level of rDNA transcription as well as rRNA processing is suggested.

  8. Applications of Geodesy to Geodynamics, an International Symposium

    NASA Technical Reports Server (NTRS)

    Mueller, I. I. (Editor)

    1978-01-01

    Geodetic techniques in detecting and monitoring geodynamic phenomena are reviewed. Specific areas covered include: rotation of the earth and polar motion; tectonic plate movements and crustal deformations (space techniques); horizontal crustal movements (terrestrial techniques); vertical crustal movements (terrestrial techniques); gravity field, geoid, and ocean surface by space techniques; surface gravity and new techniques for the geophysical interpretation of gravity and geoid undulation; and earth tides and geodesy.

  9. Determination of gravity wave parameters in the airglow combining photometer and imager data

    NASA Astrophysics Data System (ADS)

    Nyassor, Prosper K.; Arlen Buriti, Ricardo; Paulino, Igo; Medeiros, Amauri F.; Takahashi, Hisao; Wrasse, Cristiano M.; Gobbi, Delano

    2018-05-01

    Mesospheric airglow measurements of two or three layers were used to characterize both vertical and horizontal parameters of gravity waves. The data set was acquired coincidentally from a multi-channel filter (Multi-3) photometer and an all-sky imager located at São João do Cariri (7.4° S, 36.5° W) in the equatorial region from 2001 to 2007. Using a least-square fitting and wavelet analysis technique, the phase and amplitude of each observed wave were determined, as well as the amplitude growth. Using the dispersion relation of gravity waves, the vertical and horizontal wavelengths were estimated and compared to the horizontal wavelength obtained from the keogram analysis of the images observed by an all-sky imager. The results show that both horizontal and vertical wavelengths, obtained from the dispersion relation and keogram analysis, agree very well for the waves observed on the nights of 14 October and 18 December 2006. The determined parameters showed that the observed wave on the night of 18 December 2006 had a period of ˜ 43.8 ± 2.19 min, with the horizontal wavelength of 235.66 ± 11.78 km having a downward phase propagation, whereas that of 14 October 2006 propagated with a period of ˜ 36.00 ± 1.80 min with a horizontal wavelength of ˜ 195 ± 9.80 km, and with an upward phase propagation. The observation of a wave taken by a photometer and an all-sky imager allowed us to conclude that the same wave could be observed by both instruments, permitting the investigation of the two-dimensional wave parameter.

  10. Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.; Theon, J. S.

    1975-01-01

    Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.

  11. Gravitropism in leafy dicot stems

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.

    1984-01-01

    In an attempt to separate plant responses to mechanical stresses from responses to gravity compensation, six treatments were automated: (1) upright stationary controls; (2) horizontal clinostat; (3) intermittent clinostat (plants upright 3.3 minutes out of every 4 minutes, horizontal and rotated once in the remaining time); (4) inversion every ten minutes (plants upside down half the time); (5) inversion and immediate return to the vertical; and (6) vertical rotation. Epinasty appeared only on clinostated and on inverted plants, both subjected to gravity compensation. The mechanics of gravitropic stem bending and the effects of a unilateral application of ethephon of gravitropic bending were also investigated.

  12. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.

  13. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.

    1995-01-01

    The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in six male squirrel monkeys during eccentric rotation. Monkeys were rotated in the dark at a constant velocity of 200 degrees/s (centrally or 79 cm off axis) with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's orientation (facing-motion or back-to-motion) had a dramatic influence on the VOR. These experiments show that: (a) the axis of eye rotation always shifted toward alignment with gravito-inertial force; (b) the peak value of horizontal slow phase eye velocity was greater with the monkey facing-motion than with back-to-motion; and (c) the time constant of horizontal eye movement decay was smaller with the monkey facing-motion than with back-to-motion. All of these findings were statistically significant and consistent across monkeys. In another set of tests, the same monkeys were rapidly tilted about their naso-occipital (roll) axis. Tilted orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the angular rotation, no consistent eye velocity response was observed during or following the tilt for any of the six monkeys. The absence of any eye movement response following tilt weighs against the possibility that translational linear VOR responses are due to simple high-pass filtering of the otolith signals. The VOR response during eccentric rotation was divided into the more familiar angular VOR and linear VOR components. The angular component is known to depend upon semicircular canal dynamics and central influences. The linear component of the response decays rapidly with a mean duration of only 6.6 s, while the axis of eye rotation rapidly aligns (< 10 s) with gravito-inertial force. These results are consistent with the hypothesis that the measurement of gravito-inertial force by the otolith organs is resolved into central estimates of linear acceleration and gravity, such that the central estimate of gravitational force minus the central estimate of linear acceleration approximately equals the otolith measurement of gravito-inertial force.

  14. Three dimensional eye movements of squirrel monkeys following postrotatory tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.

    1993-01-01

    Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.

  15. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  16. A coordinated study of 1 h mesoscale gravity waves propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature mapper

    NASA Astrophysics Data System (ADS)

    Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.

    2015-10-01

    We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.

  17. Is drop impact the same for both moving and inclined surfaces?

    NASA Astrophysics Data System (ADS)

    Buksh, Salman; Marengo, Marco; Amirfazli, Alidad; -Team

    2017-11-01

    Drop impact is an important phenomenon in a wide variety of applications. Researchers have largely examined drop impact onto a moving surface, and an inclined surface separately. Given that in both systems the impact phenomenon is influenced by tangential and normal velocity components, the question remains, if these two systems are essentially equivalent or gravity and boundary layer effects are such that the outcomes will be different. Experiments have been performed by varying liquid surface tension, viscosity and both normal and tangential velocities (0.3 to 2.9 m/s). The desired velocity components were achieved by changing the height where drop is released, the surface inclination angle for inclined system, and the horizontal velocity for the moving surface. To compare the systems, spreading was analyzed by measuring the width and length of the lamella at various time intervals; for splashing, top view images were compared to see the extent of splashing at initial stage. The data suggests that, for the given velocity, neither the boundary layer differences between the two systems nor the gravity play a role on spreading and splashing of the drop, as such one system can replace the other for future studies.

  18. Meteor radar observations of vertically propagating low-frequency inertia-gravity waves near the southern polar mesopause region

    NASA Astrophysics Data System (ADS)

    Song, I.-S.; Lee, C.; Kim, J.-H.; Jee, G.; Kim, Y.-H.; Choi, H.-J.; Chun, H.-Y.; Kim, Y. H.

    2017-04-01

    Vertically propagating low-frequency inertia-gravity waves (IGWs) are retrieved from meteor radar winds observed at King Sejong Station (KSS: 62.22°S, 58.78°W), Antarctica. IGW horizontal winds extracted from temporal band-pass filtering in regular time-height bins show the frequent occurrence of IGWs with the downward phase progression and the counterclockwise rotation of their horizontal wind vectors with time (i.e., upward energy propagation) near the mesopause region throughout the whole year of 2014. The vertical wavelengths of the observed IGWs roughly range from 14 km to more than 20 km, which is consistent with previous observational studies on the mesospheric IGWs over Antarctica. Stokes parameters and rotary spectra computed from the hodographs of the IGW horizontal wind components reveal that the intrinsic frequencies of the upward propagating IGWs are |f|-3|f| with seasonal variations of the relative predominance between |f|-2|f| and 2|f|-3|f|, where f is the Coriolis parameter at KSS. The hodograph analysis also indicates that the N-S propagation is dominant in austral summer, while the NE-SW propagation is pronounced in austral winter. The propagation direction is discussed in relation to the generation of IGWs due to dynamical imbalances occurring in the tropospheric and stratospheric jet flow systems. Ray tracing results indicate that the N-S propagation in summer may be due to the jet flow systems roughly north of KSS and the NE-SW propagation in winter may be either the SW propagation from the jet flow systems northeast of KSS or the NE propagation (around the South Pole) from the south of Australia and Southern Indian and Pacific Oceans.

  19. Gravity wave momentum flux estimation from CRISTA satellite data

    NASA Astrophysics Data System (ADS)

    Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.

    2003-04-01

    Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.

  20. Aerodynamics in the classroom and at the ball park

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-04-01

    Experiments suitable for classroom projects or demonstrations are described concerning the aerodynamics of polystyrene balls. A light ball with sufficient backspin can curve vertically upward through the air, defying gravity and providing a dramatic visual demonstration of the Magnus effect. A ball projected with backspin can also curve downward with a vertical acceleration greater than that due to gravity if the Magnus force is negative. These effects were investigated by filming the flight of balls projected in an approximately horizontal direction so that the lift and drag forces could be easily measured. The balls were also fitted with artificial raised seams and projected with backspin toward a vertical target in order to measure the sideways deflection over a known horizontal distance. It was found that (a) a ball with a seam on one side can deflect either left or right depending on its launch speed and (b) a ball with a baseball seam can also deflect sideways even when there is no sideways component of the drag or lift forces acting on the ball. Depending on the orientations of the seam and the spin axis, a sideways force on a baseball can arise either if there is rough patch on one side of the ball or if there is a smooth patch. A scuff ball with a rough patch on one side is illegal in baseball. The effect of a smooth patch is a surprising new observation.

  1. Gravity Waves Near 300 km Over the Polar Caps

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Hanson, W. B.; Hodges, R. R.; Coley, W. R.; Carignan, G. R.; Spencer, N. W.

    1995-01-01

    Distinctive wave forms in the distributions of vertical velocity and temperature of both neutral particles and ions are frequently observed from Dynamics Explorer 2 at altitudes above 250 km over the polar caps. These are interpreted as being due to internal gravity waves propagating in the neutral atmosphere. The disturbances characterized by vertical velocity perturbations of the order of 100 m/s and horizontal wave lengths along the satellite path of about 500 km. They often extend across the entire polar cap. The associated temperature perturbations indicate that the horizontal phase progression is from the nightside to the dayside. Vertical displacements are inferred to be of the order of 10 km and the periods to be of the order of 10(exp 3) s. The waves must propagate in the neutral atmosphere, but they usually are most clearly recognizable in the observations of ion vertical velocity and ion temperature. By combining the neutral pressure calculated from the observed neutral concentration and temperature with the vertical component of the neutral velocity, an upward energy flux of the order of 0.04 erg/sq cm-s at 250 km has been calculated, which is about equal to the maximum total solar ultraviolet heat input above that altitude. Upward energy fluxes calculated from observations on orbital passes at altitudes from 250 to 560 km indicate relatively little attenuation with altitude.

  2. Vertical and Horizontal Analysis of Crustal Structure of Southeastern Mediterranean and the Egyptian Coastal Zone, from Bouguer and Satellite Mission Data

    NASA Astrophysics Data System (ADS)

    Saleh, Salah

    2016-07-01

    The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.

  3. Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2015-12-01

    We present a new approach for the detection of gravity waves in OH-airglow observations at the measurement site Oberpfaffenhofen (11.27°E, 48.08°N), Germany. The measurements were performed at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) during the period from February 4th, 2011 to July 6th, 2011. In this case study the observations were carried out by three identical Ground-based Infrared P-branch Spectrometers (GRIPS). These instruments provide OH(3-1) rotational temperature time series, which enable spatio-temporal investigations of gravity wave characteristics in the mesopause region. The instruments were aligned in such a way that their fields of view (FOV) formed an equilateral triangle in the OH-emission layer at a height of 87 km. The Harmonic Analysis is applied in order to identify joint temperature oscillations in the three individual datasets. Dependent on the specific gravity wave activity in a single night, it is possible to detect up to four different wave patterns with this method. The values obtained for the waves' periods and phases are then used to derive further parameters, such as horizontal wavelength, phase velocity and the direction of propagation. We identify systematic relationships between periods and amplitudes as well as between periods and horizontal wavelengths. A predominant propagation direction towards the East and North-North-East characterizes the waves during the observation period. There are also indications of seasonal effects in the temporal development of the horizontal wavelength and the phase velocity. During late winter and early spring the derived horizontal wavelengths and the phase velocities are smaller than in the subsequent period from early April to July 2011.

  4. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 1: Nonhydrostatic inertia–gravity modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konor, Celal S.; Randall, David A.

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less

  6. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 1: Nonhydrostatic inertia–gravity modes

    DOE PAGES

    Konor, Celal S.; Randall, David A.

    2018-05-08

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less

  7. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  8. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Tenzer, Robert

    2017-07-01

    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  9. Toward a Global Horizontal and Vertical Elastic Load Deformation Model Derived from GRACE and GNSS Station Position Time Series

    NASA Astrophysics Data System (ADS)

    Chanard, Kristel; Fleitout, Luce; Calais, Eric; Rebischung, Paul; Avouac, Jean-Philippe

    2018-04-01

    We model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first-order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series.

  10. Midlatitude sporadic-E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1976-01-01

    The partially transparent echo from midlatitude sporadic E layers was recorded by ionosondes between the blanketing frequency and the maximum frequency. The theory that the midlatitude sporadic E layers are not uniform in the horizontal plane but contain localized regions of high electron density was evaluated using data obtained by incoherent scatter radar and found to provide a satisfactory explanation. The main features of midlatitude sporadic E layers are consistent with the convergence of metallic ions as described by the wind shear theory applied to gravity waves and tides. The interference of gravity waves with other gravity waves and tides can be recognized in the altitudes of occurrence and the structure of the layers. Small scale horizontal irregularities are attributed in some cases to critical level effects and in others to fluid instabilities. The convergence of a meteor trail can, under some circumstances, account for localized enhancement of the electron density in the layer.

  11. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    NASA Astrophysics Data System (ADS)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  12. Orientation of human optokinetic nystagmus to gravity: a model-based approach

    NASA Technical Reports Server (NTRS)

    Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.

    1994-01-01

    Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.

  13. Doppler-shifting effects on frequency spectra of gravity waves observed near the summer mesopause at high latitude

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Wang, Ding-Yi

    1991-01-01

    Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.

  14. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  15. Influence of gravity on the spatial orientation of eye nystagmus induced by unilateral lesion of horizontal semicircular canal.

    PubMed

    Pettorossi, V E; Ermanno, M; Pierangelo, E; Silvarosa, G

    2000-03-01

    The influence of gravity in the orientation and slow phase eye velocity of the ocular nystagmus following unilateral damage of the cupula in the ampulla of the horizontal semicircular canal (UHCD) was investigated. The nystagmus was analysed at different sagittal head positions using the x-y infrared eye monitor technique. The nystagmus was almost horizontal at 0 degrees head pitch angle and remained partially fixed in space when the head was pitched upward or downward. The reorientation gain of the slow and quick phases was high (about 0.75) within +/- 45 degrees of head pitch angle, but beyond this range, it decreased greatly. The gain value depended on the lesion extension to otolithic receptors. The absolute value of the slow phase eye velocity of UHCD nystagmus was also modified systematically by the head pitch, showing a reduction in the upward and an increase in the downward.

  16. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  17. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-10-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis.

  18. Secondary School Students' Conceptions Relating to Motion under Gravity

    ERIC Educational Resources Information Center

    Apostolides, Themos; Valanides, Nikos

    2008-01-01

    The study investigated tenth-, eleventh-, and twelfth-grade students' alternative ideas relating to the motion of a body travelling in the field of gravity with an initial horizontal velocity. The sample of the study consisted of 40 tenth-grade students, and 33 and 40 eleventh-grade students that attended different sections of upper secondary…

  19. Global excitation of wave phenomena in a dissipative multiconstituent medium. I - Transfer function of the earth's thermosphere. II - Impulsive perturbations in the earth's thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.

    1984-01-01

    A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.

  20. Clarifying the interplate main tectonic elements of Western Anatolia, Turkey by using GNSS velocities and Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Çırmık, Ayça; Pamukçu, Oya

    2017-10-01

    In this study, the GNSS and gravity data were processed and compared together for examining the continental structures of the Western Anatolia region which has very complicated tectonism. The GNSS data of three national projects were processed and GNSS velocities were found as approximately 25 mm per year towards southwest with respect to the Eurasia fixed frame. In order to investigate the interplate motions of the region, the Anatolian and Aegean block solutions were calculated and the differences in directions and amplitudes of velocities were observed particularly in the Anatolian block solution. Due to the Anatolian block solutions, the study area was grouped into three regions and compared with the tectonic structures as the first time for Western Anatolia by this study. Additionally, W-E and N-S relative GNSS solutions were obtained for observing the possible tectonic borders of the study area. Besides, 2nd order horizontal derivative and low-pass filter methods were applied to Bouguer gravity anomalies and the results of the gravity applications and the changes on crustal-mantle interface were compared with the GNSS horizontal velocities.

  1. The Role of Gravity on the Reproduction of Arabidopsis Plants

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1985-01-01

    The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.

  2. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    NASA Astrophysics Data System (ADS)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  3. The frequency-domain approach for apparent density mapping

    NASA Astrophysics Data System (ADS)

    Tong, T.; Guo, L.

    2017-12-01

    Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.

  4. Contribution of the GOCE gradiometer components to regional gravity solutions

    NASA Astrophysics Data System (ADS)

    Naeimi, Majid; Bouman, Johannes

    2017-05-01

    The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components Txx, Tyy, Tzz and Txz are derived. The Tzz component gives better solution than the other single-component solutions despite the less accuracy of Tzz compared to Txx and Tyy. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The Tzz and Tyy components are shown to be the main contributors in all combined solutions whereas the Txz adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.

  5. Baroclinic instability with variable gravity: A perturbation analysis

    NASA Technical Reports Server (NTRS)

    Giere, A. C.; Fowliss, W. W.; Arias, S.

    1980-01-01

    Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.

  6. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    PubMed

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  7. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    PubMed Central

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  8. Neural control of arm movements reveals a tendency to use gravity to simplify joint coordination rather than to decrease muscle effort.

    PubMed

    Wang, Wanyue; Dounskaia, Natalia

    2016-12-17

    How gravity influences neural control of arm movements remains under debate. We tested three alternative interpretations suggested by previous research: (1) that muscular control includes two components, tonic which compensates for gravity and phasic which produces the movement; (2) that there is a tendency to exploit gravity to reduce muscle effort; and (3) that there is a tendency to use a trailing pattern of joint control during which either the shoulder or elbow is rotated actively and the other joint rotates predominantly passively, and to exploit gravity for control of the passively rotated joint. A free-stroke drawing task was performed that required production of center-out strokes within a circle while selecting stroke directions randomly. The circle was positioned in the horizontal, sagittal, and frontal plane. The arm joints freely rotated in space. In each plane, the distribution of the strokes across directions was non-uniform. Directional histograms were built and their peaks were used to identify preferred movement directions. The directional preferences were especially pronounced in the two vertical planes. The upward directions were most preferred. To test the three interpretations, we used a kinetic analysis that determined the role of gravitational torque in the production of movement in the preferred directions. The results supported the third interpretation and provided evidence against the first and second interpretation. The trailing pattern has been associated with reduced neural effort for joint coordination, and therefore, we conclude that the major tendency with respect to gravity is to exploit it for simplification of joint coordination. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Internal Gravity Waves Forced by an Isolated Mountain

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Campbell, L.

    2009-12-01

    Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated mountain the time frame within which these nonlinear effects become significant depends on both the mountain height and width and that they begin to occur at least an order of magnitude later and the configuration thus remains stable longer than in the case of waves forced by a mountain range of equivalent height.

  10. Investigating middle-atmospheric gravity waves associated with a sprite-producing mesoscale convective event

    NASA Astrophysics Data System (ADS)

    Vollmer, D. R.; McHarg, M. G.; Harley, J.; Haaland, R. K.; Stenbaek-Nielsen, H.

    2016-12-01

    On 23 July 2014, a mesoscale convective event over western Nebraska produced a large number of sprites. One frame per second images obtained from a low-noise Andor Scientific CMOS camera showed regularly-spaced horizontal striations in the airglow both before and during several of the sprite events, suggesting the presence of vertically-propagating gravity waves in the middle atmosphere. Previous work hypothesized that the gravity waves were produced by the thunderstorm itself. We compare our observations with previous work, and present numerical simulations conducted to determine source, structure, and propagation of atmospheric gravity waves.

  11. A study of flight control requirements for advanced, winged, earth-to-orbit vehicles with far-aft center-of-gravity locations

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.

    1982-01-01

    Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.

  12. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate both vertical canals and otolith organs. However, the recorded responses could not be predicted from a linear combination of EVA rotational and translational responses. In contrast, one-third of the neurons responded similarly during EVA and EHA rotations, although a significant response modulation was present during translation. Thus this subpopulation of otolith + canal cells, which included neurons with either high- or low-pass dynamics to translation, appear to selectively ignore the component of otolith-selective activation that is due to changes in the orientation of the head relative to gravity. Thus contrary to primary otolith afferents and otolith-only central neurons that respond equivalently to tilts relative to gravity and translational movements, approximately one-third of the otolith + canal cells seem to encode a true estimate of the translational component of the imposed passive head and body movement.

  13. Head-Shaking Nystagmus Depends on Gravity

    PubMed Central

    Marti, Sarah; Straumann, Dominik

    2005-01-01

    In acute unilateral peripheral vestibular deficit, horizontal spontaneous nystagmus (SN) increases when patients lie on their affected ear. This phenomenon indicates an ipsilesional reduction of otolith function that normally suppresses asymmetric semicircular canal signals. We asked whether head-shaking nystagmus (HSN) in patients with chronic unilateral vestibular deficit following vestibular neuritis is influenced by gravity in the same way as SN in acute patients. Using a three-dimensional (3-D) turntable, patients (N = 7) were placed in different whole-body positions along the roll plane and oscillated (1 Hz, ±10°) about their head-fixed vertical axis. Eye movements were recorded with 3-D magnetic search coils. HSN was modulated by gravity: When patients lay on their affected ear, slow-phase eye velocity significantly increased upon head shaking and consisted of a horizontal drift toward the affected ear (average: 1.2°/s ±0.5 SD), which was added to the gravity-independent and directionally nonspecific SN. In conclusion, HSN in patients with chronic unilateral peripheral vestibular deficit is best elicited when they are lying on their affected ear. This suggests a gravity-dependent mechanism similar to the one observed for SN in acute patients, i.e., an asymmetric suppression of vestibular nystagmus by the unilaterally impaired otolith organs. PMID:15735939

  14. A simple model for testing the effects of gravity-wave-produced vertical oscillations of scattering irregularities on spaced-antenna, horizontal drift measurements

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Reid, I. M.

    1984-01-01

    It has been suggested that the velocities produced by the spaced antenna partial-reflection drift experiment may constitute a measure of the vertical oscillations due to short-period gravity waves rather than the mean horizontal flow. The contention is that the interference between say two scatterers, one of which is traveling upward, and the other down, will create a pattern which sweeps across the ground in the direction (or anti-parallel) of the wave propagation. Since the expected result, viz., spurious drift directions, is seldom, if ever, seen in spaced antenna drift velocities, this speculation is tested in an atmospheric model.

  15. Horizontal gravity gradient - An aid to the definition of crustal structure in North America

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Grieve, R. A. F.; Thomas, M. D.; Halpenny, J. F.

    1987-01-01

    A map of the magnitude of the horizontal Bouguer gravity gradient over the North American continent is used to delineate lateral discontinuities in upper crustal density and/or thickness associated with such processes as suturing and rifting. The usefulness of gradient trends in mapping major structural boundaries, which are sometimes poorly exposed or completely buried, is demonstrated by examples such as the buried southward extension of the Grenville Front and buried boundaries of the Superior Province. Gradient trends also draw attention to poorly known structures, which may have major tectonic significance, and to a continent-wide structural fabric, which may provide a record of the tectonic growth of the North American continent.

  16. Nonlinear critical-layer evolution of a forced gravity wave packet

    NASA Astrophysics Data System (ADS)

    Campbell, L. J.; Maslowe, S. A.

    2003-10-01

    In this paper, numerical simulations are presented of the nonlinear critical-layer evolution of a forced gravity wave packet in a stratified shear flow. The wave packet, localized in the horizontal direction, is forced at the lower boundary of a two-dimensional domain and propagates vertically towards the critical layer. The wave mean-flow interactions in the critical layer are investigated numerically and contrasted with the results obtained using a spatially periodic monochromatic forcing. With the horizontally localized forcing, the net absorption of the disturbance at the critical layer continues for large time and the onset of the nonlinear breakdown is delayed compared with the case of monochromatic forcing. There is an outward flux of momentum in the horizontal direction so that the horizontal extent of the packet increases with time. The extent to which this happens depends on a number of factors including the amplitude and horizontal length of the forcing. It is also seen that the prolonged absorption of the disturbance stabilizes the solution to the extent that it is always convectively stable; the local Richardson number remains positive well into the nonlinear regime. In this respect, our results for the localized forcing differ from those in the case of monochromatic forcing where significant regions with negative Richardson number appear.

  17. Extent of partial melting beneath the Cascade Range, Oregon: Constraints from gravity anomalies and ideal-body theory

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.

    1994-02-01

    The spatial correlation between a horizontal gradient in heat flow and a horizontal gradient in residual gravity in the Western Cascades of central Oregon has been interpreted by others as evidence of the western edge of a pervasive zone of high temperatures and partial melting at midcrustal depths (5-15 km). Both gradients are steep and relatively linear over north-south distances in excess of 150 km. The Western Cascades gravity gradient is the western margin of a broad gravity depression over most of the Oregon Cascade Range, implying that the midcrustal zone of anomalous temperatures lies throughout this region. Ideal-body theory applied to the gravity gradient, however, shows that the source of the Western Cascades gravity gradient cannot be deeper than about 2.5 km and is considerably shallower in some locations. These calculations are unique determinations, assuming that density contrasts associated with partial melting and elevated temperatures in the crust do not exceed 500 kg/cu m. Consequently, the gravity gradient and the heat flow gradient in the Western Cascades cannot be caused directly by the same source if the heat flow gradient originates at midcrustal depths. This conclusion in itself does not disprove the existence of a widespread midcrustal zone of anomalously high temperatures and partial melting in this area, but it does eliminate a major argument in support of its existence. The gravity gradient is most likely caused by lithologic varitions in the shallow crust, perhaps reflecting a relict boundary between the Cascade extensional trough to the west and Tertiary oceanic crust to the west. The boundary must have formed prior to Oligocene time, the age of the oldest rocks that now conceal it.

  18. Eye hyperdeviation in mouse cerebellar mutants is comparable to the gravity-dependent component of human downbeat nystagmus.

    PubMed

    Stahl, John S; Oommen, Brian S

    2008-01-01

    Humans with cerebellar degeneration commonly exhibit downbeat nystagmus (DBN). DBN has gravity-independent and -dependent components, and the latter has been proposed to reflect hyperactive tilt maculo-ocular reflexes (tilt-MOR). Mice with genetically determined cerebellar ataxia do not exhibit DBN, but they do exhibit tonic hyperdeviation of the eyes, which we have proposed to be the DBN equivalent. As such, the tilt-MOR might be predicted to be hyperactive in these mutant mice. We measured the tilt-MOR in 10 normal C57BL/6 mice and in 6 tottering, a mutant exhibiting ataxia and ocular motor abnormalities due to mutation of the P/Q calcium channel. Awake mice were placed in body orientations spanning 360 degrees about the pitch axis. The absolute, equilibrium vertical angular deviations of one eye were measured using infrared videooculography. In both strains, eye elevation varied quasi-sinusoidally with tilt angle in the range of 90 degrees nose-up to 90 degrees nose-down. Beyond this range the eye returned to a neutral position. Deviation over +/-30 degrees of tilt was an approximately linear function of the projection of the gravity vector into the animal's horizontal plane, and can thus be summarized by its slope (sensitivity). Sensitivity measured 14.9 degrees/g for C57BL/6 and 20.3 degrees/g for tottering, a statistically significant difference. Thus the pitch otolithic reflex of the ataxic mutants is hyperactive relative to controls and could explain tonic hyperdeviation of the eyes, consistent with the idea that the tonic hyperdeviation is analogous to DBN.

  19. Tsunami and infragravity waves impacting Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.

    2017-07-01

    The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.

  20. Observations of vertical winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges

    NASA Technical Reports Server (NTRS)

    Rees, D.

    1986-01-01

    Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.

  1. Design and optimization of the CFRP mirror components

    NASA Astrophysics Data System (ADS)

    Wei, Lei; Zhang, Lei; Gong, Xiaoxue

    2017-09-01

    As carbon fiber reinforced polymer (CFRP) material has been developed and demonstrated as an effective material in lightweight telescope reflector manufacturing recently, the authors of this article have extended to apply this material on the lightweight space camera mirror design and fabrication. By CFRP composite laminate design and optimization using finite element method (FEM) analysis, a spherical mirror with φ316 mm diameter whose core cell reinforcement is an isogrid configuration is fabricated. Compared with traditional ways of applying ultra-low-expansion glass (ULE) on the CFRP mirror surface, the method of nickel electroplating on the surface effectively reduces the processing cost and difficulty of the CFRP mirror. Through the FEM analysis, the first order resonance frequency of the CFRP mirror components reaches up to 652.3 Hz. Under gravity affection coupling with +5°C temperature rising, the mirror surface shape root-mean-square values (RMS) at the optical axis horizontal state is 5.74 nm, which meets mechanical and optical requirements of the mirror components on space camera.

  2. Circulation-based Modeling of Gravity Currents

    NASA Astrophysics Data System (ADS)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related phenomena, J. Fluid Mech. 31, 209-248. Shin, J.O., Dalziel, S.B. and Linden, P.F. 2004 Gravity currents produced by lock exchange, J. Fluid Mech. 521, 1-34.

  3. Gravity and solidity in four great ape species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus): vertical and horizontal variations of the table task.

    PubMed

    Cacchione, Trix; Call, Josep; Zingg, Robert

    2009-05-01

    Three experiments modeled after infant studies were run on four great ape species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus) to investigate their reasoning about solidity and gravity constraints. The aims were: (a) to find out if great apes are subject to gravity biased search or display sensitivity for object solidity, (b) to check for species differences, and (c) to assess if a gravity hypothesis or more parsimonious explanations best account for failures observed. Results indicate that great apes, unlike monkeys, show no reliable gravity bias, that ape species slightly differ in terms of their performance, and that the errors made are best explained by a gravity account. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  4. Geophysical characteristics and crustal structure of greenstone terranes: Canadian Shield

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Losier, L.; Thurston, P. C.; Gupta, V. K.; Gibb, R. A.; Grieve, R. A. F.

    1986-01-01

    Geophysical studies in the Canadian Shield have provided some insights into the tectonic setting of greenstone belts. Greenstone belts are not rooted in deep crustal structures. Geophysical techniques consistently indicate that greenstones are restricted to the uppermost 10 km or so of crust and are underlain by geophysically normal crust. Gravity models suggest that granitic elements are similarly restricted, although magnetic modelling suggests possible downward extension to the intermediate discontinuity around approx. 18 km. Seismic evidence demonstrates that steeply-dipping structure, which can be associated with the belts in the upper crust, is not present in the lower crust. Horizontal intermediate discontinuities mapped under adjacent greenstone and granitic components are not noticeably disrupted in the boundary zone. Geophysical evidence points to the presence of discontinuities between greenhouse-granite and adjacent metasedimentary erranes. Measured stratigraphic thicknesses of greenstone belts are often twice or more the vertical thicknesses determined from gravity modelling. Explantations advanced for the discrepancy include stratigraphy repeated by thrust faulting and/or listric normal faulting, mechanisms which are consistent with certain aspects of conceptual models of greenstone development. Where repetition is not a factor the gravity evidence points to removal of the root zones of greenstone belts. For one region, this has been attributed to magmatic stopping during resurgent caldera activity.

