NASA Astrophysics Data System (ADS)
Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc
2018-05-01
The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.
NASA Astrophysics Data System (ADS)
Blakely, Richard J.
1994-02-01
The spatial correlation between a horizontal gradient in heat flow and a horizontal gradient in residual gravity in the Western Cascades of central Oregon has been interpreted by others as evidence of the western edge of a pervasive zone of high temperatures and partial melting at midcrustal depths (5-15 km). Both gradients are steep and relatively linear over north-south distances in excess of 150 km. The Western Cascades gravity gradient is the western margin of a broad gravity depression over most of the Oregon Cascade Range, implying that the midcrustal zone of anomalous temperatures lies throughout this region. Ideal-body theory applied to the gravity gradient, however, shows that the source of the Western Cascades gravity gradient cannot be deeper than about 2.5 km and is considerably shallower in some locations. These calculations are unique determinations, assuming that density contrasts associated with partial melting and elevated temperatures in the crust do not exceed 500 kg/cu m. Consequently, the gravity gradient and the heat flow gradient in the Western Cascades cannot be caused directly by the same source if the heat flow gradient originates at midcrustal depths. This conclusion in itself does not disprove the existence of a widespread midcrustal zone of anomalously high temperatures and partial melting in this area, but it does eliminate a major argument in support of its existence. The gravity gradient is most likely caused by lithologic varitions in the shallow crust, perhaps reflecting a relict boundary between the Cascade extensional trough to the west and Tertiary oceanic crust to the west. The boundary must have formed prior to Oligocene time, the age of the oldest rocks that now conceal it.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang
2018-03-01
During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.
Horizontal gravity gradient - An aid to the definition of crustal structure in North America
NASA Technical Reports Server (NTRS)
Sharpton, V. L.; Grieve, R. A. F.; Thomas, M. D.; Halpenny, J. F.
1987-01-01
A map of the magnitude of the horizontal Bouguer gravity gradient over the North American continent is used to delineate lateral discontinuities in upper crustal density and/or thickness associated with such processes as suturing and rifting. The usefulness of gradient trends in mapping major structural boundaries, which are sometimes poorly exposed or completely buried, is demonstrated by examples such as the buried southward extension of the Grenville Front and buried boundaries of the Superior Province. Gradient trends also draw attention to poorly known structures, which may have major tectonic significance, and to a continent-wide structural fabric, which may provide a record of the tectonic growth of the North American continent.
Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients
NASA Astrophysics Data System (ADS)
Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.
2017-12-01
Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.
1988-01-01
Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.
NASA Astrophysics Data System (ADS)
Supriyanto, Noor, T.; Suhanto, E.
2017-07-01
The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.
Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes
NASA Astrophysics Data System (ADS)
Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.
1995-09-01
Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.
Major Fault Patterns in Zanjan State of Iran Based of GECO Global Geoid Model
NASA Astrophysics Data System (ADS)
Beheshty, Sayyed Amir Hossein; Abrari Vajari, Mohammad; Raoufikelachayeh, SeyedehSusan
2016-04-01
A new Earth Gravitational Model (GECO) to degree 2190 has been developed incorporates EGM2008 and the latest GOCE based satellite solutions. Satellite gradiometry data are more sensitive information of the long- and medium- wavelengths of the gravity field than the conventional satellite tracking data. Hence, by utilizing this new technique, more accurate, reliable and higher degrees/orders of the spherical harmonic expansion of the gravity field can be achieved. Gravity gradients can also be useful in geophysical interpretation and prospecting. We have presented the concept of gravity gradients with some simple interpretations. A MATLAB based computer programs were developed and utilized for determining the gravity and gradient components of the gravity field using the GGMs, followed by a case study in Zanjan State of Iran. Our numerical studies show strong (more than 72%) correlations between gravity anomalies and the diagonal elements of the gradient tensor. Also, strong correlations were revealed between the components of the deflection of vertical and the off-diagonal elements as well as between the horizontal gradient and magnitude of the deflection of vertical. We clearly distinguished two big faults in North and South of Zanjan city based on the current information. Also, several minor faults were detected in the study area. Therefore, the same geophysical interpretation can be stated for gravity gradient components too. Our mathematical derivations support some of these correlations.
NASA Astrophysics Data System (ADS)
Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav
2017-06-01
The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.
NASA Astrophysics Data System (ADS)
Douch, Karim; Panet, Isabelle; Foulon, Bernard; Christophe, Bruno; Pajot-Métivier, Gwendoline; Diament, Michel
2014-05-01
Satellite missions such as CHAMP, GRACE and GOCE have led to an unprecedented improvement of global gravity field models during the past decade. However, for many applications these global models are not sufficiently accurate when dealing with wavelengths shorter than 100 km. This is all the more true in areas where gravity data are scarce and uneven as for instance in the poorly covered land-sea transition area. We suggest here, in line with spatial gravity gradiometry, airborne gravity gradiometry as a convenient way to amplify the sensitivity to short wavelengths and to cover homogeneously coastal region. Moreover, the directionality of the gravity gradients gives new information on the geometry of the gravity field and therefore of the causative bodies. In this respect, we analyze here the performances of a new airborne electrostatic acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers inheriting from technologies developed by ONERA for spatial accelerometers. After an overview of the functionals of the gravity field that are of interest for coastal oceanography, passive navigation and hydrocarbon exploration, we present the corresponding required precision and resolution. Then, we investigate the influence of the different parameters of the survey, such as altitude or cross-track distance, on the resolution and precision of the final measurements. To do so, we design numerical simulations of airborne survey performed with GREMLIT and compute the total error budget on the gravity gradients. Based on this error analysis, we infer by a method of error propagation the uncertainty on the different functionals of the gravity potential used for each application. This finally enables us to conclude on the requirements for a high resolution mapping of the gravity field in coastal areas.
Gravity domains and assembly of the North American continent by collisional tectonics
NASA Technical Reports Server (NTRS)
Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.
1988-01-01
A gravity trend map of North America, based on a horizontal Bouguer gravity gradient map produced from gravity data for Canada and the conterminous United States, is presented and used to define a continental mosaic of gravity trend domains akin to structural domains. Contrasting trend characteristics at gravity domain boundaries support the concept of outward growth of the continent primarily by accretionary tectonics. Gravity patterns, however, indicate a different style of tectonics dominated in the development of now-buried Proterozoic orogenic belts in the south-central United States, supporting a view that these belts formed along the leading edge of a southward-migrating Proterozoic continental margin.
Turbulent Mixing in Gravity Currents with Transverse Shear
NASA Astrophysics Data System (ADS)
White, Brian; Helfrich, Karl; Scotti, Alberto
2010-11-01
A parallel flow with horizontal shear and horizontal density gradient undergoes an intensification of the shear by gravitational tilting and stretching, rapidly breaking down into turbulence. Such flows have the potential for substantial mixing in estuaries and the coastal ocean. We present high-resolution numerical results for the mixing efficiency of these flows, which can be viewed as gravity currents with transverse shear, and contrast them with the well-studied case of stably stratified, homogeneous turbulence (uniform vertical density and velocity gradients). For a sheared gravity current, the buoyancy flux, turbulent Reynolds stress, and dissipation are well out of equilibrium. The total kinetic energy first increases as potential energy is transferred to the gravity current, but rapidly decays once turbulence sets in. Despite the non-equilibrium character, mixing efficiencies are slightly higher but qualitatively similar to homogeneous stratified turbulence. Efficiency decreases in the highly energetic regime where the dissipation rate is large compared with viscosity and stratification, ɛ/(νN^2)>100, further declining as turbulence decays and kinetic energy dissipation dominates the buoyancy flux. In general, the mixing rate, parameterized by a turbulent eddy diffusivity, increases with the strength of the transverse shear.
Baroclinic instability with variable gravity: A perturbation analysis
NASA Technical Reports Server (NTRS)
Giere, A. C.; Fowliss, W. W.; Arias, S.
1980-01-01
Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.
NASA Astrophysics Data System (ADS)
Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer
2018-03-01
Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.
Ductile crustal flow in Europe's lithosphere
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2011-12-01
Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data
NASA Astrophysics Data System (ADS)
Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.
2017-12-01
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.
Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data
NASA Astrophysics Data System (ADS)
Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.
2018-02-01
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.
Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Veverka, J.
1976-01-01
The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.
1995-01-01
The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration has been investigated. In particular, the effects of surface tension on partially filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without baffles are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and a torsional moment acting on the spacecraft. The results are clearly seen from one-up one-down and one-down one-up oscillations in the cross-section profiles of two bubbles in the vertical (r, z)-plane of the rotating dewar, and from the eccentric contour of the bubble rotating around the axis of the dewar in a horizontal (r, theta)-plane. As the viscous force, between liquid and solid interface, greatly contributes to the damping of slosh wave excitation, a rotating dewar with baffles provides more areas of liquid-solid interface than that of a rotating dewar without baffles. Results show that the damping effect provided by the baffles reduces the amplitude of slosh wave excitation and lowers the degree of asymmetry in liquid-vapor distribution. Fluctuations of angular momentum and fluid moment caused by the slosh wave excited by gravity gradient acceleration with and without baffle boards are also investigated. It is also shown that the damping effect provided by the baffles greatly reduces the amplitudes of angular momentum and fluid moment fluctuations.
NASA Astrophysics Data System (ADS)
Jallouli, Chokri; Mogren, Saad; Mickus, Kevin; Turki, Mohamed Moncef
2013-11-01
The Atlas orogeny in northern Algeria and Tunisia led to the destruction of Tethys oceanic lithosphere and cumulated in a collision of microplates rifted off the European margin with the North African continental margin. The location of the boundary between African plate and Kabylian microplate is expressed in northern Algeria by a crustal wedge with double vergence of thrust sheets, whereas in northern Tunisia the geologic environment is more complex and the location of the plate boundary is ambiguous. In this study, we analyzed gravity data to constrain the crustal structure along the northern margin of Tunisia. The analysis includes a separation of regional and residual gravity anomalies and the application of gradient operators to locate density contrast boundaries. The horizontal gradient magnitude and directional gradient highlight a prominent regional E-W gravity gradient in the northern Tunisian Atlas interpreted as a deep fault (active since at least the Early Mesozoic) having a variable kinematic activity depending on the tectonic regime in the region. The main E-W gravity gradient separates two blocks having different gravitational and seismic responses. The southern block has numerous gravity lineaments trending in different directions implying several density variations within the crust, whereas the northern block shows a long-wavelength negative gravity anomaly with a few lineaments. Taking into account the geologic context of the Western Mediterranean region, we consider the E-W prominent feature as the boundary between African plate and Kabylian microplate in northern Tunisia that rifted off Europe. This hypothesis fits most previous geological and geophysical studies and has an important impact on the petroleum and mineral resource prospection as these two blocks were separated by an ocean and they did not belong to the same margin.
NASA Astrophysics Data System (ADS)
Hussain, Matloob; Eshagh, Mehdi; Ahmad, Zulfiqar; Sadiq, M.; Fatolazadeh, Farzam
2016-09-01
The earth's gravity changes are attributed to the redistribution of masses within and/or on the surface of the earth, which are due to the frictional sliding, tensile cracking and/or cataclastic flow of rocks along the faults and detectable by earthquake events. Inversely, the gravity changes are useful to describe the earthquake seismicity over the active orogenic belts. The time variable gravimetric data are hardly available to the public domain. However, Gravity Recovery and Climatic Experiment (GRACE) is the only satellite mission dedicated to model the variation of the gravity field and an available source to the science community. Here, we have tried to envisage gravity changes in terms of gravity anomaly (Δg), geoid (N) and the gravity gradients over the Indo-Pak plate with emphasis upon Kashmir earthquake of October 2005. For this purpose, we engaged the spherical harmonic coefficients of monthly gravity solutions from the GRACE satellite mission, which have good coverage over the entire globe with unprecedented accuracy. We have analysed numerically the solutions after removing the hydrological signals, during August to November 2005, in terms of corresponding monthly differentials of gravity anomaly, geoid and the gradients. The regional structures like Main Mantle Thrust (MMT), Main Karakoram Thrust (MKT), Herat and Chaman faults are in closed association with topography and with gravity parameters from the GRACE gravimetry and EGM2008 model. The monthly differentials of these quantities indicate the stress accumulation in the northeast direction in the study area. Our numerical results show that the horizontal gravity gradients seem to be in good agreement with tectonic boundaries and differentials of the gravitational elements are subtle to the redistribution of rock masses and topography caused by 2005 Kashmir earthquake. Moreover, the gradients are rather more helpful for extracting the coseismic gravity signatures caused by seismicity over the area. Higher positive values of gravity components having higher terrain elevations are more vulnerable to the seismicity and lower risk of diastrophism otherwise.
An analytical model of SAGD process considering the effect of threshold pressure gradient
NASA Astrophysics Data System (ADS)
Morozov, P.; Abdullin, A.; Khairullin, M.
2018-05-01
An analytical model is proposed for the development of super-viscous oil deposits by the method of steam-assisted gravity drainage, taking into account the nonlinear filtration law with the limiting gradient. The influence of non-Newtonian properties of oil on the productivity of a horizontal well and the cumulative steam-oil ratio are studied. Verification of the proposed model based on the results of physical modeling of the SAGD process was carried out.
Maui Gravity and Soil Gas Surveys
John Akerley
2010-04-01
Contains a ground-based gravity survey of South Maui and a series of soil CO2 flux and temperature surveys encompassing Maui and the Big Island. The gravity survey was collected from approximately 284 km2 and consisted of 400 gravity stations with 400 m spacing. Locations were derived with full DGPS. Station and line location, Complete Bouger Anomaly, first vertical derivative and horizontal gradient maps were calculated and produced. The soil CO2 flux and temperature surveys were conducted on the islands of Hawaii and Maui in April and July 2010. Average soil temperatures were measured over 10 cm depth using a hand-held thermocouple. Soil CO2 fluxes were measured using a portable accumulation chamber instrument.
Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source
NASA Technical Reports Server (NTRS)
Zoutendyk, J.; Akutagawa, W.
1982-01-01
Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.
NASA Astrophysics Data System (ADS)
Gutknecht, B. D.; Götze, H.-J.; Jahr, T.; Jentzsch, G.; Mahatsente, R.; Zeumann, St.
2014-11-01
It is well known that the quality of gravity modelling of the Earth's lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north-south and west-east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.
Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda
NASA Astrophysics Data System (ADS)
Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim
2018-03-01
A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.
Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California
Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.
2006-01-01
This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.
Flame spread along thermally thick horizontal rods
NASA Astrophysics Data System (ADS)
Higuera, F. J.
2002-06-01
An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.
Irreversible transport in the stratosphere by internal waves of short vertical wavelength
NASA Technical Reports Server (NTRS)
Danielsen, Edwin F.; Hipskind, R. S.; Starr, Walter L.; Vedder, James F.; Gaines, Steven E.; Kley, Dieter; Kelley, Ken K.
1991-01-01
Measurements performed during stratospheric flights of the U-2 aircraft confirm that cross-jet transport is dominated by waves, not by large-scale circulations. Monotonic gradients of trace constituents normal to the jet axis, with upper stratospheric tracers increasing poleward and tropospheric tracers increasing equatorward, are augmented by large-scale confluence as the jet intensifies during cyclogenesis. These gradients are rotated, intensified, and significantly increased in areas as their mixing ratio surfaces are folded by the differential transport of a very low frequency transverse wave. The quasi-horizontal transport produces a laminar structure with stable layers rich in upper stratospheric tracers alternating vertically with less stable layers rich in tropospheric tracers. The transport proceeds toward irreversibility at higher frequency, shear-gravity waves extend the folding to smaller horizontal scales.
Space shuttle simulation model
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1980-01-01
The effects of atmospheric turbulence in both horizontal and near horizontal flight, during the return of the space shuttle, are important for determining design, control, and 'pilot-in-the-loop' effects. A nonrecursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model, the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes which are entitled shuttle simulation turbulence tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 10,000 meters. The turbulence generation procedure is described as well as the results of validating the simulated turbulence. Conclusions and recommendations are presented and references cited. The tabulated one dimensional von Karman spectra and the results of spectral and statistical analyses of the SSTT are contained in the appendix.
NASA Astrophysics Data System (ADS)
Kumawat, Tara Chand; Tiwari, Naveen
2017-12-01
Two-dimensional base state solutions for rimming flows and their stability analysis to small axial perturbations are analyzed numerically. A thin liquid film which is uniformly covered with an insoluble surfactant flows inside a counterclockwise rotating horizontal cylinder. In the present work, a mathematical model is obtained which consists of coupled thin film thickness and surfactant concentration evolution equations. The governing equations are obtained by simplifying the momentum and species transport equations using the thin-film approximation. The model equations include the effect of gravity, viscosity, capillarity, inertia, and Marangoni stress. The concentration gradients generated due to flow result in the surface tension gradient that generates the Marangoni stress near the interface region. The oscillations in the flow due to inertia are damped out by the Marangoni stress. It is observed that the Marangoni stress has stabilizing effect, whereas inertia and surface tension enhance the instability growth rate. In the presence of low diffusion of the surfactant or large value of the Péclet number, the Marangoni stress becomes more effective. The analytically obtained eigenvalues match well with the numerically computed eigenvalues in the absence of gravity.
The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates
NASA Astrophysics Data System (ADS)
Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.
2018-02-01
We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.
Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.
2012-01-01
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022
Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J
2012-03-20
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Frontal dynamics at the edge of the Columbia River plume
NASA Astrophysics Data System (ADS)
Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba
2018-02-01
In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.
Gravity and gravity gradient changes caused by a point dislocation
NASA Astrophysics Data System (ADS)
Huang, Jian-Liang; Li, Hui; Li, Rui-Hao
1995-02-01
In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.
NASA Astrophysics Data System (ADS)
Grygalashvyly, M.; Becker, E.; Sonnemann, G. R.
2012-06-01
The influence of gravity waves (GWs) on the distributions of minor chemical constituents in the mesosphere-lower thermosphere (MLT) is studied on the basis of the effective diffusivity concept. The mixing ratios of chemical species used for calculations of the effective diffusivity are obtained from numerical experiments with an off-line coupled model of the dynamics and chemistry abbreviated as KMCM-MECTM (Kuehlungsborn Mechanistic general Circulation Model—MEsospheric Chemistry-Transport Model). In our control simulation the MECTM is driven with the full dynamical fields from an annual cycle simulation with the KMCM, where mid-frequency GWs down to horizontal wavelengths of 350 km are resolved and their wave-mean flow interaction is self-consistently induced by an advanced turbulence model. A perturbation simulation with the MECTM is defined by eliminating all meso-scale variations with horizontal wavelengths shorter than 1000 km from the dynamical fields by means of spectral filtering before running the MECTM. The response of the MECTM to GWs perturbations reveals strong effects on the minor chemical constituents. We show by theoretical arguments and numerical diagnostics that GWs have direct, down-gradient mixing effects on all long-lived minor chemical species that possess a mean vertical gradient in the MLT. Introducing the term wave diffusion (WD) and showing that wave mixing yields approximately the same WD coefficient for different chemical constituents, we argue that it is a useful tool for diagnostic irreversible transport processes. We also present a detailed discussion of the gravity-wave mixing effects on the photochemistry and highlight the consequences for the general circulation of the MLT.
Status of the planar electrostatic gradiometer GREMLIT for airborne geodesy
NASA Astrophysics Data System (ADS)
Boulanger, D.; Foulon, B.; Lebat, V.; Bresson, A.; Christophe, B.
2016-12-01
Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is based of a planar electrostatic gradiometer configuration. The feasibility of the instrument and of its performance was proved by realistic simulations, based on actual data and recorded environmental aircraft perturbations, with performance of about one Eötvös along the two horizontal components of the gravity gradient. In order to assess the operation of the electrostatic gradiometer on its associated stabilized platform, a one axis prototype has also been built. The next step is the realization of the stabilization platform, controlled by the common mode outputs of the instrument itself, in order to reject the perturbations induced by the airborne environment in the horizontal directions. One of the interests of the GREMLIT instrument is the possibility of an easy hybrid configuration with a vertical one axis Cold Atoms Interferometer gravity gradiometer called GIBON and also under development at ONERA. In such hybrid instrument, The CAI instrument takes also advantage of the platform stabilized by the electrostatic one. The poster will emphasize the status of realization of the instrument and of its stabilized platform.
NASA Astrophysics Data System (ADS)
Zheng, Wei; Hsu, Hou-Tse; Zhong, Min; Yun, Mei-Juan
2012-10-01
The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 2½ times higher than that measured by the three-dimensional gravity gradient Vij. Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10-12/s2, the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30%-40% on average compared with that using the radial gravity gradient Vzz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.
Preprocessing of gravity gradients at the GOCE high-level processing facility
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin
2009-07-01
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Gravity gradient preprocessing at the GOCE HPF
NASA Astrophysics Data System (ADS)
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
NASA Astrophysics Data System (ADS)
Harchi, Mongi; Gabtni, Hakim; El Mejri, Hatem; Dassi, Lassaad; Mammou, Abdallah Ben
2016-08-01
This work presents new results from gravity data analyses and interpretation within the Om Ali-Thelepte (OAT) basin, central Tunisia. It focuses on the hydrogeological implication, using several qualitative and quantitative techniques such as horizontal gradient, upward continuation and Euler deconvolution on boreholes log data, seismic reflection data and electrical conductivity measurements. The structures highlighted using the filtering techniques suggest that the Miocene aquifer of OAT basin is cut by four major fault systems that trend E-W, NE-SW, NW-SE and NNE-SSW. In addition, a NW-SE gravity model established shows the geometry of the Miocene sandstone reservoir and the Upper Cretaceous limestone rocks. Moreover, the superimposition of the electrical conductivity and the structural maps indicates that the low conductivity values of sampled water from boreholes are located around main faults.
NASA Astrophysics Data System (ADS)
Boutirame, Ikram; Boukdir, Ahmed; Akhssas, Ahmed; Boutirame, Fatima; Manar, Ahmed; Aghzzaf, Brahim
2018-05-01
The present work is a combined study of gravity and Sentine-1 data for fracture mapping in the karstic massif of Beni Mellal Atlas and the adjacent plain of Beni Moussa. In order to locate the various faults that contribute to the study area structuring, the gravimetric contacts analysis method, based on the joint use of the horizontal gradient and the upward continuation at different altitudes, has been applied to the gravity data. To optimize the structural mapping in the study area, the gravimetric lineaments obtained were completed and correlated with the lineaments got from Sentinel-1 image. Four faults families of NE-SW; E-O; N-S and NWSE directions have been highlighted. There fault families are perfectly combined with the studied area's surface water network, moreover, they corroborate with the previous geological and structural studies.
Propagation of gravity waves across the tropopause
NASA Astrophysics Data System (ADS)
Bense, Vera; Spichtinger, Peter
2015-04-01
The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause characteristics are changed and the impact on vertically propagating gravity waves, such as change in wavelength, partial reflection or wave trapping can be studied. References Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142. Durran, D.R., 1990: Mountain Waves and Downslope Winds, Atmospheric Processes over Complex Terrain. Meteorological Monographs, Vol 23, No. 45 Plougonven, R. and F. Zhang, 2013: Gravity Waves From Atmospheric Jets and Fronts. Rev. Geophys. doi:10.1002/2012RG000419 Clark, T., T. Hauf, and J. Kuettner, 1986: Convectively forced internal gravity waves: results from two- dimensional numerical experiments, Q.J.R. Meteorol. Soc., 112, 899-925. Smolarkiewicz, P. and L. Margolin, 1997.: On forward-in-time differencing for fluids: an Eulerian/Semi- Lagrangian non-hydrostatic model for stratified flows, Atmos.-Ocean., 35, 127-152.
Toward an improved determination of Earth's lithospheric magnetic field from satellite observations
NASA Astrophysics Data System (ADS)
Kotsiaros, S.
2016-12-01
An analytical and numerical analysis of the spectral properties of the gradient tensor, initially performed by Rummel and van Gelderen (1992) for the gravity potential, shows that when the tensor elements are grouped into sets of semi-tangential and pure-tangential parts, they produce almost identical signal content as the normal element. Moreover, simple eigenvalue relations can be derived between these sets and the spherical harmonic expansion of the potential. This theoretical development generally applies to any potential field. First, the analysis of Rummel and van Gelderen (1992) is adapted to the magnetic field case and then the elements of the magnetic gradient tensor are estimated by 2 years of Swarm data and grouped into Γ(1) = {[∇B]rθ,[∇B]rφ} resp. Γ(2) = {[∇B]θθ-[∇B]φφ, 2[∇B]θφ}. It is shown that the estimated combinations Γ(1) and Γ(2) produce similar signal content as the theoretical radial gradient [∇B]rr. These results demonstrate the ability of multi-satellite missions such as Swarm, which cannot directly measure the radial gradient, to retrieve similar signal content by means of the horizontal gradients. Finally, lithospheric field models are derived using the gradient combinations Γ(1) and Γ(2) and compared with models derived from traditional vector and gradient data. The model resulting from Γ(1) leads to a very similar, and in particular cases improved, model compared to models retrieved by using approximately three times more data, i.e. a full set of vector, North-South and East-West gradients. ReferencesRummel, R., and M. van Gelderen (1992), Spectral analysis of the full gravity tensor, Geophysical Journal International, 111 (1), 159-169.
What are the Geophysical Fingerprints of hyper-extended Crustal Domains ?
NASA Astrophysics Data System (ADS)
Stanton, N.; Manatschal, G.; Maia, M.; Viana, A.; Tugend, J.; Autin, J.
2012-04-01
The Iberian margin is a well-studied region and presently the best tectonic setting for understanding the dynamic process of margin's formation and evolution. The world largest available dataset enabled to properly constrain the crustal structure and opened new paradigms for passive margins studies. Nevertheless, there are numerous remaining questions, as for example what is the spatial extent of continental inheritance along the margin and what is the role of fluids (serpentinization/magmatism) during margin's formation/deformation? The observation of a hyper-extended crustal domain, now also identified in other margins reveals the highly diverse nature of the crust along rifted margins. What are its physical properties and how do they change laterally? The aim of this study is to explore the physical signature of the serpentinized crust, which composes this hyper-extended domain, to identify the limits of the system and discuss its nature and importance. To investigate the lateral variation of crustal types we use integrated gravity, magnetic, seismic and available geological/well data. Transformations on the potential field data enable us to enhance the horizontal and vertical variations of the crust, and future forward modeling will provide a geological correlation for Iberia. The preliminary results showed that the transitional crust can be subdivided into two zones, regarding their different geophysical signatures: from the necking zone, the continent ward transitional crust displays decreasing gravity anomaly, low horizontal gradient and smooth magnetic anomalies; towards offshore (to the west of the J anomaly) the transitional crust is characterized by a semi-cyclic magnetic anomaly pattern, with increasing gravity, showing a stronger horizontal gradient and rough bathymetry. We associate this transitional domain with an embryonic oceanic type crust. Comparisons with other margins along the North Atlantic, despite the great spatial variation, reveals preliminarily that the hyper-extended crust at the non-volcanic Iberia Margin displays intrinsic characteristics distinct from the more volcanic transitional domains to the north. The physical properties of the different crustal types will be further modeled to properly constrain their characteristics. The final results shall enable us to identify the lateral transition between the different continental-transitional hydrated-oceanic crustal types and potentially would allow us to identify similar domains worldwide.
Gravity of Living Systems: May the Force Be With You
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Holton, Emily M. (Technical Monitor)
1998-01-01
Gravity, the force which shapes the architecture of organisms from single cells to dinosaurs, has been the most constant environmental factor during the evolution of species on Earth. With long-duration space flight, an understanding of how gravity affects living systems gains greater urgency in order to maintain the health and performance of crews who will explore the solar system. For example, the cardiovascular and musculoskeletal systems are normally exposed to gravitational gradients of blood pressure and weight on Earth. Such gradients increase blood pressure and tissue weight in dependent tissues of the body. Thus, from a physiologic standpoint, these systems are greatly affected by altered gravity. Exposure to actual and simulated microgravity causes blood and tissue fluid to shift from the legs to the head. Studies of humans in space have documented facial edema, space adaptation syndrome, decreased plasma volume, muscle atrophy, and loss of bone strength. Return of astronauts to Earth is accompanied by orthostatic intolerance, decreased neuromuscular coordination, and reduced exercise capacity. These factors decrease performance during descent from orbit and increase risk during emergency egress from the space craft. Models of simulated microgravity include 60 head-down tilt, immersion, and prolonged horizontal bedrest. Head-down tilt and dry immersion are the most accepted models and studies using these models of up to one year have been performed in Russia. Sensitive animal models which offer clear insights into the role of gravity on structure and function include the developing giraffe and snakes from various habitats. Finally, possible countermeasures to speed readaptation of astronauts to gravity after prolonged space flight include exercise, lower body negative pressure, and centrifugation.
Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation
Lee, Jisun; Kwon, Jay Hyoun; Yu, Myeongjong
2015-01-01
In this study, simulation tests for gravity gradient referenced navigation (GGRN) are conducted to verify the effects of various factors such as database (DB) and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN). In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available. PMID:26184212
Gravity-height correlations for unrest at calderas
NASA Astrophysics Data System (ADS)
Berrino, G.; Rymer, H.; Brown, G. C.; Corrado, G.
1992-11-01
Calderas represent the sites of the world's most serious volcanic hazards. Although eruptions are not frequent at such structures on the scale of human lifetimes, there are nevertheless often physical changes at calderas that are measurable over periods of years or decades. Such calderas are said to be in a state of unrest, and it is by studying the nature of this unrest that we may begin to understand the dynamics of eruption precursors. Here we review combined gravity and elevation data from several restless calderas, and present new data on their characteristic signatures during periods of inflation and deflation. We find that unless the Bouguer gravity anomaly at a caldera is extremely small, the free-air gradient used to correct gravity data for observed elevation changes must be the measured or calculated gradient, and not the theoretical gradient, use of which may introduce significant errors. In general, there are two models that fit most of the available data. The first involves a Mogi-type point source, and the second is a Bouguer-type infinite horizontal plane source. The density of the deforming material (usually a magma chamber) is calculated from the gravity and ground deformation data, and the best fitting model is, to a first approximation, the one producing the most realistic density. No realistic density is obtained where there are real density changes, or where the data do not fit the point source or slab model. We find that a point source model fits most of the available data, and that most data are for periods of caldera inflation. The limited examples of deflation from large silicic calderas indicate that the amount of mass loss, or magma drainage, is usually much less than the mass gain during the preceding magma intrusion. In contrast, deflationary events at basaltic calderas formed in extensional tectonic environments are associated with more significant mass loss as magma is injected into the associated fissure swarms.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.
NASA Astrophysics Data System (ADS)
Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.
2016-12-01
Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.
Adaptation to Space: An Introduction
NASA Technical Reports Server (NTRS)
Hargens, Alan R.
1995-01-01
The cardiovascular and musculoskeletal systems are normally exposed to gradients of blood pressure and weight on Earth. These gradients increase blood pressure and tissue weight in dependent tissues of the body. Exposure to actual and simulated microgravity causes blood and tissue fluid to shift from the legs to the head. Studies of humans in space have documented facial edema, space motion sickness, decreased plasma volume, muscle atrophy, and loss of bone strength. Return of astronauts to Earth is accompanied by orthostatic intolerance, decreased neuromuscular coordination, and reduced exercise capacity. These factors decrease performance during descent from orbit and increase risk during emergency egress from the spacecraft. Models of simulated microgravity include 6 deg head-down tilt, immersion, and prolonged horizontal bedrest. Head-down tilt is the most accepted model and studies using this model of up to one year have been performed in Russia. Animal models which offer clear insights into the role of gravity on vertebrates include the developing giraffe and snakes from various habitats. Finally, possible countermeasures to speed readaptation of astronauts to gravity after prolonged space flight will be discussed.
NASA Astrophysics Data System (ADS)
Hachani, Fatma; Balti, Hadhemi; Kadri, Ali; Gasmi, Mohamed
2016-04-01
Located between eastern segments of the Atlas and Tell-Rif oro-genic belts, the "Dome zone" of northern Tunisia is characterized by the juxtaposition of various structures that mainly controlled the long geody-namic history of this part of the south-Tethyan Margin. To better understand the organization and deep extension of these structures, gravity data from the Teboursouk key area are proposed. These data include the plotting of Bouguer anomaly map and related parameters such as vertical and horizontal gradients, upward continuation and Euler solution. Compared to geological and structural maps available, they allow the identification of new deep structures and greater precision regarding the characteristics and organization of known ones; consequently, an updated structural pattern is proposed.
Segregation physics of a macroscale granular ratchet
NASA Astrophysics Data System (ADS)
Bhateja, Ashish; Sharma, Ishan; Singh, Jayant K.
2017-05-01
New experiments with multigrain mixtures in a laterally shaken, horizontal channel show complete axial segregation of species. The channel consists of multiple concatenated trapeziums, and superficially resembles microratchets wherein asymmetric geometries and potentials transport, and sort, randomly agitated microscopic particles. However, the physics of our macroscale granular ratchet is fundamentally different, as macroscopic segregation is gravity driven. Our observations are not explained by classical granular segregation theories either. Motivated by the experiments, extensive parallelized discrete element simulations reveal that the macroratchet differentiates grains through hierarchical bidirectional segregation over two different time scales: Grains rapidly sort vertically into horizontal bands spanning the channel's length that, subsequently, slowly separate axially, driven by strikingly gentle, average interfacial pressure gradients acting over long distances. At its maximum, the pressure gradient responsible for axial separation was due to a change in height of about two big grain diameters (d =7 mm) over a meter-long channel. The strong directional segregation achieved by the granular macroratchet has practical importance, while identifying the underlying new physics will further our understanding of granular segregation in industrial and geophysical processes.
Wave Dynamics and Transport in the Stratosphere
NASA Technical Reports Server (NTRS)
Holton, James R.; Alexander, M. Joan
1999-01-01
The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.
Contribution of the GOCE gradiometer components to regional gravity solutions
NASA Astrophysics Data System (ADS)
Naeimi, Majid; Bouman, Johannes
2017-05-01
The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components Txx, Tyy, Tzz and Txz are derived. The Tzz component gives better solution than the other single-component solutions despite the less accuracy of Tzz compared to Txx and Tyy. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The Tzz and Tyy components are shown to be the main contributors in all combined solutions whereas the Txz adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.
NASA Astrophysics Data System (ADS)
Hiramatsu, Y.; Matsumoto, N.; Sawada, A.
2016-12-01
We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault structure along the fault zone. A geological map indicates that this structure boundary corresponds to a boundary between the metamorphic rock and the sedimentary rock. The active area of the aftershocks does not extend to the south beyond this structure boundary, implying that the spatial extent of the source fault is controlled by this boundary.
NASA Astrophysics Data System (ADS)
Tscherning, Carl Christian; Arabelos, Dimitrios; Reguzzoni, Mirko
2013-04-01
The GOCE satellite measures gravity gradients which are filtered and transformed to gradients into an Earth-referenced frame by the GOCE High Level processing Facility. More than 80000000 data with 6 components are available from the period 2009-2011. IAG Arctic gravity was used north of 83 deg., while data at the Antarctic was not used due to bureaucratic restrictions by the data-holders. Subsets of the data have been used to produce gridded values at 10 km altitude of gravity anomalies and vertical gravity gradients in 20 deg. x 20 deg. blocks with 10' spacing. Various combinations and densities of data were used to obtain values in areas with known gravity anomalies. The (marginally) best choice was vertical gravity gradients selected with an approximately 0.125 deg spacing. Using Least-Squares Collocation, error-estimates were computed and compared to the difference between the GOCE-grids and grids derived from EGM2008 to deg. 512. In general a good agreement was found, however with some inconsistencies in certain areas. The computation time on a usual server with 24 processors was typically 100 minutes for a block with generally 40000 GOCE vertical gradients as input. The computations will be updated with new Wiener-filtered data in the near future.
Effects of horizontal acceleration on the superconducting gravimeter CT #036 at Ishigakijima, Japan
NASA Astrophysics Data System (ADS)
Imanishi, Yuichi; Nawa, Kazunari; Tamura, Yoshiaki; Ikeda, Hiroshi
2018-01-01
In the gravity sensor of a superconducting gravimeter, a superconducting sphere as a test mass is levitated in a magnetic field. Such a sensor is susceptible to applied horizontal as well as vertical acceleration, because the translational degrees of freedom of the mass are not perfectly limited to the vertical direction. In the case of the superconducting gravimeter CT #036 installed at Ishigakijima, Japan, horizontal ground acceleration excited by the movements of a nearby VLBI antenna induces systematic step noise within the gravity recordings. We investigate this effect in terms of the static and dynamic properties of the gravity sensor using data from a collocated seismometer. It is shown that this effect can be effectively modeled by the coupling between the horizontal and vertical components in the gravity sensor. It is also found that the mechanical eigenfrequency for horizontal translation of the levitating sphere is approximately 3 Hz.[Figure not available: see fulltext.
Satellite gravity gradient grids for geophysics
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-01-01
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314
Horizontal deflection of single particle in a paramagnetic fluid.
Liu, S; Yi, Xiang; Leaper, M; Miles, N J
2014-06-01
This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility.
Improving GOCE cross-track gravity gradients
NASA Astrophysics Data System (ADS)
Siemes, Christian
2018-01-01
The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.
GOCE gravity gradient data for lithospheric modeling and geophysical exploration research
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Ebbing, Jörg; Meekes, Sjef; Lieb, Verena; Fuchs, Martin; Schmidt, Michael; Fattah, Rader Abdul; Gradmann, Sofie; Haagmans, Roger
2013-04-01
GOCE gravity gradient data can improve modeling of the Earth's lithosphere and upper mantle, contributing to a better understanding of the Earth's dynamic processes. We present a method to compute user-friendly GOCE gravity gradient grids at mean satellite altitude, which are easier to use than the original GOCE gradients that are given in a rotating instrument frame. In addition, the GOCE gradients are combined with terrestrial gravity data to obtain high resolution grids of gravity field information close to the Earth's surface. We also present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). We demonstrate how gravity gradients can increase confidence in the modeled structures by calculating the sensitvity of model geometry and applied densities at different observation heights; e.g. satellite height and near surface. Finally, this sensitivity analysis is used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data help especially to set up the regional crustal structure, which in turn allows to refine sedimentary thickness estimates and the regional heat-flow pattern. This can have implications for hydrocarbon exploration in the region.
Active Response Gravity Offload System
NASA Technical Reports Server (NTRS)
Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina
2011-01-01
The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.
Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data
NASA Astrophysics Data System (ADS)
Saibi, Hakim; Azizi, Masood; Mogren, Saad
2016-08-01
This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.
The Principle of Equivalence: Demonstrations of Local Effective Vertical and Horizontal
ERIC Educational Resources Information Center
Munera, Hector A.
2010-01-01
It has been suggested that Einstein's principle of equivalence (PE) should be introduced at an early stage. This principle leads to the notion of local effective gravity, which in turn defines effective vertical and horizontal directions. Local effective gravity need not coincide with the direction of terrestrial gravity. This paper describes…
NASA Astrophysics Data System (ADS)
Tanaka, T.; Hiramatsu, Y.; Matsumoto, N.; Honda, R.; Wada, S.; Sawada, A.; Okada, S.
2016-12-01
Gravity gradients, which are directly measured and are also derived by differentiating land gravity anomaly data, are sensitive to the density structure of shallow subsurfaces and therefore can be used to formulate ratings for Indexes of Underground Structure (IUS) [e.g., Kusumoto,2015,2016]. Recently, dense land gravity data measurements for almost entire Japan have been available [Honda et al., 2012]. In this study, we use gravity gradient tensors from the data to apply IUS to the Eastern Boundary Fault zone of the Shonai Plain (EBFSP), which spans 40 km in length and caused the historical Mjma 7.0 earthquake in 1894. The IUS we adopt here comprises the dip angle of the structural boundary (Beta) [Beiki, 2013], the dimensionality index (I) [Pedersen and Rasmussen, 1990], the structural boundary (Horizontal First Derivation(HFD) and TDX [Cooper and Cowan, 2006]), and density anomaly cylinder bodies in the depth direction (TD) [Copper, 2011]. The IUS show that the northern part of the EBFSP is characterized by high-Beta, low-I (dyke-like), intense-(HFD and TDX), and many short TD. Contrary to this, the southern part exhibits low-Beta, high-I, mild-(HFD and TDX), and few long TD. Previous geological/geomorphological surveys of the EBFSP [Ikeda et al., 2002] distinguish between the northern part comprising parallel/echelon short faults and the southern part comprising a single long fault. These findings are consistent with the gravimetrical IUS. However, the IUS more emphasizes the Aosawa Fault zone, which is geologically old and runs nearly parallel to the EBFSP at about 5-10 km distance on the eastern side of the EBFSP. Because gravity anomalies are a time-integrated representation of crustal activity, it is difficult to identify the relative timing of faulting events in an analysis range. However, the IUS can objectively contribute to producing comprehensive characterizations of target faults. This study is supported by JSPS KAKENHI Grant Number 26400450.
3D joint inversion of gravity-gradient and borehole gravity data
NASA Astrophysics Data System (ADS)
Geng, Meixia; Yang, Qingjie; Huang, Danian
2017-12-01
Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.
Advanced Space Shuttle simulation model
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1982-01-01
A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.
2012-12-05
A 300-mile-long linear gravity anomaly on the far side of the moon has been revealed by gravity gradients measured by NASA GRAIL mission. GRAIL data are shown on the left, with red and blue corresponding to stronger gravity gradients.
Glacier mass balance in high-arctic areas with anomalous gravity
NASA Astrophysics Data System (ADS)
Sharov, A.; Rieser, D.; Nikolskiy, D.
2012-04-01
All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were graphically represented in the reference model geometry using Russian gravimetric maps 1:1000000 (1980s), ArcGP grid (2008) and GOCE gravity field data (Release 3, 2009-2011). 25-year long records of daily precipitation obtained from 38 coastal stations were involved in the causality analysis. Strong positive distance-weighted correlation was discovered between the magnitude of geopotential and gravity gradient on one hand and the precipitation amount, annual number of precipitation "events" and glacier elevation changes on the other, while it was noted that the correlation decreases in humid and mountainous areas. Relevant analytical and geophysical explanations were provided and tested using the basic concepts of hydrostatic stress, lapse rate and non-orographic gradient precipitation. It was concluded that the gravitational impact on the mass balance of arctic maritime ice caps is threefold. 1) Lateral variations of gravity influence directly the ambient lapse rate thereby modulating the atmospheric stability and leading to the increased intensity and frequency of heavy snowfalls over the areas with positive gravity anomalies. 2) Glacier ice deformation, flow, calving and meltwater runoff are gravity-driven phenomena, and the removal of glacier ice is closely interrelated with geopotential variations nearby. 3) Gravity anomalies affect processes of sea ice grow, drift and consolidation resulting in generally lower concentration and lesser thickness of the sea ice found in the aquatories with positive gravity. The advection of moist air to insular ice caps facilitates sea-effect snow events and makes glacier mass balance more positive. The effect is enhanced when the air mass advects toward the centre of positive anomaly. The idea about gradient (deviatoric) precipitation and related cryogravic processes does not contradict to the concept of gravity waves and has some analogy with the hypothesis on "ice lichens" devised by E.Gernet 80 years ago. Further analogies can be learned from another industry, e.g. technical chemistry. Several questions associated with the variability of evaporation, ice nucleation, aerosol deposition and snow redistribution in the heterogeneous field of gravity remain open.
NASA Astrophysics Data System (ADS)
García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.
2017-12-01
The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Fullea, Javier
2015-03-01
We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.
Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation
Cao, Juliang; Wu, Meiping; Lian, Junxiang; Cai, Shaokun; Wang, Lin
2018-01-01
Horizontal gravity disturbances are an important factor that affects the accuracy of inertial navigation systems in long-duration ship navigation. In this paper, from the perspective of the coordinate system and vector calculation, the effects of horizontal gravity disturbance on the initial alignment and navigation calculation are simultaneously analyzed. Horizontal gravity disturbances cause the navigation coordinate frame built in initial alignment to not be consistent with the navigation coordinate frame in which the navigation calculation is implemented. The mismatching of coordinate frame violates the vector calculation law, which will have an adverse effect on the precision of the inertial navigation system. To address this issue, two compensation methods suitable for two different navigation coordinate frames are proposed, one of the methods implements the compensation in velocity calculation, and the other does the compensation in attitude calculation. Finally, simulations and ship navigation experiments confirm the effectiveness of the proposed methods. PMID:29562653
Effects of mechanostimulation on gravitropism and signal persistence in flax roots.
John, Susan P; Hasenstein, Karl H
2011-09-01
Gravitropism describes curvature of plants in response to gravity or differential acceleration and clinorotation is commonly used to compensate unilateral effect of gravity. We report on experiments that examine the persistence of the gravity signal and separate mechanostimulation from gravistimulation. Flax roots were reoriented (placed horizontally for 5, 10 or 15 min) and clinorotated at a rate of 0.5 to 5 rpm either vertically (parallel to the gravity vector and root axis) or horizontally (perpendicular to the gravity vector and parallel to the root axis). Image sequences showed that horizontal clinorotation did not affect root growth rate (0.81 ± 0.03 mm h-1) but vertical clinorotation reduced root growth by about 7%. The angular velocity (speed of clinorotation) did not affect growth for either direction. However, maximal curvature for vertical clinorotation decreased with increasing rate of rotation and produced straight roots at 5 rpm. In contrast, horizontal clinorotation increased curvature with increasing angular velocity. The point of maximal curvature was used to determine the longevity (memory) of the gravity signal, which lasted about 120 min. The data indicate that mechanostimulation modifies the magnitude of the graviresponse but does not affect memory persistence.
System Finds Horizontal Location of Center of Gravity
NASA Technical Reports Server (NTRS)
Johnston, Albert S.; Howard, Richard T.; Brewster, Linda L.
2006-01-01
An instrumentation system rapidly and repeatedly determines the horizontal location of the center of gravity of a laboratory vehicle that slides horizontally on three air bearings (see Figure 1). Typically, knowledge of the horizontal center-of-mass location of such a vehicle is needed in order to balance the vehicle properly for an experiment and/or to assess the dynamic behavior of the vehicle. The system includes a load cell above each air bearing, electronic circuits that generate digital readings of the weight on each load cell, and a computer equipped with software that processes the readings. The total weight and, hence, the mass of the vehicle are computed from the sum of the load-cell weight readings. Then the horizontal position of the center of gravity is calculated straightforwardly as the weighted sum of the known position vectors of the air bearings, the contribution of each bearing being proportional to the weight on that bearing. In the initial application for which this system was devised, the center- of-mass calculation is particularly simple because the air bearings are located at corners of an equilateral triangle. However, the system is not restricted to this simple geometry. The system acquires and processes weight readings at a rate of 800 Hz for each load cell. The total weight and the horizontal location of the center of gravity are updated at a rate of 800/3 approx. equals 267 Hz. In a typical application, a technician would use the center-of-mass output of this instrumentation system as a guide to the manual placement of small weights on the vehicle to shift the center of gravity to a desired horizontal position. Usually, the desired horizontal position is that of the geometric center. Alternatively, this instrumentation system could be used to provide position feedback for a control system that would cause weights to be shifted automatically (see Figure 2) in an effort to keep the center of gravity at the geometric center.
Active Response Gravity Offload and Method
NASA Technical Reports Server (NTRS)
Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)
2015-01-01
A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.
Parametric modulation of thermomagnetic convection in magnetic fluids.
Engler, H; Odenbach, S
2008-05-21
Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.
Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.
2006-01-01
Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.
GOCE gravity gradient data for lithospheric modeling - From well surveyed to frontier areas
NASA Astrophysics Data System (ADS)
Bouman, J.; Ebbing, J.; Gradmann, S.; Fuchs, M.; Fattah, R. Abdul; Meekes, S.; Schmidt, M.; Lieb, V.; Haagmans, R.
2012-04-01
We explore how GOCE gravity gradient data can improve modeling of the Earth's lithosphere and thereby contribute to a better understanding of the Earth's dynamic processes. The idea is to invert satellite gravity gradients and terrestrial gravity data in the well explored and understood North-East Atlantic Margin and to compare the results of this inversion, providing improved information about the lithosphere and upper mantle, with results obtained by means of models based upon other sources like seismics and magnetic field information. Transfer of the obtained knowledge to the less explored Rub' al Khali desert is foreseen. We present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). The latter horizon is well resolved from gravity and especially magnetic data, whereas sedimentary layers are mainly constrained from seismic studies, but do in general not show a prominent effect in the gravity and magnetic field. We analyze how gravity gradients can increase confidence in the modeled structures by calculating a sensitivity matrix for the existing 3D model. This sensitivity matrix describes the relation between calculated gravity gradient data and geological structures with respect to their depth, extent and relative density contrast. As the sensitivity of the modeled bodies varies for different tensor components, we can use this matrix for a weighted inversion of gradient data to optimize the model. This sensitivity analysis will be used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data will be used to better identify the extent of anomalous structures within the basin, with the goal to improve the modeling for hydrocarbon exploration purposes.
NASA Astrophysics Data System (ADS)
Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K.; Tsutsumi, Masaki; Shiokawa, Kazuo
2014-08-01
We have developed a new analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow intensity image data to study atmospheric gravity waves. This method can deal with extensive amounts of imaging data obtained on different years and at various observation sites without bias caused by different event extraction criteria for the person processing the data. The new method was applied to sodium airglow data obtained in 2011 at Syowa Station (69°S, 40°E), Antarctica. The results were compared with those obtained from a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics, such as wavelengths, phase velocities, and wave periods. The horizontal phase velocity of each wave event in the airglow images corresponded closely to a peak in the spectrum. The statistical results of spectral analysis showed an eastward offset of the horizontal phase velocity distribution. This could be interpreted as the existence of wave sources around the stratospheric eastward jet. Similar zonal anisotropy was also seen in the horizontal phase velocity distribution of the gravity waves by the event analysis. Both methods produce similar statistical results about directionality of atmospheric gravity waves. Galactic contamination of the spectrum was examined by calculating the apparent velocity of the stars and found to be limited for phase speeds lower than 30 m/s. In conclusion, our new method is suitable for deriving the horizontal phase velocity characteristics of atmospheric gravity waves from an extensive amount of imaging data.
Gravity Gradients Frame Oceanus Procellarum
2014-10-01
Topography of Earth moon generated from data NASA LRO, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA GRAIL mission.
NASA Astrophysics Data System (ADS)
Najine, Abdessamad; Jaffal, Mohammed; Khammari, Kamal El; Aïfa, Tahar; Khattach, Driss; Himi, Mahjoub; Casas, Albert; Badrane, Said; Aqil, Hicham
2006-08-01
This study is based on the analysis and the interpretation of the gravity data of the Tadla basin. Its purpose is to increase the knowledge of this basin structure. A residual anomaly map was first calculated from the Bouguer anomaly data witch are strongly affected by a regional gradient. The computed map provides information on the ground density variation but it does not bring enough of new elements. Data filtering allows us to emphasize the structures affecting the basin. We chose the horizontal gradient coupled to the upward continuation techniques that permit to highlight news structures and to give information on their dip. The elaborated structural map of the study area constitutes a useful document for rationalizing the future groundwater exploration in the Tadla basin. To cite this article: A. Najine et al., C. R. Geoscience 338 (2006).
Buoyancy of the ''Y2K'' Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Rairden, Rick L.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a '2'-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.
Buoyancy of the "Y2K" Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball
NASA Astrophysics Data System (ADS)
Jenniskens, Peter; Rairden, Rick L.
The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a "2"-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry.
D'Amico, G; Rosi, G; Zhan, S; Cacciapuoti, L; Fattori, M; Tino, G M
2017-12-22
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry
NASA Astrophysics Data System (ADS)
D'Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G. M.
2017-12-01
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
Gravity and isostatic anomaly maps of Greece produced
NASA Astrophysics Data System (ADS)
Lagios, E.; Chailas, S.; Hipkin, R. G.
A gravity anomaly map of Greece was first compiled in the early 1970s [Makris and Stavrou, 1984] from all available gravity data collected by different Hellenic institutions. However, to compose this map the data had to be smoothed to the point that many of the smaller-wavelength gravity anomalies were lost. New work begun in 1987 has resulted in the publication of an updated map [Lagios et al., 1994] and an isostatic anomaly map derived from it.The gravity data cover the area between east longitudes 19° and 27° and north latitudes 32° and 42°, organized in files of 100-km squares and grouped in 10-km squares using UTM zone 34 coordinates. Most of the data on land come from the gravity observations of Makris and Stavrou [1984] with additional data from the Institute of Geology and Mining Exploration, the Public Oil Corporation of Greece, and Athens University. These data were checked using techniques similar to those used in compiling the gravity anomaly map of the United States, but the horizontal gradient was used as a check rather than the gravity difference. Marine data were digitized from the maps of Morelli et al. [1975a, 1975b]. All gravity anomaly values are referred to the IGSN-71 system, reduced with the standard Bouger density of 2.67 Mg/m3. We estimate the errors of the anomalies in the continental part of Greece to be ±0.9 mGal; this is expected to be smaller over fairly flat regions. For stations whose height has been determined by leveling, the error is only ±0.3 mGal. For the marine areas, the errors are about ±5 mGal [Morelli, 1990].
Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco
2013-05-01
Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.
Saltus, Richard W.; Stanley, Richard G.; Haeussler, Peter J.; Jones, James V.; Potter, Christopher J.; Lewis, Kristen A.
2016-01-01
The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of Susitna basin, spans a horizontal distance of ∼40 km and straddles the topographic front. The location and shape of the gravity gradient preclude a normal fault geometry; instead, it is best explained by a southwest-dipping thrust fault, with its leading edge located several kilometers to the northeast of the mountain front, concealed beneath the shallow glacial and fluvial cover deposits. Similar contractional fault relationships are observed for other basin-bounding and regional faults as well. Contractional structures are consistent with a regional shortening strain field inferred from differential offsets on the Denali and Castle Mountain right-lateral strike-slip fault systems.
Project SKYLITE: A Design Exploration.
1987-09-01
5. Gravity Gradient Boom The SKYLITE satellite uses gravity gradient stabilization. This technique requires a gravity gradient boom for attitude ... attitude of the satellite. To satisfy SKYLITE mission requirements, the satellite contains an array of IR sensors for evaluation of radiation from the ...3.1 Extended GAS Canister. The Orion satellite has been designed with 7 thrusters. Six thrusters are .1 lbr rated, and used for spin up and attitude
Radiating Instabilities of Internal Inertio-gravity Waves
NASA Astrophysics Data System (ADS)
Kwasniok, F.; Schmitz, G.
The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.
Gravitational stresses in anisotropic rock masses
Amadei, B.; Savage, W.Z.; Swolfs, H.S.
1987-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.
Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
NASA Astrophysics Data System (ADS)
Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan
2018-01-01
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sideris, Michael G.
2017-09-01
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Seafloor Topography Estimation from Gravity Gradient Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Yang, J.; Jekeli, C.; Liu, L.
2017-12-01
Inferring seafloor topography from gravimetry is an indirect yet proven and efficient means to map the ocean floor. Standard techniques rely on an approximate, linear relationship (Parker's formula) between topography and gravity. It has been reported that in the very rugged areas the discrepancies between prediction and ship soundings are very large, partly because the linear term of Parker's infinite series is dominant only in areas where the local topography is small compared with the regional topography. The validity of the linear approximation is therefore in need of analysis. In this study the nonlinear effects caused by terrain are quantified by both numerical tests and an algorithmic approach called coherency. It is shown that the nonlinear effects are more significant at higher frequencies, which suggests that estimation algorithms with nonlinear approximation in the modeled relationship between gravity gradient and topography should be developed in preparation for future high-resolution gravity gradient missions. The simulated annealing (SA) method is such an optimization technique that can process nonlinear inverse problems, and is used to estimate the seafloor topography parameters in a forward model by minimizing the difference between the observed and forward-computed vertical gravity gradients. Careful treatments like choosing suitable truncation distance, padding the vicinity of the study area with a known topography model, and using the relative cost function, are considered to improve the estimation accuracy. This study uses the gravity gradient, which is more sensitive to topography at short wavelengths than gravity anomaly. The gravity gradient data are derived from satellite altimetry, but the SA has no restrictions on data distribution, as required in Parker's infinite series model, thus enabling the use of airborne gravity gradient data, whose survey trajectories are irregular. The SA method is tested in an area of Guyots (E 156°-158° in longitude, N 20°-22° in latitude). Comparison between the estimation and ship sounding shows that half of the discrepancy is within 110 m, which improves the result from standard techniques by 32%.
Langenheim, V.E.; Biehler, S.; Negrini, R.; Mickus, K.; Miller, D.M.; Miller, R.J.
2009-01-01
Gravity and aeromagnetic data provide the underpinnings of a hydrogeologic framework for the Mojave National Preserve by estimating the thickness of Cenozoic deposits and locating inferred structural features that influence groundwater flow. An inversion of gravity data indicates that thin (<1 km) basin deposits cover much of the Preserve, except for Ivanpah Valley and the Woods Mountains volcanic center. Localized areas of Cenozoic deposits thicker than 500 m are predicted beneath parts of Lanfair Valley, Fenner Valley, near Kelso, Soda Lake, and southeast of Baker. Along the southern margin of the Mojave National Preserve, basins greater than 1 km deep are located between the Clipper and Marble Mountains, between the Marble and Bristol Mountains, and south of the Bristol Mountains near Amboy. Both density and magnetization boundaries defined by horizontal-gradient analyses coincide locally with Cenozoic faults and can be used to extend these faults beneath cover. Magnetization boundaries also highlight the structural grain within the crystalline rocks and may serve as a proxy for fracturing, an important source of permeability within the generally impermeable basement rocks, thus mapping potential groundwater pathways through and along the mountain ranges in the study area.
Three-Axis Superconducting Gravity Gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung
1987-01-01
Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.
Microgravimetry and the Measurement and Application of Gravity Gradients,
1980-06-01
Neumann, R., 1972, High precision gravimetry--recent develop- ments: Report to Paris Commission of E.A.E.G., Compagnie Generale de Geophysique , Massy...experimentation on vertical gradient: Compagnie Generale de Geophysique , Massy, France. 12. Fajklewicz, Z. J., 1976, Gravity vertical gradient
Mechanical models for dikes: A third school of thought
NASA Astrophysics Data System (ADS)
Townsend, Meredith R.; Pollard, David D.; Smith, Richard P.
2017-04-01
Geological and geophysical data from continental volcanic centers and giant radial swarms, and from oceanic shield volcanoes and rift zones, indicate that dikes propagate laterally for distances that can be 10 to over 100 times their height. What traps dikes within the shallow lithosphere and promotes these highly eccentric shapes? Gravity-induced stress gradients in the surrounding rock and pressure gradients in the magma are the primary loading mechanisms; pressure gradients due to magma flow are secondary to insignificant, because the flow direction is dominantly horizontal. This configuration of vertical, blade-shaped dikes with horizontal dike propagation and magma flow is fundamentally different from the two dike model configurations described in a recent review paper as two schools of thought for mechanical models of dikes. In School I, a dike is disconnected from its source and ascends under the influence of buoyancy. In School II, a dike is connected to a magma reservoir and is driven upward by magma flux from the source. We review the geological and geophysical data supporting the vertical dike - horizontal flow/propagation configuration and suggest the abundance and veracity of these data in many different geological settings, and the modeling results that address this physical process, warrant adding this as a third school of thought. A new analytical solution for the boundary-value problem of a homogeneous, isotropic, and linear elastic solid with a vertical, fluid-filled crack is used to investigate the effects of gravitationally induced stress and pressure gradients on the aperture distribution, dike-tip stress intensity, and stable height. Model results indicate that in a homogeneous crust, dikes can achieve stable heights greater than a kilometer only if the host rock fracture toughness KIC 100 MPa · m1/2. However, density stratification of the crust is an effective mechanism for trapping kilometer-scale dikes even if the host rock is very weak (KIC = 0). This analysis may explain why vertical dikes propagate laterally for great distances, but reside within a narrow range of depths in the crust.
Gravity Waves in the Presence of Shear during DEEPWAVE
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.
2016-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.
Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry
NASA Astrophysics Data System (ADS)
Mahadeswaraswamy, Chetan
First ever mobile gravity gradient measurement based on Atom Interferometric sensors has been demonstrated. Mobile gravity gradiometers play a significant role in high accuracy inertial navigation systems in order to distinguish inertial acceleration and acceleration due to gravity. The gravity gradiometer consists of two atom interferometric accelerometers. In each of the accelerometer an ensemble of laser cooled Cesium atoms is dropped and using counter propagating Raman pulses (pi/2-pi-pi/2) the ensemble is split into two states for carrying out atom interferometry. The interferometer phase is proportional to the specific force experienced by the atoms which is a combination of inertial acceleration and acceleration due to gravity. The difference in phase between the two atom interferometric sensors is proportional to gravity gradient if the platform does not undergo any rotational motion. However, any rotational motion of the platform induces spurious gravity gradient measurements. This apparent gravity gradient due to platform rotation is considerably different for an atom interferometric sensor compared to a conventional force rebalance type sensor. The atoms are in free fall and are not influenced by the motion of the case except at the instants of Raman pulses. A model for determining apparent gravity gradient due to rotation of platform was developed and experimentally verified for different frequencies. This transfer function measurement also lead to the development of a new technique for aligning the Raman laser beams with the atom clusters to within 20 mu rad. This gravity gradiometer is situated in a truck for the purpose of undertaking mobile surveys. A disturbance compensation system was designed and built in order to compensate for the rotational disturbances experienced on the floor of a truck. An electric drive system was also designed specifically to be able to move the truck in a uniform motion at very low speeds of about 1cm/s. A 250 x10-9 s-2 gravity gradient signature due to an underground void at Hansen Experimental Physics Building at Stanford was successfully measured using this mobile gradiometer.
Density interface topography recovered by inversion of satellite gravity gradiometry observations
NASA Astrophysics Data System (ADS)
Ramillien, G. L.
2017-08-01
A radial integration of spherical mass elements (i.e. tesseroids) is presented for evaluating the six components of the second-order gravity gradient (i.e. second derivatives of the Newtonian mass integral for the gravitational potential) created by an uneven spherical topography consisting of juxtaposed vertical prisms. The method uses Legendre polynomial series and takes elastic compensation of the topography by the Earth's surface into account. The speed of computation of the polynomial series increases logically with the observing altitude from the source of anomaly. Such a forward modelling can be easily applied for reduction of observed gravity gradient anomalies by the effects of any spherical interface of density. An iterative least-squares inversion of measured gravity gradient coefficients is also proposed to estimate a regional set of juxtaposed topographic heights. Several tests of recovery have been made by considering simulated gradients created by idealistic conical and irregular Great Meteor seamount topographies, and for varying satellite altitudes and testing different levels of uncertainty. In the case of gravity gradients measured at a GOCE-type altitude of ˜ 300 km, the search converges down to a stable but smooth topography after 10-15 iterations, while the final root-mean-square error is ˜ 100 m that represents only 2 % of the seamount amplitude. This recovery error decreases with the altitude of the gravity gradient observations by revealing more topographic details in the region of survey.
NASA Astrophysics Data System (ADS)
Gabtni, H.; Jallouli, C.; Mickus, K. L.; Zouari, H.; Turki, M. M.
2006-03-01
Gravity and magnetic data were analyzed to add constraints on the location and nature of the Telemzan-Ghadames boundary (TGB) and structure of the Ghadames basin in southern Tunisia. TGB is the boundary between the thick sedimentary cover of the intracratonic Ghadames basin to the south and the thin sedimentary cover of the Saharan platform to the north. The upward continuation of the Bouguer gravity anomalies showed that the TGB is a regional geophysical feature that may have controlled the amount of sediment being deposited both north and south of the boundary and the tectonic environment in the region since Paleozoic time. To emphasize the shorter wavelength gravity and magnetic anomalies, a series of gray scale images of the directional horizontal gradients were constructed that determined a series of previously unknown east-west-trending gravity and magnetic anomalies south of 31.6°N that correspond to lineaments seen on a Landsat 7 image and the location of the TGB. Also, an edge-enhancement analysis illustrated the same linear gravity anomalies and showed the subbasins and uplifts within the Ghadames basin had source depths of between 0.5 and 3.4 km. A north-south trending gravity model showed that the TGB is a relatively gradual feature (possibly basement stepped down by relatively low-displacement faulting) controlling the subsidence of the main Ghadames basin and confirms the edge-enhancement analysis that subbasin S3 and uplift U1 are the main structural features within the Ghadames basin. The knowledge of basement architecture of the Ghadames basin is important for future petroleum exploration within this intracratonic basin.
Particle Image Velocimetry Study of Density Current Fronts
ERIC Educational Resources Information Center
Martin, Juan Ezequiel
2009-01-01
Gravity currents are flows that occur when a horizontal density difference causes fluid to move under the action of gravity; density currents are a particular case, for which the scalar causing the density difference is conserved. Flows with a strong effect of the horizontal density difference, even if only partially driven by it--such as the…
NASA Technical Reports Server (NTRS)
Taylor, P. T.; Kis, K. I.; Wittmann, G.
2013-01-01
The ESA SWARM mission will have three earth orbiting magnetometer bearing satellites one in a high orbit and two side-by-side in lower orbits. These latter satellites will record a horizontal magnetic gradient. In order to determine how we can use these gradient measurements for interpretation of large geologic units we used ten years of CHAMP data to compute a horizontal gradient map over a section of southeastern Europe with our goal to interpret these data over the Pannonian Basin of Hungary.
On the state of stress in the near-surface of the earth's crust
Savage, W.Z.; Swolfs, H.S.; Amadei, B.
1992-01-01
Five models for near-surface crustal stresses induced by gravity and horizontal deformation and the influence of rock property contrasts, rock strength, and stress relaxation on these stresses are presented. Three of the models-the lateral constraint model, the model for crustal stresses caused by horizontal deformation, and the model for the effects of anisotropy-are linearly elastic. The other two models assume that crustal rocks are brittle or viscoelastic in order to account for the effects of rock strength and time on near-surface stresses. It is shown that the lateral constraint model is simply a special case of the combined gravity-and deformation-induced stress field when horizontal strains vanish and that the inclusion of the effect of rock anisotropy in the solution for crustal stresses caused by gravity and horizontal deformation broadens the range for predicted stresses. It is also shown that when stress levels in the crust reach the limits of brittle rock strength, these stresses become independent of strain rates and that stress relaxation in ductile crustal rocks subject to constant horizontal strain rates causes horizontal stresses to become independent of time in the long term. ?? 1992 Birkha??user Verlag.
Effects of buoyancy-driven convection on nucleation and growth of protein crystals.
Nanev, Christo N; Penkova, Anita; Chayen, Naomi
2004-11-01
Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue
2018-04-01
In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.
Limitation on the use of the horizontal clinostat as a gravity compensator
NASA Technical Reports Server (NTRS)
Brown, A. H.; Dahl, A. O.; Chapman, D. K.
1975-01-01
If the horizontal clinostat effectively compensates for the influence of the gravity vector on the rotating plant, it makes the plant unresponsive to whatever chronic acceleration may be applied transverse to the axis of clinostat rotation. This was tested by centrifuging plants while they were growing on clinostats. For a number of morphological endpoints of development, the results depended on the magnitude of the applied g-force. Gravity compensation by the clinostat was incomplete, and this conclusion is in agreement with results of satellite experiments which are reviewed.
NASA Astrophysics Data System (ADS)
Chouikri, Ibtissam; el Mandour, Abdennabi; Jaffal, Mohammed; Baudron, Paul; García-Aróstegui, José-Luis; Manar, Ahmed; Casas, Albert
2016-03-01
This study provides new elements that illustrate the benefits of combining gravity, structural, stratigraphic and piezometric data for hydrogeological purposes. A combined methodology was applied to the western Haouz aquifer (Morocco), one of the main sources of water for irrigation and human consumption in the Marrakech region. First, a residual anomaly map was calculated from the Bouguer anomaly data. The computed map provided information on the ground density variation, revealing a strong control by a regional gradient. We then used various filtering techniques to delineate the major geological structures such as faults and basins: vertical and horizontal derivatives and upward continuation. This technique highlighted news structures and provided information on their dip. The gravity anomalies perfectly delineated the basement uplifts and the sedimentary thickening in depressions and grabens. The interpretation of gravimetric filtering, geological and hydrogeological data then highlighted two types of groundwater reservoirs, an unconfined aquifer hosted in conglomeratic mio-pliocene and quaternary rocks, covering the entire western Haouz and a deep confined aquifer contained in cenomanian-turonian limestone and eocene dolomitic formations in the south. Combining piezometric and residual anomaly maps revealed that groundwater flow and storage was in perfect agreement with the structures showing a negative anomaly, while structures with positive anomalies corresponded to groundwater divides. The study of gravity gradient zones by contact analysis enhanced the existing structural pattern of the study area and highlighted new structures, mainly oriented N70 and N130. The results of this study present a common framework and provide a notable step forward in the knowledge of the geometry and the groundwater flow pattern of the western Haouz aquifer, and will serve as a solid basis for a better water resource management.
Saltus, R.W.; Day, W.C.
2006-01-01
The Yukon-Tanana Upland is a complex composite assemblage of variably metamorphosed crystalline rocks with strong North American affinities. At the broadest scale, the Upland has a relatively neutral magnetic character. More detailed examination, however, reveals a fundamental northeast-southwest-trending magnetic gradient, representing a 20-nT step (as measured at a flight height of 300 m) with higher values to the northwest, that extends from the Denali fault to the Tintina fault and bisects the Upland. This newly recognized geophysical gradient is parallel to, but about 100 km east of, the Shaw Creek fault. The Shaw Creek fault is mapped as a major left-lateral, strike-slip fault, but does not coincide with a geophysical boundary. A gravity gradient coincides loosely with the southwestern half of the magnetic gradient. This gravity gradient is the eastern boundary of a 30-mGal residual gravity high that occupies much of the western and central portions of the Big Delta quadrangle. The adjacent lower gravity values to the east correlate, at least in part, with mapped post-metamorphic granitic rocks. Ground-based gravity and physical property measurements were made in the southeastern- most section of the Big Delta quadrangle in 2004 to investigate these geophysical features. Preliminary geophysical models suggest that the magnetic boundary is deeper and more fundamental than the gravity boundary. The two geophysical boundaries coincide in and around the Tibbs Creek region, an area of interest to mineral exploration. A newly mapped tectonic zone (the Black Mountain tectonic zone of O'Neill and others, 2005) correlates with the coincident geophysical boundaries.