  5. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    NASA Astrophysics Data System (ADS)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  6. Turbulent Mixing in Gravity Currents with Transverse Shear

    NASA Astrophysics Data System (ADS)

    White, Brian; Helfrich, Karl; Scotti, Alberto

    2010-11-01

    A parallel flow with horizontal shear and horizontal density gradient undergoes an intensification of the shear by gravitational tilting and stretching, rapidly breaking down into turbulence. Such flows have the potential for substantial mixing in estuaries and the coastal ocean. We present high-resolution numerical results for the mixing efficiency of these flows, which can be viewed as gravity currents with transverse shear, and contrast them with the well-studied case of stably stratified, homogeneous turbulence (uniform vertical density and velocity gradients). For a sheared gravity current, the buoyancy flux, turbulent Reynolds stress, and dissipation are well out of equilibrium. The total kinetic energy first increases as potential energy is transferred to the gravity current, but rapidly decays once turbulence sets in. Despite the non-equilibrium character, mixing efficiencies are slightly higher but qualitatively similar to homogeneous stratified turbulence. Efficiency decreases in the highly energetic regime where the dissipation rate is large compared with viscosity and stratification, ɛ/(νN^2)>100, further declining as turbulence decays and kinetic energy dissipation dominates the buoyancy flux. In general, the mixing rate, parameterized by a turbulent eddy diffusivity, increases with the strength of the transverse shear.

  7. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  8. Does gravity influence the visual line bisection task?

    PubMed

    Drakul, A; Bockisch, C J; Tarnutzer, A A

    2016-08-01

    The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.

  9. Influence of gravity on the orientation of vestibular induced quick phases.

    PubMed

    Pettorossi, V E; Errico, P; Ferraresi, A; Draicchio, F

    1995-01-01

    In rabbits and cats the orientation of the quick phases (QPs) of the vestibulo-ocular reflex (VOR) was studied varying the head position in space. At different head tilt positions, QPs induced by step vestibular stimulation disaligned with respect to the stimulus toward the orientation of the earth's horizontal axis. The rabbits' QPs were horizontal during yaw stimulation and remained horizontal in a range of head pitch of +/- 90 degrees (reorientation gain = 1). Therefore, the slow compensatory responses (CSPs) progressively disaligned compared with the QPs. QPs induced by roll stimulation also showed horizontal orientation, although these were rare in the upright position and occurred more frequently when the head was pitched. In cats only the yaw-induced QPs were coplanar with the stimulus, while QPs induced by pitching were mostly oblique. It followed that in either yawing or pitching, the QPs had their end point scattered within a horizontally elongated area of the visual field. When tilting cats in the frontal plane, the orientation of QP trajectories changed with respect to the stimulus so that the end point distribution tended to remain aligned toward the horizontal instead of being fixed in the orbit. The reorientation gain decreased from 1 to 0.5 by increasing the head tilt. On the basis of difference regarding eye implantation and motility it was suggested that the effect of gravity on the orientation of QPs could be aimed at maintaining the interocular axis aligned with the horizon in the rabbit and at orientating the visual scanning system in the horizontal plane in the cat.

  10. Residual nutational activity of the sunflower hypocotyl in simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Chapman, D. K.; Brown, A. H.

    1979-01-01

    The gravity dependence of circumnutational activity in the sunflower hypocotyl is investigated under conditions of simulated weightlessness. Seedling cultures of the sunflower Helianthus annuus were placed four days after planting in clinostats rotating at a rate of 1.0 rpm in the horizontal or somersaulting configurations, and plant movements around their growth axes were recorded in infrared light by a time-lapse closed-circuit video system. The amplitudes and mean cycle durations of the plant nutations in the horizontal and tumbling clinostats are observed to be 20% and 72%, and 32% and 74%, respectively, of the values observed in stationary plants; extrapolations to a state of zero g by the imposition of small centripetal forces on horizontally clinostated plants also indicate some nutational motion in the absence of gravity. It is concluded that the results are incompatible with the model of Israelsson and Johnsson (1967) of geotropic response with overshoot for sunflower circumnutation; however, results of the Spacelab 1 mission experiment are needed to unambiguously define the role of gravitation.

  11. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  12. Continental hydrology loading observed by VLBI measurements

    NASA Astrophysics Data System (ADS)

    Eriksson, David; MacMillan, D. S.

    2014-07-01

    Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3-15 mm in the vertical component and 1-2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70-80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 0.05 for GRACE and 1.39 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.

  13. Do humans show velocity-storage in the vertical rVOR?

    PubMed

    Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S

    2008-01-01

    To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.

  14. Modeling the Diurnal Tides in the MLT Region with the Doppler Spread Parameterization of Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Trob, D.; Porter, H. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Special Session: SA03 The mesosphere/lower thermosphere region: Structure, dynamics, composition, and emission. Ground based and satellite observations in the upper mesosphere and lower thermosphere (MLT) reveal large seasonal variations in the horizontal wind fields of the diurnal and semidiurnal tides. To provide an understanding of the observations, we discuss results obtained with our Numerical Spectral Model (NMS) that incorporates the gravity wave Doppler Spread Parameterization (DSP) of Hines. Our model reproduces many of the salient features observed, and we discuss numerical experiments that delineate the important processes involved. Gravity wave momentum deposition and the seasonal variations in the tidal excitation contribute primarily to produce the large equinoctial amplitude maxima in the diurnal tide. Gravity wave induced variations in eddy viscosity, not accounted for in the model, have been shown by Akmaev to be important too. For the semidiurnal tide, with amplitude maximum observed during winter solstice, these processes also contribute, but filtering by the mean zonal circulation is more important. A deficiency of our model is that it cannot reproduce the observed seasonal variations in the phase of the semidiurnal tide, and numerical experiments are being carried out to diagnose the cause and to alleviate this problem. The dynamical components of the upper mesosphere are tightly coupled through non-linear processes and wave filtering, and this may constrain the model and require it to reproduce in detail the observed phenomenology.

  15. Deployment/retraction ground testing of a large flexible solar array

    NASA Technical Reports Server (NTRS)

    Chung, D. T.

    1982-01-01

    The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.

  16. Gravity-dependent regulation of red light induced moss protonemata branching and gametophore bud formation

    NASA Astrophysics Data System (ADS)

    Ripetskyj, R. T.; Kit, N. A.

    Isolated leafy shoots of the moss Pottia intermedia positioned horizontally on the agar surface in vertically oriented petri dishes regenerate unbranching negatively gravitropic protonemata on upper side of the regenerant. Gravity determines the site of regeneration not the process itself. White light of low intensity unsufficient to induce positive phototropism of dark-grown protonemata can, however, provoke their branching and gametophore bud formation (Ripetskyj et al., 1998; 1999). The presented experiments have been carried out with red light in Biological Research in Canisters/Light Emitting Diode (BRIC/LED) hardware developed at Kennedy Space Center, USA. Seven-day-old dark-grown negatively gravitropic secondary P. intermedia protonemata were positioned differently with respect to gravity vector and to the source of red light of low, 1 or 2 μ mol\\cdot m-2\\cdot s-1, intensities. The light induced intensive branching of the protonemata and gametophore bud formation initiation site of both processes as well as the direction of growth of branches and buds being depent on the position of protonemata with respect to gravity and light vectors. Vertically positioned, i.e. ungravistimulated, dark grown protonemata illuminated from one side with red light of 2 μ mol\\cdot m-2\\cdot s-1 intensity produced 96,9 ± 2,2% of side branches and buds growing directly towards the light source from the lit protonema side. Horizontally disposed protonemata irradiated from below with red light of the same intensity regenerate 31,7 ± 3,9% of branches and buds on the upper, i.e. shaded protonemata side, the upward growth of which should undoubtedly be determined by gravity. In vertically disposed protonemata illuminated with red light of 1 μ mol\\cdot m-2\\cdot s-1 intensity from aside 31,9 ± 5,5% of side branches and buds arised on shaded protonema side and grew away from the light. Illumination of the protonemata in horizontal position from below increased the number of upgrowing branches and buds on upper shaded protonemata side to 76,9 ± 2,4%. The results convincingly speak for stimulating effect of the interaction of gravity and red light of low intensity. Characteristically, the number of side branches and buds on upper side of horizontally disposed protonemata illuminated from below (76,9 ± 2,4%) or parallely to protonemata length from their tips (86,0 ± 5,3%) were slightly, however, statistically significantly, greater than in the case of illumination from above (62,9 ± 3,1%). The effect may be probably be explained by some intensification of gravity action with red light of low intensity from shading of upper cell side or from lighting parallelly with respect to the cell surface. This research was supported by NASA grant NN-09(R).

  17. Runners do not push off the ground but fall forwards via a gravitational torque.

    PubMed

    Romanov, Nicholas; Fletcher, Graham

    2007-09-01

    The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.

  18. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  19. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  20. Motion perception during variable-radius swing motion in darkness.

    PubMed

    Rader, A A; Oman, C M; Merfeld, D M

    2009-10-01

    Using a variable-radius roll swing motion paradigm, we examined the influence of interaural (y-axis) and dorsoventral (z-axis) force modulation on perceived tilt and translation by measuring perception of horizontal translation, roll tilt, and distance from center of rotation (radius) at 0.45 and 0.8 Hz using standard magnitude estimation techniques (primarily verbal reports) in darkness. Results show that motion perception was significantly influenced by both y- and z-axis forces. During constant radius trials, subjects' perceptions of tilt and translation were generally almost veridical. By selectively pairing radius (1.22 and 0.38 m) and frequency (0.45 and 0.8 Hz, respectively), the y-axis acceleration could be tailored in opposition to gravity so that the combined y-axis gravitoinertial force (GIF) variation at the subject's ears was reduced to approximately 0.035 m/s(2) - in effect, the y-axis GIF was "nulled" below putative perceptual threshold levels. With y-axis force nulling, subjects overestimated their tilt angle and underestimated their horizontal translation and radius. For some y-axis nulling trials, a radial linear acceleration at twice the tilt frequency (0.25 m/s(2) at 0.9 Hz, 0.13 m/s(2) at 1.6 Hz) was simultaneously applied to reduce the z-axis force variations caused by centripetal acceleration and by changes in the z-axis component of gravity during tilt. For other trials, the phase of this radial linear acceleration was altered to double the magnitude of the z-axis force variations. z-axis force nulling further increased the perceived tilt angle and further decreased perceived horizontal translation and radius relative to the y-axis nulling trials, while z-axis force doubling had the opposite effect. Subject reports were remarkably geometrically consistent; an observer model-based analysis suggests that perception was influenced by knowledge of swing geometry.

  1. Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Manson, A. H.; Smith, M. J.

    1983-01-01

    Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.

  2. Three-flat test with plates in horizontal posture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vannoni, Maurizio; Molesini, Giuseppe

    2008-04-20

    Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.

  3. Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1963-02-11

    A test subject being suited up for studies on the Reduced Gravity Walking Simulator located in the hangar at Langley Research Center. The initial version of this simulator was located inside the hangar. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in his paper "Simulators For Manned Space Research," "I would like to conclude this talk with a discussion of a device for simulating lunar gravity which is very effective and yet which is so simple that its cost is in the order of a few thousand dollars at most, rather than hundreds of thousands. With a little ingenuity, one could almost build this type simulator in his backyard for children to play on. The principle is ...if a test subject is suspended in a sling so that his body axis makes an angle of 9 1/2 degrees with the horizontal and if he then "stands" on a platform perpendicular to his body axis, the component of the earth's gravity forcing him toward the platform is one times the sine of 9 1/2 degrees or approximately 1/6 of the earth's normal gravity field. That is, a 180 pound astronaut "standing" on the platform would exert a force of only 30 pounds - the same as if he were standing upright on the lunar surface." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308; Francis B. Smith, "Simulators For Manned Space Research," Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966

  4. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.

  5. An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation.

    PubMed

    Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S

    2017-07-01

    In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.

  6. Asymptotic Laws of Thermovibrational Convecton in a Horizontal Fluid Layer

    NASA Astrophysics Data System (ADS)

    Smorodin, B. L.; Myznikova, B. I.; Keller, I. O.

    2017-02-01

    Theoretical study of convective instability is applied to a horizontal layer of incompressible single-component fluid subjected to the uniform steady gravity, longitudinal vibrations of arbitrary frequency and initial temperature difference. The mathematical model of thermovibrational convection has the form of initial boundary value problem for the Oberbeck-Boussinesq system of equations. The problems are solved using different simulation strategies, like the method of averaging, method of multiple scales, Galerkin approach, Wentzel-Kramers-Brillouin method and Floquet technique. The numerical analysis has shown that the effect of vibrations on the stability threshold is complex: vibrations can either stabilize or destabilize the basic state depending on values of the parameters. The influence of the Prandtl number on the instability thresholds is investigated. The asymptotic behaviour of critical values of the parameters is studied in two limiting cases: (i) small amplitude and (ii) low frequency of vibration. In case (i), the instability is due to the influence of thermovibrational mechanism on the classical Rayleigh-Benard convective instability. In case (ii), the nature of the instability is related to the instability of oscillating counter-streams with a cubic profile.

  7. Maui Gravity and Soil Gas Surveys

    DOE Data Explorer

    John Akerley

    2010-04-01

    Contains a ground-based gravity survey of South Maui and a series of soil CO2 flux and temperature surveys encompassing Maui and the Big Island. The gravity survey was collected from approximately 284 km2 and consisted of 400 gravity stations with 400 m spacing. Locations were derived with full DGPS. Station and line location, Complete Bouger Anomaly, first vertical derivative and horizontal gradient maps were calculated and produced. The soil CO2 flux and temperature surveys were conducted on the islands of Hawaii and Maui in April and July 2010. Average soil temperatures were measured over 10 cm depth using a hand-held thermocouple. Soil CO2 fluxes were measured using a portable accumulation chamber instrument.

  8. Atmosphere-ionosphere coupling from convectively generated gravity waves

    NASA Astrophysics Data System (ADS)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  9. On the interpretation of satellite-derived gravity and magnetic data for studies of crustal geology and metallogenesis

    NASA Technical Reports Server (NTRS)

    Hastings, D. A.

    1985-01-01

    Satellite-derived global gravity and magnetic maps have been shown to be useful in large-scale studies of the Earth's crust, despite the relative infancy of such studies. Numerous authors have made spatial associations of gravity or magnetic anomalies with geological provinces. Gravimetric interpretations are often made in terms of isostasy, regional variations of density, or of geodesy in general. Interpretations of satellite magnetic anomalies often base assumptions of overall crustal magnetism on concepts of the vertical and horizontal distribution of magnetic susceptibility, then make models of these assumed distributions. The opportunity of improving our satellite gravity and magnetic data through the proposed Geopotential Research Mission should considerably improve the scientific community's ability to analyze and interpret global magnetic and gravity data.

  10. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).

  11. Explosive lower limb extension mechanics: An on-land vs. in-water exploratory comparison.

    PubMed

    Guignard, Brice; Lauer, Jessy; Samozino, Pierre; Mourão, Luis; Vilas-Boas, João Paulo; Rouard, Annie Hélène

    2017-12-08

    During a horizontal underwater push-off, performance is strongly limited by the presence of water, inducing resistances due to its dense and viscous nature. At the same time, aquatic environments offer a support to the swimmer with the hydrostatic buoyancy counteracting the effects of gravity. Squat jump is a vertical terrestrial push-off with a maximal lower limb extension limited by the gravity force, which attracts the body to the ground. Following this observation, we characterized the effects of environment (water vs. air) on the mechanical characteristics of the leg push-off. Underwater horizontal wall push-off and vertical on-land squat jumps of two local swimmers were evaluated with force plates, synchronized with a lateral camera. To better understand the resistances of the aquatic movement, a quasi-steady Computational Fluid Dynamics (CFD) analysis was performed. The force-, velocity- and power-time curves presented similarities in both environments corresponding to a proximo-distal joints organization. In water, swimmers developed a three-step explosive rise of force, which the first one mainly related to the initiation of body movement. Drag increase, which was observed from the beginning to the end of the push-off, related to the continuous increase of body velocity with high values of drag coefficient (C D ) and frontal areas before take-off. Specifically, with velocity, frontal area was the main drag component to explain inter-individual differences, suggesting that the streamlined position of the lower limbs is decisive to perform an efficient push-off. This study motivates future CFD simulations under more ecological, unsteady conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of Unsaturated Flow Modes on Partitioning Dynamics of Gravity-Driven Flow at a Simple Fracture Intersection: Laboratory Study and Three-Dimensional Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Geyer, Tobias; Tartakovsky, Alexandre M.

    2017-11-01

    In this work, we study gravity-driven flow of water in the presence of air on a synthetic surface intersected by a horizontal fracture and investigate the importance of droplet and rivulet flow modes on the partitioning behavior at the fracture intersection. We present laboratory experiments, three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and a theoretical analysis. The flow-rate-dependent mode switching from droplets to rivulets is observed in experiments and reproduced by the SPH model, and the transition ranges agree in SPH simulations and laboratory experiments. We show that flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer. For the case of rivulet flow, we provide an analytical solution that demonstrates the existence of classical Washburn flow within the horizontal fracture.

  13. Potential Hardware and Software Improvements of Inertial Positioning and Gravity Vector Determination,

    DTIC Science & Technology

    1981-08-17

    P. 1979b. Inertial Surveying Systems - Experience and Prognosis. Paper, presented at the FIG-Symposium on Modern Technology for Cadastre and Land... Information Systems , Ottawa, Canada, Oct. 2-5, 1979. Schwarz, K. P. 1980. Gravity Field Approximation Using Inertial Survey System . The Canadian...higher performance gyroscope; and accelerometers in the horizontal channels of Litton’s local-level inertial positioning system and the resulting

  14. Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data

    NASA Astrophysics Data System (ADS)

    Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.

    2017-12-01

    In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.

  15. Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data

    NASA Astrophysics Data System (ADS)

    Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.

    2018-02-01

    In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.

  16. Effects of a Major Tsunami on the Energetics and Dynamics of the Thermosphere

    NASA Astrophysics Data System (ADS)

    Hickey, M. P.; Walterscheid, R. L.; Schubert, G.

    2009-12-01

    Using a spectral full-wave model we investigate how the energetics and dynamics of the thermosphere are influenced by the dissipation of a tsunami-driven gravity wave disturbance. Gravity waves are generated in the model by a surface displacement that mimics a tsunami having a characteristic horizontal wavelength of 400 km and a horizontal phase speed of 200 m/s. The gravity wave disturbance is fast with a large vertical wavelength and is able to reach F-region altitudes before significant viscous dissipation occurs. The gravity wave transports significant amounts of energy and momentum to this region of the atmosphere. The energy reaching the lower thermosphere could be ~ 1012 J for large tsunami events. The change in velocity associated with the wave momentum deposition in a region ~ 100 km deep centered on 250 km altitude could be 150 - 200 m/s. Thermal effects associated with the divergence of the sensible heat flux are modest (~ 20 K over the same region). The affected region could have a lateral extent of 1000 km or more, and an along-track extent of as much as 8000 km. The induced winds should be observable through a variety of methods but the thermal effects might be difficult to observe.

  17. Measuring gravity currents in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Oberg, K.A.; Czuba, J.A.; Johnson, K.K.

    2008-01-01

    Recent studies of the Chicago River have determined that gravity currents are responsible for persistent bidirectional flows that have been observed in the river. A gravity current is the flow of one fluid within another caused by a density difference between the fluids. These studies demonstrated how acoustic Doppler current profilers (ADCP) can be used to detect and characterize gravity currents in the field. In order to better understand the formation and evolution of these gravity currents, the U.S. Geological Survey (USGS) has installed ADCPs and other instruments to continuously measure gravity currents in the Chicago River and the North Branch Chicago River. These instruments include stage sensors, thermistor strings, and both upward-looking and horizontal ADCPs. Data loggers and computers installed at gaging stations along the river are used to collect data from these instruments and transmit them to USGS offices. ?? 2008 IEEE.

  18. Localize and identify the gravity sensing mechanism of plants

    NASA Technical Reports Server (NTRS)

    Bandurski, Robert S.

    1990-01-01

    The machinery by which a plant transduces the gravity stimulus into a growth response is localized and identified at the cellular level. The fact that a plant grows unequally on the lower side of a horizontally placed stem implies that there must be an asymmetric distribution of some of the chemical substances involved in the growth response. The three most likely chemicals to cause this growth were determined to be potassium, calcium, or the growth hormone, indole-3-acetic acid (IAA). IAA was chosen for this study and the results present a fairly complete understanding of the transduction of the gravity stimulus.

  19. Gas-liquid two-phase flow behaviors and performance characteristics of proton exchange membrane fuel cells in a short-term microgravity environment

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang

    2017-06-01

    In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.

  20. Predicting airborne particle deposition by a modified Markov chain model for fast estimation of potential contaminant spread

    NASA Astrophysics Data System (ADS)

    Mei, Xiong; Gong, Guangcai

    2018-07-01

    As potential carriers of hazardous pollutants, airborne particles may deposit onto surfaces due to gravitational settling. A modified Markov chain model to predict gravity induced particle dispersion and deposition is proposed in the paper. The gravity force is considered as a dominant weighting factor to adjust the State Transfer Matrix, which represents the probabilities of the change of particle spatial distributions between consecutive time steps within an enclosure. The model performance has been further validated by particle deposition in a ventilation chamber and a horizontal turbulent duct flow in pre-existing literatures. Both the proportion of deposited particles and the dimensionless deposition velocity are adopted to characterize the validation results. Comparisons between our simulated results and the experimental data from literatures show reasonable accuracy. Moreover, it is also found that the dimensionless deposition velocity can be remarkably influenced by particle size and stream-wise velocity in a typical horizontal flow. This study indicates that the proposed model can predict the gravity-dominated airborne particle deposition with reasonable accuracy and acceptable computing time.

  1. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.

    PubMed

    Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran

    2016-02-01

    The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    NASA Astrophysics Data System (ADS)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  3. Measurements of vertical motions by the Saskatoon MF radar (1983-1985): Relationships with horizontal winds and gravity waves

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.

    1989-01-01

    The continuing series of horizontal wind measurements by the spaced-antenna real time winds (RTW) method was supplemented by a phase coherent system for two years. Vertical motions are inferred from the complex autocorrelation functions, and an RTW system provides 5 min samples from 60 to 110 km. Comparisons with full interferometric 3-D velocity measurements confirm the validity of this approach. Following comparisons and corrections with the horizontal winds, mean summer and winter (24 h) days of vertical motions are shown. Tidal fluctuations are evident. In summer the motions are downward, consistent with data from Poker Flat, and the suggestion of Coy et al. (1986) that these represent Eulerian motions. The expected upward Lagrangian motion then results from adding up upward Stokes' drift. The winter motions are more complex, and are discussed in the context of gravity wave fluxes and possible meridional cells. The divergence of the vertical flux of zonal momentum is also calculated and found to be similar to the coriolis torque due to the meridional winds.

  4. Assessment of 3D hydrologic deformation using GRACE and GPS

    NASA Astrophysics Data System (ADS)

    Watson, C. S.; Tregoning, P.; Fleming, K.; Burgette, R. J.; Featherstone, W. E.; Awange, J.; Kuhn, M.; Ramillien, G.

    2009-12-01

    Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable with ever increasing precision using space geodetic techniques. By comparing the elastic deformation computed from continental water load estimates derived from the Gravity Recovery and Climate Experiment (GRACE), with three-dimensional surface deformation derived from GPS observations, there is clear potential to better understand global to regional hydrological processes, in addition to acquiring further insight into the systematic error contributions affecting each space geodetic technique. In this study, we compare elastic deformation derived from water load estimates taken from the CNES, CSR, GFZ and JPL time variable GRACE fields. We compare these surface displacements with those derived at a global network of GPS sites that have been homogeneously reprocessed in the GAMIT/GLOBK suite. We extend our comparison to include a series of different GPS solutions, with each solution only subtly different based on the methodology used to down weight the height component in realizing site coordinates on the terrestrial reference frame. Each of the GPS solutions incorporate modeling of atmospheric loading and utilization of the VMF1 and a priori zenith hydrostatic delays derived via ray tracing through ECMWF meteorological fields. The agreement between GRACE and GPS derived deformations is not limited to the vertical component, with excellent agreement in the horizontal component across areas where large hydrologic signals occur over broad spatial scales (with correlation in horizontal components as high as 0.9). Agreement is also observed at smaller scales, including across Europe. These comparisons assist in understanding the magnitude of current error contributions within both space geodetic techniques. With the emergence of homogeneously reprocessed GPS time series spanning the GRACE mission, this technique offers one possible means of validating the amplitude and phase of quasi-periodic signals present in GPS time series.

  5. Paleomagnetic determinations on Lanzarote from magnetic and gravity anomalies: Implications for the early history of the Canary Islands

    NASA Astrophysics Data System (ADS)

    Blanco-Montenegro, I.; Montesinos, F. G.; GarcíA, A.; Vieira, R.; VillalaíN, J. J.

    2005-12-01

    The Bouguer and aeromagnetic anomaly maps of Lanzarote show a gravity high and a dipolar magnetic anomaly over the central part of the island, indicating one isolated source. Assuming that the structure responsible for both anomalies is the same, a methodology has been designed to estimate the total magnetization vector of the source, which is interpreted as a large intrusive body (mafic core) positioned as a result of magma rising to the surface during the early stages of growth of Lanzarote. Considering its geometry to be known from a previous three-dimensional (3-D) gravity model, the approach proposed in this paper is based on the delineation of magnetic contacts through analysis of the horizontal gradient of the reduced-to-the-pole anomaly map, comparison between the gravity and the pseudogravity anomalies, and 3-D forward magnetic modeling. The total magnetization vector obtained by this method is defined by a module of 4.5 A m-1 and a direction D = -20° and I = 30°. Comparing the paleomagnetic pole, obtained from this direction, with the apparent polar wander path of Africa for the last 160 Myr, it is concluded that the main component of the total magnetization vector is probably a primary natural remanent magnetization (NRM) which could have been acquired between 60 and 100 Ma. This result suggests that the emplacement of magmas at shallow depths linked to the beginning of volcanism in Lanzarote took place during the Upper Cretaceous, thus providing the first evidence of a timeline for the early formative stages of this volcanic island.

  6. Gravity Field of Venus and Comparison with Earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1985-01-01

    The acceleration (gravity) anomaly estimates by spacecraft tracking, determined from Doppler residuals, are components of the gravity field directed along the spacecraft Earth line of sight (LOS). These data constitute a set of vector components of a planet's gravity field, the specific component depending upon where the Earth happened to be at the time of each measurement, and they are at varying altitudes above the planet surface. From this data set the gravity field vector components were derived using the method of harmonic splines which imposes a smoothness criterion to select a gravity model compatible with the LOS data. Given the piecewise model it is now possible to upward and downward continue the field quantities desired with a few parameters unlike some other methods which must return to the full dataset for each desired calculation.

  7. The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.

    2018-02-01

    We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.

  8. The quest for the perfect gravity anomaly: Part 2 - Mass effects and anomaly inversion

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Hinze, W. J.; Li, X.; Ravat, D.; Webring, M.

    2006-01-01

    Gravity anomalies have become an important tool for geologic studies since the widespread use of high-precision gravimeters after the Second World War. More recently the development of instrumentation for airborne gravity observations, procedures for acquiring data from satellite platforms, the readily available Global Positioning System for precise vertical and horizontal control, improved global data bases, and enhancement of computational hardware and software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases that are made available to the geoscience community by broadening their observational holdings and increasing the accuracy and precision of the included data. Currently the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States of America are being revised using new formats and standards. The objective of this paper is to describe the use of the revised standards for gravity data processing and modeling and there impact on geological interpretations. ?? 2005 Society of Exploration Geophysicists.

  9. Comparison with the horizontal phase velocity distribution of gravity waves observed airglow imaging data of different sampling periods

    NASA Astrophysics Data System (ADS)

    Matsuda, T. S.; Nakamura, T.; Ejiri, M. K.; Tsutsumi, M.; Shiokawa, K.

    2014-12-01

    Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs around mesopause. There are many airglow imagers operated all over the world, and a large amount of data which could improve our understanding of AGWs propagation direction and source distribution in the MLT region. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain (phase velocity spectrum), from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. From a series of images projected onto the geographic coordinates, 3-D Fourier transform is applied and 3-D power spectrum in horizontal wavenumber and frequency domain is obtained. Then, it is converted into phase velocity and frequency domain. Finally, the spectrum is integrated along the frequency for the range of interest and 2-D spectrum in horizontal phase velocity is calculated. This method was applied to the data obtained at Syowa Station (69ºS, 40ºE), Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal propagation characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. Airglow imaging observation has been operated with various sampling intervals. We also presents how the images with different sample interval should be treated.

  10. A Comparison of Optically Measured and Radar-Derived Horizontal Neutral Winds

    DTIC Science & Technology

    1990-01-01

    observations of large-scale gravity waves or3 traveling ionospheric disturbances by Testud [1970], Iunsucker [1982]. The contributions of the parallel...increase in Kp, in agreement with previous findings of excitation by auroral processes [ Testud , 1970; lHernandez and Roble, 1976b; lunsucker, 19821...and 0+ and H+ ions, J. Geophys. Res., 69, 2349-2355, 1964. Testud , J., Gravity waves generated during magnetic substorms, J. Atmos. Terr. Phys., 32

  11. Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.

    2016-12-01

    This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.

  12. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus

    PubMed Central

    Krebs, Hermano I; Ferraro, Mark; Buerger, Stephen P; Newbery, Miranda J; Makiyama, Antonio; Sandmann, Michael; Lynch, Daniel; Volpe, Bruce T; Hogan, Neville

    2004-01-01

    Background Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation). This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions). Results Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. Conclusion Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on experiments that test whether we can continue to influence recovery, long after the acute insult, with a novel class of spatial robotic devices. This pilot results support the pursuit of further clinical trials to test efficacy and the pursuit of optimal therapy following brain injury. PMID:15679916

  13. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus.

    PubMed

    Krebs, Hermano I; Ferraro, Mark; Buerger, Stephen P; Newbery, Miranda J; Makiyama, Antonio; Sandmann, Michael; Lynch, Daniel; Volpe, Bruce T; Hogan, Neville

    2004-10-26

    BACKGROUND: Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation). This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions). RESULTS: Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. CONCLUSION: Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on experiments that test whether we can continue to influence recovery, long after the acute insult, with a novel class of spatial robotic devices. This pilot results support the pursuit of further clinical trials to test efficacy and the pursuit of optimal therapy following brain injury.

  14. Acoustic and gravity waves in the neutral atmosphere and the ionosphere, generated by severe storms

    NASA Technical Reports Server (NTRS)

    Balachandran, N. K.

    1983-01-01

    Gravity waves in the neutral atmosphere and their propagation in the ionosphere and the study of infrasonic signals from thunder were investigated. Doppler shifts of the order of 0.1 Hz are determined and they provide high-resolution measurements of the movements in the ionosphere. By using an array of transmitters with different frequencies and at different locations, the horizontal and vertical propagation vectors of disturbances propagating through the ionosphere are determined.

  15. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  16. Refining the effects of aircraft motion on an airborne beam-type gravimeter

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Weil, C.

    2016-12-01

    A challenge of modern airborne gravimetry is identifying an aircraft/autopilot combination that will allow for high quality data collection. The natural motion of the aircraft coupled with the autopilot's reaction to changing winds and turbulence can result in a successful data collection effort when the motion is benign or in total failure when the motion is at its worst. Aircraft motion plays such an important role in airborne gravimetry for several reasons, but most importantly to this study it affects the behavior of the gravimeter's gyro-stabilized platform. The gyro-stabilized platform keeps the sensor aligned with a time-averaged local vertical to produce a scalar measurement along the plumb direction. However, turbulence can cause the sensor to align temporarily with aircraft horizontal accelerations that can both decrease the measured gravity (because the sensor is no longer aligned with the gravity field) and increase the measured gravity (because horizontal accelerations are coupling into the measurement). NOAA's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project has collected airborne gravity data using a Micro-g LaCoste TAGS (Turnkey Airborne Gravity System) beam-type meter on a variety of mostly turboprop aircraft with a wide range of outcomes, some different than one would predict. Some aircraft that seem the smoothest to the operator in flight do not produce as high quality a measurement as one would expect. Alternatively, some aircraft that have significant motion produce very high quality data. Due to the extensive nature of the GRAV-D survey, significant quantities of data exist on our various successful aircraft. In addition, we have numerous flights, although fewer, that were not successful for a number of reasons. In this study, we use spectral analysis to evaluate the aircraft motion for our various successful aircraft and compare with the problem flights in our effort to identify the signature motions indicative of aircraft that could be successful or not successful for airborne gravity collection with a beam-type sensor.