NASA Astrophysics Data System (ADS)
Dubey, C. P.; Tiwari, V. M.; Rao, P. R.
2017-12-01
Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...
NASA Technical Reports Server (NTRS)
Hickey, M. P.
1988-01-01
This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.
Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Fontes, Sergio Luiz
2010-05-01
0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1-minute gridded data were obtained from the Satellite Geodesy at the Scripps Institution of Oceanography, Smith & Sandwell (1997; http://topex.ucsd.edu. Gravity anomaly data were re-gridded using the ETOPO2v2 grid. All calculations and maps were made using MatLab 2007 software. 0.3.2 Cross-Product Cross-product is the result of multiplication of bathymetric and gravity anomaly gradient magnitudes by the sine of the angle between them. According to the definition of gradient cross-product minimal values are expected to be found in points where the angle between gradients is close to zero or where one or both of the gradient magnitudes have values close to zero. It creates an ambiguity and a problem for data interpretation since there is no exact correspondence between bathymetric structures and gravity anomalies. 0.3.3 Dot-Product Dot-product is the result of multiplication of bathymetric and gravity anomaly magnitudes by the cosine on the angle between them. According to the definition of dot-product, values close to zero can be generated by near perpendicular orientation of the gradients or small magnitudes of one or both gradients. So, the results are mutually increased in areas with larger magnitudes or smaller angles between gradients. Due to this mutual amplification dot-products are less affected by the ambiguity of cross-product explained above. The same statistical separation of cross-product was used to support the conclusions. 0.3.4 Statistics and Significance Criteria Statistical analysis was made in order to sort the data into two groups to reduce ambiguity effect: first group - data with magnitudes that could be considered anomalous (where the main minimizing source is the angle between the gradients and the second group - data with magnitudes variations that could be considered as (non significant or background (where cross-product value is determined by the small magnitude). It was chosen to use the mean value and standard deviation (std) to sort the data in such two groups. These values were determined for bathymetric and gravity anomaly gradient magnitudes creating two data sets - one where one or both gradient magnitudes are one standard deviation larger than the mean value with a total of 7831 (anomalous) and a second one where both magnitudes differ smaller than one standard deviation from the mean value with 85584 (background ). Statistical analysis of distribution patterns for both groups was made. 0.4 Examples of Method Application 0.4.1 Map of Angles Between Gradients Figure 1 shows the map of angle values. The angle values were divided into 4 equal intervals. The statistical distribution of angles between gradient in the given intervals is the following (percents of the total): 0 to 60° - 51.39% of the values; 60° to 90° -12.08%; 90° to 120° -14.92%; 120° to 180° -21.18%. It can be seen that 51% of the gradients have a small angle between them, 72% of gradients can be considered as parallel (72%) with angles smaller than 60° or bigger than 120° between them. After statistical separation in the anomalous group almost 91% of the gradients have an angle smaller than 60° while in the background group just 48.6%. From these results we can make a conclusion that the majority of the bathymetric and gravity anomaly gradients are related. Regions with higher gradient magnitudes are characterized by cosine values close to 1 (indicating a small angle between them). The size of the areas characterized by small angles between gradients exceed the size of bathymetric and gravity anomaly isolines characterizing the area of influence of the structures and their effects. Regions with no significant anomalies show uncorrelated value spots. 0.4.2 Map of Cross-Product The resulting map shows small spots of higher cross-product magnitudes following magnitude isolines. About 90% of the values are close to minimum. As was mentioned before, we can presume that areas where bathymetry and gravity anomaly gradient cross-products have smallest magnitudes there is a good correspondence between them indicating a good correspondence between shapes. According to these results for the studied area the shapes and positions of bathymetric structures and gravity anomalies are well correlated suggesting strong correlation between source and its effect. 0.4.3 Map of Dot-Product The resulting map resembles bathymetric and gravity anomaly isolines. All the sea mounts, banks, continental slope and other notable geomorphologic structures and gravity anomalies are well delimitated in the dot-product map eliminating uncorrelated areas where gradient orientations can be considered as near perpendicular. The dot-product map of the studied area suggests a strong source-effect between bathymetry and gravity anomaly. 0.5 Conclusions The joint image interpretation technique uses three different criteria that are sensitive to different gradient properties. Angles between gradients are a good indicator of areas where data are related and it is not sensitive to the magnitudes of the gradients. Angles maps can be used to find areas with direct and inverse relation between mapped properties and contour areas of influence of anomalies unseen on gradient magnitude maps alone. Statistical measures of distribution of angles can be an indicator of relation between data sets as show using significance criteria. Cross-product map has a spotted character of contours. To reduce the effects of the ambiguity the separation into two groups proved to be useful. It helps to separate the cross-product values that are minimized due to gradient magnitudes from those that minimize due to sine values which is a measure of correlation between them. Dot-product values contour areas where gradients are correlated. According to joint image interpretation technique applied bathymetric structures especially the volcanic seamounts and banks in the southern part of East-Brazilian Coast are closely related to the observed gravity anomalies and can be interpreted as sources and effect. This technique also helps to evaluate the shape and dispersion of the gravitational effect from a bathymetrical source. 0.6 References Dehlinger P., Marine Gravity, Elsevier, 1978. Gallardo, L. A., and M. A. Meju., Joint 2D cross-gradient imaging of magnetotelluric and seismic travel-time data for structural and lithological classification, Geophys. J. Int., 169, 1261-1272. (2007) Gallardo, L.A., M. A. Meju (2004), Joint two-dimensional dc resistivity and seismic traveltime inversion with cross-gradients constraints, J. Geophys. Res., 109, B03311, doi:10.1029/2003JB002716 Jacoby, W., and Smilde P. L., Gravity Interpretation, Springer, 2009. McKenzie D. & Bowin C. 1976. The relationship between bathymetry and gravity in Atlantic Ocean. Journal of Geophysical Research, 81: 1903-1915. Roy. K. K., Potential Theory in Applied Geophysics, Springer, 2008. Smith, W. H. F., and D. T. Sandwell, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962, 26 Sept., 1997. Sandwell, D. T., and W. H. F. Smith, Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res., 114, B01411, doi:10.1029/2008JB006008, 2009. Zembruscki, S.G. 1979. Geomorfologia da Margem Continental Sul Brasileira e das Bacias Oceânicas Adjacentes. In: Geomorfologia da margem continental brasileira e das áreas oceânicas adjacentes. Série Projeto REMAC, N° 7.
Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P
2014-07-15
Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.
Eigenvector of gravity gradient tensor for estimating fault dips considering fault type
NASA Astrophysics Data System (ADS)
Kusumoto, Shigekazu
2017-12-01
The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.
The influence of installation angle of GGIs on full-tensor gravity gradient measurement
NASA Astrophysics Data System (ADS)
Wei, Hongwei; Wu, Meiping
2018-03-01
Gravity gradient plays an important role in many disciplines as a fundamental signal to reflect the information of the earth. Full-tensor gravity gradient measurement (FGGM) is an effective way to obtain the gravity gradient signal. In this paper, the installation mode of GGIs in FGGM is studied. It is expected that the accuracy of FGGM will be improved by optimizing the installation mode of GGIs. In addition, we analysed the relationship between GGIs’ installation angle and FGGM by establishing the measurement model of FGGM. Then the following conclusions was proved that there was no relationship between GGIs’ installation angle and the measurement result. This conclusion showed that there was no optimal angle for the GGIs’ installation in FGGM, and the installation angle only need to satisfy the relationship shown in the conclusion section of this paper. Finally, this conclusion was demonstrated by computer simulations.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems
Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia
2016-01-01
The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs. PMID:27999351
Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.
Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia
2016-12-18
The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Kis, Karoly I.; Puszta, Sandor; Wittmann, Geza; Kim, Hyung Rae; Toronyi, B.
2011-01-01
The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin.
Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study
Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
NASA Technical Reports Server (NTRS)
Hasenstein, K. H.; Kuznetsov, O. A.
1999-01-01
Shoots of the lazy-2 mutant of tomato (Lycopersicon esculentum Mill., cv. Ailsa Craig) exhibit negative gravitropism in the dark, but respond positively gravitropically in (red) light. In order to test whether high-gradient magnetic fields (HGMFs) exert only ponderomotive effects on amyloplasts or affect other physiological processes, we induced magnetophoretic curvature in wild-type (WT) and lazy-2 mutant seedlings. Straight hypocotyls of 4-d-old plants were selected and the tips of their hooks were placed in an HGMF near the edge of a magnetized ferromagnetic wedge [grad (H2/2) approximately 10(9)-10(10) Oe2/cm] and mounted on a 1-rpm clinostat. After 4 h in the dark, 85% of WT hypocotyls and 67% of mutant hypocotyls curved toward the wedge. When the seedlings were exposed to red light for 1 h prior to and during the application of the HGMF, 78% of the WT seedlings curved toward the magnetic gradient, but the majority of the lazy-2 seedlings (75%) curved away from the stronger field area. Intracellular amyloplast displacement in the HGMF was similar for both varieties and resembled the displacement after horizontal reorientation. The WT showed a distinct graviresponse pattern depending on the orientation of the hook, even after excision of the apex. Application of HGMFs to decapitated hypocotyls resulted in curvature consistent with that obtained after horizontal reorientation. After light exposure, decapitated lazy-2 seedlings did not respond positively gravitropically. The data imply that the lazy-2 mutants perceive the displacement of amyloplasts in a similar manner to the WT and that the HGMF does not affect the graviresponse mechanism. The study demonstrates that ponderomotive forces due to HGMFs are useful for the analysis of the gravity-sensing mechanism in plants.
Pugh, L. G. C. E.
1971-01-01
1. O2 intakes were determined on subjects running and walking at various constant speeds, (a) against wind of up to 18·5 m/sec (37 knots) in velocity, and (b) on gradients ranging from 2 to 8%. 2. In running and walking against wind, O2 intakes increased as the square of wind velocity. 3. In running on gradients the relation of O2 intake and lifting work was linear and independent of speed. In walking on gradients the relation was linear at work rates above 300 kg m/min, but curvilinear at lower work rates. 4. In a 65 kg athlete running at 4·45 m/sec (marathon speed) V̇O2 increased from 3·0 l./min with minimal wind to 5·0 l./min at a wind velocity of 18·5 m/sec. The corresponding values for a 75 kg subject walking at 1·25 m/sec were 0·8 l./min with minimal wind and 3·1 l./min at a wind velocity of 18·5 m/sec. 5. Direct measurements of wind pressure on shapes of similar area to one of the subjects yielded higher values than those predicted from the relation of wind velocity and lifting work at equal O2 intakes. Horizontal work against wind was more efficient than vertical work against gravity. 6. The energy cost of overcoming air resistance in track running may be 7·5% of the total energy cost at middle distance speed and 13% at sprint speed. Running 1 m behind another runner virtually eliminated air resistance and reduced V̇O2 by 6·5% at middle distance speed. PMID:5574828
Limitation on the Use of the Horizontal Clinostat as a Gravity Compensator 123
Brown, Allan H.; Dahl, A. O.; Chapman, D. K.
1976-01-01
If the horizontal clinostat effectively compensates for the influence of the gravity vector on the rotating plant, it should make the plant unresponsive to whatever chronic acceleration may be applied transverse to the axis of clinostat rotation. This was tested by centrifuging plants while they were growing on clinostats. For a number of morphological end-points of development the results depended on the magnitude of the applied g-force. Therefore, gravity compensation by the clinostat was incomplete. This conclusion is in agreement with results of satellite experiments which are reviewed. PMID:16659631
Generating a Reduced Gravity Environment on Earth
NASA Technical Reports Server (NTRS)
Dungan, L. K.; Valle, P.; Shy, C.
2015-01-01
The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.
Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?
NASA Technical Reports Server (NTRS)
Edwards, K. L.
1985-01-01
The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.
Gravity wave momentum flux in the lower stratosphere over convection
NASA Technical Reports Server (NTRS)
Alexander, M. Joan; Pfister, Leonhard
1995-01-01
This work describes a method for estimating vertical fluxes of horizontal momentum carried by short horizontal scale gravity waves (lambda(sub x) = 10-100 km) using aircraft measured winds in the lower stratosphere. We utilize in situ wind vector and pressure altitude measurements provided by the Meteorological Measurement System (MMS) on board the ER-2 aircraft to compute the momentum flux vectors at the flight level above deep convection during the tropical experiment of the Stratosphere Troposphere Exchange Project (STEP-Tropical). Data from Flight 9 are presented here for illustration. The vertical flux of horizontal momentum these observations points in opposite directions on either side of the location of a strong convective updraft in the cloud shield. This property of internal gravity waves propagating from a central source compares favorably with previously described model results.
Gravity-induced stresses in finite slopes
Savage, W.Z.
1994-01-01
An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.
NASA Technical Reports Server (NTRS)
Robbins, J. W.
1985-01-01
An autonomous spaceborne gravity gradiometer mission is being considered as a post Geopotential Research Mission project. The introduction of satellite diometry data to geodesy is expected to improve solid earth gravity models. The possibility of utilizing gradiometer data for the determination of pertinent gravimetric quantities on a local basis is explored. The analytical technique of least squares collocation is investigated for its usefulness in local solutions of this type. It is assumed, in the error analysis, that the vertical gravity gradient component of the gradient tensor is used as the raw data signal from which the corresponding reference gradients are removed to create the centered observations required in the collocation solution. The reference gradients are computed from a high degree and order geopotential model. The solution can be made in terms of mean or point gravity anomalies, height anomalies, or other useful gravimetric quantities depending on the choice of covariance types. Selected for this study were 30 x 30 foot mean gravity and height anomalies. Existing software and new software are utilized to implement the collocation technique. It was determined that satellite gradiometry data at an altitude of 200 km can be used successfully for the determination of 30 x 30 foot mean gravity anomalies to an accuracy of 9.2 mgal from this algorithm. It is shown that the resulting accuracy estimates are sensitive to gravity model coefficient uncertainties, data reduction assumptions and satellite mission parameters.
Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558
NASA Technical Reports Server (NTRS)
Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.
1974-01-01
Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.
Weighted small subdomain filtering technology
NASA Astrophysics Data System (ADS)
Tai, Zhenhua; Zhang, Fengxu; Zhang, Fengqin; Zhang, Xingzhou; Hao, Mengcheng
2017-09-01
A high-resolution method to define the horizontal edges of gravity sources is presented by improving the three-directional small subdomain filtering (TDSSF). This proposed method is the weighted small subdomain filtering (WSSF). The WSSF uses a numerical difference instead of the phase conversion in the TDSSF to reduce the computational complexity. To make the WSSF more insensitive to noise, the numerical difference is combined with the average algorithm. Unlike the TDSSF, the WSSF uses a weighted sum to integrate the numerical difference results along four directions into one contour, for making its interpretation more convenient and accurate. The locations of tightened gradient belts are used to define the edges of sources in the WSSF result. This proposed method is tested on synthetic data. The test results show that the WSSF provides the horizontal edges of sources more clearly and correctly, even if the sources are interfered with one another and the data is corrupted with random noise. Finally, the WSSF and two other known methods are applied to a real data respectively. The detected edges by the WSSF are sharper and more accurate.
Implications for seismic hazard from new gravity data in Napa and vicinity, California
NASA Astrophysics Data System (ADS)
Morgan, K.; Langenheim, V. E.; Ritzinger, B. T.
2015-12-01
New gravity data refine the basin structure beneath the city of Napa, California and suggest continuity of the West Napa fault to the SE, near the city of Vallejo. Previous regional gravity data defined a basin 2-3 km deep beneath Napa where the 2014 M6.0 South Napa and the 2000 M4.9 Yountville earthquakes caused considerable damage. Higher ground motions were also recorded within the area of the gravity low. About 100 new gravity measurements sharpen gravity gradients along the eastern margin of the gravity low, where there was a concentration of red-tagged buildings from the 2014 earthquake. The new data also confirm the presence of an intrabasinal, arch, defined by slightly higher gravity values (~ 1 mGal) in the center of the basin and marked by the edge of a significant magnetic high (~150 nT). This arch coincides with the highest concentration of red-tagged buildings from the 2014 earthquake. Comparison of the potential-field anomalies with rock types encountered in water wells suggests that the arch is underlain by sediments which thin to the south where they are underlain by thick Sonoma Volcanics.. We speculate that the concentration of damage may be caused by shallowing of the basement or by a thicker sequence of basin sediments in the arch or both. Red-tagged buildings from the Yountville earthquake are near the western edge of the basin defined by significant potential-field gradients of the West Napa fault. A sharp basin boundary or guided waves along the fault may have contributed to concentration of damage in this area. Although the potential-field gradients decrease south of Napa, our new gravity data define a gradient aligned to the SE beneath the town of Vallejo. The gradient resides within Mesozoic basement rocks because it traverses outcrops of Great Valley Sequence. Although these data cannot prove Quaternary slip on this structure, its trend and location may indicate continuation of the West Napa fault to the SE.
Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1976-01-01
Numerous formulas have been developed to partially correct laser ranging data for the effects of atmospheric refraction. All the formulas assume the atmospheric refractivity profile is spherically symmetric. The effects of horizontal refractivity gradients are investigated by ray tracing through spherically symmetric and three-dimensional refractivity profiles. The profiles are constructed from radiosonde data. The results indicate that the horizontal gradients introduce an rms error of approximately 3 cm when the satellite is near 10 deg elevation. The error decreases to a few millimeters near zenith.
Superconducting gravity gradiometer and a test of inverse square law
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, Ho Jung
1989-01-01
The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.
Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density
NASA Astrophysics Data System (ADS)
Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing
2017-12-01
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.
Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China
NASA Astrophysics Data System (ADS)
Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju
2017-04-01
The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly reflects basic frame work of the regional crust structure. The earth's crust basically present three layer structure, nearly horizontally distributes, undulation of Moho is obvious, which is consistent with the results of seismic sounding and seismic array detection; in the local area, there are lower density layer zonal distribution in the earth's crust what accelerates the lateral movement in up and middle crust; when the substance of the Tibetan plateau spreads around, the integrity in up and middle crust is well, and it is basically a coupling movement together; in the lower crust, the thickness of the Tibetan plateau is outward gradually thinning, there is decoupling phenomenon in crust-mantle; The results of the gravity and the crustal density structure show that the research area can be divided into several part such as Qinghai-Tibet Plateau, Sichuan-Yunnan block, Ordos block and Alxa block, the transitional zones of the Qinghai-Tibet Plateau and Sichuan basin, and Alxa and Ordos are complex, and Moho slope is bigger, where is the part of strong tectonic activity and strong earthquakes occur easily. The research is of great significance for study the crustal deep structure, geodynamic evolution process and environment of earthquake gestation of the NSSB region.
NASA Astrophysics Data System (ADS)
Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng
2017-11-01
The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents
Zheng, Zhong; Christov, Ivan C.; Stone, Howard A.
2014-05-01
We report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b)more » a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.« less
Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N
2014-10-01
Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.
Integrated geophysical survey in defining subsidence features on a golf course
Xia, J.; Miller, R.D.
2007-01-01
Subsidence was observed at several places on the Salina Municipal Golf Course in areas known to be built over a landfill in Salina, Kansas. High-resolution magnetic survey (???5400 m2), multi-channel electrical resistivity profiling (three 154 m lines) and microgravity profiling (23 gravity-station values) were performed on a subsidence site (Green 16) to aid in determining boundaries and density deficiency of the landfill in the vicinity of the subsidence. Horizontal boundaries of the landfill were confidently defined by both magnetic anomalies and the pseudo-vertical gradient of total field magnetic anomalies. Furthermore, the pseudo-vertical gradient of magnetic anomalies presented a unique anomaly at Green 16, which provided a criterion for predicting other spots with subsidence potential using the same gradient property. Results of multi-channel electrical resistivity profiling (ERP) suggested the bottom limit of the landfill at Green 16 was around 21 m below the ground surface based on the vertical gradient of electric resistivity and a priori information on the depth of the landfill. ERP results also outlined several possible landfill bodies based on their low resistivity values. Microgravity results suggested a -0.14 g cm-3 density deficiency at Green 16 that could equate to future surface subsidence of as much as 1.5 m due to gradual compaction. ?? 2007 Nanjing Institute of Geophysical Prospecting.
Breaking Gravity Waves Over Large-Scale Topography
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Shapiro, M. A.
2002-12-01
The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.
Application Number 3: Using Tethers for Attitude Control
NASA Technical Reports Server (NTRS)
Muller, R. M.
1985-01-01
Past application of the gravity gradient concept to satellite attitude control produced attitude stabilities of from 1 to 10 degrees. The satellite members were rigigly interconnected and any motion in one part of the satellite would cause motion in all members. This experience has restricted gravity gradient stabilization to applications that need attitude stability no better than 1 degree. A gravity gradient technique that combines the flexible tether with an active control that will allow control stability much better than 1 degree is proposed. This could give gravity gradient stabilization much broader application. In fact, for a large structure like a space station, it may become the preferred method. Two possible ways of demonstrating the techniques using the Tethered Satellite System (TSS) tether to control the attitude of the shuttle are proposed. Then a possible space station tether configuration is shown that could be used to control the initial station. It is then shown how the technique can be extended to the control of space stations of virtually any size.
NASA Astrophysics Data System (ADS)
Guo, Zhikui; Chen, Chao; Tao, Chunhui
2016-04-01
Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model tests and field applications indicate that the adaptive terrain correction method can be adopted as a rapid and accurate tool of marine gravity data processing. References Davis, K. &Kass, M.A. & Li, Y., 2011. Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization, EXPLOR GEOPHYS, 42, 88-97. Sandwell, D.T., Müller, R.D., Smith, W.H., Garcia, E. & Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, SCIENCE, 346, 65-67. Tao, C., Li, H., Jin, X., Zhou, J., Wu, T., He, Y., Deng, X., Gu, C., Zhang, G. & Liu, W., 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge, CHINESE SCI BULL, 59, 2266-2276. Tsoulis, D., 2012. Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals, GEOPHYSICS, 77, F1-F11.
Relation of the lunar volcano complexes lying on the identical linear gravity anomaly
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.
2015-12-01
There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.
Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo
2003-01-01
Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well characterized, the constituent metals are available in a very pure form, and the thermophysical properties are well known. During solidification of hypoeutectic alloys, e.g., 55 wt pct Pb, the primary dendrites reject the less dense tin, and for the hypereutectic alloys, e.g., 75 wt pct Sn, the primary dendrites reject denser lead. Alloys were prepared by melting appropriate amounts of lead and tin in a glass crucible after which the homogeneous liquid was sucked directly into 5-mm i.d. glass tubes. The sample tube, containing approximately 30 cm of alloy, was then mechanically driven into the directional solidification furnace assembly and positioned such that approx. 20 cm of the sample was remelted. Subsequently, directional solidification was initiated by withdrawing the sample through a water-cooled jacket at a constant growth velocity of 2 ,microns/s. After 5 to 6 cm of growth, the sample was quickly removed from the furnace and quenched in a water bath to preserve the solid-liquid interface. Samples were directionally solidified vertically upward, nearly horizontally, and some in conjunction with an applied axial rotation of the crucible. Temperature gradients at the solid-liquid interface were measured with an in-siru K-type thermocouple. Solidified samples were cut perpendicular and parallel to the growth direction and conventionally prepared for microscopic examination.
Schatz, A; Linke-Hommes, A; Neubert, J
1996-01-01
Theoretical investigations involving the membrane-solution interface have revealed that the density of the solution varies appreciably within interfacial layers adjacent to charged membrane surfaces. The hypothesis that gravity interacts with this configuration and modifies transport rates across horizontal and vertical membranes differently was supported by initial experiments with gramicidin A channels in phosphatidylserine (PS) membranes in 0.1 M KCl. Channel conductivity was found to be about 1.6 times higher in horizontal membranes than in vertical membranes. Here we present the results of further experiments with gramicidin A channels (incorporated into charged PS- and uncharged phosphatidylcholine (PC) membranes in KCl- and CsCl-solutions) to demonstrate that the hypothesis is more generally applicable. Again, channel conductivity was found to be higher in horizontal PS membranes by a factor of between 1.20 and 1.75 in 0.1 M CsCl. No difference in channel conductivity was found for uncharged PC membranes in 0.1 M KCl and in 0.1 M CsCl. However, for PC membranes in 0.05 M KCl the channel conductivity was significantly higher in horizontal membranes by a factor of between 1.07 and 1.14. These results are consistent with the results of our model calculations of layer density and extension, which showed that the layer formation is enhanced by increasing membrane surface charge and decreasing electrolyte ion concentration. The mechanism of gravity interaction with membrane transport processes via interface reactions might be utilized by biological systems for orientational behaviour in the gravity field, which has been observed even for cellular systems.
Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids
NASA Astrophysics Data System (ADS)
Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.
2017-12-01
Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18. Okabe M. 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730-741.
Torus Approach in Gravity Field Determination from Simulated GOCE Gravity Gradients
NASA Astrophysics Data System (ADS)
Liu, Huanling; Wen, Hanjiang; Xu, Xinyu; Zhu, Guangbin
2016-08-01
In Torus approach, observations are projected to the nominal orbits with constant radius and inclination, lumped coefficients provides a linear relationship between observations and spherical harmonic coefficients. Based on the relationship, two-dimensional FFT and block-diagonal least-squares adjustment are used to recover Earth's gravity field model. The Earth's gravity field model complete to degree and order 200 is recovered using simulated satellite gravity gradients on a torus grid, and the degree median error is smaller than 10-18, which shows the effectiveness of Torus approach. EGM2008 is employed as a reference model and the gravity field model is resolved using the simulated observations without noise given on GOCE orbits of 61 days. The error from reduction and interpolation can be mitigated by iterations. Due to polar gap, the precision of low-order coefficients is lower. Without considering these coefficients the maximum geoid degree error and cumulative error are 0.022mm and 0.099mm, respectively. The Earth's gravity field model is also recovered from simulated observations with white noise 5mE/Hz1/2, which is compared to that from direct method. In conclusion, it is demonstrated that Torus approach is a valid method for processing massive amount of GOCE gravity gradients.
Atmospheric turbulence simulation for Shuttle orbiter
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1979-01-01
An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must be... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... Earth's gravity, as described in § 1065.630. Calculate the reference torque as the weights' reference...
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1993-01-01
Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.
A mechanism for tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1986-01-01
In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.
Ackers, D; Hejnowicz, Z; Sievers, A
1994-01-01
Velocities of cytoplasmic streaming were measured in internodal cells of Nitella flexilis L. and Chara corallina Klein ex Willd. by laser-Doppler-velocimetry to investigate the possibility of non-statolith-based perception of gravity. This was recently proposed, based on a report of gravity-dependent polarity of cytoplasmic streaming. Our measurements revealed large spatial and temporal variation in streaming velocity within a cell, independent of the position of the cell with respect to the direction of gravity. In 58% of the horizontally positioned cells the velocities of acropetal and basipetal streaming, measured at opposite locations in the cell, differed significantly. In 45% of these, basipetal streaming was faster than acropetal streaming. In 60% of the vertically positioned cells however the difference was significant, downward streaming was faster in only 61% of these. When cell positions were changed from vertical to horizontal and vice versa the cells reacted variably. A significant difference between velocities in one direction, before and after the change, was observed in approx. 70% of the measurements, but the velocity was faster in the downward direction, as the second position, in only 70% of the significantly different. The ratio of basipetal to acropetal streaming velocities at opposite locations of a cell was quite variable within groups of cells with a particular orientation (horizontal, normal vertical, inverted vertical). On average, however, the ratio was close to 1.00 in the horizontal position and approx. 1.03 in the normal vertical position (basipetal streaming directed downwards), which indicates a small direct effect of gravity on streaming velocity. Individual cells, however, showed an increased, as well as a decreased, ratio when moved from the horizontal to the vertical position. No discernible effect of media (either Ca(2+)-buffered medium or 1.2% agar in distilled water) on the streaming velocities was observed. The above mentioned phenomenon of graviperception is not supported by our data.
Gravity Survey of the Carson Sink - Data and Maps
Faulds, James E.
2013-12-31
A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.
NASA Astrophysics Data System (ADS)
Masoumi, Salim; McClusky, Simon; Koulali, Achraf; Tregoning, Paul
2017-04-01
Improper modeling of horizontal tropospheric gradients in GPS analysis induces errors in estimated parameters, with the largest impact on heights and tropospheric zenith delays. The conventional two-axis tilted plane model of horizontal gradients fails to provide an accurate representation of tropospheric gradients under weather conditions with asymmetric horizontal changes of refractivity. A new parametrization of tropospheric gradients whereby an arbitrary number of gradients are estimated as discrete directional wedges is shown via simulations to significantly improve the accuracy of recovered tropospheric zenith delays in asymmetric gradient scenarios. In a case study of an extreme rain event that occurred in September 2002 in southern France, the new directional parametrization is able to isolate the strong gradients in particular azimuths around the GPS stations consistent with the "V" shape spatial pattern of the observed precipitation. In another study of a network of GPS stations in the Sierra Nevada region where highly asymmetric tropospheric gradients are known to exist, the new directional model significantly improves the repeatabilities of the stations in asymmetric gradient situations while causing slightly degraded repeatabilities for the stations in normal symmetric gradient conditions. The average improvement over the entire network is ˜31%, while the improvement for one of the worst affected sites P631 is ˜49% (from 8.5 mm to 4.3 mm) in terms of weighted root-mean-square (WRMS) error and ˜82% (from -1.1 to -0.2) in terms of skewness. At the same station, the use of the directional model changes the estimates of zenith wet delay by 15 mm (˜25%).
NASA Astrophysics Data System (ADS)
Metivier, L.; Greff-Lefftz, M.; Panet, I.; Pajot-Métivier, G.; Caron, L.
2014-12-01
Joint inversion of the observed geoid and seismic velocities has been commonly used to constrain the viscosity profile within the mantle as well as the lateral density variations. Recent satellite measurements of the second-order derivatives of the Earth's gravity potential give new possibilities to understand these mantle properties. We use lateral density variations in the Earth's mantle based on slab history or deduced from seismic tomography. The main uncertainties are the relationship between seismic velocity and density -the so-called density/velocity scaling factor- and the variation with depth of the density contrast between the cold slabs and the surrounding mantle, introduced here as a scaling factor with respect to a constant value. The geoid, gravity and gravity gradients at the altitude of the GOCE satellite (about 255 km) are derived using geoid kernels for given viscosity depth profiles. We assume a layered mantle model with viscosity and conversion factor constant in each layer, and we fix the viscosity of the lithosphere. We perform a Monte Carlo search for the viscosity and the density/velocity scaling factor profiles within the mantle which allow to fit the observed geoid, gravity and gradients of gravity. We test a 2-layer, a 3-layer and 4-layer mantle. For each model, we compute the posterior probability distribution of the unknown parameters, and we discuss the respective contributions of the geoid, gravity and gravity gradients in the inversion. Finally, for the best fit, we present the viscosity and scaling factor profiles obtained for the lateral density variations derived from seismic velocities and for slabs sinking into the mantle.
Regional gravity field modelling from GOCE observables
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert
2017-01-01
In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.
Acoustic-gravity waves, theory and application
NASA Astrophysics Data System (ADS)
Kadri, Usama; Farrell, William E.; Munk, Walter
2015-04-01
Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.
NASA Technical Reports Server (NTRS)
Mast, F. W.; Newby, N. J.; Young, L. R.
2002-01-01
The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.
Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.
1985-12-31
Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45{sup 0}, an error ofmore » 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs.« less
Measuring attitude with a gradiometer
NASA Technical Reports Server (NTRS)
Sonnabend, David; Born, George H.
1994-01-01
Static attitude estimation and dynamic attitude estimation are used to describe a gradiometer composed of a number of accelerometers that are used to measure a combination of the local gravity gradient and instrument rotation effects. After a series of measures to isolate the gradient, a global mesh of measurements can be obtained that determine the planetary external gravity potential. Orbital and spacecraft models are developed to determine if, when the gravity potential is known, the same measurements, unsupported by any other information can be used to infer the spacecraft attitude.
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Waves in Radial Gravity Using Magnetic Fluid
NASA Technical Reports Server (NTRS)
Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.
1999-01-01
Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
NASA Astrophysics Data System (ADS)
Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.
2018-04-01
We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.
Gravitropism in Higher Plant Shoots 1
Sliwinski, Julianne E.; Salisbury, Frank B.
1984-01-01
Cross and longitudinal sections were prepared for light microscopy from vertical control plants (Xanthium strumarium L. Chicago strain), free-bending horizontal stems, plants restrained 48 hours in a horizontal position, and plants restrained 48 hours and then released, bending immediately about 130°. Top cells of free-bending stems shrink or elongate little; bottom cells continue to elongate. In restrained stems, bottom cells elongate some and increase in diameter; top cells elongate about as much but decrease in diameter. Upon release, bottom cells elongate more and decrease in diameter, while top cells shorten and increase in diameter, accounting for the bend. During restraint, bottom cells take up water while tissue pressures increase; top cells fail to take up water although tissue pressures are decreasing. Settling of amyloplasts was observed in cells of the starch sheath. Removal of different amounts of stem (Xanthium; Lycopersicon esculentum Miller, cv Bonny Best; Ricinus communis L. cv Yolo Wonder) showed that perception of gravity occurs in the bending (elongation) zone, although bending of fourth and fifth internodes from the top was less than in uncut controls. Uniform application of 1% indoleacetic acid in lanolin to cut stem surfaces partially restored bending. Reversing the gradient in tension/compression in horizontal stems (top under compression, bottom under tension) did not affect gravitropic bending. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:16663939
Strength and Elastic thickness of the lithosphere and implication on ductile crustal flow in Europe
NASA Astrophysics Data System (ADS)
Tesauro, M.; Kaban, M. K.; Cloetingh, S. A. P. L.
2012-04-01
The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. We present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. We estimated the lithospheric temperature from inversion of a tomography model and we extrapolated the results to the surface using crustal isotherms for different tectonic provinces based on characteristic values of radiogenic heat production. We assumed different rheologies of the upper and lower crust for continental areas, on the base of the geological features distribution. The results obtained allow us to compare for the first time the lithospheric characteristics of the different tectonic areas. The Te estimated from the strength is compared with the Te obtained by flexural loading and spectral studies. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~25 km), high topography (>1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (<1000 m) and very low seismicity. Using high resolution crustal thickness and density data provided by the EuCRUST-07 model we compute for the European continent the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
NASA Astrophysics Data System (ADS)
Blanco-Montenegro, I.; Montesinos, F. G.; GarcíA, A.; Vieira, R.; VillalaíN, J. J.
2005-12-01
The Bouguer and aeromagnetic anomaly maps of Lanzarote show a gravity high and a dipolar magnetic anomaly over the central part of the island, indicating one isolated source. Assuming that the structure responsible for both anomalies is the same, a methodology has been designed to estimate the total magnetization vector of the source, which is interpreted as a large intrusive body (mafic core) positioned as a result of magma rising to the surface during the early stages of growth of Lanzarote. Considering its geometry to be known from a previous three-dimensional (3-D) gravity model, the approach proposed in this paper is based on the delineation of magnetic contacts through analysis of the horizontal gradient of the reduced-to-the-pole anomaly map, comparison between the gravity and the pseudogravity anomalies, and 3-D forward magnetic modeling. The total magnetization vector obtained by this method is defined by a module of 4.5 A m-1 and a direction D = -20° and I = 30°. Comparing the paleomagnetic pole, obtained from this direction, with the apparent polar wander path of Africa for the last 160 Myr, it is concluded that the main component of the total magnetization vector is probably a primary natural remanent magnetization (NRM) which could have been acquired between 60 and 100 Ma. This result suggests that the emplacement of magmas at shallow depths linked to the beginning of volcanism in Lanzarote took place during the Upper Cretaceous, thus providing the first evidence of a timeline for the early formative stages of this volcanic island.