  17. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles

    2005-01-01

    On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.

  18. Enhanced Labeling Techniques to Study the Cytoskeleton During Root Growth and Gravitropism

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.

    2005-01-01

    Gravity effects the growth and development of all living organisms. One of the most obvious manifestations of gravity's effects on biological systems lies in the ability of plants to direct their growth along a path that is dictated by the gravity vector (called gravitropism). When positioned horizontally, in florescence stems and hypocotyls in dicots, and pulvini in monocots, respond by bending upward whereas roots typically bend downward. Gravitropism allows plants to readjust their growth to maximize light absorption for photosynthesis and to more efficiently acquire water and nutrients form the soil. Despite its significance for plant survival, there are still major gaps in understanding the cellular and molecular processes by which plants respond to gravity. The major aim of this proposal was to develop improved fluorescence labeling techniques to aid in understanding how the cytoskeleton modulated plant responses to gravity.

  19. Low Reynolds number suspension gravity currents.

    PubMed

    Saha, Sandeep; Salin, Dominique; Talon, Laurent

    2013-08-01

    The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.

  20. Filmwise Condensation of Steam on Externally-Finned Horizontal Tubes.

    DTIC Science & Technology

    1983-12-01

    via gravity to the boiler. The auxiliary condenser was constructed of two 9.5-mm (3/8-in) water- cooled ccpper lines helically coiled to a height of...34. " . .. . ’ . .- .. ’. .. .- . . . i . ’ -, - NPS69-83-003 - m NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS FILMWISE CONDENSATION OF STEAM ON EXTERNALLY-FINNED...and SubEtee) 5. TYPE OF REPORT & PERIOD COVERED Filmwise Condensation of Steam on Master Thesis; Externally-Finned Horizontal Tubes D e r1 6

  1. The stress protein level under clinorotation in context of the seedling developmental program and the stress response

    NASA Astrophysics Data System (ADS)

    Kozeko, Lyudmyla; Kordyum, Elizabeth

    2006-09-01

    Heat-shock proteins (HSP70 and HSP90) are present in plant cells under the normal growth conditions. At the same time, a variety of environmental disruptions results in their rapid synthesis as a substantial part of adaptation. HSP amounts can be indicative of a cellular stress level. Altered gravity (clinorotation) is unnatural for plants, so it may be a kind of stress. The aim of this study was to analyze the influence of horizontal clinorotation on the HSP70 and HSP90 level during seedling development. Pea (Pisum sativum L.) seedlings grown for 3 days from seed imbibitions in stationary control and under slow clinorotation (2 rpm) are used for this investigation. Western blot analysis indicated that HSP70 and HSP90 were abundant in the embryos of dry seeds and their amount decreased significantly during seed germination. But under horizontal clinorotation, their level in seedlings remained higher compared to the control. Furthermore, a comparison of the influence of horizontal and vertical clinorotation on the HSP level was carried out. On the ELISA data, HSP70 and HSP90 amounts in the 3-day old seedlings were higher after horizontal clinorotation than after vertical. The obtained data show an increased HSP70 and HSP90 level in pea seedlings under clinorotation. Both, rotation and change in the cell position relatively to a gravity vector affect the HSP level.

  2. On the distortions in calculated GW parameters during slanted atmospheric soundings

    NASA Astrophysics Data System (ADS)

    de la Torre, Alejandro; Alexander, Peter; Schmidt, Torsten; Llamedo, Pablo; Hierro, Rodrigo

    2018-03-01

    The significant distortions introduced in the measured atmospheric gravity wavelengths by soundings other than those in vertical and horizontal directions, are discussed as a function of the elevation angle of the sounding path and the gravity wave aspect ratio. Under- or overestimation of real vertical wavelengths during the measurement process depends on the value of these two parameters. The consequences of these distortions on the calculation of the energy and the vertical flux of horizontal momentum are analyzed and discussed in the context of two experimental limb satellite setups: GPS-LEO radio occultations and TIMED/SABER ((Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics)) measurements. Possible discrepancies previously found between the momentum flux calculated from satellite temperature profiles, on site and from model simulations, may to a certain degree be attributed to these distortions. A recalculation of previous momentum flux climatologies based on these considerations seems to be a difficult goal.

  3. Effects of clinostat rotation on Aurelia statolith synthesis

    NASA Technical Reports Server (NTRS)

    Spangenberg, D.; Davis, S.; Ross-Clunis, H., III

    1985-01-01

    Aurelia ephyrae develop eight graviceptors (rhopalia) during their metamorphosis from polyps, which are used for positional orientation with respect to gravity. In three experiments for each speed of 1/15, 1/8, 1/4, 1/2, 1, and 24 rpm, groups of six polyps were rotated in the horizontal or vertical plane (control) using clinostats. Other controls were kept stationary in the two planes. Ten ephyrae from each group were collected after 5-6 days at 27 C in iodine and the number of statoliths per rhopalium were counted. Statistical analyses of statolith numbers revealed that horizontal clinostat rotation at 1/4 and 1/2 rpm caused the formation of significantly fewer statoliths per rhopalium than were found in controls. The finding that these slow rates of rotation reduces statolith numbers suggests that the developing ephyrae were disoriented with respect to gravity at these speeds, causing fewer statocytes to differentiate or to mineralize.

  4. Effects of Clinostat Rotation on Aurelia Statolith Synthesis

    NASA Technical Reports Server (NTRS)

    Spangenberg, Dorothy B.; Davis, S.; Ross-Clunis, H., III

    1991-01-01

    Aurelia ephyrae develop eight graviceptors (rhopalia) during their metamorphosis from polyps, which are used for positional orientation with respect to gravity. In three experiments for each speed of 1/15, 1/8, 1/2, 1, and 24 rpm, groups of six polyps were rotated in the horizontal or vertical plane (control) using clinostats. Other controls were kept stationary in the two planes. Ten ephyrae from each group were collected after 5 to 6 days at 27 C in iodine and the number of statoliths per rhopalium were counted. Statistical analyses of statolith numbers revealed that horizontal clinostat rotation at 1/4 and 1/2 rpm caused the formation of significantly fewer statoliths per rhopalium than were found in controls. The finding that these slow rates of rotation reduces statolith numbers suggests that the developing ephyrae were disoriented with respect to gravity at these speeds, causing fewer statocytes to differentiate or to mineralize.

  5. Enhancement of phototropic response to a range of light doses in Triticum aestivum coleoptiles in clinostat-simulated microgravity

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Bircher, B. W.; Brown, A. H. (Principal Investigator)

    1987-01-01

    The phototropic dose-response relationship has been determined for Triticum aestivum cv. Broom coleoptiles growing on a purpose-built clinostat apparatus providing gravity compensation by rotation about a horizontal axis at 2 rev min-1. These data are compared with data sets obtained with the clinostat axis vertical and stationary, as a 1 g control, and rotating vertically to examine clinostat effects other than gravity compensation. Triticum at 1 g follows the well-established pattern of other cereal coleoptiles with a first positive curvature at low doses, followed by an indifferent response region, and a second positive response at progressively increasing doses. However, these response regions lie at higher dose levels than reported for Avena. There is no significant difference between the responses observed with the clinostat axis vertical in the rotating and stationary modes, but gravity compensation by horizontal rotation increases the magnitude of first and second positive curvatures some threefold at 100 min after stimulation. The indifferent response is replaced by a significant curvature towards the light source, but remains apparent as a reduced curvature response at these dose levels.

  6. Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics

    NASA Astrophysics Data System (ADS)

    Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike

    2014-05-01

    Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.

  7. Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Becker, Erich; Vadas, Sharon L.

    2018-03-01

    This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.

  8. Effect of Gravity on the Mammalian Cell Deformation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y.; Gonda, Steven

    1995-01-01

    The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.

  9. Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture

    PubMed Central

    Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto

    2014-01-01

    [Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively. PMID:25540485

  10. Observation of Kelvin-Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway

    NASA Astrophysics Data System (ADS)

    Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.

    2018-05-01

    We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.

  11. Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture.

    PubMed

    Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto

    2014-12-01

    [Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively.

  12. Quasi-horizontal circulation cells in 3D seawater intrusion

    USGS Publications Warehouse

    Abarca, E.; Carrera, J.; Sanchez-Vila, X.; Voss, C.I.

    2007-01-01

    The seawater intrusion process is characterized by the difference in freshwater and seawater density that causes freshwater to float on seawater. Many confined aquifers have a large horizontal extension with respect to thickness. In these cases, while buoyancy acts in the vertical direction, flow is confined between the upper and bottom boundaries and the effect of gravity is controlled by variations of aquifer elevation. Therefore, the effective gravity is controlled by the slope and the shape of the aquifer boundaries. Variability in the topography of the aquifer boundaries is one case where 3D analysis is necessary. In this work, density-dependent flow processes caused by 3D aquifer geometry are studied numerically and specifically, considering a lateral slope of the aquifer boundaries. Sub-horizontal circulation cells are formed in the saltwater entering the aquifer. The penetration of the saltwater can be quantified by a dimensionless buoyancy number that measures the lateral slope of the aquifer relative to freshwater flux. The penetration of the seawater intrusion wedge is controlled more by this slope than by the aquifer thickness and dispersivity. Thus, the slope must be taken into account in order to accurately evaluate seawater intrusion. ?? 2007 Elsevier B.V. All rights reserved.

  13. The locations and amounts of endogenous ions and elements in the cap and elongating zone of horizontally oriented roots of Zea mays L.: an electron-probe EDS study

    NASA Technical Reports Server (NTRS)

    Moore, R.; Cameron, I. L.; Hunter, K. E.; Olmos, D.; Smith, N. K.

    1987-01-01

    We used quantitative electron-probe energy-dispersive x-ray microanalysis to localize endogenous Na, Cl, K, P, S, Mg and Ca in cryofixed and freeze-dried cryosections of the cap (i.e. the putative site of graviperception) and elongating zone (i.e. site of gravicurvature) of horizontally oriented roots of Zea mays. Ca, Na, Cl, K and Mg accumulate along the lower side of caps of horizontally oriented roots. The most dramatic asymmetries of these ions occur in the apoplast, especially the mucilage. We could not detect any significant differences in the concentrations of these ions in the central cytoplasm of columella cells along the upper and lower sides of caps of horizontally-oriented roots. However, the increased amounts of Na, Cl, K and Mg in the longitudinal walls of columella cells along the lower side of the cap suggest that these ions may move down through the columella tissue of horizontally-oriented roots. Ca also accumulates (largely in the mucilage) along the lower side of the elongating zone of horizontally-oriented roots, while Na, P, Cl and K tend to accumulate along the upper side of the elongating zone. Of these ions, only K increases in concentration in the cytoplasm and longitudinal walls of cortical cells in the upper vs lower sides of the elongating zone. These results indicate that (1) gravity-induced asymmetries of ions differ significantly in the cap and elongating zone of graviresponding roots, (2) Ca accumulates along the lower side of the cap and elongating zone of graviresponding roots, (3) increased growth of the upper side of the elongating zone of horizontally-oriented roots correlates positively with increased amounts of K in the cytoplasm and longitudinal walls of cortical cells, and (4) the apoplast (especially the mucilage) may be an important component of the pathway via which ions move in graviresponding rots of Zea mays. These results are discussed relative to mechanisms for graviperception and gravicurvature of roots.

  14. Response of Seismometer with Symmetric Triaxial Sensor Configuration to Complex Ground Motion

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2007-12-01

    Most instruments used in seismological practice to record ground motion in all directions use three sensors oriented toward North, East and upward. In this standard configuration horizontal and vertical sensors differ in their construction because of gravity acceleration always applied to a vertical sensor. An alternative way of symmetric sensor configuration was first introduced by Galperin (1955) for petroleum exploration. In this arrangement three identical sensors are also positioned orthogonally to each other but are tilted at the same angle of 54.7 degrees to the vertical axis (triaxial system of coordinate balanced on its corner). Records obtained using symmetric configuration must be rotated into an earth referenced X, Y, Z coordinate system. A number of recent seismological instruments (e.g., broadband seismometers Streckeisen STS-2, Trillium of Nanometrics and Cronos of Kinemetrics) are using symmetric sensor configuration. In most of seismological studies it is assumed that rotational (rocking and torsion) components of earthquake ground motion are small enough to be neglected. However, recently examples were shown when rotational components are significant relative to translational components of motions. Response of pendulums installed in standard configuration (vertical and two horizontals) to complex input motion that includes rotations has been studied in a number of publications. We consider the response of pendulums in a symmetric sensor configuration to complex input motions including rotations, and the resultant triaxial system response. Possible implications of using symmetric sensor configuration in strong motion studies are discussed. Considering benefits of equal design of all three sensors in symmetric configuration, and as a result potentially lower cost of the three-component accelerograph, it may be useful for strong motion measurements not requiring high resolution post signal processing. The disadvantage of this configuration is that if one of the sensors is not working properly or there is a misalignment of sensors, it results in degradation of all three components. Symmetric sensor configuration requires identical processing of each channel putting a number of limitations on further processing of strong motion records.

  15. Magnetic susceptibility and AMS of the Bushveld alkaline granites, South Africa

    NASA Astrophysics Data System (ADS)

    Ferré, Eric C.; Wilson, Jeff; Gleizes, Gérard

    1999-06-01

    The Bushveld Complex in South Africa includes one of the world's largest anorogenic alkaline granite intrusions (66,000 km 2). The granite forms a composite laccolith, of 350 × 250 km in area and about 2 km in thickness, which was emplaced at about 5 km depth into sediments overlying the Kaapvaal craton, at 2054 Ma. The Bushveld granite and its roof-rocks have long been mined for Sn, W and F. The Bushveld granites have high magnetic susceptibilities ( Km from 1000 to 4000 μSI), and a quantitative model is presented, suggesting that susceptibility fabrics are primarily carried by ferromagnetic minerals. The measured AMS foliations coincide with observed subhorizontal mineral lineations and compositional layering. Magnetic lineation trends vary considerably within the horizontal plane. The existence of a weak planar fabric and, an almost absent linear component may reflect (a) laccolithic emplacement by roof uplift, causing flattening magmatic fabrics, or (b) emplacement of largely crystal-free magma crystallizing in-situ and developing horizontal compositional layering from thermal chemical diffusion fronts and gravity-driven mechanisms. Weak magnétic fabrics, like those identified in the Bushveld granites require specific sampling schemes and procedures, in addition to rigorous constraint of magnetic mineralogy and crystallization sequence.

  16. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    NASA Technical Reports Server (NTRS)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  17. Wave Structures in Thermospheric Density from Satellite Electrostatic Triaxial Accelerometer Measurements.

    DTIC Science & Technology

    1987-06-04

    Testud , J. (1970) Gravity waves generated diring magnetic substorms, .1. Atmos. Terr. Phys., 32:1793. .6 t9, "-€ according to their horizontal...auroral oval during polar substorms, J. Geophys. Res., 74:5721. 7. Testud , J. P., Amayenc, P., and Blanc, M. (1975) Middle and low latitude effects of...1730. 13. Bertin, F.J., Testud , J., Kersley, L., and Rees, P. R. (1978) The meteorological jet stream as a source of medium scale gravity waves in

  18. Gravity and Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian

    1999-01-01

    We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.

  19. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  20. Gravity controlled anti-reverse rotation device

    DOEpatents

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  1. Stimulation results in the Giddings (Austin Chalk) field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, D.N.

    1995-05-01

    So called ``water-fracs`` have obtained excellent results in the Austin Chalk formation of Giddings field. This inexpensive treatment uses high volumes of water but no proppant. The reasons the treatment is successful include imbibition, gravity drainage, skin damage removal, and repressurization of the reservoir to enhance recovery. Union Pacific Resources Co. (UPRC) has treated about 250 vertical and 150 horizontal wells with very high economic success rates. Incremental recoveries from horizontal well water fracs alone exceed 5 million bbl of oil equivalent (6 Mcf = 1 bbl).

  2. TEM and Gravity Data for Roosevelt Hot Springs, Utah FORGE Site

    DOE Data Explorer

    Hardwick, Christian; Nash, Greg

    2018-02-05

    This submission includes a gravity data in text format and as a GIS point shapefile and transient electromagnetic (TEM) raw data. Each text file additionally contains location data (UTM Zone 12, NAD83) and elevation (meters) data for that station. The gravity data shapefile was in part downloaded from PACES, University of Texas at El Paso, http://gis.utep.edu/subpages/GMData.html, and in part collected by the Utah Geological Survey (UGS) as part of the DOE GTO supported Utah FORGE geothermal energy project near Milford, Utah. The PACES data were examined and scrubbed to eliminate any questionable data. A 2.67 g/cm^3 reduction density was used for the Bouguer correction. The attribute table column headers for the gravity data shapefile are explained below. There is also metadata attached to the GIS shapefile. name: the individual gravity station name. HAE: height above ellipsoid [meter] NGVD29: vertical datum for geoid [meter] obs: observed gravity ERRG: gravity measurement error [mGal] IZTC: inner zone terrain correction [mGal] OZTC: outer zone terrain correction [mGal] Gfa: free air gravity gSBGA: Bouguer horizontal slab sCBGA: Complete Bouguer anomaly

  3. Gravity-induced stresses near a vertical cliff

    USGS Publications Warehouse

    Savage, W.Z.

    1993-01-01

    The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.

  4. Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; hide

    2016-01-01

    The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.

  5. Investigation of the Ignition and Burning of Materials in Space Cabin Atmospheres. Part 2: Ignition of a Combustible Mixture by a Hot Body with the Effects of Gravity

    NASA Technical Reports Server (NTRS)

    Lew, H. G.

    1972-01-01

    The ignition of a combustible gas mixture by a hot cylinder under the effect of a gravity field for steady state conditions is examined. For this purpose a horizontal cylinder is considered with gravity as a parameter together with a finite chemical reacting flow generated by free convection with the additional effect of diffusion. Both mass transfer and zero mass transfer cases are considered. By defining an ignition criterion the surface temperature and species are obtained from the analysis as a function of the gravity field. It is supposed that at the point of ignition the heat evolved in the gas is sufficiently high to attain a sustained combustion without any energy from the hot cylinder.

  6. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  7. Steam-assisted gravity drainage technology enhancement

    NASA Astrophysics Data System (ADS)

    Durkin, S.; Menshikova, I.

    2018-05-01

    A hydrodynamic model of a region of Yaregskoye heavy oilfield was build. The results of the simulation have shown that injection capacity along the wellbore of a horizontal well is not uniform. It is determined by the geological heterogeneity of the formation. Therefore, there is importance of enhancing SAGD technology for Yaregskoye oilfield. A new technology was created. The efficiency of the technology is proved by numerical modelling. Horizontal injector and two-wellhead production wells penetrate the formation. Horizontal sections of the wells are located one above the other in the payzone. Wells are divided into two sections. Those sections work simultaneously and independently of one another. This technology allows to increase oil recovery of the oilfield.

  8. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  9. EISCAT observations during MAC/SINE and MAC/Epsilon

    NASA Technical Reports Server (NTRS)

    Roettger, J.; Hoppe, U.-P.; Hall, C.

    1989-01-01

    The EISCAT incoherent scatter radar facility in Tromsoe, Norway was operated during the MAC/SINE campaign for 78 hours in the period 10 June to 17 July 1987, and during the MAC/Epsilon campaign for 90 hours in the period 15 October to 5 November 1987. The VHF (224 MHz) radar operations during MAC/SINE yielded most interesting observations of strong coherent echoes from the mesopause region. Characteristic data of these polar mesospheric summer echoes are presented. The UHF (933 MHz) radar operations during MAC/Epsilon were done with 18 deg off zenith beam and allows the deduction of meridonal and horizontal wind components as well as radial velocity spectra in addition to the usual electron density profiles in the D and lower E regions. Some results from the VHF and UHF radars indicating the presence of gravity waves are examined.

  10. Mass-induced sea level variations in the Red Sea from GRACE, steric-corrected altimetry, in situ bottom pressure records, and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Feng, W.; Lemoine, J.-M.; Zhong, M.; Hsu, H. T.

    2014-08-01

    An annual amplitude of ∼18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from the Gravity Recovery and Climate Experiment (GRACE) satellites and steric-corrected altimetry from 2003 to 2011. The annual mass variations in the region dominate the mean SLV, and generally reach maximum in late January/early February. The annual steric component of the mean SLV is relatively small (<3 cm) and out of phase of the mass-induced SLV. In situ bottom pressure records at the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. In addition, the horizontal water mass flux of the Red Sea estimated from GRACE and steric-corrected altimetry is validated by hydrographic observations.

  11. Weighted current sheets supported in normal and inverse configurations - A model for prominence observations

    NASA Technical Reports Server (NTRS)

    Demoulin, P.; Forbes, T. G.

    1992-01-01

    A technique which incorporates both photospheric and prominence magnetic field observations is used to analyze the magnetic support of solar prominences in two dimensions. The prominence is modeled by a mass-loaded current sheet which is supported against gravity by magnetic fields from a bipolar source in the photosphere and a massless line current in the corona. It is found that prominence support can be achieved in three different kinds of configurations: an arcade topology with a normal polarity; a helical topology with a normal polarity; and a helical topology with an inverse polarity. In all cases the important parameter is the variation of the horizontal component of the prominence field with height. Adding a line current external to the prominence eliminates the nonsupport problem which plagues virtually all previous prominence models with inverse polarity.

  12. Correcting the vertical component of ocean bottom seismometers for the effects of tilt and compliance

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Forsyth, D. W.

    2013-12-01

    Typically there are very high noise levels at long periods on the horizontal components of ocean bottom seismographs due to the turbulent interaction of bottom currents with the seismometer package on the seafloor. When there is a slight tilt of the instrument, some of the horizontal displacement caused by bottom currents leaks onto the vertical component record, which can severely increase the apparent vertical noise. Another major type of noise, compliance noise, is created when pressure variations associated with water (gravity) waves deform the seabed. Compliance noise increases with decreasing water depth, and at water depths of less than a few hundred meters, compliance noise typically obscures most earthquake signals. Following Crawford and Webb (2000), we have developed a methodology for reducing these noise sources by 1-2 orders of magnitude, revealing many events that could not be distinguished before noise reduction. Our methodology relies on transfer functions between different channels. We calculate the compliance noise in the vertical displacement record by applying a transfer function to the differential pressure gauge record. Similarly, we calculate the tilt-induced bottom current noise in the vertical displacement record by applying a transfer function to the horizontal displacement records. Using data from the Cascadia experiment and other experiments, we calculate these transfer functions at a range of stations with varying tilts and water depths. The compliance noise transfer function depends strongly on water depth, and we provide a theoretical and empirical description of this dependence. Tilt noise appears to be very highly correlated with instrument design, with negligible tilt noise observed for the 'abalone' instruments from the Scripps Institute of Oceanography and significant tilt observed for the Woods Hole Oceanographic Institution instruments in the first year deployment of the Cascadia experiment. Tilt orientation appears relatively constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.

  13. Visuomotor adaptation to a visual rotation is gravity dependent.

    PubMed

    Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry

    2015-03-15

    Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.

  14. Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Shiokawa, K.

    2016-12-01

    Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.

  15. Hydrostatic pressure mimics gravitational pressure in characean cells

    NASA Technical Reports Server (NTRS)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1992-01-01

    Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.

  16. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  17. Hydrostatic pressure mimics gravitational pressure in characean cells.

    PubMed

    Staves, M P; Wayne, R; Leopold, A C

    1992-01-01

    Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.

  18. Gravity receptors in a microcrustacean water flea - Sensitivity of antennal-socket setae in Daphnia magna

    NASA Technical Reports Server (NTRS)

    Meyers, D. G.; Farmer, J. M.

    1982-01-01

    Gravity receptors of Dephnia magna were discovered on the basal segment of the swimming antennae and were shown to respond to upward water currents that pass the animal as it sinks between swimming strokes. Sensitivity of the gravity perceiving mechanism was tested by subjecting daphnids to a series of five decreasingly dense aqueous solutions (neutral density to water) in darkness (to avoid visual cues). Three-dimensional, video analysis of body position (pitch, yaw and roll) and swimming path (hop and sink, vertical and horizontal patterns) revealed a gradual threshold that occurred near a density difference between the animal and its environment of less than 0.25%. Because daphnids do not sink but continue to slide after stroking in the increased density solutions, gravity perception appears to occur during a vertical swing of the longitudinal body axis to the vertical plane, about their center of gravity, and, thereby, implies a multidirectional sensitivity for the antennal-socket setae.

  19. Atmospheric waves on Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Häusler, B.; Hinson, D. P.; Tyler, G. L.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-09-01

    Next to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves and turbulence play a significant role in the development and maintenance of atmospheric super rotation.

  20. The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity.

    PubMed

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko

    2014-01-01

    When people are asked to indicate the vanishing location of a moving target, errors in the direction of motion (representational momentum) and in the direction of gravity (representational gravity) are usually found. These errors possess a temporal course wherein the memory for the location of the target drifts downwards with increasing temporal intervals between target's disappearance and participant's responses (representational trajectory). To assess if representational trajectory is a body-referenced or a world-referenced phenomenon. A behavioral localization method was employed with retention times between 0 and 1400 ms systematically imposed after the target's disappearance. The target could move horizontally (rightwards or leftwards) or vertically (upwards or downwards). Body posture was varied in a counterbalanced order between sitting upright and lying on the side (left lateral decubitus position). In the upright task, the memory for target location drifted downwards with time in the direction of gravity. This time course did not emerge for the decubitus task, where idiotropic dominance was found. The dynamic visual representation of gravity is neither purely body-referenced nor world-referenced. It seems to be modulated instead by the relationship between the idiotropic vector and physical gravity.

  1. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).

  2. Integration of orientation, clinorotation, and sensitivity in the graviresponse

    NASA Astrophysics Data System (ADS)

    Hasenstein, Karl H.; John, Susan

    Gravitropism describes the response of plants to some acceleration and typically involves amy-loplast displacement. Despite numerous studies, opinions diverge on the perception threshold and persistence of the stimulus. Short-term reorientation in the gravity field and superim-posed mechanostimulation (clinorotation) has the potential to reveal the duration (half-life) of mechanostimulation or memory persistence. Although clinorotation is commonly used to compensate the effect of continuous gravity stimulation, it adds long-term mechanostimulation to short-term reorientation. The constantly changing gravity vector is likely to interfere with curvature and root development. Especially sensitive are columella cells and entire layers have been shown to undergo programmed cell death upon clinorotation. It is unknown to what extent this response depends on the onset, speed, or duration of clinorotation. To determine the susceptibility of the graviresponse on clinorotation, we studied the effects of the rate (0.5 to 5 rpm) of rotation of reoriented flax roots (placed horizontally for 5, 10, or 15 min). Seedlings were kept in the dark, clinorotated either parallel or perpendicular to the root axis and imaged after each rotation by an infrared video camera. Horizontal clinorotation did not affect root growth rate (0.78±0.05 mm/h) but vertical clinorotation reduced root growth by more than 10%. The rate of clinorotation did not affect growth for either condition. However, maximal curvature for vertical clinorotation decreased with increasing rate of rotation and produced straight roots at 5 rpm. Horizontal clinorotation increased curvature with increasing reorienta-tion time and resulted in curvature that increased with the rotation rate. Thus, clinorotation changes the graviresponse but introduces secondary effects that depend on rate and direction of rotation.

  3. The role of viscous magma mush spreading in volcanic flank motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Plattner, C.; Amelung, F.; Baker, S.; Govers, R.; Poland, M.

    2013-01-01

    Multiple mechanisms have been suggested to explain seaward motion of the south flank of Kīlauea Volcano, Hawai‘i. The consistency of flank motion during both waxing and waning magmatic activity at Kīlauea suggests that a continuously acting force, like gravity body force, plays a substantial role. Using finite element models, we test whether gravity is the principal driver of long-term motion of Kīlauea's flank. We compare our model results to geodetic data from Global Positioning System and interferometric synthetic aperture radar during a time period with few magmatic and tectonic events (2000-2003), when deformation of Kīlauea was dominated by summit subsidence and seaward motion of the south flank. We find that gravity-only models can reproduce the horizontal surface velocities if we incorporate a regional décollement fault and a deep, low-viscosity magma mush zone. To obtain quasi steady state horizontal surface velocities that explain the long-term seaward motion of the flank, we find that an additional weak zone is needed, which is an extensional rift zone above the magma mush. The spreading rate in our model is mainly controlled by the magma mush viscosity, while its density plays a less significant role. We find that a viscosity of 2.5 × 1017–2.5 × 1019 Pa s for the magma mush provides an acceptable fit to the observed horizontal surface deformation. Using high magma mush viscosities, such as 2.5 × 1019 Pa s, the deformation rates remain more steady state over longer time scales. These models explain a significant amount of the observed subsidence at Kīlauea's summit. Some of the remaining subsidence is probably a result of magma withdrawal from subsurface reservoirs

  4. Characterization of Metalorganic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Jesser, W. A.

    1998-01-01

    A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.

  5. Rayleigh lidar observations of gravity wave activity in the upper stratosphere at Urbana, Ill.

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Miller, M. S.; Liu, C. H.

    1988-01-01

    During 13 nights of Rayleigh lidar measurements at Urbana, Ill. in 1984 to 1986, thirty-six quasi-monochromatic gravity waves were observed in the 35 to 50 km altitude region of the stratosphere. The characteristics of the waves are compared with other lidar and radar measurements of gravity waves and the theoretical models of wave saturation and dissipation phenomena. The measured vertical wavelengths ranged from 2 to 11.5 km and the measured vertical phase velocities ranged from 10 to 85 cm/s. The vertical wavelengths and vertical phase velocities were used to infer observed wave periods which ranged from 100 to 1000 min and horizontal wavelengths which ranged from 70 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No significant seasonal variations were evident in the observed parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with wave periods, which is consistent with recent sodium lidar studies of quasi-monochromatic waves near the mesopause. An average amplitude growth length of 20.9 km for the rms wind perturbations was estimated from the data. Kinetic energy density associated with the waves decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.

  6. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  7. Kappa angles in different positions in patients with myopia during LASIK

    PubMed Central

    Qi, Hui; Jiang, Jing-Jing; Jiang, Yan-Ming; Wang, Li-Qiang; Huang, Yi-Fei

    2016-01-01

    AIM To investigate the difference in kappa angle between sitting and supine positions during laser-assisted in situ keratomileusis (LASIK). METHODS A retrospective study was performed on 395 eyes from 215 patients with myopia that received LASIK. Low, moderate, and high myopia groups were assigned according to diopters. The horizontal and vertical components of kappa angle in sitting position were measured before the operation, and in supine position during the operation. The data from the two positions were compared and the relationship between kappa angle and diopters were analyzed. RESULTS Two hundred and twenty-three eyes (56.5%) in sitting position and 343 eyes (86.8%) in supine position had positive kappa angles. There were no significant differences in horizontal and vertical components of kappa angle in the sitting position or horizontal components of kappa angle in the supine position between the three groups (P>0.05). A significant difference in the vertical components of kappa angle in the supine position was seen in the three groups (P<0.01). Differences in both horizontal and vertical components of kappa angles were significant between the sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angles (P<0.05) were found and vertical components of kappa angle in sitting and supine positions were negatively correlated with the degree of myopia (sitting position: r=-0.109; supine position: r=-0.172; P<0.05). CONCLUSION There is a correlation in horizontal and vertical components of kappa angle in sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angle in sitting and supine positions till the end of the results. This result still needs further observation. Clinicians should take into account different postures when excimer laser surgery needs to be performed. PMID:27162734

  8. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  9. Gravity Effect on Capillary Limit in a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2007-01-01

    This paper describes the gravity effect on heat transport characteristics in a minia6re loop heat pipe with multiple evaporators and multiple condensers. Tests were conducted in three different orientations: horizontal, 45deg tilt, and vertical. The gravity affected the loop's natural operating temperature, the maximum heat transport capability, and the thermal conductance. In the case that temperatures of compensation chambers were actively controlled, the required control heater power was also dependent on the test configuration. In the vertical configuration, the secondary wick was not able to pump the liquid from the CC to the evaporator against the gravity. Thus the loop could operate stably or display some peculiar behaviors depending on the initial liquid distribution between the evaporator and the CC. Because such an initial condition was not known prior to the test, the subsequent loop performance was unpredictable.

  10. Comparison of New Airborne Gravity Results and GRACE Anomalies in the Thwaites Glacier Catchment of the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Holt, J. W.; Blankenship, D. D.; Richter, T. G.; Filina, I. Y.

    2005-12-01

    The West Antarctic Ice Sheet is a marine ice sheet of which 75% is resting on bedrock below sea level. This situation is highly unstable and as the climate warms, the potential for rapid discharge of the ice sheet grows. Examining the areas of the ice sheet that are most likely to react to changing climate is essential. The Amundsen Sea Embayment contains two of the most important outlet glaciers in West Antarctica: Thwaites and Pine Island Glaciers. These two glaciers have among the highest discharge velocities in West Antarctica and they lack large protective ice shelves, making them susceptible to warming ocean waters. The area is currently a target of interest for both GRACE and GLAS, as well as future land- and air-based surveys. To date, we have conducted the only large-scale geophysical survey over the catchment of Thwaites Glacier: an airborne survey completed during the austral summer 2004-2005. Over 43,500 line-kilometers of data were collected with a geophysical platform that included ice-penetrating radar, gravity, magnetics, laser and pressure altimetry, and GPS. Free-air gravity, in conjunction with magnetics and radar-derived subglacial topography, is capable of delineating microplate and rift boundaries as well as basin and volcano locations. A free-air gravity map of these structures helps ascertain the contribution of subglacial geology to the ice sheet's decay in the Thwaites Glacier catchment. The acquisition, reduction, and initial results of the airborne gravity survey will be presented and then compared to GRACE gravity anomalies. Extreme relief in ice surface elevation across the survey area necessitated short, smooth vertical altitude changes at survey block boundaries to maintain adequate flight altitude for the onboard ice-penetrating radar systems. Weather conditions sometimes required additional elevation changes or course corrections, producing significant aircraft motion during data acquisition. The impacts of these aircraft motions on the gravity data are discussed. The combination of GPS-derived horizontal accelerations with meter-mounted accelerometer measurements allows for the direct calculation of platform leveling errors, including leakage of the horizontal accelerations into the measured vertical gravity. We examine the magnitude and significance of platform leveling errors in relation to the overall survey resolution. Power spectral analysis of the gravity illuminates differences in the anomaly detection threshold over thick ice like that near Byrd Subglacial Basin versus over thin ice like that near the Thwaites Glacier grounding line. Filtering requirements for this situation are discussed. A preliminary free-air gravity map for the Thwaites Glacier catchment is presented along with error analysis and initial structural interpretations. The interpretations of the airborne regional gravity will be compared to GRACE static gravity anomalies over the same area of the catchment.

  11. Gravity Waves characteristics and their impact on turbulent transport above an Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Cava, Daniela; Giostra, Umberto; Katul, Gabriel

    2016-04-01

    Turbulence within the stable boundary layer (SBL) remains a ubiquitous feature of many geophysical flows, especially over glaciers and ice-sheets. Although numerous studies have investigated various aspects of the boundary layer motion during stable atmospheric conditions, a unified picture of turbulent transport within the SBL remains elusive. In a strongly stratified SBL, turbulence generation is frequently associated with interactions with sub-meso scale motions that are often a combination of gravity waves (GWs) and horizontal modes. While some progress has been made in the inclusion of GW parameterisation within global models, description and parameterisation of the turbulence-wave interaction remain an open question. The discrimination between waves and turbulence is a focal point needed to make progress as these two motions have different properties with regards to heat, moisture and pollutant transport. In fact, the occurrence of GWs can cause significant differences and ambiguities in the interpretation of turbulence statistics and fluxes if not a priori filtered from the analysis. In this work, the characteristics of GW and their impact on turbulent statistics were investigated using wind velocity components and scalars collected above an Antarctic Ice sheet during an Austral Summer. Antarctica is an ideal location for exploring the characteristics of GW because of persistent conditions of strongly stable atmospheric stability in the lower troposphere. Periods dominated by wavy motions have been identified by analysing time series measured by fast response instrumentation. The GWs nature and features have been investigated using Fourier cross-spectral indicators. The detected waves were frequently characterised by variable amplitude and period; moreover, they often produced non-stationarity and large intermittency in turbulent fluctuations that can significantly alter the estimation of turbulence statistics in general and fluxes in particular. A multi-resolution decomposition based on the Haar wavelet has been applied to separate gravity waves from turbulent fluctuations in case of a sufficiently defined spectral gap. Statistics computed after removing wavy disturbances highlight the large impact of gravity waves on second order turbulent quantities. One of the most impacted parameters is turbulent kinetic energy, in particular in the longitudinal and lateral components. The effect of wave activity on momentum and scalar fluxes is more complex because waves can produce large errors in sign and magnitude of computed turbulent fluxes or they themselves can contribute to intermittent turbulent mixing. The proposed filtering procedure based on the multi-resolution decomposition restored the correct sign in the turbulent sensible heat flux values. These findings highlight the significance of a correct evaluation of the impact of wave components when the goal is determining the turbulent transport component of mass and energy in the SBL.

  12. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    NASA Astrophysics Data System (ADS)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  13. The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown.

    PubMed

    Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob

    2016-01-01

    Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity.

  14. The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown

    PubMed Central

    Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob

    2016-01-01

    Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity. PMID:28725740

  15. Point Defect Distributions in ZnSe Crystals: Effects of Gravity Vector Orientation During Physical Vapor Transport Growth

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.

    1999-01-01

    ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.

  16. A Spectroscopic Survey of Field Red Horizontal-branch Stars

    NASA Astrophysics Data System (ADS)

    Afşar, Melike; Bozkurt, Zeynep; Böcek Topcu, Gamze; Casetti-Dinescu, Dana I.; Sneden, Christopher; Şehitog̅lu, Gizem

    2018-06-01

    A metallicity, chemical composition, and kinematic survey has been conducted for a sample of 340 candidate field red horizontal-branch (RHB) stars. Spectra with high resolution and high signal-to-noise ratio were gathered with the McDonald Observatory 2.7 m Tull and the Hobby–Eberly Telescope echelle spectrographs, and were used to determine effective temperatures, surface gravities, microturbulent velocities, [Fe/H] metallicities, and abundance ratios [X/Fe] for seven α and Fe-group species. The derived temperatures and gravities confirm that at least half of the candidates are true RHB stars, with (average) parameters T eff ∼ 5000 K and log g ∼ 2.5. From the α abundances alone, the thin and thick Galactic populations are apparent in our sample. Space motions for 90% of the program stars were computed from Hipparcos and Gaia parallaxes and proper motions. Correlations between chemical compositions and Galactic kinematics clearly indicate the existence of both thin-disk and thick-disk RHB stars.

  17. Neutrons on a surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  18. Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity

    NASA Astrophysics Data System (ADS)

    Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.

    2017-03-01

    The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.

  19. Statistical properties of gravity-driven granular discharge flow under the influence of an obstacle

    NASA Astrophysics Data System (ADS)

    Endo, Keita; Katsuragi, Hiroaki

    2017-06-01

    Two-dimensional granular discharge flow driven by gravity under the influence of an obstacle is experimentally investigated. A horizontal exit of width W is opened at the bottom of vertical Hele-Shaw cell filled with stainless-steel particles to start the discharge flow. In this experiment, a circular obstacle is placed in front of the exit. Thus, the distance between the exit and obstacle L is also an important parameter. During the discharge, granular-flow state is acquired by a high-speed camera. The bulk discharge-flow rate is also measured by load cell sensors. The obtained high-speed-image data are analyzed to clarify the particle-level granular-flow dynamics. Using the measured data, we find that the obstacle above the exit affects the granular- flow field. Specifically, the existence of obstacle results in large horizontal granular temperature and small packing fraction. This tendency becomes significant when L is smaller than approximately 6Dg when W ≃ 4Dg, where Dg is diameter of particles.

  20. Hot horizontal branch stars: Predictions for mass loss. Winds, rotation, and the low gravity problem

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; Cassisi, Santi

    2002-09-01

    We predict mass-loss rates for the late evolutionary phases of low-mass stars, with special emphasis on the consequences for the morphology of the Horizontal Branch (HB). We show that the computed rates, as predicted by the most plausible mechanism of radiation pressure on spectral lines, are too low to produce EHB/sdB stars. This invalidates the scenario recently outlined by Yong et al. (2000) to create these objects by mass loss on the HB. We argue, however, that mass loss plays a role in the distribution of rotational velocities of hot HB stars, and may - together with the enhancement of heavy element abundances due to radiative levitation - provide an explanation for the so-called ``low gravity'' problem. The mass loss recipe derived for hot HB (and extreme HB, sdB, sdOB) stars may also be applied to post-HB (AGB-manqué, UV-bright) stars over a range in effective temperatures between 12 500-40 000 K.

  1. Two components of postseismic gravity changes of megathrust earthquakes from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Heki, K.

    2013-12-01

    There are several reports of the observations of gravity changes due to megathrust earthquakes with data set of Gravity Recovery And Climate Experiment (GRACE) satellite. We analyzed the co- and postseismic gravity changes of the three magnitude 9 class earthquakes, the 2004 Sumatra-Andaman, the 2010 Chile (Maule), and the 2011 Tohoku-Oki earthquakes, using the newly released data (Release 05 data) set. In addition to the coseismic steps, these earthquakes showed a common feature that the postseismic changes include two components with different polarity and time constants, i.e. rapid decreases over a few months, followed by slow increases lasting for years. This is shown in the auxiliary figure of this abstract. In this figure, the white circles are the data whose seasonal and secular changes were removed. The vertical translucent lines denote the earthquake occurrence times. All the three earthquakes suggest the existence of two postseismic gravity change components with two distinct time constants. The first (short-term) component showed geographical distribution similar to the coseismic changes, but the position of the largest gravity decrease shifted toward the trench. The short-term components can be related to afterslip, but their time constants and distributions showed significant deviation from gravity changes predicted by the afterslip models. The second (long-term) components are characterized by positive gravity changes with the peak close to the trench axis. The long-term components should be attributed to different or multiple mechanisms, e.g. viscous relaxation of rocks in the upper mantle [Han and Simons, 2008; Panet et al., 2007] and diffusion of supercritical water around the down-dip end of the ruptured fault [Ogawa and Heki, 2007]. Both of the two mechanisms can explain the postseismic gravity increase in this timescale to some extent, but there have been no decisive evidence to prove or disprove either one of these. But generally speaking, postseismic crustal movements measured by GPS do not show such polarity reversals. This suggests that satellite gravimetry can separate two independent physical postseismic processes that are not discernible by observing only surface crustal movements.

  2. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  3. Ballistics Model for Particles on a Horizontal Plane in a Vacuum Propelled by a Vertically Impinging Gas Jet

    NASA Technical Reports Server (NTRS)

    Lane, J. E.; Metzger, P. T.

    2010-01-01

    A simple trajectory model has been developed and is presented. The particle trajectory path is estimated by computing the vertical position as a function of the horizontal position using a constant horizontal velocity and a vertical acceleration approximated as a power law. The vertical particle position is then found by solving the differential equation of motion using a double integral of vertical acceleration divided by the square of the horizontal velocity, integrated over the horizontal position. The input parameters are: x(sub 0) and y(sub 0), the initial particle starting point; the derivative of the trajectory at x(sub 0) and y(sub 0), s(sub 0) = s(x(sub 0))= dx(y)/dy conditional expectation y = y((sub 0); and b where bx(sub 0)/y(sub 0) is the final trajectory angle before gravity pulls the particle down. The final parameter v(sub 0) is an approximation to a constant horizontal velocity. This model is time independent, providing vertical position x as a function of horizontal distance y: x(y) = (x(sub 0) + s(sub 0) (y-y(sub 0))) + bx(sub 0) -(s(sub 0)y(sub 0) ((y - y(sub 0)/y(sub 0) - ln((y/y(sub 0)))-((g(y-y(sub 0)(exp 2))/ 2((v(sub 0)(exp 2). The first term on the right in the above equation is due to simple ballistics and a spherically expanding gas so that the trajectory is a straight line intersecting (0,0), which is the point at the center of the gas impingement on the surface. The second term on the right is due to vertical acceleration, which may be positive or negative. The last term on the right is the gravity term, which for a particle with velocities less than escape velocity will eventually bring the particle back to the ground. The parameters b, s(sub 0), and in some cases v(sub 0), are taken from an interpolation of similar parameters determined from a CFD simulation matrix, coupled with complete particle trajectory simulations.

  4. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.

  5. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 2: Quasi-geostrophic Rossby modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konor, Celal S.; Randall, David A.

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less

  6. Effects of horizontal body casting on the baroreceptor reflex control of heart rate

    NASA Technical Reports Server (NTRS)

    Billman, G. E.; Dickey, D. T.; Sandler, H.; Stone, H. L.

    1982-01-01

    The purpose of this study was to investigate the effects of long-term horizontal body position on baroreceptor reflex control of heart rate. Six male rhesus monkeys (6.2-9.4 kg) were given bolus injections of 4.0 microgram/kg, phenylephrine during each of the following conditions: awake, anesthetized (10 mg/kg ketamine HCl), and after beta-blockade (1 mg/kg propranolol HCl) before, 7, 14, and 28 days after being placed in a horizontal body cast. R-R interval vs. systolic arterial pressure was plotted, and the slope was determined by least-squares-fit linear regression. Baroreceptor slope was significantly reduced by 7 days of horizontal body position and remained attenuated throughout the 28-day restraint period both before and after beta-receptor blockade. These data are consistent with the thesis that prolonged exposure to a zero-gravity environment impairs autonomic reflex regulation of the cardiovascular system.

  7. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 2: Quasi-geostrophic Rossby modes

    DOE PAGES

    Konor, Celal S.; Randall, David A.

    2018-05-08

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less

  8. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations - Part 2: Quasi-geostrophic Rossby modes

    NASA Astrophysics Data System (ADS)

    Konor, Celal S.; Randall, David A.

    2018-05-01

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia-gravity modes on a midlatitude f plane.The results of our normal-mode analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.

  9. Current Space Station Experiments Investigating Component Level Electronics Repair

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2010-01-01

    The Soldering in a Reduced Gravity Experiment (SoRGE) and Component Repair Experiment (CRE)-1 are tests performed on the International Space Station to determine the techniques, tools, and training necessary to allow future crews to perform manual electronics repairs at the component level. SoRGE provides information on the formation and internal structure of through-hole solder joints, illustrating the challenges and implications of soldering in reduced gravity. SoRGE showed a significant increase in internal void defects for joints formed in low gravity compared to normal gravity. Methods for mitigating these void defects were evaluated using a modified soldering process. CRE-1 demonstrated the removal, cleaning, and replacement of electronics components by manual means on functional circuit boards. The majority of components successful passed a post-repair functional test demonstrating the feasibility of component-level repair within the confines of a spacecraft. Together, these tasks provide information to recommend material and tool improvements, training improvements, and future work to help enable electronics repairs in future space missions.

  10. A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight

    NASA Astrophysics Data System (ADS)

    Haustein, Herman D.; Harnik, Ron S.; Rohlfs, Wilko

    2017-08-01

    A useable model for laminar free-surface jet evolution during flight, for both horizontal and vertical jets, is developed through joint analytical, experimental, and simulation methods. The jet's impingement centerline velocity, recently shown to dictate stagnation zone heat transfer, encompasses the entire flow history: from pipe-flow velocity profile development to profile relaxation and jet contraction during flight. While pipe-flow is well-known, an alternative analytic solution is presented for the centerline velocity's viscous-driven decay. Jet-contraction is subject to influences of surface tension (We), pipe-flow profile development, in-flight viscous dissipation (Re), and gravity (Nj = Re/Fr). The effects of surface tension and emergence momentum flux (jet thrust) are incorporated analytically through a global momentum balance. Though emergence momentum is related to pipe flow development, and empirically linked to nominal pipe flow-length, it can be modified to incorporate low-Re downstream dissipation as well. Jet contraction's gravity dependence is extended beyond existing uniform-velocity theory to cases of partially and fully developed profiles. The final jet-evolution model relies on three empirical parameters and compares well to present and previous experiments and simulations. Hence, micro-jet flight experiments were conducted to fill-in gaps in the literature: jet contraction under mild gravity-effects, and intermediate Reynolds and Weber numbers (Nj = 5-8, Re = 350-520, We = 2.8-6.2). Furthermore, two-phase direct numerical simulations provided insight beyond the experimental range: Re = 200-1800, short pipes (Z = L/d . Re ≥ 0.01), variable nozzle wettability, and cases of no surface tension and/or gravity.

  11. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates.

    PubMed

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-07-26

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.

  12. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-01-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  13. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates

    PubMed Central

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-01-01

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333

  14. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  15. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.

    2016-06-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  16. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  17. Calcium movement, graviresponsiveness and the structure of columella cells and columella tissues in roots of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.

  18. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  19. Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela

    2018-01-01

    Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.

  20. Behavioral regulation of gravity - Schedule effects under escape-avoidance procedures

    NASA Technical Reports Server (NTRS)

    Clark, F. C.; Lange, K. O.; Belleville, R. E.

    1973-01-01

    Squirrel monkeys were restrained in a centrifuge capsule and trained to escape and avoid increases in artificial gravity. During escape-avoidance, lever responses reduced centrifugally simulated gravity or postponed scheduled increases. The effect of variation in the interval of postponement (equal to the duration of decrease produced by escape responses) was studied under a multiple schedule of four components. Three components were gravity escape-avoidance with postponement times of 20, 40, and 60 sec. The fourth component was extinction. Each component was associated with a different auditory stimulus. Rate of responding decreased with increasing postponement time and higher mean g-levels occurred at shorter intervals of postponement. Effects of the schedule parameter on response rate and mean g-level were similar to effects of the schedule on free-operant avoidance and on titration behavior maintained by shock.

  1. Multivoxel Pattern Analysis Reveals 3D Place Information in the Human Hippocampus.

    PubMed

    Kim, Misun; Jeffery, Kate J; Maguire, Eleanor A

    2017-04-19

    The spatial world is three dimensional (3D) and humans and other animals move both horizontally and vertically within it. Extant neuroscientific studies have typically investigated spatial navigation on a horizontal 2D plane, leaving much unknown about how 3D spatial information is represented in the brain. Specifically, horizontal and vertical information may be encoded in the same or different neural structures with equal or unequal sensitivity. Here, we investigated these possibilities using fMRI while participants were passively moved within a 3D lattice structure as if riding a rollercoaster. Multivoxel pattern analysis was used to test for the existence of information relating to where and in which direction participants were heading in this virtual environment. Behaviorally, participants had similarly accurate memory for vertical and horizontal locations and the right anterior hippocampus (HC) expressed place information that was sensitive to changes along both horizontal and vertical axes. This is suggestive of isotropic 3D place encoding. In contrast, participants indicated their heading direction faster and more accurately when they were heading in a tilted-up or tilted-down direction. This direction information was expressed in the right retrosplenial cortex and posterior HC and was only sensitive to vertical pitch, which could reflect the importance of the vertical (gravity) axis as a reference frame. Overall, our findings extend previous knowledge of how we represent the spatial world and navigate within it by taking into account the important third dimension. SIGNIFICANCE STATEMENT The spatial world is 3D. We can move horizontally across surfaces, but also vertically, going up slopes or stairs. Little is known about how the brain supports representations of 3D space. A key question is whether horizontal and vertical information is equally well represented. Here, we measured fMRI response patterns while participants moved within a virtual 3D environment and found that the anterior hippocampus (HC) expressed location information that was sensitive to the vertical and horizontal axes. In contrast, information about heading direction, found in retrosplenial cortex and posterior HC, favored the vertical axis, perhaps due to gravity effects. These findings provide new insights into how we represent our spatial 3D world and navigate within it. Copyright © 2017 Kim et al.

  2. Inversion of gravity gradient tensor data: does it provide better resolution?

    NASA Astrophysics Data System (ADS)

    Paoletti, V.; Fedi, M.; Italiano, F.; Florio, G.; Ialongo, S.

    2016-04-01

    The gravity gradient tensor (GGT) has been increasingly used in practical applications, but the advantages and the disadvantages of the analysis of GGT components versus the analysis of the vertical component of the gravity field are still debated. We analyse the performance of joint inversion of GGT components versus separate inversion of the gravity field alone, or of one tensor component. We perform our analysis by inspection of the Picard Plot, a Singular Value Decomposition tool, and analyse both synthetic data and gradiometer measurements carried out at the Vredefort structure, South Africa. We show that the main factors controlling the reliability of the inversion are algebraic ambiguity (the difference between the number of unknowns and the number of available data points) and signal-to-noise ratio. Provided that algebraic ambiguity is kept low and the noise level is small enough so that a sufficient number of SVD components can be included in the regularized solution, we find that: (i) the choice of tensor components involved in the inversion is not crucial to the overall reliability of the reconstructions; (ii) GGT inversion can yield the same resolution as inversion with a denser distribution of gravity data points, but with the advantage of using fewer measurement stations.

  3. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms

    PubMed Central

    Chang, Won-Du; Cha, Ho-Seung; Im, Chang-Hwan

    2016-01-01

    This paper introduces a method to remove the unwanted interdependency between vertical and horizontal eye-movement components in electrooculograms (EOGs). EOGs have been widely used to estimate eye movements without a camera in a variety of human-computer interaction (HCI) applications using pairs of electrodes generally attached either above and below the eye (vertical EOG) or to the left and right of the eyes (horizontal EOG). It has been well documented that the vertical EOG component has less stability than the horizontal EOG one, making accurate estimation of the vertical location of the eyes difficult. To address this issue, an experiment was designed in which ten subjects participated. Visual inspection of the recorded EOG signals showed that the vertical EOG component is highly influenced by horizontal eye movements, whereas the horizontal EOG is rarely affected by vertical eye movements. Moreover, the results showed that this interdependency could be effectively removed by introducing an individual constant value. It is therefore expected that the proposed method can enhance the overall performance of practical EOG-based eye-tracking systems. PMID:26907271

  4. Criteria for Applying the Lucas-Washburn Law.

    PubMed

    Li, Kewen; Zhang, Danfeng; Bian, Huiyuan; Meng, Chao; Yang, Yanan

    2015-09-14

    Spontaneous imbibition happens in many natural and chemical engineering processes in which the mean advancing front usually follows Lucas-Washburn's law. However it has been found that the scaling law does not apply in many cases. There have been few criteria to determine under what conditions the Washburn law works. The effect of gravity on spontaneous imbibition in porous media was investigated both theoretically and experimentally. The mathematical model derived analytically was used to calculate the imbibition rates in porous media with different permeabilities. The results demonstrated that the effect of gravity on spontaneous imbibition was governed by the hydraulic conductivity of the porous media (permeability of the imbibition systems). The criteria for applying the Lucas-Washburn law have been proposed. The effect of gravity becomes more apparent with the increase in permeability or with the decrease in CGR number (the ratio of capillary pressure to gravity forces) and may be ignored when the CGR number is less than a specific value N(*)(cg) ≅ 3.0. The effect of gravity on imbibition in porous media can be modeled theoretically. It may not be necessary to conduct spontaneous imbibition experiments horizontally in order to exclude the effect of gravity, as has been done previously.

  5. Lithic Scatters that Blow: Wind as an Agent of Secondary Deposition of Lithic Artifacts

    USDA-ARS?s Scientific Manuscript database

    Artifact presence or absence is frequently the only criteria used to define the horizontal extent of archaeological sites. Artifact transport by natural agents such as water and gravity is known to move artifacts from their primary context, though experimental simulated wind conditions demonstrate t...

  6. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...

  7. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...

  8. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...

  9. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...

  10. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... must be in a three point static ground attitude. Horizontal reactions parallel to the ground and... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times the... ground reactions must pass through the center of gravity of the airplane. ...

  11. 62. (Credit CBF) Operating floor of filter room, c1912. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. (Credit CBF) Operating floor of filter room, c1912. The remodeled New York horizontal pressure filters (now gravity filters) are in the foreground; the remodelled Hyatt tub filters are in the background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  12. High-quality regional gravity field determination from GOCE gravity gradient and heterogeneous gravimetry and altimetry data

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Luo, Z.; Zhou, H.; Xu, C.

    2017-12-01

    Regional gravity field recovery is of great importance for understanding ocean circulation and currents in oceanography and investigating the structure of the lithosphere in geophysics. Under the framework of remove-compute-restore methodology (RCR), a regional approach using spherical radial basis functions (SRBFs) is set up for gravity field determination using the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity gradient tensor, heterogeneous gravimetry and altimetry measurements. The additional value on regional model introduced by GOCE data is validated and quantified. Numerical experiments in a western European region show that the effects introduced by GOCE data display as long-wavelength patterns on the centimeter scale in terms of quasi-geoid heights, which may allow to highlight and reduce the remaining long-wavelength errors and biases in ground-based data and improve the regional model. The accuracy of the gravimetric quasi-geoid computed with a combination of three diagonal components is improved by 0.6 cm (0.5 cm) in the Netherlands (Belgium), compared to that derived from gravimetry and altimetry data alone, when GOCO05s is used as the reference model. Performances of different diagonal components and their combinations are not identical; the solution with vertical gradients shows highest quality when a single component is used. Incorporation of multiple components further improves the model, and the combination of three components shows the best fit to GPS/leveling data. Moreover, the contributions introduced by different components are heterogeneous in terms of spatial coverage and magnitude, although similar structures occur in the spatial domain. Contributions introduced by the vertical components have the most significant effects when a single component is applied. Combination of multiple components further magnifies these effects and improves the solutions, and the incorporation of three components has the most prominent effects. This work is supported by the State Scholarship Fund from Chinese Scholarship Council (201306270014), China Postdoctoral Science Foundation (No.2016M602301), and the National Natural Science Foundation of China (No. 41374023).

  13. Ultraviolet colors of W Ursae Majoris - Gravity darkening, temperature differences, and the cause of W-type light curves

    NASA Technical Reports Server (NTRS)

    Eaton, J. A.; Wu, C.-C.; Rucinski, S. M.

    1980-01-01

    The paper presents photometry of the prototype W UMa binary system in three ultraviolet bands with the ANS satellite. It was found that W UMa has low-gravity darkening beta of 0.03; that temperature differences between the components not established by gravity darkening are insignificant; and that the bolometric albedo is not very large. It was also found that W UMa is limb-darkened in the ultraviolet region, and that the inner hemisphere of the less massive component is hotter than that predicted by gravity darkening and the reflection effect. It was concluded that about 20% of the surface area of the component responsible for large gravity darkening is covered by dark spots distributed uniformly in the longitudinal direction. An observational value of the convective darkening exponent of 0.054 plus or minus 0.02 is proposed.

  14. Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.

    2006-01-01

    This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.

  15. Momentum flux measurements: Techniques and needs, part 4.5A

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.

    1984-01-01

    The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.

  16. Propagation of gravity waves across the tropopause

    NASA Astrophysics Data System (ADS)

    Bense, Vera; Spichtinger, Peter

    2015-04-01

    The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause characteristics are changed and the impact on vertically propagating gravity waves, such as change in wavelength, partial reflection or wave trapping can be studied. References Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142. Durran, D.R., 1990: Mountain Waves and Downslope Winds, Atmospheric Processes over Complex Terrain. Meteorological Monographs, Vol 23, No. 45 Plougonven, R. and F. Zhang, 2013: Gravity Waves From Atmospheric Jets and Fronts. Rev. Geophys. doi:10.1002/2012RG000419 Clark, T., T. Hauf, and J. Kuettner, 1986: Convectively forced internal gravity waves: results from two- dimensional numerical experiments, Q.J.R. Meteorol. Soc., 112, 899-925. Smolarkiewicz, P. and L. Margolin, 1997.: On forward-in-time differencing for fluids: an Eulerian/Semi- Lagrangian non-hydrostatic model for stratified flows, Atmos.-Ocean., 35, 127-152.

  17. A climatology of gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin

    2017-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.

  18. Convectively Generated Gravity Waves In The Tropical Stratosphere: Case Studies And Importance For The Circulation Of The Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)

    1995-01-01

    The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.

  19. Geodynamics and temporal variations in the gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Wagner, C. A.

    1989-01-01

    Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.

  20. Dual processing of visual rotation for bipedal stance control.

    PubMed

    Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene

    2016-10-01

    When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  1. The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: Attempt and challenges

    NASA Astrophysics Data System (ADS)

    Fröhlich, K.; Schmidt, T.; Ern, M.; Preusse, P.; de La Torre, A.; Wickert, J.; Jacobi, Ch.

    2007-12-01

    Five years of global temperatures retrieved from radio occultations measured by Champ (Challenging Minisatellite Payload) and SAC-C (Satelite de Aplicaciones Cientificas-C) are analyzed for gravity waves (GWs). In order to separate GWs from other atmospheric variations, a high-pass filter was applied on the vertical profile. Resulting temperature fluctuations correspond to vertical wavelengths between 400 m (instrumental resolution) and 10 km (limit of the high-pass filter). The temperature fluctuations can be converted into GW potential energy, but for comparison with parameterization schemes GW momentum flux is required. We therefore used representative values for the vertical and horizontal wavelength to infer GW momentum flux from the GPS measurements. The vertical wavelength value is determined by high-pass filtering, the horizontal wavelength is adopted from a latitude-dependent climatology. The obtained momentum flux distributions agree well, both in global distribution and in absolute values, with simulations using the Warner and McIntyre parameterization (WM) scheme. However, discrepancies are found in the annual cycle. Online simulations, implementing the WM scheme in the mechanistic COMMA-LIM (Cologne Model of the Middle Atmosphere—Leipzig Institute for Meteorology) general circulation model (GCM), do not converge, demonstrating that a good representation of GWs in a GCM requires both a realistic launch distribution and an adequate representation of GW breaking and momentum transfer.

  2. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  3. Methods of and apparatus for levitating an eddy current probe

    DOEpatents

    Stone, William J.

    1988-05-03

    An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.

  4. Behavioral regulation of gravity: schedule effects under escape-avoidance procedures1

    PubMed Central

    Clark, Fogle C.; Lange, Karl O.; Belleville, Richard E.

    1973-01-01

    Squirrel monkeys were restrained in a centrifuge capsule and trained to escape and avoid increases in artificial gravity. During escape-avoidance, lever responses reduced centrifugally simulated gravity or postponed scheduled increases. The effect of variation in the interval of postponement (equal to the duration of decrease produced by escape responses) was studied under a multiple schedule of four components. Three components were gravity escape-avoidance with postponement times of 20, 40, and 60 sec. The fourth component was extinction. Each component was associated with a different auditory stimulus. Rate of responding decreased with increasing postponement time and higher mean g-levels occurred at shorter intervals of postponement. Effects of the schedule parameter on response rate and mean g-level were similar to effects of the schedule on free-operant avoidance and on titration behavior maintained by shock. ImagesFig. 1. PMID:4202386

  5. Shapes and dynamics of miscible liquid/liquid interfaces in horizontal capillary tubes.

    PubMed

    Stevar, M S P; Vorobev, A

    2012-10-01

    We report optical observations of the dissolution behaviour of glycerol/water, soybean oil/hexane, and isobutyric acid (IBA)/water binary mixtures within horizontal capillary tubes. Tubes with diameters as small as 0.2mm were initially filled with one component of the binary mixture (solute) and then immersed into a solvent-filled thermostatic bath. Both ends of the tubes were open, and no pressure difference was applied between the ends. In the case of glycerol/water and soybean oil/hexane mixtures, we managed to isolate the dissolution (the interfacial mass transfer) from the hydrodynamic motion. Two phase boundaries moving from the ends into the middle section of the tube with the speeds v∼D(1/3)t(-2/3)d(2) (D,t and d are the coefficient of diffusion, time and the diameter of the tube, respectively) were observed. The boundaries slowly smeared but their smearing occurred considerably slower than their motion. The motion of the phase boundaries cannot be explained by the dependency of the diffusion coefficient on concentration, and should be explained by the effect of barodiffusion. The shapes of the solute/solvent boundaries are defined by the balance between gravity and surface tension effects. The contact line moved together with the bulk interface: no visible solute remained on the walls after the interface passage. Changes in temperature and in the ratio between gravity and capillary forces altered the apparent contact angles. The IBA/water system had different behaviour. Below the critical (consolute) point, no dissolution was observed: IBA and water behaved like two immiscible liquids, with the IBA phase being displaced from the tube by capillary pressure (the spontaneous imbibition process). Above the critical point, two IBA/water interfaces could be identified, however the interfaces did not penetrate much into the tube. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A simplified traveling ionospheric disturbance (TID) specification model based on TID Detector Built In Texas (TIDDBIT) and GPS total electron content (TEC) measurements.