Observational filter for limb sounders applied to convective gravity waves
NASA Astrophysics Data System (ADS)
Trinh, Quang Thai; Preusse, Peter; Riese, Martin; Kalisch, Silvio
Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.
Observational filter for limb sounders applied to convective gravity waves
NASA Astrophysics Data System (ADS)
Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Riese, Martin
2014-05-01
Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.
Geodynamics and temporal variations in the gravity field
NASA Technical Reports Server (NTRS)
Mcadoo, D. C.; Wagner, C. A.
1989-01-01
Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.
Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures
NASA Technical Reports Server (NTRS)
1984-01-01
The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.
NASA Technical Reports Server (NTRS)
Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart
2007-01-01
In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.
Relativistic theory of the falling retroreflector gravimeter
NASA Astrophysics Data System (ADS)
Ashby, Neil
2018-02-01
We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.
probing the atmosphere with high power, high resolution radars
NASA Technical Reports Server (NTRS)
Hardy, K. R.; Katz, I.
1969-01-01
Observations of radar echoes from the clear atmosphere are presented and the scattering mechanisms responsible for the two basic types of clear-air echoes are discussed. The commonly observed dot echo originates from a point in space and usually shows little variation in echo intensity over periods of about 0.1 second. The second type of clear-air radar echo appears diffuse in space, and signal intensities vary considerably over periods of less than 0.1 second. The echoes often occur in thin horizontal layers or as boundaries of convective activity; these are characterized by sharp gradients of refractive index. Some features of clear-air atmospheric structures as observed with radar are presented. These structures include thin stable inversions, convective thermals, Benard convection cells, breaking gravity waves, and high tropospheric layers which are sufficiently turbulent to affect aircraft.
Non-contact transportation system of small objects using Ultrasonic Waveguides
NASA Astrophysics Data System (ADS)
Nakamura, K.; Koyama, D.
2012-12-01
A transportation system for small object or fluid without contact is investigated being based on ultrasonic levitation. Small objects are suspended against gravity at the nodal points in ultrasonic pressure field due to the sound radiation force generated as the gradient of the energy density of the field. In this study, the trapped object is transported in the horizontal plane by introducing the spatial shift of the standing waves by the switching the lateral modes or travelling waves. The goal of the study is to establish a technology which can provide a total system with the flexibility in composing various transportation paths. Methods for linear/rotary stepping motions and continuous linear transportation are explained in this report. All the transportation tracks are composed of a bending vibrator and a reflector. The design for these acoustic cavity/waveguide is discussed.
Gravity Anomaly Intersects Moon Basin
2012-12-05
A linear gravity anomaly intersecting the Crisium basin on the nearside of the moon has been revealed by NASA GRAIL mission. The GRAIL gravity gradient data are shown at left, with the location of the anomaly indicated.
Theory of an experiment in an orbiting space laboratory to determine the gravitational constant.
NASA Technical Reports Server (NTRS)
Vinti, J. P.
1972-01-01
An experiment is discussed for determining the gravitational constant with the aid of an isolated system consisting of an artificial satellite moving around an artificial planet. The experiment is to be conducted in a spherical laboratory traveling in an orbit around the earth. Difficulties due to the gravity-gradient term are considered, and the three-tunnel method proposed by Wilk (1969) is examined. The rotation of the sphere is discussed together with aspects of the reference systems used, the equations of motion of the spacecraft and of the test objects, the field from the earth's gravity gradient at the test object, higher harmonic terms in the gravity gradient force, gravitational effects of the spacecraft itself, and a computer simulation.
Ferl, Robert J; Paul, Anna-Lisa
2016-01-01
Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721
Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels
NASA Astrophysics Data System (ADS)
Gandikota, G.; Chatain, D.; Lyubimova, T.; Beysens, D.
2014-06-01
Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969), 10.1007/BF01397662].
Accuracy Assessment of the Precise Point Positioning for Different Troposphere Models
NASA Astrophysics Data System (ADS)
Oguz Selbesoglu, Mahmut; Gurturk, Mert; Soycan, Metin
2016-04-01
This study investigates the accuracy and repeatability of PPP technique at different latitudes by using different troposphere delay models. Nine IGS stations were selected between 00-800 latitudes at northern hemisphere and southern hemisphere. Coordinates were obtained for 7 days at 1 hour intervals in summer and winter. At first, the coordinates were estimated by using Niell troposphere delay model with and without including north and east gradients in order to investigate the contribution of troposphere delay gradients to the positioning . Secondly, Saastamoinen model was used to eliminate troposphere path delays by using standart atmosphere parameters were extrapolated for all station levels. Finally, coordinates were estimated by using RTCA-MOPS empirical troposphere delay model. Results demonstrate that Niell troposphere delay model with horizontal gradients has better mean values of rms errors 0.09 % and 65 % than the Niell troposphere model without horizontal gradients and RTCA-MOPS model, respectively. Saastamoinen model mean values of rms errors were obtained approximately 4 times bigger than the Niell troposphere delay model with horizontal gradients.
Effect of gravity on vertical eye position.
Pierrot-Deseilligny, C
2009-05-01
There is growing evidence that gravity markedly influences vertical eye position and movements. A new model for the organization of brainstem upgaze pathways is presented in this review. The crossing ventral tegmental tract (CVTT) could be the efferent tract of an "antigravitational" pathway terminating at the elevator muscle motoneurons in the third nerve nuclei and comprising, upstream, the superior vestibular nucleus and y-group, the flocculus, and the otoliths. This pathway functions in parallel to the medial longitudinal fasciculus pathways, which control vertical eye movements made to compensate for all vertical head movements and may also comprise the "gravitational" vestibular pathways, involved in the central reflection of the gravity effect. The CVTT could provide the upgaze system with the supplement of tonic activity required to counteract the gravity effect expressed in the gravitational pathway, being permanently modulated according to the static positions of the head (i.e., the instantaneous gravity vector) between a maximal activity in the upright position and a minimal activity in horizontal positions. Different types of arguments support this new model. The permanent influence of gravity on vertical eye position is strongly suggested by the vertical slow phases and nystagmus observed after rapid changes in hypo- or hypergravity. The chin-beating nystagmus, existing in normal subjects with their head in the upside-down position, suggests that gravity is not compensated for in the downgaze system. Upbeat nystagmus due to brainstem lesions, most likely affecting the CVTT circuitry, is improved when the head is in the horizontal position, suggesting that this circuitry is involved in the counteraction of gravity between the upright and horizontal positions of the head. In downbeat nystagmus due to floccular damage, in which a permanent hyperexcitation of the CVTT could exist, a marked influence of static positions of the head is also observed. Finally, the strongest argument supporting a marked role of gravity in vertical eye position is that the eye movement alterations observed in the main, typical physiological and pathological conditions are precisely those that would be expected from a direct effect of gravity on the eyeballs, with, moreover, no single alternative interpretation existing so far that could account for all these different types of findings.
A Least Squares Collocation Approach with GOCE gravity gradients for regional Moho-estimation
NASA Astrophysics Data System (ADS)
Rieser, Daniel; Mayer-Guerr, Torsten
2014-05-01
The depth of the Moho discontinuity is commonly derived by either seismic observations, gravity measurements or combinations of both. In this study, we aim to use the gravity gradient measurements of the GOCE satellite mission in a Least Squares Collocation (LSC) approach for the estimation of the Moho depth on regional scale. Due to its mission configuration and measurement setup, GOCE is able to contribute valuable information in particular in the medium wavelengths of the gravity field spectrum, which is also of special interest for the crust-mantle boundary. In contrast to other studies we use the full information of the gradient tensor in all three dimensions. The problem outline is formulated as isostatically compensated topography according to the Airy-Heiskanen model. By using a topography model in spherical harmonics representation the topographic influences can be reduced from the gradient observations. Under the assumption of constant mantle and crustal densities, surface densities are directly derived by LSC on regional scale, which in turn are converted in Moho depths. First investigations proofed the ability of this method to resolve the gravity inversion problem already with a small amount of GOCE data and comparisons with other seismic and gravitmetric Moho models for the European region show promising results. With the recently reprocessed GOCE gradients, an improved data set shall be used for the derivation of the Moho depth. In this contribution the processing strategy will be introduced and the most recent developments and results using the currently available GOCE data shall be presented.
Toward more complete magnetic gradiometry with the Swarm mission
NASA Astrophysics Data System (ADS)
Kotsiaros, Stavros
2016-07-01
An analytical and numerical analysis of the spectral properties of the gradient tensor, initially performed by Rummel and van Gelderen (Geophys J Int 111(1):159-169,
Interpretation of Local Gravity Anomalies in Northern New York
NASA Astrophysics Data System (ADS)
Revetta, F. A.
2004-05-01
About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic surveys were conducted at the closed Benson Mines magnetite mine and the Zinc Mines at Balmat, New York. The gravity and magnetic anomalies at Benson Mines indicate that significant amounts of magnetite remain in the subsurface and the steep gradients indicate a shallow depth. A gravity high of 35 gravity units in the Sylvia Lake Zinc District at Balmat, New York occurs over the upper marble and a 100 gu anomaly occurs just northeast of the zinc district. Abandoned natural gas fields exist along the southern and southwestern boundary of the Tug Hill Plateau. Gravity surveys were conducted in the vicinity of three of these gas fields in the Tug Hill Plateau (Camden, Sandy Creek and Pulaski). The Tug Hill Plateau is thought to be an uplifted-fault-bounded block which, if correct, might account for the existence of those gas fields. The trends of the gravity contours on the gravity maps lends credence to the fault interpretation. Also gravity and magnetic traverses were conducted across faults in the Trenton-Black River. These traverses show gravity anomalies across the faults which indicate control by faulting in the Precambrian.
Using the full tensor of GOCE gravity gradients for regional gravity field modelling
NASA Astrophysics Data System (ADS)
Lieb, Verena; Bouman, Johannes; Dettmering, Denise; Fuchs, Martin; Schmidt, Michael
2013-04-01
With its 3-axis gradiometer GOCE delivers 3-dimensional (3D) information of the Earth's gravity field. This essential advantage - e.g. compared with the 1D gravity field information from GRACE - can be used for research on the Earth's interior and for geophysical exploration. To benefit from this multidimensional measurement system, the combination of all 6 GOCE gradients and additionally the consistent combination with other gravity observations mean an innovative challenge for regional gravity field modelling. As the individual gravity gradients reflect the gravity field depending on different spatial directions, observation equations are formulated separately for each of these components. In our approach we use spherical localizing base functions to display the gravity field for specified regions. Therefore the series expansions based on Legendre polynomials have to be adopted to obtain mathematical expressions for the second derivatives of the gravitational potential which are observed by GOCE in the Cartesian Gradiometer Reference Frame (GRF). We (1) have to transform the equations from the spherical terrestrial into a Cartesian Local North-Oriented Reference Frame (LNOF), (2) to set up a 3x3 tensor of observation equations and (3) finally to rotate the tensor defined in the terrestrial LNOF into the GRF. Thus we ensure the use of the original non-rotated and unaffected GOCE measurements within the analysis procedure. As output from the synthesis procedure we then obtain the second derivatives of the gravitational potential for all combinations of the xyz Cartesian coordinates in the LNOF. Further the implementation of variance component estimation provides a flexible tool to diversify the influence of the input gradiometer observations. On the one hand the less accurate xy and yz measurements are nearly excluded by estimating large variance components. On the other hand the yy measurements, which show systematic errors increasing at high latitudes, could be manually down-weighted in the corresponding regions. We choose different test areas to compute regional gravity field models at mean GOCE altitudes for different spectral resolutions and varying relative weights for the observations. Further we compare the regional models with the static global GOCO03S model. Especially the flexible handling and combination of the 3D measurements promise a great benefit for geophysical applications from GOCE gravity gradients, as they contain information on radial as well as on lateral gravity changes.
Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary
Schaffranek, Raymond W.; Baltzer, Robert A.; ,
1990-01-01
A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.
Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian
2017-06-01
Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.
System noise analysis of the dumbbell tethered satellite for gravity-gradient measurements
NASA Technical Reports Server (NTRS)
Colombo, G.
1979-01-01
An analysis of the dumbbell gravity gradiometer concept for measuring short wavelength variations in the earth's gravity gradient is presented. Variations in the gradient are recorded by measuring tension variations in a vertically stabilized satellite consisting of heavy masses connected by a long wire or rod. Tension noise arises from the excitation of various mechanical oscillations of the system. The principal noise sources that were identified are fluctuations in atmospheric drag heating and drag force resulting from density variations and winds. Approximate analytical expressions are presented for the tension noise as a function of the system design parameters for various possible configurations. Computer simulations using numerical integration were performed to study the tension noise for several sample cases. Three designs consistent with Shuttle launch capabilities are discussed.
Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft
NASA Technical Reports Server (NTRS)
Blanchard, D. L.; Walden, H.
1973-01-01
A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.
1996-01-01
Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.
A ground-base Radar network to access the 3D structure of MLT winds
NASA Astrophysics Data System (ADS)
Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.
2016-12-01
The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.
NASA Astrophysics Data System (ADS)
Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.
2018-02-01
We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.
Gravity and the geoid in the Nepal Himalaya
NASA Technical Reports Server (NTRS)
Bilham, Roger
1992-01-01
Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. The process of uplift of materials within the Himalaya coupled with surface erosion is similar to the advance of a glacier into a region of melting. If the melting rate exceeds the rate of downhill motion of the glacier then the terminus of the glacier will receed up-valley despite the downhill motion of the bulk of the glacier. Thus although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse of the Himalaya depends on the erosion rate which is invisible to geodetic measurements. Erosion rates are currently estimated from suspended sediment loads in rivers in the Himalaya. These typically underestimate the real erosion rate since bed-load is not measured during times of heavy flood, and it is difficult to integrate widely varying suspended load measurements over many years. An alternative way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. If a control point moves vertically it should be accompanied by a reduction in gravity as the point moves away from the Earth's center of mass. There is a difference in the change of gravity between uplift with and without erosion corresponding to the difference between the free-air gradient and the gradient in the acceleration due to gravity caused by a corresponding thickness of rock. Essentially gravity should change precisely in accord with a change in elevation of the point in a free-air gradient if erosion equals uplift rate. We were funded by NASA to undertake a measurement of absolute gravity simultaneously with measurements of GPS height within the Himalaya. Since both absolute gravity and time are known in an absolute sense to 1 part in 10(exp 10) it is possible to estimate gravity with a precision of 0.1 mu gal. Known systematic errors reduce the measurement to an absolute uncertainty of 6 mu gal. The free air gradient at the point of measurement is typically about 3 mu gals/cm. At Simikot where our experiment was conducted we determined a vertical gravity gradient of 4.4 mu gals/cm.
Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.
2016-12-01
The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.
NASA Astrophysics Data System (ADS)
Costantino, Lorenzo; Heinrich, Philippe
2014-05-01
Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637
3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx
NASA Astrophysics Data System (ADS)
Dean, C.; Soloviev, A.
2015-12-01
Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.
Using absolute gravimeter data to determine vertical gravity gradients
Robertson, D.S.
2001-01-01
The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.
Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.
Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M
2016-12-01
The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress.
Muratov, Alexander; Baulin, Vladimir A
2015-12-01
Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi; Gilman, Peter A.
2001-04-01
We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.
Applications of Geodesy to Geodynamics, an International Symposium
NASA Technical Reports Server (NTRS)
Mueller, I. I. (Editor)
1978-01-01
Geodetic techniques in detecting and monitoring geodynamic phenomena are reviewed. Specific areas covered include: rotation of the earth and polar motion; tectonic plate movements and crustal deformations (space techniques); horizontal crustal movements (terrestrial techniques); vertical crustal movements (terrestrial techniques); gravity field, geoid, and ocean surface by space techniques; surface gravity and new techniques for the geophysical interpretation of gravity and geoid undulation; and earth tides and geodesy.
Determination of gravity wave parameters in the airglow combining photometer and imager data
NASA Astrophysics Data System (ADS)
Nyassor, Prosper K.; Arlen Buriti, Ricardo; Paulino, Igo; Medeiros, Amauri F.; Takahashi, Hisao; Wrasse, Cristiano M.; Gobbi, Delano
2018-05-01
Mesospheric airglow measurements of two or three layers were used to characterize both vertical and horizontal parameters of gravity waves. The data set was acquired coincidentally from a multi-channel filter (Multi-3) photometer and an all-sky imager located at São João do Cariri (7.4° S, 36.5° W) in the equatorial region from 2001 to 2007. Using a least-square fitting and wavelet analysis technique, the phase and amplitude of each observed wave were determined, as well as the amplitude growth. Using the dispersion relation of gravity waves, the vertical and horizontal wavelengths were estimated and compared to the horizontal wavelength obtained from the keogram analysis of the images observed by an all-sky imager. The results show that both horizontal and vertical wavelengths, obtained from the dispersion relation and keogram analysis, agree very well for the waves observed on the nights of 14 October and 18 December 2006. The determined parameters showed that the observed wave on the night of 18 December 2006 had a period of ˜ 43.8 ± 2.19 min, with the horizontal wavelength of 235.66 ± 11.78 km having a downward phase propagation, whereas that of 14 October 2006 propagated with a period of ˜ 36.00 ± 1.80 min with a horizontal wavelength of ˜ 195 ± 9.80 km, and with an upward phase propagation. The observation of a wave taken by a photometer and an all-sky imager allowed us to conclude that the same wave could be observed by both instruments, permitting the investigation of the two-dimensional wave parameter.
Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves
NASA Technical Reports Server (NTRS)
Eberstein, I. J.; Theon, J. S.
1975-01-01
Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.
Gravitropism in leafy dicot stems
NASA Technical Reports Server (NTRS)
Salisbury, F. B.
1984-01-01
In an attempt to separate plant responses to mechanical stresses from responses to gravity compensation, six treatments were automated: (1) upright stationary controls; (2) horizontal clinostat; (3) intermittent clinostat (plants upright 3.3 minutes out of every 4 minutes, horizontal and rotated once in the remaining time); (4) inversion every ten minutes (plants upside down half the time); (5) inversion and immediate return to the vertical; and (6) vertical rotation. Epinasty appeared only on clinostated and on inverted plants, both subjected to gravity compensation. The mechanics of gravitropic stem bending and the effects of a unilateral application of ethephon of gravitropic bending were also investigated.
The effect of surfactant on stratified and stratifying gas-liquid flows
NASA Astrophysics Data System (ADS)
Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar
2013-11-01
We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.
Kass, M. Andy
2013-01-01
Line spacing and flight height are critical parameters in airborne gravity gradient surveys; the optimal trade-off between survey costs and desired resolution, however, is different for every situation. This article investigates the additional benefit of reducing the flight height and line spacing though a study of a survey conducted over the Great Sand Dunes National Park and Preserve, which is the highest-resolution public-domain airborne gravity gradient data set available, with overlapping high- and lower-resolution surveys. By using Fourier analysis and matched filtering, it is shown that while the lower-resolution survey delineates the target body, reducing the flight height from 80 m to 40 m and the line spacing from 100 m to 50 m improves the recoverable resolution even at basement depths.
Kuroshio Graduate Student Support
2018-06-06
875 North Randolph Street Arlington, VA 22203-1995 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY ...strong horizontal density gradients (e.g., midlatitude subtropical gyres), with a small fraction occurring in regions of deep mixed layers (e.g., high ...Society homogenous in the presence of sharp horizontal density contrasts (e.g., Fig. 1a). These sharp gradients provide a source of available
Three dimensional eye movements of squirrel monkeys following postrotatory tilt
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.
1993-01-01
Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.
Langenheim, Victoria; Oaks, R.Q.; Willis, H.; Hiscock, A.I.; Chuchel, Bruce A.; Rosario, Jose J.; Hardwick, C.L.
2014-01-01
A new isostatic residual gravity map of the Tremonton 30' x 60' quadrangle of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over North Bay, northwest of Brigham City, and Malad and Blue Creek Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Promontory, Clarkston, and Wellsville Mountains. The highest gravity values are located in southern Curlew Valley and may be produced in part by deeper crustal density variations or crustal thinning. Steep, linear gravity gradients coincide with Quaternary faults bounding the Wellsville and Clarkston Mountains. Steep gradients also coincide with the margins of the Promontory Mountains, Little Mountain, West Hills, and the eastern margin of the North Promontory Mountains and may define concealed basin-bounding faults.
NASA Technical Reports Server (NTRS)
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
Dynamics of a gravity-gradient stabilized flexible spacecraft
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Juang, J. N.
1974-01-01
The dynamics of gravity-gradient stabilized flexible satellite in the neighborhood of a deformed equilibrium configuration are discussed. First the equilibrium configuration was determined by solving a set of nonlinear differential equations. Then stability of motion about the deformed equilibrium was tested by means of the Liapunov direct method. The natural frequencies of oscillation of the complete structure were calculated. The analysis is applicable to the RAE/B satellite.
Bubble behavior in molten glass in a temperature gradient. [in reduced gravity rocket experiment
NASA Technical Reports Server (NTRS)
Meyyappan, M.; Subramanian, R. S.; Wilcox, W. R.; Smith, H.
1982-01-01
Gas bubble motion in a temperature gradient was observed in a sodium borate melt in a reduced gravity rocket experiment under the NASA SPAR program. Large bubbles tended to move faster than smaller ones, as predicted by theory. When the bubbles contacted a heated platinum strip, motion virtually ceased because the melt only imperfectly wets platinum. In some cases bubble diameter increased noticeably with time.
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
Bultman, Mark W.; Page, William R.
2016-10-31
The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic susceptibilities of rocks found in the study area, and estimated natural remanent magnetic intensities and directions, reasonable geologic models can be built. This indicates that the depth to bedrock map is reason-able and geologically possible.Finally, CDTs derived from the 1998 Santa Cruz Basin transient electromagnetic survey were used to help identify basin structure and some physical properties of the basin fill in the study area. The CDTs also helped to confirm depth to bedrock estimates in the Santa Cruz Basin, in particular a region of elevated bedrock in the area of Potrero Canyon, and a deep basin in the location of the Arizona State Highway 82 microbasin. The CDTs identified many concealed faults in the study area and possibly indicate deep water-saturated clay-rich sediments in the west-central portion of the study area. These sediments grade to more sand-rich saturated sediments to the south with relatively thick, possibly unsaturated, sediments at the surface. Also, the CDTs may indicate deep saturated clay-rich sediments in the Highway 82 microbasin and in the Mount Benedict horst block from Proto Canyon south to the international border.
NASA Astrophysics Data System (ADS)
Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad; Attarnejad, Reza
2016-10-01
In this paper, closed-form integral expressions are derived to describe how surface gravity waves (tsunamis) are generated when general asymmetric ground displacement (due to earthquake rupturing), involving both horizontal and vertical components of motion, occurs at arbitrary depth within the interior of an anisotropic subsea solid beneath the ocean. In addition, we compute the resultant hydrodynamic pressure within the seawater and the elastic wavefield within the seabed at any position. The method of potential functions and an integral transform approach, accompanied by a special contour integration scheme, are adopted to handle the equations of motion and produce the numerical results. The formulation accounts for any number of possible acoustic-gravity modes and is valid for both shallow and deep water situations as well as for any focal depth of the earthquake source. Phase and group velocity dispersion curves are developed for surface gravity (tsunami mode), acoustic-gravity, Rayleigh, and Scholte waves. Several asymptotic cases which arise from the general analysis are discussed and compared to existing solutions. The role of effective parameters such as hypocenter location and frequency of excitation is examined and illustrated through several figures which show the propagation pattern in the vertical and horizontal directions. Attention is directed to the unexpected contribution from the horizontal ground motion. The results have important application in several fields such as tsunami hazard prediction, marine seismology, and offshore and coastal engineering. In a companion paper, we examine the effect of ocean stratification on the appearance and character of internal and surface gravity waves.
Interfacial instabilities in vibrated fluids
NASA Astrophysics Data System (ADS)
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.
Gravity wave momentum flux estimation from CRISTA satellite data
NASA Astrophysics Data System (ADS)
Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.
2003-04-01
Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
NASA Astrophysics Data System (ADS)
Saleh, Salah
2016-07-01
The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.
Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series
NASA Astrophysics Data System (ADS)
Wachter, Paul; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael
2015-12-01
We present a new approach for the detection of gravity waves in OH-airglow observations at the measurement site Oberpfaffenhofen (11.27°E, 48.08°N), Germany. The measurements were performed at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) during the period from February 4th, 2011 to July 6th, 2011. In this case study the observations were carried out by three identical Ground-based Infrared P-branch Spectrometers (GRIPS). These instruments provide OH(3-1) rotational temperature time series, which enable spatio-temporal investigations of gravity wave characteristics in the mesopause region. The instruments were aligned in such a way that their fields of view (FOV) formed an equilateral triangle in the OH-emission layer at a height of 87 km. The Harmonic Analysis is applied in order to identify joint temperature oscillations in the three individual datasets. Dependent on the specific gravity wave activity in a single night, it is possible to detect up to four different wave patterns with this method. The values obtained for the waves' periods and phases are then used to derive further parameters, such as horizontal wavelength, phase velocity and the direction of propagation. We identify systematic relationships between periods and amplitudes as well as between periods and horizontal wavelengths. A predominant propagation direction towards the East and North-North-East characterizes the waves during the observation period. There are also indications of seasonal effects in the temporal development of the horizontal wavelength and the phase velocity. During late winter and early spring the derived horizontal wavelengths and the phase velocities are smaller than in the subsequent period from early April to July 2011.
The Armstrong experiment revisited
NASA Astrophysics Data System (ADS)
Fuchs, Elmar C.; Wexler, Adam D.; Paulitsch-Fuchs, Astrid H.; Agostinho, Luewton L. F.; Yntema, Doekle; Woisetschläger, Jakob
2014-04-01
When a high-voltage direct-current is applied to two beakers filled with water or polar liquid dielectrica, a horizontal bridge forms between the two beakers. This experiment was first carried out by Lord Armstrong in 1893 and then forgotten until recently. Such bridges are stable by the action of electrohydrodynamic (EHD) forces caused by electric field gradients counteracting gravity. Due to these gradients a permanent pumping of liquid from one beaker into the other is observed. At macroscopic scale several of the properties of a horizontal water bridge can be explained by modern electrohydrodynamics, analyzing the motion of fluids in electric fields. Whereas on the molecular scale water can be described by quantum mechanics, there is a conceptual gap at mesoscopic scale which is bridged by a number of theories including quantum mechanical entanglement and coherent structures in water - theories that we discuss here. Much of the phenomenon is already understood, but even more can still be learned from it, since such "floating" liquid bridges resemble a small high voltage laboratory of their own: The physics of liquids in electric fields of some kV/cm can be studied, even long time experiments like neutron or light scattering are feasible since the bridge is in a steady-state equilibrium and can be kept stable for hours. It is also an electro-chemical reactor where compounds are transported through by the EHD flow, enabling the study of electrochemical reactions under potentials which are otherwise not easily accessible. Last but not least the bridge provides the experimental biologist with the opportunity to expose living organisms such as bacteria to electric fields without killing them, but with a significant influence on their behavior, and possibly, even on their genome.
NASA Astrophysics Data System (ADS)
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.
NASA Astrophysics Data System (ADS)
Rahimi, A.; Shahrisvand, M.
2017-09-01
GRACE satellites (the Gravity Recovery And climate Experiment) are very useful sensors to extract gravity anomalies after earthquakes. In this study, we reveal co-seismic signals of the two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore, co-seismic activity can be better illustrated. For the first time, we show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from - 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from - 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Konor, Celal S.; Randall, David A.
2018-05-08
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Using gravity as a proxy for stress accumulation in complex fault systems
NASA Astrophysics Data System (ADS)
Hayes, Tyler Joseph
The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The magnitude of the signals, on the order of 1 x 10-4 E, are beyond the resolution of typical exploration instruments at the present time. Keywords. numerical solutions; seismic cycle; gravity; gravity gradients; time variable gravity; earthquake interaction; forecasting; and prediction
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Syngouna, V. I.
2013-12-01
The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.
Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique
NASA Astrophysics Data System (ADS)
Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.
2005-12-01
Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds, the vertical wind can be retrieved from the horizontal flow divergence with a much-improved sensitivity than that represented by direct zenith measurements. The value of the vertical wind speed ranges from -5 to 5 m/s. Some nights seem to present gravity wave activity with periodic fluctuations of 1-2 hours visible in the vertical winds as well as in the temperature series.
Perimeter Security and Intruder Detection Using Gravity Gradiometry: A Feasibility Study
2011-03-24
design, build, and operate, and it is usually not feasible to integrate new technology into an already existing system. So far, however, the...gravitational gradients is not a new concept and has been applied across a variety of industries. The first device for gravity gradient measurement was the...which generates a new simulated GGI reading. The program loops for a set number of iterations, and then ends by calculating algorithm performance
Time course and auxin sensitivity of cortical microtubule reorientation in maize roots
NASA Technical Reports Server (NTRS)
Blancaflor, E. B.; Hasenstein, K. H.
1995-01-01
The kinetics of MT [microtubule] reorientation in primary roots of Zea mays cv. Merit, were examined 15, 30, 45, and 60 min after horizontal positioning. Confocal microscopy of longitudinal tissue sections showed no change in MT orientation 15 and 30 min after horizontal placement. However, after 45 and 60 min, MTs of the outer 4-5 cortical cell layers along the lower side were reoriented. In order to test whether MT reorientation during graviresponse is caused by an auxin gradient, we examined the organization of MTs in roots that were incubated for 1 h in solutions containing 10(-9) to 10(-6) M IAA. IAA treatment at 10(-8) M or less showed no major or consistent changes but 10(-7) M IAA resulted in MT reorientation in the cortex. The auxin effect does not appear to be acid-induced since benzoic acid (10(-5) M) did not cause MT reorientation. The region closest to the maturation zone was most sensitive to IAA. The data indicate that early stages of gravity induced curvature occur in the absence of MT reorientation but sustained curvature leads to reoriented MTs in the outer cortex. Growth inhibition along the lower side of graviresponding roots appears to result from asymmetric distribution of auxin following gravistimulation.
Amphibian egg cytoplasm response to altered g-forces and gravity orientation
NASA Technical Reports Server (NTRS)
Neff, A. W.; Smith, R. C.; Malacinski, G. M.
1986-01-01
Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) nonyolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.
Six-hourly time series of horizontal troposphere gradients in VLBI analyis
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Hofmeister, Armin; Mayer, David; Böhm, Johannes
2016-04-01
Consideration of horizontal gradients is indispensable for high-precision VLBI and GNSS analysis. As a rule of thumb, all observations below 15 degrees elevation need to be corrected for the influence of azimuthal asymmetry on the delay times, which is mainly a product of the non-spherical shape of the atmosphere and ever-changing weather conditions. Based on the well-known gradient estimation model by Chen and Herring (1997), we developed an augmented gradient model with additional parameters which are determined from ray-traced delays for the complete history of VLBI observations. As input to the ray-tracer, we used operational and re-analysis data from the European Centre for Medium-Range Weather Forecasts. Finally, we applied those a priori gradient parameters to VLBI analysis along with other empirical gradient models and assessed their impact on baseline length repeatabilities as well as on celestial and terrestrial reference frames.
A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.
Demyanenko, Andrey V; Zhao, Lin; Kee, Yun; Nie, Shuyi; Fraser, Scott E; Tyszka, J Michael
2009-09-01
We present an optimized uniplanar magnetic resonance gradient design specifically tailored for MR imaging applications in developmental biology and histology. Uniplanar gradient designs sacrifice gradient uniformity for high gradient efficiency and slew rate, and are attractive for surface imaging applications where open access from one side of the sample is required. However, decreasing the size of the uniplanar gradient set presents several unique engineering challenges, particularly for heat dissipation and thermal insulation of the sample from gradient heating. We demonstrate a new three-axis, target-field optimized uniplanar gradient coil design that combines efficient cooling and insulation to significantly reduce sample heating at sample-gradient distances of less than 5mm. The instrument is designed for microscopy in horizontal bore magnets. Empirical gradient current efficiencies in the prototype coils lie between 3.75G/cm/A and 4.5G/cm/A with current and heating-limited maximum gradient strengths between 235G/cm and 450G/cm at a 2% duty cycle. The uniplanar gradient prototype is demonstrated with non-linearity corrections for both high-resolution structural imaging of tissue slices and for long time-course imaging of live, developing amphibian embryos in a horizontal bore 7T magnet.
GOCE, Satellite Gravimetry and Antarctic Mass Transports
NASA Astrophysics Data System (ADS)
Rummel, Reiner; Horwath, Martin; Yi, Weiyong; Albertella, Alberta; Bosch, Wolfgang; Haagmans, Roger
2011-09-01
In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth's gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.
NASA Technical Reports Server (NTRS)
Miller, K. L.; Smith, L. G.
1976-01-01
The partially transparent echo from midlatitude sporadic E layers was recorded by ionosondes between the blanketing frequency and the maximum frequency. The theory that the midlatitude sporadic E layers are not uniform in the horizontal plane but contain localized regions of high electron density was evaluated using data obtained by incoherent scatter radar and found to provide a satisfactory explanation. The main features of midlatitude sporadic E layers are consistent with the convergence of metallic ions as described by the wind shear theory applied to gravity waves and tides. The interference of gravity waves with other gravity waves and tides can be recognized in the altitudes of occurrence and the structure of the layers. Small scale horizontal irregularities are attributed in some cases to critical level effects and in others to fluid instabilities. The convergence of a meteor trail can, under some circumstances, account for localized enhancement of the electron density in the layer.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.
1978-01-01
Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.
A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation
Gettings, M.E.
1983-01-01
Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated with gravity highs contain a large proportion of gabbroic and dioritic intrusive rocks and that the bulk density of the upper crust associated with some of the batholithic complexes has been lowered by the large-scale intrusion of granitic material at depth, as well as by that exposed at the surface. A comparison of known base and precious metals occurrences with the Bouguer gravity anomaly field shows, in some cases, a correlation between such occurrences and the features of the gravity anomaly map. Several areas were identified between known mineral occurrences along gravity-defined structures that may contain mineral deposits if the lithologic environment is favorable.
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Gas-assisted gravity drainage (GAGD) process for improved oil recovery
Rao, Dandina N [Baton Rouge, LA
2012-07-10
A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).
Pettorossi, V E; Ermanno, M; Pierangelo, E; Silvarosa, G
2000-03-01
The influence of gravity in the orientation and slow phase eye velocity of the ocular nystagmus following unilateral damage of the cupula in the ampulla of the horizontal semicircular canal (UHCD) was investigated. The nystagmus was analysed at different sagittal head positions using the x-y infrared eye monitor technique. The nystagmus was almost horizontal at 0 degrees head pitch angle and remained partially fixed in space when the head was pitched upward or downward. The reorientation gain of the slow and quick phases was high (about 0.75) within +/- 45 degrees of head pitch angle, but beyond this range, it decreased greatly. The gain value depended on the lesion extension to otolithic receptors. The absolute value of the slow phase eye velocity of UHCD nystagmus was also modified systematically by the head pitch, showing a reduction in the upward and an increase in the downward.
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.
1996-01-01
A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.
NASA Technical Reports Server (NTRS)
Wang, Y. M.