    NASA Astrophysics Data System (ADS)

    Duly, T. M.; Crowley, G.; Azeem, I.

    2015-12-01

    There is currently a great deal of interest in Traveling Ionospheric Disturbances (TIDs) from both an observational and modeling perspective, especially as they apply to operational systems that rely on nowcasting the ionospheric state. ASTRA has developed a new observational system to measure TID characteristics called TIDDBIT (TID Detector Built in Texas). TIDDBIT is a fully digital HF Doppler sounder that uses CW signals across a spaced array. TIDDBIT systems have been deployed in Texas, Virginia, Florida, Hawaii, and Peru. TIDDBIT measures the entire wave packet, including the horizontal and vertical phase propagation speeds as a function of TID period from the acoustic (1-min) to the gravity wave (10-90 min) part of the spectrum. It is desirable to be able to use these data to specify the TID structure not only at the measurement height, but to extend it in 3D to greater and lower heights, and beyond the immediate vicinity of the TIDDBIT system. We present a simplified model to specify TIDs based on the ion continuity equation for plasma density (Hooke 1970). Linearity of the neutral wind perturbations is assumed, and the different spectral components of the measured TID perturbations are added linearly. We use TID observations from the TIDDBIT sounder in Virginia and Peru as input into the model, and develop a 4D regional specification (spanning ~500 x 500 km in the horizontal direction and 90-1000 km altitude range) of both the perturbed electron density and the perturbed neutral wind from the corresponding atmospheric gravity wave (AGW). The model is also applied to TID measurements derived by GPS TEC measurements from the continental United States during the 11 March 2011 Tohoku Earthquake to study the theoretical launch angle of AGWs from the west coast of the United States.

  7. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kaoru

    1993-02-14

    This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less

  8. Gravity Tides Extracted from Relative Gravimeter Data by Combining Empirical Mode Decomposition and Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Hongjuan; Guo, Jinyun; Kong, Qiaoli; Chen, Xiaodong

    2018-04-01

    The static observation data from a relative gravimeter contain noise and signals such as gravity tides. This paper focuses on the extraction of the gravity tides from the static relative gravimeter data for the first time applying the combined method of empirical mode decomposition (EMD) and independent component analysis (ICA), called the EMD-ICA method. The experimental results from the CG-5 gravimeter (SCINTREX Limited Ontario Canada) data show that the gravity tides time series derived by EMD-ICA are consistent with the theoretical reference (Longman formula) and the RMS of their differences only reaches 4.4 μGal. The time series of the gravity tides derived by EMD-ICA have a strong correlation with the theoretical time series and the correlation coefficient is greater than 0.997. The accuracy of the gravity tides estimated by EMD-ICA is comparable to the theoretical model and is slightly higher than that of independent component analysis (ICA). EMD-ICA could overcome the limitation of ICA having to process multiple observations and slightly improve the extraction accuracy and reliability of gravity tides from relative gravimeter data compared to that estimated with ICA.

  9. A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.

  10. Spatial Coding of Eye Movements Relative to Perceived Orientations During Roll Tilt with Different Gravitoinertial Loads

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles

    2013-01-01

    This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.

  11. Granular flow through an aperture: influence of the packing fraction.

    PubMed

    Aguirre, M A; De Schant, R; Géminard, J-C

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  12. Granular flow through an aperture: Influence of the packing fraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  13. The Lunar Crust: Global Structure and Signature of Major Basins

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Lemoine, Frank G.

    1996-01-01

    New lunar gravity and topography data from the Clementine Mission provide a global Bouguer anomaly map corrected for the gravitational attraction of mare fill in mascon basins. Most of the gravity signal remaining after corrections for the attraction of topography and mare fill can be attributed to variations in depth to the lunar Moho and therefore crustal thickness. The large range of global crustal thickness (approx. 20-120 km) is indicative of major spatial variations in melting of the lunar exterior and/or significant impact-related redistribution. The 6l-km average crustal thickness, constrained by a depth-to-Moho measured during the Apollo 12 and 14 missions, is preferentially distributed toward the farside, accounting for much of the offset in center-of-figure from the center-of-mass. While the average farside thickness is 12 km greater than the nearside, the distribution is nonuniform, with dramatic thinning beneath the farside, South Pole-Aitken basin. With the global crustal thickness map as a constraint, regional inversions of gravity and topography resolve the crustal structure of major mascon basins to half wavelengths of 150 km. In order to yield crustal thickness maps with the maximum horizontal resolution permitted by the data, the downward continuation of the Bouguer gravity is stabilized by a three- dimensional, minimum-slope and curvature algorithm. Both mare and non-mare basins are characterized by a central upwarped moho that is surrounded by rings of thickened crust lying mainly within the basin rims. The inferred relief at this density interface suggests a deep structural component to the surficial features of multiring lunar impact basins. For large (greater than 300 km diameter) basins, moho relief appears uncorrelated with diameter, but is negatively correlated with basin age. In several cases, it appears that the multiring structures were out of isostatic equilibrium prior to mare emplacement, suggesting that the lithosphere was strong enough to maintain their state of stress to the present.

  14. 3D DNS and LES of Breaking Inertia-Gravity Waves

    NASA Astrophysics Data System (ADS)

    Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.

    2012-04-01

    As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.

  15. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments.

    PubMed

    Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I

    2014-06-17

    The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

  16. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  17. Statistical analysis of gravity waves characteristics observed by airglow imaging at Syowa Station (69S, 39E), Antarctica

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Shiokawa, Kazuo; Tsutsumi, Masaki; Suzuki, Hidehiko; Ejiri, Mitsumu K.; Taguchi, Makoto

    Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere and cause the mean wind accelerations in the mesosphere. This momentum deposit drives the general circulation and affects the temperature structure. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs at around 90 km altitude. Recently, there are many reports about statistical characteristics of AGWs observed by airglow imaging. However, comparison of these results obtained at various locations is difficult because each research group uses its own method for extracting and analyzing AGW events. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. This method was applied to the data obtained at Syowa Station, Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. We plan to apply this method to airglow imaging data observed at Syowa Station in 2002 and between 2008 and 2013, and also to the data observed at other stations in Antarctica (e.g. Rothera Station (67S, 68W) and Halley Station (75S, 26W)), in order to investigate the behavior of AGWs propagation direction and source distribution in the MLT region over Antarctica. In this presentation, we will report interim analysis result of the data at Syowa Station.

  18. The ionospheric disturbances caused by the explosion of the Mount Tongariro volcano in 2012

    NASA Astrophysics Data System (ADS)

    Po Cheng, C.; Lin, C.; Chang, L. C.; Chen, C.

    2013-12-01

    Volcanic explosions are known to trigger acoustic waves that propagate in the atmosphere at infrasonic speeds. At ionospheric heights, coupling between neutral particles and free electrons induces variations of electron density detectable by dual-frequency Global Positioning System (GPS) measurements. In November 21 2012, the explosion of the Mount Tongariro volcano in New Zealand occurred at UT 0:20, when there were active synoptic waves passing over north New Zealand. The New Zealand dense array of Global Positioning System recorded ionospheric disturbances reflected in total electron content (TEC) ~10 minutes after the eruption, and the concentric spread of disturbances also can be observed this day. The velocity of disturbances varies from 130m/s to 700m/s. A spectral analysis of the rTEC time series shows two peaks. The larger amplitudes are centered at 800 and 1500 seconds, in the frequency range of acoustic waves and gravity waves. On the other hand, to model the rTEC perturbation created by the acoustic wave caused by the explosive eruption of the Mount Tongariro, we perform acoustic ray tracing and obtain sound speed at subionospheric height in a horizontally stratified atmosphere model (MSIS-E-90). The result show that the velocity of the disturbances is slower than sound speed range. Through using the MSIS-E-90 Atmosphere Model and Horizontal Wind Model(HWM), we obtain the vertical wave number and indicate that the gravity waves could propagate at subionospheric height for this event, suggesting that the ionospheric disturbances caused by the explosive eruption is gravity-wave type. This work demonstrates that GPS are useful for near real-time ionospheric disturbances monitoring, and help to understand the mechanism of the gravity wave caused by volcano eruption in the future.

  19. Geophysical Framework Investigations Influencing Ground-Water Resources in East-Central Nevada and West-Central Utah

    USGS Publications Warehouse

    Watt, Janet T.; Ponce, David A.

    2007-01-01

    A geophysical investigation was undertaken as part of an effort to characterize the geologic framework influencing ground-water resources in east-central Nevada and west-central Utah. New gravity data were combined with existing aeromagnetic, drill-hole, and geologic data to help determine basin geometry, infer structural features, estimate depth to pre-Cenozoic basement rocks, and further constrain the horizontal extents of exposed and buried plutons. In addition, a three-dimensional (3D) geologic model was constructed to help illustrate the often complex geometries of individual basins and aid in assessing the connectivity of adjacent basins. In general, the thirteen major valleys within the study area have axes oriented north-south and frequently contain one or more sub-basins. These basins are often asymmetric and typically reach depths of 2 km. Analysis of gravity data helped delineate geophysical lineaments and accommodation zones. Structural complexities may further compartmentalize ground-water flow within basins and the influence of tectonics on basin sedimentation further complicates their hydrologic properties. The horizontal extent of exposed and, in particular, buried plutons was estimated over the entire study area. The location and subsurface extents of these plutons will be very important for regional water resource assessments, as these features may act as either barriers or pathways for groundwater flow. A previously identified basement gravity low strikes NW within the study area and occurs within a highly extended terrane between the Butte and Confusion synclinoria. Evidence from geophysical, geologic, and seismic reflection data suggests relatively lower density plutonic rocks may extend to moderate crustal depths and rocks of similar composition may be the source of the entire basement gravity anomaly.

  20. The NGC 1023 galaxy group: An anti-hubble flow?

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    2010-10-01

    We discuss recently published data indicating that the nearby galaxy group NGC 1023 includes an inner, virialized, quasi-stationary component together with an outer component comprising a flow of dwarf galaxies falling toward the center of the system. The inner component is similar to the Local Group of galaxies, but the Local Group is surrounded by a receding set of dwarf galaxies forming the local Hubble flow, rather than a system of approaching dwarfs. This clear difference in the structures of these two systems, which are very similar in other respects, may be associated with the dark energy in which they are immersed. Self-gravity dominates in the inner component of the Local Group, while the anti-gravity created by the cosmic dark-energy background dominates in the surrounding Hubble flow. In contrast, self-gravity likewise dominates throughout the NGC 1023 Group, both in its central component and in the surrounding “anti-Hubble” flow. NGC 1023 as a whole is apparently in an ongoing state of formation and virialization. We expect that there exists a receding flow similar to the local Hubble flow at distances of 1.4-3 Mpc from the center of the group, where anti-gravity should become stronger than the gravity of the system.

  1. GPS Observations of Medium-Scale Traveling Ionospheric Disturbances over New Zealand

    NASA Astrophysics Data System (ADS)

    Otsuka, Y.; Lee, C.; Shiokawa, K.; Tsugawa, T.; Nishioka, M.

    2014-12-01

    Using the GPS data obtained from dual-frequency GPS receivers in New Zealand, we have made two-dimensional maps of total electron content (TEC) in 2012 in order to reveal statistical characteristics of MSTIDs at mid-latitudes in southern hemisphere. As of 2012, approximately 40 GPS receivers are in operation in New Zealand. We found that most of the MSITDs over New Zealand propagate northwestward during nighttime in summer and northeastward during daytime in winter. The propagation direction of the nighttime MSTIDs is consistent with the theory that polarization electric fields play an important role in the generating MSTIDs. Because the daytime MSTIDs propagate equatorward, we can speculate that they could be caused by atmospheric gravity waves in the thermosphere. The propagation direction of the daytime MSTIDs also has an eastward component in addition to the equatorward component. This feature is consistent with the daytime MSTIDs observed at mid-latitudes in both northern and southern hemispheres. By carrying out model calculations, we have shown that the eastward component of the MSTID propagation direction during daytime is attributed to an interaction of gravity waves to the background neutral winds. Because most of the daytime MSTIDs appear before 14 LT, the background neutral winds could blow westward. According to the dispersion relation for atmospheric gravity waves, vertical wavelength of the gravity waves becomes larger when the gravity wave propagates in the direction opposite to the background winds. Consequently, the gravity waves having an eastward component of the propagation direction could cause larger amplitude of TEC variations compared to the gravity waves propagating westward. This could be a reason why the propagation direction of the dime MSTIDs has an eastward component.

  2. Turbulent Swirling Flow Downstream of an Abrupt Pipe Expansion -- Modeling and Experimental Measurements.

    DTIC Science & Technology

    1982-07-01

    aerospace engineering um~Ŕ" eqe~vswse 0engiee amp snry stem englnerlag. enI~e so ISaCW , meterI scienc Turbulent Swirling Flow Dowstreas of an Abrupt...With the horizontal test section and circumferentially local measurements, the extent of the influence of gravity -induced convection can be determined

  3. Polarity of Spore Germination in Funaria hygrometrica Hedw.

    NASA Astrophysics Data System (ADS)

    Pundyak, O. I.; Demkiv, O. T.; Khorkavtsiv, O. Ya; Bagrii, B. B.

    It is shown that in darkness the spores of moss Funaria hygrometrica Hedw. germinated polarly under the influence of gravity. At the beginning the rhizoids appeared. They grew downwards. Then future chloronematical stolons started to form a germination spore. Usually, they grew upwards. Clinorotation or horizontal placing of Petry dishes could discoordinate such a gravisensitivity.

  4. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  5. Study of stratospheric-ionospheric coupling during thunderstorms and tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1977-01-01

    A continuous-wave-spectrum high-frequency Doppler sounder array with three transmitters at each of three sites was used to observe the dynamics of the coupling of energy between the stratosphere and the ionosphere. During times of severe weather activity wavelike disturbances have been detected on ground-based ionospheric sounding records as perturbations in electron densities. Infrasonic waves with wave periods of 3-7 min and with horizontal phase velocities of 600-800 m/s were observed when there was thunderstorm activity; gravity waves with wave periods of 10-15 min and horizontal phase velocities of 100-200 m/s were detected when there was tornado activity. Both triangulations from the cross correlation functions of the Doppler records based on an assumption of no background wind shear and ray-tracing computations including an assumed background wind shear indicate that the waves originated in the vicinity of the thunderstorms and tornadoes. A comparison of the wavelengths of the infrasonic and gravity waves observed at ionospheric heights and those in cloud-top pictures from satellites show that they are all of the order of 100-300 km.

  6. Preliminary design of flight hardware for two-phase fluid research

    NASA Technical Reports Server (NTRS)

    Hustvedt, D. C.; Oonk, R. L.

    1982-01-01

    This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.

  7. Spectra of Baroclinic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1996-01-01

    Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.

  8. Analysis of the fluid flow and heat transfer in a thin liquid film in the presence and absence of gravity

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Hankey, W. L.; Faghri, A.

    1991-01-01

    The hydrodynamic and thermal behavior of a thin liquid film flowing over a solid horizontal surface is analyzed for both plane and radially spreading flows. The situations where the gravitational force is completely absent and where it is significant are analyzed separately and their practical relevance to a micro-gravity environment is discussed. In the presence of gravity, in addition to Reynolds number, the Froude number of the film is found to be an important parameter that determines the supercritical and subcritical flow regimes and any associated hydraulic jump. A closed-form solution is possible under some flow situations, whereas others require numerical integration of ordinary differential equations. The approximate analytical results are found to compare well with the available two-dimensional numerical solutions.

  9. The influence of altered gravity on carbohydrate metabolism in excised wheat leaves

    NASA Technical Reports Server (NTRS)

    Obenland, D. M.; Brown, C. S.

    1994-01-01

    We developed a system to study the influence of altered gravity on carbohydrate metabolism in excised wheat leaves by means of clinorotation. The use of excised leaves in our clinostat studies offered a number of advantages over the use of whole plants, most important of which were minimization of exogenous mechanical stress and a greater amount of carbohydrate accumulation during the time of treatment. We found that horizontal clinorotation of excised wheat leaves resulted in significant reductions in the accumulation of fructose, sucrose, starch and fructan relative to control, vertically clinorotated leaves. Photosynthesis, dark respiration and the extractable activities of ADP glucose pyrophosphorylase (EC 2.7.7.27), sucrose phosphate synthase (EC 2.4.4.14), sucrose sucrose fructosyltransferase (EC 2.4.1.99), and fructan hydrolase (EC 3.2.1.80) were unchanged due to altered gravity treatment.

  10. Influence of magnetic field on zebrafish activity and orientation in a plus maze.

    PubMed

    Osipova, Elena A; Pavlova, Vera V; Nepomnyashchikh, Valentin A; Krylov, Viacheslav V

    2016-01-01

    We describe an impact of the geomagnetic field (GMF) and its modification on zebrafish's orientation and locomotor activity in a plus maze with four arms oriented to the north, east, south and west. Zebrafish's directional preferences were bimodal in GMF: they visited two arms oriented in opposed directions (east-west) most frequently. This bimodal preference remained stable for same individuals across experiments divided by several days. When the horizontal GMF component was turned 90° clockwise, the preference accordingly shifted by 90° to arms oriented to the north and south. Other modifications of GMF (reversal of both vertical and horizontal GMF components; reversal of vertical component only; and reversal of horizontal component only) did not exert any discernible effect on the orientation of zebrafish. The 90° turn of horizontal component also resulted in a significant increase of fish's locomotor activity in comparison with the natural GMF. This increase became even more pronounced when the horizontal component was repeatedly turned by 90° and back with 1min interval between turns. Our results show that GMF and its variations should be taken into account when interpreting zebrafish's directional preferences and locomotor activity in mazes and other experimental devices. Copyright © 2015. Published by Elsevier B.V.

  11. Topography of eye-position sensitivity of saccades evoked electrically from the cat's superior colliculus.

    PubMed

    McIlwain, J T

    1990-03-01

    Saccades evoked electrically from the deep layers of the superior colliculus have been examined in the alert cat with its head fixed. Amplitudes of the vertical and horizontal components varied linearly with the starting position of the eye. The slopes of the linear-regression lines provided an estimate of the sensitivity of these components to initial eye position. In observations on 29 sites in nine cats, the vertical and horizontal components of saccades evoked from a given site were rarely influenced to the same degree by initial eye position. For most sites, the horizontal component was more sensitive than the vertical component. Sensitivities of vertical and horizontal components were lowest near the representations of the horizontal and vertical meridians, respectively, of the collicular retinotopic map, but otherwise exhibited no systematic retinotopic dependence. Estimates of component amplitudes for saccades evoked from the center of the oculomotor range also diverged significantly from those predicted from the retinotopic map. The results of this and previous studies indicate that electrical stimulation of the cat's superior colliculus cannot yield a unique oculomotor map or one that is in register everywhere with the sensory retinotopic map. Several features of these observations suggest that electrical stimulation of the colliculus produces faulty activation of a saccadic control system that computes target position with respect to the head and that small and large saccades are controlled differently.

  12. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  13. A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island

    NASA Astrophysics Data System (ADS)

    Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun

    2017-01-01

    A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.

  14. Horizontal gas-condensate find brightens Louisiana chalk outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzet, G.A.

    1994-12-19

    A ray of hope may have appeared in the Louisiana portion of the Cretaceous Austin chalk trend after several years of expensive disappointment. OXY USA Inc. plans to use dual leg horizontal wells to develop a fracture chalk reservoir named Masters Creek field in Rapides Parish. The state has approved four 1,920 acre spacing units, one of which contains OXY's A1 Monroe well. The A1 Monroe flowed 6.6 MMcfd of gas with 2,162 b/d of 48[degree] gravity condensate, not oil as previously reported, through a 26/64 in. choke with 6,196 psi flowing tubing pressure from a single southward 4,000 ftmore » horizontal leg at 14,803 ft true vertical depth. Bottomhole pressure is 13,100 psi. OXY called A1 Monroe a significant discovery and said it has additional exploration acreage blocks along the trend. Louisiana exempts production from horizontal wells from state severance tax until all project costs are returned. The paper briefly discusses OXY's program.« less

  15. Absolute acceleration measurements on STS-50 from the Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1994-01-01

    Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.

  16. Tectonic Interpretation of CHAMP Geopotential Data over the Northern Adriatic Sea.

    NASA Astrophysics Data System (ADS)

    Taylor, P. T.; Kim, H. R.; Mayer-Gürr, T.

    2006-05-01

    Recent aeromagnetic anomaly compilations (Chiappini et al., 2000 and Tontini et al., 2004) show a large positive (>700 nT) northwest-southeast trending magnetic anomaly off the Dalmatian coast. Unfortunately these aeromagnetic data cover only a part of this anomaly. We wanted to investigate if this large magnetic anomaly could be detected at satellite altitude and what is the extent and source of this feature. Therefore, magnetic and gravity anomaly maps were made from the CHAMP geopotential data, measured at the current low altitude of 345-350 km over the northern Adriatic Sea. We made the magnetic anomaly map over this relatively small region using 36 descending and 85 ascending orbits screened to be at the lowest altitude and the most magnetically quietest data. We removed the main field component (i.e., IGRF-10 up to degree and order 13) and then demeaned individual tracks and subtracted a second order polynomial to remove regional and/or un-modeled external field features. The resulting map from these well-correlated anomalies revealed a positive magnetic anomaly (>2 nT). Reduction-to-the pole brought these CHAMP anomaly features into coincidence with the aeromagnetic data. Previously Cantini et al. (1999) compared the surface magnetic data with MAGSAT by continuing upward the former and downwards the latter to 100 km and found a good correlation for wavelengths of 300-500 km. We also investigated the CHAMP gravity data. They were reduced using the kinematic short-arc integration method (Ilk et al., 2005 and Mayer Gürr et al., 2005). However, no corresponding short-wavelength gravity anomaly was observed in our study area. This tectonically complex region is under horizontal stress and the source of the large magnetic anomaly can be modelled by an associated ophiolite melange.

  17. DYNAMICS OF VERTICAL THREADS AND DESCENDING KNOTS IN A HEDGEROW PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jongchul

    The existence and behavior of vertical fine structures of plasma-threads and knots-are a significant observational clue to understanding the magnetic structure and dynamics of quiescent prominences on the quiet Sun. Based on the equation of motion in ideal MHD, we reason that the non-hydrostatic support of plasma against gravity in general requires either the motion of plasma with a high value of downward acceleration (dynamical support) or the role of horizontal magnetic fields (magnetic support). By carefully tracking the motion of several bright threads seen in a hedgerow prominence observed by the Solar Optical Telescope aboard Hinode, we confirm thatmore » these threads are essentially static and stable, which negates the dynamic support. The application of the Kippenhahn-Schlueter solution suggests that they may be supported by sagged magnetic field lines with a sag angle of about 43{sup 0}. We also track several bright descending knots and find that their descending speeds range from 10 to 30 km s{sup -1}, with a mean value of 16 km s{sup -1}, and their vertical accelerations from -0.10 to 0.10 km s{sup -2}, with a mean of practically zero. This finding suggests that these knots are basically supported by horizontal magnetic fields against gravity even when they descend, and the complex variations of their descending speeds should be attributed to small imbalances between gravity and the force of magnetic tension. Furthermore, some knots are observed to impulsively get accelerated downward from time to time. We conjecture that these impulsive accelerations are a result of magnetic reconnection and the subsequent interchange of magnetic configuration between a knot and its surrounding structure. It is proposed that this process of reconnection and interchange not only initiates the descending motion of the knots, but also allows knots to keep falling long distance through the medium permeated by horizontal magnetic fields.« less

  18. The Hot Horizontal-Branch Stars in NGC288 - Effects of Diffusion and Stratification on Their Atmospheric Parameters*

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, Allen V.; Grundahl, F.

    2014-01-01

    Context. NGC288 is a globular cluster with a well developed blue horizontal branch covering the so-called u-jump which indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. Aims. We compare observed abundances to predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition we investigate the nature of the overluminous blue HB stars around the u-jump. Methods. We define a new photometric index sz from uvby measurements that is gravity sensitive between 8 000K and 12 000 K. Using medium-resolution spectra and Stroemgren photometry we determine atmospheric parameters (Teff, logg) and abundances for the blue HB stars. We use both homogeneous and stratified model spectra for our spectroscopic analyses. Results. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9 000K and 14 000 K. Outside this temperature range, however, they follow rather the results found for such stars in (omega)Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10(exp -7) M. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. The use of stratified model spectra to determine effective temperatures, surface gravities and masses moves the hotter stars to a closer agreement with canonical evolutionary predictions. Conclusions. Our results show definite promise towards solving the long-standing issue of surface gravity and mass discrepancies for hot HB stars, but there is still much work needed to arrive at a self-consistent solution.

  19. Toward Implementing Long-term Slip History and Paleoseismicity Into Active Fault Databases to Compute Effective Recurrence Models

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Jalobeanu, A.; Ferry, M. A.

    2011-12-01

    The first year of data from the Cascadia Initiative ocean-bottom seismograph deployment has provided a unique opportunity to image the structure of a plate from formation at the spreading center to subduction beneath the continental margin. However, traditional Rayleigh wave tomography of the Juan de Fuca plate using teleseismic sources is unusually difficult, because the region contains a large velocity heterogeneity at the ocean-continent margin; the azimuthal range of sources is limited, with most earthquakes lying in narrow azimuthal ranges to the northwest along the Aleutian and western Pacific trenches or to the southeast along the Middle and South American trenches; the orientation of many of the focal mechanisms leads to nodes in Rayleigh wave excitation towards the Juan de Fuca region; and the great circle paths from most sources to the receivers travel great distances close to ocean/continent boundaries or trenches and island arcs, producing complex waveforms. Nevertheless, we construct an initial tomographic image of the Juan de Fuca plate by subdividing the area into regions with relatively uniform wavefield composition when necessary; by using the two-plane-wave representation of the wavefield within the subregions; and by removing noise from the vertical component of the Rayleigh wave signals using information from the horizontal and pressure records. If the seismometer is slightly tilted, some of the often large horizontal noise contaminates the vertical component, and when water (gravity) waves penetrate to the seafloor, the associated pressure variations cause vertical displacements. By removing these two sources of noise, we are able to construct Rayleigh wave phase velocity maps in the period range 20 to 125 s, yielding excellent control on lithospheric mantle structure.

  20. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals

    PubMed Central

    Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y.; Miller, Patrick J. O.

    2013-01-01

    Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals. PMID:23857645

  1. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals.

    PubMed

    Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y; Miller, Patrick J O

    2013-01-01

    Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals.

  2. Mesoscale Gravity Wave Variances from AMSU-A Radiances

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2004-01-01

    A variance analysis technique is developed here to extract gravity wave (GW) induced temperature fluctuations from NOAA AMSU-A (Advanced Microwave Sounding Unit-A) radiance measurements. By carefully removing the instrument/measurement noise, the algorithm can produce reliable GW variances with the minimum detectable value as small as 0.1 K2. Preliminary analyses with AMSU-A data show GW variance maps in the stratosphere have very similar distributions to those found with the UARS MLS (Upper Atmosphere Research Satellite Microwave Limb Sounder). However, the AMSU-A offers better horizontal and temporal resolution for observing regional GW variability, such as activity over sub-Antarctic islands.

  3. Numerical Study on the Effects of Gravity and Surface Tension on Condensation Process in Square Minichannel

    NASA Astrophysics Data System (ADS)

    Li, Panpan; Chen, Zhenqian; Shi, Juan

    2018-02-01

    A volume of fluid (VOF) method is adopted to simulate the condensation of R134a in a horizontal single square minichannel with 1 mm side length. The effect of gravity, surface tension and gas-liquid interfacial shear stress are taken into account. The result denotes that condensation is first appeared at the corner of channel, and then the condensation is stretched at the effect of surface tension until the whole channel boundary covered. The effect of gravity on the distribution of the liquid film depends on the channel length. In short channel, the gravity shows no significant effect, the distribution shape of steam in the cross section of the channel is approximately circular. In long channel, due to the influence of gravity, the liquid converges at the bottom under the effect of gravity, and the thickness of the liquid film at the bottom is obviously higher than that of the upper part of the channel. The effect of surface tension on condensation is also analysed. The surface tension can enhance the condensation heat transfer significantly when the inlet mass flux is low. Whilst, at high mass flux, the enhancement of surface tension on heat transfer is unobvious and can be neglected.

  4. Effectiveness of Botulinum Toxin Administered to Abolish Acquired Nystagmus

    NASA Technical Reports Server (NTRS)

    Leigh, R. John; Tomsak, Robert L.; Grant, Michael P.; Remler, Bernd F.; Yaniglos, Stacy S.; Lystad, Lisa; Dell'Osso, Louis F.

    1992-01-01

    We injected botulinum toxin into the horizontal rectus muscles of the right eyes of two patients who had acquired pendular nystagmus with horizontal, vertical, and torsional components. This treatment successfully abolished the horizontal component of the nystagmus in the injected eye in both patients for approximately 2 months. Both patients showed a small but measurable improvement of vision in the injected eye that may have been limited by coexistent disease of the visual pathways. The vertical and torsional components of the nystagmus persisted in both patients. In one patient, the horizontal component of nystagmus in the noninjected eye increased; we ascribe this finding to plastic-adaptive changes in response to paresis caused by the botulinum toxin. Such plastic-adaptive changes and direct side effects of the injections - such as diplopia and ptosis - may limit the effectiveness of botulinum toxin in the treatment of acquired nystagmus. Neither patient elected to repeat the botulinum treatment.

  5. Contributions of gravity and field data on the structural scheme updating of the Tellian domain and its foreland (Nefza-Bizerte region, northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Balti, Hadhemi; Gasmi, Mohamed; Zargouni, Fouad

    2018-03-01

    The Nefza-Bizerte region, eastern part of the Tunisian Alpine chain, covers the thrust sheets domain called the Tell and its Atlassic foreland. The deep structures under the Tellian thrust sheets are not enough explored. The structural interpretation of magmatic rocks, Triassic outcrops and the depressions are still a subject of discussion. In this work, we intend to investigate deep faults and their eventual role in magmatism and Triassic salt setting up and to explain the depression genesis. Analysis of the Bouguer anomaly map and its derivatives reveals the main gravity lineaments, organized in major NE- and NW-trending systems. The NE-trending system, dipping towards the NW, is the main component of the structural scheme and has controlled the tectonic evolution of this area. After the immobilization of the Tellian thrust sheets during the uppermost Langhian, the Tell and its Atlassic foreland were affected by the Tortonian compressive event with a NW-trending maximum horizontal stress. The reverse kinematics of the NE-trending deep-seated faults created at their front continental environments filled later by post-nappes Neogene deposits. After the early Pleistocene, a NNW-directed compressional stress regime deformed the post-nappes Neogene series and generated NW-trending grabens. This coexistence of compression-extension continues until present day.

  6. Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

    NASA Astrophysics Data System (ADS)

    Kim, Vitaly P.; Hegai, Valery V.; Liu, Jann Yenq; Ryu, Kwangsun; Chung, Jong-Kyun

    2017-12-01

    The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a time- varying irregular vertical Coulomb field presumably produced on the Earth’s surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of 20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of 7×105 more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

  7. Effect of rotating electric field on 3D complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Wörner, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Kroll, M.; Schablinski, J.; Block, D.

    2011-06-01

    The effect of rotating electric field on 3D particle clusters suspended in rf plasma was studied experimentally. Spheroidal clusters were suspended inside a glass box mounted on the lower horizontal rf electrode, with gravity partially balanced by thermophoretic force. Clusters rotated in the horizontal plane, in response to rotating electric field that was created inside the box using conducting coating on its inner surfaces ("rotating wall" technique). Cluster rotation was always in the direction of applied field and had a shear in the vertical direction. The angular speed of rotation was 104-107 times lower than applied frequency. The experiment is compared to a recent theory.

  8. The use of visual cues in gravity judgements on parabolic motion.

    PubMed

    Jörges, Björn; Hagenfeld, Lena; López-Moliner, Joan

    2018-06-21

    Evidence suggests that humans rely on an earth gravity prior for sensory-motor tasks like catching or reaching. Even under earth-discrepant conditions, this prior biases perception and action towards assuming a gravitational downwards acceleration of 9.81 m/s 2 . This can be particularly detrimental in interactions with virtual environments employing earth-discrepant gravity conditions for their visual presentation. The present study thus investigates how well humans discriminate visually presented gravities and which cues they use to extract gravity from the visual scene. To this end, we employed a Two-Interval Forced-Choice Design. In Experiment 1, participants had to judge which of two presented parabolas had the higher underlying gravity. We used two initial vertical velocities, two horizontal velocities and a constant target size. Experiment 2 added a manipulation of the reliability of the target size. Experiment 1 shows that participants have generally high discrimination thresholds for visually presented gravities, with weber fractions of 13 to beyond 30%. We identified the rate of change of the elevation angle (ẏ) and the visual angle (θ) as major cues. Experiment 2 suggests furthermore that size variability has a small influence on discrimination thresholds, while at the same time larger size variability increases reliance on ẏ and decreases reliance on θ. All in all, even though we use all available information, humans display low precision when extracting the governing gravity from a visual scene, which might further impact our capabilities of adapting to earth-discrepant gravity conditions with visual information alone. Copyright © 2018. Published by Elsevier Ltd.

  9. Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.

    2015-06-01

    Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.

  10. Impact of Orbit Position Errors on Future Satellite Gravity Models

    NASA Astrophysics Data System (ADS)

    Encarnacao, J.; Ditmar, P.; Klees, R.

    2015-12-01

    We present the results of a study of the impact of orbit positioning noise (OPN) caused by incomplete knowledge of the Earth's gravity field on gravity models estimated from satellite gravity data. The OPN is simulated as the difference between two sets of orbits integrated on the basis of different static gravity field models. The OPN is propagated into ll-SST data, here computed as averaged inter-satellite accelerations projected onto the Line of Sight (LoS) vector between the two satellites. We consider the cartwheel formation (CF), pendulum formation (PF), and trailing formation (TF) as they produce a different dominant orientation of the LoS vector. Given the polar orbits of the formations, the LoS vector is mainly aligned with the North-South direction in the TF, with the East-West direction in the PF (i.e. no along-track offset), and contains a radial component in the CF. An analytical analysis predicts that the CF suffers from a very high sensitivity to the OPN. This is a fundamental characteristic of this formation, which results from the amplification of this noise by diagonal components of the gravity gradient tensor (defined in the local frame) during the propagation into satellite gravity data. In contrast, the OPN in the data from PF and TF is only scaled by off-diagonal gravity gradient components, which are much smaller than the diagonal tensor components. A numerical analysis shows that the effect of the OPN is similar in the data collected by the TF and the PF. The amplification of the OPN errors for the CF leads to errors in the gravity model that are three orders of magnitude larger than those in case of the PF. This means that any implementation of the CF will most likely produce data with relatively low quality since this error dominates the error budget, especially at low frequencies. This is particularly critical for future gravimetric missions that will be equipped with highly accurate ranging sensors.

  11. A gyro-stabilized platform leveling loop for marine gravimeter.

    PubMed

    Wu, P F; Liu, L T; Wang, L; Wang, Y; Zhong, M; Zhou, Z B; Zou, Z

    2017-06-01

    An ultra-low-frequency platform leveling loop based on a mixed sensitivity H ∞ approach, which considers both the system bandwidth and response speed, was designed and applied to a prototype, two-axis gyro-stabilized platform marine gravimeter CHZ-II. The instrument was developed for regional surveys in deep ocean areas where high-resolution gravity measurements with accuracy 1 mGal are required. Horizontal accelerations in the surge and sway directions are suppressed about 60 dB in the frequency range 0.05 to 0.5 Hz. This typically improves the quality of the gravity data before any processing corrections. The time required for stabilizing the platform at the beginning of a survey line or course change is about 3 min, which improves the data collection efficiency. In May 2015, the first test was conducted in open sea conditions aboard the Chinese State Oceanic Administration's R/V Xiangyanghong 10. Sixteen traverses were run in the South China Sea to evaluate the loop performance. Platform motion tracks and gravity data from the survey were of satisfactory quality. According to analyses of 16 sets of calculated errors, the root mean square repeatability of the pitch and roll off-level angles were less than 10 and 20 arc sec, respectively, with a horizontal acceleration of about 50 Gal. Errors derived from the inability of the platform to maintain perfect sensor leveling during the survey cruise were less than 0.3 mGal.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the backgroundmore » wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.« less

  13. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    NASA Astrophysics Data System (ADS)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated predominantly in FCs in the form of condensed chromatin inclusions and internal non condensed fibrils, redistributing from the DFC and the transition zone between FCs and the DFC, recognized as the site of rDNA transcription. Regarding nucleolar proteins, a general decrease in the levels of fibrillarin and the nucleolin homologues, evaluated by estimating the density of immunogold labeling on the nucleolus, was recorded firstly in clinorotated samples, compared to controls. Furthermore, the intranucleolar location of the investigated proteins was also observed to change in response to the growth in altered gravity conditions. In particular, a decrease in the quantity of these proteins in the transition zone FCs-DFC as well as in the bulk of the DFC was observed in the experimental samples, compared to controls, whereas the content of the proteins was much higher in the inner space of FCs. Concerning the two-dimensional nuclear proteome, we revealed a decrease in the isoelectric point (pI) range of soluble proteins, which are known to be actively engaged in RNA (including rRNA) metabolism, and a shortening in the molecular weight range of them under clinorotation. Besides, minor and major protein spots in clinorotated samples showed decreased optical densities in comparison to control ones. Moreover, we showed the shortening of both the pI and the molecular weight ranges of the spots corresponding to the major nucleolin homologue NhL90 (detected by cross-reaction with anti-onion NopA100) in the fraction of soluble proteins in altered gravity. Based on these data, an effect of altered gravity in lowering the level of rDNA transcription as well as rRNA processing, that could be the evidence of a decrease in the level of nucleolar functional activity, is suggested.

  14. A Measurement of "g" Listening to Falling Balls

    ERIC Educational Resources Information Center

    White, J. A.; Medina, A.; Roman, F. L.; Velasco, S.

    2007-01-01

    A ball placed on the edge of a horizontal table is hit with a pendulum and thrown over the floor. The fall time is measured by recording the sounds produced by the collisions with the pendulum and the floor. If the height of the ball with respect to the floor is known, one can determine the acceleration of gravity.

  15. A Measurement of g Listening to Falling Balls

    NASA Astrophysics Data System (ADS)

    White, J. A.; Medina, A.; Román, F. L.; Velasco, S.

    2007-03-01

    A ball placed on the edge of a horizontal table is hit with a pendulum and thrown over the floor. The fall time is measured by recording the sounds produced by the collisions with the pendulum and the floor. If the height of the ball with respect to the floor is known, one can determine the acceleration of gravity.

  16. Portable Horizontal-Drilling And Positioning Device

    NASA Technical Reports Server (NTRS)

    Smigocki, Edmund; Johnson, Clarence

    1988-01-01

    Portable horizontal-drilling and positioning device, constructed mainly of off-the-shelf components, accurately drills horizontal small holes in irregularly shaped objects. Holes precisely placed and drilled in objects that cannot be moved to shop area. New device provides three axes of movement while maintaining horizontal drilling.

  17. Horizontal drilling potential of the Cane Creek Shale, Paradox Formation, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.D.; Chidsey, T.C.

    1991-06-01

    The Cane Creek shale of the Pennsylvanian Paradox Formation is a well-defined target for horizontal drilling. This unit is naturally fractures and consists of organic-rich marine shale with interbedded dolomitic siltstone and anhydrite. Six fields have produced oil from the Cane Creek shale in the Paradox basin fold-and-fault belt. The regional structural trend is north-northwest with productive fractures occurring along the crest and flanks of both the larger and more subtle smaller anticlines. The Long Canyon, Cane Creek, Bartlett Flat, and Shafer Canyon fields are located on large anticlines, while Lion Mesa and Wilson Canyon fields produce from subtle structuralmore » noses. The Cane Creek shale is similar to the highly productive Bakken Shale in the Williston basin. Both are (1) proven producers of high-gravity oil, (2) highly fractured organic-rich source rocks, (3) overpressured, (4) regionally extensive, and (5) solution-gas driven with little or no associated water. Even though all production from the Cane Creek shale has been from conventional vertical wells, the Long Canyon 1 well has produced nearly 1 million bbl of high-gravity, low-sulfur oil. Horizontal drilling may result in the development of new fields, enhance recovery in producing fields, and revive production in abandoned fields. In addition, several other regionally extensive organic-rich shale beds occur in the Paradox Formation. The Gothic and Chimney Rock shales for example, offer additional potential lying above the Cane Creek shale.« less

  18. Effect of Small-Scale Gravity Waves on Polar Mesospheric Clouds Observed From CIPS/AIM

    NASA Astrophysics Data System (ADS)

    Gao, Haiyang; Li, Licheng; Bu, Lingbing; Zhang, Qilin; Tang, Yuanhe; Wang, Zhen

    2018-05-01

    Data from the Cloud Imaging and Particle Size experiment on the Aeronomy of Ice in the Mesosphere (AIM) satellite are employed to study the impact of small-scale gravity wave (GW) on albedo, ice water content (IWC), and particle radius (PR) of polar mesospheric clouds. Overall, 23,987 eligible GW events, with a horizontal wavelength of 20-150 km are eventually extracted from Cloud Imaging and Particle Size level 2 orbit albedo maps during 2007-2011. The overall statistical results show that when small-scale GWs travel horizontally in polar mesospheric clouds, they can amplify the albedo and IWC by a rate of 10.0-22.6%, while reducing the PR by as much as -7.01%. Owing to the strong temporal and spatial dependences, the albedo and IWC variations are larger on an average during the core of the season, while they decrease during the initial and final periods of the season. The obvious zonal asymmetries are also found. The albedo variations show a positive linear relation with the GW amplitudes in albedo, as opposed to a negative linear relation with GW horizontal wavelengths. In most of the GW events, the periodic variation in the trend of albedo exhibits an anticorrelation with that of PR. Combining previous research studies with our results, we deduce that the rapid change in particle concentration and the upward movement of water vapor by GWs may be very important aspects for explaining the influence mechanism.

  19. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  20. Gravity effects on wind-induced flutter of leaves

    NASA Astrophysics Data System (ADS)

    Clemmer, Nickalaus; Kopperstad, Karsten; Solano, Tomas; Shoele, Kourosh; Ordonez, Juan

    2017-11-01

    Wind-Induced flutter of leaves depends on both wind velocity and the gravity. To study the gravitational effects on the oscillatory behavior of leaves in the wind, a wind tunnel that can be tilted about the center of the test section is created. This unique rotation capability allows systematic investigation of gravitational effects on the fluttering response of leaves. The flow-induced vibration will be studied for three different leaves at several different tilting angles including the wind travels horizontally, vertically downward and vertically upward. In each situation, the long axis of a leaf is placed parallel to the wind direction and its response is studied at different flow speed. Oscillation of the leaf is recorded via high-speed camera at each of setup, and the effect of the gravity on stabilizing or destabilizing the fluttering response is investigated. Summer REU student at Florida State University.

  1. Large scale mass redistribution and surface displacement from GRACE and SLR

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  2. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  3. Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J.; Akutagawa, W.

    1982-01-01

    Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.

  4. New insights into the structure of Om Ali-Thelepte basin, central Tunisia, inferred from gravity data: Hydrogeological implications

    NASA Astrophysics Data System (ADS)

    Harchi, Mongi; Gabtni, Hakim; El Mejri, Hatem; Dassi, Lassaad; Mammou, Abdallah Ben

    2016-08-01

    This work presents new results from gravity data analyses and interpretation within the Om Ali-Thelepte (OAT) basin, central Tunisia. It focuses on the hydrogeological implication, using several qualitative and quantitative techniques such as horizontal gradient, upward continuation and Euler deconvolution on boreholes log data, seismic reflection data and electrical conductivity measurements. The structures highlighted using the filtering techniques suggest that the Miocene aquifer of OAT basin is cut by four major fault systems that trend E-W, NE-SW, NW-SE and NNE-SSW. In addition, a NW-SE gravity model established shows the geometry of the Miocene sandstone reservoir and the Upper Cretaceous limestone rocks. Moreover, the superimposition of the electrical conductivity and the structural maps indicates that the low conductivity values of sampled water from boreholes are located around main faults.

  5. Contribution of gravity data and Sentinel-1 image for structural mapping. Case of Beni Mellal Atlas and Beni Moussa plain (Morocco).

    NASA Astrophysics Data System (ADS)

    Boutirame, Ikram; Boukdir, Ahmed; Akhssas, Ahmed; Boutirame, Fatima; Manar, Ahmed; Aghzzaf, Brahim

    2018-05-01

    The present work is a combined study of gravity and Sentine-1 data for fracture mapping in the karstic massif of Beni Mellal Atlas and the adjacent plain of Beni Moussa. In order to locate the various faults that contribute to the study area structuring, the gravimetric contacts analysis method, based on the joint use of the horizontal gradient and the upward continuation at different altitudes, has been applied to the gravity data. To optimize the structural mapping in the study area, the gravimetric lineaments obtained were completed and correlated with the lineaments got from Sentinel-1 image. Four faults families of NE-SW; E-O; N-S and NWSE directions have been highlighted. There fault families are perfectly combined with the studied area's surface water network, moreover, they corroborate with the previous geological and structural studies.

  6. Utility of correlation techniques in gravity and magnetic interpretation

    NASA Technical Reports Server (NTRS)

    Chandler, V. W.; Koski, J. S.; Braice, L. W.; Hinze, W. J.

    1977-01-01

    Internal correspondence uses Poisson's Theorem in a moving-window linear regression analysis between the anomalous first vertical derivative of gravity and total magnetic field reduced to the pole. The regression parameters provide critical information on source characteristics. The correlation coefficient indicates the strength of the relation between magnetics and gravity. Slope value gives delta j/delta sigma estimates of the anomalous source. The intercept furnishes information on anomaly interference. Cluster analysis consists of the classification of subsets of data into groups of similarity based on correlation of selected characteristics of the anomalies. Model studies are used to illustrate implementation and interpretation procedures of these methods, particularly internal correspondence. Analysis of the results of applying these methods to data from the midcontinent and a transcontinental profile shows they can be useful in identifying crustal provinces, providing information on horizontal and vertical variations of physical properties over province size zones, validating long wavelength anomalies, and isolating geomagnetic field removal problems.

  7. Glacier mass balance in high-arctic areas with anomalous gravity

    NASA Astrophysics Data System (ADS)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were graphically represented in the reference model geometry using Russian gravimetric maps 1:1000000 (1980s), ArcGP grid (2008) and GOCE gravity field data (Release 3, 2009-2011). 25-year long records of daily precipitation obtained from 38 coastal stations were involved in the causality analysis. Strong positive distance-weighted correlation was discovered between the magnitude of geopotential and gravity gradient on one hand and the precipitation amount, annual number of precipitation "events" and glacier elevation changes on the other, while it was noted that the correlation decreases in humid and mountainous areas. Relevant analytical and geophysical explanations were provided and tested using the basic concepts of hydrostatic stress, lapse rate and non-orographic gradient precipitation. It was concluded that the gravitational impact on the mass balance of arctic maritime ice caps is threefold. 1) Lateral variations of gravity influence directly the ambient lapse rate thereby modulating the atmospheric stability and leading to the increased intensity and frequency of heavy snowfalls over the areas with positive gravity anomalies. 2) Glacier ice deformation, flow, calving and meltwater runoff are gravity-driven phenomena, and the removal of glacier ice is closely interrelated with geopotential variations nearby. 3) Gravity anomalies affect processes of sea ice grow, drift and consolidation resulting in generally lower concentration and lesser thickness of the sea ice found in the aquatories with positive gravity. The advection of moist air to insular ice caps facilitates sea-effect snow events and makes glacier mass balance more positive. The effect is enhanced when the air mass advects toward the centre of positive anomaly. The idea about gradient (deviatoric) precipitation and related cryogravic processes does not contradict to the concept of gravity waves and has some analogy with the hypothesis on "ice lichens" devised by E.Gernet 80 years ago. Further analogies can be learned from another industry, e.g. technical chemistry. Several questions associated with the variability of evaporation, ice nucleation, aerosol deposition and snow redistribution in the heterogeneous field of gravity remain open.

  8. Specific gravity of bovine colostrum immunoglobulins as affected by temperature and colostrum components.

    PubMed

    Mechor, G D; Gröhn, Y T; McDowell, L R; Van Saun, R J

    1992-11-01

    The effects of temperature and colostrum components on specific gravity in bovine colostrum were investigated. Thirty-nine first milking colostrum samples were collected from Holstein cows. The samples were assayed for alpha-tocopherol, fat, protein, total solids, and IgG. The concentrations of total solids, total protein, total IgG, and fat in colostrum were 26.6, 12.5, 3.7, and 9.4 g/100 g, respectively. A range of 1.8 to 24.7 micrograms/ml for alpha-tocopherol was measured in the colostrum samples. Specific gravity of the colostrum was measured using a hydrometer in increments of 5 degrees C from 0 to 40 degrees C. Specific gravity explained 76% of the variation in colostral total IgG at a colostrum temperature of 20 degrees C. The regression model was improved only slightly with the addition of protein, fat, and total solids. The model for samples at 20 degrees C was IgG (milligrams per milliliter) = 958 x (specific gravity) - 969. Measurement of specific gravity at variable temperatures necessitated inclusion of temperature in the model for estimation of IgG. Inclusion of the other components of colostrum into the model slightly improved the fit. The regression model for samples at variable temperatures was as follows: IgG (milligrams per milliliter) = 853 x (specific gravity) + .4 x temperature (Celsius degrees) - 866.

  9. An enhanced trend surface analysis equation for regional-residual separation of gravity data

    NASA Astrophysics Data System (ADS)

    Obasi, A. I.; Onwuemesi, A. G.; Romanus, O. M.

    2016-12-01

    Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a regional component and a local component. This work has extended the steps for the derivation of the constants in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more simplified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet, while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual gravity map produced using the new equations with its software derived counterpart has shown that the former has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the separation of gravity data sets into their regional and residual components.

  10. Heavy duty precision leveling jacks expedite setup time on horizontal boring mill

    NASA Technical Reports Server (NTRS)

    Dellenbaugh, W.; Jones, C.

    1966-01-01

    Leveling jack is a precise alignment tool which expedites the setup of components or assemblies up to 2500 pounds on horizontal boring mills. This tool eliminates the necessity of wedges and blocks to shim the components to proper position.

  11. 76 FR 13074 - Airworthiness Directives; The Boeing Company Model 777-200, -200LR, -300, and -300ER Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... reinstallation of the horizontal stabilizer trim actuator (HSTA) after inspection and measurement; and if... horizontal stabilizer; repetitive installations of the horizontal stabilizer trim actuator (HSTA); and if... found during a scheduled inspection of the horizontal stabilizer trim actuator (HSTA) components; the...

  12. Application of horizontal spiral coil heat exchanger for volatile organic compounds (VOC) emission control.

    PubMed

    Deshpande, P M; Dawande, S D

    2013-04-01

    The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser.

  13. Interactions of light and gravity on growth, orientation, and lignin biosynthesis in mung beans

    NASA Technical Reports Server (NTRS)

    Jahns, G. C.

    1984-01-01

    Mung beans (Vigna radiata L.) seedlings grown on the third Space Transport Mission (STS-3) showed marked orientation problems (some of the stems elongated horizontally and many of the roots were growing upward) and had a lower lignin content than the ground based controls. This research was initiated to determine if the atypical growth characteristics of mung beans grown in microgravity could be simulated using horizontal clinostats. Most of the effort focused on the design, construction and testing of the clinostats. In order to closely approximate the growth conditions of the plants grown in the plant growth unit on STS-3, cylindrical lexan minichambers were constructed. Results showed that plants grown using these clinostats in the horizontal position exhibit similar growth characteristics to the plants grown on STS-3 (disorientation of both stems and roots), while the vertical stationary and vertical rotating controls exhibit normal growth.

  14. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  15. Gravitropism of basidiomycetous fungi — On Earth and in microgravity

    NASA Astrophysics Data System (ADS)

    Kern, V. D.

    1999-01-01

    In order to achieve perfect positioning of their lamellae for spore dispersal, fruiting bodies of higher fungi rely on the omnipresent force gravity. Only accurate negatively gravitropic orientation of the fruiting body cap will guarantee successful reproduction. A spaceflight experiment during the STS-55 Spacelab mission in 1993 confirmed that the factor gravity is employed for spatial orientation. Most likely every hypha in the transition zone between the stipe and the cap region is capable of sensing gravity. Sensing presumably involves slight sedimentation of nuclei which subsequently causes deformation of the net-like arrangement of F-actin filament strands. Hyphal elongation is probably driven by hormone-controlled activation and redistribution of vesicle traffic and vesicle incorporation into the vacuoles and cell walls to subsequently cause increased water uptake and turgor pressure. Stipe bending is achieved by way of differential growth of the flanks of the upper-most stipe region. After reorientation to a horizontal position, elongation of the upper flank hyphae decreases 40% while elongation of the lower flank slightly increases. On the cellular level gravity-stimulated vesicle accumulation was observed in hyphae of the lower flank.

  16. Estimation of Gravity Parameters Related to Simple Geometrical Structures by Developing an Approach Based on Deconvolution and Linear Optimization Techniques

    NASA Astrophysics Data System (ADS)

    Asfahani, J.; Tlas, M.

    2015-10-01

    An easy and practical method for interpreting residual gravity anomalies due to simple geometrically shaped models such as cylinders and spheres has been proposed in this paper. This proposed method is based on both the deconvolution technique and the simplex algorithm for linear optimization to most effectively estimate the model parameters, e.g., the depth from the surface to the center of a buried structure (sphere or horizontal cylinder) or the depth from the surface to the top of a buried object (vertical cylinder), and the amplitude coefficient from the residual gravity anomaly profile. The method was tested on synthetic data sets corrupted by different white Gaussian random noise levels to demonstrate the capability and reliability of the method. The results acquired show that the estimated parameter values derived by this proposed method are close to the assumed true parameter values. The validity of this method is also demonstrated using real field residual gravity anomalies from Cuba and Sweden. Comparable and acceptable agreement is shown between the results derived by this method and those derived from real field data.

  17. Interannual variability in the gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Šácha, Petr; Miksovsky, Jiri; Pisoft, Petr

    2018-05-01

    Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.

  18. Persistent hydrocephalus due to postural activation of a ventricular shunt anti-gravity device.

    PubMed

    Craven, Claudia L; Toma, Ahmed K; Watkins, Laurence D

    2017-03-01

    The ever present need to balance over drainage with under drainage in hydrocephalus has required innovations including adjustable valves with antigravity devices. These are activated in the vertical position to prevent siphoning. We describe a group of bedridden patients who presented with unexplained under drainage caused by activation of antigravity shunt components produced by peculiar head/body position. Retrospective single centre case series of hydrocephalus patients, treated with ventriculo-peritoneal (VP) shunt insertion between April 2014 - February 2016. These patients presented with clinical and radiological under drainage syndrome. Medical notes were reviewed for clinical picture and outcome. Radiological studies were reviewed assessing shunt placement and ventricular size. Seven patients presented with clinical and radiological under drainage syndrome. A consistent posturing of long term hyper-flexion of the neck whilst lying supine was observed. All patients had similar shunt construct (adjustable Miethke ProGAV valve and shunt assistant anti-gravity component). In each of those patients a hypothesis was formulated that neck flexion was activating the shunt assistance anti-gravity component in supine position. Five patients underwent shunt revision surgery removing the shunt assistant device from the cranium and adding an anti-gravity component to the shunt system at the chest. One had the shunt assistant completely removed and one patient was managed conservatively with mobilisation. All patients had clinical and radiological improvement. Antigravity shunt components implanted cranially in bedridden hydrocephalus patients will produce underdrainage due to head flexion induced anti-gravity device activation. In these patients, anti-gravity devices should be placed at the chest. Alternatively, special nursing attention should be paid to head-trunk angle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Assignment of boundary conditions in embedded ground water flow models

    USGS Publications Warehouse

    Leake, S.A.

    1998-01-01

    Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.

  20. 14 CFR 25.499 - Nose-wheel yaw and steering.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... steering. (a) A vertical load factor of 1.0 at the airplane center of gravity, and a side component at the... structure forward of the center of gravity must be designed for the following loads: (1) A vertical load factor at the center of gravity of 1.0. (2) A forward acting load at the airplane center of gravity of 0...

  1. 14 CFR 25.499 - Nose-wheel yaw and steering.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... steering. (a) A vertical load factor of 1.0 at the airplane center of gravity, and a side component at the... structure forward of the center of gravity must be designed for the following loads: (1) A vertical load factor at the center of gravity of 1.0. (2) A forward acting load at the airplane center of gravity of 0...

  2. Gravity in the Brain as a Reference for Space and Time Perception.

    PubMed

    Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka

    2015-01-01

    Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.

  3. Measurement of Jupiter’s asymmetric gravity field

    NASA Astrophysics Data System (ADS)

    Iess, L.; Folkner, W. M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W. B.; Stevenson, D. J.; Anderson, J. D.; Buccino, D. R.; Casajus, L. Gomez; Milani, A.; Park, R.; Racioppa, P.; Serra, D.; Tortora, P.; Zannoni, M.; Cao, H.; Helled, R.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Wahl, S.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.

    2018-03-01

    The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.

  4. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  5. First 3D measurements of temperature fluctuations induced by gravity wave with the infrared limb imager GLORIA

    NASA Astrophysics Data System (ADS)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Friedl-Vallon, Felix; Riese, Martin

    2017-04-01

    Gravity waves (GWs) are one of the most important coupling mechanisms in the atmosphere. They couple different compartments of the atmosphere. The GW-LCYCLE (Gravity Wave Life Cycle) project aims on studying the excitation, propagation, and dissipation of gravity waves. An aircraft campaign has been performed in winter 2015/2016, during which the first 3D tomographic measurements of GWs were performed with the infrared limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). GLORIA combines a classical Fourier Transform Spectrometer with a 2D detector array. The capability to image the atmosphere and thereby take several thousand spectra simultaneously improves the spatial sampling compared to conventional limb sounders by an order of magnitude. Furthermore GLORIA is able to pan the horizontal viewing direction and therefore measure the same volume of air under different angles. Due to these properties tomographic methods can be used to derive 3D temperature and tracer fields with spatial resolutions of better than 30km x 30km x 250m from measurements taken during circular flight patterns. Temperature distributions measured during a strong GW event on the 25.01.2016 during the GW-LCycle campaign over Iceland will be presented and analyzed for gravity waves. The three dimensional nature of the GLORIA measurements allows for the determination of the gravity wave momentum flux, including its horizontal direction. The calculated momentum fluxes rank this event under one of the strongest 1% observed in that latitude range in January 2016. The three dimensional wave vectors determined from the GLORIA measurements can be used for a ray tracing study with the Gravity wave Regional Or Global RAy Tracer (GROGRAT). Here 1D ray tracing, meaning solely vertical column propagation, as used by standard parameterizations in numerical weather prediction and climate models is compared to 4D ray tracing (spatially three dimensional with time varying background) for the presented event on the 25.01.2016. Here it is shown, that in the 1D case the GWs are filtered at lower altitudes, whereas in the 4D case the rays were able to propagate to altitudes of above 30km. Besides the forward propagation up to higher altitudes, also the backward propagation to the source region can be study with GROGRAT. Here the mountains of Iceland could be clearly identified as the source region of the measured GWs.

  6. Interannual Variations in Earth's Low-Degree Gravity Field and the Connections With Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.

    2004-01-01

    Long-wavelength time-variable gravity recently derived from satellite laser ranging (SLR) analysis have focused to a large extent on the effects of the recent (since 1998) large anomalous change in J2, or the Earth's oblateness, and the potential causes. However, it is relatively more difficult to determine whether there are corresponding signals in the shorter wavelength zonal harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic components have significant interannual signal that appears to be related to mass transport. The non-zonal degree-2 components show reasonable temporal correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a look at other low-degree components of the interannual variations of gravity, complete through degree 4. We will examine the possible geophysical and climatic causes of these low-degree time-variable gravity related to oceanic and hydrological mass transports, for example some anomalous but prominent signals found in the extratropic Pacific ocean related to the Pacific Decadal Oscillation.

  7. A reinterpretation of the data from the NASA Stratosphere-Troposphere Exchange Project

    NASA Astrophysics Data System (ADS)

    Newman, Paul A.; Schoeberl, Mark R.

    Data obtained during the NASA Stratosphere Troposphere Exchange Project (STEP) Mid-Latitude Field Experiment displayed laminae of ozone, water, and condensation nuclei in the stratosphere in association with a mid-latitude stratosphere-troposphere folding event. Danielsen et al. (1991) constructed cross sections of these observations, and interpreted these quasi-horizontal laminae as evidence of ultra-low frequency gravity waves. We use a new technique to show that these laminae could have resulted from differential advection, rather than transport by ultra-low frequency gravity waves. This new technique uses reverse domain filling back trajectories on multiple isentropic surfaces in conjunction with modified potential vorticity to reveal the qualitative details of the constituent laminae.

  8. Vector-averaged gravity alters myocyte and neuron properties in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, Raphael; Hoeger, Glenn

    1991-01-01

    The effect of changes in the gravitational field of developing neurons and myocytes on the development of these cells was investigated using observations of rotated cultures of embryonic spinal neurons and myocytes in a horizontal clinostat, in which rotation produces, from the cells' perspective, a 'vector-free' gravity environment by continous averaging of the vector, thus simulating the microgravity of space. It was found that, at rotation rates between 1 and 50 rpm, cellular and nuclear areas of myocytes become significantly enlarged and the number of presumptive nucleoli increase; in neurons, frequent and large swellings appeared along neuritic shafts. Some of these changes were reversible after the cessation of rotation.

  9. Tsunami-Generated Atmospheric Gravity Waves and Their Atmospheric and Ionospheric Effects: a Review and Some Recent Modeling Results

    NASA Astrophysics Data System (ADS)

    Hickey, M. P.

    2017-12-01

    Tsunamis propagate on the ocean surface at the shallow water phase speed which coincides with the phase speed of fast atmospheric gravity waves. The forcing frequency also corresponds with those of internal atmospheric gravity waves. Hence, the coupling and effective forcing of gravity waves due to tsunamis is particularly effective. The fast horizontal phase speeds of the resulting gravity waves allows them to propagate well into the thermosphere before viscous dissipation becomes strong, and the waves can achieve nonlinear amplitudes at these heights resulting in large amplitude traveling ionospheric disturbances (TIDs). Additionally, because the tsunami represents a moving source able to traverse large distances across the globe, the gravity waves and associated TIDs can be detected at large distances from the original tsunami (earthquake) source. Although it was during the mid 1970s when the tsunami source of gravity waves was first postulated, only relatively recently (over the last ten to fifteen years) has there has been a surge of interest in this research arena, driven largely by significant improvements in measurement technologies and computational capabilities. For example, the use of GPS measurements to derive total electron content has been a particularly powerful technique used to monitor the propagation and evolution of TIDs. Monitoring airglow variations driven by atmospheric gravity waves has also been a useful technique. The modeling of specific events and comparison with the observed gravity waves and/or TIDs has been quite revealing. In this talk I will review some of the most interesting aspects of this research and also discuss some interesting and outstanding issues that need to be addressed. New modeling results relevant to the Tohoku tsunami event will also be presented.