1989-01-01
The formulas for the determination of the coefficients of the spherical harmonic expansion of the disturbing potential of the earth are defined for data given on a sphere. In order to determine the spherical harmonic coefficients, the gravity anomalies have to be analytically downward continued from the earth's surface to a sphere-at least to the ellipsoid. The goal is to continue the gravity anomalies from the earth's surface downward to the ellipsoid using recent elevation models. The basic method for the downward continuation is the gradient solution (the g sub 1 term). The terrain correction was also computed because of the role it can play as a correction term when calculating harmonic coefficients from surface gravity data. The fast Fourier transformation was applied to the computations.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Rajan, M.
1977-01-01
The effects of gravity gradient torques during boom deployment maneuvers of a spinning spacecraft are examined. Configurations where the booms extended only along the hub principal axes and where one or two booms are offset from the principal axes were considered. For the special case of symmetric deployment (principal axes booms) the stability boundaries are determined, and a stability chart is used to study the system behavior. Possible cases of instability during this type of maneuver are identified. In the second configuration an expression for gravity torque about the hub center of mass was developed. The nonlinear equations of motion are solved numerically, and the substantial influence of the gravity torque during asymmetric deployment maneuvers is indicated.
New methods for the assessment of accommodative convergence.
Asakawa, Ken; Ishikawa, Hitoshi; Shoji, Nobuyuki
2009-01-01
The authors introduced a new objective method for measuring horizontal eye movements based on the first Purkinje image with the use of infrared charge-coupled device (CCD) cameras and compared stimulus accommodative convergence to accommodation (AC/A) ratios as determined by a standard gradient method. The study included 20 patients, 5 to 9 years old, who had intermittent exotropia (10 eyes) and accommodative esotropia (10 eyes). Measurement of horizontal eye movements in millimeters (mm), based on the first Purkinje image, was obtained with a TriIRIS C9000 instrument (Hamamatsu Photonics K.K., Hamamatsu, Japan). The stimulus AC/A ratio was determined with the far gradient method. The average values of horizontal eye movements (mm) and eye deviation (Delta) (a) before and (b) after an accommodative stimulus of 3.00 diopters (D) were calculated with the following formula: horizontal eye movements (mm/D) and stimulus AC/A ratio (Delta/D) = (b - a)/3. The average values of the horizontal eye movements and the stimulus AC/A ratio were 0.5 mm/D and 3.8 Delta/D, respectively. Correlation analysis showed a strong positive correlation between these two parameters (r = 0.92). Moreover, horizontal eye movements are directly proportional to the AC/A ratio measured with the gradient method. The methods used in this study allow objective recordings of accommodative convergence to be obtained in many clinical situations. Copyright 2009, SLACK Incorporated.
Secondary School Students' Conceptions Relating to Motion under Gravity
ERIC Educational Resources Information Center
Apostolides, Themos; Valanides, Nikos
2008-01-01
The study investigated tenth-, eleventh-, and twelfth-grade students' alternative ideas relating to the motion of a body travelling in the field of gravity with an initial horizontal velocity. The sample of the study consisted of 40 tenth-grade students, and 33 and 40 eleventh-grade students that attended different sections of upper secondary…
NASA Astrophysics Data System (ADS)
Çırmık, Ayça; Pamukçu, Oya
2017-10-01
In this study, the GNSS and gravity data were processed and compared together for examining the continental structures of the Western Anatolia region which has very complicated tectonism. The GNSS data of three national projects were processed and GNSS velocities were found as approximately 25 mm per year towards southwest with respect to the Eurasia fixed frame. In order to investigate the interplate motions of the region, the Anatolian and Aegean block solutions were calculated and the differences in directions and amplitudes of velocities were observed particularly in the Anatolian block solution. Due to the Anatolian block solutions, the study area was grouped into three regions and compared with the tectonic structures as the first time for Western Anatolia by this study. Additionally, W-E and N-S relative GNSS solutions were obtained for observing the possible tectonic borders of the study area. Besides, 2nd order horizontal derivative and low-pass filter methods were applied to Bouguer gravity anomalies and the results of the gravity applications and the changes on crustal-mantle interface were compared with the GNSS horizontal velocities.
The Role of Gravity on the Reproduction of Arabidopsis Plants
NASA Technical Reports Server (NTRS)
Hoshizaki, T.
1985-01-01
The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.
Principal facts for gravity stations in the vicinity of San Bernardino, Southern California
Anderson, Megan L.; Roberts, Carter W.; Jachens, Robert C.
2000-01-01
New gravity measurements in the vicinity of San Bernardino, California were collected to help define the characteristics of the Rialto-Colton fault. The data were processed using standard reduction formulas and parameters. Rock properties such as lithology, magnetic susceptibility and density also were measured at several locations. Rock property measurements will be helpful for future modeling and density inversion calculations from the gravity data. On both the Bouguer and isostatic gravity maps, a prominent, 13-km long (8 mi), approximately 1-km (0.62 mi) wide gradient with an amplitude of 7 mGal, down to the northeast, is interpreted as the gravity expression of the Rialto-Colton fault. The gravity gradient strikes in a northwest direction and runs from the San Jacinto fault zone at its south end to San Sevine Canyon at the foot of the San Gabriel mountains at its north end. The Rialto-Colton fault has experienced both right-lateral strike-slip and normal fault motion that has offset basement rocks; therefore it is interpreted as a major, through-going fault.
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
Preliminary OARE absolute acceleration measurements on STS-50
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Nicholson, John Y.; Ritter, James
1993-01-01
On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.
Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients
NASA Astrophysics Data System (ADS)
Yu, Mingbiao; Cai, Tijing
2018-05-01
The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.
Atmospheric refraction errors in laser ranging systems
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Rowlett, J. R.
1976-01-01
The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
The US Navy Coupled Ocean-Wave Prediction System
2014-09-01
Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum...for fourth-order differences for horizontal baroclinic pressure gradients and for interpolation of Coriolis terms. There is an option to use the
The interaction of horizontal eddy transport and thermal drive in the stratosphere
NASA Technical Reports Server (NTRS)
Salby, Murry L.; O'Sullivan, Donal; Callaghan, Patrick; Garcia, Rolando R.
1990-01-01
The two processes that determine the average state of the circulation; i.e., horizontal eddy transport and thermal dissipation, are examined, and the effects of their interaction on circulation and on tracer distribution in the stratosphere are investigated using barotropic calculations on the sphere. It is shown that eddy advection tends to homogenize the meridional gradient Q at low latitudes, while thermal dissipation restores the gradient after episodes of mixing.
Complex physiological and molecular processes underlying root gravitropism
NASA Technical Reports Server (NTRS)
Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.
2002-01-01
Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.
Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-03-16
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.
Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-01-01
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552
Response of Materials Subjected to Magnetic Fields
2011-08-31
is a superconducting Helmholtz coil capable of operating at up to 6 Tesla. Access to the high magnetic field at the center of the magnet is by...conducting sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at low velocity (under the influence of gravity for 1 meter). Area...sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at high velocity (under the influence of gravity for 1 meter). Figure 8
Internal Gravity Waves Forced by an Isolated Mountain
NASA Astrophysics Data System (ADS)
Nikitina, L.; Campbell, L.
2009-12-01
Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated mountain the time frame within which these nonlinear effects become significant depends on both the mountain height and width and that they begin to occur at least an order of magnitude later and the configuration thus remains stable longer than in the case of waves forced by a mountain range of equivalent height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumbaugh, William D.; Cook, Kenneth L.
During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort - Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km{sup 2}, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid)more » in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively. Residual gravity gradients of 0.5 to 8.0 mgal/km across north-trending gravity contours observed through the Cove Fort area, the Sulphurdale area, and the areas east of the East Mineral Mountains, along the west flanks of the Tushar Mountains, and on both the east and west flanks of the north Mineral Mountains, were attributed to north-trending Basin and Range high-angle faults. Gravity highs exist over the community of Black Rock area, the north Mineral Mountains, the Paleozoic outcrops in the east Cove Creek-Dog Valley-White Sage Flats areas, the sedimentary thrust zone of the southern Payant Range, and the East Mineral Mountains. The gravity lows over north Milford Valley, southern Black Rock Desert, Cunningham Wash, and northern Beaver Valley are separated from the above gravity highs by steep gravity gradients attributed to a combination of crustal warping and faulting. A gravity low with a closure of 2 mgal corresponds with Sulphur Cove, a circular topographic features containing sulphur deposits.« less
NASA Astrophysics Data System (ADS)
Vollmer, D. R.; McHarg, M. G.; Harley, J.; Haaland, R. K.; Stenbaek-Nielsen, H.
2016-12-01
On 23 July 2014, a mesoscale convective event over western Nebraska produced a large number of sprites. One frame per second images obtained from a low-noise Andor Scientific CMOS camera showed regularly-spaced horizontal striations in the airglow both before and during several of the sprite events, suggesting the presence of vertically-propagating gravity waves in the middle atmosphere. Previous work hypothesized that the gravity waves were produced by the thunderstorm itself. We compare our observations with previous work, and present numerical simulations conducted to determine source, structure, and propagation of atmospheric gravity waves.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.
1982-01-01
Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.
Head-Shaking Nystagmus Depends on Gravity
Marti, Sarah; Straumann, Dominik
2005-01-01
In acute unilateral peripheral vestibular deficit, horizontal spontaneous nystagmus (SN) increases when patients lie on their affected ear. This phenomenon indicates an ipsilesional reduction of otolith function that normally suppresses asymmetric semicircular canal signals. We asked whether head-shaking nystagmus (HSN) in patients with chronic unilateral vestibular deficit following vestibular neuritis is influenced by gravity in the same way as SN in acute patients. Using a three-dimensional (3-D) turntable, patients (N = 7) were placed in different whole-body positions along the roll plane and oscillated (1 Hz, ±10°) about their head-fixed vertical axis. Eye movements were recorded with 3-D magnetic search coils. HSN was modulated by gravity: When patients lay on their affected ear, slow-phase eye velocity significantly increased upon head shaking and consisted of a horizontal drift toward the affected ear (average: 1.2°/s ±0.5 SD), which was added to the gravity-independent and directionally nonspecific SN. In conclusion, HSN in patients with chronic unilateral peripheral vestibular deficit is best elicited when they are lying on their affected ear. This suggests a gravity-dependent mechanism similar to the one observed for SN in acute patients, i.e., an asymmetric suppression of vestibular nystagmus by the unilaterally impaired otolith organs. PMID:15735939
NASA Technical Reports Server (NTRS)
Meek, C. E.; Reid, I. M.
1984-01-01
It has been suggested that the velocities produced by the spaced antenna partial-reflection drift experiment may constitute a measure of the vertical oscillations due to short-period gravity waves rather than the mean horizontal flow. The contention is that the interference between say two scatterers, one of which is traveling upward, and the other down, will create a pattern which sweeps across the ground in the direction (or anti-parallel) of the wave propagation. Since the expected result, viz., spurious drift directions, is seldom, if ever, seen in spaced antenna drift velocities, this speculation is tested in an atmospheric model.
Ring faults and ring dikes around the Orientale basin on the Moon.
Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T
2018-08-01
The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.
NASA Technical Reports Server (NTRS)
Masson, P. H.
1995-01-01
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.
NASA Astrophysics Data System (ADS)
Devakar, M.; Raje, Ankush
2018-05-01
The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.
Nonlinear critical-layer evolution of a forced gravity wave packet
NASA Astrophysics Data System (ADS)
Campbell, L. J.; Maslowe, S. A.
2003-10-01
In this paper, numerical simulations are presented of the nonlinear critical-layer evolution of a forced gravity wave packet in a stratified shear flow. The wave packet, localized in the horizontal direction, is forced at the lower boundary of a two-dimensional domain and propagates vertically towards the critical layer. The wave mean-flow interactions in the critical layer are investigated numerically and contrasted with the results obtained using a spatially periodic monochromatic forcing. With the horizontally localized forcing, the net absorption of the disturbance at the critical layer continues for large time and the onset of the nonlinear breakdown is delayed compared with the case of monochromatic forcing. There is an outward flux of momentum in the horizontal direction so that the horizontal extent of the packet increases with time. The extent to which this happens depends on a number of factors including the amplitude and horizontal length of the forcing. It is also seen that the prolonged absorption of the disturbance stabilizes the solution to the extent that it is always convectively stable; the local Richardson number remains positive well into the nonlinear regime. In this respect, our results for the localized forcing differ from those in the case of monochromatic forcing where significant regions with negative Richardson number appear.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions and...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
NASA Astrophysics Data System (ADS)
Gang, Yin; Yingtang, Zhang; Hongbo, Fan; Zhining, Li; Guoquan, Ren
2016-05-01
We have developed a method for automatic detection, localization and classification (DLC) of multiple dipole sources using magnetic gradient tensor data. First, we define modified tilt angles to estimate the approximate horizontal locations of the multiple dipole-like magnetic sources simultaneously and detect the number of magnetic sources using a fixed threshold. Secondly, based on the isotropy of the normalized source strength (NSS) response of a dipole, we obtain accurate horizontal locations of the dipoles. Then the vertical locations are calculated using magnitude magnetic transforms of magnetic gradient tensor data. Finally, we invert for the magnetic moments of the sources using the measured magnetic gradient tensor data and forward model. Synthetic and field data sets demonstrate effectiveness and practicality of the proposed method.
Global variation in elevational diversity patterns
Qinfeng Guo; Douglas A. Kelt; Zhongyu Sun; Hongxiao Liu; Liangjun Hu; Hai Ren; Jun We
2013-01-01
While horizontal gradients of biodiversity have been examined extensively in the past, vertical diversity gradients (elevation, water depth) are attracting increasing attention. We compiled data from 443 elevational gradients involving diverse organisms worldwide to investigate how elevational diversity patterns may vary between the Northern and Southern hemispheres...
Scheirer, Daniel S.; Andreasen, Arne Dossing
2008-01-01
In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.
Rougier, Patrice R; Bonnet, Cédrick T
2016-06-01
Contrasted postural effects have been reported in dual-task protocols associating balance control and cognitive task that could be explained by the nature and the relative difficulty of the cognitive task and the biomechanical significance of the force platform data. To better assess their respective role, eleven healthy young adults were required to stand upright quietly on a force platform while concomitantly solving mental-calculation or mental-navigation cognitive tasks. Various levels of difficulty were applied by adjusting the velocity rate at which the instructions were provided to the subject according to his/her maximal capacities measured beforehand. A condition without any concomitant cognitive task was added to constitute a baseline behavior. Two basic components, the horizontal center-of-gravity movements and the horizontal difference between center-of-gravity and center-of-pressures were computed from the complex center-of-pressure recorded movements. It was hypothesized that increasing the delay should infer less interaction between postural control and task solution. The results indicate that both mental-calculation and mental-navigation tasks induce reduced amplitudes for the center-of-pressure minus center-of-gravity movements, only along the mediolateral axis, whereas center-of-gravity movements were not affected, suggesting that different circuits are involved in the central nervous system to control these two movements. Moreover, increasing the delays task does not infer any effect for both movements. Since center-of-pressure minus center-of-gravity expresses the horizontal acceleration communicated to the center-of-gravity, one may assume that the control of the latter should be facilitated in dual-tasks conditions, inferring reduced center-of-gravity movements, which is not seen in our results. This lack of effect should be thus interpreted as a modification in the control of these center-of-gravity movements. Taken together, these results emphasized how undisturbed upright stance control can be impacted by mental tasks requiring attention, whatever their nature (calculation or navigation) and their relative difficulty. Depending on the provided instructions, i.e. focusing our attention on body movements or on the opposite diverting this attention toward other objectives, the evaluation of upright stance control capacities might be drastically altered. Copyright © 2016. Published by Elsevier B.V.
Hybrid gravity survey to search for submarine ore deposit
NASA Astrophysics Data System (ADS)
Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.
2011-12-01
Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.
Tsunami and infragravity waves impacting Antarctic ice shelves
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.
2017-07-01
The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.
NASA Technical Reports Server (NTRS)
Rees, D.
1986-01-01
Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.
Progress towards a space-borne quantum gravity gradiometer
NASA Technical Reports Server (NTRS)
Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute
2004-01-01
Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.
Langenheim, V.E.; Jachens, Robert C.; Morin, Robert L.; McCabe, Craig A.
2007-01-01
The Lake Pillsbury region is transected by the Bartlett Springs Fault zone, one of the main strike-slip faults of the San Andreas system north of San Francisco Bay, California. Gravity and magnetic data were collected to help characterize the geometry and offset of the fault zone as well as determine the geometry of the Gravelly Valley pull-apart basin and Potter Valley, an alluvial intermontane basin southwest of Lake Pillsbury. The Bartlett Springs fault zone lies at the base of a significant gravity gradient. Superposed on the gradient is a small gravity low centered over Lake Pillsbury and Gravelly Valley. Another small gravity low coincides with Potter Valley. Inversion of gravity data for basin thickness indicates a maximum thickness of 400 and 440 m for the Gravelly and Potter Valley depressions, respectively. Ground magnetic data indicate that the regional aeromagnetic data likely suffer from positional errors, but that large, long-wavelength anomalies, sourced from serpentinite, may be offset 8 km along the Bartlett Springs Fault zone. Additional gravity data collected either on the lake surface or bottom and in Potter Valley would better determine the shape of the basins. A modern, high-resolution aeromagnetic survey would greatly augment the ability to map and model the fault geometry quantitatively.
Satellite laser ranging as a tool for the recovery of tropospheric gradients
NASA Astrophysics Data System (ADS)
Drożdżewski, M.; Sośnica, K.
2018-11-01
Space geodetic techniques, such as Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI) have been extensively used for the recovery of the tropospheric parameters. Both techniques employ microwave observations, for which the troposphere is a non-dispersive medium and which are very sensitive to the water vapor content. Satellite laser ranging (SLR) is the only space geodetic technique used for the definition of the terrestrial reference frames which employs optical - laser observations. The SLR sensitivity to the hydrostatic part of the troposphere delay is similar to that of microwave observations, whereas the sensitivity of laser observations to non-hydrostatic part of the delay is about two orders of magnitude smaller than in the case of microwave observations. Troposphere is a dispersive medium for optical wavelengths, which means that the SLR tropospheric delay depends on the laser wavelength. This paper presents the sensitivity and capability of the SLR observations for the recovery of azimuthal asymmetry over the SLR stations, which can be described as horizontal gradients of the troposphere delay. For the first time, the horizontal gradients are estimated, together with other parameters typically estimated from the SLR observations to spherical LAGEOS satellites, i.e., station coordinates, earth rotation parameters, and satellite orbits. Most of the SLR stations are co-located with GNSS receivers, thus, a cross-correlation between both techniques is possible. We compare our SLR horizontal gradients to GNSS results and to the horizontal gradients derived from the numerical weather models (NWM). Due to a small number of the SLR observations, SLR is not capable of reconstructing short-period phenomena occurring in the atmosphere. However, the long-term analysis allows for the recovery of the atmosphere asymmetry using SLR. As a result, the mean offsets of the SLR-derived horizontal gradients agree to the level of 47%, 74%, 54% with GNSS, hydrostatic delay, and total delay from NWM, respectively. SLR can be thus employed as a tool for the recovery of the atmospheric parameters with a major sensitivity to the hydrostatic part of the delay.
New insights into root gravitropic signalling
Sato, Ethel Mendocilla; Hijazi, Hussein; Bennett, Malcolm J.; Vissenberg, Kris; Swarup, Ranjan
2015-01-01
An important feature of plants is the ability to adapt their growth towards or away from external stimuli such as light, water, temperature, and gravity. These responsive plant growth movements are called tropisms and they contribute to the plant’s survival and reproduction. Roots modulate their growth towards gravity to exploit the soil for water and nutrient uptake, and to provide anchorage. The physiological process of root gravitropism comprises gravity perception, signal transmission, growth response, and the re-establishment of normal growth. Gravity perception is best explained by the starch–statolith hypothesis that states that dense starch-filled amyloplasts or statoliths within columella cells sediment in the direction of gravity, resulting in the generation of a signal that causes asymmetric growth. Though little is known about the gravity receptor(s), the role of auxin linking gravity sensing to the response is well established. Auxin influx and efflux carriers facilitate creation of a differential auxin gradient between the upper and lower side of gravistimulated roots. This asymmetric auxin gradient causes differential growth responses in the graviresponding tissue of the elongation zone, leading to root curvature. Cell biological and mathematical modelling approaches suggest that the root gravitropic response begins within minutes of a gravity stimulus, triggering genomic and non-genomic responses. This review discusses recent advances in our understanding of root gravitropism in Arabidopsis thaliana and identifies current challenges and future perspectives. PMID:25547917
Circulation-based Modeling of Gravity Currents
NASA Astrophysics Data System (ADS)
Meiburg, E. H.; Borden, Z.
2013-05-01
Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related phenomena, J. Fluid Mech. 31, 209-248. Shin, J.O., Dalziel, S.B. and Linden, P.F. 2004 Gravity currents produced by lock exchange, J. Fluid Mech. 521, 1-34.
Cacchione, Trix; Call, Josep; Zingg, Robert
2009-05-01
Three experiments modeled after infant studies were run on four great ape species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus) to investigate their reasoning about solidity and gravity constraints. The aims were: (a) to find out if great apes are subject to gravity biased search or display sensitivity for object solidity, (b) to check for species differences, and (c) to assess if a gravity hypothesis or more parsimonious explanations best account for failures observed. Results indicate that great apes, unlike monkeys, show no reliable gravity bias, that ape species slightly differ in terms of their performance, and that the errors made are best explained by a gravity account. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany.
Kutsch, Werner L; Kolle, Olaf; Rebmann, Corinna; Knohl, Alexander; Ziegler, Waldemar; Schulze, Ernst-Detlef
2008-09-01
Potential losses by advection were estimated at Hainich Forest, Thuringia, Germany, where the tower is located at a gentle slope. Three approaches were used: (1) comparing nighttime eddy covariance fluxes to an independent value of total ecosystem respiration by bottom-up modeling of the underlying processes, (2) direct measurements of a horizontal CO2 gradient and horizontal wind speed at 2 m height in order to calculate horizontal advection, and (3) direct measurements of a vertical CO2 gradient and a three-dimensional wind profile in order to calculate vertical advection. In the first approach, nighttime eddy covariance measurements were compared to independent values of total ecosystem respiration by means of bottom-up modeling of the underlying biological processes. Turbulent fluxes and storage term were normalized to the fluxes calculated by the bottom-up model. Below a u(*) threshold of 0.6 m/s the normalized turbulent fluxes decreased with decreasing u(*), but the flux to the storage increased only up to values less than 20% of the modeled flux at low turbulence. Horizontal advection was measured by a horizontal CO2 gradient over a distance of 130 m combined with horizontal wind speed measurements. Horizontal advection occurred at most of the evenings independently of friction velocity above the canopy. Nevertheless, horizontal advection was higher when u(*) was low. The peaks of horizontal advection correlated with changes in temperature. A full mass balance including turbulent fluxes, storage, and horizontal and vertical advection resulted in an increase of spikes and scatter but seemed to generally improve the results from the flux measurements. The comparison of flux data with independent bottom-up modeling results as well as the direct measurements resulted in strong indications that katabatic flows along the hill slope during evening and night reduces the measured apparent ecosystem respiration rate. In addition, anabatic flows may occur during the morning. We conclude that direct measurements of horizontal and vertical advection are highly necessary at sites located even on gentle hill slopes.
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2018-05-01
For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.
Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study
NASA Technical Reports Server (NTRS)
Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.
1993-01-01
Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.
Horizontal cryogenic bushing for the termination of a superconducting power-transmission line
Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.
1982-07-29
A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.
Termination for a superconducting power transmission line including a horizontal cryogenic bushing
Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix
1984-01-01
A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.
Does gravity influence the visual line bisection task?
Drakul, A; Bockisch, C J; Tarnutzer, A A
2016-08-01
The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Wilson, S. K.
1993-05-01
Analytical and numerical techniques are used to analyze the effect of a uniform vertical magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of quiescent, electrically conducting fluid subject to a uniform vertical temperature gradient. Marangoni numbers for the onset of steady convection are found to be critically dependent on the nondimensional Crispation and Bond numbers. Two different asymptotic limits of strong surface tension and strong magnetic field are analyzed. Data obtained indicate that the presence of the magnetic field always has a stabilizing effect on the layer. Assuming that the Marangoni number is a critical parameter, it is shown that, if the free surface is nondeformable, then any particular disturbance can be stabilized with a sufficiently strong magnetic field. If the free surface is deformable and gravity waves are excluded, then the layer is always unstable to infinitely long wavelength disturbances with or without a magnetic field.
Instabilities in a staircase stratified shear flow
NASA Astrophysics Data System (ADS)
Ponetti, G.; Balmforth, N. J.; Eaves, T. S.
2018-01-01
We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.
Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity
NASA Technical Reports Server (NTRS)
Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.
1996-01-01
Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.
Influence of gravity on the orientation of vestibular induced quick phases.
Pettorossi, V E; Errico, P; Ferraresi, A; Draicchio, F
1995-01-01
In rabbits and cats the orientation of the quick phases (QPs) of the vestibulo-ocular reflex (VOR) was studied varying the head position in space. At different head tilt positions, QPs induced by step vestibular stimulation disaligned with respect to the stimulus toward the orientation of the earth's horizontal axis. The rabbits' QPs were horizontal during yaw stimulation and remained horizontal in a range of head pitch of +/- 90 degrees (reorientation gain = 1). Therefore, the slow compensatory responses (CSPs) progressively disaligned compared with the QPs. QPs induced by roll stimulation also showed horizontal orientation, although these were rare in the upright position and occurred more frequently when the head was pitched. In cats only the yaw-induced QPs were coplanar with the stimulus, while QPs induced by pitching were mostly oblique. It followed that in either yawing or pitching, the QPs had their end point scattered within a horizontally elongated area of the visual field. When tilting cats in the frontal plane, the orientation of QP trajectories changed with respect to the stimulus so that the end point distribution tended to remain aligned toward the horizontal instead of being fixed in the orbit. The reorientation gain decreased from 1 to 0.5 by increasing the head tilt. On the basis of difference regarding eye implantation and motility it was suggested that the effect of gravity on the orientation of QPs could be aimed at maintaining the interocular axis aligned with the horizon in the rabbit and at orientating the visual scanning system in the horizontal plane in the cat.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Chen, Chao
2018-02-01
A density interface modeling method using polyhedral representation is proposed to construct 3-D models of spherical or ellipsoidal interfaces such as the terrain surface of the Earth and applied to forward calculating gravity effect of topography and bathymetry for regional or global applications. The method utilizes triangular facets to fit undulation of the target interface. The model maintains almost equal accuracy and resolution at different locations of the globe. Meanwhile, the exterior gravitational field of the model, including its gravity and gravity gradients, is obtained simultaneously using analytic solutions. Additionally, considering the effect of distant relief, an adaptive computation process is introduced to reduce the computational burden. Then features and errors of the method are analyzed. Subsequently, the method is applied to an area for the ellipsoidal Bouguer shell correction as an example and the result is compared to existing methods, which shows our method provides high accuracy and great computational efficiency. Suggestions for further developments and conclusions are drawn at last.
Development of an Artificial Gravity Sleeper (AGS)
NASA Technical Reports Server (NTRS)
Cardus, David; Mctaggart, Wesley G.; Diamandis, Peter; Campbell, Scott
1990-01-01
The design and construction of a 2-meter radius 'human compatible' centrifuge termed the Artificial Gravity Sleeper (AGS) is considered. The centrifuge will accommodate up to four subjects at a time, operate at a broad range of speeds, and have safety features. Experiments that will be conducted on the AGS will help to investigate the quality of sleep during 100 percent gradient centrifugation. A microgravity simulation also will be studied using bed rest to assess the ability of 100 percent gradient centrifugation to function as a countermeasure to cardiovascular deconditioning.
Autonomous momentum management for space station
NASA Technical Reports Server (NTRS)
Hahn, E.
1984-01-01
Momentum management for the CDG planar space platform is discussed. It is assumed that the external torques on the space station are gravity gradient and aerodynamic, both have bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Techniques to counteract the bias torques and center the cyclic momentum and gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques are investigated.
NASA Astrophysics Data System (ADS)
Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge
2017-06-01
The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.
Residual nutational activity of the sunflower hypocotyl in simulated weightlessness
NASA Technical Reports Server (NTRS)
Chapman, D. K.; Brown, A. H.
1979-01-01
The gravity dependence of circumnutational activity in the sunflower hypocotyl is investigated under conditions of simulated weightlessness. Seedling cultures of the sunflower Helianthus annuus were placed four days after planting in clinostats rotating at a rate of 1.0 rpm in the horizontal or somersaulting configurations, and plant movements around their growth axes were recorded in infrared light by a time-lapse closed-circuit video system. The amplitudes and mean cycle durations of the plant nutations in the horizontal and tumbling clinostats are observed to be 20% and 72%, and 32% and 74%, respectively, of the values observed in stationary plants; extrapolations to a state of zero g by the imposition of small centripetal forces on horizontally clinostated plants also indicate some nutational motion in the absence of gravity. It is concluded that the results are incompatible with the model of Israelsson and Johnsson (1967) of geotropic response with overshoot for sunflower circumnutation; however, results of the Spacelab 1 mission experiment are needed to unambiguously define the role of gravitation.
NASA Technical Reports Server (NTRS)
Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.
1975-01-01
A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.
NASA Astrophysics Data System (ADS)
Souei, Ali; Atawa, Mohamed; Zouaghi, Taher
2018-03-01
The Nadhour-Sisseb-El Alem basin, in the central-eastern part of Tunisia, is characterized by the scarcity of surface and subsurface water resources. Although the aquifer systems of this basin are not well understood, the scarce water resources are subject to a high rate of exploitation leading to a significant drop in the level of the water table. This work presents correlation of gravity data with hydrogeological data in order to improve the knowledge of the deep structures and aquifer systems. Various geophysical filtering techniques (e.g., residual anomaly, upward continuation, horizontal gradient, and Euler deconvolution) applied to the complete Bouguer anomaly, deduce the deep structures and geometry of the basin and highlight gravity lineaments that correspond to the tectonic features. The structural framework of the Nadhour-Sisseb-El Alem hydrogeological basin shows N-S to NNE-SSW and E-W oriented structures that should be related to tectonic deformations. In addition to the faults, previously recognized, new lineaments are highlighted by the present work. They correspond to NE-, NW-, E- and N- trending faults that have controlled structuring and geometry of the basin. 2D gravity forward modeling, based on the interpretation of geophysical, geological and hydrogeological data, led to a better understanding of the basin geometry and spatial distribution of the Campanian-Maastrichtian and Cenozoic potential aquifers. Three hydrogeological sub-basins identified include the Nadhour sub-basin in the north, the El Alem sub-Basin in the South and the Etrabelsia sub-Basin in the East. These sub-basins are marked by a thickening of deposits, are separated by the Sisseb-Fadeloun raised structure of Neogene and Quaternary thinned series. The results allow the determination of limit conditions for the basin hydrodynamic evolution and explain some anomalies on the quantity and quality of the groundwater. They provide a management guide for water resources prospection in Atlassic basins in North Africa.
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Do humans show velocity-storage in the vertical rVOR?
Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S
2008-01-01
To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.
Deployment/retraction ground testing of a large flexible solar array
NASA Technical Reports Server (NTRS)
Chung, D. T.
1982-01-01
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.
A principal components analysis of dynamic spatial memory biases.
Motes, Michael A; Hubbard, Timothy L; Courtney, Jon R; Rypma, Bart
2008-09-01
Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory. (c) 2008 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek
2015-06-01
The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.
Effects of static orientation upon human optokinetic afternystagmus
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Merfeld, D. M.; Zupan, L.
1999-01-01
"Normal" human subjects were placed in a series of 5 static orientations with respect to gravity and were asked to view an optokinetic display moving at a constant angular velocity. The axis of rotation coincided with the subject's rostro-caudal axis and produced horizontal optokinetic nystagmus and afternystagmus. Wall (1) previously reported that these optokinetic afternystagmus responses were not well characterized by parametric fits to slow component velocity. The response for nose-up, however, was larger than for nose-down. This suggested that the horizontal eye movements measured during optokinetic stimulation might include an induced linear VOR component as presented in the body of this paper. To investigate this hypothesis, another analysis of these data has been made using cumulative slow component eye position. Some subjects' responses had reversals in afternystagmus direction. These reversals were "filled in" by a zero slow component velocity. This method of analysis gives a much more consistent result across subjects and shows that, on average, responses from the nose-down horizontal (prone) orientation are greatly reduced (p < 0.05) compared to other horizontal and vertical orientations. Average responses are compared to responses predicted by a model previously used to predict successfully the responses to post-rotatory nystagmus after earth horizontal axis rotation. Ten of 11 subjects had larger responses in their supine than their prone orientation. Application of horizontal axis optokinetic afternystagmus for clinical otolith function testing, and implications for altered gravity experiments are discussed.
A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation
Smith, Peter E.
2006-01-01
A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with low horizontal and vertical permeability; (ii) Downward or dominantly horizontal hydraulic... permeability and low hydraulic gradient between the host rock and the surrounding hydrogeologic units. (3... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
NASA Astrophysics Data System (ADS)
Ripetskyj, R. T.; Kit, N. A.
Isolated leafy shoots of the moss Pottia intermedia positioned horizontally on the agar surface in vertically oriented petri dishes regenerate unbranching negatively gravitropic protonemata on upper side of the regenerant. Gravity determines the site of regeneration not the process itself. White light of low intensity unsufficient to induce positive phototropism of dark-grown protonemata can, however, provoke their branching and gametophore bud formation (Ripetskyj et al., 1998; 1999). The presented experiments have been carried out with red light in Biological Research in Canisters/Light Emitting Diode (BRIC/LED) hardware developed at Kennedy Space Center, USA. Seven-day-old dark-grown negatively gravitropic secondary P. intermedia protonemata were positioned differently with respect to gravity vector and to the source of red light of low, 1 or 2 μ mol\\cdot m-2\\cdot s-1, intensities. The light induced intensive branching of the protonemata and gametophore bud formation initiation site of both processes as well as the direction of growth of branches and buds being depent on the position of protonemata with respect to gravity and light vectors. Vertically positioned, i.e. ungravistimulated, dark grown protonemata illuminated from one side with red light of 2 μ mol\\cdot m-2\\cdot s-1 intensity produced 96,9 ± 2,2% of side branches and buds growing directly towards the light source from the lit protonema side. Horizontally disposed protonemata irradiated from below with red light of the same intensity regenerate 31,7 ± 3,9% of branches and buds on the upper, i.e. shaded protonemata side, the upward growth of which should undoubtedly be determined by gravity. In vertically disposed protonemata illuminated with red light of 1 μ mol\\cdot m-2\\cdot s-1 intensity from aside 31,9 ± 5,5% of side branches and buds arised on shaded protonema side and grew away from the light. Illumination of the protonemata in horizontal position from below increased the number of upgrowing branches and buds on upper shaded protonemata side to 76,9 ± 2,4%. The results convincingly speak for stimulating effect of the interaction of gravity and red light of low intensity. Characteristically, the number of side branches and buds on upper side of horizontally disposed protonemata illuminated from below (76,9 ± 2,4%) or parallely to protonemata length from their tips (86,0 ± 5,3%) were slightly, however, statistically significantly, greater than in the case of illumination from above (62,9 ± 3,1%). The effect may be probably be explained by some intensification of gravity action with red light of low intensity from shading of upper cell side or from lighting parallelly with respect to the cell surface. This research was supported by NASA grant NN-09(R).
Dynamic Precursors of Flares in Active Region NOAA 10486
NASA Astrophysics Data System (ADS)
Korsós, M. B.; Gyenge, N.; Baranyi, T.; Ludmány, A.
2015-03-01
Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted hori- zontal gradient W G M , is the generalized form of the horizontal gradient of the magnetic field, G M ; the other is the sum of the horizontal gradient of the magnetic field, G S , for all sunspot pairs). W G M is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S l- f , considers the overall morphology. Further, G S and S l- f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.
Biological patterns: Novel indicators for pharmacological assays
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline U.
1991-01-01
Variable gravity testing using the KC-135 demonstrated clearly that biological pattern formation was definitely shown to result from gravity alone, and not from oxygen gradients in solution. Motile pattern formation of spermatozoa are driven by alternate mechanisms, and apparently not affected by short-term changes in gravity. The chemical effects found appear to be secondary to the primary effect of gravity. Cryopreservation may be the remedy to the problem of 'spare' or 'standing order' biological samples for testing of space lab investigations, but further studies are necessary.
Tests of general relativity in earth orbit using a superconducting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1989-01-01
Interesting new tests of general relativity could be performed in earth orbit using a sensitive superconducting gravity gradiometer under development. Two such experiments are discussed here: a null test of the tracelessness of the Riemann tensor and detection of the Lense-Thirring term in the earth's gravity field. The gravity gradient signals in various spacecraft orientations are derived, and dominant error sources in each experimental setting are discussed. The instrument, spacecraft, and orbit requirements imposed by the experiments are derived.
Refined discrete and empirical horizontal gradients in VLBI analysis
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Böhm, Johannes
2018-02-01
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these empirical a priori gradients slightly reduce (improve) the BLRs with respect to the estimation of gradients. In general, this paper addresses that a priori horizontal gradients are actually more important for VLBI analysis than previously assumed, as particularly the discrete model GRAD as well as the empirical model GPT3 are indeed able to refine and improve the results.
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1986-01-01
Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.
Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy
NASA Astrophysics Data System (ADS)
Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai
2017-10-01
Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.
Geophysical setting of western Utah and eastern Nevada between latitudes 37°45′ and 40°N
Mankinen, Edward A.; McKee, Edwin H.; Tripp, Bryce; Krahulec, Ken; Jordan, Lucy
2009-01-01
Gravity and aeromagnetic data refine the structural setting for the region of western Utah and eastern Nevada between Snake and Hamlin Valleys on the west and Tule Valley on the east. These data are used here as part of a regional analysis. An isostatic gravity map shows large areas underlain by gravity lows, the most prominent of which is a large semi-circular low associated with the Indian Peak caldera complex in the southwestern part of the study area. Another low underlies the Thomas caldera in the northeast, and linear lows elsewhere indicate low-density basin-fill in all major north-trending graben valleys. Gravity highs reflect pre-Cenozoic rocks mostly exposed in the mountain ranges. In the Confusion Range, however, the gravity high extends about 15 km east of the range front to Coyote Knolls, indicating a broad pediment cut on upper Paleozoic rocks and covered by a thin veneer of alluvium. Aeromagnetic highs sharply delineate Oligocene and Miocene volcanic rocks and intracaldera plutons associated with the Indian Peak caldera complex and the Pioche–Marysvale igneous belt. Jurassic to Eocene plutons and volcanic rocks elsewhere in the study area, however, have much more modest magnetic signatures. Some relatively small magnetic highs in the region are associated with outcrops of volcanic rock, and the continuation of those anomalies indicates that the rocks are probably extensive in the subsurface. A gravity inversion method separating the isostatic gravity anomaly into fields representing pre-Cenozoic basement rocks and Cenozoic basin deposits was used to calculate depth to basement and estimate maximum amounts of alluvial and volcanic fill within the valleys. Maximum depths within the Indian Peak caldera complex average about 2.5 km, locally reaching 3 km. North of the caldera complex, thickness of valley fill in most graben valleys ranges from 1.5 to 3 km thick, with Hamlin and Pine Valleys averaging ~3 km. The main basin beneath Tule Valley is relatively shallow (~0.6 km), reaching a maximum depth of ~1 km over a small area northeast of Coyote Knolls. Maximum horizontal gradients were calculated for both long-wavelength gravity and magnetic-potential data, and these were used to constrain major density and magnetic lineaments. These lineaments help delineate deep-seated crustal structures that separate major tectonic domains, potentially localizing Cenozoic tectonic features that may control regional ground-water flow.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-09
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.
Runners do not push off the ground but fall forwards via a gravitational torque.
Romanov, Nicholas; Fletcher, Graham
2007-09-01
The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.
Flexural-gravity Wave Attenuation in a Thick Ice Shelf
NASA Astrophysics Data System (ADS)
Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.
2016-12-01
A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.
1994-01-01
Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.
Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity
NASA Technical Reports Server (NTRS)
Cosgrove, D.
1985-01-01
The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.
Terrestrial gravity instrumentation in the 20th Century: A brief review
NASA Technical Reports Server (NTRS)
Valliant, H. D.
1989-01-01
At the turn of the century, only pendulum apparatuses and torsion balances were available for general exploration work. Both of these early techniques were cumbersome and time-consuming. It was no wonder that the development of the gravity meter was welcomed with a universal sigh of relief. By 1935 potential field measurements with gravity meters supplanted gradient measurements with torsion balances. Potential field measurements are generally characterized by three types: absolute - measurements are made in fundamental units, traceable to national standards of length and time at each observation site; relative with absolute scale - differences in gravity are measured in fundamental units traceable to national standards of length and time; and relative - differences in gravity are measured with arbitrary scale. Improvements in the design of gravity meters since their introduction has led to a significant reduction in size and greatly increased precision. As the precision increased, applications expanded to include the measurement of crustal motion, the search for non-Newtonian forces, archeology, and civil engineering. Apart from enhancements to the astatic gravity meter, few developments in hardware were achieved. One of these was the vibrating string gravity meter which was developed in the 1950s and was employed briefly for marine and borehole applications. Another is the cryogenic gravity meter which utilizes the stability of superconducting current to achieve a relative instrument with extremely low drift suitable for tidal and secular gravity measurements. An advance in performing measurements from a moving platform was achieved with the development of the straight-line gravity meter. The latter part of the century also saw the rebirth of gradient measurements which offers advantages for observations from a moving platform. Definitive testing of the Bell gradiometer was recently reported.
NASA Astrophysics Data System (ADS)
Kimura, M.; Kame, N.; Watada, S.; Ohtani, M.; Araya, A.; Imanishi, Y.; Ando, M.; Kunugi, T.
2017-12-01
Seismic waves radiated from an earthquake rupture induces density perturbations of the medium, which in turn generates prompt gravity changes at all distances before the arrival of seismic waves. Detection of the gravity signal before the seismic one is a challenge in seismology. In this study, we searched for the prompt gravity changes from the 2011 Tohoku-Oki earthquake in data recorded by gravimeters, seismometers, and tiltmeters. Predicted changes from the currently used simplified model were not identified using band-pass filtering and multi-station stacking even though sufficient signal-to-noise ratios were achieved. Our data analysis raised discrepancy between the data and the theoretical model. To interpret the absence of signals in the data, we investigated the effect of self-gravity deformation on the measurement of gravitational acceleration, which has been ignored in the existing theory. We analytically calculated the displacement of the observation station induced by the prompt gravity changes in an infinite homogeneous medium, and showed that before the arrival of P waves each point in the medium moves at an acceleration identical to the applied gravity change, i.e., free-falls. As a result of the opposite inertial force, gravity sensors attached to the medium lose their sensitivity to the prompt gravity changes. This new observation model incorporated with the self-gravity effect explains the absence of such prompt signals in the acceleration data. We have shown the negative observability in acceleration, but there remains a possibility of detection of its spatial gradients or spatial strain. For a future detection experiment, we derived an analytical expression of the theoretical gravity gradients from a general seismic source described as a moment tensor.
NASA Astrophysics Data System (ADS)
Wang, S.; Sobel, A. H.; Nie, J.
2015-12-01
Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the importance of both horizontal advection of moisture and cloud-radiative feedback to the dynamics of the MJO, as well as to accurate simulation and prediction of it in models.
New Data Bases and Standards for Gravity Anomalies
NASA Astrophysics Data System (ADS)
Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.
2008-12-01
Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei
2017-02-01
The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.
Direct measurement of sub-surface mass change using the variable-baseline gravity gradient method
Kennedy, Jeffrey; Ferré, Ty P.A.; Güntner, Andreas; Abe, Maiko; Creutzfeldt, Benjamin
2014-01-01
Time-lapse gravity data provide a direct, non-destructive method to monitor mass changes at scales from cm to km. But, the effectively infinite spatial sensitivity of gravity measurements can make it difficult to isolate the signal of interest. The variable-baseline gravity gradient method, based on the difference of measurements between two gravimeters, is an alternative to the conventional approach of individually modeling all sources of mass and elevation change. This approach can improve the signal-to-noise ratio for many applications by removing the contributions of Earth tides, loading, and other signals that have the same effect on both gravimeters. At the same time, this approach can focus the support volume within a relatively small user-defined region of the subsurface. The method is demonstrated using paired superconducting gravimeters to make for the first time a large-scale, non-invasive measurement of infiltration wetting front velocity and change in water content above the wetting front.
Gravity-regulated differential auxin transport from columella to lateral root cap cells
NASA Technical Reports Server (NTRS)
Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus
2003-01-01
Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.
Magnetic Control of Convection in Electrically Nonconducting Fluids
NASA Technical Reports Server (NTRS)
Huang, Jie; Gray, Donald D.; Edwards, Boyd F.
1999-01-01
Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.
NASA Technical Reports Server (NTRS)
Meek, C. E.; Manson, A. H.; Smith, M. J.
1983-01-01
Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.
Three-flat test with plates in horizontal posture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannoni, Maurizio; Molesini, Giuseppe
2008-04-20
Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.
Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle
NASA Astrophysics Data System (ADS)
Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.
2018-05-01
In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.
NASA Astrophysics Data System (ADS)
Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime
2006-12-01
Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys to the new network, the regional compilation of Bouguer gravity data and a new updated Bouguer gravity anomaly map for northeastern Mexico.
NASA Astrophysics Data System (ADS)
Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi
2017-05-01
The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.
Analytical characterization of selective benthic flux components in estuarine and coastal waters
King, Jeffrey N.
2011-01-01
Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.
Actin-based gravity-sensing mechanisms in unicellular plant model systems
NASA Astrophysics Data System (ADS)
Braun, Markus; Limbach, Christoph
2005-08-01
Considerable progress has been made in the understanding of the molecular and cellular mechanisms underlying gravity sensing and gravity-oriented polarized growth in single-celled rhizoids and protonemata of the characean algae. It is well known that the actin cytoskeleton plays a key role in these processes. Numerous actin-binding proteins control apical actin polymerization and the dynamic remodeling of the actin arrangement. An actomyosin-based system mediates the delivery and incorporation of secretory vesicles at the growing tip and coordinates the tip-high gradient of cytoplasmic free calcium which is required for local exocytosis. Additionally, the actomyosin system precisely controls the position of statoliths and, upon a change in orientation relative to the gravity vector, directs sedimenting statoliths to the confined graviperception sites of the plasma membrane where gravitropic signalling is initiated. The upward growth response of protonemata is preceded by an actin-dependent relocalization of the Ca2+-gradient to the upper flank. The downward growth response of rhizoids, however, is caused by differential growth of the opposite flankes due to a local reduction of cytoplasmic free calcium limited to the plasma membrane area where statoliths are sedimented. Thus, constant actin polymerization in the growing tip and the spatiotemporal control of actin remodeling are essential for gravity sensing and gravity-oriented polarized growth of characean rhizoids and protonemata.
Drenth, Benjamin J.
2013-01-01
Airborne gravity gradient (AGG) data are rapidly becoming standard components of geophysical mapping programs, due to their advantages in cost, access, and resolution advantages over measurements of the gravity field on the ground. Unlike conventional techniques that measure the gravity field, AGG methods measure derivatives of the gravity field. This means that effects of terrain and near-surface geology are amplified in AGG data, and that proper terrain corrections are critically important for AGG data processing. However, terrain corrections require reasonable estimates of density for the rocks and sediments that make up the terrain. A recommended philosophical approach is to use the terrain and surface geology, with their strong expression in AGG data, to the interpreter’s advantage. An example of such an approach is presented here for an area with very difficult ground access and little ground gravity data. Nettleton-style profiling is used with AGG data to estimate the densities of the sand dunefield and adjacent Precambrian rocks from the area of Great Sand Dunes National Park in southern Colorado. Processing of the AGG data using the density estimate for the dunefield allows buried structures, including a hypothesized buried basement bench, to be mapped beneath the sand dunes.
Parsons, T.; Blakely, R.J.; Brocher, T.M.
2001-01-01
The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misyura, V.A.; Podnos, V.A.; Kapanin, I.I.
1973-01-01
Translated from Kosm. Issled.; 11: No. 4, 581-585(1973). The integrated electron content of the ionosphere up to the level of the recording satellite, and the horizontal gradients of the integrated electron content (total, latitudinal, and longitudinal components), was obtained at scattered observation points located at medium and high latitudes, on the basis of recordings made of Doppler and Faraday effects on coherent signals from the satellites Explorer-22, Explorer-27, Interkosmos-2, Kosmos321, Kosmos-356, and Kosmos-381. (auth)
Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S
2017-07-01
In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.
Statistical comparisons of gravity wave features derived from OH airglow and SABER data
NASA Astrophysics Data System (ADS)
Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.
2017-12-01
The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Lithospheric structure and deformation of the North American continent
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Kaban, Mikhail; Cloetingh, Sierd; Mooney, Walter
2013-04-01
We estimate the integrated strength and elastic thickness (Te) of the North American lithosphere based on thermal, density and structural (seismic) models of the crust and upper mantle. The temperature distribution in the lithosphere is estimated considering for the first time the effect of composition as a result of the integrative approach based on a joint analysis of seismic and gravity data. We do this via an iterative adjustment of the model. The upper mantle temperatures are initially estimated from the NA07 tomography model of Bedle and Van der Lee (2009) using mineral physics equations. This thermal model, obtained for a uniform composition, is used to estimate the gravity effect and to remove it from the total mantle gravity anomalies, which are controlled by both temperature and compositional variations. Therefore, we can predict compositional variations from the residual gravity anomalies and use them to correct the initial thermal model. The corrected thermal model is employed again in the gravity calculations. The loop is repeated until convergence is reached. The results demonstrate that the lithospheric mantle is characterized by strong compositional heterogeneity, which is consistent with xenolith data. Seismic data from the USGS database allow to define P-wave velocity and thickness of each crustal layer of the North American geological provinces. The use of these seismic data and of the new compositional and thermal models gives us the chance to estimate lateral variation of rheology of the main lithospheric layers and to evaluate coupling-decoupling conditions at the layers' boundaries. In the North American Cordillera the strength is mainly localized in the crust, which is decoupled from the mantle lithosphere. In the cratons the strength is chiefly controlled by the mantle lithosphere and all the layers are generally coupled. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" models for the lithosphere structure. Intraplate earthquakes (USGS database) occur mainly in the weak regions, such as the Appalachians, and in the transition zones from low to high strength surrounding the craton. The obtained 3D strength model is used to compute Te of the North American lithosphere. This parameter is derived from the thermo-rheological model using new equations that consider variations of the Young's Modulus in the lithosphere. It shows large variability within the cratons, ranging from 70 km to >100km, while it drops to <30 km in the young Phanerozoic regions. The new crustal model is also used to compute the lateral pressure gradient (LPG) that can initiate horizontal ductile flow in the crust. In general, the crustal flow is directed away from the orogens towards adjacent weaker areas. The results show that the effects of the channel flow superimposed with the regional tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension.
Autonomous momentum management for space station, exhibit A
NASA Technical Reports Server (NTRS)
Hahn, E.
1984-01-01
The report discusses momentum management for the CDG Planar Space Platform. The external torques on the Space Station are assumed to be gravity gradient and aerodynamic with both having bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Various techniques to counteract the bias torques and center the cyclic momentum were investigated including gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques.
Gravity dependent processes and intracellular motion
NASA Technical Reports Server (NTRS)
Todd, Paul
1991-01-01
Most organelles large enough to sediment or to undergo isothermal settling within eukaryotic cells are held in position by one or more components of the cytoskeleton. The interior of eukaryotic cells is considered to be very crowded, and the evaluation of natural-convective processes is very difficult. In a most simple view, the cell may be considered as consisting of four immiscible phases among which solutes are exchanged causing steep concentration gradients and thermodynamic conditions far from equilibrium. Extracellular gravity-related forces may include natural convection due to solute gradients external to single cells or the work performed by swimming, ciliated, or elongating cells.
Atmosphere-ionosphere coupling from convectively generated gravity waves
NASA Astrophysics Data System (ADS)
Azeem, Irfan; Barlage, Michael
2018-04-01
Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.
NASA Technical Reports Server (NTRS)
Hastings, D. A.
1985-01-01
Satellite-derived global gravity and magnetic maps have been shown to be useful in large-scale studies of the Earth's crust, despite the relative infancy of such studies. Numerous authors have made spatial associations of gravity or magnetic anomalies with geological provinces. Gravimetric interpretations are often made in terms of isostasy, regional variations of density, or of geodesy in general. Interpretations of satellite magnetic anomalies often base assumptions of overall crustal magnetism on concepts of the vertical and horizontal distribution of magnetic susceptibility, then make models of these assumed distributions. The opportunity of improving our satellite gravity and magnetic data through the proposed Geopotential Research Mission should considerably improve the scientific community's ability to analyze and interpret global magnetic and gravity data.
Evidence for a continuous spectrum of equatorial waves in the Indian Ocean
NASA Astrophysics Data System (ADS)
Eriksen, Charles C.
1980-06-01
Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).
NASA Astrophysics Data System (ADS)
Chi, Yong Mann
A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical evolution of sloshing dynamics excited by fluid stress forces, fluid stress moments, and the arm of fluid moment exerted on the dewar container, is considered. This excitation was driven by the combined gravity gradient and gravity jitter acceleration inside the tank during the draining process and closing the tank outlet. The time evolution of the liquid-vapor interface profiles and the bubble mass center fluctuation, as well as liquid mass center and fluctuations of angular momentum caused by slosh wave excitations with 0.1 rpm in a reduced gravity, are also investigated and simulated. Force, angular momentum, and torque vector time histories and Power Spectral Density (PSD) are also plotted and discussed. The results of this investigation may be applied to determine the magnitude and nature of control forces and torques needed to minimize influence of slosh on the dynamics of liquid fueled vehicles in near earth orbit. Results show that induced fluid forces (or angular momentum) exerted on the container wall along x and y-axes, which are non-existent at the beginning, are introduced by the slosh waves excited by asymmetric gravity gradient and the gravity jitter acceleration.
NASA Astrophysics Data System (ADS)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
NASA Astrophysics Data System (ADS)
AllahTavakoli, Yahya; Safari, Abdolreza
2017-08-01
This paper is counted as a numerical investigation into the capability of Poisson's Partial Differential Equation (PDE) at Earth's surface to extract the near-surface mass-density from land-based gravity data. For this purpose, first it focuses on approximating the gradient tensor of Earth's gravitational potential by means of land-based gravity data. Then, based on the concepts of both the gradient tensor and Poisson's PDE at the Earth's surface, certain formulae are proposed for the mass-density determination. Furthermore, this paper shows how the generalized Tikhonov regularization strategy can be used for enhancing the efficiency of the proposed approach. Finally, in a real case study, the formulae are applied to 6350 gravity stations located within a part of the north coast of the Persian Gulf. The case study numerically indicates that the proposed formulae, provided by Poisson's PDE, has the ability to convert land-based gravity data into the terrain mass-density which has been used for depicting areas of salt diapirs in the region of the case study.
NASA Astrophysics Data System (ADS)
Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Geyer, Tobias; Tartakovsky, Alexandre M.
2017-11-01
In this work, we study gravity-driven flow of water in the presence of air on a synthetic surface intersected by a horizontal fracture and investigate the importance of droplet and rivulet flow modes on the partitioning behavior at the fracture intersection. We present laboratory experiments, three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and a theoretical analysis. The flow-rate-dependent mode switching from droplets to rivulets is observed in experiments and reproduced by the SPH model, and the transition ranges agree in SPH simulations and laboratory experiments. We show that flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer. For the case of rivulet flow, we provide an analytical solution that demonstrates the existence of classical Washburn flow within the horizontal fracture.
1981-08-17
P. 1979b. Inertial Surveying Systems - Experience and Prognosis. Paper, presented at the FIG-Symposium on Modern Technology for Cadastre and Land... Information Systems , Ottawa, Canada, Oct. 2-5, 1979. Schwarz, K. P. 1980. Gravity Field Approximation Using Inertial Survey System . The Canadian...higher performance gyroscope; and accelerometers in the horizontal channels of Litton’s local-level inertial positioning system and the resulting
Effects of a Major Tsunami on the Energetics and Dynamics of the Thermosphere
NASA Astrophysics Data System (ADS)
Hickey, M. P.; Walterscheid, R. L.; Schubert, G.
2009-12-01
Using a spectral full-wave model we investigate how the energetics and dynamics of the thermosphere are influenced by the dissipation of a tsunami-driven gravity wave disturbance. Gravity waves are generated in the model by a surface displacement that mimics a tsunami having a characteristic horizontal wavelength of 400 km and a horizontal phase speed of 200 m/s. The gravity wave disturbance is fast with a large vertical wavelength and is able to reach F-region altitudes before significant viscous dissipation occurs. The gravity wave transports significant amounts of energy and momentum to this region of the atmosphere. The energy reaching the lower thermosphere could be ~ 1012 J for large tsunami events. The change in velocity associated with the wave momentum deposition in a region ~ 100 km deep centered on 250 km altitude could be 150 - 200 m/s. Thermal effects associated with the divergence of the sensible heat flux are modest (~ 20 K over the same region). The affected region could have a lateral extent of 1000 km or more, and an along-track extent of as much as 8000 km. The induced winds should be observable through a variety of methods but the thermal effects might be difficult to observe.
Laser Vacuum Furnace for Zone Refining
NASA Technical Reports Server (NTRS)
Griner, D. B.; Zurburg, F. W.; Penn, W. M.
1986-01-01
Laser beam scanned to produce moving melt zone. Experimental laser vacuum furnace scans crystalline wafer with high-power CO2-laser beam to generate precise melt zone with precise control of temperature gradients around zone. Intended for zone refining of silicon or other semiconductors in low gravity, apparatus used in normal gravity.
The quest for the perfect gravity anomaly: Part 1 - New calculation standards
Li, X.; Hildenbrand, T.G.; Hinze, W. J.; Keller, Gordon R.; Ravat, D.; Webring, M.
2006-01-01
The North American gravity database together with databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account our enhanced computational power, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining different anomaly components. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. ?? 2005 Society of Exploration Geophysicists.
Why do we need detailed gravity over continents: Some Australian examples
NASA Technical Reports Server (NTRS)
Lambeck, K.
1985-01-01
Geophysical quantities available over a continent are gravity and components of the magnetic field. Direct inferences on crustal structure are difficult to make and strongly dependent on mechanical assumptions the isostatic state. The data for Australia represents one of the best continental scale gravity surveys. The gravity anomalies are generally bland over the continent which confirms that stress relaxation and erosion and rebound were instrumental in reducing nonhydrostatic stresses. In central Australia very large gravity anomalies occur and the region is out of isostatic equilibrium despite the fact that tectonic activity ceased 300 ma ago. The isostatic response functions points to a substantial horizontal compression in the crust. Similar conclusions are drawn for the large anomalies in western Australia. The tectonic implications of these anomalies are examined. In eastern Australia the gravity anomalies are explained in terms of a model of erosion of the highlands and concomitant regional isostatic rebound.
Measuring gravity currents in the Chicago River, Chicago, Illinois
Oberg, K.A.; Czuba, J.A.; Johnson, K.K.
2008-01-01
Recent studies of the Chicago River have determined that gravity currents are responsible for persistent bidirectional flows that have been observed in the river. A gravity current is the flow of one fluid within another caused by a density difference between the fluids. These studies demonstrated how acoustic Doppler current profilers (ADCP) can be used to detect and characterize gravity currents in the field. In order to better understand the formation and evolution of these gravity currents, the U.S. Geological Survey (USGS) has installed ADCPs and other instruments to continuously measure gravity currents in the Chicago River and the North Branch Chicago River. These instruments include stage sensors, thermistor strings, and both upward-looking and horizontal ADCPs. Data loggers and computers installed at gaging stations along the river are used to collect data from these instruments and transmit them to USGS offices. ?? 2008 IEEE.
Tracer Lamination in the Stratosphere: A Global Climatology
NASA Technical Reports Server (NTRS)
Appenzeller, Christof; Holton, James R.
1997-01-01
Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.
Localize and identify the gravity sensing mechanism of plants
NASA Technical Reports Server (NTRS)
Bandurski, Robert S.
1990-01-01
The machinery by which a plant transduces the gravity stimulus into a growth response is localized and identified at the cellular level. The fact that a plant grows unequally on the lower side of a horizontally placed stem implies that there must be an asymmetric distribution of some of the chemical substances involved in the growth response. The three most likely chemicals to cause this growth were determined to be potassium, calcium, or the growth hormone, indole-3-acetic acid (IAA). IAA was chosen for this study and the results present a fairly complete understanding of the transduction of the gravity stimulus.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
NASA Astrophysics Data System (ADS)
Mei, Xiong; Gong, Guangcai
2018-07-01
As potential carriers of hazardous pollutants, airborne particles may deposit onto surfaces due to gravitational settling. A modified Markov chain model to predict gravity induced particle dispersion and deposition is proposed in the paper. The gravity force is considered as a dominant weighting factor to adjust the State Transfer Matrix, which represents the probabilities of the change of particle spatial distributions between consecutive time steps within an enclosure. The model performance has been further validated by particle deposition in a ventilation chamber and a horizontal turbulent duct flow in pre-existing literatures. Both the proportion of deposited particles and the dimensionless deposition velocity are adopted to characterize the validation results. Comparisons between our simulated results and the experimental data from literatures show reasonable accuracy. Moreover, it is also found that the dimensionless deposition velocity can be remarkably influenced by particle size and stream-wise velocity in a typical horizontal flow. This study indicates that the proposed model can predict the gravity-dominated airborne particle deposition with reasonable accuracy and acceptable computing time.
Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.
Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran
2016-02-01
The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Gravity gradiometry developments at Lockheed Martin
NASA Astrophysics Data System (ADS)
Difrancesco, D.
2003-04-01
Lockheed Martin has developed and fielded multiple configurations of the rotating accelerometer gravity gradiometer instrument. Applications for both static and moving-base measurements have been demonstrated for a variety of scenarios, including vehicle navigation, hydrocarbon exploration, mineral exploration, reservoir monitoring, underground void detection and treaty monitoring and compliance. The most recent systems built by Lockheed Martin extend the performance range of the early 4-accelerometer gradiometers by adding a second complement of four accelerometers. This achieves the benefit of lower instrument noise and improved frequency response (wider bandwidth) for stringent application scenarios. A summary of the gradiometer development history, functional concepts, instrument and system operation, and demonstrated performance will be presented. Development Background The U. S. Air Force Geophysics Laboratory (AFGL; now AFRL) instituted a program in 1982 to develop and field a moving base gradiometer system that could be used both on land and in the air. The result was the Gravity Gradiometer Survey System (GGSS) which first demonstrated the ability to make airborne gravity gradient measurements in 1987 (Jekeli, 1988). At the same time, the U.S. Navy began development of the Gravity Sensors System (GSS) for use on the Fleet Ballistic Submarine Trident II navigation subsystem. This military background paved the way for commercial uses of gravity gradiometry. Both the GSS and GGSS employed a first generation gravity gradiometer instrument (GGI), which was comprised of four accelerometers mounted on a rotating disk. The details of the GGI operation are further described in the work by Gerber and Hofmeyer (Gerber, 1978 and Hofmeyer, 1994). Recent Advancements in Gradiometer Instrumentation With the instrumentation experience gained through such programs as GSS and GGSS, Lockheed Martin embarked upon an ambitious effort in the early 1990's to further improve the performance of the rotating accelerometer gradiometer design. Under funding from the Defense Threat Reduction Agency (DTRA), a "next generation" gradiometer was developed for the specific purpose of identifying treaty-limited items in arms control inspection scenarios. The result was the Arms Control Verification Gravity Gradiometer (ACVGG), which comprised two complements of four accelerometers to provide for lower noise and improved frequency response. Following the advancements made with the ACVGG, Lockheed Martin began development of an airborne gradiometer to be used for mineral exploration. The Airborne Gravity Gradiometer (AGG) is installed into an inertially stabilized platform for use in a geophysical survey aircraft. The AGG has been successfully deployed in the BHP Billiton Falcon™ system (van Leeuwen, 2000) for detection and identification of mineral targets. The most recent gradiometer development by Lockheed Martin is the Land Gradiometer System for time-lapse measurement (4D), designed and tested in 2000. In this configuration, the gradiometer is employed in a static mode, without a stabilized platform. The system positions the gradiometer at unique heading and tilt combinations to reduce the influence of bias drift and the coupling of horizontal gradients into the measurement (Feldman, 2000). The gradiometer is used to make measurements at discrete points in time (typically months apart) to monitor the time-varying signal associated with such processes as steam flooding, water flooding or gas injection for enhanced oil recovery (Talwani, 2001). The system also has been deployed to make 3D surveys over targets of interest. Conclusions Significant advancements in gradiometer instrumentation have been realized in recent years. Instrument and system performance has improved by nearly two orders of magnitude and new applications have emerged that span a broad range of geophysical interest. References (1)Jekeli, C., 1988, "The Gravity Gradiometer Survey System (GGSS)", EOS, 69, 105 and 116-117 (2)Gerber, M.A., 1978, "Gravity gradiometry - something new in inertial navigation", Astronautics &Aeronautics, 18-26. (3)Hofmeyer, G.M. and Affleck, C.A., 1994, "Rotating Accelerometer Gradiometer", US Patent 5,357,802. (4)Van Leeuwen, E.H., 2000, "BHP develops world's first airborne gravity gradiometer for mineral exploration", Preview 86, 28-30. (5)Feldman, W.K., et al, 2000, "System and Process for Optimizing Gravity Gradiometer Measurements", US Patent 6,125,698. (6)Talwani, M., et al, 2001, "System enables time lapse gradiometry", American Oil &Gas Reporter 44, 101-108
NASA Technical Reports Server (NTRS)
Manson, A. H.; Meek, C. E.
1989-01-01
The continuing series of horizontal wind measurements by the spaced-antenna real time winds (RTW) method was supplemented by a phase coherent system for two years. Vertical motions are inferred from the complex autocorrelation functions, and an RTW system provides 5 min samples from 60 to 110 km. Comparisons with full interferometric 3-D velocity measurements confirm the validity of this approach. Following comparisons and corrections with the horizontal winds, mean summer and winter (24 h) days of vertical motions are shown. Tidal fluctuations are evident. In summer the motions are downward, consistent with data from Poker Flat, and the suggestion of Coy et al. (1986) that these represent Eulerian motions. The expected upward Lagrangian motion then results from adding up upward Stokes' drift. The winter motions are more complex, and are discussed in the context of gravity wave fluxes and possible meridional cells. The divergence of the vertical flux of zonal momentum is also calculated and found to be similar to the coriolis torque due to the meridional winds.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, N.; Kaya, B.S.; Godt, J.W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Elliott, E. Judith; Braun, Alexander
2017-11-01
Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.
The quest for the perfect gravity anomaly: Part 2 - Mass effects and anomaly inversion
Keller, Gordon R.; Hildenbrand, T.G.; Hinze, W. J.; Li, X.; Ravat, D.; Webring, M.
2006-01-01
Gravity anomalies have become an important tool for geologic studies since the widespread use of high-precision gravimeters after the Second World War. More recently the development of instrumentation for airborne gravity observations, procedures for acquiring data from satellite platforms, the readily available Global Positioning System for precise vertical and horizontal control, improved global data bases, and enhancement of computational hardware and software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases that are made available to the geoscience community by broadening their observational holdings and increasing the accuracy and precision of the included data. Currently the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States of America are being revised using new formats and standards. The objective of this paper is to describe the use of the revised standards for gravity data processing and modeling and there impact on geological interpretations. ?? 2005 Society of Exploration Geophysicists.
NASA Technical Reports Server (NTRS)
Weller, Robert A.
1991-01-01
From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.
NASA Astrophysics Data System (ADS)
Matsuda, T. S.; Nakamura, T.; Ejiri, M. K.; Tsutsumi, M.; Shiokawa, K.
2014-12-01
Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs around mesopause. There are many airglow imagers operated all over the world, and a large amount of data which could improve our understanding of AGWs propagation direction and source distribution in the MLT region. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain (phase velocity spectrum), from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. From a series of images projected onto the geographic coordinates, 3-D Fourier transform is applied and 3-D power spectrum in horizontal wavenumber and frequency domain is obtained. Then, it is converted into phase velocity and frequency domain. Finally, the spectrum is integrated along the frequency for the range of interest and 2-D spectrum in horizontal phase velocity is calculated. This method was applied to the data obtained at Syowa Station (69ºS, 40ºE), Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal propagation characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. Airglow imaging observation has been operated with various sampling intervals. We also presents how the images with different sample interval should be treated.
A Comparison of Optically Measured and Radar-Derived Horizontal Neutral Winds
1990-01-01
observations of large-scale gravity waves or3 traveling ionospheric disturbances by Testud [1970], Iunsucker [1982]. The contributions of the parallel...increase in Kp, in agreement with previous findings of excitation by auroral processes [ Testud , 1970; lHernandez and Roble, 1976b; lunsucker, 19821...and 0+ and H+ ions, J. Geophys. Res., 69, 2349-2355, 1964. Testud , J., Gravity waves generated during magnetic substorms, J. Atmos. Terr. Phys., 32
Analyzing Martian winds and tracer concentrations using Mars Observer data
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1993-01-01
During the courses of a day, the Mars Observer spacecraft will acquire globally distributed profiles of the martian atmosphere. It is highly desirable that this data be assembled into synoptic weather maps (complete specifications of the atmospheric pressure, temperature, and winds at a given time), which can in turn be used as starting points in the study of many meteorological phenomena. Unfortunately, the special nature of the Mars Observer data presents several challenges above and beyond the usual difficult problem of data initialization. Mars Observer atmospheric data will consist almost exclusively of asynoptic vertical profiles of temperatures (or radiances) and pressures, whereas winds are generally in balance with horizontal gradients of these quantities (which will not be observed). It will therefore be necessary to resort to dynamical models to analyze the wind fields. As a rule, data assimilation into atmospheric models can result in the generation of spurious gravity waves, so special steps must be taken to suppress these. In addition, the asynoptic nature of the data will require a four-dimensional (space and time) data assimilation scheme. The problem is to find a full set of meteorological fields (winds and temperatures) such that, when marched forward in time in the model, they achieve a best fit (in the weighted least-squares sense) to the data. The proposed solution is to develop a model especially for the Mars Observer data assimilation problem. Gravity waves are filtered from the model by eliminating all divergence terms from the prognostic divergence equation. This leaves a diagnostic gradient wind relation between the rotational wind and the temperature field. The divergent wind is diagnosed as the wind required to maintain the gradient wind balance in the presence of the diabatic heating. The primitive equations of atmospheric dynamics (with three principal dependent variables) are thus reduced to a simpler system with a single prognostic equation for temperature - the variable that will be best observed. (This balance system was apparently first derived by Charney as a first-order Rossby number expansion of the equations of motion). Experience with a full primitive equation model of the martian atmosphere indicates that a further simplification is possible: at least for short-term integrations, the model can be linearized about the zonally symmetric basic state.