  10. Optimal integration of gravity in trajectory planning of vertical pointing movements.

    PubMed

    Crevecoeur, Frédéric; Thonnard, Jean-Louis; Lefèvre, Philippe

    2009-08-01

    The planning and control of motor actions requires knowledge of the dynamics of the controlled limb to generate the appropriate muscular commands and achieve the desired goal. Such planning and control imply that the CNS must be able to deal with forces and constraints acting on the limb, such as the omnipresent force of gravity. The present study investigates the effect of hypergravity induced by parabolic flights on the trajectory of vertical pointing movements to test the hypothesis that motor commands are optimized with respect to the effect of gravity on the limb. Subjects performed vertical pointing movements in normal gravity and hypergravity. We use a model based on optimal control to identify the role played by gravity in the optimal arm trajectory with minimal motor costs. First, the simulations in normal gravity reproduce the asymmetry in the velocity profiles (the velocity reaches its maximum before half of the movement duration), which typically characterizes the vertical pointing movements performed on Earth, whereas the horizontal movements present symmetrical velocity profiles. Second, according to the simulations, the optimal trajectory in hypergravity should present an increase in the peak acceleration and peak velocity despite the increase in the arm weight. In agreement with these predictions, the subjects performed faster movements in hypergravity with significant increases in the peak acceleration and peak velocity, which were accompanied by a significant decrease in the movement duration. This suggests that movement kinematics change in response to an increase in gravity, which is consistent with the hypothesis that motor commands are optimized and the action of gravity on the limb is taken into account. The results provide evidence for an internal representation of gravity in the central planning process and further suggest that an adaptation to altered dynamics can be understood as a reoptimization process.

  11. Gravity and isostatic anomaly maps of Greece produced

    NASA Astrophysics Data System (ADS)

    Lagios, E.; Chailas, S.; Hipkin, R. G.

    A gravity anomaly map of Greece was first compiled in the early 1970s [Makris and Stavrou, 1984] from all available gravity data collected by different Hellenic institutions. However, to compose this map the data had to be smoothed to the point that many of the smaller-wavelength gravity anomalies were lost. New work begun in 1987 has resulted in the publication of an updated map [Lagios et al., 1994] and an isostatic anomaly map derived from it.The gravity data cover the area between east longitudes 19° and 27° and north latitudes 32° and 42°, organized in files of 100-km squares and grouped in 10-km squares using UTM zone 34 coordinates. Most of the data on land come from the gravity observations of Makris and Stavrou [1984] with additional data from the Institute of Geology and Mining Exploration, the Public Oil Corporation of Greece, and Athens University. These data were checked using techniques similar to those used in compiling the gravity anomaly map of the United States, but the horizontal gradient was used as a check rather than the gravity difference. Marine data were digitized from the maps of Morelli et al. [1975a, 1975b]. All gravity anomaly values are referred to the IGSN-71 system, reduced with the standard Bouger density of 2.67 Mg/m3. We estimate the errors of the anomalies in the continental part of Greece to be ±0.9 mGal; this is expected to be smaller over fairly flat regions. For stations whose height has been determined by leveling, the error is only ±0.3 mGal. For the marine areas, the errors are about ±5 mGal [Morelli, 1990].

  12. Working Model of a Foucault Pendulum at Intermediate Latitudes

    ERIC Educational Resources Information Center

    Sears, Francis W.

    1969-01-01

    Describes a working model of a Foucault pendulum at intermediate latitudes constructed of a steel drill rod with a steel ball attached at one end. The rod makes an angle of 45 degrees with the rotation axis of a horizontal turntable. The vibrating system is the same as that which led Foucault to construct his first gravity pendulum. (LC)

  13. In plane oscillation of a bifilar pendulum

    NASA Astrophysics Data System (ADS)

    Hinrichsen, Peter F.

    2016-11-01

    The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.

  14. Old torsion Balance Observations - too old for modern Exploration?

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.

    2003-04-01

    Gravity gradiometry is a new gravity measurement technology that could fundamentally change the game of subsurface modelling and enhance geological interpretations: at fully inertial stabilized platforms they provide observed components of the E&{uml;o}tv&{uml;o}s tensor for 3D interpretations in mining and oil exploration and other fields of pure and applied geophysics. Although gravity gradiometry was among the first geophysical methods used successfully in applied Geophysics (E&{uml;o}tv&{uml;o}s torsion balance), the technology fell from favour in the 1930s. From this time measurements, done by torsion balances (Drehwaagen), are presented here which were observed to detect salt domes in the Northwest German basin. The data were digitized from old copies, then reprocessed and recalculated to draw Bouguer anomaly maps. However, the second derivatives of the gravity potential provide also independent data which can be used to constrain forward modelling. 3D modelling of Vxz, Vyz and other components of the E&{uml;o}tv&{uml;o}s tensor provide better insight into the geometry of the salt dome structure than modelling of the Bouguer gravity field. In addition to this first example results from gravity data processing by applying curvature techniques and again 3D forward modelling of second derivatives of the potential of density domains in the uppermost crust in the area of the Dead Sea Transform (Jordan) is presented here. The 3D modelling is conducted by the program package IGMAS which supply possibilities to calculate potential, gravity, its components and the Eötvös tensor components. Based on results so far one can conclude that the knowledge of the "second derivatives of the potential" could fundamentally change the role of gravity field measurements in the process of underground investigations not only for resource exploration but for investigations along large faults systems.

  15. Stability analysis of rimming flow inside a horizontally rotating cylinder in the presence of an insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Kumawat, Tara Chand; Tiwari, Naveen

    2017-12-01

    Two-dimensional base state solutions for rimming flows and their stability analysis to small axial perturbations are analyzed numerically. A thin liquid film which is uniformly covered with an insoluble surfactant flows inside a counterclockwise rotating horizontal cylinder. In the present work, a mathematical model is obtained which consists of coupled thin film thickness and surfactant concentration evolution equations. The governing equations are obtained by simplifying the momentum and species transport equations using the thin-film approximation. The model equations include the effect of gravity, viscosity, capillarity, inertia, and Marangoni stress. The concentration gradients generated due to flow result in the surface tension gradient that generates the Marangoni stress near the interface region. The oscillations in the flow due to inertia are damped out by the Marangoni stress. It is observed that the Marangoni stress has stabilizing effect, whereas inertia and surface tension enhance the instability growth rate. In the presence of low diffusion of the surfactant or large value of the Péclet number, the Marangoni stress becomes more effective. The analytically obtained eigenvalues match well with the numerically computed eigenvalues in the absence of gravity.

  16. Spatial orientation of caloric nystagmus in semicircular canal-plugged monkeys.

    PubMed

    Arai, Yasuko; Yakushin, Sergei B; Cohen, Bernard; Suzuki, Jun-Ichi; Raphan, Theodore

    2002-08-01

    We studied caloric nystagmus before and after plugging all six semicircular canals to determine whether velocity storage contributed to the spatial orientation of caloric nystagmus. Monkeys were stimulated unilaterally with cold ( approximately 20 degrees C) water while upright, supine, prone, right-side down, and left-side down. The decline in the slow phase velocity vector was determined over the last 37% of the nystagmus, at a time when the response was largely due to activation of velocity storage. Before plugging, yaw components varied with the convective flow of endolymph in the lateral canals in all head orientations. Plugging blocked endolymph flow, eliminating convection currents. Despite this, caloric nystagmus was readily elicited, but the horizontal component was always toward the stimulated (ipsilateral) side, regardless of head position relative to gravity. When upright, the slow phase velocity vector was close to the yaw and spatial vertical axes. Roll components became stronger in supine and prone positions, and vertical components were enhanced in side down positions. In each case, this brought the velocity vectors toward alignment with the spatial vertical. Consistent with principles governing the orientation of velocity storage, when the yaw component of the velocity vector was positive, the cross-coupled pitch or roll components brought the vector upward in space. Conversely, when yaw eye velocity vector was downward in the head coordinate frame, i.e., negative, pitch and roll were downward in space. The data could not be modeled simply by a reduction in activity in the ipsilateral vestibular nerve, which would direct the velocity vector along the roll direction. Since there is no cross coupling from roll to yaw, velocity storage alone could not rotate the vector to fit the data. We postulated, therefore, that cooling had caused contraction of the endolymph in the plugged canals. This contraction would deflect the cupula toward the plug, simulating ampullofugal flow of endolymph. Inhibition and excitation induced by such cupula deflection fit the data well in the upright position but not in lateral or prone/supine conditions. Data fits in these positions required the addition of a spatially orientated, velocity storage component. We conclude, therefore, that three factors produce cold caloric nystagmus after canal plugging: inhibition of activity in ampullary nerves, contraction of endolymph in the stimulated canals, and orientation of eye velocity to gravity through velocity storage. Although the response to convection currents dominates the normal response to caloric stimulation, velocity storage probably also contributes to the orientation of eye velocity.

  17. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    NASA Astrophysics Data System (ADS)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.

  18. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization ofmore » further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.« less

  19. Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey Scott

    1996-01-01

    Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.

  20. A case study of A mesoscale gravity wave in the MLT region using simultaneous multi-instruments in Beijing

    NASA Astrophysics Data System (ADS)

    Jia, Mingjiao; Xue, Xianghui; Dou, Xiankang; Tang, Yihuan; Yu, Chao; Wu, Jianfei; Xu, Jiyao; Yang, Guotao; Ning, Baiqi; Hoffmann, Lars

    2016-03-01

    In this work, we used observational data from an all-sky airglow imager at Xinglong (40.2 °N, 117.4 °E), a sodium lidar at Yanqing (40.4 °N, 116.0 °E) and a meteor radar at Shisanling (40.3 °N, 116.2 °E) to study the propagation of a mesoscale gravity wave. During the night of March 1, 2011, the imager identified a mesoscale gravity wave structure in the OH airglow that had a wave period of 2 hours, propagated along an azimuthal direction (clockwise) with an angle of 163°, a phase speed of 73 m/s, and a horizontal wavelength of 566 km. Simultaneous measurements provided by the sodium lidar also showed a perturbation in the sodium layer with a 2-hour period. Based on the SABER/TIMED and radar data, we estimated that the momentum flux and the energy flux of the gravity wave were approximately 0.59 m2/s2 and 0.22 mW/m2, respectively. Ray-tracing analysis showed that the gravity wave was likely generated in the center of Lake Baikal owing to the existence of a jet- front system in the upper troposphere at that time.

  1. Can representational trajectory reveal the nature of an internal model of gravity?

    PubMed

    De Sá Teixeira, Nuno; Hecht, Heiko

    2014-05-01

    The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.

  2. Dynamics of immiscible liquids in a rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Kozlov, N. V.; Kozlova, A. N.; Shuvalova, D. A.

    2016-11-01

    The dynamics of an interface between two immiscible liquids of different density is studied experimentally in a horizontal cylinder at rotation in the gravity field. Two liquids entirely fill the cavity volume, and the container is rotated sufficiently fast so that the liquids are centrifuged. The light liquid forms a column extended along the rotation axis, and the heavy liquid forms an annular layer. Under the action of gravity, the light liquid column displaces steadily along the radius, downwards in the laboratory frame. As a result, fluid oscillations in the cavity frame are excited at the interface, which lead to the generation of a steady streaming, and the fluid comes into a slow lagging rotation with respect to the cylinder walls. The dynamics of the studied system is determined by the ratio of the gravity acceleration to the centrifugal one—the dimensionless acceleration. In experiments, the system is controlled by the means of variation of the rotation rate, i.e., of the centrifugal force. At a critical value of the dimensionless acceleration the circular interface looses stability, and an azimuthal wave is excited. This leads to a strong increase in the interface differential velocity. A theoretical analysis is done based on the theory of centrifugal waves and a frequency equation is obtained. Experimental results are in good agreement with the theory at the condition of small wave amplitudes. Mechanism of steady streaming generation is analyzed based on previously published theoretical results obtained for the limiting case when the light phase is a solid cylinder. A qualitative agreement is found.

  3. Gravity Wave Mixing and Effective Diffusivity for Minor Chemical Constituents in the Mesosphere/Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Grygalashvyly, M.; Becker, E.; Sonnemann, G. R.

    2012-06-01

    The influence of gravity waves (GWs) on the distributions of minor chemical constituents in the mesosphere-lower thermosphere (MLT) is studied on the basis of the effective diffusivity concept. The mixing ratios of chemical species used for calculations of the effective diffusivity are obtained from numerical experiments with an off-line coupled model of the dynamics and chemistry abbreviated as KMCM-MECTM (Kuehlungsborn Mechanistic general Circulation Model—MEsospheric Chemistry-Transport Model). In our control simulation the MECTM is driven with the full dynamical fields from an annual cycle simulation with the KMCM, where mid-frequency GWs down to horizontal wavelengths of 350 km are resolved and their wave-mean flow interaction is self-consistently induced by an advanced turbulence model. A perturbation simulation with the MECTM is defined by eliminating all meso-scale variations with horizontal wavelengths shorter than 1000 km from the dynamical fields by means of spectral filtering before running the MECTM. The response of the MECTM to GWs perturbations reveals strong effects on the minor chemical constituents. We show by theoretical arguments and numerical diagnostics that GWs have direct, down-gradient mixing effects on all long-lived minor chemical species that possess a mean vertical gradient in the MLT. Introducing the term wave diffusion (WD) and showing that wave mixing yields approximately the same WD coefficient for different chemical constituents, we argue that it is a useful tool for diagnostic irreversible transport processes. We also present a detailed discussion of the gravity-wave mixing effects on the photochemistry and highlight the consequences for the general circulation of the MLT.

  4. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.

  5. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  6. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  7. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-a and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.

  8. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  9. Position sense at the human forearm in the horizontal plane during loading and vibration of elbow muscles

    PubMed Central

    Ansems, G E; Allen, T J; Proske, U

    2006-01-01

    When blindfolded subjects match the position of their forearms in the vertical plane they rely on signals coming from the periphery as well as from the central motor command. The command signal provides a positional cue from the accompanying effort sensation required to hold the arm against gravity. Here we have asked, does a centrally generated effort signal contribute to position sense in the horizontal plane, where gravity cannot play a role? Blindfolded subjects were required to match forearm position for the unloaded arm and when flexors or extensors were bearing 10%, 25% or 40% of maximum loads. Before each match the reference arm was conditioned by contracting elbow muscles while the arm was held flexed or extended. For the unloaded arm conditioning led to a consistent pattern of errors which was attributed to signals from flexor and extensor muscle spindles. When elbow muscles were loaded the errors from conditioning converged, presumably because the spindles had become coactivated through the fusimotor system during the load-bearing contraction. However, this convergence was seen only when subjects supported a static load. When they moved the load differences in errors from conditioning persisted. Muscle vibration during load bearing or moving a load did not alter the distribution of errors. It is concluded that for position sense of an unloaded arm in the horizontal plane the brain relies on signals from muscle spindles. When the arm is loaded, an additional signal of central origin contributes, but only if the load is moved. PMID:16873408

  10. Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.

    2004-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.

  11. Spectral Interpretation of Wave-vortex Duality in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, H.; Jing, Z.; Yan, T.

    2017-12-01

    The mesoscale to submesocale oceanic dynamics are characterized by a joint effect of vortex and wave component, which primarily declares the partition between geostrophic balanced and unbalanced flows. The spectral method is a favorable approach that can afford the muti-scale analysis. This study investigates the characteristics of horizontal wavenumber spectra in Nothern South China Sea using orbital altimeter data (SARA/AltiKa), 13-yr shipboard ADCP (Acoustic Doppler Current Profiler) measurements (2014-2016), and a high-resolution numerical simulation (llc4320 Mitgcm). The observed SSH (sea surface height) spectrum presents a conspicuous transition at scales of 50-100 km, which clearly shows the inconsistency with geostrophic balance. The Helmholtz decomposition separating the wave and vortex energy for the spectra of ADCP and numerical model data shows that ageostrophic flows should be responsible for the spectral discrepancy with the QG (qusi-geostrophic) turbulence theory. Generally, it is found that inertia-gravity waves (including internal tides) govern the significant kinetic energy in the submesoscale range in Northern South China Sea. More specific analysis suggests that the wave kinetic energy can extend to a large scale of 500 km or more from the zonal velocity spectra at the left-center of Luzon Strait, which appears to be dominated by inertia-gravity waves likely emitted by the intrusion of the west pacific at Luzon Strait. Instead, the development of eddy kinetic energy at this place is strictly constrained by the width of the strait.

  12. Tuning of gravity-dependent and gravity-independent vertical angular VOR gain changes by frequency of adaptation

    PubMed Central

    2012-01-01

    The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1–4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz. PMID:22402654

  13. Tuning of gravity-dependent and gravity-independent vertical angular VOR gain changes by frequency of adaptation.

    PubMed

    Yakushin, Sergei B

    2012-06-01

    The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1-4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz.

  14. Satellite gravity gradient grids for geophysics

    PubMed Central

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  15. Verge and Foliot Clock Escapement: A Simple Dynamical System

    ERIC Educational Resources Information Center

    Denny, Mark

    2010-01-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would…

  16. Skylab

    NASA Image and Video Library

    1971-07-01

    Workmen at the Martin Marietta Corporation's Space Center in Denver, Colorado, position Skylab's Multiple Docking Adapter (MDA) flight article in the horizontal transportation fixture. Designed and manufactured by the Marshall Space Flight Center and outfitted by Martin Marietta, the MDA housed the control units for the Apollo Telescope Mount (ATM), Earth Resources Experiment Package (EREP), and Zero-Gravity Materials Processing Facility and provided a docking port for the Apollo Command Module.

  17. What are the Geophysical Fingerprints of hyper-extended Crustal Domains ?

    NASA Astrophysics Data System (ADS)

    Stanton, N.; Manatschal, G.; Maia, M.; Viana, A.; Tugend, J.; Autin, J.

    2012-04-01

    The Iberian margin is a well-studied region and presently the best tectonic setting for understanding the dynamic process of margin's formation and evolution. The world largest available dataset enabled to properly constrain the crustal structure and opened new paradigms for passive margins studies. Nevertheless, there are numerous remaining questions, as for example what is the spatial extent of continental inheritance along the margin and what is the role of fluids (serpentinization/magmatism) during margin's formation/deformation? The observation of a hyper-extended crustal domain, now also identified in other margins reveals the highly diverse nature of the crust along rifted margins. What are its physical properties and how do they change laterally? The aim of this study is to explore the physical signature of the serpentinized crust, which composes this hyper-extended domain, to identify the limits of the system and discuss its nature and importance. To investigate the lateral variation of crustal types we use integrated gravity, magnetic, seismic and available geological/well data. Transformations on the potential field data enable us to enhance the horizontal and vertical variations of the crust, and future forward modeling will provide a geological correlation for Iberia. The preliminary results showed that the transitional crust can be subdivided into two zones, regarding their different geophysical signatures: from the necking zone, the continent ward transitional crust displays decreasing gravity anomaly, low horizontal gradient and smooth magnetic anomalies; towards offshore (to the west of the J anomaly) the transitional crust is characterized by a semi-cyclic magnetic anomaly pattern, with increasing gravity, showing a stronger horizontal gradient and rough bathymetry. We associate this transitional domain with an embryonic oceanic type crust. Comparisons with other margins along the North Atlantic, despite the great spatial variation, reveals preliminarily that the hyper-extended crust at the non-volcanic Iberia Margin displays intrinsic characteristics distinct from the more volcanic transitional domains to the north. The physical properties of the different crustal types will be further modeled to properly constrain their characteristics. The final results shall enable us to identify the lateral transition between the different continental-transitional hydrated-oceanic crustal types and potentially would allow us to identify similar domains worldwide.

  18. Satellite observations of middle atmosphere-thermosphere vertical coupling by gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin

    2018-03-01

    Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T/I. Different processes which likely influence the vertical coupling are GW dissipation, possible generation of secondary GWs, and horizontal propagation of GWs. Limitations of the observations as well as of our research approach are discussed.

  19. Modeling Horizontal GPS Seasonal Signals Caused by Ocean Loading

    NASA Astrophysics Data System (ADS)

    Bartlow, N. M.; Fialko, Y. A.

    2014-12-01

    GPS monuments around the world exhibit seasonal signals in both the horizontal and vertical components with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine wave with an annual period, and sometimes an additional sine wave with a semiannual period. As interest grows in analyzing smaller, slower signals it becomes more important to correct for these seasonal signals accurately. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Horizontal seasonal signals however are not well explained by continental water storage. We examine horizontal seasonal signals across western North America and find that the horizontal component is coherent at very large spatial scales and is in general oriented perpendicular to the nearest coastline, indicating an oceanic origin. Additionally, horizontal and vertical annual signals are out of phase by approximately 2 months indicating different physical origins. Studies of GRACE and ocean bottom pressure data indicate an annual variation of non-steric, non-tidal ocean height with an average amplitude of 1 cm globally (e.g. Ponte et al., GRL, 2007). We use Some Programs for Ocean Tide Loading (SPOTL; Agnew, SIO Technical Report, 2012) to model predicted displacements due to these (non-tidal) ocean loads and find general agreement with observed horizontal GPS seasonal signals. In the future, this may lead to a more accurate way to predict and remove the seasonal component of GPS displacement time-series, leading to better discrimination of the true tectonic signal. Modeling this long wavelength signal also provides a potential opportunity to probe the structure of the Earth.

  20. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing.

    PubMed

    Beraneck, Mathieu; Bojados, Mickael; Le Séac'h, Anne; Jamon, Marc; Vidal, Pierre-Paul

    2012-01-01

    The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.

  1. Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Rashotte, Aaron M.; Shipp, Matthew J.; Robertson, Dominique; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.

  2. Interactions of light and gravity in Chara internodal cells

    NASA Astrophysics Data System (ADS)

    Staves, Mark P.; Whitsit, Kimberly; Yeung, Edward

    2005-08-01

    The "shoots" of Chara corallina are composed of large (ca. 2-5 cm length and 0.5 mm diameter) internodal cells alternating with smaller, node-forming cells. We find that these shoots are both negatively gravitropic as well as positively phototropic. Differential growth in response to both gravity and light typically takes place in the two most apical (youngest) internodal cells, however the plants can be manipulated so that all curvature takes place in a single cell. We grew Chara in aquaria filled with artificial pond water with their rhizoids in 35 mm film canisters containing soil. Thus, it was easy to reorient the axis of the plant with respect to gravity. Experimental plants were allowed to develop to a stage where they had one or two visible internodal cells. In the absence of light, internodal cells are negatively gravitropic. If gravistimulated (horizontal) internodal cells are illuminated with white light from above, gravity and light act together and more rapid curvature ensues. If however, gravistimulated internodal cells are illuminated from below, gravity and light act antagonistically and light can overcome the gravity signal. We find that gravistimulated cells illuminated from below will bend up (i.e. negatively gravitropic and negatively phototropic) at light intensities below ca. 1 μmol m-2 s-1 whereas they curve downward (positively gravitropic and positively phototropic) at higher light intensities. Preliminary studies indicate that both blue and green light stimulate phototropism whereas red light is not effective. Chara thus provides a system in which a single, statolith-free cell responds to both light and gravity and in which the interactions of the light- and gravity-induced signal transduction pathways can be investigated.

  3. Ontogeny of Mouse Vestibulo-Ocular Reflex Following Genetic or Environmental Alteration of Gravity Sensing

    PubMed Central

    Beraneck, Mathieu; Bojados, Mickael; Le Séac’h, Anne; Jamon, Marc; Vidal, Pierre-Paul

    2012-01-01

    The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period. PMID:22808156

  4. Development of Gravity-Sensing Organs in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.

    1996-01-01

    Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in micro-g on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high gravity Newt larvae launched before any of the otoconia were formed and reared for 15 days in micro-gravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in micro-gravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in micro-gravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.

  5. Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Sweigart, A. V.

    2006-01-01

    The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction, most likely due to remaining background light in the spectra, which would affect the fainter hot blue tail stars much more strongly than the brighter cool blue tail stars. Our study of the hot blue tail stars in NGC 6388 illustrates the obstacles which are encountered when attempting to determine the atmospheric parameters of hot HB stars in very crowded fields using ground-based observations. We discuss these obstacles and offer possible solutions for future projects.

  6. The relation of motion sickness to the spatial-temporal properties of velocity storage

    NASA Technical Reports Server (NTRS)

    Dai, Mingjia; Kunin, Mikhail; Raphan, Theodore; Cohen, Bernard; Young, L. R. (Principal Investigator)

    2003-01-01

    Tilting the head in roll to or from the upright while rotating at a constant velocity (roll while rotating, RWR) alters the position of the semicircular canals relative to the axis of rotation. This produces vertical and horizontal nystagmus, disorientation, vertigo, and nausea. With recurrent exposure, subjects habituate and can make more head movements before experiencing overpowering motion sickness. We questioned whether promethazine lessened the vertigo or delayed the habituation, whether habituation of the vertigo was related to the central vestibular time constant, i.e., to the time constant of velocity storage, and whether the severity of the motion sickness was related to deviation of the axis of eye velocity from gravity. Sixteen subjects received promethazine and placebo in a double-blind, crossover study in two consecutive 4-day test series 1 month apart, termed series I and II. Horizontal and vertical eye movements were recorded with video-oculography while subjects performed roll head movements of approx. 45 degrees over 2 s to and from the upright position while being rotated at 138 degrees /s around a vertical axis. Motion sickness was scaled from 1 (no sickness) to an endpoint of 20, at which time the subject was too sick to continue or was about to vomit. Habituation was determined by the number of head movements that subjects made before reaching the maximum motion sickness score of 20. Head movements increased steadily in each session with repeated testing, and there was no difference between the number of head movements made by the promethazine and placebo groups. Horizontal and vertical angular vestibulo-ocular reflex (aVOR) time constants declined in each test, with the declines being closely correlated to the increase in the number of head movements. The strength of vertiginous sensation was associated with the amount of deviation of the axis of eye velocity from gravity; the larger the deviation of the eye velocity axis from gravity, the more severe the motion sickness. Thus, promethazine neither reduced the nausea associated with RWR, nor retarded or hastened habituation. The inverse relationship between the aVOR time constants and number of head movements to motion sickness, and the association of the severity of motion sickness with the extent, strength, and time of deviation of eye velocity from gravity supports the postulate that the spatiotemporal properties of velocity storage, which are processed between the nodulus and uvula of the vestibulocerebellum and the vestibular nuclei, are likely to represent the source of the conflict responsible for producing motion sickness.

  7. Instrumentation and Methods to Measure Dynamic Forces During Exercise Using the Horizontal Exercise Machine

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1999-01-01

    It is hypothesized that bone loss experienced by astronauts in zero gravity conditions may be curtailed by appropriate exercise. According to Wolf's law, bone regenerates when muscles produce stresses by pulling on the bone during daily activity and/or exercise on Earth. To use this theory to prevent or decrease bone loss, one needs to quantify musculoskeletal loads and relate them to bone density changes. In the context of the space program, it is desirable to determine musculoskeletal loads during exercise so that one may make similar measurements on Earth and in space. In this manner, load measurements on Earth may be used as reference to generate similar loads during exercise in space. A research project to investigate the effects of high-resistive exercise to decrease bone density loss underzero-gravity conditions is being carried out in Life Sciences Research Laboratories at NASA JSC. The project consists of a bed-rest study whereby subjects remain in horizontal position for seventeen weeks. During the study, a subset of those subjects executes a regime of resistive exercises in the horizontal exercise machine (HEM). The HEM was designed so that subjects remain horizontal while exercising to minimize gravity loading even during exercise. Bone density of each subject is measured throughout the duration of their participation. The objective of the study is to determine if the resistive exercises are effective in diminishing or eliminating bone loss. My participation in this project relates to instrumentation, measurement, and processing of signals from displacement sensors (optical encoders) and load-cells. Measurement of displacements will be used to determine the motion of the body during exercise, and load measurements will be used (along with displacement data) to determine forces and torques exerted on each section of the body during exercise. Further, I have assisted in specifying new sensors to be added to the HEM and to a new prototype resistive exercise machine called the Interim Resistive Exercise Device (IRED). New load cells and encoders should be mounted in these devices to obtain more complete kineto-dynamic information. This report includes a description of the instrumentation that was built to perform measurements in the HEM and the IRED, along with the software that was developed to collect the measurements. It also includes examples of measurements taken in the HEM. Finally, a plan is laid out that describes how these measurements may be used to determine forces exerted by muscles for each exercise.

  8. Electric field replaces gravity in laboratory

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal electrical fields. The flame splits into two horizontal flames, ignoring the gravitational field in the laboratory. This result is similar to the behaviour of ions in plants which are responsible for the transport of nutrients from the roots to leaves and opposite ions to roots from the leaves. It shows that we can control the transport phenomena in the process of growth in plants as well as of combustion in space with proper electrical fields.

  9. Gravity enhanced acoustic levitation method and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.; Granett, D. (Inventor)

    1985-01-01

    An acoustic levitation system is provided for acoustically levitating an object by applying a single frequency from a transducer into a resonant chamber surrounding the object. The chamber includes a stabilizer location along its height, where the side walls of the chamber are angled so they converge in an upward direction. When an acoustic standing wave pattern is applied between the top and bottom of the chamber, a levitation surface within the stabilizer does not lie on a horizontal plane, but instead is curved with a lowermost portion near the vertical axis of the chamber. As a result, an acoustically levitated object is urged by gravity towards the lowermost location on the levitation surface, so the object is kept away from the side walls of the chamber.

  10. Mechanical energy transport. [during stellar turbulences

    NASA Technical Reports Server (NTRS)

    Stein, R. F.; Leibacher, J. W.

    1980-01-01

    The properties, generation, and dissipation mechanisms of acoustic, gravity and Alfven waves are described, whose restoring forces are pressure, buoyancy, and magnetic tension, respectively. For acoustic waves, generation by turbulent convective motions and by the Eddington Valve thermal overstability is discussed, considering the 'five-minute' oscillation; dissipation is possible either by radiation or shocks. Generation of gravity waves by penetrative convective motions and by shear arising from supergranule motions is reviewed, and dissipation due to wave breaking, interaction with the mean horizontal fluid flow, and very severe radiative damping is considered. Attention is given to Alfven wave generation by convective motions and thermal overstability, and to dissipation by mode coupling, wave decay, current dissipation, and particle collisions producing Joule or viscous heating.

  11. Structure and State of Stress of the Chilean Subduction Zone from Terrestrial and Satellite-Derived Gravity and Gravity Gradient Data

    NASA Astrophysics Data System (ADS)

    Gutknecht, B. D.; Götze, H.-J.; Jahr, T.; Jentzsch, G.; Mahatsente, R.; Zeumann, St.

    2014-11-01

    It is well known that the quality of gravity modelling of the Earth's lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north-south and west-east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.

  12. Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.

    2017-12-01

    It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.

  13. Containment of a silicone fluid free surface in reduced gravity using barrier coatings

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Jacobson, Thomas P.

    1988-01-01

    In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.

  14. Ball Lightning in Zero Gravity in the Laboratory

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor; Parameswaran, Sriram; Grace, Michael

    2004-11-01

    We have created balls of orange plasma in atmospheric - pressure air that survive for over 1/2 second without power input. The technique used was to create a pulsed horizontal electric arc in a zero - gravity environment using 6 neon - sign transformers in parallel, each producing 16,000 V at 60 mA. The zero - gravity environment reduces heat losses by reducing thermal convection, creating a larger ball. Previous work (1) suggests that the ball lifetime scales as the square of the ball radius. The balls were photographed after power turnoff with a high - speed 16 mm movie camera. Movies of the balls being formed and decaying will be shown. We suggest that there are several other forms of ball lightning (2). 1.Igor Alexeff et. al. International Conference On Plasma Science, Jeju, Korea, June 2-5, 2003, Conference Record, p 254. 2. Igor Alexeff and Mark Rader, IEEE Transactions on Plasma Science, Vol. 20, No. 6, Dec. 1992, pp.669-671. Igor Alexeff and Mark Rader, Fusion Technology, Vol. 27, May 1995, p. 271.