Mountain waves in space: The influence of lee waves on the plasmasphere
NASA Astrophysics Data System (ADS)
Helmboldt, J.
2016-12-01
In the early 1990s, a previously undiscovered class of plasmaspheric disturbances was found using an unconventional remote sensing device, the Very Large Array (VLA) in New Mexico. Primarily used as a radio telescope array, the VLA is extremely sensitive to horizontal gradients in the total electron content (TEC) when observing bright cosmic sources at frequencies <500 MHz. Such observations can be used to quantify the TEC gradient to a precision as good as 10-4 TECU km-1 (1 TECU = 1016 e- m-2). It is this superb capability that led to the discovery of field aligned irregularities (FAIs) within the plasmasphere. These manifest as magnetic eastward-propagating waves due to the co-rotating nature of the plasmasphere and were established to primarily be located at 1.5 < L < 3. A new technique has been developed that uses spectral decomposition of VLA TEC gradient measurements for these FAIs to map their radial distribution as a function of time/longitude. Thus, a two-dimensional map is formed similar to what is achieved with tomographic methods, and the procedure is therefore referred to at quasi-tomographic spectral decomposition (QTSD). This has led to the establishment of a likely origin for the majority of these FAIs. To explore the possibility that these originate from changes in ion pressure within the ionosphere below, the locations of density fluctuations within QTSD maps were used to identify the locations within the ionospheric F-region that were on the same magnetic field lines. These were found to be heavily concentrated on or to the lee side of the Rocky Mountains. This was true for a single six-hour VLA observation of a bright source (see Figure 1) and for a large sample of VLA observations spanning nearly a year. The latter also imply that these FAIs are seen far less frequently in summer months when wind patterns make it much more difficult for tropospheric gravity waves to escape to higher altitudes. Preliminary simulations using a standing gravity wave model of neutral wind perturbations added to the SAMI2 ionospheric model suggest the level of fluctuations observed with the VLA is consistent with realistic lee waves. Taken together, these results strongly suggest this observed class of plasmaspheric irregularities primarily originate from fluctuations in ionospheric ion pressure brought on by standing lee waves.
Idealized numerical studies of gravity wave alteration in the tropopause region
NASA Astrophysics Data System (ADS)
Bense, Vera; Spichtinger, Peter
2017-04-01
When travelling through the tropopause region, characterised by strong gradients in static stability, wind shear and trace gases, the properties of gravity waves often change drastically. Within this work, the EULAG model (Prusa et al., 2008) is used to provide an idealized setup for sensitivity studies on these modifications. The characteristics of the tropopause are introduced by specifiying environmental profiles for Brunt-Väisälä frequency and horizontal wind speed, partly extracted from measurement and reanalysis data. Tropospheric and stratospheric wave spectra extracted for flows under varying tropopause sharpness are analysed, respectively. In particular, different regimes for transmission behaviour are classified for a series of Brunt-Väisälä frequency profiles showing a tropopause inversion layer (TIL, see e.g. Birner et al., 2002). Furthermore, this study focusses on the comparison of transmission coefficients deduced from numerical simulations with values derived from asymptotical analysis of the governing equations and investigates where the threshold of linear behaviour are for the respective setups, The wave generation is implemented in the model both through topography at the lower model domain and through the prescription of wave packets at initialization of the simulations. References: Prusa, J. M., P. K. Smolarkiewicz, P. K. and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows, Computers & Fluids 37, 1193-1207 Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142.
Measuring attitude with a gradiometer
NASA Technical Reports Server (NTRS)
Sonnabend, David; Gardner, Thomas G.
1994-01-01
This paper explores using a gravity gradiometer to measure the attitude of a satellite, given that the gravity field is accurately known. Since gradiometers actually measure a combination of the gradient and attitude rate and acceleration terms, the answer is far from obvious. The paper demonstrates that it can be done and at microradian accuracy. The technique employed is dynamic estimation, based on the momentum biased Euler equations. The satellite is assumed nominally planet pointed, and subject to control, gravity gradient, and partly radom drag torques. The attitude estimator is unusual. While the standard method of feeding back measurement residuals is used, the feedback gain matrix isn't derived from Kalman theory. instead, it's chosen to minimize a measure of the terminal covariance of the error in the estimate. This depends on the gain matrix and the power spectra of all the process and measurement noises. An integration is required over multiple solutions of Lyapunov equations.
DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data
NASA Astrophysics Data System (ADS)
Tian, Yu; Ke, Xiaoping; Wang, Yong
2018-04-01
This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.
The IfE Global Gravity Field Model Recovered from GOCE Orbit and Gradiometer Data
NASA Astrophysics Data System (ADS)
Wu, Hu; Muiller, Jurgen; Brieden, Phillip
2015-03-01
An independent global gravity field model is computed from the GOCE orbit and gradiometer data using our own IfE software. We analysed the same data period that were considered for the first released GOCE models. The Acceleration Approach is applied to process the orbit data. The gravity gradients are processed in the framework of the remove-restore technique by which the low-frequency noise of the original gradients are removed. For the combined solution, the normal equations are summed by the Variance Component Estimation Approach. The result in terms of accumulated geoid height error calculated from the coefficient difference w.r.t. EGM2008 is about 11 cm at D/O 200, which corresponds to the accuracy level of the first released TIM and DIR solutions. This indicates that our IfE model has a comparable performance as the other official GOCE models.
Gravity and thermal deformation of large primary mirror in space telescope
NASA Astrophysics Data System (ADS)
Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong
2016-10-01
The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.
Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media.
Stöhr, M; Khalili, A
2006-03-01
The invasion and subsequent flow of a nonwetting fluid (NWF) in a three-dimensional, unconsolidated porous medium saturated with a wetting fluid of higher density and viscosity have been studied experimentally using a light-transmission technique. Distinct dynamic regimes have been found for different relative magnitudes of viscous, capillary, and gravity forces. It is shown that the ratio of viscous and hydrostatic pressure gradients can be used as a relevant dimensionless number K for the characterization of the different flow regimes. For low values of K, the invasion is characterized by the migration and fragmentation of isolated clusters of the NWF resulting from the prevalence of gravity and capillary forces. At high values of K, the dominance of viscous and gravity forces leads to an anisotropic fingerlike invasion. When the invasion stops after the breakthrough of the NWF at the open upper boundary, the invasion structure retracts under the influence of gravity and transforms into stable vertical channels. It is shown that the stability of these channels is the result of a balance between hydrostatic and viscous pressure gradients.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.
1973-01-01
Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.
NASA Astrophysics Data System (ADS)
Liu, Jian; Zhu, Ka-Di
2017-02-01
In the present paper, we provide a scheme to probe the gradient of gravity at the nanoscale in a levitated nanomechanical resonator coupled to a cavity via two-field optical control. The enhanced sharp peak on the probe spectrum will suffer a distinct shift with the nonuniform force being taken into consideration. The nonlinear optics with very narrow bandwidth (10-8 Hz ) resulting from the extremely high-quality factor will lead to a superresolution of 10-20 N /m for the measurement of gravity gradient. The improved sensitivity may offer new opportunities for detecting Yukawa moduli forces and Kaluza-Klein gravitons in extra dimensions.
Extended mimetic gravity: Hamiltonian analysis and gradient instabilities
NASA Astrophysics Data System (ADS)
Takahashi, Kazufumi; Kobayashi, Tsutomu
2017-11-01
We propose a novel class of degenerate higher-order scalar-tensor theories as an extension of mimetic gravity. By performing a noninvertible conformal transformation on "seed" scalar-tensor theories which may be nondegenerate, we can generate a large class of theories with at most three physical degrees of freedom. We identify a general seed theory for which this is possible. Cosmological perturbations in these extended mimetic theories are also studied. It is shown that either of tensor or scalar perturbations is plagued with gradient instabilities, except for a special case where the scalar perturbations are presumably strongly coupled, or otherwise there appear ghost instabilities.
Gravitational force and torque on a solar power satellite considering the structural flexibility
NASA Astrophysics Data System (ADS)
Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan
2017-11-01
The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.
Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data
NASA Technical Reports Server (NTRS)
Krening, Samantha C.
2013-01-01
A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.
An affine model of the dynamics of astrophysical discs
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.
2018-06-01
Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs. We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.
Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation
NASA Astrophysics Data System (ADS)
Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.
2017-12-01
The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.
A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)
NASA Astrophysics Data System (ADS)
Lee, Jin
2014-05-01
The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.
NASA Astrophysics Data System (ADS)
Barranco, Joseph
2006-03-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.
Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders
NASA Technical Reports Server (NTRS)
Joiner, J.; Poli, P.
2004-01-01
Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric analysis. Gradients in ozone and tropospheric temperature appear to be well captured by the analyses. In contrast, gradients in upper stratospheric and mesospheric temperature as well as upper tropospheric humidity are less well captured. This is likely due in part to a lack of data to specify these fields accurately in the analyses. Advanced new sounders, like AIRS, may help to better specify these fields in the future.
NASA Astrophysics Data System (ADS)
Wu, Y.; Luo, Z.; Zhou, H.; Xu, C.
2017-12-01
Regional gravity field recovery is of great importance for understanding ocean circulation and currents in oceanography and investigating the structure of the lithosphere in geophysics. Under the framework of remove-compute-restore methodology (RCR), a regional approach using spherical radial basis functions (SRBFs) is set up for gravity field determination using the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity gradient tensor, heterogeneous gravimetry and altimetry measurements. The additional value on regional model introduced by GOCE data is validated and quantified. Numerical experiments in a western European region show that the effects introduced by GOCE data display as long-wavelength patterns on the centimeter scale in terms of quasi-geoid heights, which may allow to highlight and reduce the remaining long-wavelength errors and biases in ground-based data and improve the regional model. The accuracy of the gravimetric quasi-geoid computed with a combination of three diagonal components is improved by 0.6 cm (0.5 cm) in the Netherlands (Belgium), compared to that derived from gravimetry and altimetry data alone, when GOCO05s is used as the reference model. Performances of different diagonal components and their combinations are not identical; the solution with vertical gradients shows highest quality when a single component is used. Incorporation of multiple components further improves the model, and the combination of three components shows the best fit to GPS/leveling data. Moreover, the contributions introduced by different components are heterogeneous in terms of spatial coverage and magnitude, although similar structures occur in the spatial domain. Contributions introduced by the vertical components have the most significant effects when a single component is applied. Combination of multiple components further magnifies these effects and improves the solutions, and the incorporation of three components has the most prominent effects. This work is supported by the State Scholarship Fund from Chinese Scholarship Council (201306270014), China Postdoctoral Science Foundation (No.2016M602301), and the National Natural Science Foundation of China (No. 41374023).
Rate limits in silicon sheet growth - The connections between vertical and horizontal methods
NASA Technical Reports Server (NTRS)
Thomas, Paul D.; Brown, Robert A.
1987-01-01
Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.
Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung
2017-03-22
A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.
Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run
NASA Astrophysics Data System (ADS)
Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.
2016-12-01
This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.
Gravity increase at the south pole
Behrendt, John C.
1967-01-01
Abstract. Measurements made between December 1957 and January 1966 of the gravity difference between the McMurdo Sound pendulum station, which is on bedrock, and the South Pole station, which is on the Antarctic ice sheet, show a gravity increase at the South Pole of 0.11 milligals per year. The most likely hypothesis for the increase is that it was caused by ice flowing downslope across a gravity gradient and by the sinking of the South Pole station as a result of accumulation of ice. An alternate hypothesis that the gravity increase was caused by a decrease in ice thickness, of about 40 centimeters per year, is theoretically possible but is not supported by direct evidence.
NASA Astrophysics Data System (ADS)
Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.
2013-12-01
Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the aftershocks appear to cluster near areas with cross-cutting geologic features such as Jurassic diabase dikes. These associations suggest that local variations in rock density and/or rheology may have contributed to modifications of local stress regimes in a manner encouraging localized seismicity associated with the Mw5.8 event and its aftershocks. Such associations are comparable to results of previous studies recognizing correspondences between seismicity and features such as intrusive bodies and failed rifts in the New Madrid seismic zone and elsewhere. To explore whether similar correspondences may have occurred in the past, we use regional gravity and magnetic data to consider possible relations between historical earthquakes and comparable geologic features elsewhere in the central Virginia seismic zone.
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1997-01-01
The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.
Weakening gravity on redshift-survey scales with kinetic matter mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Amico, Guido; Huang, Zhiqi; Mancarella, Michele
We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field asmore » well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.« less
First Impressions of a Scintrex CG-6 Portable Gravimeter in an Extensive Field Campaign
NASA Astrophysics Data System (ADS)
van Westrum, D.; Kanney, J.
2017-12-01
First Impressions of a Scintrex CG-6 Portable Gravimeter in an Extensive Field Campaign AGU Fall Meeting 2017 Derek van Westrum and Jeff Kanney NOAA's National Geodetic Survey conducted its third and final Geoid Slope Validation Survey (GSVS) this past summer in the rugged mountains of southern Colorado. In addition to leveling, long period GPS, and defelction of vertical observations, absolute gravity and vertical gravity gradients were measured at 235 bench marks (approximately 1.5 km spacing) along US-160 between Durango and Walsenburg, Colorado. In previous surveys (Texas-2011 and Iowa-2014), an A10 absolute gravimeter was used to measure graivty at approximately 10-15% of the bench marks. The remaining marks were determined by using LaCoste & Romberg relative gravimeters. The same relative instruments were also used to measure two-tier (linear) vertical gravity gradients at the A10 sites. In the current work - becuase of the rapidly changing terrain in the Rocky Mountains - it was decided to employ the A10 at all 235 bench marks, and acquire three-tier (quadratic) gradients at every bench mark using the new Scintrex CG-6 Autograv relative gravimeter. Using these results, we will provide a real worldsummary of the CG-6's behavior by examining noise levels, repeatability, and acquisition rates. In addition, the coincident A10 absolute data set allows us to evaluate the CG-6's accuracy, and allows us to simulate and discuss various relative gravity survey designs.
Electrostatic analogy for symmetron gravity
NASA Astrophysics Data System (ADS)
Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin
2017-12-01
The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.
On the stability conditions for theories of modified gravity in the presence of matter fields
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios
2017-03-01
We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.
Inversion of gravity gradient tensor data: does it provide better resolution?
NASA Astrophysics Data System (ADS)
Paoletti, V.; Fedi, M.; Italiano, F.; Florio, G.; Ialongo, S.
2016-04-01
The gravity gradient tensor (GGT) has been increasingly used in practical applications, but the advantages and the disadvantages of the analysis of GGT components versus the analysis of the vertical component of the gravity field are still debated. We analyse the performance of joint inversion of GGT components versus separate inversion of the gravity field alone, or of one tensor component. We perform our analysis by inspection of the Picard Plot, a Singular Value Decomposition tool, and analyse both synthetic data and gradiometer measurements carried out at the Vredefort structure, South Africa. We show that the main factors controlling the reliability of the inversion are algebraic ambiguity (the difference between the number of unknowns and the number of available data points) and signal-to-noise ratio. Provided that algebraic ambiguity is kept low and the noise level is small enough so that a sufficient number of SVD components can be included in the regularized solution, we find that: (i) the choice of tensor components involved in the inversion is not crucial to the overall reliability of the reconstructions; (ii) GGT inversion can yield the same resolution as inversion with a denser distribution of gravity data points, but with the advantage of using fewer measurement stations.
Case, J.E.; Barnes, D.F.; Plafker, George; Robbins, S.L.
1966-01-01
Sedimentary and volcanic rocks of Mesozoic and early Tertiary age form a roughly arcuate pattern in and around Prince William Sound, the epicentral region of the Alaska earthquake of 1964. These rocks include the Valdez Group, a predominantly slate and graywacke sequence of Jurassic and Cretaceous age, and the Orca Group, a younger sequence of early Tertiary age. The Orca consists of a lower unit of dense-average 2.87 g per cm3 (grams per cubic centimeter) pillow basalt and greenstone intercalated with sedimentary rocks and an upper unit of lithologically variable sandstone interbedded with siltstone or argillite. Densities of the clastic rocks in both the Valdez and Orca Groups average about 2.69 g per cm3. Granitic rocks of relatively low density (2.62 g per cm3) cut the Valdez and Orca Groups at several localities. Both the Valdez and the Orca Groups were complexly folded and extensively faulted during at least three major episodes of deformation: an early period of Cretaceous or early Tertiary orogeny, a second orogeny that probably culminated in late Eocene or early Oligocene time and was accompanied or closely followed by emplacement of granitic batholiths, and a third episode of deformation that began in late Cenozoic time and continued intermittently to the present. About 500 gravity stations were established in the Prince William Sound region in conjunction with postearthquake geologic investigations. Simple Bouguer anomaly contours trend approximately parallel to the arcuate geologic structure around the sound. Bouguer anomalies decrease northward from +40 mgal (milligals) at the southwestern end of Montague Island to -70 mgal at College and Harriman Fiords. Most of this change may be interpreted as a regional gradient caused by thickening of the continental crust. Superimposed on the gradient is a prominent gravity high of as much as 65 mgal that extends from Elrington Island on the southwest, across Knight and Glacier Islands to the Ellamar Peninsula and Valdez on the northeast. This high coincides with the wide belt of greenstone and pillow basalt of the Orca Group and largely reflects the high density of these volcanic rocks. A large low in the east-central part of the sound is inferred to have a composite origin, and results from the combined effects of low-density sedimentary and granitic rocks. The Prince William Sound gravity high extends southwest-northeast without major horizontal offset for more than 100 miles. Thus the belt of volcanic rocks causing the high constitutes a major virtually continuous, geologic element of south-central Alaska.
Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus
Krebs, Hermano I; Ferraro, Mark; Buerger, Stephen P; Newbery, Miranda J; Makiyama, Antonio; Sandmann, Michael; Lynch, Daniel; Volpe, Bruce T; Hogan, Neville
2004-01-01
Background Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation). This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions). Results Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. Conclusion Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on experiments that test whether we can continue to influence recovery, long after the acute insult, with a novel class of spatial robotic devices. This pilot results support the pursuit of further clinical trials to test efficacy and the pursuit of optimal therapy following brain injury. PMID:15679916
Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus.
Krebs, Hermano I; Ferraro, Mark; Buerger, Stephen P; Newbery, Miranda J; Makiyama, Antonio; Sandmann, Michael; Lynch, Daniel; Volpe, Bruce T; Hogan, Neville
2004-10-26
BACKGROUND: Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation). This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions). RESULTS: Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. CONCLUSION: Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on experiments that test whether we can continue to influence recovery, long after the acute insult, with a novel class of spatial robotic devices. This pilot results support the pursuit of further clinical trials to test efficacy and the pursuit of optimal therapy following brain injury.
2D data-space cross-gradient joint inversion of MT, gravity and magnetic data
NASA Astrophysics Data System (ADS)
Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop
2017-08-01
We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.
Acoustic and gravity waves in the neutral atmosphere and the ionosphere, generated by severe storms
NASA Technical Reports Server (NTRS)
Balachandran, N. K.
1983-01-01
Gravity waves in the neutral atmosphere and their propagation in the ionosphere and the study of infrasonic signals from thunder were investigated. Doppler shifts of the order of 0.1 Hz are determined and they provide high-resolution measurements of the movements in the ionosphere. By using an array of transmitters with different frequencies and at different locations, the horizontal and vertical propagation vectors of disturbances propagating through the ionosphere are determined.
The GOCE end-to-end system simulator
NASA Astrophysics Data System (ADS)
Catastini, G.; Cesare, S.; de Sanctis, S.; Detoma, E.; Dumontel, M.; Floberghagen, R.; Parisch, M.; Sechi, G.; Anselmi, A.
2003-04-01
The idea of an end-to-end simulator was conceived in the early stages of the GOCE programme, as an essential tool for assessing the satellite system performance, that cannot be fully tested on the ground. The simulator in its present form is under development at Alenia Spazio for ESA since the beginning of Phase B and is being used for checking the consistency of the spacecraft and of the payload specifications with the overall system requirements, supporting trade-off, sensitivity and worst-case analyses, and preparing and testing the on-ground and in-flight calibration concepts. The software simulates the GOCE flight along an orbit resulting from the application of Earth's gravity field, non-conservative environmental disturbances (atmospheric drag, coupling with Earth's magnetic field, etc.) and control forces/torques. The drag free control forces as well as the attitude control torques are generated by the current design of the dedicated algorithms. Realistic sensor models (star tracker, GPS receiver and gravity gradiometer) feed the control algorithms and the commanded forces are applied through realistic thruster models. The output of this stage of the simulator is a time series of Level-0 data, namely the gradiometer raw measurements and spacecraft ancillary data. The next stage of the simulator transforms Level-0 data into Level-1b (gravity gradient tensor) data, by implementing the following steps: - transformation of raw measurements of each pair of accelerometers into common and differential accelerations - calibration of the common and differential accelerations - application of the post-facto algorithm to rectify the phase of the accelerations and to estimate the GOCE angular velocity and attitude - computation of the Level-1b gravity gradient tensor from calibrated accelerations and estimated angular velocity in different reference frames (orbital, inertial, earth-fixed); computation of the spectral density of the error of the tensor diagonal components (measured gravity gradient minus input gravity gradient) in order to verify the requirement on the error of gravity gradient of 4 mE/sqrt(Hz) within the gradiometer measurement bandwidth (5 to 100 mHz); computation of the spectral density of the tensor trace in order to verify the requirement of 4 sqrt(3) mE/sqrt(Hz) within the measurement bandwidth - processing of GPS observations for orbit reconstruction within the required 10m accuracy and for gradiometer measurement geolocation. The current version of the end-to-end simulator, essentially focusing on the gradiometer payload, is undergoing detailed testing based on a time span of 10 days of simulated flight. This testing phase, ending in January 2003, will verify the current implementation and conclude the assessment of numerical stability and precision. Following that, the exercise will be repeated on a longer-duration simulated flight and the lesson learnt so far will be exploited to further improve the simulator's fidelity. The paper will describe the simulator's current status and will illustrate its capabilities for supporting the assessment of the quality of the scientific products resulting from the current spacecraft and payload design.
Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid
2017-06-01
In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.
The quasi 2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA
NASA Astrophysics Data System (ADS)
Wang, Jack C.; Chang, Loren C.; Yue, Jia; Wang, Wenbin; Siskind, D. E.
2017-05-01
The quasi 2 day wave (QTDW) is a traveling planetary wave that can be enhanced rapidly to large amplitudes in the mesosphere and lower thermosphere (MLT) region during the northern winter postsolstice period. In this study, we present five case studies of QTDW events during January and February 2005, 2006 and 2008-2010 by using the Thermosphere-Ionosphere-Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) nudged with the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) Weather Forecast Model. With NOGAPS-ALPHA introducing more realistic lower atmospheric forcing in TIME-GCM, the QTDW events have successfully been reproduced in the TIME-GCM. The nudged TIME-GCM simulations show good agreement in zonal mean state with the NOGAPS-ALPHA 6 h reanalysis data and the horizontal wind model below the mesopause; however, it has large discrepancies in the tropics above the mesopause. The zonal mean zonal wind in the mesosphere has sharp vertical gradients in the nudged TIME-GCM. The results suggest that the parameterized gravity wave forcing may need to be retuned in the assimilative TIME-GCM.
NASA Astrophysics Data System (ADS)
Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.
2018-01-01
This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.
NASA Astrophysics Data System (ADS)
Kleinböhl, Armin; Friedson, A. James; Schofield, John T.
2017-01-01
The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.
Refining the effects of aircraft motion on an airborne beam-type gravimeter
NASA Astrophysics Data System (ADS)
Childers, V. A.; Weil, C.
2016-12-01
A challenge of modern airborne gravimetry is identifying an aircraft/autopilot combination that will allow for high quality data collection. The natural motion of the aircraft coupled with the autopilot's reaction to changing winds and turbulence can result in a successful data collection effort when the motion is benign or in total failure when the motion is at its worst. Aircraft motion plays such an important role in airborne gravimetry for several reasons, but most importantly to this study it affects the behavior of the gravimeter's gyro-stabilized platform. The gyro-stabilized platform keeps the sensor aligned with a time-averaged local vertical to produce a scalar measurement along the plumb direction. However, turbulence can cause the sensor to align temporarily with aircraft horizontal accelerations that can both decrease the measured gravity (because the sensor is no longer aligned with the gravity field) and increase the measured gravity (because horizontal accelerations are coupling into the measurement). NOAA's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project has collected airborne gravity data using a Micro-g LaCoste TAGS (Turnkey Airborne Gravity System) beam-type meter on a variety of mostly turboprop aircraft with a wide range of outcomes, some different than one would predict. Some aircraft that seem the smoothest to the operator in flight do not produce as high quality a measurement as one would expect. Alternatively, some aircraft that have significant motion produce very high quality data. Due to the extensive nature of the GRAV-D survey, significant quantities of data exist on our various successful aircraft. In addition, we have numerous flights, although fewer, that were not successful for a number of reasons. In this study, we use spectral analysis to evaluate the aircraft motion for our various successful aircraft and compare with the problem flights in our effort to identify the signature motions indicative of aircraft that could be successful or not successful for airborne gravity collection with a beam-type sensor.
Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight
NASA Technical Reports Server (NTRS)
Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles
2005-01-01
On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.
A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.
Dimensional stability of flakeboards as affected by board specific gravity and flake alignment
Robert L. Geimer
1982-01-01
The objective was to determine the relationship between the variables specific gravity (SG) and flake alignment and the dimensional stability properties of flakeboard. Boards manufactured without a density gradient were exposed to various levels of relative humidity and a vacuum-pressure soak (VPS) treatment. Changes in moisture content (MC), thickness swelling, and...
GEOPHYSICAL INVESTIGATIONS OF THE STRUCTURE OF THE EARTH’S CRUST IN THE ATLANTIC OCEAN REGION,
50--100 mgal and then increase to +50--70mgal. The Bouguer isoanomaly lines are denser in the transition zone and a considerable gravity gradient...data has also become more abundent. Investigations to determine relation between Bouguer gravity anomalies and the thickness of the earth’s crust
Enhanced Labeling Techniques to Study the Cytoskeleton During Root Growth and Gravitropism
NASA Technical Reports Server (NTRS)
Blancaflor, Elison B.
2005-01-01
Gravity effects the growth and development of all living organisms. One of the most obvious manifestations of gravity's effects on biological systems lies in the ability of plants to direct their growth along a path that is dictated by the gravity vector (called gravitropism). When positioned horizontally, in florescence stems and hypocotyls in dicots, and pulvini in monocots, respond by bending upward whereas roots typically bend downward. Gravitropism allows plants to readjust their growth to maximize light absorption for photosynthesis and to more efficiently acquire water and nutrients form the soil. Despite its significance for plant survival, there are still major gaps in understanding the cellular and molecular processes by which plants respond to gravity. The major aim of this proposal was to develop improved fluorescence labeling techniques to aid in understanding how the cytoskeleton modulated plant responses to gravity.
Low Reynolds number suspension gravity currents.
Saha, Sandeep; Salin, Dominique; Talon, Laurent
2013-08-01
The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.
Filmwise Condensation of Steam on Externally-Finned Horizontal Tubes.
1983-12-01
via gravity to the boiler. The auxiliary condenser was constructed of two 9.5-mm (3/8-in) water- cooled ccpper lines helically coiled to a height of...34. " . .. . ’ . .- .. ’. .. .- . . . i . ’ -, - NPS69-83-003 - m NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS FILMWISE CONDENSATION OF STEAM ON EXTERNALLY-FINNED...and SubEtee) 5. TYPE OF REPORT & PERIOD COVERED Filmwise Condensation of Steam on Master Thesis; Externally-Finned Horizontal Tubes D e r1 6
NASA Astrophysics Data System (ADS)
Kozeko, Lyudmyla; Kordyum, Elizabeth
2006-09-01
Heat-shock proteins (HSP70 and HSP90) are present in plant cells under the normal growth conditions. At the same time, a variety of environmental disruptions results in their rapid synthesis as a substantial part of adaptation. HSP amounts can be indicative of a cellular stress level. Altered gravity (clinorotation) is unnatural for plants, so it may be a kind of stress. The aim of this study was to analyze the influence of horizontal clinorotation on the HSP70 and HSP90 level during seedling development. Pea (Pisum sativum L.) seedlings grown for 3 days from seed imbibitions in stationary control and under slow clinorotation (2 rpm) are used for this investigation. Western blot analysis indicated that HSP70 and HSP90 were abundant in the embryos of dry seeds and their amount decreased significantly during seed germination. But under horizontal clinorotation, their level in seedlings remained higher compared to the control. Furthermore, a comparison of the influence of horizontal and vertical clinorotation on the HSP level was carried out. On the ELISA data, HSP70 and HSP90 amounts in the 3-day old seedlings were higher after horizontal clinorotation than after vertical. The obtained data show an increased HSP70 and HSP90 level in pea seedlings under clinorotation. Both, rotation and change in the cell position relatively to a gravity vector affect the HSP level.
Adaptive topographic mass correction for satellite gravity and gravity gradient data
NASA Astrophysics Data System (ADS)
Holzrichter, Nils; Szwillus, Wolfgang; Götze, Hans-Jürgen
2014-05-01
Subsurface modelling with gravity data includes a reliable topographic mass correction. Since decades, this mandatory step is a standard procedure. However, originally methods were developed for local terrestrial surveys. Therefore, these methods often include defaults like a limited correction area of 167 km around an observation point, resampling topography depending on the distance to the station or disregard the curvature of the earth. New satellite gravity data (e.g. GOCE) can be used for large scale lithospheric modelling with gravity data. The investigation areas can include thousands of kilometres. In addition, measurements are located in the flight height of the satellite (e.g. ~250 km for GOCE). The standard definition of the correction area and the specific grid spacing around an observation point was not developed for stations located in these heights and areas of these dimensions. This asks for a revaluation of the defaults used for topographic correction. We developed an algorithm which resamples the topography based on an adaptive approach. Instead of resampling topography depending on the distance to the station, the grids will be resampled depending on its influence at the station. Therefore, the only value the user has to define is the desired accuracy of the topographic correction. It is not necessary to define the grid spacing and a limited correction area. Furthermore, the algorithm calculates the topographic mass response with a spherical shaped polyhedral body. We show examples for local and global gravity datasets and compare the results of the topographic mass correction to existing approaches. We provide suggestions how satellite gravity and gradient data should be corrected.
NASA Technical Reports Server (NTRS)
Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian
2013-01-01
To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.
Independent control of differently-polarized waves using anisotropic gradient-index metamaterials
Ma, Hui Feng; Wang, Gui Zhen; Jiang, Wei Xiang; Cui, Tie Jun
2014-01-01
We propose a kind of anisotropic gradient-index (GRIN) metamaterials, which can be used to control differently-polarized waves independently. We show that two three- dimensional (3D) planar lenses made of such anisotropic GRIN metamaterials are able to make arbitrary beam deflections for the vertical (or horizontal) polarization but have no response to the horizontal (or vertical) polarization. Then the vertically- and horizontally-polarized waves are separated and controlled independently to deflect to arbitrarily different directions by designing the anisotropic GRIN planar lenses. We make experimental verifications of the lenses using such a special metamaterial, which has both electric and magnetic responses simultaneously to reach approximately equal permittivity and permeability. Hence excellent impedance matching is obtained between the GRIN planar lenses and the air. The measurement results demonstrate good performance on the independent controls of differently-polarized waves, as observed in the numerical simulations. PMID:25231412
Numerical modeling of temperature and species distributions in hydrocarbon reservoirs
NASA Astrophysics Data System (ADS)
Bolton, Edward W.; Firoozabadi, Abbas
2014-01-01
We examine bulk fluid motion and diffusion of multicomponent hydrocarbon species in porous media in the context of nonequilibrium thermodynamics, with particular focus on the phenomenology induced by horizontal thermal gradients at the upper and lower horizontal boundaries. The problem is formulated with respect to the barycentric (mass-averaged) frame of reference. Thermally induced convection, with fully time-dependent temperature distributions, can lead to nearly constant hydrocarbon composition, with minor unmixing due to thermal gradients near the horizontal boundaries. Alternately, the composition can be vertically segregated due to gravitational effects. Independent and essentially steady solutions have been found to depend on how the compositions are initialized in space and may have implications for reservoir history. We also examine injection (to represent filling) and extraction (to represent leakage) of hydrocarbons at independent points and find a large distortion of the gas-oil contact for low permeability.
NASA Astrophysics Data System (ADS)
Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.
2014-01-01
We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship between subsurface structures and potential future volcanic activity in the Garrotxa volcanic field.
On the distortions in calculated GW parameters during slanted atmospheric soundings
NASA Astrophysics Data System (ADS)
de la Torre, Alejandro; Alexander, Peter; Schmidt, Torsten; Llamedo, Pablo; Hierro, Rodrigo
2018-03-01
The significant distortions introduced in the measured atmospheric gravity wavelengths by soundings other than those in vertical and horizontal directions, are discussed as a function of the elevation angle of the sounding path and the gravity wave aspect ratio. Under- or overestimation of real vertical wavelengths during the measurement process depends on the value of these two parameters. The consequences of these distortions on the calculation of the energy and the vertical flux of horizontal momentum are analyzed and discussed in the context of two experimental limb satellite setups: GPS-LEO radio occultations and TIMED/SABER ((Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics)) measurements. Possible discrepancies previously found between the momentum flux calculated from satellite temperature profiles, on site and from model simulations, may to a certain degree be attributed to these distortions. A recalculation of previous momentum flux climatologies based on these considerations seems to be a difficult goal.
Effects of clinostat rotation on Aurelia statolith synthesis
NASA Technical Reports Server (NTRS)
Spangenberg, D.; Davis, S.; Ross-Clunis, H., III
1985-01-01
Aurelia ephyrae develop eight graviceptors (rhopalia) during their metamorphosis from polyps, which are used for positional orientation with respect to gravity. In three experiments for each speed of 1/15, 1/8, 1/4, 1/2, 1, and 24 rpm, groups of six polyps were rotated in the horizontal or vertical plane (control) using clinostats. Other controls were kept stationary in the two planes. Ten ephyrae from each group were collected after 5-6 days at 27 C in iodine and the number of statoliths per rhopalium were counted. Statistical analyses of statolith numbers revealed that horizontal clinostat rotation at 1/4 and 1/2 rpm caused the formation of significantly fewer statoliths per rhopalium than were found in controls. The finding that these slow rates of rotation reduces statolith numbers suggests that the developing ephyrae were disoriented with respect to gravity at these speeds, causing fewer statocytes to differentiate or to mineralize.
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Zubova, N. A.
2017-06-01
This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.