  15. Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Graham, Scott E.

    2002-01-01

    The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.

  16. A terracing operator for physical property mapping with potential field data

    USGS Publications Warehouse

    Cordell, L.; McCafferty, A.E.

    1989-01-01

    The terracing operator works iteratively on gravity or magnetic data, using the sense of the measured field's local curvature, to produce a field comprised of uniform domains separated by abrupt domain boundaries. The result is crudely proportional to a physical-property function defined in one (profile case) or two (map case) horizontal dimensions. This result can be extended to a physical-property model if its behavior in the third (vertical) dimension is defined, either arbitrarily or on the basis of the local geologic situation. The terracing algorithm is computationally fast and appropriate to use with very large digital data sets. The terracing operator was applied separately to aeromagnetic and gravity data from a 136km x 123km area in eastern Kansas. Results provide a reasonable good physical representation of both the gravity and the aeromagnetic data. Superposition of the results from the two data sets shows many areas of agreement that can be referenced to geologic features within the buried Precambrian crystalline basement. -from Authors

  17. Seasonal gravity wave drags on the upper stratosphere due to the northwestern pacific typhoons

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Lu, Daren

    In a recent study of the first author and his co-authors (Zeyu Chen, Peter Preusse, Michael Jarisch, Manfred Ern, and Dirk Offermann, 2003), it has been revealed that a northwestern Pacific typhoon can generate stratospheric gravity waves with the horizontal scales ranging from 500 km ˜ 1000 km, and carrying a magnitude of ˜ 0.001 Pascal of momentum flux into the upper stratosphere Statistics indicates that the annual mean number of typhoon in the northwestern Pacific is about 32, most of them happen in summer. In this presentation, we show that a parameterization scheme is developed to derive the magnitude of the momentum flux of the waves from operational satellite observations that can scale the intensity of a typhoon (e.g. the brightness temperature observations from the GMS-5 satellite), and operational meteorological data analysis. The seasonal effect of the Gravity Wave Drags due to the typhoons in the area is derived.

  18. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  19. An atlas of Rapp's 180-th order geopotential.

    NASA Astrophysics Data System (ADS)

    Melvin, P. J.

    1986-08-01

    Deprit's 1979 approach to the summation of the spherical harmonic expansion of the geopotential has been modified to spherical components and normalized Legendre polynomials. An algorithm has been developed which produces ten fields at the users option: the undulations of the geoid, three anomalous components of the gravity vector, or six components of the Hessian of the geopotential (gravity gradient). The algorithm is stable to high orders in single precision and does not treat the polar regions as a special case. Eleven contour maps of components of the anomalous geopotential on the surface of the ellipsoid are presented to validate the algorithm.

  20. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited effects on pilot manual control behavior and performance.

  1. Testing the influence of gravity on flower symmetry in five Saxifraga species.

    PubMed

    Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus

    2017-04-01

    Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species-Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa-concerning six flower parameters-angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.

  2. Testing the influence of gravity on flower symmetry in five Saxifraga species

    NASA Astrophysics Data System (ADS)

    Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus

    2017-04-01

    Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species— Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa—concerning six flower parameters—angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.

  3. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism

    PubMed Central

    Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.

    2012-01-01

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022

  4. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism.

    PubMed

    Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J

    2012-03-20

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.

  5. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions.

    PubMed

    Abarajith, H S; Dhir, V K; Warrier, G; Son, G

    2004-11-01

    Numerical simulation and experimental validation of the growth and departure of multiple merging bubbles and associated heat transfer on a horizontal heated surface during pool boiling under variable gravity conditions have been performed. A finite difference scheme is used to solve the equations governing mass, momentum, and energy in the vapor liquid phases. The vapor-liquid interface is captured by a level set method that is modified to include the influence of phase change at the liquid-vapor interface. Water is used as test liquid. The effects of reduced gravity condition and orientation of the bubbles on the bubble diameter, interfacial structure, bubble merger time, and departure time, as well as local heat fluxes, are studied. In the experiments, multiple vapor bubbles are produced on artificial cavities in the 2-10 micrometer diameter range, microfabricated on the polished silicon wafer with given spacing. The wafer was heated electrically from the back with miniature strain gage type heating elements in order to control the nucleation superheat. The experiments conducted in normal Earth gravity and in the low gravity environment of KC-135 aircraft are used to validate the numerical simulations.

  6. The persistence of the gravity signal in flax roots

    NASA Astrophysics Data System (ADS)

    Hasenstein, Karl H.

    Although the presentation time of gravitropism has been studied, no data exist as to how long a reorientation stimulus affects the gravitropic response of a root. We tested the duration of gravitropic curvature in roots of Linum usitatissimum after reversing a one hour, 90 degree gravistimulus by increasing time intervals in vertical orientation before clinorotating the roots and acquiring infrared digital images. Clinorotation was performed either parallel or perpendicular to the gravity vector. Under either condition the gravistimulus affected curvature during clinorotation only between two to three minutes. Maximal curvature after one minute of vertical reorientation was 15 degrees within one hour. After three minutes in vertical orientation the observed curvature was not statistically different from vertically growing roots. In both orientations, maximum curvature occurred after 1hr. Perpendicular (horizontal) clinorotation showed decreasing curvature with increasing reorientation time. Parallel (vertical) clinorotation resulted in greater variability to the reorientation time. These data indicate that the gravity stimulus operates essentially memory free and that clinorotation affects the gravity response. Therefore all aspects of clinorotation need to be studied before an assessment of clinostats for the simulation of microgravity is possible and a time limit for memory effects of mechanostimulation can be determined.

  7. Ellipsoidal Harmonic Vertical Deflections. Global and Regional Modeling of The Horizontal Derivative of The Terrestrial Garvity Field

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Ardalan, A.; Finn, G.

    In terms of elliptic coordinates of Jacobi type (longitude, latitude, semi-minor axis) the horizontal derivative is computed as a linear operator acting on an ellipsoidal har- monic disturbing/incremental gravitational potential. Such disturbing potential is de- fined with respect to the Somigliana-Pizzetti Reference Potential, the potential field of a level ellipsoid, and the International Reference Ellipsoid/WGS84 or World Geode- tic Datum 2000/WGD2000. Case studies of those vertical deflections on a global as well as regional scale are presented which take advantage of SEGEN (Special Ellipsoidal Gravity Earth Normal: ellipsoidal harmonics expansion 130321 coeffi- cients: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) and of CENT (precise centrifugal potential)

  8. Levitation of a drop over a film flow

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  9. Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test

    NASA Technical Reports Server (NTRS)

    Catelan, M.; Grundahl, F.; Sweigart, A. V.; Valcarce, A. A. R.; Cortes, C.

    2007-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is a common feature among globular star clusters. In this scenario, such a helium enhancement would be particularly apparent in the enhanced luminosity of thc blue horizontal branch (HB) stars compared to the red HB stars. In this Letter, wc test this scenario in the case of the Galactic globular cluster M3 (NGC 5272), using high-precision Stromgren photometry and spectroscopic gravities for blue HB stars. We find that any helium enhancement among the cluster's blue HB stars must be significantly less than I%, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  10. Impacts of Outer Continental Shelf (OCS) development on recreation and tourism. Volume 5. Program logic manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The final report for the project is presented in five volumes. This volume is the Programmer's Manual. It covers: a system overview, attractiveness component of gravity model, trip-distribution component of gravity model, economic-effects model, and the consumer-surplus model. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism.

  11. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-09

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  12. Using the full tensor of GOCE gravity gradients for regional gravity field modelling

    NASA Astrophysics Data System (ADS)

    Lieb, Verena; Bouman, Johannes; Dettmering, Denise; Fuchs, Martin; Schmidt, Michael

    2013-04-01

    With its 3-axis gradiometer GOCE delivers 3-dimensional (3D) information of the Earth's gravity field. This essential advantage - e.g. compared with the 1D gravity field information from GRACE - can be used for research on the Earth's interior and for geophysical exploration. To benefit from this multidimensional measurement system, the combination of all 6 GOCE gradients and additionally the consistent combination with other gravity observations mean an innovative challenge for regional gravity field modelling. As the individual gravity gradients reflect the gravity field depending on different spatial directions, observation equations are formulated separately for each of these components. In our approach we use spherical localizing base functions to display the gravity field for specified regions. Therefore the series expansions based on Legendre polynomials have to be adopted to obtain mathematical expressions for the second derivatives of the gravitational potential which are observed by GOCE in the Cartesian Gradiometer Reference Frame (GRF). We (1) have to transform the equations from the spherical terrestrial into a Cartesian Local North-Oriented Reference Frame (LNOF), (2) to set up a 3x3 tensor of observation equations and (3) finally to rotate the tensor defined in the terrestrial LNOF into the GRF. Thus we ensure the use of the original non-rotated and unaffected GOCE measurements within the analysis procedure. As output from the synthesis procedure we then obtain the second derivatives of the gravitational potential for all combinations of the xyz Cartesian coordinates in the LNOF. Further the implementation of variance component estimation provides a flexible tool to diversify the influence of the input gradiometer observations. On the one hand the less accurate xy and yz measurements are nearly excluded by estimating large variance components. On the other hand the yy measurements, which show systematic errors increasing at high latitudes, could be manually down-weighted in the corresponding regions. We choose different test areas to compute regional gravity field models at mean GOCE altitudes for different spectral resolutions and varying relative weights for the observations. Further we compare the regional models with the static global GOCO03S model. Especially the flexible handling and combination of the 3D measurements promise a great benefit for geophysical applications from GOCE gravity gradients, as they contain information on radial as well as on lateral gravity changes.

  13. Influence of surface gravity waves on near wake development behind a towed model horizontal axis marine current turbine

    NASA Astrophysics Data System (ADS)

    Luznik, Luksa; Flack, Karen; Lust, Ethan

    2016-11-01

    2D PIV measurements in the near wake flow field (x/D<2) are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. All measurements were obtained in the USNA 380 ft tow tank with turbine towed at a constant carriage speed (Utow = 1.68 m/s), at the nominal tip speed ratio (TSR) of 7 and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. Near wake mapping is accomplished by "tiling" phase locked individual 2D PIV fields of view (nominally 30x30 cm2) with approximately 5 cm overlap. The discussion will focus on the downstream evolution of coherent tip vortices shed by the rotor blades and their vertical/horizontal displacements by the wave induced fluctuations. This observed phenomena ultimately results in significantly increased downstream wake expansion in comparison with the same conditions without waves. Office of Naval Research.

  14. Space shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1980-01-01

    The effects of atmospheric turbulence in both horizontal and near horizontal flight, during the return of the space shuttle, are important for determining design, control, and 'pilot-in-the-loop' effects. A nonrecursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model, the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes which are entitled shuttle simulation turbulence tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 10,000 meters. The turbulence generation procedure is described as well as the results of validating the simulated turbulence. Conclusions and recommendations are presented and references cited. The tabulated one dimensional von Karman spectra and the results of spectral and statistical analyses of the SSTT are contained in the appendix.

  15. Ambient Noise Tomography of the Northwestern U.S. and the Adjacent Juan de Fuca and Gorda Plates

    NASA Astrophysics Data System (ADS)

    Wang, H.; Feng, L.; Tian, Y.; Ritzwoller, M. H.

    2017-12-01

    The NSF Cascadia Initiative (CI) experiment includes 4-year deployments of ocean bottom seismometers (OBSs) on the Juan de Fuca and Gorda Plates. The CI experiment provides the unprecedented opportunity to investigate the crustal and upper mantle structure of this region. The 259 OBSs switched between Cascadia North in Years 1 and 3 and Cascadia South in Years 2 and 4 at around 160 different sites. Using the OBSs together with 89 stations near the Pacific coast, we estimate empirical Green's function (EGF) between station pairs by cross-correlating ambient noise recorded on their vertical components. Unlike continental stations, the OBSs are contaminated mainly by tilt and compliance noise at low frequencies (<0.1 Hz), which obscures the coherent ambient noise and makes it more difficult to retrieve reliable EGFs. Compliance noise comes from the seafloor deformation under gravity waves and its strength depends mostly on the pressure signal, thus compliance noise can be reduced significantly using the pressure record. Tilt noise is induced by currents near the seafloor, and the horizontal records are dominated by tilt noise at frequencies below 0.1 Hz. Tilt noise on the vertical components can be reduced using horizontal components. The "denoised" cross-correlations provide more reliable and higher signal to noise ratio (SNR) EGFs. Based on the estimated EGFs from the "denoised" vertical records, we use frequency-time analysis (FTAN) to retrieve the dispersion curve of Rayleigh waves between station pairs. Using the Rayleigh wave dispersion curves, we perform seismic tomography to construct isotropic and azimuthally anisotropic phase velocity maps at periods from about 8 to 30s across the Juan de Fuca and Gorda plates, extending up onto the continent. Previous studies have shown that the fast axis directions of 2ψ azimuthal anisotropy align parallel to present-day plate motion directions at longer periods and parallel to paleospreading directions at shorter periods. We also investigate the relationship between azimuthal anisotropy and plate motion direction across the Juan de Fuca and Gorda plates.

  16. Search a way out of fluid-magmatic activity on the periphery of the thermal structure Siberian magnetic anomaly

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Petrova, Alevtina

    2017-04-01

    The work have for an object to study of a deep structure of the region of Eastern Siberia, allocation of zones of the most ancient magnetoactive horizons and search of exits of fluid and magmatic aktivization, on the periphery of thermal structures within which the most part of ore gold deposits, copper and other polymetals concentrates. Researches of not uniformity of the base in the field of the Siberian magnetic anomaly are executed on the basis of interpretation of anomalies of the module of vertical and horizontal components of the magnetic field of Earth, and also anomalies of gravity. The zone of all-round permafrost settles down from the Arctic coast of Siberia to 60 - 62N. World anomaly of a magnetic field of Earth of Eastern Siberia gets on a permafrost zone. It extends from North Siberian Lowland on Taimyr to Lake Baikal. On the isoline of 60 000 nT it occupies the space from 75N to 50N and from 80 to 130 E. For the purpose of studying of a deep structure and clarification of the nature of magnetization of anomalies of the base cards of anomalies vertical and horizontal the magnetic field of Earth component were used. Density cuts are received on anomalies of gravity. On deep sections the dense and magnetic horizon located in the range of depths the 10-15th is visible. Detection of anomalies vertical components means that the specific magnetoactive layer possesses thermoresidual magnetization which direction doesn't coincide with the modern direction and testifies to early time of its education. The most brightly thermoresidual anomalies are expressed on Plateau of Putoran and the Anabar shield. In the territory of Eastern Siberia near Lake Baikal sources of thermal waters are known. The great interest represents search of thermal auras - talik - to the north of Lake Baikal in a zone of universal permafrost. One of the most important factors of formation of thermal auras is carrying out of the fluid streams delivered from deep-focal fluid systems. Visualization of deep cuts allowed to reveal location in crust of fluid systems and to estimate depth of their bedding. In magnetic and density cuts of a way of migration of streams from fluid system are reflected in a view of the low-magnetic bringing canals of the lowered density. As a result, of research such auras are allocated within a permafrost zone in area of World magnetic anomaly in Eastern Siberia and on the Taimyr Peninsula. The analysis low-frequency components of an anomalous magnetic field within the Taimyr peninsula allows to localize family the of geological sources which form anomalies in the depth interval of 9 500-14 500 m in an interval of depths of 9 500-14 500 m that answers the level close to a roof of a granitometamorfic layer. The geoblocks limiting structure of the Yenisei-Hatanga deflection from northern and southern flanks answer areas of uplift of the Archaean and Proterozoic basis.

  17. The ITSG-Grace2014 Gravity Field Model

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate

    2015-04-01

    The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.

  18. 61. (Credit CBF) Operating floor of filter room, c1912. A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. (Credit CBF) Operating floor of filter room, c1912. A remodeled Hyatt pressure filter, now operating as a tub, gravity, rapid sand filter, is in the foreground (the remodeling took place c1908-1909). The remodeled New York horizontal pressure filters (installed 01900, remodeled c1908-1909) are in the background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  19. Predicting Explosion-Generated SN and LG Coda Using Syntheic Seismograms

    DTIC Science & Technology

    2008-09-01

    velocities in the upper crust are based on borehole data, geologic and gravity data, refraction studies and seismic experiments (McLaughlin et al. 1983...realizations of random media. We have estimated the heterogeneity parameters for the NTS using available seismic and geologic data. Lateral correlation...variance and coherence measures between seismic traces are estimated from clusters of nuclear explosions and well- log data. The horizontal von Karman

  20. Observations of the upper troposphere and lower stratosphere using the urbana coherent-scatter radar

    NASA Technical Reports Server (NTRS)

    Goss, L. D.; Bowhill, S. A.

    1983-01-01

    The Urbana coherent-scatter radar was used to observe the upper troposphere and lower stratosphere, and 134 hours of data were collected. Horizontal wind measurements show good agreement with balloon-measured winds. Gravity waves were frequently observed, and were enhanced during convective activity. Updrafts and downdrafts were observed within thunderstorms. Power returns are related to hydrostatic stability, and changes in echo specularity are shown.

  1. Low speed aerodynamic characteristics of a lifting-body hypersonic research aircraft configuration

    NASA Technical Reports Server (NTRS)

    Penland, J. A.

    1975-01-01

    An experimental investigation of the low-speed longitudinal, lateral, and directional stability characteristics of a lifting-body hypersonic research airplane concept was conducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the Langley Research Center. The model was tested with two sets of horizontal and vertical tip controls having different planform areas, a center vertical tail and two sets of canard controls having trapezoidal and delta planforms, and retracted and deployed engine modules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number of 2 million based on the fuselage length. The tests were conducted through an angle-of-attack range of 0 deg to 30 deg and through horizontal-tail deflections of 10 deg to minus 30 deg. The complete configuration exhibited excessive positive static longitudinal stability about the design center-of-gravity location. However, the configuration was unstable laterally at low angles of attack and unstable directionally throughout the angle-of-attack range. Longitudinal control was insufficient to trim at usable angles of attack. Experiments showed that a rearward shift of the center of gravity and the use of a center-located vertical tail would result in a stable and controllable vehicle.

  2. The Dawn Topography Investigation

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Jaumann, R.; Nathues, A.; Sierks, H.; Roatsch, T.; Preusker, E; Scholten, F.; Gaskell, R. W.; Jorda, L.; Keller, H.-U.; hide

    2011-01-01

    The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids' landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn's framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta's geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.

  3. A Model Simulation of Mountain Waves in the Middle Atmosphere and Its Comparison with Microwave Limb Sounder Observations

    NASA Astrophysics Data System (ADS)

    Jiang, J. H.; Eckermann, S. D.; Wu, D. L.; Ma, J.; Wang, D. Y.

    2003-04-01

    Topography-related wintertime stratospheric gravity waves in both Northern and Southern Hemisphere are simulated using the Naval Research Laboratory Mountain Wave Forecast Model (MWFM). The results agree well with the observations from Upper Atmospheric Research Satellite Microwave Limb Sounder (MLS). Both the MWFM simulation and MLS observations found strong wave activities over the high-latitude mountain ridges of Scandinavia, Central Eurasia, Alaska, southern Greenland in Northern Hemisphere, and Andes, New Zealand, Antarctic rim in Southern Hemisphere. These mountain waves are dominated by wave modes with downward phase progression and horizontal phase velocities opposite to the stratospheric jet-stream. Agreements of minor wave activities are also found at low- to mid-latitudes over Zagros Mountains of Middle East, Colorado Rocky Mountains, Appalachians, and Sierra Madres of Central America. Some differences between the MWFM results and MLS data are explained by different horizontal resolution between the model and observation, and the fact that MLS may also see the non-orographic wave sources, such as mesoscale storms and jet-stream instabilities. The findings from this model-measurement comparison study demonstrate that satellite instruments such as MLS can provide global data needed to characterize mountain wave sources, their inter-annual variations, and to improve gravity wave parameterizations in global climate and forecast models.

  4. Medium-Scale Traveling Ionospheric Disturbances Observed by Detrended Total Electron Content Maps Over Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, C. A. O. B.; Takahashi, H.; Wrasse, C. M.; Otsuka, Y.; Shiokawa, K.; Barros, D.

    2018-03-01

    A ground-based network of Global Navigation Satellite Systems receivers has been used to monitor medium-scale traveling ionospheric disturbances (MSTIDs). MSTIDs were studied using total electron content perturbation maps and keograms over south-southeast of Brazil during the period from December 2012 to February 2016. In total, 826 MSTIDs were observed mainly in daytime, thus presenting median values of horizontal wavelength, period, and horizontal phase velocity of 452 ± 107 km, 24 ± 4 min. and 323 ± 81 m/s, respectively. The direction of propagation varies on the season: during the winter (June-August), the waves preferentially propagated to north-northeast, while in the other seasons the waves propagated to other directions. The anisotropy observed in the MSTID propagation direction could be associated with the region of the gravity wave generation that takes place in the troposphere. We also found that the MSTIDs were observed most frequently during the daytime, between 11 and 15 local time in winter and near to dusk solar terminator (17-19 local time) in the other seasons. Furthermore, the occurrence of MSTIDs was higher in winter. We suggest that atmospheric gravity waves in the thermosphere, mesosphere, and troposphere could play an important role in generating the MSTIDs and the propagation direction may depend on location of the wave sources.

  5. Observations of vertical velocities in the tropical upper troposphere and lower stratosphere using the Arecibo 430-MHz radar

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1988-01-01

    The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.

  6. Reaching while standing in microgravity: a new postural solution to oversimplify movement control.

    PubMed

    Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry

    2012-01-01

    Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostensen, R. H.; Degroote, P.; Vos, J.

    We introduce the first g-mode pulsator found to reside on the classical blue horizontal branch. One year of Kepler observations of KIC 1718290 reveals a rich spectrum of low-amplitude modes with periods between 1 and 12 hr, most of which follow a regular spacing of 276.3 s. This mode structure strongly resembles that of the V1093 Her pulsators, with only a slight shift toward longer periods. Our spectroscopy, however, reveals KIC 1718290 to be quite distinct from the sdB stars that show V1093 Her pulsations, which all have surface gravities higher than log g = 5.1 and helium abundances depletedmore » by at least an order of magnitude relative to the solar composition. We find that KIC 1718290 has T{sub eff} = 22,100 K, log g = 4.72, and a super-solar helium abundance (log N{sub He}/N{sub H} = -0.45). This places it well above the extreme horizontal branch, rather on the very blue end of the classical horizontal branch, where shell hydrogen burning is present. We conclude that KIC 1718290 must have suffered extreme mass loss during its first giant stage, but not sufficient to reach the extreme horizontal branch.« less

  8. Horizontal high speed stacking for batteries with prismatic cans

    DOEpatents

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  9. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of absorption and dispersion and a stochastic model is constructed for ground-based acoustic signals in mountain environments.

  10. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  11. An IBM-compatible program for interactive three-dimensional gravity modeling

    NASA Astrophysics Data System (ADS)

    Broome, John

    1992-04-01

    G3D is a 3-D interactive gravity modeling program for IBM-compatible microcomputers. The program allows a model to be created interactively by defining multiple tabular bodies with horizontal tops and bottoms. The resulting anomaly is calculated using Plouff's algorithm at up to 2000 predefined random or regularly located points. In order to display the anomaly as a color image, the point data are interpolated onto a regular grid and quantized into discrete intervals. Observed and residual gravity field images also can be generated. Adjustments to the model are made using a graphics cursor to move, insert, and delete body points or whole bodies. To facilitate model changes, planview body outlines can be overlain on any of the gravity field images during editing. The model's geometry can be displayed in planview or along a user-defined vertical section. G3D is written in Microsoft® FORTRAN and utilizes the Halo-Professional® (or Halo-88®) graphics subroutine library. The program is written for use on an IBM-compatible microcomputer equipped with hard disk, numeric coprocessor, and VGA, Number Nine Revolution (Halo-88® only), or TIGA® compatible graphics cards. A mouse or digitizing tablet is recommended for cursor positioning. Program source code, a user's guide, and sample data are available as Geological Survey of Canada Open File (G3D: A Three-dimensional Gravity Modeling Program for IBM-compatible Microcomputers).

  12. Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.

    2003-11-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.

  13. Progress towards a space-borne quantum gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute

    2004-01-01

    Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.

  14. Effects of Lateral Heterogeneity and Power Law Rheology on Glacially Induced Surface Motion and Gravity Rate of Change

    NASA Astrophysics Data System (ADS)

    Wu, P.; Wang, H.; van der Wal, W.

    2006-12-01

    Modern geodetic measurements from GPS, satellite altimetry, tide-gauges, Satellite Laser Ranging (SLR) and space-borne gravimetry (such as GRACE) have been used to monitor global change. Since these measurements contain contributions from glacial isostatic adjustment (GIA) and other tectonic processes, they must be modeled and removed in order to observe current climate change. In the past, most GIA models assumed that the earth is laterally homogeneous and the rheology is linear. The aim of this paper is to investigate the effects of lateral heterogeneity and Power-Law rheology on GIA induced land uplift rate, horizontal velocities, relative sealevels, J-dot and the secular gravity rate of change in the southern part of Hudson Bay, which is detected by the GRACE mission. Here, GIA is modeled with a spherical, self-gravitating, compressible viscoelastic, laterally heterogeneous earth using the Finite-Element Method. The effect of gravitationally self-consistent sea levels in realistic oceans is also included. Lateral variations in mantle viscosities and lithospheric thickness are inferred from the seismic tomography model S20A using well known scaling relationships. Power-Law rheologies in the whole mantle or in combination with linear rheologies in the upper or lower mantle are also investigated. Both ICE-5G and ICE-4G deglaciation models are used to investigate their effect on the pattern of rebound. Preliminary results show that both lateral heterogeneity and power-law rheology have strong effects on the direction and magnitude of horizontal velocities. The effects of lateral heterogeneity and power-law rheology are also large enough to be detected in land uplift rate, relative sealevels, J-dot and gravity rate of change. Their implication on observing the effects of global warming will also be discussed.

  15. Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Miller, M. S.; Gardner, C. S.; Liu, C. H.

    1987-01-01

    Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.

  16. Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2°S, 58.8°W)

    NASA Astrophysics Data System (ADS)

    Kam, Hosik; Jee, Geonhwa; Kim, Yong; Ham, Young-bae; Song, In-Sun

    2017-03-01

    We have investigated the characteristics of mesospheric short period (<1 h) gravity waves which were observed with all-sky images of OH Meinel band and OI 557 nm airglows over King Sejong Station (KSS) (62.22°S, 58.78°W) during a period of 2008-2015. By applying 2-dimensional FFT to time differenced images, we derived horizontal wavelengths, phase speeds, and propagating directions (188 and 173 quasi-monochromatic waves from OH and OI airglow images, respectively). The majority of the observed waves propagated predominantly westward, implying that eastward waves were filtered out by strong eastward stratospheric winds. In order to obtain the intrinsic properties of the observed waves, we utilized winds simultaneously measured by KSS Meteor Radar and temperatures from Aura Microwave Limb Sounder (MLS). More than half the waves propagated horizontally, as waves were in Doppler duct or evanescent in the vertical direction. This might be due to strong eastward background wind field in the mesosphere over KSS. For freely propagating waves, the vertical wavelengths were in the interquartile range of 9-33 km with a median value of 15 km. The vertical wavelengths are shorter than those observed at Halley station (76°S, 27°W) where the majority of the observed waves were freely propagating. The difference in the wave propagating characteristics between KSS and Halley station suggests that gravity waves may affect mesospheric dynamics in this part of the Antarctic Peninsula more strongly than over the Antarctic continent. Furthermore, strong wind shear over KSS played an important role in changing the vertical wavenumbers as the waves propagated upward between two airglow layers (87 and 96 km).

  17. Effect of Gravity on Robot-Assisted Motor Training After Chronic Stroke: A Randomized Trial

    PubMed Central

    Conroy, Susan S.; Whitall, Jill; Dipietro, Laura; Jones-Lush, Lauren M.; Zhan, Min; Finley, Margaret A.; Wittenberg, George F.; Krebs, Hermano I.; Bever, Christopher T.

    2015-01-01

    Objectives To determine the efficacy of 2 distinct 6-week robot-assisted reaching programs compared with an intensive conventional arm exercise program (ICAE) for chronic, stroke-related upper-extremity (UE) impairment. To examine whether the addition of robot-assisted training out of the horizontal plane leads to improved outcomes. Design Randomized controlled trial, single-blinded, with 12-week follow-up. Setting Research setting in a large medical center. Participants Adults (N=62) with chronic, stroke-related arm weakness stratified by impairment severity using baseline UE motor assessments. Interventions Sixty minutes, 3 times a week for 6 weeks of robot-assisted planar reaching (gravity compensated), combined planar with vertical robot-assisted reaching, or intensive conventional arm exercise program. Main Outcome Measure UE Fugl-Meyer Assessment (FMA) mean change from baseline to final training. Results All groups showed modest gains in the FMA from baseline to final with no significant between group differences. Most change occurred in the planar robot group (mean change ± SD, 2.94± 0.77; 95% confidence interval [CI], 1.40 – 4.47). Participants with greater motor impairment (n=41) demonstrated a larger difference in response (mean change ± SD, 2.29±0.72; 95% CI, 0.85–3.72) for planar robot-assisted exercise compared with the intensive conventional arm exercise program (mean change ± SD, 0.43±0.72; 95% CI, −1.00 to 1.86). Conclusions Chronic UE deficits because of stroke are responsive to intensive motor task training. However, training outside the horizontal plane in a gravity present environment using a combination of vertical with planar robots was not superior to training with the planar robot alone. PMID:21849168

  18. Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    Gravity-induced changes in intracellular potentials in primary roots of 2-day-old mung bean (Vigna mungo L. cv. black matpe) seedlings were investigated using glass microelectrodes held by 3-dimensional hydraulic micro-drives. The electrodes were inserted into outer cortical cells within the elongation zone. Intracellular potentials, angle of root orientation with respect to gravity, and position within the root of the impaled cortical cell were measured simultaneously. Gravistimulation caused intracellular potential changes in cortical cells of the elongation zone. When the roots were oriented vertically, the intracellular potentials of the outer cortical cells (2 mm behind the root apex) were approximately - 115 mV. When the roots were placed horizontally cortical cells on the upper side hyperpolarized to - 154 mV within 30 s while cortical cells on the lower side depolarized to about - 62 mV. This electrical asymmetry did not occur in cells of the maturation zone. Because attempts to insert the electrode into cells of the root cap were unsuccessful, these cells were not measured. The hyperpolarization of cortical cells on the upper side was greatly reduced upon application of N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of respiratory energy coupling. When stimulated roots were returned to the vertical, the degree of hyperpolarization of cortical cells on the previous upper side decreased within 30 s and approached that of cortical cells in non-stimulated roots. This cycle of hyperpolarization/loss of hyperpolarization was repeatable at least ten times by alternately turning the root from the vertical to the horizontal and back again. The very short (<30 s) lag period of these electrical changes indicates that they may result from stimulus-perception and transduction within the elongation zone rather than from transmission of a signal from the root cap.

  19. Superconducting tensor gravity gradiometer for satellite geodesy and inertial navigation

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    A sensitive gravity gradiometer can provide much needed gravity data of the earth and improve the accuracy of inertial navigation. Superconductivity and other properties of materials at low temperatures can be used to obtain a sensitive, low-drift gravity gradiometer; by differencing the outputs of accelerometer pairs using superconducting circuits, it is possible to construct a tensor gravity gradiometer which measures all the in-line and cross components of the tensor simultaneously. Additional superconducting circuits can be provided to determine the linear and angular acceleration vectors. A tensor gravity gradiometer with these features is being developed for satellite geodesy. The device constitutes a complete package of inertial navigation instruments with angular and linear acceleration readouts as well as gravity signals.

  20. Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions

    NASA Astrophysics Data System (ADS)

    Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele

    2016-04-01

    The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.

Top