Effects of Clinostat Rotation on Aurelia Statolith Synthesis
NASA Technical Reports Server (NTRS)
Spangenberg, Dorothy B.; Davis, S.; Ross-Clunis, H., III
1991-01-01
Aurelia ephyrae develop eight graviceptors (rhopalia) during their metamorphosis from polyps, which are used for positional orientation with respect to gravity. In three experiments for each speed of 1/15, 1/8, 1/2, 1, and 24 rpm, groups of six polyps were rotated in the horizontal or vertical plane (control) using clinostats. Other controls were kept stationary in the two planes. Ten ephyrae from each group were collected after 5 to 6 days at 27 C in iodine and the number of statoliths per rhopalium were counted. Statistical analyses of statolith numbers revealed that horizontal clinostat rotation at 1/4 and 1/2 rpm caused the formation of significantly fewer statoliths per rhopalium than were found in controls. The finding that these slow rates of rotation reduces statolith numbers suggests that the developing ephyrae were disoriented with respect to gravity at these speeds, causing fewer statocytes to differentiate or to mineralize.
Kinematics and dynamics of Nubia-Somalia divergence along the East African rift
NASA Astrophysics Data System (ADS)
Stamps, Dorothy Sarah
Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.
NASA Technical Reports Server (NTRS)
Heathcote, D. G.; Bircher, B. W.; Brown, A. H. (Principal Investigator)
1987-01-01
The phototropic dose-response relationship has been determined for Triticum aestivum cv. Broom coleoptiles growing on a purpose-built clinostat apparatus providing gravity compensation by rotation about a horizontal axis at 2 rev min-1. These data are compared with data sets obtained with the clinostat axis vertical and stationary, as a 1 g control, and rotating vertically to examine clinostat effects other than gravity compensation. Triticum at 1 g follows the well-established pattern of other cereal coleoptiles with a first positive curvature at low doses, followed by an indifferent response region, and a second positive response at progressively increasing doses. However, these response regions lie at higher dose levels than reported for Avena. There is no significant difference between the responses observed with the clinostat axis vertical in the rotating and stationary modes, but gravity compensation by horizontal rotation increases the magnitude of first and second positive curvatures some threefold at 100 min after stimulation. The indifferent response is replaced by a significant curvature towards the light source, but remains apparent as a reduced curvature response at these dose levels.
Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimschal, U.
An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulatingmore » heated meteoric waters.« less
The snake geothermal drilling project. Innovative approaches to geothermal exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, John W.; Evans, James P.; Liberty, Lee M.
2014-02-21
The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less
Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California
Schimschal, U.
1991-01-01
An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author
Instability of a gravity gradient satellite due to thermal distortion
NASA Technical Reports Server (NTRS)
Goldman, R. L.
1975-01-01
A nonlinear analytical model and a corresponding computer program were developed to study the influence of solar heating on the anomalous low frequency, orbital instability of the Naval Research Laboratory's gravity gradient satellite 164. The model's formulation was based on a quasi-static approach in which deflections of the satellite's booms were determined in terms of thermally induced bending without consideration of boom vibration. Calculations, which were made for variations in absorptivity, sun angle, thermal lag, and hinge stiffness, demonstrated that, within the confines of a relatively narrow stability criteria, the quasi-static model of NRL 164 not only becomes unstable, but, in a number of cases, responses were computed that closely resembled flight data.
NASA Technical Reports Server (NTRS)
Smith, H. D.; Mattox, D. M.; Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.
1982-01-01
An experiment was carried out on board a Space Processing Applications Rocket with the aim of demonstrating bubble migration in molten glass due to a temperature gradient under low gravity conditions. During the flight, a sample of a sodium borate melt with a specific bubble array, contained in a platinum/fused silica cell, was subjected to a well defined temperature gradient for more than 4 minutes. Photographs taken at one second intervals during the experiment clearly show that the bubbles move toward the hot spot on the platinum heater strip. This result is consistent with the predictions of the theory of thermocapillary driven bubble motion.
The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane
2015-08-14
layer in which the effects of sur- face friction are associated with significant departures from gradient wind balance. The boundary layer in the... effects of surface friction are associated with significant departures from gradient wind balance. More specifically, we follow Key Points: The...comprises a balance between three horizontal forces: Coriolis , pressure gradient, and friction. The boundary layer flow is characterized by a large Reynolds
Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics
NASA Astrophysics Data System (ADS)
Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike
2014-05-01
Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.
NASA Astrophysics Data System (ADS)
Becker, Erich; Vadas, Sharon L.
2018-03-01
This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.
Effect of Gravity on the Mammalian Cell Deformation
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y.; Gonda, Steven
1995-01-01
The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.
Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture
Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto
2014-01-01
[Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively. PMID:25540485
NASA Astrophysics Data System (ADS)
Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.
2018-05-01
We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.
Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture.
Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto
2014-12-01
[Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively.
Quasi-horizontal circulation cells in 3D seawater intrusion
Abarca, E.; Carrera, J.; Sanchez-Vila, X.; Voss, C.I.
2007-01-01
The seawater intrusion process is characterized by the difference in freshwater and seawater density that causes freshwater to float on seawater. Many confined aquifers have a large horizontal extension with respect to thickness. In these cases, while buoyancy acts in the vertical direction, flow is confined between the upper and bottom boundaries and the effect of gravity is controlled by variations of aquifer elevation. Therefore, the effective gravity is controlled by the slope and the shape of the aquifer boundaries. Variability in the topography of the aquifer boundaries is one case where 3D analysis is necessary. In this work, density-dependent flow processes caused by 3D aquifer geometry are studied numerically and specifically, considering a lateral slope of the aquifer boundaries. Sub-horizontal circulation cells are formed in the saltwater entering the aquifer. The penetration of the saltwater can be quantified by a dimensionless buoyancy number that measures the lateral slope of the aquifer relative to freshwater flux. The penetration of the seawater intrusion wedge is controlled more by this slope than by the aquifer thickness and dispersivity. Thus, the slope must be taken into account in order to accurately evaluate seawater intrusion. ?? 2007 Elsevier B.V. All rights reserved.
Superconducting tensor gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.
Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing
NASA Technical Reports Server (NTRS)
Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.
1996-01-01
An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.
1987-06-04
Testud , J. (1970) Gravity waves generated diring magnetic substorms, .1. Atmos. Terr. Phys., 32:1793. .6 t9, "-€ according to their horizontal...auroral oval during polar substorms, J. Geophys. Res., 74:5721. 7. Testud , J. P., Amayenc, P., and Blanc, M. (1975) Middle and low latitude effects of...1730. 13. Bertin, F.J., Testud , J., Kersley, L., and Rees, P. R. (1978) The meteorological jet stream as a source of medium scale gravity waves in
Gravity and Granular Materials
NASA Technical Reports Server (NTRS)
Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian
1999-01-01
We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.
Calcium and protein phosphorylation in the transduction of gravity signal in corn roots
NASA Technical Reports Server (NTRS)
Friedmann, M.; Poovaiah, B. W.
1991-01-01
The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.
Gravity controlled anti-reverse rotation device
Dickinson, Robert J.; Wetherill, Todd M.
1983-01-01
A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.
Tóta, Julio; Fitzjarrald, David Roy; da Silva Dias, Maria A F
2012-01-01
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras--ZF2--02°36'17.1'' S, 60°12'24.4'' W), subcanopy horizontal and vertical gradients of the air temperature, CO(2) concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO(2) sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO(2)) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO(2) into those estimates.
Tóta, Julio; Roy Fitzjarrald, David; da Silva Dias, Maria A. F.
2012-01-01
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras—ZF2—02°36′17.1′′ S, 60°12′24.4′′ W), subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO2) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates. PMID:22619608
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Meju, Max A.; Fontes, Sergio L.
2013-10-01
The commonest technique for determination of the continental-oceanic crustal boundary or transition (COB) zone is based on locating and visually correlating bathymetric and potential field anomalies and constructing crustal models constrained by seismic data. In this paper, we present a simple method for spatial correlation of bathymetric and potential field geophysical anomalies. Angular differences between gradient directions are used to determine different types of correlation between gravity and bathymetric or magnetic data. It is found that the relationship between bathymetry and gravity anomalies can be correctly identified using this method. It is demonstrated, by comparison with previously published models for the southwest African margin, that this method enables the demarcation of the zone of transition from oceanic to continental crust assuming that this it is associated with geophysical anomalies, which can be correlated using gradient directions rather than magnitudes. We also applied this method, supported by 2-D gravity modelling, to the more complex Liberia and Cote d'Ivoire-Ghana sectors of the West African transform margin and obtained results that are in remarkable agreement with past predictions of the COB in that region. We suggest the use of this method for a first-pass interpretation as a prelude to rigorous modelling of the COB in frontier areas.
NASA Technical Reports Server (NTRS)
Jenkins, James T.; Louge, Michel Y.
1996-01-01
We are interested in collisional granular flows of dry materials in reduced gravity. Because the particles interact through collisions, the energy of the particle velocity fluctuations plays an important role in the physics. Here we focus on the separation of grains by properties - size, for example - that is driven by spatial gradients in the fluctuation energy of the grains. The segregation of grains by size is commonly observed in geophysical flows and industrial processes. Segregation of flowing grains can also take place based on other properties, e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism that is independent of gravity. This mechanism may be important but is often obscured in terrestrial grain flows. It is driven by gradients in fluctuation energy. In microgravity, the separation of grains by property will proceed slowly enough to permit flight observations to provide an unambiguous measurement of the transport coefficients associated with the segregation. In this context, we are planning a microgravity shear cell experiment that contains a mixture of two types of spherical grains. The grains will be driven to interact with two different types of boundaries on either sides of the cell. The resulting separation will be observed visually.
Stimulation results in the Giddings (Austin Chalk) field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meehan, D.N.
1995-05-01
So called ``water-fracs`` have obtained excellent results in the Austin Chalk formation of Giddings field. This inexpensive treatment uses high volumes of water but no proppant. The reasons the treatment is successful include imbibition, gravity drainage, skin damage removal, and repressurization of the reservoir to enhance recovery. Union Pacific Resources Co. (UPRC) has treated about 250 vertical and 150 horizontal wells with very high economic success rates. Incremental recoveries from horizontal well water fracs alone exceed 5 million bbl of oil equivalent (6 Mcf = 1 bbl).
NASA Technical Reports Server (NTRS)
Hathaway, D. H.; Fowlis, W. W.
1986-01-01
Experimental flow regime diagrams are determined for a new rotating cylindrical annulus configuration which permits a measure of control over the internal vertical temperature gradient. The new annulus has radial temperature gradients imposed on plane horizontal thermally conducting endwalls (with the cylindrical sidewalls as insulators) and is considered to be more relevant to atmospheric dynamics studies than the classical cylindrical annulus. Observations have revealed that, in addition to the axisymmetric flow and nonaxisymmetric baroclinic wave flow which occur in the classical annulus, two additional nonaxisymmetric flow types occur in the new annulus: boundary-layer thermal convection and deep thermal convection. Flow regime diagrams for three different values of the imposed vertical temperature difference are presented, and explanations for the flow transitions are offered. The new annulus provides scientific backup for the proposed Atmospheric General Circulation Experiment for Spacelab. The apparatus diagram is included.
TEM and Gravity Data for Roosevelt Hot Springs, Utah FORGE Site
Hardwick, Christian; Nash, Greg
2018-02-05
This submission includes a gravity data in text format and as a GIS point shapefile and transient electromagnetic (TEM) raw data. Each text file additionally contains location data (UTM Zone 12, NAD83) and elevation (meters) data for that station. The gravity data shapefile was in part downloaded from PACES, University of Texas at El Paso, http://gis.utep.edu/subpages/GMData.html, and in part collected by the Utah Geological Survey (UGS) as part of the DOE GTO supported Utah FORGE geothermal energy project near Milford, Utah. The PACES data were examined and scrubbed to eliminate any questionable data. A 2.67 g/cm^3 reduction density was used for the Bouguer correction. The attribute table column headers for the gravity data shapefile are explained below. There is also metadata attached to the GIS shapefile. name: the individual gravity station name. HAE: height above ellipsoid [meter] NGVD29: vertical datum for geoid [meter] obs: observed gravity ERRG: gravity measurement error [mGal] IZTC: inner zone terrain correction [mGal] OZTC: outer zone terrain correction [mGal] Gfa: free air gravity gSBGA: Bouguer horizontal slab sCBGA: Complete Bouguer anomaly
Drenth, Benjamin J.
2014-01-01
The lower Paleozoic Elk Creek carbonatite is a 6–8-km-diameter intrusive complex buried under 200 m of sedimentary rocks in southeastern Nebraska. It hosts the largest known niobium deposit in the U.S. and a rare earth element (REE) deposit. The carbonatite is composed of several lithologies, the relations of which are poorly understood. Niobium mineralization is most enriched within a magnetite beforsite (MB) unit, and REE oxides are most concentrated in a barite beforsite unit. The carbonatite intrudes Proterozoic country rocks. Efforts to explore the carbonatite have used geophysical data and drilling. A high-resolution airborne gravity gradient and magnetic survey was flown over the carbonatite in 2012. The carbonatite is associated with a roughly annular vertical gravity gradient high and a subdued central low and a central magnetic high surrounded by magnetic field values lower than those over the country rocks. Geophysical, borehole, and physical property data are combined for an interpretation of these signatures. The carbonatite is denser than the country rocks, explaining the gravity gradient high. Most carbonatite lithologies have weaker magnetic susceptibilities than those of the country rocks, explaining why the carbonatite does not produce a magnetic high at its margin. The primary source of the central magnetic high is interpreted to be mafic rocks that are strongly magnetized and are present in large volumes. MB is very dense (mean density 3200 kg/m3) and strongly magnetized (median 0.073 magnetic susceptibility), producing a gravity gradient high and contributing to the aeromagnetic high. Barite beforsite has physical properties similar to most of the carbonatite volume, making it a poor geophysical target. Geophysical anomalies indicate the presence of dense and strongly magnetized rocks at depths below existing boreholes, either a large volume of MB or another unknown lithology.
NASA Astrophysics Data System (ADS)
Gómez, Natalia Ortiz; Walker, Scott J. I.
2015-08-01
The space debris population has grown rapidly over the last few decades with the consequent growth of impact risk between current objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary. However, current ADR methods that require physical contact with the target have limitations on the maximum angular momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth's gravity gradient and the eddy currents induced by the Earth's magnetic field. The gravity gradient is analysed using the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour of any object under the effect of this perturbation. The eddy currents are also analysed by studying the total energy of the system. The induced torque and the characteristic time of decay are presented as a function of the object's magnetic tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation as well as the eddy currents effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth's magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation for the rotational speed decay observed between April 2013 and September 2013.
GOCE and Future Gravity Missions for Geothermal Energy Exploitation
NASA Astrophysics Data System (ADS)
Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia
2016-08-01
Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying an atom interferometer sensor on board a satellite.
Impact of Orbit Position Errors on Future Satellite Gravity Models
NASA Astrophysics Data System (ADS)
Encarnacao, J.; Ditmar, P.; Klees, R.
2015-12-01
We present the results of a study of the impact of orbit positioning noise (OPN) caused by incomplete knowledge of the Earth's gravity field on gravity models estimated from satellite gravity data. The OPN is simulated as the difference between two sets of orbits integrated on the basis of different static gravity field models. The OPN is propagated into ll-SST data, here computed as averaged inter-satellite accelerations projected onto the Line of Sight (LoS) vector between the two satellites. We consider the cartwheel formation (CF), pendulum formation (PF), and trailing formation (TF) as they produce a different dominant orientation of the LoS vector. Given the polar orbits of the formations, the LoS vector is mainly aligned with the North-South direction in the TF, with the East-West direction in the PF (i.e. no along-track offset), and contains a radial component in the CF. An analytical analysis predicts that the CF suffers from a very high sensitivity to the OPN. This is a fundamental characteristic of this formation, which results from the amplification of this noise by diagonal components of the gravity gradient tensor (defined in the local frame) during the propagation into satellite gravity data. In contrast, the OPN in the data from PF and TF is only scaled by off-diagonal gravity gradient components, which are much smaller than the diagonal tensor components. A numerical analysis shows that the effect of the OPN is similar in the data collected by the TF and the PF. The amplification of the OPN errors for the CF leads to errors in the gravity model that are three orders of magnitude larger than those in case of the PF. This means that any implementation of the CF will most likely produce data with relatively low quality since this error dominates the error budget, especially at low frequencies. This is particularly critical for future gravimetric missions that will be equipped with highly accurate ranging sensors.
Natural convection in the Hale-Shaw cell of horizontal Bridgman solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y.; Liu, J.; Zhou, Y.
1995-08-01
The numerical simulation of natural convection in the Hale-Shaw cell during horizontal Bridgman solidification reveals that the convection is present even for the very thin cell. The effects of the horizontal temperature gradient, G, thickness of the cell, H, temperature difference between the top and bottom of the cell, and other parameters have been studied. These findings have been confirmed by experiments through direct observation and measurement of convection in the cell containing succinonitrile transparent model alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUANG,H.; AHRENS, L.; BAI, M.
Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.
The effect of gravity modulation on thermosolutal convection
NASA Technical Reports Server (NTRS)
Saunders, Bonita V.; Murray, Bruce T.; Mcfadden, G. B.; Coriell, S. R.; Wheeler, A. A.
1992-01-01
In a gravitational field, the opposing effects of components of different diffusivities, for example, temperature and solute, in the density profile in a fluid may produce convective instabilities that exhibit a broad range of dynamical behavior. The effect of time periodic vertical gravity modulation on the onset of these instabilities in an infinite horizontal layer with stress free boundaries is examined. This work is viewed as a first step in expanding previous results in solidification to the full problem of characterizing the effects of gravity modulation in thermosolutal convection during the directional solidification of binary alloys. Calculations carried out both with and without steady background acceleration are presented, the latter results being relevant to microgravity conditions.
Gravity-induced stresses near a vertical cliff
Savage, W.Z.
1993-01-01
The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.
Near-station terrain corrections for gravity data by a surface-integral technique
Gettings, M.E.
1982-01-01
A new method of computing gravity terrain corrections by use of a digitizer and digital computer can result in substantial savings in the time and manual labor required to perform such corrections by conventional manual ring-chart techniques. The method is typically applied to estimate terrain effects for topography near the station, for example within 3 km of the station, although it has been used successfully to a radius of 15 km to estimate corrections in areas where topographic mapping is poor. Points (about 20) that define topographic maxima, minima, and changes in the slope gradient are picked on the topographic map, within the desired radius of correction about the station. Particular attention must be paid to the area immediately surrounding the station to ensure a good topographic representation. The horizontal and vertical coordinates of these points are entered into the computer, usually by means of a digitizer. The computer then fits a multiquadric surface to the input points to form an analytic representation of the surface. By means of the divergence theorem, the gravity effect of an interior closed solid can be expressed as a surface integral, and the terrain correction is calculated by numerical evaluation of the integral over the surfaces of a cylinder, The vertical sides of which are at the correction radius about the station, the flat bottom surface at the topographic minimum, and the upper surface given by the multiquadric equation. The method has been tested with favorable results against models for which an exact result is available and against manually computed field-station locations in areas of rugged topography. By increasing the number of points defining the topographic surface, any desired degree of accuracy can be obtained. The method is more objective than manual ring-chart techniques because no average compartment elevations need be estimated ?
Determination of the maximum-depth to potential field sources by a maximum structural index method
NASA Astrophysics Data System (ADS)
Fedi, M.; Florio, G.
2013-01-01
A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.
Orbital Gravity Gradiometry Beyond GOCE: Mission Concepts
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.; Paik, Ho Jung; Moody, M. Vol; Venkateswara, Krishna Y.; Han, Shin-Chan; Ditmar, Pavel; Klees, Roland; Jekeli, Christopher;
2010-01-01
Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade, including cryocoolers, spacecraft architectures and cryogenic amplifiers. These enable considerably more complex instruments to be put into orbit for long-duration missions. One such instrument is the Superconducting Gravity Gradiometer (SGG) developed by Paik, et al. A magnetically levitated version is under consideration for a follow-on mission to GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer). With its inherently greater rejection of common mode accelerations and ability to cancel the coupling of angular accelerations into the gradient signal, the SGG can achieve [an accuracy of] 0.01 milli-Eotvos (gravitational gradient of the Earth) divided by the square root of frequency in hertz, with requirements for attitude control that can be met with existing spacecraft. In addition, the use of a cryocooler for cooling the instrument will alleviate the previously severe constraint on mission lifetime imposed by the use of superfluid helium,. enabling mission durations in the 5-10 year range. Studies are underway to determine requirements for orbit (polar versus sun-synchronous), altitude (which affects spacecraft drag), instrument temperature and stability, cryocooler vibration control, and control and readout electronics. These will be used to determine the SGG's sensitivity and ultimate resolution for gravity recovery. This paper will discuss preliminary instrument and spacecraft design, and toplevel mission requirements.
On the stability conditions for theories of modified gravity in the presence of matter fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios, E-mail: antonio.defelice@yukawa.kyoto-u.ac.jp, E-mail: fruscian@iap.fr, E-mail: papadomanolakis@lorentz.leidenuniv.nl
We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all themore » scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.« less
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.
NASA Technical Reports Server (NTRS)
Lew, H. G.
1972-01-01
The ignition of a combustible gas mixture by a hot cylinder under the effect of a gravity field for steady state conditions is examined. For this purpose a horizontal cylinder is considered with gravity as a parameter together with a finite chemical reacting flow generated by free convection with the additional effect of diffusion. Both mass transfer and zero mass transfer cases are considered. By defining an ignition criterion the surface temperature and species are obtained from the analysis as a function of the gravity field. It is supposed that at the point of ignition the heat evolved in the gas is sufficiently high to attain a sustained combustion without any energy from the hot cylinder.
Braun, M; Limbach, C
2006-12-01
Gravitropically tip-growing rhizoids and protonemata of characean algae are well-established unicellular plant model systems for research on gravitropism. In recent years, considerable progress has been made in the understanding of the cellular and molecular mechanisms underlying gravity sensing and gravity-oriented growth. While in higher-plant statocytes the role of cytoskeletal elements, especially the actin cytoskeleton, in the mechanisms of gravity sensing is still enigmatic, there is clear evidence that in the characean cells actin is intimately involved in polarized growth, gravity sensing, and the gravitropic response mechanisms. The multiple functions of actin are orchestrated by a variety of actin-binding proteins which control actin polymerisation, regulate the dynamic remodelling of the actin filament architecture, and mediate the transport of vesicles and organelles. Actin and a steep gradient of cytoplasmic free calcium are crucial components of a feedback mechanism that controls polarized growth. Experiments performed in microgravity provided evidence that actomyosin is a key player for gravity sensing: it coordinates the position of statoliths and, upon a change in the cell's orientation, directs sedimenting statoliths to specific areas of the plasma membrane, where contact with membrane-bound gravisensor molecules elicits short gravitropic pathways. In rhizoids, gravitropic signalling leads to a local reduction of cytoplasmic free calcium and results in differential growth of the opposite subapical cell flanks. The negative gravitropic response of protonemata involves actin-dependent relocation of the calcium gradient and displacement of the centre of maximal growth towards the upper flank. On the basis of the results obtained from the gravitropic model cells, a similar fine-tuning function of the actomyosin system is discussed for the early steps of gravity sensing in higher-plant statocytes.
Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data
McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.
2014-01-01
The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.
Role of actin in auxin transport and transduction of gravity
NASA Astrophysics Data System (ADS)
Hu, S.; Basu, S.; Brady, S.; Muday, G.
Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)
NASA Astrophysics Data System (ADS)
Di Filippo, Michele; Di Nezza, Maria
2016-04-01
Several factors were taken into consideration in order to appropriately tailor the geophysical explorations at the cultural heritage. Given the fact that each site has been neglected for a long time and in recent times used as an illegal dumping area, we thoroughly evaluated for this investigation the advantages and limitations of each specific technique, and the general conditions and history of the site. We took into account the extension of the areas to be investigated and the need for rapid data acquisition and processing. Furthermore, the survey required instrumentation with sensitivity to small background contrasts and as little as possible affected by background noise sources. In order to ascertain the existence and location of underground buried walls, a magnetic gradiometer survey (MAG) was planned. The map of the magnetic anomalies is not computed to reduction at the pole (RTP), but with a magnetic horizontal gradient operator (MHGO). The magnetic horizontal gradient operator (MHGO) generates from a grid of vertical gradient a grid of steepest slopes (i.e. the magnitude of the gradient) at any point on the surface. The MHGO is reported as a number (rise over run) rather than degrees, and the direction is opposite to that of the slope. The MHGO is zero for a horizontal surface, and approaches infinity as the slope approaches the vertical. The gradient data are especially useful for detecting objects buried at shallow depth. The map reveals some details of the anomalies of the geomagnetic field. Magnetic anomalies due to walls are more evident than in the total intensity map, whereas anomalies due to concentrations of debris are very weak. In this work we describe the results of an investigation obtained with magnetometry investigation for two archaeological sites: "Villa degli Antonini" (Genzano, Rome) and Rota Ria (Mugnano in Teverina, Viterbo). Since the main goal of the investigation was to understand the nature of magnetic anomalies with cost-effective method, we have also detection and location of underground buried structures using different instruments and techniques geophysical were carried out (EMI, GPR and microgravity) and so far excavated only in a targeted sector of the area of the anomaly labeled in order to test the validity of the geophysical survey.
Brown, D A; Kautz, S A; Dairaghi, C A
1997-05-01
With hemiplegia following stroke, a person's movement response to anti-gravity posture often appears rigid and inflexible, exacerbating the motor dysfunction. A major determinant of pathological movement in anti-gravity postures is the failure to adapt muscle-activity patterns automatically to changes in posture. The aim of the present study was to determine whether the impaired motor performance observed when persons with hemiplegia pedal in a horizontal position is exacerbated at more vertical anti-gravity body orientations. Twelve healthy elderly subjects and 17 subjects with chronic (> 6 months) post-stroke hemiplegia participated in the study. Subjects pedalled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload, cadence, and hip and knee kinematics. Pedal reaction forces, and crank and pedal kinematics, were measured and then used to calculate the work done by each leg and their net positive and negative components. The EMG was recorded from four leg muscles (tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris). The main result from this study was that impaired plegic leg performance, as measured by net negative work done by the plegic leg and abnormal early rectus femoris activity, was exacerbated at the most vertical body orientations. However, contrary to the belief that muscle activity cannot adapt to anti-gravity postures, net positive work increased appropriately and EMG activity in all muscles showed modulated levels of activity similar to those in elderly control subjects. These results support the hypothesis that increased verticality exacerbates the already impaired movement performance. Yet, much of the motor response to verticality was flexible and appropriate, given the mechanics of the task.
Chilean Tsunami Rocks the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.
2016-12-01
The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.
Geothermal Exploration of the Winston Graben, Central New Mexico, USA
NASA Astrophysics Data System (ADS)
Sophy, M. J.; Kelley, S. A.
2011-12-01
We are assessing the geothermal potential of the Winston Graben of central New Mexico using borehole temperature logs and geophysical data. The Winston Graben is a late Cenozoic rift basin, part of the larger Rio Grande rift, which is 5 to 10 km wide and 56 km long with northern and southern termini occurring at accommodation zones that coincide with late Cenozoic volcanic lineaments. The graben is interpreted to be symmetric based on geologic mapping, with 2 km of stratigraphic offset on both the western and eastern margins. The graben is bordered by the Black Range to the west and is separated from the Rio Grande valley by the Sierra Cuchillo, a horst block made of Paleozoic rocks intruded by a laccolith. Geothermal and geophysical data, including water table measurements, well temperature logs, thermal conductivity samples, bottom hole temperatures, water chemistry, and gravity data have been extracted from the New Mexico Geothermal Database, part of the National Geothermal Database, and the Geonet Gravity and Magnetic Dataset Repository. Combined with existing geologic maps of the Winston Graben and surroundings, these data help to identify spatial relationships between geologic structures and groundwater parameters and distribution. Geothermal gradients from industry temperature-depth well profiles range from 20°C/km to 60°C/km with a spatial distribution of higher gradients located on the eastern side of the Sierra Cuchillo horst, which is where a mapped warm spring is located. Lower thermal gradients were observed to the west in the groundwater recharge area of the basin. Analysis of Bouguer gravity data indicate a gravity low coinciding with the center of the Winston Graben, which is attributed to be the deepest part of the basin, symetrically surrounded by gravity highs. Gravity highs coincide with the middle Cenozoic Morenci and Chise volcanic lineaments along the northern and southern ends of the graben. The mapped warm spring occurs at the intersection of basin bounding faults and the Chise lineament. Water table gradient information from phreatic aquifers less than 75 meters deep suggests both along axis and cross axis flow direction within the basin. Because the temperature anomalies trend east-west and water table gradients trend north-south, a two component hydrogeologic system may exist. The east-west trend may be the result of deep groundwater, heated along its flowpath beneath the basin and the Sierra Cuchillo, being forced to the surface at structural zones. Major rift bounding faults along the Sierra Cuchillo horst block serve as fluid pathways for the existing warm springs, and a low temperature geothermal resource may have formed as deep warm, and shallow cool waters interact. Planned work on this project includes collecting hydrogen and oxygen isotopic data of precipitation and groundwater which may show distinct water chemistries of a two component system, continued temperature logging of deeper wells in order to understand temperature distributions at depth, and an increased number of gravity measurements of the southern end of the Winston Graben to improve mapping of the southern accommodation zone relative to the hydrogeologic system.
Steam-assisted gravity drainage technology enhancement
NASA Astrophysics Data System (ADS)
Durkin, S.; Menshikova, I.
2018-05-01
A hydrodynamic model of a region of Yaregskoye heavy oilfield was build. The results of the simulation have shown that injection capacity along the wellbore of a horizontal well is not uniform. It is determined by the geological heterogeneity of the formation. Therefore, there is importance of enhancing SAGD technology for Yaregskoye oilfield. A new technology was created. The efficiency of the technology is proved by numerical modelling. Horizontal injector and two-wellhead production wells penetrate the formation. Horizontal sections of the wells are located one above the other in the payzone. Wells are divided into two sections. Those sections work simultaneously and independently of one another. This technology allows to increase oil recovery of the oilfield.
Crustal-scale tilting of the central Salton block, southern California
Dorsey, Rebecca; Langenheim, Victoria
2015-01-01
The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.
NASA Astrophysics Data System (ADS)
Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad
2017-10-01
The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.
Gettings, M.E.; Bultman, M.W.
2005-01-01
Some aquifers of the southwest Colorado Plateau, U.S.A., are deeply buried and overlain by several impermeable units, and thus recharge to the aquifer is probably mainly by seepage down penetrative fracture systems. This purpose of this study was to develop a method to map the location of candidate deep penetrative fractures over a 120,000 km2 area using gravity and aeromagnetic anomaly data together with surficial fracture data. The resulting database constitutes a spatially registered estimate of recharge location. Candidate deep fractures were obtained by spatial correlation of horizontal gradient and analytic signal maxima of gravity and magnetic anomalies vertically with major surficial lineaments obtained from geologic, topographic, side-looking airborne radar, and satellite imagery. The maps define a sub-set of possible penetrative fractures because of limitations of data coverage and the analysis technique. The data and techniques employed do not yield any indication as to whether fractures are open or closed. Correlations were carried out using image processing software in such a way that every pixel on the resulting grids was coded to uniquely identify which datasets correlated. The technique correctly identified known deep fracture systems and many new ones. Maps of the correlations also define in detail the tectonic fabrics of the Southwestern Colorado Plateau. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.
Squat exercise biomechanics during short-radius centrifugation.
Duda, Kevin R; Jarchow, Thomas; Young, Laurence R
2012-02-01
Centrifuge-induced artificial gravity (AG) with exercise is a promising comprehensive countermeasure against the physiological de-conditioning that results from exposure to weightlessness. However, body movements onboard a rotating centrifuge are affected by both the gravity gradient and Coriolis accelerations. The effect of centrifugation on squat exercise biomechanics was investigated, and differences between AG and upright squat biomechanics were quantified. There were 28 subjects (16 male) who participated in two separate experiments. Knee position, foot reaction forces, and motion sickness were recorded during the squats in a 1-G field while standing upright and while supine on a horizontally rotating 2 m radius centrifuge at 0, 23, or 30 rpm. No participants terminated the experiment due to motion sickness symptoms. Total mediolateral knee deflection increased by 1.0 to 2.0 cm during centrifugation, and did not result in any injuries. There was no evidence of an increased mediolateral knee travel "after-effect" during postrotation supine squats. Peak foot reaction forces increased with rotation rate up to approximately 200% bodyweight (iRED on ISS provides approximately 210% bodyweight resistance). The ratio of left-to-right foot force throughout the squat cycle on the centrifuge was nonconstant and approximately sinusoidal. Total foot reaction force versus knee flexion-extension angles differed between upright and AG squats due to centripetal acceleration on the centrifuge. A brief exercise protocol during centrifugation can be safely completed without significant after-effects in mediolateral knee position or motion sickness. Several recommendations are made for the design of future centrifuge-based exercise protocols for in-space applications.
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Duncan, R. V.
1993-01-01
A design is presented of a low gravity simulator where a magnetic field gradient is employed to oppose the hydrostatic pressure effects of gravity. It appears feasible to reduce the effective gravity environment of the helium in the cell by about two orders of magnitude. The corresponding shift in transition temperature with vertical height would be reduced to 12.7 nK/cm. Methods for instrumenting the simulator to perform high resolution investigations of non-equilibrium phenomena near the lambda point are presented. The advantages of using a low gravity simulator in searching for the predicted change in character of the superfluid transition from continuous to first order in the presence of a heat current are also discussed.
NASA Astrophysics Data System (ADS)
Khattab, M. M.
1993-04-01
The compiled Bouguer gravity anomaly map over parts of the ophiolite rocks of the Northern Oman Mountains suggests the existence of three partially serpentinized nappes: two along the Gulf of Oman coast with axes near Dadnah, near Fujira and the third 17 km SSE of Masafi. Modeling of the subsurface geology, beneath two gravity profiles (Diba-Kalba and Masafi-Fujira), is based on the occurrence (field evidence) of multiphase low-angle thrusting of the members of the Tethyan lithosphere in northern and Oman Mountains. An assumed crustal model at the Arabian continental margin, beneath the Masafi-Fujira profile, is made to explain an intense gravity gradient. Gravity interpretation is not inconsistent with a gliding mechanism for obduction of the ophiolite on this part of the Arabian continental margin.
LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture1[OPEN
2017-01-01
A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results identify the major contributors to root and shoot branch angles and gravitropic behavior of seedling hypocotyls and primary roots. AtLAZY1 is the principal determinant of inflorescence branch angle. The weeping inflorescence phenotype of atlazy1,2,4 mutants may be due at least in part to a reversal in the gravitropism mechanism. AtLAZY2 and AtLAZY4 determined lateral root branch angle. Lateral roots of the atlazy2,4 double mutant emerged slightly upward, approximately 10° greater than perpendicular to the primary root axis, and they were agravitropic. Etiolated hypocotyls of the quadruple atlazy1,2,3,4 mutant were essentially agravitropic, but their phototropic response was robust. In light-grown seedlings, the root of the atlazy2,3,4 mutant was also agravitropic but when adapted to dim red light it displayed a reversed gravitropic response. A reversed auxin gradient across the root visualized by a fluorescent signaling reporter explained the reversed, upward bending response. We propose that AtLAZY proteins control plant architecture by coupling gravity sensing to the formation of auxin gradients that override a LAZY-independent mechanism that creates an opposing gravity-induced auxin gradient. PMID:28821594